WorldWideScience

Sample records for high mass x-ray

  1. Low Mass X-ray Binary 4U1705-44 Exiting an Extended High X-ray State

    Science.gov (United States)

    Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.

    2017-09-01

    The neutron-star low-mass X-ray binary 4U1705-44, which exhibited high amplitude long-term X-ray variability on the order of hundreds of days during the 16-year continuous monitoring by the RXTE ASM (1995-2012), entered an anomalously long high state in July 2012 as observed by MAXI (2009-present).

  2. Catalogue of high-mass X-ray binaries in the Galaxy (4th edition)

    NARCIS (Netherlands)

    Liu, Q.Z.; van Paradijs, J.; van den Heuvel, E.P.J.

    2006-01-01

    We present a new edition of the catalogue of high-mass X-ray binaries in the Galaxy. The catalogue contains source name(s), coordinates, finding chart, X-ray luminosity, system parameters, and stellar parameters of the components and other characteristic properties of 114 high-mass X-ray binaries,

  3. Rotation of the Mass Donors in High-mass X-ray Binaries and Symbiotic Stars

    Directory of Open Access Journals (Sweden)

    K. Stoyanov

    2015-02-01

    Full Text Available Our aim is to investigate the tidal interaction in High-mass X-ray Binaries and Symbiotic stars in order to determine in which objects the rotation of the mass donors is synchronized or pseudosynchronized with the orbital motion of the compact companion. We find that the Be/X-ray binaries are not synchronized and the orbital periods of the systems are greater than the rotational periods of the mass donors. The giant and supergiant High-mass X-ray binaries and symbiotic stars are close to synchronization. We compare the rotation of mass donors in symbiotics with the projected rotational velocities of field giants and find that the M giants in S-type symbiotics rotate on average 1.5 times faster than the field M giants. We find that the projected rotational velocity of the red giant in symbiotic star MWC 560 is v sin i= 8.2±1.5 km.s−1, and estimate its rotational period to be Prot<>/sub = 144 - 306 days. Using the theoretical predictions of tidal interaction and pseudosynchronization, we estimate the orbital eccentricity e = 0.68 − 0.82.

  4. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    International Nuclear Information System (INIS)

    Seward, F. D.; Charles, P. A.; Foster, D. L.; Dickel, J. R.; Romero, P. S.; Edwards, Z. I.; Perry, M.; Williams, R. M.

    2012-01-01

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M ☉

  5. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Seward, F. D. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Charles, P. A. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Foster, D. L. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Dickel, J. R.; Romero, P. S. [Department of Physics and Astronomy, University of New Mexico, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Edwards, Z. I.; Perry, M.; Williams, R. M. [Department of Earth and Space Sciences, Columbus State University, Coca Cola Space Science Center, 701 Front Avenue, Columbus, GA 31901 (United States)

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  6. Probing the clumpy winds of giant stars with high mass X-ray binaries

    Science.gov (United States)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  7. TRACING THE LOWEST PROPELLER LINE IN MAGELLANIC HIGH-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Dimitris M.; Laycock, Silas G. T.; Yang, Jun; Fingerman, Samuel, E-mail: dimitris_christodoulou@uml.edu, E-mail: silas_laycock@uml.edu, E-mail: jun_yang@uml.edu, E-mail: fingerman.samuel@gmail.com [Lowell Center for Space Science and Technology, 600 Suffolk Street, Lowell, MA 01854 (United States)

    2016-09-20

    We have combined the published observations of high-mass X-ray binary (HMXB) pulsars in the Magellanic Clouds with a new processing of the complete archival data sets from the XMM-Newton and Chandra observatories in an attempt to trace the lowest propeller line below which accretion to polar caps is inhibited by the centrifugal force and the pulsations from the most weakly magnetized pulsars cease. Previously published data reveal that some of the faster-spinning pulsars with spin periods of P {sub S} < 12 s, detected at relatively low X-ray luminosities L {sub X} , appear to define such a line in the P {sub S} – L {sub X} diagram, characterized by a magnetic moment of μ = 3 × 10{sup 29} G cm{sup 3}. This value implies the presence of surface magnetic fields of B ≥ 3 × 10{sup 11} G in the compact objects of this class. Only a few quiescent HMXBs are found below the propeller line: LXP4.40 and SXP4.78, for which XMM-Newton and Chandra null detections respectively placed firm upper limits on their X-ray fluxes in deep quiescence; and A0538-66, for which many sub-Eddington detections have never measured any pulsations. On the other hand, the data from the XMM-Newton and Chandra archives show clearly that, during routine observation cycles, several sources have been detected below the propeller line in extremely faint, nonpulsating states that can be understood as the result of weak magnetospheric emission when accretion to the poles is centrifugally stalled or severely diminished. We also pay attention to the anomalous X-ray pulsar CXOU J010043.1-721134 that was reported in HMXB surveys. Its pulsations and locations near and above the propeller line indicate that this pulsar could be accreting from a fossil disk.

  8. THE AGES OF HIGH-MASS X-RAY BINARIES IN NGC 2403 AND NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Binder, Breanna A.; Dalcanton, Julianne J. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Eracleous, Michael [Department of Astronomy and Astrophysics and Center for Gravitational Wave Physics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16803 (United States); Dolphin, Andrew, E-mail: ben@astro.washington.edu, E-mail: bbinder@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: mce@astro.psu.edu, E-mail: adolphin@raytheon.com [Raytheon Company, Tucson, AZ 85734 (United States)

    2013-07-20

    We have examined resolved stellar photometry from HST imaging surrounding 18 high-mass X-ray binary (HMXB) candidates in NGC 300 and NGC 2403 as determined from combined Chandra/HST analysis. We have fit the color-magnitude distribution of the surrounding stars with stellar evolution models. All but one region in NGC 300 and two in NGC 2403 contain a population with an age between 20 and 70 Myr. One of the candidates is the ultraluminous X-ray source in NGC 2403, which we associate with a 60 {+-} 5 Myr old population. These age distributions provide additional evidence that 16 of these 18 candidates are HMXBs. Furthermore, our results suggest that the most common HMXB age in these galaxies is 40-55 Myr. This preferred age is similar to observations of HMXBs in the Small Magellanic Cloud, providing new evidence of this formation timescale, but in higher metallicity populations. We suggest that this preferred HMXB age is the result of the fortuitous combination of two physical effects. First, this is the age of a population when the greatest rate of core-collapse events should be occurring, maximizing neutron star production. Second, this is the age when B stars are most likely to be actively losing mass. We also discuss our results in the context of HMXB feedback in galaxies, confirming HMXBs as a potentially important source of energy for the interstellar medium in low-mass galaxies.

  9. A high-resolution x-ray spectrometer for a kaon mass measurement

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, Kevin, E-mail: kevin.phelan@oeaw.ac.at [Stefan Meyer Institute for Subatomic Physics of The Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria); Suzuki, Ken; Zmeskal, Johann [Stefan Meyer Institute for Subatomic Physics of The Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria); Tortorella, Daniele [Payr Engineering GmbH, Wiederschwing 25, A-9564 Patergassen (Austria); Bühler, Matthias; Hertrich, Theo [Low Temperature Solutions UG, Bahnhofstraße 21, D-85737 Ismaning (Germany)

    2017-02-11

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  10. OBSERVATIONS OF THE HIGH-MASS X-RAY BINARY A 0535+26 IN QUIESCENCE

    International Nuclear Information System (INIS)

    Rothschild, Richard; Markowitz, Alex; Hemphill, Paul; Caballero, Isabel; Pottschmidt, Katja; Kühnel, Matthias; Wilms, Jörn; Fürst, Felix; Doroshenko, Victor; Camero-Arranz, Ascension

    2013-01-01

    We have analyzed three observations of the high-mass X-ray binary A 0535+26 performed by the Rossi X-Ray Timing Explorer (RXTE) three, five, and six months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Reanalysis of two earlier RXTE observations made 4 yr after the 1994 outburst, original BeppoSAX observations 2 yr later, reanalysis of four EXOSAT observations made 2 yr after the last 1984 outburst, and a recent XMM-Newton observation in 2012 reveal a stacked, quiescent flux level decreasing from ∼2 to –11 erg cm –2 s –1 over 6.5 yr after outburst. The detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built up at the corotation radius or from an isotropic stellar wind.

  11. OBSERVATIONS OF THE HIGH-MASS X-RAY BINARY A 0535+26 IN QUIESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Rothschild, Richard; Markowitz, Alex; Hemphill, Paul [University of California, San Diego, Center for Astrophysics and Space Sciences, 9500 Gilman Dr., La Jolla, CA 92093-0424 (United States); Caballero, Isabel [CEA Saclay, DSM/IRFU/SAp -UMR AIM (7158) CNRS/CEA/Universite P. Diderot, Orme des Merisiers, Bat. 709, F-91191 Gif-sur-Yvette (France); Pottschmidt, Katja [CRESST, UMBC, and NASA GSFC, Code 661, Greenbelt, MD 20771 (United States); Kuehnel, Matthias; Wilms, Joern [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr. 7, D-96049 Bamberg (Germany); Fuerst, Felix [Space Radiation Lab, MC 290-17 Cahill, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 (United States); Doroshenko, Victor [Institut fuer Astronomie und Astrophysik, Universitaet Tuebingen, Sand 1, D-72076 Tuebingen (Germany); Camero-Arranz, Ascension, E-mail: rrothschild@ucsd.edu [Institut de Ciencies de l' Espai, (IEEC-CSIC), Campus UAB, Fac. de Ciencies, Torre C5, parell, 2a planta, E-08193 Barcelona (Spain)

    2013-06-10

    We have analyzed three observations of the high-mass X-ray binary A 0535+26 performed by the Rossi X-Ray Timing Explorer (RXTE) three, five, and six months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Reanalysis of two earlier RXTE observations made 4 yr after the 1994 outburst, original BeppoSAX observations 2 yr later, reanalysis of four EXOSAT observations made 2 yr after the last 1984 outburst, and a recent XMM-Newton observation in 2012 reveal a stacked, quiescent flux level decreasing from {approx}2 to <1 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} over 6.5 yr after outburst. The detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built up at the corotation radius or from an isotropic stellar wind.

  12. Superorbital Period in the high mass X-ray binary 2S 0114+650

    Science.gov (United States)

    Farrell, S.; Sood, R.; O'Neill, P.

    2004-05-01

    We report the identification of a superorbital period in the high mass X-ray binary 2S 0114+650. RXTE ASM observations of this object from 1996 Jan 5 to 2003 May 26 show the presence of a modulation at a period of 30.7 +/- 0.2 days. This period is detected using a Lomb-Scargle periodogram, and has a false-alarm probability of 5E-12. Epoch folding of the data gives an ephemeris of JD 2450079.4 (+/- 0.7) +30.7 (+/- 0.2)N, where N is the cycle number, with phase zero defined as the modulation minimum, and a full amplitude of 60 +/- 20%.

  13. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    Science.gov (United States)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-04-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  14. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy

    Science.gov (United States)

    Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.

    2018-06-01

    Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.

  15. Formation, evolution and environment of high-mass X-ray binaries

    International Nuclear Information System (INIS)

    Coleiro, Alexis

    2013-01-01

    High-Mass X-ray Binaries are interacting binary systems composed of a compact object orbiting an O/B massive star. These objects are deeply studied with the aim of understanding accretion and ejection processes around compact objects. Recent studies claim that most of the Galactic massive stars do not live alone and suffer from mass transfer during their life. Therefore, understanding the HMXB evolution and their interaction with the close environment allows to better understand not only the evolution of massive binary stars, possible progenitors of gamma-ray bursts and gravitational waves emitters during their coalescence, but also to correctly characterize the faraway galaxies. How do these sources evolve? Where are they located in the Galaxy? What are their principal properties? What is the influence of their environment? What is their impact on the interstellar medium? This thesis aims at shedding some light on these questions, by adopting two complementary approaches: a statistical study of the Galactic population of HMXB and on another hand a multi-wavelength study of individual sources. The first part of this thesis introduces the main characteristics of massive stars. Their evolution and the observational features are described. We also present the main observational and theoretical properties of HMXB together with the multi-wavelength approach used in this work. With the aim of better understanding the stellar evolution and the connections between compact objects and supernovae or gamma-ray bursts, it is of major interest to understand where these compact objects are born. Thus, the second part details the statistical study carried out on the Galactic HMXB population. Thanks to a uniform approach based on spectral energy distribution fitting, we determine, for the first time, the distance of 46 HMXB into the Milky Way with an accurate uncertainties estimation. Then, we present the distribution of these sources in the Galaxy and we show that a correlation

  16. Suzaku observation of the eclipsing high mass X-ray binary pulsar XTE J1855-026

    Science.gov (United States)

    Devasia, Jincy; Paul, Biswajit

    2018-02-01

    We report results from analysis performed on an eclipsing supergiant high mass X-ray binary pulsar XTE J1855-026 observed with the X-ray Imaging Spectrometer (XIS) on-board Suzaku Observatory in April 2015. Suzaku observed this source for a total effective exposure of ˜ 87 ks just before an eclipse. Pulsations are clearly observed and the pulse profiles of XTE J1855-026 did not show significant energy dependence during this observation consistent with previous reports. The time averaged energy spectrum of XTE J1855-026 in the 1.0-10.5 keV energy range can be well fitted with a partial covering power law model modified with interstellar absorption along with a black-body component for soft excess and a gaussian for iron fluorescence line emision. The hardness ratio evolution during this observation indicated significant absorption of soft X-rays in some segments of the observation. For better understanding of the reason behind this, we performed time-resolved spectroscopy in the 2.5-10.5 keV energy band which revealed significant variations in the spectral parameters, especially the hydrogen column density and iron line equivalent width with flux. The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments.

  17. Axion mass limits from pulsar x rays

    International Nuclear Information System (INIS)

    Morris, D.E.

    1984-12-01

    Axions thermally emitted by a neutron star would be converted into x rays in the strong magnetic field surrounding the star. An improvement in the observational upper limit of pulsed x rays from the Vela pulsar (PSR 0833-45) by a factor of 12 would constrain the axion mass M/sub a/ -3 eV if the core is non-superfluid and at temperature T/sub c/ greater than or equal to 2 x 10 8 K. If the core is superfluid throughout, an improvement factor of 240 would be needed to provide the same constraint on the axion mass, while in the absence of superfluidity, an improvement factor of 200 could constrain M/sub a/ -4 eV. A search for modulated hard x rays from PSR 1509-58 or other young pulsars at presently attainable sensitivities may enable the setting of an upper limit for the axion mass. Observation of hard x rays from a very young hot pulsar with T/sub c/ greater than or equal to 7 x 10 8 K could set a firm bound on the axion mass, since neutron superfluidity is not expected above this temperature. The remaining axion mass range 6 x 10 -4 eV > M/sub a/ > 10 -5 eV (the cosmological lower bound) can be covered by an improved Sikivie type laboratory cavity detector for relic axions constituting the galactic halo. 48 refs

  18. Herschel OBSERVATIONS OF DUST AROUND THE HIGH-MASS X-RAY BINARY GX 301-2

    Energy Technology Data Exchange (ETDEWEB)

    Servillat, M. [Laboratoire Univers et Théories (CNRS/INSU, Observatoire de Paris, Université Paris Diderot), 5 place Jules Janssen, F-92190 Meudon (France); Coleiro, A.; Chaty, S. [Laboratoire AIM (CEA/Irfu/SAp, CNRS/INSU, Universit Paris Diderot), CEA Saclay, Bat. 709, F-91191 Gif-sur-Yvette (France); Rahoui, F. [Harvard University, Department of Astronomy, 60 Garden Street, Cambridge, MA 02138 (United States); Zurita Heras, J. A., E-mail: mathieu.servillat@obspm.fr [AstroParticule et Cosmologie (Université Paris Diderot, CNRS/IN2P3, CEA/DSM, Observatoire de Paris, Sorbonne Paris Cité), 10 rue Alice Domon et Léonie Duquet, F-75205 Paris Cedex 13 (France)

    2014-12-20

    We aim at characterizing the structure of the gas and dust around the high-mass X-ray binary GX 301-2, a highly obscured X-ray binary hosting a hypergiant (HG) star and a neutron star, in order to better constrain its evolution. We used Herschel PACS to observe GX 301-2 in the far infrared and completed the spectral energy distribution of the source using published data or catalogs from the optical to the radio range (0.4 to 4 × 10{sup 4} μm). GX 301-2 is detected for the first time at 70 and 100 μm. We fitted different models of circumstellar (CS) environments to the data. All tested models are statistically acceptable, and consistent with an HG star at ∼3 kpc. We found that the addition of a free-free emission component from the strong stellar wind is required and could dominate the far-infrared flux. Through comparisons with similar systems and discussion on the estimated model parameters, we favor a disk-like CS environment of ∼8 AU that would enshroud the binary system. The temperature goes down to ∼200 K at the edge of the disk, allowing for dust formation. This disk is probably a rimmed viscous disk with an inner rim at the temperature of the dust sublimation temperature (∼1500 K). The similarities between the HG GX 301-2, B[e] supergiants, and the highly obscured X-ray binaries (particularly IGR J16318-4848) are strengthened. GX 301-2 might represent a transition stage in the evolution of massive stars in binary systems, connecting supergiant B[e] systems to luminous blue variables.

  19. Periodicities in the high-mass X-ray binary system RXJ0146.9+6121/LSI+61°235

    Science.gov (United States)

    Sarty, Gordon E.; Kiss, László L.; Huziak, Richard; Catalan, Lionel J. J.; Luciuk, Diane; Crawford, Timothy R.; Lane, David J.; Pickard, Roger D.; Grzybowski, Thomas A.; Closas, Pere; Johnston, Helen; Balam, David; Wu, Kinwah

    2009-01-01

    The high-mass X-ray binary RXJ0146.9+6121, with optical counterpart LSI+61°235 (V831Cas), is an intriguing system on the outskirts of the open cluster NGC663. It contains the slowest Be type X-ray pulsar known with a pulse period of around 1400s and, primarily from the study of variation in the emission line profile of Hα, it is known to have a Be decretion disc with a one-armed density wave period of approximately 1240d. Here we present the results of an extensive photometric campaign, supplemented with optical spectroscopy, aimed at measuring short time-scale periodicities. We find three significant periodicities in the photometric data at, in order of statistical significance, 0.34, 0.67 and 0.10d. We give arguments to support the interpretation that the 0.34 and 0.10d periods could be due to stellar oscillations of the B-type primary star and that the 0.67d period is the spin period of the Be star with a spin axis inclination of 23+10-8 degrees. We measured a systemic velocity of -37.0 +/- 4.3kms-1 confirming that LSI+61°235 has a high probability of membership in the young cluster NGC663 from which the system's age can be estimated as 20-25Myr. From archival RXTE All Sky Monitor (ASM) data we further find `super' X-ray outbursts roughly every 450d. If these super outbursts are caused by the alignment of the compact star with the one-armed decretion disc enhancement, then the orbital period is approximately 330d.

  20. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray

  1. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  2. High-speed X-ray topography

    International Nuclear Information System (INIS)

    Eckers, W.; Oppolzer, H.

    1977-01-01

    The investigation of lattice defects in semiconductor crystals by conventional X-ray diffraction topography is very time-consuming. Exposure times can be reduced by using high-intensity X-rays and X-ray image intensifiers. The described system comprises a high-power rotating-anode X-ray tube, a remote-controlled X-ray topography camera, and a television system operating with an X-ray sensing VIDICON. System performance is demonstrated with reference to exploratory examples. The exposure time for photographic plates is reduced to 1/20 and for the X-ray TV system (resolution of the order of 30 μm) to 1/100 relative to that required when using a conventional topography system. (orig.) [de

  3. Luminosity Dependent Study of the High Mass X-ray Binary Pulsar ...

    Indian Academy of Sciences (India)

    1997-02-10

    . Figure 2 shows the high state spectrum along with the residuals. The low state spec- tra was fitted likewise and we obtained an acceptable fit without any feature in the residuals. The low state spectrum is shown in Fig.

  4. Transition in x-ray yield, mass scaling observed in the high-wire-number, plasma-shell regime

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.; Apruzese, J.P.; Thornhill, J.W.; Davis, J.; Sanford, T.W.L.; Mock, R.C.; Nash, T.J.

    1999-01-01

    Initial calculations, based on classical transport coefficients and carried out to predict the efficiency with which the implosion kinetic energy of aluminum Z pinches could be thermalized and converted into kilovolt x-rays, predicted a sharp transition between m 2 and m yield scaling, where m is the aluminum array mass. Later, when ad hoc increases in the heat conductivity and artificial viscosity were introduced into these calculations and the densities that were achieved on axis were sharply reduced, the transition from m 2 to m scaling was found to have shifted, but was otherwise still fairly sharp and well-defined. The location of these breakpoint curves defined the locus of implosion velocities at which the yields would obtain their maximum for different mass arrays. The first such mass breakpoint curve that was calculated is termed hard, while the second is termed soft. Early 24, 30, and 42 aluminum wire experiments on the Saturn accelerator at the Sandia National laboratories confirmed the predictions of the soft breakpoint curve calculations. In this talk, the authors present results from a more recent set of aluminum experiments on Saturn, in which the array mass was varied at a fixed array radius and in which the radius was varied for a fixed mass. In both sets of experiments, the wire numbers were large: in excess of 92 and generally 136 or 192. In this high-wire-number regime, the wire plasmas are calculated to merge to form a plasma shell prior to significant radial implosion. Large wire number has been found to improve the pinch compressibility, and the analysis of these experiments in the shell regime shows that they come very close to the original predictions of the hard breakpoint curve calculations. A discussion of these detailed comparisons will be presented

  5. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca

    2014-03-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  6. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca; Moore, Katie L.; Paterson, David J.; De Jonge, Martin Daly; Howard, Daryl Lloyd; Stangoulis, James Constantine R; Tester, Mark A.; Lombi, E.; Johnson, Alexander A T

    2014-01-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  7. Measuring the black hole mass in ultraluminous X-ray sources with the X-ray scaling method

    Science.gov (United States)

    Jang, I.; Gliozzi, M.; Satyapal, S.; Titarchuk, L.

    2018-01-01

    In our recent work, we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BH), could be reliably extended to estimate the mass of supermassive black holes accreting at moderate to high level. Here, we apply this X-ray scaling method to ultraluminous X-ray sources (ULXs) to constrain their MBH. Using 49 ULXs with multiple XMM-Newton observations, we infer that ULXs host both stellar mass BHs and intermediate mass BHs. The majority of the sources of our sample seem to be consistent with the hypothesis of highly accreting massive stellar BHs with MBH ∼ 100 M⊙. Our results are in general agreement with the MBH values obtained with alternative methods, including model-independent variability methods. This suggests that the X-ray scaling method is an actual scale-independent method that can be applied to all BH systems accreting at moderate-high rate.

  8. High speed gated x-ray imagers

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Bell, P.; Hanks, R.; Power, G.; Turner, R.E.; Wiedwald, J.

    1988-01-01

    Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs

  9. High-temperature x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Il' inskii, A G; Romanova, A V; Prikhod' ko, N P

    1974-03-25

    A high-temperature x-ray chamber for taking x-ray photographs of flat horizontally set samples in a vacuum or gas medium is described. The chamber is fitted out with a water-cooled vacuum closed hull with a window letting the x-rays pass, a centering mechanism and a device for heating the samples. To widen its functional abilities the chamber is provided with a goniometric device, fixed immovably to the body foundation by means of two stands. Bearings are mounted to the stands; one of them is equipped with a screw wheel and an endless screw with a limb in the ring; a traverse to which a counter for the x-ray radiation is installed is attached to the shafts of both the bearings. The centering mechanism has a cooled metalic rod, which is connected through a spiral screw thread with the limb fixable by a fork. The position of the shaft of rotation of the counter is adjusted with the help of a nit, extended through the plug openings, positioned on the stands. The chamber can be applied for x-ray structural analyses.

  10. Diverse Long-term Variability of Five Candidate High-mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    Energy Technology Data Exchange (ETDEWEB)

    Corbet, Robin H. D. [University of Maryland, Baltimore County, MD 21250 (United States); Coley, Joel B. [NASA Postdoctoral Program, and Astroparticle Physics Laboratory, Code 661 NASA Goddard Space Flight Center, Greenbelt Road, MD 20771 (United States); Krimm, Hans A., E-mail: corbet@umbc.edu [Universities Space Research Association, 10211 Wincopin Circle, Suite 500, Columbia, MD 21044 (United States)

    2017-09-10

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with the Swift X-ray Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s pulsations were previously found with XMM-Newton . Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was previously proposed to be a Be star system with an orbital period of ∼30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although they might be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be star mass donors.

  11. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  12. Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?

    Science.gov (United States)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-01-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."

  13. X-ray absorption intensity at high-energy region

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Kaneko, Katsumi

    2012-01-01

    We theoretically discuss X-ray absorption intensity in high-energy region far from the deepest core threshold to explain the morphology-dependent mass attenuation coefficient of some carbon systems, carbon nanotubes (CNTs), highly oriented pyrolytic graphite (HOPG) and fullerenes (C 60 ). The present theoretical approach is based on the many-body X-ray absorption theory including the intrinsic losses (shake-up losses). In the high-energy region the absorption coefficient has correction term dependent on the solid state effects given in terms of the polarization part of the screened Coulomb interaction W p . We also discuss the tail of the valence band X-ray absorption intensity. In the carbon systems C 2s contribution has some influence on the attenuation coefficient even in the high energy region at 20 keV.

  14. A high resolution position sensitive X-ray MWPC for small angle X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.

    1981-02-01

    A small sealed-off delay line readout MWPC X-ray detector has been designed and built for small angle X-ray diffraction applications. Featuring a sensitive area of 100 mm x 25 mm it yields a spatial resolution of 0.13 mm (standard deviation) with a high rate capability and good quantum efficiency for copper K radiation. (author)

  15. The X-ray signature of solar coronal mass

    Science.gov (United States)

    Harrison, R. A.; Waggett, P. W.; Bentley, R. D.; Phillips, K. J. H.; Bruner, M.

    1985-01-01

    The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically about 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 solar radii. Motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets, are identified. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.

  16. X-ray spectral meter of high voltages for X-ray apparatuses

    International Nuclear Information System (INIS)

    Zubkov, I.P.; Larchikov, Yu.V.

    1993-01-01

    Design of the X-ray spectral meter of high voltages (XRSMHV) for medical X-ray apparatuses permitting to conduct the voltage measurements without connection to current circuits. The XRSMHV consists of two main units: the detector unit based on semiconductor detector and the LP4900B multichannel analyzer (Afora, Finland). The XRSMYV was tested using the pilot plant based on RUM-20 X-ray diagnostic apparatus with high-voltage regulator. It was shown that the developed XRSMHV could be certify in the range of high constant voltages form 40 up to 120 kV with the basic relative error limits ±0.15%. The XRSMHV is used at present as the reference means for calibration of high-voltage medical X-ray equipment

  17. MEASUREMENT OF THE RADIUS OF NEUTRON STARS WITH HIGH SIGNAL-TO-NOISE QUIESCENT LOW-MASS X-RAY BINARIES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Guillot, Sebastien; Rutledge, Robert E.; Servillat, Mathieu; Webb, Natalie A.

    2013-01-01

    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter—present in the core of NSs—is best described by ''normal matter'' equations of state (EoSs). Such EoSs predict that the radii of NSs, R NS , are quasi-constant (within measurement errors, of ∼10%) for astrophysically relevant masses (M NS >0.5 M ☉ ). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R NS value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for R NS , constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R NS =9.1 +1.3 -1.5 km (90%-confidence). Such a value is consistent with low-R NS equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

  18. Measurement of the Radius of Neutron Stars with High Signal-to-noise Quiescent Low-mass X-Ray Binaries in Globular Clusters

    Science.gov (United States)

    Guillot, Sebastien; Servillat, Mathieu; Webb, Natalie A.; Rutledge, Robert E.

    2013-07-01

    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter—present in the core of NSs—is best described by "normal matter" equations of state (EoSs). Such EoSs predict that the radii of NSs, R NS, are quasi-constant (within measurement errors, of ~10%) for astrophysically relevant masses (M NS>0.5 M ⊙). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R NS value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for R NS, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R_NS =9.1^{+ 1.3}_{- 1.5} \\,km (90%-confidence). Such a value is consistent with low-R NS equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

  19. High resolution x-ray microscope

    OpenAIRE

    Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.

    2007-01-01

    The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens CRL made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, com...

  20. MEASUREMENT OF THE RADIUS OF NEUTRON STARS WITH HIGH SIGNAL-TO-NOISE QUIESCENT LOW-MASS X-RAY BINARIES IN GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Guillot, Sebastien; Rutledge, Robert E. [Department of Physics, McGill University, 3600 rue University, Montreal, QC, H2X-3R4 (Canada); Servillat, Mathieu [Laboratoire AIM (CEA/DSM/IRFU/SAp, CNRS, Universite Paris Diderot), CEA Saclay, Bat. 709, F-91191 Gif-sur-Yvette (France); Webb, Natalie A., E-mail: guillots@physics.mcgill.ca, E-mail: rutledge@physics.mcgill.ca [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France)

    2013-07-20

    This paper presents the measurement of the neutron star (NS) radius using the thermal spectra from quiescent low-mass X-ray binaries (qLMXBs) inside globular clusters (GCs). Recent observations of NSs have presented evidence that cold ultra dense matter-present in the core of NSs-is best described by ''normal matter'' equations of state (EoSs). Such EoSs predict that the radii of NSs, R{sub NS}, are quasi-constant (within measurement errors, of {approx}10%) for astrophysically relevant masses (M{sub NS}>0.5 M{sub Sun }). The present work adopts this theoretical prediction as an assumption, and uses it to constrain a single R{sub NS} value from five qLMXB targets with available high signal-to-noise X-ray spectroscopic data. Employing a Markov chain Monte-Carlo approach, we produce the marginalized posterior distribution for R{sub NS}, constrained to be the same value for all five NSs in the sample. An effort was made to include all quantifiable sources of uncertainty into the uncertainty of the quoted radius measurement. These include the uncertainties in the distances to the GCs, the uncertainties due to the Galactic absorption in the direction of the GCs, and the possibility of a hard power-law spectral component for count excesses at high photon energy, which are observed in some qLMXBs in the Galactic plane. Using conservative assumptions, we found that the radius, common to the five qLMXBs and constant for a wide range of masses, lies in the low range of possible NS radii, R{sub NS}=9.1{sup +1.3}{sub -1.5} km (90%-confidence). Such a value is consistent with low-R{sub NS} equations of state. We compare this result with previous radius measurements of NSs from various analyses of different types of systems. In addition, we compare the spectral analyses of individual qLMXBs to previous works.

  1. Dosimetry of x-rays from high-temperature plasmas

    International Nuclear Information System (INIS)

    Yamamoto, Takayoshi; Abe, Nobuyuki; Kawanishi, Masaharu

    1980-01-01

    Study on the dosimetry of ionizing radiations, especially of X-rays, emitted from high-temperature plasms has been made. As to the unpolarized Bremsstrahlung, a brief method to estimate electron temperatures with TLD is described and evaluation of average energy and current of the run-away electrons in the turbulent heating Tokamak is made by observing the half-value layer of the emitted X-rays and the total exposure per one shot of the Tokamak discharge. As to the polarized one, it is shown that the anisotropic electron temperature is related to the degree of polarization of the X-rays. Furthermore, reference is made to the possibility of developing such X-ray generators as can emit nearly monochromatic X-rays (characteristic X-rays) or polarized ones arbitrarily. (author)

  2. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    Science.gov (United States)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  3. Mass transfer in stellar X-ray sources

    International Nuclear Information System (INIS)

    Verbunt, F.

    1982-01-01

    This thesis deals with mass transfer in the binary stars that emit X-rays. Optical observations on two sources are presented: 2A0311-227 and Cen X-4. The transferred matter will often enter a gaseous disk around the compact star, and spiral inwards slowly through this disk. The conditions for the formation of such a disk are investigated and the equations governing its structure are presented. Different models are discussed and it is concluded that different models lead to very similar results for those regions of the disk where gas pressure is more important than radiative pressure, and that these results agree fairly well with observations. No consistent model has been constructed as yet for the region where radiative pressure is dominant. Theoretically one predicts that the optical light emitted by a disk around a neutron star is mainly caused by X-ray photons from the immediate surroundings of the neutron star that hit the outer disk surface, are absorbed, thermalised, and re-emitted in the optical and ultraviolet regions of the spectrum. This expectation is verified by comparison with the collected observational data of low-mass X-ray binaries. Finally the author investigates which mechanism is responsible for the mass transfer in systems where the mass-losing star is less massive than the sun. (Auth.)

  4. [High-Performance Active Pixel X-Ray Sensors for X-Ray Astronomy

    Science.gov (United States)

    Bautz, Mark; Suntharalingam, Vyshnavi

    2005-01-01

    The subject grants support development of High-Performance Active Pixel Sensors for X-ray Astronomy at the Massachusetts Institute of Technology (MIT) Center for Space Research and at MIT's Lincoln Laboratory. This memo reports our progress in the second year of the project, from April, 2004 through the present.

  5. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  6. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  7. Simple, compact, high brightness source for x-ray lithography and x-ray radiography

    International Nuclear Information System (INIS)

    Hawryluk, A.M.

    1986-01-01

    A simple, compact, high brightness x-ray source has recently been built. This source utilizes a commercially available, cylindrical geometry electron beam evaporator, which has been modified to enhance the thermal cooling to the anode. Cooling is accomplished by using standard, low-conductivity laboratory water, with an inlet pressure of less than 50 psi, and a flow rate of approx.0.3 gal/min. The anode is an inverted cone geometry for efficient cooling. The x-ray source has a measured sub-millimeter spot size (FWHM). The anode has been operated at 1 KW e-beam power (10 KV, 100 ma). Higher operating levels will be investigated. A variety of different x-ray lines can be obtained by the simple interchange of anodes of different materials. Typical anodes are made from easily machined metals, or materials which are vacuum deposited onto a copper anode. Typically, a few microns of material is sufficient to stop 10 KV electrons without significantly decreasing the thermal conductivity through the anode. The small size and high brightness of this source make it useful for step and repeat exposures over several square centimeter areas, especially in a research laboratory environment. For an aluminum anode, the estimated Al-K x-ray flux at 10 cms from the source is 70 μW/cm 2

  8. Model-independent X-ray Mass Determinations for Clusters of Galaxies

    Science.gov (United States)

    Nulsen, Paul

    2005-09-01

    We propose to use high quality X-ray data from the Chandra archive to determine the mass distributions of about 60 clusters of galaxies over the largest possible range of radii. By avoiding unwarranted assumptions, model-independent methods make best use of high quality data. We will employ two model-independent methods. That used by Nulsen & Boehringer (1995) to determine the mass of the Virgo Cluster and a new method, that will be developed as part of the project. The new method will fit a general mass model directly to the X-ray spectra, making best possible use of the fitting errors to constrain mass profiles.

  9. Ultra high resolution X-ray detectors

    International Nuclear Information System (INIS)

    Hess, U.; Buehler, M.; Hentig, R. von; Hertrich, T.; Phelan, K.; Wernicke, D.; Hoehne, J.

    2001-01-01

    CSP Cryogenic Spectrometers GmbH is developing cryogenic energy dispersive X-ray spectrometers based on superconducting detector technology. Superconducting sensors exhibit at least a 10-fold improvement in energy resolution due to their low energy gap compared to conventional Si(Li) or Ge detectors. These capabilities are extremely valuable for the analysis of light elements and in general for the analysis of the low energy range of the X-ray spectrum. The spectrometer is based on a mechanical cooler needing no liquid coolants and an adiabatic demagnetization refrigerator (ADR) stage which supplies the operating temperature of below 100 mK for the superconducting sensor. Applications include surface analysis in semiconductor industry as well material analysis for material composition e.g. in ceramics or automobile industry

  10. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  11. A Semi-analytical Model for Wind-fed Black Hole High-mass X-Ray Binaries: State Transition Triggered by Magnetic Fields from the Companion Star

    Energy Technology Data Exchange (ETDEWEB)

    Yaji, Kentaro; Yamada, Shinya; Masai, Kuniaki [Department of Physics, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo 192-0397 (Japan)

    2017-10-01

    We propose a mechanism of state transition in wind-fed black hole (BH) binaries (high-mass X-ray binaries) such as Cyg X-1 and LMC X-1. Modeling a line-driven stellar wind from the companion by two-dimensional hydrodynamical calculations, we investigate the processes of wind capture by, and accretion onto, the BH. We assume that the wind acceleration is terminated at the He ii ionization front because ions responsible for line-driven acceleration are ionized within the front, i.e., the He iii region. It is found that the mass accretion rate inferred from the luminosity is remarkably smaller than the capture rate. Considering the difference, we construct a model for the state transition based on the accretion flow being controlled by magnetorotational instability. The outer flow is torus-like, and plays an important role to trigger the transition. The model can explain why state transition does occur in Cyg X-1, while not in LMC X-1. Cyg X-1 exhibits a relatively low luminosity, and then the He ii ionization front is located and can move between the companion and BH, depending on its ionizing photon flux. On the other hand, LMC X-1 exhibits too high luminosity for the front to move considerably; the front is too close to the companion atmosphere. The model also predicts that each state of high-soft or low-hard would last fairly long because the luminosity depends weakly on the wind velocity. In the context of the model, the state transition is triggered by a fluctuation of the magnetic field when its amplitude becomes comparable to the field strength in the torus-like outer flow.

  12. X-RAY PROPERTIES OF YOUNG EARLY-TYPE GALAXIES. I. X-RAY LUMINOSITY FUNCTION OF LOW-MASS X-RAY BINARIES

    International Nuclear Information System (INIS)

    Kim, Dong-Woo; Fabbiano, Giuseppina

    2010-01-01

    We have compared the combined X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) detected in Chandra observations of young, post-merger elliptical galaxies with that of typical old elliptical galaxies. We find that the XLF of the 'young' sample does not present the prominent high-luminosity break at L X > 5 x 10 38 erg s -1 found in the old elliptical galaxy XLF. The 'young' and 'old' XLFs differ with a 3σ statistical significance (with a probability less than 0.2% that they derive from the same underlying parent distribution). Young elliptical galaxies host a larger fraction of luminous LMXBs (L X > 5 x 10 38 erg s -1 ) than old elliptical galaxies and the XLF of the young galaxy sample is intermediate between that of typical old elliptical galaxies and that of star-forming galaxies. This observational evidence may be related to the last major/minor mergers and the associated star formation.

  13. Final Report - X-ray Studies of Highly Correlated Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Clement [Western Michigan Univ., Kalamazoo MI (United States)

    2017-11-27

    The overall goal of the research was to improve the capabilities of x-ray synchrotron instrumentation to enable cutting-edge research in condensed matter physics. The main goal of the current grant cycle was to find a method to measure the polarization of the scattered x-ray in resonant inelastic x-ray scattering. To do this, we developed a polarization analysis apparatus using a thin, toroidally bent single crystal, which could be set to reflect one or the other of the two polarization components in the scattered x-ray beam. Resonant x-ray scattering measurements were also carried out on interfaces and the charge density wave in high temperature superconducting materials.

  14. Miniaturized High-Speed Modulated X-Ray Source

    Science.gov (United States)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  15. X-RAY PROPERTIES OF INTERMEDIATE-MASS BLACK HOLES IN ACTIVE GALAXIES. II. X-RAY-BRIGHT ACCRETION AND POSSIBLE EVIDENCE FOR SLIM DISKS

    International Nuclear Information System (INIS)

    Desroches, Louis-Benoit; Greene, Jenny E.; Ho, Luis C.

    2009-01-01

    We present X-ray properties of optically selected intermediate-mass (∼10 5 -10 6 M sun ) black holes (BHs) in active galactic nuclei (AGNs), using data from the Chandra X-Ray Observatory. Our observations are a continuation of a pilot study by Greene and Ho. Of the eight objects observed, five are detected with X-ray luminosities in the range L 0.5-2keV = 10 41 -10 43 erg s -1 , consistent with the previously observed sample. Objects with enough counts to extract a spectrum are well fit by an absorbed power law. We continue to find a range of soft photon indices 1 s -Γ s , consistent with previous AGN studies, but generally flatter than other narrow-line Seyfert 1 active nuclei (NLS1s). The soft photon index correlates strongly with X-ray luminosity and Eddington ratio, but does not depend on BH mass. There is no justification for the inclusion of any additional components, such as a soft excess, although this may be a function of the relative inefficiency of detecting counts above 2 keV in these relatively shallow observations. As a whole, the X-ray-to-optical spectral slope α ox is flatter than in more massive systems, even other NLS1s. Only X-ray-selected NLS1s with very high Eddington ratios share a similar α ox . This is suggestive of a physical change in the accretion structure at low masses and at very high accretion rates, possibly due to the onset of slim disks. Although the detailed physical explanation for the X-ray loudness of these intermediate-mass BHs is not certain, it is very striking that targets selected on the basis of optical properties should be so distinctly offset in their broader spectral energy distributions.

  16. Kaon mass by critical absorption of kaonic atom x rays

    International Nuclear Information System (INIS)

    Lum, G.K.

    1979-10-01

    The energy of the kaonic 6h → 5g transition has been determined using the calculated μ/rho curve. Because the detectors used could not resolve the noncircular transitions, the predictions from a calculated cascade program were used. According to the cascade results for potassium, the number of noncircular x-rays was about 10% of all the transitions between n = 6 to n = 5. Based on the available information, the mass of the kaon was measured to be 493.576/sub -0.069//sup +0.044/ MeV

  17. Effective high voltage at X-ray tube in hard X-ray chest imaging

    International Nuclear Information System (INIS)

    Klein, J.

    1987-01-01

    The FRG standard TGL 36 661 (March 1980) for synoptical chest pictures of large size in adults specifies the 120 kV voltage at the X-ray tube together with maximal, 100% use of the capacity of the tube (hard picture, short exposure time). By means of circular recording and by measuring the high voltage at the X-ray tube it was quantitatively shown that the effective voltage during exposure is (according to the exposure time and the attenuation phase of the generator) always lower than the set-up voltage of 120 kV. This phenomenon is the more marked the shorter the actual exposure time in comparison with the attenuation phase of the generator. The typical characteristic of a hard X-ray chest picture is thus not given only by the setting-up of voltage. The impact of the reduction in voltage is thus quantitatively shown also from the aspect of the radiation burden for the patient. (author). 7 figs., 8 refs

  18. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  19. High-speed image converter x-ray studies

    International Nuclear Information System (INIS)

    Bryukhnevitch, G.I.; Kas'yanov, Yu.S.; Korobkin, V.V.; Prokhorov, A.M.; Stepanov, B.M.; Chevokin, V.K.; Schelev, M.Ya.

    1975-01-01

    Two X-ray high-speed image-converter cameras (ICC) have been developed. In the first one a soft X-ray radiation is converted into visible light with the aid of a 0.5ns response time, plastic scintillator. The second camera incorporates a photocathode which is sensitive to visible and X-ray radiation. Its calculated temporal resolution approaches 5 to 7ps. Both developed cameras were employed for studies of X-ray radiation emitted by laser plasma. For the smooth nanosecond excited laser pulses, a noticeable amplitude modulation was recorded in all laser pulses reflected by plasma as well as in each third pulse of X-ray plasma radiation. It was also observed that the duration of X-ray plasma radiation is 20 to 40% shorter than that of the incident nanosecond laser pulses and this duration being 3 to 6 times longer than that of the picosecond irradiating pulses. The half-width of the recorded X-ray plasma pulses was 30 to 60ps. (author)

  20. High spectral resolution X-ray observations of AGN

    NARCIS (Netherlands)

    Kaastra, J.S.

    2008-01-01

    brief overview of some highlights of high spectral resolution X-ray observations of AGN is given, mainly obtained with the RGS of XMM-Newton. Future prospects for such observations with XMM-Newton are given.

  1. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  2. Radiation processing with high-energy X-rays

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Stichelbaut, Frederic

    2009-01-01

    The physical, chemical or biological characteristics of selected commercial products and materials can be improved by radiation processing. The ionizing energy can be provided by accelerated electrons with energies between 75 keV and 10 MeV, gamma rays from cobalt-60 with average energies of 1.25 MeV or X-rays with maximum energies up to 7.5 MeV. Electron beams are preferred for thin products, which are processed at high speeds. Gamma rays are used for products that are too thick for treatment with electron beams. High-energy X-rays can also be used for these purposes because their penetration in solid materials is similar to or even slightly greater than that of gamma rays. Previously, the use of X-rays had been inhibited by their slower processing rates and higher costs when compared with gamma rays. Since then, the price of cobalt-60 sources has been increased and the radiation intensity from high-energy, high-power X-ray generators has also increased. For facilities requiring at least 2 MCi of cobalt-60, the capital and operating costs of X-ray facilities with equivalent processing rates can be less than that of gamma-ray irradiators. Several high-energy electron beam facilities have been equipped with removable X-ray targets so that irradiation processes can be done with either type of ionizing energy. A new facility is now being built which will be used exclusively in the X-ray mode to sterilize medical products. Operation of this facility will show that high-energy, high-power X-ray generators are practical alternatives to large gamma-ray sources. (author)

  3. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  4. High-intensity, subkilovolt x-ray calibration facility

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    A high-intensity subkilovolt x-ray calibration source utilizing proton-induced inner-shell atomic fluorescence of low-Z elements is described. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide intense, nearly monoenergetic x-ray beams. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. Methods of reducing spectral contamination due to hydrocarbon build-up on the target are discussed. Typical x-ray spectra (Cu-L, C-K and B-K) are shown

  5. Treatment of foods with high-energy X rays

    International Nuclear Information System (INIS)

    Cleland, M.R.; Meissner, J.; Herer, A.S.; Beers, E.W.

    2001-01-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper

  6. Treatment of foods with high-energy X rays

    Science.gov (United States)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  7. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  8. Dependence of X-Ray Burst Models on Nuclear Masses

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, H.; Ong, W.-J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    2017-08-01

    X-ray burst model predictions of light curves and the final composition of the nuclear ashes are affected by uncertain nuclear masses. However, not all of these masses are determined experimentally with sufficient accuracy. Here we identify the remaining nuclear mass uncertainties in X-ray burst models using a one-zone model that takes into account the changes in temperature and density evolution caused by changes in the nuclear physics. Two types of bursts are investigated—a typical mixed H/He burst with a limited rapid proton capture process (rp-process) and an extreme mixed H/He burst with an extended rp-process. When allowing for a 3 σ variation, only three remaining nuclear mass uncertainties affect the light-curve predictions of a typical H/He burst ({sup 27}P, {sup 61}Ga, and {sup 65}As), and only three additional masses affect the composition strongly ({sup 80}Zr, {sup 81}Zr, and {sup 82}Nb). A larger number of mass uncertainties remain to be addressed for the extreme H/He burst, with the most important being {sup 58}Zn, {sup 61}Ga, {sup 62}Ge, {sup 65}As, {sup 66}Se, {sup 78}Y, {sup 79}Y, {sup 79}Zr, {sup 80}Zr, {sup 81}Zr, {sup 82}Zr, {sup 82}Nb, {sup 83}Nb, {sup 86}Tc, {sup 91}Rh, {sup 95}Ag, {sup 98}Cd, {sup 99}In, {sup 100}In, and {sup 101}In. The smallest mass uncertainty that still impacts composition significantly when varied by 3 σ is {sup 85}Mo with 16 keV uncertainty. For one of the identified masses, {sup 27}P, we use the isobaric mass multiplet equation to improve the mass uncertainty, obtaining an atomic mass excess of −716(7) keV. The results provide a roadmap for future experiments at advanced rare isotope beam facilities, where all the identified nuclides are expected to be within reach for precision mass measurements.

  9. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  10. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  11. High-Resolution and Lightweight X-ray Optics for the X-Ray Surveyor

    Science.gov (United States)

    Zhang, William

    Envisioned in "Enduring Quest, Daring Visions" and under study by NASA as a potential major mission for the 2020s, the X-ray Surveyor mission will likely impose three requirements on its optics: (1) high angular resolution: 0.5 PSF, (2) large effective area: e10,000 cm2 or more, and (3) affordable production cost: $500M. We propose a technology that can meet these requirements by 2020. It will help the X-ray Surveyor secure the endorsement of the coming decadal survey and enable its implementation following WFIRST. The technology comprises four elements: (1) fabrication of lightweight single crystal silicon mirrors, (2) coating these mirrors with iridium to maximize effective area without figure degradation, (3) alignment and bonding of these mirrors to form meta-shells that will be integrated to make a mirror assembly, and (4) systems engineering to ensure that the mirror assembly meet all science performance and spaceflight environmental requirements. This approach grows out of our existing approach based on glass slumping. Using glass slumping technology, we have been able to routinely build and test mirror modules of 10half-power diameter (HPD). While comparable in HPD to XMM-Newtons electroformed nickel mirrors, these mirror modules are 10 times lighter. Likewise, while comparable in weight to Suzakus epoxy-replicated aluminum foil mirrors, these modules have 10 times better HPD. These modules represent the current state of the art of lightweight X-ray optics. Although both successful and mature, the glass slumping technology has reached its limit and cannot achieve sub-arc second HPD. Therefore, we are pursuing the new approach based on polishing single crystal silicon. The new approach will enable the building and testing of mirror modules, called meta-shells, capable of 3HPD by 2018 and 1HPD by 2020, and has the potential to reach diffraction limits ( 0.1) in the 2020s.

  12. Active x-ray optics for high resolution space telescopes

    Science.gov (United States)

    Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy

    2017-11-01

    The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin

  13. Portable X-ray fluorescence analyzer of high sensitivity using X-ray tube excitation

    International Nuclear Information System (INIS)

    Vatai, E.; Ando, L.

    1982-01-01

    A review of the three main methods of X-ray fluorescence analysis and their problems is given. The attainable accuracy and effectiveness of each method are discussed. The main properties of portable X-ray analyzers required by the industry are described. The results and experiences of R and D activities in ATOMKI (Debrecen, Hungary) for developing portable X-ray analyzers are presented. The only way for increasing the accuracy and decreasing the measuring time is the application of X-ray tube excitation instead of radioactive sources. The new ATOMKI equipment presently under construction and patenting uses X-ray tube excitation; it will increase the accuracy of concentration determination by one order of magnitude. (D.Gy.)

  14. High-resolution accelerator alignment using x-ray optics

    Directory of Open Access Journals (Sweden)

    Bingxin Yang

    2006-03-01

    Full Text Available We propose a novel alignment technique utilizing the x-ray beam of an undulator in conjunction with pinholes and position-sensitive detectors for positioning components of the accelerator, undulator, and beam line in an x-ray free-electron laser. Two retractable pinholes at each end of the undulator define a stable and reproducible x-ray beam axis (XBA. Targets are precisely positioned on the XBA using a pinhole camera technique. Position-sensitive detectors responding to both x-ray and electron beams enable direct transfer of the position setting from the XBA to the electron beam. This system has the potential to deliver superior alignment accuracy (1–3   μm for target pinholes in the transverse directions over a long distance (200 m or longer. It can be used to define the beam axis of the electron-beam–based alignment, enabling high reproducibility of the latter. This x-ray–based concept should complement the electron-beam–based alignment and the existing survey methods to raise the alignment accuracy of long accelerators to an unprecedented level. Further improvement of the transverse accuracy using x-ray zone plates will be discussed. We also propose a concurrent measurement scheme during accelerator operation to allow real-time feedback for transverse position correction.

  15. Highly porous nanoberyllium for X-ray beam speckle suppression

    Energy Technology Data Exchange (ETDEWEB)

    Goikhman, Alexander, E-mail: agoikhman@ymail.com; Lyatun, Ivan; Ershov, Petr [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Snigireva, Irina [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Wojda, Pawel [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Gdańsk University of Technology, 11/12 G. Narutowicza, Gdańsk 80-233 (Poland); Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor [A. A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, Rogova str. 5a, Moscow 123098 (Russian Federation); Snigirev, Anatoly [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2015-04-09

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy.

  16. Highly porous nanoberyllium for X-ray beam speckle suppression

    International Nuclear Information System (INIS)

    Goikhman, Alexander; Lyatun, Ivan; Ershov, Petr; Snigireva, Irina; Wojda, Pawel; Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor; Snigirev, Anatoly

    2015-01-01

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy

  17. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  18. High intensity line source for x-ray spectrometer calibration

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 μ x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10 4 ) time-resolved cyrstal spectrometer, will be discussed in detail

  19. Wire array z-pinch insights for high X-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P.

    1998-01-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  20. Wire array z-pinch insights for high X-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P. [and others

    1998-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  1. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  2. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J. [and others

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  3. Wire array z-pinch insights for high x-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  4. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  5. X-ray radiography with highly charged ions

    Science.gov (United States)

    Marrs, Roscoe E.

    2000-01-01

    An extremely small (1-250 micron FWHM) beam of slow highly charged ions deexciting on an x-ray production target generates x-ray monochromatic radiation that is passed through a specimen and detected for imaging. The resolution of the x-ray radiograms is improved and such detection is achieved with relatively low dosages of radiation passing through the specimen. An apparatus containing an electron beam ion trap (and modifications thereof) equipped with a focusing column serves as a source of ions that generate radiation projected onto an image detector. Electronic and other detectors are able to detect an increased amount of radiation per pixel than achieved by previous methods and apparati.

  6. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.

    1976-01-01

    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...... successfully in terms of the many-body theory of Mahan, Nozières, and De Dominicis. The 4d spectrum agrees well with predictions based on a relativistic-augmented-plane-wave band-structure calculation....

  7. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    International Nuclear Information System (INIS)

    Minami, K; Saito, Y; Kai, H; Shirota, K; Yada, K

    2009-01-01

    We have newly developed an open type fine-focus X-ray tube 'TX-510' to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The 'TX-510' employs a ZrO/W(100) Schottky emitter and an 'In-Lens Field Emission Gun'. The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  8. Soft X-ray-induced decomposition of amino acids: An XPS, mass spectrometry, and NEXAFS study

    International Nuclear Information System (INIS)

    Zubavichus, Yan; Fuchs, Oliver; Weinhardt, Lothar; Heske, Clemens; Umbach, Eberhard; Denlinger, Jonathan D.; Grunze, Michael

    2003-01-01

    Decomposition of five amino acids, alanine, serine, cysteine, aspartic acid, and asparagine, under irradiation with soft X-rays (magnesium Ka X-ray source) in ultra-high vacuum was studied by means of X-ray photoelectron spectrometry (XPS) and mass spectrometry. A comparative analysis of changes in XPS line shapes, stoichiometry and residual gas composition indicates that the molecules decompose by several pathways. Dehydration, decarboxylation, decarbonylation,deamination and desulfurization of pristine molecules accompanied by desorption of H2, H2O, CO2, CO, NH3and H2S are observed with rates depending on the specific amino acid. NEXAFS spectra of cysteine at the carbon, oxygen and nitrogen K-shell and sulfur L2,3 edges complement the XPS and mass spectrometry data and show that the exposure of the sample to an intense soft X-ray synchrotron beam results in the formation of C-C and C-N double and triple bonds. Qualitatively, the amino acids studied can be arranged in the following ascending order of radiation stability:serine< alanine< aspartic acid< cysteine< asparagine

  9. Mass accretion rate fluctuations in black hole X-ray binaries

    NARCIS (Netherlands)

    Rapisarda, S.

    2017-01-01

    This thesis is about the first systematic and quantitative application of propagating mass accretion rate fluctuations models to black hole X-ray binaries. Black hole X-ray binaries are systems consisting of a solar mass star orbiting around a stellar mass black hole. Eventually, the black hole

  10. Editorial: Focus on X-ray Beams with High Coherence

    Science.gov (United States)

    Robinson, Ian; Gruebel, Gerhard; Mochrie, Simon

    2010-03-01

    This editorial serves as the preface to a special issue of New Journal of Physics, which collects together solicited papers on a common subject, x-ray beams with high coherence. We summarize the issue's content, and explain why there is so much current interest both in the sources themselves and in the applications to the study of the structure of matter and its fluctuations (both spontaneous and driven). As this collection demonstrates, the field brings together accelerator physics in the design of new sources, particle physics in the design of detectors, and chemical and materials scientists who make use of the coherent beams produced. Focus on X-ray Beams with High Coherence Contents Femtosecond pulse x-ray imaging with a large field of view B Pfau, C M Günther, S Schaffert, R Mitzner, B Siemer, S Roling, H Zacharias, O Kutz, I Rudolph, R Treusch and S Eisebitt The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications E Allaria, C Callegari, D Cocco, W M Fawley, M Kiskinova, C Masciovecchio and F Parmigiani Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy Anders Madsen, Robert L Leheny, Hongyu Guo, Michael Sprung and Orsolya Czakkel The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) Sébastien Boutet and Garth J Williams Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy Andrei Fluerasu, Pawel Kwasniewski, Chiara Caronna, Fanny Destremaut, Jean-Baptiste Salmon and Anders Madsen Exploration of crystal strains using coherent x-ray diffraction Wonsuk Cha, Sanghoon Song, Nak Cheon Jeong, Ross Harder, Kyung Byung Yoon, Ian K Robinson and Hyunjung Kim Coherence properties of the European XFEL G Geloni, E Saldin, L Samoylova, E Schneidmiller, H Sinn, Th Tschentscher and M Yurkov Fresnel coherent diffractive imaging: treatment and analysis of data G J

  11. High resolution X-ray diffraction studies on unirradiated

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the ...

  12. Refractive x-ray lens for high pressure diffraction

    International Nuclear Information System (INIS)

    Ohishi, Yasuo

    2001-01-01

    A stacked compound refractive x-ray lens was designed to produce a efficiently focused (φ 2 and a peak gain of 12, is well matched to these requirements. It is composed of many plastic chips made by molding, which is allowing many identical chips to be made precisely. Other advantages of this lens include high throughput, simple energy tunability and easy installation. (author)

  13. A convenient method for X-ray analysis in TEM that measures mass thickness and composition

    Science.gov (United States)

    Statham, P.; Sagar, J.; Holland, J.; Pinard, P.; Lozano-Perez, S.

    2018-01-01

    We consider a new approach for quantitative analysis in transmission electron microscopy (TEM) that offers the same convenience as single-standard quantitative analysis in scanning electron microscopy (SEM). Instead of a bulk standard, a thin film with known mass thickness is used as a reference. The procedure involves recording an X-ray spectrum from the reference film for each session of acquisitions on real specimens. There is no need to measure the beam current; the current only needs to be stable for the duration of the session. A new reference standard with a large (1 mm x 1 mm) area of uniform thickness of 100 nm silicon nitride is used to reveal regions of X-ray detector occlusion that would give misleading results for any X-ray method that measures thickness. Unlike previous methods, the new X-ray method does not require an accurate beam current monitor but delivers equivalent accuracy in mass thickness measurement. Quantitative compositional results are also automatically corrected for specimen self-absorption. The new method is tested using a wedge specimen of Inconel 600 that is used to calibrate the high angle angular dark field (HAADF) signal to provide a thickness reference and results are compared with electron energy-loss spectrometry (EELS) measurements. For the new X-ray method, element composition results are consistent with the expected composition for the alloy and the mass thickness measurement is shown to provide an accurate alternative to EELS for thickness determination in TEM without the uncertainty associated with mean free path estimates.

  14. X-Rays from NGC 3256: High-Energy Emission in Starburst Galaxies and Their Contribution to the Cosmic X-Ray Background

    International Nuclear Information System (INIS)

    Moran, Edward C.; Lehnert, Matthew D.; Helfand, David J.

    1999-01-01

    The infrared-luminous galaxy NGC 3256 is a classic example of a merger-induced nuclear starburst system. We find here that it is the most X-ray-luminous star-forming galaxy yet detected (L 0.5-10keV =1.6x10 42 ergs s-1). Long-slit optical spectroscopy and a deep, high-resolution ROSAT X-ray image show that the starburst is driving a ''superwind'' which accounts for ∼20% of the observed soft X-ray emission. Analysis of X-ray spectral data from ASCA indicates this gas has a characteristic temperature of kT≅0.3 keV. Our model for the broadband X-ray emission of NGC 3256 contains two additional components: a warm thermal plasma (kT≅0.8 keV) associated with the central starburst, and a hard power-law component with an energy index of α X ≅0.7. We discuss the energy budget for the two thermal plasmas and find that the input of mechanical energy from the starburst is more than sufficient to sustain the observed level of emission. We also examine possible origins for the power-law component, concluding that neither a buried AGN nor the expected population of high-mass X-ray binaries can account for this emission. Inverse Compton scattering, involving the galaxy's copious flux of infrared photons and the relativistic electrons produced by supernovae, is likely to make a substantial contribution to the hard X-ray flux. Such a model is consistent with the observed radio and IR fluxes and the radio and X-ray spectral indices. We explore the role of X-ray-luminous starbursts in the production of the cosmic X-ray background radiation. The number counts and spectral index distribution of the faint radio source population, thought to be dominated by star-forming galaxies, suggest that a significant fraction of the hard X-ray background could arise from starbursts at moderate redshift. (c) (c) 1999. The American Astronomical Society

  15. High temperature GaAs X-ray detectors

    Science.gov (United States)

    Lioliou, G.; Whitaker, M. D. C.; Barnett, A. M.

    2017-12-01

    Two GaAs p+-i-n+ mesa X-ray photodiodes were characterized for their electrical and photon counting X-ray spectroscopic performance over the temperature range of 100 °C to -20 °C. The devices had 10 μm thick i layers with different diameters: 200 μm (D1) and 400 μm (D2). The electrical characterization included dark current and capacitance measurements at internal electric field strengths of up to 50 kV/cm. The determined properties of the two devices were compared with previously reported results that were made with a view to informing the future development of photon counting X-ray spectrometers for harsh environments, e.g., X-ray fluorescence spectroscopy of planetary surfaces in high temperature environments. The best energy resolution obtained (Full Width at Half Maximum at 5.9 keV) decreased from 2.00 keV at 100 °C to 0.66 keV at -20 °C for the spectrometer with D1, and from 2.71 keV at 100 °C to 0.71 keV at -20 °C for the spectrometer with D2. Dielectric noise was found to be the dominant source of noise in the spectra, apart from at high temperatures and long shaping times, where the main source of photopeak broadening was found to be the white parallel noise.

  16. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  17. Mass loss from OB supergiants in x-ray binary systems

    International Nuclear Information System (INIS)

    Alme, M.L.; Wilson, J.R.

    1975-01-01

    A study of the atmospheres of OB supergiants in x-ray binary systems indicates that when the stellar surface is close enough to the saddle in the gravitational potential to provide a mass transfer rate adequate to power a compact x-ray source, large-amplitude variations in the rate of mass flow occur. 9 references

  18. Detection of X-ray emission from the young low-mass star Rossiter 137B

    Science.gov (United States)

    Vilhu, O.; Linsky, J. L.

    1987-01-01

    Rst 137B, a close M-dwarf companion to the active K-star HD 36705, has been detected in a High Resolution Image in the Einstein Observatory Archive. The X-ray surface fluxes (0.2-4 keV) from both stars are close to the empirical saturation level, F(x)/F(bol) of about 0.001, defined by rapid rotators and very young stars. This supports the earlier results of the youthfulness of the system. This young couple is an excellent subject for studies of dependence of early evolution on stellar mass. Rst 137B is one of the latest spectral types and thus lowest-mass premain-sequence stars yet detected as an X-ray source.

  19. BL Lacertae: X-ray spectral evolution and a black-hole mass estimate

    Science.gov (United States)

    Titarchuk, Lev; Seifina, Elena

    2017-06-01

    We present an analysis of the spectral properties observed in X-rays from active galactic nucleus BL Lacertae using RXTE, Suzaku, ASCA, BeppoSAX, and Swift observations. The total time covered by these observations is approximately 20 yr. We show strong observational evidence that this source undergoes X-ray spectral transitions from the low hard state (LHS) through the intermediate state (IS) to the high soft state (HSS) during these observations. During the RXTE observations (1997-2001, 180 ks, for a total 145 datasets), the source was approximately 75%, 20% and only 5% of the time in the IS, LHS, and HSS, respectively. We also used Swift observations (470 datasets, for a total 800 ks), which occurred during 12 yr (2005-2016), the broadband (0.3-200 keV) data of BeppoSAX (1997-2000, 160 ks), and the low X-ray energy (0.3-10 keV) data of ASCA (1995-1999, 160 ks). Two observations of Suzaku (2006, 2013; 50 ks) in combinations with long-term RXTE and Swift data-sets fortunately allow us to describe all spectral states of BL Lac. The spectra of BL Lac are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index saturation level, Γsat = 2.2 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ - Ṁ correlation allows us to estimate the black-hole (BH) mass in BL Lac to be MBH 3 × 107M⊙ for a distance of 300 Mpc. For the BH mass estimate, we use the scaling method taking stellar-mass Galactic BHs 4U 1543-47 and GX 339-4 as reference sources. The Γ - Ṁ correlation revealed in BL Lac is similar to those in a number of stellar-mass Galactic BHs and two recently studied intermediate-mass extragalactic BHs. It clearly shows the correlation along with the very extended Γ saturation at 2.2. This is robust observational evidence for the presence of a BH in BL Lac. We also reveal that the seed (disk) photon temperatures are relatively low, of order of 100 eV, which are consistent

  20. X-ray photoelectron spectroscopy, high-resolution X-ray diffraction ...

    Indian Academy of Sciences (India)

    the crystalline quality through full-width at half-maximum values. .... angular divergence of ∆α = 12 arc sec. X-rays generated from the monochromator were diffracted from (0 0 6) LiNbO3 atomic planes with the (+, −, −, +, +) geometry. [8].

  1. High vacuum high temperature x-ray camera (1961)

    International Nuclear Information System (INIS)

    Baron, J.L.

    1961-01-01

    - This camera makes it possible to carry out X-ray studies on highly oxidisable materials, up to about 900 deg. C. Most of the existing models do not provide sufficient protection against the formation of surface oxide or carbide films on the sample. The present arrangement makes it possible to operate at very low pressures: 5 x 10 -8 to 10 -7 torr, thanks to an entirely metallic apparatus. The radiation heating system consists of an incandescent lamp, outside the evacuated portion, and a reflector which concentrates the energetic flux into the sample through a silica window. The heated parts have thus only a small thermal inertia. With the apparatus it has been possible to determine the phase parameters of uranium-α up to 650 deg. C with a precision of ± 0.0015 A. A similar study has been carried out on a uranium-chromium alloy in the β-phase up to 740 deg. C. (author) [fr

  2. The White Dwarf Mass and the Accretion Rate of Recurrent Novae: An X-ray Perspective

    Science.gov (United States)

    Mukai, Koji; Sokoloski, Jennifer L.; Nelson, Thomas; Luna, Gerardo J. M.

    2011-01-01

    We present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RN candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.

  3. Temporally coherent x-ray laser with the high order harmonic light

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Kawachi, Tetsuya; Kishimoto, Maki; Sukegawa, Kouta; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Kawazome, Hayato; Nagashima, Keisuke

    2005-01-01

    We obtained the neon-like manganese x-ray laser with the injection of the high order harmonic light as the seed x-ray at the wavelength of 26.9 nm for the purpose of generation of the temporally coherent x-ray laser. The x-ray amplifier, which has quite narrow spectral width, selected and amplified the temporally coherent mode of the harmonic light. The temporal coherence of the mode selected harmonic light was nearly transform limited pulse, and the obtained x-ray laser with the seed x-ray expected to be nearly temporally coherent x-ray. (author)

  4. Workshop on high heat load x-ray optics

    International Nuclear Information System (INIS)

    1990-01-01

    A workshop on ''High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed ''finite element'' and ''finite difference'' calculations comparing experiment with theory and extending theory to optimize performance

  5. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  6. High resolution solar soft X-ray spectrometer

    International Nuclear Information System (INIS)

    Zhang Fei; Wang Huanyu; Peng Wenxi; Liang Xiaohua; Zhang Chunlei; Cao Xuelei; Jiang Weichun; Zhang Jiayu; Cui Xingzhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed. A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer. The spectrometer consists of the detectors and their readout electronics, a data acquisition unit and a payload data handling unit. A ground test system is also developed to test SOX. The test results show that the design goals of the spectrometer system have been achieved. (authors)

  7. The high energy X-ray spectra of supernova remnants

    Science.gov (United States)

    Pravdo, S. H.; Nugent, J. J.

    The results of fitting an ionization-nonequilibrium (INE) model to the high-energy (above 5-keV) X-ray spectra of the young supernova remnants Cas A and Tycho are presented. As an additional constraint, the models must simultaneously fit lower-energy, higher-resolution data. For Cas A, a single INE component cannot adequately reproduce the features for the entire X-ray spectrum because the ionization structure of iron ions responsible for the K emission is inconsistent with that of the ions responsible for the lower-energy lines, and the flux of the highest-energy X-rays is underestimated. The iron K line and the high-energy continuum could arise from the same INE component, but the identification of this component with either the blast wave or the ejecta in the standard model is difficult. In Tycho, the high-energy data rule out a class of models for the lower-energy data which have too large a continuum contribution.

  8. An examination of mass thickness measurements with X-ray sources

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    A method using X-rays to measure mass thickness is discussed. The method utilizes a filter to absorb low energy and characteristic photons so that the hardened X-ray spectra have a peaked energy distribution. An equivalent X-ray energy, which defines the attenuation in a material of interest can be used. The effect on the X-ray spectra of different filters is examined with Monte Carlo simulation using the EGSnrc package. A theoretical model for X-ray absorption that shows that the method can achieve good precision for a certain range of mass thicknesses is advanced. Experimental results agree well with the theoretical analysis. It is found that for a certain range of mass thicknesses, the relative error can be less than 1% for the aluminum alloy sample at the tube voltage of 30 or 45 kV

  9. An examination of mass thickness measurements with X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Chen Mincong; Li Hongmei; Chen Ziyu [Department of Modern Physics, University of Science and Technology of China, Jin Zhai Road, Hefei 230026 (China); Shen Ji [Department of Modern Physics, University of Science and Technology of China, Jin Zhai Road, Hefei 230026 (China)], E-mail: shenji@ustc.edu.cn

    2008-10-15

    A method using X-rays to measure mass thickness is discussed. The method utilizes a filter to absorb low energy and characteristic photons so that the hardened X-ray spectra have a peaked energy distribution. An equivalent X-ray energy, which defines the attenuation in a material of interest can be used. The effect on the X-ray spectra of different filters is examined with Monte Carlo simulation using the EGSnrc package. A theoretical model for X-ray absorption that shows that the method can achieve good precision for a certain range of mass thicknesses is advanced. Experimental results agree well with the theoretical analysis. It is found that for a certain range of mass thicknesses, the relative error can be less than 1% for the aluminum alloy sample at the tube voltage of 30 or 45 kV.

  10. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  11. EVOLUTION OF INTERMEDIATE-MASS X-RAY BINARIES DRIVEN BY THE MAGNETIC BRAKING OF AP/BP STARS. I. ULTRACOMPACT X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cong [School of Physics and Electrical Information, Shangqiu Normal University, Shangqiu 476000 (China); Podsiadlowski, Philipp, E-mail: chenwc@pku.edu.cn [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom)

    2016-10-20

    It is generally believed that ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf (WD) or helium star where mass transfer is driven by gravitational radiation. However, the standard WD evolutionary channel cannot produce the relatively long-period (40–60 minutes) UCXBs with a high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs, where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field (100–10,000 G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced by the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the MESA code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency f = 10{sup −5}, the anomalous magnetic braking can drive IMXBs to an ultra-short period of 11 minutes. Comparing our simulated results with the observed parameters of 15 identified UCXBs, the anomalous magnetic braking evolutionary channel can account for the formation of seven and eight sources with f = 10{sup −3}, and 10{sup −5}, respectively. In particular, a relatively large value of f can fit three of the long-period, persistent sources with a high mass-transfer rate. Though the proportion of Ap/Bp stars in intermediate-mass stars is only 5%, the lifetime of the UCXB phase is ≳2 Gyr, producing a relatively high number of observable systems, making this an alternative evolutionary channel for the formation of UCXBs.

  12. High-Performance X-ray Detection in a New Analytical Electron Microscope

    Science.gov (United States)

    Lyman, C. E.; Goldstein, J. I.; Williams, D. B.; Ackland, D. W.; vonHarrach, S.; Nicholls, A. W.; Statham, P. J.

    1994-01-01

    X-ray detection by energy-dispersive spectrometry in the analytical electron microscope (AEM) is often limited by low collected X-ray intensity (P), modest peak-to-background (P/B) ratios, and limitations on total counting time (tau) due to specimen drift and contamination. A new AFM has been designed with maximization of P. P/B, and tau as the primary considerations. Maximization of P has been accomplished by employing a field-emission electron gun, X-ray detectors with high collection angles, high-speed beam blanking to allow only one photon into the detector at a time, and simultaneous collection from two detectors. P/B has been maximized by reducing extraneous background signals generated at the specimen holder, the polepieces and the detector collimator. The maximum practical tau has been increased by reducing specimen contamination and employing electronic drift correction. Performance improvments have been measured using the NIST standard Cr thin film. The 0-3 steradian solid angle of X-ray collection is the highest value available. The beam blanking scheme for X-ray detection provides 3-4 times greater throughput of X-rays at high count rates into a recorded spectrum than normal systems employing pulse-pileup rejection circuits. Simultaneous X-ray collection from two detectors allows the highest X-ray intensity yet recorded to be collected from the NIST Cr thin film. The measured P/B of 6300 is the highest level recorded for an AEM. In addition to collected X-ray intensity (cps/nA) and P/B measured on the standard Cr film, the product of these can be used as a figure-of-merit to evaluate instruments. Estimated minimum mass fraction (MMF) for Cr measured on the standard NIST Cr thin film is also proposed as a figure-of-merit for comparing X-ray detection in AEMs. Determinations here of the MMF of Cr detectable show at least a threefold improvement over previous instruments.

  13. On the origin of highly ionized X-ray absorbers detected in the galactic X-ray binaries

    International Nuclear Information System (INIS)

    Luo, Yang; Fang, Taotao

    2014-01-01

    X-ray observations of the Galactic X-ray binaries (XRBs) revealed numerous highly ionized metal absorption lines. However, it is unclear whether such lines are produced by the hot interstellar medium (ISM) or the circumstellar medium intrinsic to the binaries. Here we present a Chandra X-ray absorption line study of 28 observations of 12 XRBs, with a focus on the Ne IX and Fe XVII lines. We report the first detections of these lines in a significant amount of observations. We do not find a significant dependence of the line equivalent width on the distance of the XRBs, but we do see a weak dependence on the source X-ray luminosity. We also find 2 out of 12 selected targets show strong temporal variation of the Ne IX absorbers. While the line ratio between the two ion species suggests a temperature consistent with the previous predictions of the ISM, comparing with two theoretical models of the ISM shows the observed column densities are significantly higher than predictions. On the other hand, photoionization by the XRBs provides a reasonably good fit to the data. Our findings suggest that a significant fraction of these X-ray absorbers may originate in the hot gas intrinsic to the XRBs, and that the ISM makes small, if not negligible, contribution. We briefly discuss the implications to the study of the Milky Way hot gas content.

  14. The Correlation between Hard X-Ray Peak Flux and Soft X-Ray Peak Flux in the Outburst Rise of Low-Mass X-Ray Binaries

    NARCIS (Netherlands)

    Yu, W.; van der Klis, M.; Fender, R.P.

    2004-01-01

    We have analyzed Rossi X-Ray Timing Explorer pointed observations of the outbursts of black hole and neutron star soft X-ray transients in which an initial low/hard state, or ``island'' state, followed by a transition to a softer state was observed. In three sources-the black hole transient XTE

  15. High resolution X-ray spectroscopy of laser generated plasmas

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Skobelev, I.Yu.; Rosmej, F.B.

    1999-01-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.)

  16. High resolution X-ray spectroscopy of laser generated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Rosmej, F.B. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik

    1999-11-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.) 28 refs.

  17. The high-energy X-ray spectrum of Centaurus XR-3 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1984-01-01

    Observations of the X-ray binary Cen XR-3 in the 20-120 keV energy range by means of OSO 8's high energy X-ray spectrometer, during July 16-19, 1975, and July 5-14 and 28-29, 1978, indicate that the source was in a high luminosity state during 1975 and a low luminosity one in 1978. While mean orbital light curves appear similar in shape in both years, orbit-to-orbit intensity variations are noted. Spectral, luminosity, and the 4.84 sec modulation are characterized. Cen XR-3 may be a system in which mass transfer by Roche lobe overflow, and by accretion from a stellar wind, are both effective in the production of observable X-ray radiation.

  18. Precision determination of pion mass using X-ray CCD spectroscopy

    CERN Document Server

    Nelms, N; Augsburger, M A; Borchert, G; Chatellard, D; Daum, M; Egger, J P; Gotta, D; Hauser, P; Indelicato, P J; Jeannet, E; Kirch, K; Schult, O W B; Siems, T; Simons, L M; Wells, A

    2002-01-01

    An experiment is described which aims to determine the charged pion mass to 1 ppm or better, from which a new determination of the upper limit of the muon neutrino mass is anticipated. The experimental approach uses a high-intensity negative pion beam (produced at the PSI 590 MeV proton cyclotron), injected into a cyclotron trap and stopped inside a gas-filled target chamber, to form highly excited exotic atoms of pionic nitrogen and muonic oxygen. The energy of photons, emitted during de-excitation, is directly proportional to the mass of the pion or muon. These soft X-ray emission spectra are measured using a high-precision crystal spectrometer, with an array of six, high quantum efficiency X-ray position resolving CCDs at the focus. To achieve sub-ppm accuracy, simultaneous calibration of the pionic nitrogen line is provided by measurement of an adjacent muonic oxygen line, whose energy is known to 0.3 ppm. The high precision of the experiment offers a new opportunity to determine the pion mass to the leve...

  19. High-current Rhodotron for X-ray facility

    International Nuclear Information System (INIS)

    Umezu, Toru; Tsujiura, Yuichiro; Bol, Jean Louis

    2009-01-01

    The Rhodotron is a widely employed high-power industrial accelerator developed and exclusively distributed by IBA. Most early examples of the accelerator were optimized to operate at 10 MeV. A new Rhodotron configuration recently advanced produces a lower-energy higher-current beam dedicated with x-ray to sterilize and enhancement materials. Core elements of this system's evolution include a higher performance RF electron gun (operating range, response control, and cathode lifetime). This operational machine is now producing 100 mA at 7 MeV (700 kW of beam) and treat medical devices, thick cable and pipes with a high efficiency. (author)

  20. Masks for high aspect ratio x-ray lithography

    International Nuclear Information System (INIS)

    Malek, C.K.; Jackson, K.H.; Bonivert, W.D.; Hruby, J.

    1997-01-01

    Fabrication of very high aspect ratio microstructures, as well as ultra-high precision manufacturing is of increasing interest in a multitude of applications. Fields as diverse as micromechanics, robotics, integrated optics, and sensors benefit from this technology. The scale-length of this spatial regime is between what can be achieved using classical machine tool operations and that which is used in microelectronics. This requires new manufacturing techniques, such as the LIGA process, which combines x-ray lithography, electroforming, and plastic molding

  1. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs

  2. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography (CMT). The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits (MDLs) obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source (APS)

  3. Development of X-ray diode with high performance

    International Nuclear Information System (INIS)

    Hou Lifei; Yang Gouhong; Liu Shenye; Wei Minxi; Yi Tao; Jiang Shao'en; Sun Kexu

    2011-01-01

    A new type of X-ray diode (XRD-II) with ultrafast response time was developed. XRD-II detector was improved on the basis of old XRD (XRD-I), and its performances were studied on the 8 ps laser facility. The results show that XRD-II has excellent high-Jantage tolerance (to 6 kV) and super-fast response time (rise time is about 40 ps, and full width at half maximum (FWHM) is about 80 ps when bias Jantage is 5 kV). The detector calibration was carried out on Beijing synchrotron radiation facility, which shows that the detector's sensitivity has not deteriorated. (authors)

  4. Line focus x-ray tubes-a new concept to produce high brilliance x-rays.

    Science.gov (United States)

    Bartzsch, Stefan; Oelfke, Uwe

    2017-10-27

    Currently hard coherent x-ray radiation at high photon fluxes can only be produced with large and expensive radiation sources, such as 3[Formula: see text] generation synchrotrons. Especially in medicine, this limitation prevents various promising developments in imaging and therapy from being translated into clinical practice. Here we present a new concept of highly brilliant x-ray sources, line focus x-ray tubes (LFXTs), which may serve as a powerful and cheap alternative to synchrotrons and a range of other existing technologies. LFXTs employ an extremely thin focal spot and a rapidly rotating target for the electron beam which causes a change in the physical mechanism of target heating, allowing higher electron beam intensities at the focal spot. Monte Carlo simulations and numeric solutions of the heat equation are used to predict the characteristics of the LFXT. In terms of photon flux and coherence length, the performance of the line focus x-ray tube compares with inverse Compton scattering sources. Dose rates of up to 180 Gy [Formula: see text] can be reached in 50 cm distance from the focal spot. The results demonstrate that the line focus tube can serve as a powerful compact source for phase contrast imaging and microbeam radiation therapy. The production of a prototype seems technically feasible.

  5. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray high voltage generator. 892.1700... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1700 Diagnostic x-ray high voltage generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended to...

  6. High efficiency, multiterawatt x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    C. Emma

    2016-02-01

    Full Text Available In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs, a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  7. Stress Free Multilayer Coating for High Resolution X-ray Mirrors

    Data.gov (United States)

    National Aeronautics and Space Administration — Most of X-ray optics research and development in the US is to build a high resolution, large collecting area and light-weight optic, namely an soft X-ray mirror for...

  8. Low-mass X-ray binary evolution and the origin of millisecond pulsars

    Science.gov (United States)

    Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre

    1992-01-01

    The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.

  9. Highly magnetic Co nanoparticles fabricated by X-ray radiolysis

    Science.gov (United States)

    Clifford, Dustin M.; Castano, Carlos E.; Rojas, Jessika V.

    2018-03-01

    Advanced routes for the synthesis of nanomaterials, such as ferromagnetic nanoparticles, are being explored that are easy to perform using cost-effective and non-toxic precursors. Radiolytic syntheses based on the use of X-rays as ionizing radiation are promising towards this effort. X-rays were used to produce highly magnetic cobalt nanoparticles (NPs), stable in air up to 200 °C, from the radiolysis of water. Crystal structure analysis by XRD indicates a mixture of Cofcc, 63%, and Cohcp, 37%, phases. Magnetic analysis by VSM gave a saturation magnetization (Ms) 136 emu/g at 1 T and coercivity (Hc) = 325 Oe when the reaction solution was purged with N2 while an air-purged treatment resulted in Co NPs having 102 emu/g with a coercivity (Hc) 270 Oe. Overall, the reduction of Co2+ occurred in an aqueous reaction environment without addition of chemical reductants resulting in Co NPs with size distribution from 20 to 140 nm. This clean approach at ambient temperature produced highly magnetic Co NPs that may be used for switching devices (i.e. reed switches) or as additives for alloys that require high Curie points.

  10. Hard X-ray Flux from Low-Mass Stars in the Cygnus OB2 Association

    Science.gov (United States)

    Caramazza, M.; Drake, J. J.; Micela, G.; Flaccomio, E.

    2009-05-01

    We investigate the X-ray emission in the 20-40 keV band expected from the flaring low-mass stellar population in Cygnus OB2 assuming that the observed soft X-ray emission is due to a superposition of flares and that the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar flares by Isola and co-workers. We estimate a low-mass stellar hard X-ray flux in the 20-40 keV band in the range ~7×1031-7×1033 erg/s and speculate the limit of this values. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. Simbol-X, with its broad energy band (10-100 keV) and its sensitivity should be able to detect this emission and would provide insights into the hard X-ray production of flares on pre-main sequence stars.

  11. Production of hollow atoms by high brightness x-ray sources and its applications

    International Nuclear Information System (INIS)

    Moribayashi, Kengo

    2004-01-01

    We study x-ray emissions from the (multi-)inner-shell states and hollow atoms of Si ions excited by high intensity x-ray sources. It is found that the x-ray number from multi-inner-shell excited states (1s 2 2s 2 2p k 3s 2 3p 2 , k=1-4) and hollow atoms (1s 2 2s 2 3p 2 ) is affected greatly by the high intensity short-pulse x-rays and little by weak intensity post-long pulse x-rays. The ratio of the x-ray intensities from hollow atoms to those from the multi-inner-shell excited states becomes almost independent of the pulses and dependent on the intensities of x-ray sources. This ratio may be used for the measurement of intensities of high intensity short pulse x-ray sources. (author)

  12. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving

    International Nuclear Information System (INIS)

    Shvyd’ko, Yuri; Blank, Vladimir; Terentyev, Sergey

    2017-01-01

    Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawless diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.

  13. Non-contact micro mass evaluation method using an X-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jiseok; Sun, Gwang Min; Baek, Ha Ni; Hoang, Sy Minh Tuan; Park, Sun Ae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-07-15

    For the mass inspection of attached foils such as printed electrodes, mass should be measured by a non-contact method with the capacity to measure a small mass of micrograms. In this study, the masses of 1 mg to 10 mg electrodes were evaluated using an X-ray microscope. The results were compared with the masses determined by using a digital scale with a 0.005 mg error. The average of the relative error between the mass measurements using the X-ray microscope and those using the digital scale was less than 2.51%. The results show that X-ray mass evaluation method can be used for mass measurement of micro objects by replacing a digital scale.

  14. High-speed radiography and x-ray cinematography by high-current betatrons

    International Nuclear Information System (INIS)

    Akimochkin, Yu.V.; Akulov, G.V.; Leunov, F.G.; Moskalev, V.A.; Ryabukhin, V.L.

    1979-01-01

    The paper provides a description of an equipment system comprising a pair of 25 MeV high-current betatrons and an X-ray drum-type cinecamera for high-speed radiography and X-ray cinematography for use when studying dynamics of objects moving at a rate of 0.5 - 3.0 km/s as well as in X-ray cinematography of processes at a rate of up to 1 m/s. (author)

  15. X-ray outbursts and high-state episodes of HETE J1900.1-2455

    Science.gov (United States)

    Šimon, Vojtěch

    2018-06-01

    HETE J1900.1-2455 is an ultra-compact low-mass X-ray binary that underwent a long-lasting (about 10 yr) active state. The analysis presented here of its activity uses the observations of RXTE/ASM, Swift/BAT, and ISS/MAXI for investigating this active state and the relation of time evolution of fluxes in the hard and medium X-ray bands. We show that the variations of the flux of HETE J1900.1-2455 on the time-scales of days and weeks have the form both of the outbursts and occasional high-state episodes. These outbursts are accompanied by the large changes of the hardness of the spectrum in the surroundings of the peaks of their soft X-ray flux. The very strong peaks of these outbursts occur in the soft X-ray band (2-4 keV) and are accompanied by a large depression in the 15-50 keV band flux. We interpret these events as an occasional occurrence of a thermal-viscous instability of the accretion disc that gives rise to the outbursts similar to those in the soft X-ray transients. On the other hand, the 2-4 and the 15-50 keV band fluxes are mutually correlated in the high-state episodes, much longer than the outbursts. In the interpretation, the episodes of the X-ray high states of HETE J1900.1-2455 during the active state bear some analogy with the standstills in the Z Cam type of cataclysmic variables.

  16. Characterization of ceramic archaeological by high resolution X ray microtomography

    International Nuclear Information System (INIS)

    Machado, Alessandra C.; Freitas, Renato; Calza, Cristiane F.; Lopes, Ricardo T.; Lima, Inaya; Carvalho, Daniele D.; Gaspar, Maria D.

    2013-01-01

    Characterization of ceramic fragments is a very important area of research in art and archeometry area because it enables a greater understanding of how ancient civilizations behave and what were their traditions and customs. Petrography and chemical analyses are commonly used, but these techniques are destructive, which is not interesting for this type of sample. Through the exchange of multidisciplinary scientific knowledge and new partnerships, high resolution X-ray microtomography has been introduced in archaeological area as a great possibility of 3D inspection in a non-destructive way. The goal of this work is to investigate the internal microstructures of four samples of archeological ceramic, from the Archaeological Site of Macacu - RJ. The X-ray microtomography were performed in a high resolution setup, and can be used to infer the nature of organic temper even with all plant remains completely burnt out during the firing process and also to ensure the homogeneity of samples envisaged for geochemical analyses, especially with respect to the distribution of chemically diverse fabric compounds. In this way this study intends to contribute to our understanding of the archaeological and historical formations of this region. (author)

  17. Characterization of ceramic archaeological by high resolution X ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Alessandra C.; Freitas, Renato; Calza, Cristiane F.; Lopes, Ricardo T.; Lima, Inaya, E-mail: alecastro@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Carvalho, Daniele D.; Gaspar, Maria D. [Museu Nacional (MN/UFRJ), RJ (Brazil). Centro de Tecnologia

    2013-07-01

    Characterization of ceramic fragments is a very important area of research in art and archeometry area because it enables a greater understanding of how ancient civilizations behave and what were their traditions and customs. Petrography and chemical analyses are commonly used, but these techniques are destructive, which is not interesting for this type of sample. Through the exchange of multidisciplinary scientific knowledge and new partnerships, high resolution X-ray microtomography has been introduced in archaeological area as a great possibility of 3D inspection in a non-destructive way. The goal of this work is to investigate the internal microstructures of four samples of archeological ceramic, from the Archaeological Site of Macacu - RJ. The X-ray microtomography were performed in a high resolution setup, and can be used to infer the nature of organic temper even with all plant remains completely burnt out during the firing process and also to ensure the homogeneity of samples envisaged for geochemical analyses, especially with respect to the distribution of chemically diverse fabric compounds. In this way this study intends to contribute to our understanding of the archaeological and historical formations of this region. (author)

  18. Workshop on high heat load x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A workshop on High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed finite element'' and finite difference'' calculations comparing experiment with theory and extending theory to optimize performance.

  19. The development of high resolution silicon x-ray microcalorimeters

    Science.gov (United States)

    Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.

    2005-12-01

    Recently we have produced x-ray microcalorimeters with resolving powers approaching 2000 at 5.9 keV using a spare XRS microcalorimeter array. We attached 400 um square, 8 um thick HgTe absorbers using a variety of attachment methods to an XRS array and ran the detector array at temperatures between 40 and 60 mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU8 polymer tubes. In this scenario we achieved a resolution of 3.2 eV FWHM at 5.9 keV. Substituting a silicon spacer for the SU8 tubes also yielded sub-4eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. Finally, we tested standard 640um-square XRS detectors at reduced bias power at 50mK and achieved a resolution of 3.7eV, a 50% improvement over the XRS flight instrument. Implanted silicon microcalorimeters are a mature flight-qualified technology that still has a substantial phase space for future development. We will discuss these new high resolution results, the various absorber attachment schemes, planned future improvements, and, finally, their relevance to future high resolution x-ray spectrometers including Constellation-X.

  20. High resolution X-ray spectromicroscopy of laser produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya. [Multi-charged Ions Spectra Data Center of VNIIFTRI (MISDC), Mendeleevo, Moscow region, (Russian Federation)

    2000-01-01

    In recent years new classes of X-ray spectroscopic instruments possessing both dispersive and focusing properties have been manufactured. Their principal advantage over more traditional instruments is that they combine very high luminosity with high spatial resolution, while preserving the highest possible spectral resolution of their dispersive elements. These instruments opened up the registration of plasmas in new regimes and surroundings. The measurements delivered new information about the properties of even previously studied traditional plasma objects (e.g. ns-laser produced plasmas). Also the detailed investigation of relatively new plasma laboratory sources with very small dimensions and low energy content (e.g. mJ fs-laser pulses) became possible. The purpose of this report is to give a short review of the experimental and theoretical results obtained in the past few years by MISDC (Multi-charged Ions Spectra Data Center) research team in the field of X-ray spectroscopy of a laser-produced plasma. Experimental spectra have been obtained at various laser installations with nanosecond, sub-nanosecond, picosecond and sub-picosecond pulses interacting with solid, gaseous or cluster targets in collaborations with research teams from Russia, USA, Germany, France, Poland, Belgium, Italy, China and Israel. Practically all results have been obtained with the help of spectrographs with spherically bent mica crystals operating in FSSR-1D, 2D schemes. (author)

  1. Solar X-rays from Axions: Rest-Mass Dependent Signatures

    CERN Document Server

    Zioutas, Konstantin; Semertzidis, Yannis; Papaevangelou, Thomas; Gardikiotis, Antonios; Dafni, Theopisti; Anastassopoulos, Vassilis

    2010-01-01

    The spectral shape of solar X-rays is a power law. The more active the Sun is, the less steep the distribution. This behaviour can be explained by axion regeneration to X-rays occurring ~400km deep into the photosphere. Their down-comptonization reproduces the measured spectral shape, pointing at axions with rest mass m_a~17 meV/c2, without contradicting astrophysical-laboratory limits. Directly measured soft X-ray spectra from the extremely quiet Sun during 2009 (SphinX mission), though hitherto overlooked, fitt the axion scenario.

  2. Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays

    International Nuclear Information System (INIS)

    Tamura, Masaya; Akimoto, Tadashi; Aoki, Yohei; Ikeda, Jiro; Sato, Koichi; Fujita, Fumiyuki; Homma, Akira; Sawamura, Teruko; Narita, Masakuni

    2002-01-01

    When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources

  3. Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays

    CERN Document Server

    Tamura, M; Aoki, Y; Ikeda, J; Sato, K; Fujita, F; Homma, A; Sawamura, T; Narita, M

    2002-01-01

    When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources.

  4. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  5. The high energy X-ray spectrum of 4U 0900-40 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Ellison, D. C.

    1981-01-01

    The X-ray source 4U 0900-40 (= Vela XR-1) was observed with the high-energy X-ray spectrometer on OSO 8 for one week in 1976 and three weeks in 1978. Spectra of the source are presented above 16 keV. No systematic difference exists between the X-ray eclipse centers and the eclipse centers predicted from optical ephermerides. Short period intrinsic variability in the system's X-ray intensity may be related to changes in the Compton scattering optical depth in the system and does not require sporadic mass transfer via Roche lobe overflow. The 282 s modulation in the source's X-ray flux above 21 keV consists of two essentially similar pulses per period, most easily interpreted as arising from the two different magnetic poles of a rotating neutron star. The secondary appears to be a spherically accreting, magnetic neutron star.

  6. High-sensitive portable ASE-2 X-ray analyzer of sulfur in mineral oil

    International Nuclear Information System (INIS)

    Anchugov, I.S.; Goganov, A.D.; Plotnikov, R.I.

    2007-01-01

    The high-sensitivity ASE-2 analyzer of sulfur on the basis of existing ASE-I device is designed. ASE-2 analyzer realizes a standard method of energy dispersion X-ray fluorescent determinations of a sulfur mass fraction in mineral oil and allows to carry out the quantitative determination of sulfur in hydrocarbonic raw material and fuel in a 0.002-5 mass.% range [ru

  7. High-Resolution Detector For X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  8. High-energy X-ray observations of extragalactic objects

    International Nuclear Information System (INIS)

    Pietsch, W.; Reppin, C.; Truemper, J.; Voges, W.; Lewin, W.; Kendziorra, E.; Staubert, R.

    1981-01-01

    During a balloon flight from Alice Springs, Australia, six extragalactic sources which are known as potential X-ray sources have been observed in hard X-rays (E > 20 keV). We present X-ray spectra of 3C 273 and Cen-A as well as upper limits on 3C 120, MKN 509, NGC 5506, and MR 2251-178. (orig.)

  9. X-ray Diffraction Study of Arsenopyrite at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    D Fan; M Ma; W Zhou; S Wei; Z Chen; H Xie

    2011-12-31

    The high-pressure X-ray diffraction study of a natural arsenopyrite was investigated up to 28.2 GPa using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at National Synchrotron Light Source, Brookhaven National Laboratory. The 16:3:1 methanol-ethanol-water mixture was used as a pressure-transmitting medium. Pressures were measured using the ruby-fluorescence method. No phase change has been observed up to 28.2 GPa. The isothermal equation of state (EOS) was determined. The values of K{sub 0}, and K'{sub 0} refined with a third-order Birch-Murnaghan EOS are K{sub 0} = 123(9) GPa, and K'{sub 0} = 5.2(8). Furthermore, we confirm that the linear compressibilities ({beta}) along a, b and c directions of arsenopyrite is elastically isotropic ({beta}{sub a} = 6.82 x 10{sup -4}, {beta}{sub b} = 6.17 x 10{sup -4} and {beta}{sub c} = 6.57 x 10{sup -4} GPa{sup -1}).

  10. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.; Lee, H.R.; McNulty, I.; Zalensky, A.O.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5 microm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼ 1,000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼ 6,000 angstrom, however some features were clearly reconstructed with a depth resolution of ∼ 1,000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to ∼ 1,200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  11. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5μm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼1000 Angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼6000 Angstrom, however some features were clearly reconstructed with a depth resolution of ∼1000 Angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to ∼1200 Angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  12. [Study on spectrum analysis of X-ray based on rotational mass effect in special relativity].

    Science.gov (United States)

    Yu, Zhi-Qiang; Xie, Quan; Xiao, Qing-Quan

    2010-04-01

    Based on special relativity, the formation mechanism of characteristic X-ray has been studied, and the influence of rotational mass effect on X-ray spectrum has been given. A calculation formula of the X-ray wavelength based upon special relativity was derived. Error analysis was carried out systematically for the calculation values of characteristic wavelength, and the rules of relative error were obtained. It is shown that the values of the calculation are very close to the experimental values, and the effect of rotational mass effect on the characteristic wavelength becomes more evident as the atomic number increases. The result of the study has some reference meaning for the spectrum analysis of characteristic X-ray in application.

  13. Measurement of soft X-ray power from high-power Z-pinch plasma

    International Nuclear Information System (INIS)

    Wang Wensheng; Qiu Aici; Sun Fengrong; Luo Jianhui; Zhou Haisheng; He Duohui

    2003-01-01

    A Ni-film bolometer driven by the pulsed constant-voltage supply was developed for measuring soft X-ray energy under 1 keV generated from the Qiang-Guang-I, while the measuring system of the soft X-ray power was established with an X-ray diode detector. Results of the soft X-ray energy and power measurements were obtained at the experiment of Kr gas-puff high-power Z-pinch plasma

  14. Characterizing Intermediate-Mass, Pre-Main-Sequence Stars via X-Ray Emision

    Science.gov (United States)

    Haze Nunez, Evan; Povich, Matthew Samuel; Binder, Breanna Arlene; Broos, Patrick; Townsley, Leisa K.

    2018-01-01

    The X-ray emission from intermediate-mass, pre-main-sequence stars (IMPS) can provide useful constraints on the ages of very young (${getting power from the gravitational contraction of the star. Main-sequence late-B and A-type stars are not expected to be strong X-ray emitters, because they lack the both strong winds of more massive stars and the magneto-coronal activity of lower-mass stars. There is, however, mounting evidence that IMPS are powerful intrinsic x-ray emitters during their convection-dominated early evolution, before the development and rapid growth of a radiation zone. We present our prime candidates for intrinsic, coronal X-ray emission from IMPS identified in the Chandra Carina Complex Project. The Carina massive star-forming complex is of special interest due to the wide variation of star formation stages within the region. Candidate IMPS were identified using infrared spectral energy distribution (SED) models. X-ray properties, including thermal plasma temperatures and absorption-corrected fluxes, were derived from XSPEC fits performed using absorption ($N_{H}$) constrained by the extinction values returned by the infrared SED fits. We find that IMPS have systematically higher X-ray luminosities compared to their lower-mass cousins, the TTauri stars.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  15. Detection of Reflection Features in the Neutron Star Low-mass X-Ray Binary Serpens X-1 with NICER

    DEFF Research Database (Denmark)

    Ludlam, R. M.; Miller, J. M.; Arzoumanian, Z.

    2018-01-01

    We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in a...

  16. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    Science.gov (United States)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the 2010 Decadal Survey, including missions with science that overlaps with that of IXO and Athena, as well as other missions addressing science topics beyond those of IXO and Athena. An X-ray Surveyor mission was recently chosen by NASA for study by a Science & Technology Definition Team (STDT) so it can be considered as an option for an upcom-ing flagship mission. A mission such as this was endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible reali-zation of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been work-ing on these developments for the past several years. The first 3 years of the program led to the development of a new circuit design for each pixel, which has now been shown to be suitable for a larger detector array. The proposed activity for the next four years will be to incorporate this pixel design into a new design of a full detector array (2k×2k pixels with digital output) and to fabricate this full-sized device so it can be thoroughly tested and

  17. 30-lens interferometer for high energy x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lyubomirskiy, M., E-mail: lyubomir@esrf.fr; Snigireva, I., E-mail: irina@esrf.fr; Vaughan, G. [European Synchrotron Radiation facility (ESRF), CS 40220, 71, av des Martyrs, F-38043, Grenoble (France); Kohn, V. [National Research Centre “Kurchatov Institute”, 123182, Moscow (Russian Federation); Kuznetsov, S.; Yunkin, V. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka (Russian Federation); Snigirev, A. [Baltic Federal University, 236041, Kaliningrad (Russian Federation)

    2016-07-27

    We report a hard X-ray multilens interferometer consisting of 30 parallel compound refractive lenses. Under coherent illumination each CRL creates a diffraction limited focal spot - secondary source. An overlapping of coherent beams from these sources resulting in the interference pattern which has a rich longitudinal structure in accordance with the Talbot imaging formalism. The proposed interferometer was experimentally tested at ID11 ESRF beamline for the photon energies 32 keV and 65 keV. The fundamental and fractional Talbot images were recorded with the high resolution CCD camera. An effective source size in the order of 15 µm was determined from the first Talbot image proving that the multilens interferometer can be used as a high resolution beam diagnostic tool.

  18. A new high-speed X-ray beam chopper

    International Nuclear Information System (INIS)

    McPherson, A.; Wang, J.; Lee, P. L.; Mills, D. M.

    1999-01-01

    A new high-speed x-ray beam chopper using laser scanner technology has been developed and tested on the SRI-CAT sector 1 beamline at the Advanced Photon Source (APS) storage ring (1). As illustrated in figure 1, it is compact in size and has two sets of transmission windows: BK-7 glass for visible light transmission and 0.23-mm-thick Be for the transmission of x-rays. The rotor is made of aluminum and has a diameter of 50.8 mm. A 0.5-mm-wide and 2.29-mm-tall slit is cut through the center of the rotor. The circumference of the rotor has a coating of 1-mm-thick Ni, which gives an attenuation of 10 8 at 30 keV. Turning at nearly 80000 RPM, this beam chopper has an opening time window of 2450 ns, corresponding to 67% of the revolution time of the APS storage ring. The primary feature in selecting laser scanner technology to develop into an x-ray beam chopper was the high level of rotational speed control of the rotor that makes up the beam chopper element (2). By using an optical feedback circuit to sample the rotational speed four times each revolution, the jitter in the position of the transmission open time window is only 3 ns at the 3 standard deviation level. The APS storage ring orbital frequency, supplied by the control room, is divided down to provide the appropriate drive frequency for the beam chopper motor controller. By this means, both the storage ring and the beam chopper are operating off the same master clock. After a turn-on time of about 15 to 20 seconds, the rotational precision of the motor results in immediate phase locking to the temporal structure of the APS storage ring. By inserting a Stanford delay generator between the frequency divider and the beam chopper motor controller, the phase between the storage ring temporal structure and the beam chopper rotation can be adjusted to position the transmission time window of the beam chopper on any desired part of the storage ring fill pattern. If an asymmetric fill pattern is used in the APS storage

  19. Development of high resolution x-ray CT technique for irradiated fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ishimi, Akihiro; Katsuyama, Kozo; Maeda, Koji; Asaga, Takeo [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    High X-ray CT technique was developed to observe the irradiation performance of FBR fuel assembly and MOX fuel. In this technique, the high energy X-ray pulse (12MeV) was used synchronizing detection system with the X-ray pulse to reduce the effect of the gamma ray emissions from the irradiated fuel assembly. In this study, this technique was upgraded to obtain high resolution X-ray CT image. In this upgrading, the collimator which had slit width of 0.1 mm and X-ray detector of a highly sensitive silicon semiconductor detector (100 channels) was introduced in the X-ray CT system. As a result of these developments, high resolution X-ray CT images could be obtained on the transverse cross section of irradiated fuel assembly. (author)

  20. High temperature x-ray micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, Alastair A., E-mail: aamacdowell@lbl.gov; Barnard, Harold; Parkinson, Dilworth Y.; Gludovatz, Bernd [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); Haboub, Abdel [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); current –Lincoln Univ., Jefferson City, Missouri, 65101 (United States); Larson, Natalie; Zok, Frank [University California Santa Barbara, Santa Barbara CA 93106 (United States); Panerai, Francesco; Mansour, Nagi N. [NASA Ames Research Centre, Moffett Field, CA, 94035 (United States); Bale, Hrishikesh [University California Berkeley, Berkeley, CA 94720 (United States); current - Carl Zeiss X-ray Microscopy, 4385 Hopyard Rd #100, Pleasanton, CA 94588 (United States); Acevedo, Claire [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); University California San Francisco, San Francisco, CA 94143 (United States); Liu, Dong [University of Bristol, Bristol BS8 1TH (United Kingdom); Ritchie, Robert O. [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); University California Berkeley, Berkeley, CA 94720 (United States)

    2016-07-27

    There is increasing demand for 3D micro-scale time-resolved imaging of samples in realistic - and in many cases extreme environments. The data is used to understand material response, validate and refine computational models which, in turn, can be used to reduce development time for new materials and processes. Here we present the results of high temperature experiments carried out at the x-ray micro-tomography beamline 8.3.2 at the Advanced Light Source. The themes involve material failure and processing at temperatures up to 1750°C. The experimental configurations required to achieve the requisite conditions for imaging are described, with examples of ceramic matrix composites, spacecraft ablative heat shields and nuclear reactor core Gilsocarbon graphite.

  1. High-energy X-ray production in a boundary layer of an accreting neutron star

    International Nuclear Information System (INIS)

    Hanawa, Tomoyuki

    1991-01-01

    It is shown by Monte Carlo simulation that high-energy X-rays are produced through Compton scattering in a boundary layer of an accreting neutron star. The following is the mechanism for the high-energy X-ray production. An accreting neutron star has a boundary layer rotating rapidly on the surface. X-rays radiated from the star's surface are scattered in part in the boundary layer. Since the boundary layer rotates at a semirelativistic speed, the scattered X-ray energy is changed by the Compton effect. Some X-rays are scattered repeatedly between the neutron star and the boundary layer and become high-energy X-rays. This mechanism is a photon analog of the second-order Fermi acceleration of cosmic rays. When the boundary layer is semitransparent, high-energy X-rays are produced efficiently. 17 refs

  2. High energy X-ray phase and dark-field imaging using a random absorption mask.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  3. Centre-excised X-ray luminosity as an efficient mass proxy for future galaxy cluster surveys

    Science.gov (United States)

    Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; von der Linden, Anja

    2018-01-01

    The cosmological constraining power of modern galaxy cluster catalogues can be improved by obtaining low-scatter mass proxy measurements for even a small fraction of sources. In the context of large upcoming surveys that will reveal the cluster population down to the group scale and out to high redshifts, efficient strategies for obtaining such mass proxies will be valuable. In this work, we use high-quality weak-lensing and X-ray mass estimates for massive clusters in current X-ray-selected catalogues to revisit the scaling relations of the projected, centre-excised X-ray luminosity (Lce), which previous work suggests correlates tightly with total mass. Our data confirm that this is the case with Lce having an intrinsic scatter at fixed mass comparable to that of gas mass, temperature or YX. Compared to the other proxies, however, Lce is less susceptible to systematic uncertainties due to background modelling, and can be measured precisely with shorter exposures. This opens up the possibility of using Lce to estimate masses for large numbers of clusters discovered by new X-ray surveys (e.g. eROSITA) directly from the survey data, as well as for clusters discovered at other wavelengths with relatively short follow-up observations. We describe a simple procedure for making such estimates from X-ray surface brightness data, and comment on the spatial resolution required to apply this method as a function of cluster mass and redshift. We also explore the potential impact of Chandra and XMM-Newton follow-up observations over the next decade on dark energy constraints from new cluster surveys.

  4. Observations of Intermediate-mass Black Holes and Ultra-Luminous X-ray sources

    Science.gov (United States)

    Colbert, E. J. M.

    2003-12-01

    I will review various observations that suggest that intermediate-mass black holes (IMBHs) with masses ˜102-104 M⊙ exist in our Universe. I will also discuss some of the limitations of these observations. HST Observations of excess dark mass in globular cluster cores suggest IMBHs may be responsible, and some mass estimates from lensing experiments are nearly in the IMBH range. The intriguing Ultra-Luminous X-ray sources (ULXs, or IXOs) are off-nuclear X-ray point sources with X-ray luminosities LX ≳ 1039 erg s-1. ULXs are typically rare (1 in every 5 galaxies), and the nature of their ultra-luminous emission is currently debated. I will discuss the evidence for IMBHs in some ULXs, and briefly outline some phenomenology. Finally, I will discuss future observations that can be made to search for IMBHs.

  5. Time-resolved x-ray spectra of laser irradiated high-Z targets

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Attwood, D.T.; Boyle, M.J.; Campbell, E.M.; Coleman, L.C.; Kornblum, H.N.

    1977-01-01

    Recent results obtained by using the Livermore 15 psec x-ray streak camera to record x-ray emission from laser-irradiated high-z targets in the 1-20 keV range are reported. Nine to eleven K-edge filter channels were used for the measurements. In the lower energy channels, a dynamic range of x-ray emission intensity of better than three orders of magnitude have been recorded. Data will be presented which describe temporally and spectrally resolved x-ray spectra of gold disk targets irradiated by laser pulses from the Argus facility, including the temporal evolution of the superthermal x-ray tail

  6. Non-conservative mass exchange and origin of X-ray close binaries

    International Nuclear Information System (INIS)

    Sugimoto, D.; Miyaji, S.

    1980-01-01

    There are two distinct types of XCBS. The Type I XCBS consists of an X-ray star and an early type star more massive than about 12 solar masses. On the contrary, the Type II XCBS consists of an X-ray star and a star less massive than about 2 solar masses. The aim of the present paper lies in interpreting the origin of these types of XCBS on the bases of the conditions for the formation of a neutron star and of mass exchange in close binary systems. (Auth.)

  7. Copper L X-ray spectra measured by a high resolution ion-induced X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Hamaguchi, Dai; Kageyama, Hiroyoshi [Kyoto Inst. of Tech. (Japan); and others

    1997-03-01

    High resolution L X-ray emission spectra of Cu have been measured by 0.75 MeV/u H, He, and F, 0.73 MeV/u Ar, 0.64 MeV/u Si, and 0.073 MeV/u Si ion impacts with a crystal spectrometer. The X-ray transition energies in the Cu target for L{iota}, L{eta}, L{alpha}{sub 1,2}, L{beta}{sub 1}, and L{beta}{sub 3,4} diagram lines induced by light ion impacts are determined, which are in good agreement with those given in the reference. The difference in L X-ray emission spectra produced by H, He, F, Si, and Ar ions are considered and the L{alpha}{sub 1,2} and L{beta}{sub 1} emission spectra are compared with the calculated ones based on the multiconfiguration Dirac-Fock method. (author)

  8. Monitoring the mass of UF6 gas and uranium deposits in aluminium pipes using X-ray fluorescence and X-ray transmission gauges

    International Nuclear Information System (INIS)

    Packer, T.W.; Smith, S.M.

    1984-12-01

    In order to determine the enrichment of UF 6 gas in centrifuge plant pipework it is necessary to measure the mass of the gas (pressure) and the mass per unit area of any uranium deposited on the pipe. This paper shows that it is possible to determine the pressure of the UF 6 gas in pipes 120 mm in diameter using an energy-dispersive X-ray fluorescence spectrometer. Results are also given of transmission measurements made using a low power X-ray generator operated at two different applied voltages. A method of using the two measurements to determine the mass per unit area of deposited uranium is described. (author)

  9. Differential diagnosis of benign and malignant breast tumors by high frequency molybdenum-target X-ray photography

    International Nuclear Information System (INIS)

    Mai Yuanqi; Wang Maosheng; Huang Jian; Cui Guoru; Liang Zhicong; Lu Yingying

    2008-01-01

    Objective: To explore the X-ray Image of benign and malignant breast lesions (tumors) in order to improve their differcatial diagnostic level. Methods: X-ray image changes of 63 malignant breast neoplasms were described by the mammography and in comparision with those of 43 benign masses. Results: The accordance percentages between the X-ray and histological examinations for the benign and malignant neoplasms were shown as 85% and 90.6% respectively. Spiculated mass, calcification granules in clusters and other images were found to be indication of benign or malignant breast lesion. Conclusion: The High Frequency Molybdenum-target X-ray Photography can provide effective imaging data for diagnosis and distinguish between the benign and malignant breast lesions. (authors)

  10. Lightweight and High-Resolution Single Crystal Silicon Optics for X-ray Astronomy

    Science.gov (United States)

    Zhang, William W.; Biskach, Michael P.; Chan, Kai-Wing; Mazzarella, James R.; McClelland, Ryan S.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.

    2016-01-01

    We describe an approach to building mirror assemblies for next generation X-ray telescopes. It incorporates knowledge and lessons learned from building existing telescopes, including Chandra, XMM-Newton, Suzaku, and NuSTAR, as well as from our direct experience of the last 15 years developing mirror technology for the Constellation-X and International X-ray Observatory mission concepts. This approach combines single crystal silicon and precision polishing, thus has the potential of achieving the highest possible angular resolution with the least possible mass. Moreover, it is simple, consisting of several technical elements that can be developed independently in parallel. Lastly, it is highly amenable to mass production, therefore enabling the making of telescopes of very large photon collecting areas.

  11. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  12. Review - X-ray diffraction measurements in high magnetic fields and at high temperatures

    Directory of Open Access Journals (Sweden)

    Yoshifuru Mitsui, Keiichi Koyama and Kazuo Watanabe

    2009-01-01

    Full Text Available A system was developed measuring x-ray powder diffraction in high magnetic fields up to 5 T and at temperatures from 283 to 473 K. The stability of the temperature is within 1 K over 6 h. In order to examine the ability of the system, the high-field x-ray diffraction measurements were carried out for Si and a Ni-based ferromagnetic shape-memory alloy. The results show that the x-ray powder diffraction measurements in high magnetic fields and at high temperatures are useful for materials research.

  13. High-contrast x-ray microtomography in dental research

    Science.gov (United States)

    Davis, Graham; Mills, David

    2017-09-01

    X-ray microtomography (XMT) is a well-established technique in dental research. The technique has been used extensively to explore the complex morphology of the root canal system, and to qualitatively and quantitatively evaluate root canal instrumentation and filling efficacy in extracted teeth; enabling different techniques to be compared. Densitometric information can be used to identify and map demineralized tissue resulting from tooth decay (caries) and, in extracted teeth, the method can be used to evaluate different methods of excavation. More recently, high contrast XMT is being used to investigate the relationship between external insults to teeth and the pulpal reaction. When such insults occur, fluid may flow through dentinal tubules as a result of cracking or porosity in enamel. Over time, there is an increase in mineralization along the paths of the tubules from the pulp to the damaged region in enamel and this can be visualized using high contrast XMT. The scanner used for this employs time-delay integration to minimize the effects of detector inhomogeneity in order to greatly increase the upper limit on signal-to-noise ratio that can be achieved with long exposure times. When enamel cracks are present in extracted teeth, the presence of these pathways indicates that the cracking occurred prior to extraction. At high contrast, growth lines are occasionally seen in deciduous teeth which may have resulted from periods of maternal illness. Various other anomalies in mineralization resulting from trauma or genetic abnormalities can also be investigated using this technique.

  14. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X-ray

  15. High-throughput screening with micro-x-ray fluorescence

    International Nuclear Information System (INIS)

    Havrilla, George J.; Miller, Thomasin C.

    2005-01-01

    Micro-x-ray fluorescence (MXRF) is a useful characterization tool for high-throughput screening of combinatorial libraries. Due to the increasing threat of use of chemical warfare (CW) agents both in military actions and against civilians by terrorist extremists, there is a strong push to improve existing methods and develop means for the detection of a broad spectrum of CW agents in a minimal amount of time to increase national security. This paper describes a combinatorial high-throughput screening technique for CW receptor discovery to aid in sensor development. MXRF can screen materials for elemental composition at the mesoscale level (tens to hundreds of micrometers). The key aspect of this work is the use of commercial MXRF instrumentation coupled with the inherent heteroatom elements within the target molecules of the combinatorial reaction to provide rapid and specific identification of lead species. The method is demonstrated by screening an 11-mer oligopeptide library for selective binding of the degradation products of the nerve agent VX. The identified oligopeptides can be used as selective molecular receptors for sensor development. The MXRF screening method is nondestructive, requires minimal sample preparation or special tags for analysis, and the screening time depends on the desired sensitivity

  16. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  17. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    Science.gov (United States)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  18. The quality of high-energy X-ray beams

    International Nuclear Information System (INIS)

    LaRiviere, P.D.

    1989-01-01

    Supplement 17 of the British Journal of Radiology is a survey of central-axis depth doses for radiotherapy machines, patterned largely on BJR Supplement 11 (1972). Inspection of high-energy X-ray depth doses for a 10 x 10 cm field at an SSD of 100 cm disclosed large differences between the two sets of data, especially for qualities above 8 MV, e.g. a depth dose of 80% at 10 cm is rated at about 19 MV according to BJR Supplement 11, and 23 MV according to BJR Supplement 17. It was found that Supplement 17 depth-dose data above 8 MV were erratic, but Supplement 11 data could be represented by an analytical expression, providing a unique means of assigning MV quality. It was also found that dose-weighted average energy of the filtered beam plotted smoothly against depth dose. For dosimetric purposes, it is suggested that this parameter be used as a true measure of beam quality, removing discrepancies introduced by the use of nominal MV for this purpose. (author)

  19. Ultra-luminous X-ray sources and intermediate-mass black holes

    International Nuclear Information System (INIS)

    Cseh, David

    2012-01-01

    More than ten years ago, the discovery of Ultra-luminous X-ray sources (ULXs) has opened up an entirely new field in astrophysics. Many ideas were developed to explain the nature of these sources, like their emission mechanism, mass, and origin, without any strong conclusions. Their discovery boosted the fields of X-ray binaries, accretion physics, stellar evolution, cosmology, black hole formation and growth, due to the concept of intermediate-mass black holes (IMBHs). Since their discovery is related to the domain of X-ray astrophysics, there have been very few studies made in other wavelengths. This thesis focuses on the multiwavelength nature of Ultra-luminous X-ray sources and intermediate-mass black holes from various aspects, which help to overcome some difficulties we face today. First, I investigated the accretion signatures of a putative intermediate-mass black hole in a particular globular cluster. To this purpose, I characterized the nature of the innermost X-ray sources in the cluster. Then I calculated an upper limit on the mass of the black hole by studying possible accretion efficiencies and rates based on the dedicated X-ray and radio observations. The accreting properties of the source was described with standard spherical accretion and in the context of inefficient accretion. Secondly, I attempted to dynamically measure the mass of the black hole in a particular ULX via optical spectroscopy. I discovered that a certain emission line has a broad component that markedly shifts in wavelength. I investigated the possibility whether this line originates in the accretion disk, and thus might trace the orbital motion of the binary system. I also characterized the parameters of the binary system, such as the mass function, possible orbital separation, the size of the line-emitting region, and an upper limit on the mass of the black hole. Then I studied the environment of a number of ULXs that are associated with large-scale optical and radio nebulae. I

  20. Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target.

    Science.gov (United States)

    Yu, Tong-Pu; Pukhov, Alexander; Sheng, Zheng-Ming; Liu, Feng; Shvets, Gennady

    2013-01-25

    By using multidimensional particle-in-cell simulations, we study the electromagnetic emission from radiation pressure acceleration of ultrathin mass-limited foils. When a circularly polarized laser pulse irradiates the foil, the laser radiation pressure pushes the foil forward as a whole. The outer wings of the pulse continue to propagate and act as a natural undulator. Electrons move together with ions longitudinally but oscillate around the latter transversely, forming a self-organized helical electron bunch. When the electron oscillation frequency coincides with the laser frequency as witnessed by the electron, betatronlike resonance occurs. The emitted x rays by the resonant electrons have high brightness, short durations, and broad band ranges which may have diverse applications.

  1. Next Generation Astronomical X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    Science.gov (United States)

    Zhang. W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; hide

    2012-01-01

    X-ray astronomy depends on the availability of telescopes with high resolution and large photon collecting areas. Since x-ray observation can only be carried out above the atmosphere, these telescopes must be necessarily lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further require that x-ray mirrors must also be geometrically thin to achieve high packing efficiency. This double lightweight and geometrically thin requirement poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy and status of our x-ray optics development program whose objective is to meet these technical challenges at modest cost to enable future x-ray missions, including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.

  2. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions

    International Nuclear Information System (INIS)

    Martino, Trassinelli

    2005-12-01

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m(π - ) = (139.571042 ± 0.000210 ± 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV

  3. Soft-X-Ray Projection Lithography Using a High-Repetition-Rate Laser-Induced X-Ray Source for Sub-100 Nanometer Lithography Processes

    NARCIS (Netherlands)

    E. Louis,; F. Bijkerk,; Shmaenok, L.; Voorma, H. J.; van der Wiel, M. J.; Schlatmann, R.; Verhoeven, J.; van der Drift, E. W. J. M.; Romijn, J.; Rousseeuw, B. A. C.; Voss, F.; Desor, R.; Nikolaus, B.

    1993-01-01

    In this paper we present the status of a joint development programme on soft x-ray projection lithography (SXPL) integrating work on high brightness laser plasma sources. fabrication of multilayer x-ray mirrors. and patterning of reflection masks. We are in the process of optimization of a

  4. The SWARF high energy flash X-ray facility

    International Nuclear Information System (INIS)

    Gilbert, J.F.; Dove, E.W.D.

    1976-06-01

    A description is presented of the SWARF flash radiography facility at AWRE Foulness, which is stated to be the most powerful flash x-ray system available, in the U.K. The machine consists essentially of a Marx generator, a coaxial Blumlein system and an x-ray tube. The voltage output from the Marx generator (about 2.5 MV from an 80 kV input) is applied to a large re-entrant Blumlein pulse-forming line. Near maximum voltage, an adjustable oil switch short-circuits one end of the Blumlein generator and so applies a square voltage pulse of 65 ns duration to the x-ray tube. The x-rays are produced from a tantalum target which forms the anode of a vacuum field emission diode. The facility consists of two field machines positioned so that radiographs can be obtained from different angles. The description is given under the following heads: modus operandi; constructional details; oil installation; electrical details; commissioning, calibration and electrical data; flash radiography in explosives research; operational control of facility, film packs; radiographic results; further developments; overall performance. (U.K.)

  5. High energy X ray tomography. Development of an industrial

    International Nuclear Information System (INIS)

    Huet, J.; Thomas, G.

    1985-01-01

    From its own experience in nondestructive testing and needs of industry, a versatile 420 kV X-ray tomodensitometer was designed by the CEA to study materials an structures. This project and results obtained with a laboratory prototype are presented [fr

  6. High performance X-ray and neutron microfocusing optics

    International Nuclear Information System (INIS)

    Gregory Hirsch

    2000-01-01

    The use of extremely small diameter x-ray beams at synchrotron radiation facilities has become an important experimental technique for investigators in many other scientific disciplines. While there have been several different optical elements developed for producing such microbeams, this SBIR project was concerned with one particular device: the tapered-monocapillary optic

  7. Deposition and characterization of multilayers on thin foil x-ray mirrors for high-throughput x-ray telescopes

    DEFF Research Database (Denmark)

    Hussain, Ahsen M.; Joensen, Karsten D.; Hoeghoej, P.

    1996-01-01

    W/Si and Co/C multilayers have been deposited on epoxy- replicated Au mirrors from the ASTRO-E telescope project, SPectrum Roentgen Gamma (SRG) flight mirrors, DURAN glass substrates and Si witness wafers. A characterization of the multilayers with both hard x-rays and soft x-rays is presented....... This clearly indicates the effectiveness of the epoxy-replication process for the production of smooth substrates for multilayer deposition to be used in future x-ray telescopes....

  8. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States)], E-mail: Friedrich1@llnl.gov; Drury, O.B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States); George, S.J. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Cramer, S.P. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States)

    2007-11-11

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of {approx}10-20 eV FWHM below 1 keV, a solid angle coverage of {approx}10{sup -3}, and can be operated at total rates of up to {approx}10{sup 6} counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  9. Measurement of X-ray mass attenuation coefficient of nickel around the K-edge using synchrotron radiation based X-ray absorption study

    International Nuclear Information System (INIS)

    Roy, Bunty Rani; Rajput, Parasmani; Jha, S.N.; Nageswara Rao, A.S.

    2015-01-01

    The work presents the X-ray absorption fine structure (XAFS) technique for measuring the X-ray mass attenuation coefficient of nickel metal foil in the X-ray energy range of 8271.2–8849.4 eV using scanning XAFS beam line (BL-09) at Indus-2 synchrotron radiation source facility, Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore, India. The result represents the X-ray mass attenuation coefficient data for 0.02 mm thick Ni metal foil in the XAFS region of Ni K-edge. However, the results are compared to theoretical values using X-COM. There is a maximum deviation which is found exactly near the K-edge jump and decreases as we move away from the absorption edge. Oscillatory structure appears just above the observed absorption edge i.e., 8348.7 eV and is confined to around 250 eV above the edge. - Highlights: • Mass attenuation coefficient measurements of nickel using synchrotron radiation. • The measurements were taken exactly near the Ni K-edge at an energy step of 1 eV. • A maximum deviation is found near the K-edge

  10. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  11. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  12. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  13. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    Science.gov (United States)

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  14. A versatile, highly-efficient, high-resolution von Hamos Bragg crystal x-ray spectrometer

    International Nuclear Information System (INIS)

    Vane, C.R.; Smith, M.S.; Raman, S.

    1988-01-01

    An efficient, high-resolution, vertical-focusing, Bragg crystal x-ray spectrometer has been specifically designed and constructed for use in measurements of x rays produced in collisions of energetic heavy ions. In this report the design and resulting operational characteristics of the final instrument are fully described. A wide variety of sample data is also included to illustrate the utility of this device in several areas of research. 14 refs., 38 figs

  15. Superiority of Low Energy 160 KV X-Rays Compared to High Energy 6 MV X-Rays in Heavy Element Radiosensitization for Cancer Treatment

    Science.gov (United States)

    Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.; Barth, Rolf F.; Yang, Weilian; Nakkula, Robin J.; Palmer, Alycia; Turro, Claudia

    2013-06-01

    High energy X-rays in the MeV range are generally employed in conventional radiation therapy from linear accelerators (LINAC) to ensure sufficient penetration depths. However, lower energy X-rays in the keV range may be more effective when coupled with heavy element (high-Z or HZ) radiosensitizers. Numerical simulations of X-ray energy deposition for tumor phantoms sensitized with HZ radiosensitizers were performed using the Monte Carlo code Geant4. The results showed enhancement in energy deposition to radiosensitized phantoms relative to unsensitized phantoms for low energy X-rays in the keV range. In contrast, minimal enhancement was seen using high energy X-rays in the MeV range. Dose enhancement factors (DEFs) were computed and showed radiosensitization only in the low energy range nitrate, was initially used because it was 7x less toxic that an equivalent amount of carboplatin in vitro studies. This would allow us to separate the radiotoxic and the chemotoxic effects of HZ sensitizers. Results from this study showed a 10-fold dose dependent reduction in surviving fractions (SF) of radiosensitized cells treated with low energy 160 kV X-rays compared to those treated with 6 MV X-rays. This is in agreement with our simulations that show an increase in dose deposition in radiosensitized tumors for low energy X-rays. Due to unforeen in vivo toxicity, however, another in vitro study was performed using the commonly used, Pt-based chemotherapeutic drug carboplatin which confirmed earlier results. This lays the ground work for a planned in vivo study using F98 glioma bearing rats. This study demonstrates that while high energy X-rays are commonly used in cancer radiotherapy, low energy keV X-rays might be much more effective with HZ radiosensitization.

  16. Stellar-mass black holes and ultraluminous x-ray sources.

    Science.gov (United States)

    Fender, Rob; Belloni, Tomaso

    2012-08-03

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  17. Fabrication of High Resolution Lightweight X-ray Mirrors Using Mono-crystalline Silicon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "Three factors characterize an X-ray optics fabrication technology: angular resolution, effective area per unit mass, and production cost per unit effective...

  18. Towards phasing using high X-ray intensity

    Directory of Open Access Journals (Sweden)

    Lorenzo Galli

    2015-11-01

    Full Text Available X-ray free-electron lasers (XFELs show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. A pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  19. High speed hydraulic scanner for deep x-ray lithography

    International Nuclear Information System (INIS)

    Milne, J.C.; Johnson, E.D.

    1997-07-01

    From their research and development in hard x-ray lithography, the authors have found that the conventional leadscrew driven scanner stages do not provide adequate scan speed or travel. These considerations have led the authors to develop a scanning system based on a long stroke hydraulic drive with 635 mm of travel and closed loop feedback to position the stage to better than 100 micrometers. The control of the device is through a PC with a custom LabView interface coupled to simple x-ray beam diagnostics. This configuration allows one to set a variety of scan parameters, including target dose, scan range, scan rates, and dose rate. Results from the prototype system at beamline X-27B are described as well as progress on a production version for the X-14B beamline

  20. High speed hydraulic scanner for deep x-ray lithography

    Energy Technology Data Exchange (ETDEWEB)

    Milne, J.C.; Johnson, E.D.

    1997-07-01

    From their research and development in hard x-ray lithography, the authors have found that the conventional leadscrew driven scanner stages do not provide adequate scan speed or travel. These considerations have led the authors to develop a scanning system based on a long stroke hydraulic drive with 635 mm of travel and closed loop feedback to position the stage to better than 100 micrometers. The control of the device is through a PC with a custom LabView interface coupled to simple x-ray beam diagnostics. This configuration allows one to set a variety of scan parameters, including target dose, scan range, scan rates, and dose rate. Results from the prototype system at beamline X-27B are described as well as progress on a production version for the X-14B beamline.

  1. High resolution X-ray spectroscopy from the Einstein Observatory

    International Nuclear Information System (INIS)

    Winkler, P.F.; Canizares, C.R.; Clark, G.W.; Markert, T.H.; Berg, C.; Jernigan, J.G.; Schattenberg, M.L.; Massachusetts Inst. of Tech., Cambridge

    1980-01-01

    This paper is devoted to a discussion of some results which we have recently obtained from the fourth of the principal intruments on board the Einstein Observatory: M.I.T.'s Focal Plane Crystal Spectrometer (FPCS). We shall begin whith a few general remarks about X-ray spectroscopy, followed by a brief description of the FPCS instrument. The results we present here deal primarily with supernova remnants (SNRs): Puppis A and Cas A in the Galaxy, and N132D and N63A in the Large Magellanic Cloud. In addition we shall briefly discuss a member of the other class of thermal X-ray source under discussion at present; namely, to report our detection of oxygen emission from the vicinity of M87 in the Virgo Cluster. (orig.)

  2. Towards phasing using high X-ray intensity

    International Nuclear Information System (INIS)

    Galli, Lorenzo; Son, Sang-Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sebastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-01-01

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential 'bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed

  3. High energy X-ray observation of Cyg X-3

    International Nuclear Information System (INIS)

    Kendziorra, E.; Pietsch, W.; Staubert, R.; Truemper, J.

    1975-01-01

    On Feb. 20, 1975 Cyg X-3 was observed in the energy range of 29-70 keV during a 5 hour observation of the Cyg region. An intensity variation consistent with a 4.8 h sinusoidal modulation has been found, in phase with low energy X-ray observations and with a relative amplitude of 0.37 +- 0.19. (orig.) [de

  4. High quality multilayer mirrors for soft X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Grimmer, H.; Boeni, P.; Breitmeier, U.; Clemens, D.; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Mertins, H.C.; Schaefers, F. [BESSY, Berlin (Germany)

    1997-09-01

    In an effort to develop optical components for X-rays with wavelengths in the water window (2.3 -4.4 nm) multilayer structures have been designed for the following applications: in transmission as phase shifters to change linear into circular polarization, in reflection as mirrors close to normal incidence and as linear polarizers at an angle of incidence of 45{sup o}. (author) 1 fig., 1 tab., 1 ref.

  5. High Resolution Adjustable Mirror Control for X-ray Astronomy

    Science.gov (United States)

    Trolier-McKinstry, Susan

    We propose to build and test thin film transistor control circuitry for a new highresolution adjustable X-ray mirror technology. This control circuitry will greatly simplify the wiring scheme to address individual actuator cells. The result will be a transformative improvement for the X-ray Surveyor mission concept: mathematical models, which fit the experimental data quite well, indicate that 0.5 arcsecond imaging is feasible through this technique utilizing thin slumped glass substrates with uncorrected angular resolution of order 5-10 arcseconds. In order to correct for figures errors in a telescope with several square meters of collecting area, millions of actuator cells must be set and held at specific voltages. It is clearly not feasible to do this via millions of wires, each one connected to an actuator. Instead, we propose to develop and test thin-film technology that operates on the same principle as megapixel computer screens. We will develop the technologies needed to build thin film piezoelectric actuators, controlled by thin film ZnO transistors, on flexible polyimide films, and to connect those films to the back surfaces of X-ray mirrors on thin glass substrates without deforming the surface. These technologies represent a promising avenue of the development of mirrors for the X-Ray Surveyor mission concept. Such a telescope will make possible detailed studies of a wide variety of astrophysical sources. One example is the Warm-Hot Intergalactic Medium (WHIM), which is thought to account for a large fraction of the normal matter in the universe but which has not been detected unambiguously to date. Another is the growth of supermassive black holes in the early universe. This proposal supports NASA's goals of technical advancement of technologies suitable for future missions, and training of graduate students.

  6. Soft X ray spectrometry at high count rates

    International Nuclear Information System (INIS)

    Blanc, P.; Brouquet, P.; Uhre, N.

    1978-06-01

    Two modifications of the classical method of X-ray spectrometry by a semi-conductor diode permit a count rate of 10 5 c/s with an energy resolution of 350 eV. With a specially constructed pulse height analyzer, this detector can measure four spectra of 5 ms each, in the range of 1-30 keV, during a plasma shot

  7. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Hongjun An

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers...

  8. TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, L; Tang, S [University of Oklahoma, Norman, OK (United States); Ahmad, M [Stanford University, Palo Alto, CA (United States); Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprised of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.

  9. X-ray constraints on the number of stellar mass black holes in the inner parsec

    Energy Technology Data Exchange (ETDEWEB)

    Deegan, Patrick; Nayakshin, Sergei [University of Leicester, University Road, Leicester, LEI 7RH (United Kingdom)

    2006-12-15

    Due to dynamical friction stellar mass black holes should form a cusp in the inner parsec. Calculations [5, 6] show that approximately 20 thousand black holes would be present in a sphere with radius of about a parsec around Sgr A*. The presence of these objects opens up the possibility that they might be accreting ''cool'' gas (i.e. the Minispiral) as discussed by Morris [6]. Here we calculate the X-ray emission expected from these black holes as a method to constrain their population. We find that the data limits the total number of such black holes to around 10 - 20 thousand. Even a much smaller number of such black holes, i.e. 5 thousand, is sufficient to produce several sources with X-ray luminosity above L{sub x} {approx} 10{sup 33} erg s{sup -1} at any one time. We suggest that some of the discrete X-ray sources observed by Muno [7] with Chandra in the inner parsec may be such ''fake X-ray binaries''.

  10. X-ray constraints on the number of stellar mass black holes in the inner parsec

    Science.gov (United States)

    Deegan, Patrick; Nayakshin, Sergei

    2006-12-01

    Due to dynamical friction stellar mass black holes should form a cusp in the inner parsec. Calculations [5, 6] show that approximately 20 thousand black holes would be present in a sphere with radius of about a parsec around Sgr A*. The presence of these objects opens up the possibility that they might be accreting ''cool'' gas (i.e. the Minispiral) as discussed by Morris [6]. Here we calculate the X-ray emission expected from these black holes as a method to constrain their population. We find that the data limits the total number of such black holes to around 10 - 20 thousand. Even a much smaller number of such black holes, i.e. 5 thousand, is sufficient to produce several sources with X-ray luminosity above Lx ~ 1033 erg s-1 at any one time. We suggest that some of the discrete X-ray sources observed by Muno [7] with Chandra in the inner parsec may be such ''fake X-ray binaries''.

  11. X-ray constraints on the number of stellar mass black holes in the inner parsec

    International Nuclear Information System (INIS)

    Deegan, Patrick; Nayakshin, Sergei

    2006-01-01

    Due to dynamical friction stellar mass black holes should form a cusp in the inner parsec. Calculations [5, 6] show that approximately 20 thousand black holes would be present in a sphere with radius of about a parsec around Sgr A*. The presence of these objects opens up the possibility that they might be accreting ''cool'' gas (i.e. the Minispiral) as discussed by Morris [6]. Here we calculate the X-ray emission expected from these black holes as a method to constrain their population. We find that the data limits the total number of such black holes to around 10 - 20 thousand. Even a much smaller number of such black holes, i.e. 5 thousand, is sufficient to produce several sources with X-ray luminosity above L x ∼ 10 33 erg s -1 at any one time. We suggest that some of the discrete X-ray sources observed by Muno [7] with Chandra in the inner parsec may be such ''fake X-ray binaries''

  12. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hao, E-mail: hc000211@ohio.edu [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kersell, Heath; Hla, Saw-Wai [Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rose, Volker, E-mail: vrose@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2016-01-28

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  13. High power X-ray welding of metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1997-12-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10{sup 4} watts/cm{sup 2} and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  14. A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster

    Science.gov (United States)

    Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Page, Dany; Romanowsky, Aaron J.; Homan, Jeroen; Irwin, Jimmy A.; Remillard, Ronald A.; Godet, Olivier; Webb, Natalie A.; Baumgardt, Holger; Wijnands, Rudy; Barret, Didier; Duc, Pierre-Alain; Brodie, Jean P.; Gwyn, Stephen D. J.

    2018-06-01

    A unique signature for the presence of massive black holes in very dense stellar regions is occasional giant-amplitude outbursts of multi-wavelength radiation from tidal disruption and subsequent accretion of stars that make a close approach to the black holes1. Previous strong tidal disruption event (TDE) candidates were all associated with the centres of largely isolated galaxies2-6. Here, we report the discovery of a luminous X-ray outburst from a massive star cluster at a projected distance of 12.5 kpc from the centre of a large lenticular galaxy. The luminosity peaked at 1043 erg s-1 and decayed systematically over 10 years, approximately following a trend that supports the identification of the event as a TDE. The X-ray spectra were all very soft, with emission confined to be ≲3.0 keV, and could be described with a standard thermal disk. The disk cooled significantly as the luminosity decreased—a key thermal-state signature often observed in accreting stellar-mass black holes. This thermal-state signature, coupled with very high luminosities, ultrasoft X-ray spectra and the characteristic power-law evolution of the light curve, provides strong evidence that the source contains an intermediate-mass black hole with a mass tens of thousand times that of the solar mass. This event demonstrates that one of the most effective means of detecting intermediate-mass black holes is through X-ray flares from TDEs in star clusters.

  15. Measurements of Cyclotron Features and Pulse Periods in the High-Mass X-Ray Binaries 4U 1538-522 and 4U 1907+09 with the International Gamma-Ray Astrophysics Laboratory

    Science.gov (United States)

    Hemphill, Paul B.; Rothschild, Richard E.; Caballero, Isabel; Pottschmidt, Katja; Kuhnel, Matthias; Furst, Felix; Wilms, Jorn

    2013-01-01

    We present a spectral and timing analysis of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of two high-mass X-ray binaries, 4U 1538-522 and 4U 1907+09. Our timing measurements for 4U 1538-522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently measured period of 525.407 plus or minus 0.001 seconds. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared with 4U 1538-522. A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at approximately 22 and approximately 49 kiloelectronvolts for 4U 1538-522 and at approximately 18 and approximately 36 kiloelectronvolts for 4U 1907+09. The spectral parameters of 4U 1538-522 are generally not found to vary significantly with flux and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538-522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest luminosity, cyclotron line source to exhibit this relationship.

  16. Resolution of a protein sequence ambiguity by X-ray crystallographic and mass spectrometric methods

    International Nuclear Information System (INIS)

    Keefe, L.J.; Lattman, E.E.; Wolkow, C.; Woods, A.; Chevrier, M.; Cotter, R.J.

    1992-01-01

    Ambiguities in amino acid sequences are a potential problem in X-ray crystallographic studies of proteins. Amino acid side chains often cannot be reliably identified from the electron density. Many protein crystal structures that are now being solved are simple variants of a known wild-type structure. Thus, cloning artifacts or other untoward events can readily lead to cases in which the proposed sequence is not correct. An example is presented showing that mass spectrometry provides an excellent tool for analyzing suspected errors. The X-ray crystal structure of an insertion mutant of Staphylococcal nuclease has been solved to 1.67 A resolution and refined to a crystallographic R value of 0.170. A single residue has been inserted in the C-terminal α helix. The inserted amino acid was believed to be an alanine residue, but the final electron density maps strongly indicated that a glycine had been inserted instead. To confirm the observations from the X-ray data, matrix-assisted laser desorption mass spectrometry was employed to verify the glycine insertion. This mass spectrometric technique has sufficient mass accuracy to detect the methyl group that distinguishes glycine from alanine and can be extended to the more common situation in which crystallographic measurements suggest a problem with the sequence, but cannot pinpoint its location or nature. (orig.)

  17. Resolution of a protein sequence ambiguity by X-ray crystallographic and mass spectrometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, L.J.; Lattman, E.E. (Dept. of Biophysics and Biophysical Chemistry, Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)); Wolkow, C.; Woods, A.; Chevrier, M.; Cotter, R.J. (Middle Atlantic Mass Spectrometry Lab., Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1992-04-01

    Ambiguities in amino acid sequences are a potential problem in X-ray crystallographic studies of proteins. Amino acid side chains often cannot be reliably identified from the electron density. Many protein crystal structures that are now being solved are simple variants of a known wild-type structure. Thus, cloning artifacts or other untoward events can readily lead to cases in which the proposed sequence is not correct. An example is presented showing that mass spectrometry provides an excellent tool for analyzing suspected errors. The X-ray crystal structure of an insertion mutant of Staphylococcal nuclease has been solved to 1.67 A resolution and refined to a crystallographic R value of 0.170. A single residue has been inserted in the C-terminal {alpha} helix. The inserted amino acid was believed to be an alanine residue, but the final electron density maps strongly indicated that a glycine had been inserted instead. To confirm the observations from the X-ray data, matrix-assisted laser desorption mass spectrometry was employed to verify the glycine insertion. This mass spectrometric technique has sufficient mass accuracy to detect the methyl group that distinguishes glycine from alanine and can be extended to the more common situation in which crystallographic measurements suggest a problem with the sequence, but cannot pinpoint its location or nature. (orig.).

  18. X-ray chest mass screening for pulmonary tuberculosis in Friuli Venezia Giulia region, Italy

    International Nuclear Information System (INIS)

    Barbina, V.; Contento, G.; Padovani, R.; Pitzalis, G.; Nigris, C.

    1987-01-01

    Since 1980, the law which instituted the National Health Service (NHS) in Italy, attributing both the organization and the administration of all public health services to local government bodies referred to as 'Regioni', is being gradually enforced. One result is that the mass screening services are now set up on local basis, involving important practice and regulatory changes. These in particular concern chest X-ray mass screening centers, which were formerly organized as Provincial Antituberculosis Services, supervised by the Ministry of Health and dealing almost exclusively with pulmonary tuberculosis (PTB). Today, chest X-ray mass screening is carried on the 'Centri Sociali di Pneumologia', which in some case inherited the staff and diagnostic facilities of Provincial Antituberculosis Services, but are directed by the Councillorship of Health of the 'Regioni' and, in most cases, deal with the diagnosis and care of general pulmonary diseases. Therefore, regulations and practices of mass screening are eventually different in most Italian 'Regioni', depending on different economic and social situations. In this connection, this paper reports up-to-date information and data on frequency, effectiveness, cost and radiation risks of chest X-ray screening in the 'Regione Autonoma Friuli Venezia Giulia' (FVG), North-East Italy, population 1,300,000

  19. Possible mechanism for mass transfer in X-ray binary systems with OB supergiant companions

    International Nuclear Information System (INIS)

    Alme, M.L.; Wilson, J.R.

    1976-01-01

    We have studied the ''beginning Roche lobe overflow'' phase of mass transfer. We find that before the primary fills its Roche lobe, radiation-driven density waves generated in the atmosphere produce a sufficient mass outflow rate to power a compact X-ray source. In particular, for a model of Cygnus X-1, if the radius of the photosphere is between 82 and 86 percent of the radius of the Roche equipotential, large-amplitude density waves with irregular periods of a few days are observed. These density waves, which are generated by radiation pressure effects, pass through the inner Lagrangian point with velocities approx.100 km s -1 , and can easily provide sufficient material to power the compact X-ray source

  20. Measurement of Heart size by mass chest X-ray in Medical students

    Energy Technology Data Exchange (ETDEWEB)

    Wai, Khin San; Mon, Khin Aye [Department of Physiology, Institute of Medicine, Mandalay (Myanmar)

    1971-07-01

    Mass miniature P-A view chest X-ray films of 83 students were taken at the TB clinic and were used for measuring the heart size. Measurements taken on 70 mm film were changed to the equivalent values for standard 6 foot chest films, by multiplying with a factor 5.23 which is the ratio between 70 mm mass miniature X-ray film and 6 foot chest film. Frontal cardiac area was also calculated. The mean heart diameters and frontal cardiac area for 54 male students were transverse diameter-11.30 cm, length-11.98 cm, breadth-10.32 cm, frontal area-106.50 sq cm and aortic diameter-5.31 cm. Those for 28 female students were:transverse diameter-10.27 cm, length-11.56, breadth-9.45 cm, frontal area-88.70 sq cm and aortic diameter-4.75 cm.

  1. Measurement of Heart size by mass chest X-ray in Medical students

    International Nuclear Information System (INIS)

    Khin San Wai; Khin Aye Mon

    1971-01-01

    Mass miniature P-A view chest X-ray films of 83 students were taken at the TB clinic and were used for measuring the heart size. Measurements taken on 70 mm film were changed to the equivalent values for standard 6 foot chest films, by multiplying with a factor 5.23 which is the ratio between 70 mm mass miniature X-ray film and 6 foot chest film. Frontal cardiac area was also calculated. The mean heart diameters and frontal cardiac area for 54 male students were transverse diameter-11.30 cm, length-11.98 cm, breadth-10.32 cm, frontal area-106.50 sq cm and aortic diameter-5.31 cm. Those for 28 female students were:transverse diameter-10.27 cm, length-11.56, breadth-9.45 cm, frontal area-88.70 sq cm and aortic diameter-4.75 cm

  2. Penumbral measurements in water for high-energy x rays

    International Nuclear Information System (INIS)

    Dawson, D.J.; Schroeder, N.J.; Hoya, J.D.

    1986-01-01

    Ionization chambers of varying inside diameter have been used to investigate the penumbral region of 60 Co, 6-MV, and 31-MV x-ray beams. Measurements were made in water at varying depths up to 25 cm for a square field of side length 10 cm. The dependence of the penumbral widths on both the inside diameter of the ionization chamber and the depth in water is established along with the asymmetry of the penumbral distributions about the 50% level. A standard correction is indicated to eliminate the dependence of the measured penumbral widths on the inside diameter of the ionization chamber

  3. Scintillator Evaluation for High-Energy X-Ray Diagnostics

    International Nuclear Information System (INIS)

    Lutz, S. S.; Baker, S. A.

    2001-01-01

    This report presents results derived from a digital radiography study performed using x-rays from a 2.3 MeV, rod-pinch diode. Detailed is a parameter study of cerium-doped lutetium ortho-silicate (LSO) scintillator thickness, as it relates to system resolution and detection quantum efficiency (DQE). Additionally, the detection statistics of LSO were compared with that of CsI(Tl). As a result of this study we found the LSO scintillator with a thickness of 3 mm to yield the highest system DQE over the range of spatial frequencies from 0.75 to 2.5 mm -1

  4. X-ray fluorescence in Member States (Italy): Full field X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F. P.; Masini, N.; Pappalardo, L., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Cosentino, L.; Gammino, S.; Mascali, D.; Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy)

    2014-02-15

    A full field X-ray camera for the X-Ray Fluorescence imaging of materials with high-energy and high-spatial resolution was designed and developed. The system was realized by coupling a pinhole collimator with a positionsensitive CCD detector. X-Ray fluorescence is induced on the samples by irradiation with an external X-ray tube. The characteristic X-ray spectra of the investigated materials are obtained by using a multi-frames acquisition in single-photon counting. The energy resolution measured at the Fe-Kα line was 157 eV. The spatial resolution of the system was determined by the analysis of a sharp-edge at different magnification values; it was estimated to be 90 μm at a magnification value of 3.2x and 190 μm at 0.8x. The present set-up of the system is suited to analyze samples with dimensions up to 5x4 cm{sup 2}. Typical measurement time is in the range between 1h to 4 h. (author)

  5. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    International Nuclear Information System (INIS)

    Havrilla, George J.; Gao, Ning

    2002-01-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites

  6. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    Science.gov (United States)

    Kroon, John J.

    2016-03-01

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  7. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  8. Mass thickness measurement of dual-sample by dual-energy X-rays

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    X-ray equivalent energy can be used to measure mass thicknesses of materials. Based on this, a method of mass thickness measurement of dual-sample was discussed. It was found that in the range of sample mass thickness under investigation, the equivalent mass attenuation coefficient of a component could be used to compute mass thicknesses of a dual-sample, with relative errors of less than 5%. Mass thickness measurement of a fish sample was performed, and the fish bone and flesh could be displayed separately and clearly by their own mass thicknesses. This indicates that the method is effective in mass thickness measurement of dual-sample of suitable thicknesses. (authors)

  9. Trial fabrication of a secondary x-ray spectrometer with high energy resolution for use in x-ray resonant inelastic scattering experiments

    International Nuclear Information System (INIS)

    Iwazumi, Toshiaki

    2004-01-01

    An instrument was fabricated for use of x-ray resonant inelastic scattering with high-energy resolution in expectation of finding new physical phenomena in strongly correlated electron systems. In the scattering x-ray spectrometer, an asymmetric Johanson crystal spectrometer, which was deployed in an asymmetric Rowland configuration, was designed, fabricated and assessed. The performance expected theoretically for the Johanson spectrometer was recognized from experiments by use of synchrotron radiation. (Y. Kazumata)

  10. High resolution, monochromatic x-ray topography capability at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z. [CHESS, Cornell University, Ithaca, NY (United States); Jones, R. [Department of Physics, University of Connecticut, Storrs, CT (United States); Tarun, A.; Misra, D. S. [IIa Technologies (Singapore); Jupitz, S. [St. Mary’s College of Maryland, St. Mary’s City, MD (United States); Sagan, D. C. [CLASSE, Cornell University, Ithaca, NY (United States)

    2016-07-27

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  11. High resolution, monochromatic x-ray topography capability at CHESS

    International Nuclear Information System (INIS)

    Finkelstein, K. D.; Pauling, A.; Brown, Z.; Jones, R.; Tarun, A.; Misra, D. S.; Jupitz, S.; Sagan, D. C.

    2016-01-01

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  12. Applying a physical continuum model to describe the broadband X-ray spectra of accreting pulsars at high luminosity

    Science.gov (United States)

    Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern

    2018-01-01

    A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.

  13. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    Science.gov (United States)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  14. Combined X-ray CT and mass spectrometry for biomedical imaging applications

    Science.gov (United States)

    Schioppa, E., Jr.; Ellis, S.; Bruinen, A. L.; Visser, J.; Heeren, R. M. A.; Uher, J.; Koffeman, E.

    2014-04-01

    Imaging technologies play a key role in many branches of science, especially in biology and medicine. They provide an invaluable insight into both internal structure and processes within a broad range of samples. There are many techniques that allow one to obtain images of an object. Different techniques are based on the analysis of a particular sample property by means of a dedicated imaging system, and as such, each imaging modality provides the researcher with different information. The use of multimodal imaging (imaging with several different techniques) can provide additional and complementary information that is not possible when employing a single imaging technique alone. In this study, we present for the first time a multi-modal imaging technique where X-ray computerized tomography (CT) is combined with mass spectrometry imaging (MSI). While X-ray CT provides 3-dimensional information regarding the internal structure of the sample based on X-ray absorption coefficients, MSI of thin sections acquired from the same sample allows the spatial distribution of many elements/molecules, each distinguished by its unique mass-to-charge ratio (m/z), to be determined within a single measurement and with a spatial resolution as low as 1 μm or even less. The aim of the work is to demonstrate how molecular information from MSI can be spatially correlated with 3D structural information acquired from X-ray CT. In these experiments, frozen samples are imaged in an X-ray CT setup using Medipix based detectors equipped with a CO2 cooled sample holder. Single projections are pre-processed before tomographic reconstruction using a signal-to-thickness calibration. In the second step, the object is sliced into thin sections (circa 20 μm) that are then imaged using both matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and secondary ion (SIMS) mass spectrometry, where the spatial distribution of specific molecules within the sample is determined. The

  15. Exploratory X-ray monitoring of luminous radio-quiet quasars at high redshift: Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Shemmer, Ohad; Stein, Matthew S. [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Paolillo, Maurizio [Dipartimento di Scienze Fisiche, Università Federico II di Napoli, via Cinthia 6, I-80126 Napoli (Italy); Kaspi, Shai [School of Physics and Astronomy and the Wise Observatory, Tel Aviv University, Tel Aviv 69978 (Israel); Vignali, Cristian [Dipartimento di Astronomia, Università degli studi di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Lira, Paulina [Departamento de Astronomia, Universidad de Chile, Camino del Observatorio 1515, Santiago (Chile); Gibson, Robert R., E-mail: ohad@unt.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-03-10

    We present initial results from an exploratory X-ray monitoring project of two groups of comparably luminous radio-quiet quasars (RQQs). The first consists of four sources at 4.10 ≤ z ≤ 4.35, monitored by Chandra, and the second is a comparison sample of three sources at 1.33 ≤ z ≤ 2.74, monitored by Swift. Together with archival X-ray data, the total rest-frame temporal baseline spans ∼2-4 yr and ∼5-13 yr for the first and second group, respectively. Six of these sources show significant X-ray variability over rest-frame timescales of ∼10{sup 2}-10{sup 3} days; three of these also show significant X-ray variability on rest-frame timescales of ∼1-10 days. The X-ray variability properties of our variable sources are similar to those exhibited by nearby and far less luminous active galactic nuclei (AGNs). While we do not directly detect a trend of increasing X-ray variability with redshift, we do confirm previous reports of luminous AGNs exhibiting X-ray variability above that expected from their luminosities, based on simplistic extrapolation from lower luminosity sources. This result may be attributed to luminous sources at the highest redshifts having relatively high accretion rates. Complementary UV-optical monitoring of our sources shows that variations in their optical-X-ray spectral energy distribution are dominated by the X-ray variations. We confirm previous reports of X-ray spectral variations in one of our sources, HS 1700+6416, but do not detect such variations in any of our other sources in spite of X-ray flux variations of up to a factor of ∼4. This project is designed to provide a basic assessment of the X-ray variability properties of RQQs at the highest accessible redshifts that will serve as a benchmark for more systematic monitoring of such sources with future X-ray missions.

  16. ROSAT Energy Spectra of Low-Mass X-Ray Binaries

    Science.gov (United States)

    Schulz, N. S.

    1999-01-01

    The 0.1-2.4 keV bandpass of the ROSAT Position Sensitive Proportional Counter (PSPC) offers an opportunity to study the very soft X-ray continuum of bright low-mass X-ray binaries (LMXBs). In 46 pointed observations, 23 LMXBs were observed with count rates between 0.4 and 165.4 counts s-1. The survey identified a total of 29 different luminosity levels, which are compared with observations and identified spectral states from other missions. The atoll source 4U 1705-44 was observed near Eddington luminosities in an unusually high intensity state. Spectral analysis provided a measure of the interstellar column density for all 49 observations. The sensitivity of spectral fits depends strongly on column density. Fits to highly absorbed spectra are merely insensitive toward any particular spectral model. Sources with column densities well below 1022 cm-2 are best fitted by power laws, while the blackbody model gives clearly worse fits to the data. Most single-component fits from sources with low column densities, however, are not acceptable at all. The inclusion of a blackbody component in eight sources can improve the fits significantly. The obtained emission radii of less than 5 km suggest emission from the neutron star surface. In 10 sources acceptable fits can only be achieved by including soft-line components. With a spectral resolution of the PSPC of 320-450 eV, between 0.6 and 1.2 keV unresolved broad-line features were detected around 0.65, 0.85, and 1.0 keV. The line fluxes range within 10-11 and 10-12 ergs cm-2 s-1, with equivalent widths between 24 and 210 eV. In LMC X-2, 2S 0918-549, and 4U 1254-690, line emission is indicated for the first time. The soft emission observed in 4U 0614+091 compares with recent ASCA results, with a new feature indicated at 1.31 keV. The deduced line fluxes in 4U 1820-30 and Cyg X-2 showed variability of a factor of 2 within timescales of 1-2 days. Average fluxes of line components in 4U 1820-30 varied by the same factor over a

  17. High-energy X-ray diffraction studies of disordered materials

    International Nuclear Information System (INIS)

    Kohara, Shinji; Suzuya, Kentaro

    2003-01-01

    With the arrival of the latest generation of synchrotron sources and the introduction of advanced insertion devices (wigglers and undulators), the high-energy (E≥50 keV) X-ray diffraction technique has become feasible, leading to new approaches in the quantitative study of the structure of disordered materials. High-energy X-ray diffraction has several advantages: higher resolution in real space due to a wide range of scattering vector Q, smaller correction terms (especially the absorption correction), reduction of truncation errors, the feasibility of running under extreme environments, including high-temperatures and high-pressures, and the ability to make direct comparisons between X-ray and neutron diffraction data. Recently, high-energy X-ray diffraction data have been combined with neutron diffraction data from a pulsed source to provide more detailed and reliable structural information than that hitherto available

  18. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    International Nuclear Information System (INIS)

    Sotiropoulou, P I; Martini, N D; Koukou, V N; Nikiforidis, G C; Fountos, G P; Michail, C M; Valais, I G; Kandarakis, I S

    2015-01-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant. (paper)

  19. First results from the high-brightness x-ray spectroscopy beamline at ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Ng, W.; Jones, G. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology and x-ray optical development programs at ALS. X-ray absorption and time of flight photo emission measurements in 2 - 5 keV photon energy in argon along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  20. High-speed videography combined with an x-ray image intensifier for dynamic radiography

    International Nuclear Information System (INIS)

    Bryant, L.E. Jr.

    1983-01-01

    The Spin Physics SP-2000 high-speed video system can be combined with an x-ray source, a dynamic event having internal (not directly visible) movement and an x-ray image intensifier to perform dynamic radiography. The cesium iodide input fluor and P-20 output fluor of the image intensifier have rapid decay to allow x-ray imaging up to 12,000 pictures per second. Applications of this technique include internal functioning of a compressor, turbulent-water action, and other mechanical actions

  1. Device for high-temperature X-ray diffraction analysis. Ustrojstvo dlya vysokotemperaturnogo rentgenostrukturnogo analiza

    Energy Technology Data Exchange (ETDEWEB)

    Epifanov, V G; Zavilinskij, A V; Pet' kov, V V; Polenur, A V

    1975-01-07

    Device for high-temperature X-ray diffraction analysis, containing a vacuum chamber with a window for X-ray transit, in which sample- and standard-holders, heater, thermal shields and means for standard and sample temperature measurement are located, is proposed. In order to increase the working temperature level and the structural change detection accuracy the heater is located between the sample- and standard-holders. The standard-holder is linked with the mechanism of control of its position in relation to the heater. The device is intended for investigating phase transformations by differential thermal analysis method with the simultaneous diffraction pattern detection using X-ray diffractometry method.

  2. EVIDENCE FOR SIMULTANEOUS JETS AND DISK WINDS IN LUMINOUS LOW-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Jeroen; Neilsen, Joseph; Allen, Jessamyn L.; Chakrabarty, Deepto; Remillard, Ronald A.; Schulz, Norbert [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Fender, Rob [Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Fridriksson, Joel K., E-mail: jeroen@space.mit.edu [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2016-10-10

    Recent work on jets and disk winds in low-mass X-ray binaries (LMXBs) suggests that they are to a large extent mutually exclusive, with jets observed in spectrally hard states and disk winds observed in spectrally soft states. In this paper we use existing literature on jets and disk winds in the luminous neutron star (NS) LMXB GX 13+1, in combination with archival Rossi X-ray Timing Explorer data, to show that this source is likely able to produce jets and disk winds simultaneously. We find that jets and disk winds occur in the same location on the source’s track in its X-ray color–color diagram. A further study of literature on other luminous LMXBs reveals that this behavior is more common, with indications for simultaneous jets and disk winds in the black hole LMXBs V404 Cyg and GRS 1915+105 and the NS LMXBs Sco X-1 and Cir X-1. For the three sources for which we have the necessary spectral information, we find that simultaneous jets/winds all occur in their spectrally hardest states. Our findings indicate that in LMXBs with luminosities above a few tens of percent of the Eddington luminosity, jets and disk winds are not mutually exclusive, and the presence of disk winds does not necessarily result in jet suppression.

  3. Micro controller application as x-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    The micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive the stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-B051 compiler. The test results show that the stepper motor could rotate according to an input value. (author)

  4. A microcontroller application as X-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    A micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x-ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive a stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-8051 compiler. The test results show that the stepper motor could rotate according to an input value (author)

  5. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hormes, J. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Louisiana State University, CAMD, Baton Rouge, LA (United States); Roy, A.; Bovenkamp, G.L. [Louisiana State University, CAMD, Baton Rouge, LA (United States); Simon, K. [University of Goettingen, Geochemistry, Centre for Geosciences, Goettingen (Germany); Kim, C.Y. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Boerste, N. [Faculty for Theology Paderborn, Paderborn (Germany); Gai, S. [LWL - Archaeologie fuer Westfalen, Muenster (Germany)

    2013-04-15

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile - the most stable form of TiO{sub 2} - but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds. (orig.)

  6. Dual-energy X-ray radiography for automatic high-Z material detection

    International Nuclear Information System (INIS)

    Chen Gongyin; Bennett, Gordon; Perticone, David

    2007-01-01

    There is an urgent need for high-Z material detection in cargo. Materials with Z > 74 can indicate the presence of fissile materials or radiation shielding. Dual (high) energy X-ray material discrimination is based on the fact that different materials have different energy dependence in X-ray attenuation coefficients. This paper introduces the basic physics and analyzes the factors that affect dual-energy material discrimination performance. A detection algorithm is also discussed

  7. Apparatus with a cooled X-ray source and a high voltage generator

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    Apparatus, especially for a dental application, with an X-ray source and a high voltage generator, whereby the X-ray source and a high voltage generator are contained in a housing, which is filled with a coolant medium, characterised by the housing being divided into two chambers, whereby the X-ray source is in the first chamber and the high voltage generator is in the second chamber and between the chambers a dividing wall is placed for the screening of the X-ray irradiation from the first chamber from the second, whereby at least one of the walls of the second chamber is elastic to accommodate the expansion of the coolant medium.

  8. New tubes and techniques for flash X-ray diffraction and high contrast radiography

    International Nuclear Information System (INIS)

    Charbonnier, F.M.; Barbour, J.P.; Brewster, J.L.

    High energy electrons are particularly efficient in producing characteristic X-rays and soft polychromatic. A line of wide spectrum beryllium window flash X-ray tubes, ranging from 150 to 600kV, has been developed to exploit this property. Laue and Debye Scherrer flash X-ray diffraction patterns have been obtained using a single 30 ns pulse exposure. X-ray diffraction tests obtained are shown. Extremely high contrast flash radiography of small, low density objects has been obtained using industrial film without screen. Alternatively, particularly at high voltages and for subjects which include a broad range of materials and thicknesses, special film techniques can be used to produce extremely wide latitudes. Equipment, techniques and results are discussed

  9. High-speed X-ray phase tomography with Talbot interferometer and fringe scanning method

    International Nuclear Information System (INIS)

    Kibayashi, Shunsuke; Harasse, Sébastien; Yashiro, Wataru; Momose, Atsushi

    2012-01-01

    High-speed X-ray phase tomography based on the Fourier-transform method has been demonstrated with an X-ray Talbot interferometer using white synchrotron radiation. We report the experimental results of high-speed X-ray phase tomography with fringe-scanning method instead of Fourier-transform method to improve spatial resolution without a considerable increase of scan time. To apply fringe-scanning method to high speed tomography, we tested a scan that is a synchronous combination of one-way continuous movements of the sample rotation and the grating displacement. When this scanning method was combined with X-ray phase tomography, we were able to obtain a scan time of 5 s. A comparison of the image quality derived with the conventional approach and with the proposed approach using the fringe-scanning method showed that the latter had better spatial resolution.

  10. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  11. High-resolution measurements of x rays from ion-atom collisions

    International Nuclear Information System (INIS)

    Knudson, A.R.

    1974-01-01

    High resolution measurements of K x-ray spectra produced by ion-atom collisions at MeV energies are presented. These measurements indicate that a distribution of L-shell vacancies accompanies K-shell excitation. The variation of these spectra as a function of incident ion energy and atomic number is discussed. Difficulties in the analysis of these spectra due to rearrangement of vacancies between the time of the collision and the time of x-ray emission are considered. The use of high resolution x-ray measurements to obtain information on projectile ion vacancy configurations is demonstrated by data for Ar ions in KCl. X-ray spectra from Al projectiles in a variety of targets were measured and the effect of target composition on these spectra is discussed

  12. Experimental demonstration of high resolution three-dimensional x-ray holography

    International Nuclear Information System (INIS)

    McNulty, I.; Trebes, J.E.; Brase, J.M.; Yorkey, T.J.; Levesque, R.; Szoke, H.; Anderson, E.H.; Jacobsen, C.

    1992-01-01

    Tomographic x-ray holography may make possible the imaging of biological objects at high resolution in three dimensions. We performed a demonstration experiment with soft x-rays to explore the feasibility of this technique. Coherent 3.2-nm undulator radiation was used to record Fourier transform holograms of a microfabricated test object from various illumination angles. The holograms were numerically reconstructed according to the principles of diffraction tomography, yielding images of the object that are well resolved in three dimensions

  13. Novel X-ray imaging diagnostics of high energy nanosecond pulse accelerators

    International Nuclear Information System (INIS)

    Smith, Graham W.; Gallegos, Roque Rosauro; Hohlfelder, Robert James; Beutler, David Eric; Dudley, John; Seymour, Calvin L.G.; Bell, John D.

    2004-01-01

    Pioneering x-ray imaging has been undertaken on a number of AWE's and Sandia National Laboratories radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

  14. Asymmetrically cut crystal pair as x-ray magnifier for imaging at high intensity laser facilities

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, C. I.; Feldman, U. [Artep Inc., 2922 Excelsior Spring Circle, Ellicott City, Maryland 21042 (United States); Seely, J. F. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Curry, J. J.; Hudson, L. T.; Henins, A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2010-10-15

    The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.

  15. 100y DASCH Search for historical outbursts of Black Hole Low Mass X-ray Binaries

    Science.gov (United States)

    Grindlay, Jonathan E.; Miller, George; Gomez, Sebastian

    2018-01-01

    Black Hole Low mass X-ray binaries (BH-LMXBs) are all transients, although several (e.g. GRS1915+109 and GX339-4) are quasi-persistent. All of the now 22 dynamically confirmed BH-LMXBs were discovered by their luminous outbursts, reaching Lx ~10^37 ergs/s, with outburst durations of typically ~1-3 months. These systems then (with few exceptions) return to a deep quiescent state, with Lx reduced by factors ~10^5-6 and hard X-ray spectra. The X-ray outbursts are accompanied by optical outbursts (if not absorbed by Galactic extinction) with ~6-9 magnitude increases and similar lightcurve shapes and durations as the X-ray (discovery) outburst. Prior to this work, only 3 BH-LMXBs have had historical (before the X-ray discovery) outbursts found in the archival data: A0620-00, the first BH-LMXB to be so identified, V404 Cyg (discoverd as "Nova Cyg" in 1938 and regarded as a classical nova), and V4641-Sgr which was given its variable star name when first noted in 1975. We report on the historical outbursts now discovered from the DASCH (Digital Access to a Sky Century @ Harvard) data from scanning and digitizing the now ~210,000 glass plates in the northern Galactic Hemisphere. This was one of the primary motivations for the DASCH project: to use the detection (or lack threof) of historic outbursts to measure or constrain the Duty Cycle of the accreting black holes in these systems. This, in turn, allows the total population of BH-LMXBs to be estimated and compared with that for the very similar systems containing neutron stars as the accretor (NS-LMXBs). Whereas the ratio of BHs/NSs from stellar evolution and IMFs is expected to be <<1, the DASCH results on half the sky point to an excess of BH-LMXBs. This must constrain the formation process for these systems, of importance for understanding both BH formation and compact binary evolution.

  16. Microbeam high-resolution diffraction and x-ray standing wave methods applied to semiconductor structures

    International Nuclear Information System (INIS)

    Kazimirov, A; Bilderback, D H; Huang, R; Sirenko, A; Ougazzaden, A

    2004-01-01

    A new approach to conditioning x-ray microbeams for high angular resolution x-ray diffraction and scattering techniques is introduced. We combined focusing optics (one-bounce imaging capillary) and post-focusing collimating optics (miniature Si(004) channel-cut crystal) to generate an x-ray microbeam with a size of 10 μm and ultimate angular resolution of 14 μrad. The microbeam was used to analyse the strain in sub-micron thick InGaAsP epitaxial layers grown on an InP(100) substrate by the selective area growth technique in narrow openings between the oxide stripes. For the structures for which the diffraction peaks from the substrate and the film overlap, the x-ray standing wave technique was applied for precise measurements of the strain with a Δd/d resolution of better than 10 -4 . (rapid communication)

  17. High temperature X-ray topography on silicon and gallium arsenide

    International Nuclear Information System (INIS)

    Krueger, H.E.

    1976-01-01

    Beginning with a review of the different theories of X-ray scattering on perfect and deformed crystals, results of the dynamic theory relevant specifically for X-ray topography are presented. The reflected intensity recorded in a X-ray topogram is discussed as a function of the angle of incidence, crystal thickness and lateral distribution. These results, together with fundamental relations of the DT which are developed in the annex, give insight into the contrasts induced by defects. Using practical examples Borrmann contrast, contrast produced by point defect agglomerates and dislocations and the Burgers vector method are explained. Thus the whole spectrum of contrast phenomena observed in the experimental part of the paper is presented. The experimental results were achieved with a high-temperature X-ray topography facility constructed for this purpose. The facility is described. (orig./HPOE) [de

  18. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  19. A planar parabolic refractive nickel lens for high-energy X-rays

    International Nuclear Information System (INIS)

    Andrejczuk, Andrzej; Nagamine, Masaru; Sakurai, Yoshiharu; Itou, Masayoshi

    2013-01-01

    A compound refractive nickel lens focusing 174 keV X-rays to 5 µm with a gain of 4 is presented. A compound refractive lens made of nickel and designed for focusing high-energy synchrotron X-rays is presented. The lens consists of 600 parabolic grooves and focuses X-rays in one plane only (planar lens). The lenses made and investigated by us earlier exhibited low transmission and irregularities in the focused beam profile. Since then, improvements in lens manufacturing technology have been made. The present lens gives an almost Gaussian profile and produces four times higher intensity at its maximum compared with the intensity of primary X-ray beams of 174 keV

  20. High-resolution X-ray imaging - a powerful nondestructive technique for applications in semiconductor industry

    International Nuclear Information System (INIS)

    Zschech, Ehrenfried; Yun, Wenbing; Schneider, Gerd

    2008-01-01

    The availability of high-brilliance X-ray sources, high-precision X-ray focusing optics and very efficient CCD area detectors has contributed essentially to the development of transmission X-ray microscopy (TXM) and X-ray computed tomography (XCT) with sub-50 nm resolution. Particularly, the fabrication of high aspect ratio Fresnel zone plates with zone widths approaching 15 nm has contributed to the enormous improvement in spatial resolution during the previous years. Currently, Fresnel zone plates give the ability to reach spatial resolutions of 15 to 20 nm in the soft and of about 30 to 50 nm in the hard X-ray energy range. X-ray microscopes with rotating anode X-ray sources that can be installed in an analytical lab next to a semiconductor fab have been developed recently. These unique TXM/XCT systems provide an important new capability of nondestructive 3D imaging of internal circuit structures without destructive sample preparation such as cross sectioning. These lab systems can be used for failure localization in micro- and nanoelectronic structures and devices, e.g., to visualize voids and residuals in on-chip metal interconnects without physical modification of the chip. Synchrotron radiation experiments have been used to study new processes and materials that have to be introduced into the semiconductor industry. The potential of TXM using synchrotron radiation in the soft X-ray energy range is shown for the nondestructive in situ imaging of void evolution in embedded on-chip copper interconnect structures during electromigration and for the imaging of different types of insulating thin films between the on-chip interconnects (spectromicroscopy). (orig.)

  1. DETECTING RELATIVISTIC X-RAY JETS IN HIGH-REDSHIFT QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, Kathryn [Department of Statistics, Harvard University, Cambridge, MA 02138 (United States); Siemiginowska, Aneta; Kashyap, Vinay L.; Lee, N. P.; Harris, D. E.; Schwartz, D. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Stawarz, Łukasz [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244, Kraków (Poland); Stein, Nathan [Department of Statistics, The Wharton School, University of Pennsylvania, 400 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6340 (United States); Stampoulis, Vasileios; Dyk, David A. van [Statistics Section, Imperial College London, Huxley Building, South Kensington Campus, London SW7 (United Kingdom); Wardle, J. F. C. [Department of Physics, MS 057, Brandeis University, Waltham, MA 02454 (United States); Donato, Davide [CRESST and Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Maraschi, Laura; Tavecchio, Fabrizio, E-mail: kathrynmckeough@g.harvard.edu [INAF Osservatorio Astronomico di Brera, via Brera 28, I-20124, Milano (Italy)

    2016-12-10

    We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift ( z  ≥ 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 <  z  < 2.9) quasars. The data set includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet, and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p -value upper bounds on the significance that an X-ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional six marginally. We also find residual emission in the cores of three quasars and in the background of one quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions are due to the IC/CMB rather than the synchrotron process, or that high-redshift jets are qualitatively different.

  2. High precision instrumentation for measuring the true exposure time in diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Silva, Danubia B.; Santos, Marcus A.P.; Barros, Fabio R.; Santos, Luiz A.P.

    2013-01-01

    One of the most important physical quantities to be evaluated in diagnostic radiology is the radiation exposure time experimented by the patient during the X-ray examination. IAEA and WHO organizations have suggested that any country must create a quality surveillance program to verify if each type of ionizing radiation equipment used in the hospitals and medical clinics are in conformity with the accepted uncertainties following the international standards. The purpose of this work is to present a new high precision methodology for measuring true exposure time in diagnostic X-ray examinations: pulsed, continuous or digital one. An electronic system named CronoX, which will be soon registered at the Brazilian Patent Office (INPI), is the equipment that provides such a high precision measurement. The principle of measurement is based on the electrical signal captured by a sensor that enters in a regeneration amplifier to transform it in a digital signal, which is treated by a microprocessor (uP). The signal treatment results in a two measured times: 1) T rx , the true X-ray exposure time; 2) T nx , the time in which the X-ray machine is repeatedly cut off during the pulsed irradiation and there is no delivery dose to the patient. Conventional Polymat X-ray equipment and dental X-ray machines were used to generate X-ray photons and take the measurements with the electronic systems. The results show that such a high precision instrumentation displays the true exposure time in diagnostic X-ray examinations and indicates a new method to be purposed for the quality surveillance programs in radiology. (author)

  3. Quasi-periodic oscillations and noise in low-mass X-ray binaries

    International Nuclear Information System (INIS)

    Van der Klis, M.

    1989-01-01

    The phenomenology of quasi-periodic oscillations (QPOs) and noise in low-mass X-ray binaries (LMXBs) is discussed. Signal analysis aspects of QPO and noise are addressed along with the relationship between LMXBs and millisecond radio pulsars. The history and prehistory of QPOs and noise in LMXBs are examined. Universal noise components and normal and flaring branch QPOs in Z sources are described and the phenomenology of Z sources is discussed. Bright LMXBs known as atoll sources are considered, as are nonpersistently bright LMXBs accreting pulsars and black hole candidates. 162 refs

  4. High-intensity, subkolovolt x-ray calibration facility using a Cockroft--Walton proton accelerator

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    Considerable need has arisen for the development of well-calibrated x-ray detectors capable of detecting photons with energies between 100 and 1000 electron-volts. This energy region is of significant interest since the x-ray emission from high-temperature (kT approximately 1.0 keV), laser-produced plasmas is predominantly in this range. A high-intensity, subkilovolt x-ray calibration source was developed which utilizes proton-induced inner-shell atomic fluorescence of low-Z elements. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide an intense, nearly monoenergetic x-ray calibration source for detector development applications. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable liquid-cooled targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. A description of the facility is presented. Typical x-ray spectra (B-K, C-K, Ti-L, Fe-L and Cu-L) and flux values will be shown. Problems such as spectral contamination due to carbon buildup on the target and to backscattered particles are discussed

  5. A POPULATION OF X-RAY WEAK QUASARS: PHL 1811 ANALOGS AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P.; Hall, Patrick B.; Gibson, Robert R.; Schmidt, Sarah J.; Richards, Gordon T.; Shemmer, Ohad; Just, Dennis W.

    2011-01-01

    We report the results from Chandra and XMM-Newton observations of a sample of 10 type 1 quasars selected to have unusual UV emission-line properties (weak and blueshifted high-ionization lines; strong UV Fe emission) similar to those of PHL 1811, a confirmed intrinsically X-ray weak quasar. These quasars were identified by the Sloan Digital Sky Survey at high redshift (z ∼ 2.2); eight are radio quiet while two are radio intermediate. All of the radio-quiet PHL 1811 analogs, without exception, are notably X-ray weak by a mean factor of ∼13. These sources lack broad absorption lines and have blue UV/optical continua, supporting the hypothesis that they are intrinsically X-ray weak like PHL 1811 itself. However, their average X-ray spectrum appears to be harder than those of typical quasars, which may indicate the presence of heavy intrinsic X-ray absorption. Our sample of radio-quiet PHL 1811 analogs supports a connection between an X-ray weak spectral energy distribution and PHL 1811-like UV emission lines; this connection provides an economical way to identify X-ray weak type 1 quasars. The fraction of radio-quiet PHL 1811 analogs in the radio-quiet quasar population is estimated to be ∼< 1.2%. We have investigated correlations between relative X-ray brightness and UV emission-line properties (e.g., C IV equivalent width and blueshift) for a sample combining our radio-quiet PHL 1811 analogs, PHL 1811 itself, and typical type 1 quasars. These correlation analyses suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions. Observationally, the radio-quiet PHL 1811 analogs appear to be a subset (∼30%) of radio-quiet weak-line quasars (WLQs). The existence of a subset of quasars in which high-ionization 'shielding gas' covers most of the broad emission-line region (BELR), but little more than the BELR, could potentially unify the PHL 1811 analogs and WLQs. The two radio-intermediate PHL 1811 analogs are X-ray bright. X-ray

  6. Unsteady void measurements within debris beds using high speed X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Laurien, E., E-mail: Laurien@ike.uni-stuttgart.de; Stürzel, T., E-mail: thilo.stuerzel@stihl.de; Zhou, M., E-mail: mi.zhou@ike.uni-stuttgart.de

    2017-02-15

    Highlights: • A high speed X-ray tomography facility has been built for the investigation on two-phase flow. • The two-phase flow through beds of packed plastic spheres has been investigated in the facility. • 3D-reconstructions from the measurements show the fluxes in the two-phase flow. • The gas fraction has been calculated from the reconstruction and used for validation of the modeling. • A new bed with closest regular spheres arrangement has been manufactured by 3D-plotter and used in the measurement. - Abstract: Two-phase flow and boiling within debris beds representing a destroyed reactor core after a severe accident with core fragmentation can be simulated by using the porous media approach. In this approach, a local pressure drop and the heat transfer between the solid debris particles and the two-phase flow is modelled with the help flow-pattern maps, in which the boundaries between bubbly, slug, and annular flow are assumed. In order to support further understanding of these flows we have developed a very fast X-ray measurement device to visualize the 3D-void distribution within particle beds or porous media, which are otherwise un-accessible internally. The experimental setup uses a scanned electron beam directed in circles on a tungsten target to generate the X-rays. The particle bed, which has a diameter of 70 mm, is located between this target and a field of 256 X-ray detectors, which are arranged on a circle concentric to the target. The void distribution is reconstructed numerically from the attenuation of signals, which penetrates the particle bed and the two-phase flow inside. A 3D frame rate of up to 1000 Hz can be reached. The spatial resolution is such that bubbles with a diameter > 1.7 mm can be detected. We have investigated two-phase flows air/water through beds of packed plastic spheres (diameter between 3 and 15 mm) as well as through plastic beds, which were manufactured using a ‘3D-plotter’. Flow patterns can be

  7. Rotational and X-ray luminosity evolution of high-B radio pulsars

    Science.gov (United States)

    Benli, Onur; Ertan, Ünal

    2018-05-01

    In continuation of our earlier work on the long-term evolution of the so-called high-B radio pulsars (HBRPs) with measured braking indices, we have investigated the long-term evolution of the remaining five HBRPs for which braking indices have not been measured yet. This completes our source-by-source analyses of HBRPs in the fallback disc model that was also applied earlier to anomalous X-ray pulsars (AXPs), soft gamma repeaters (SGRs), and dim isolated neutron stars (XDINs). Our results show that the X-ray luminosities and the rotational properties of these rather different neutron star populations can be acquired by neutron stars with fallback discs as a result of differences in their initial conditions, namely the initial disc mass, initial period and the dipole field strength. For the five HBRPs, unlike for AXPs, SGRs and XDINs, our results do not constrain the dipole field strengths of the sources. We obtain evolutionary paths leading to the properties of HBRPs in the propeller phase with dipole fields sufficiently strong to produce pulsed radio emission.

  8. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited).

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Piston, K; Felker, B; Kilkenny, J D; Chung, T; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2014-11-01

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2-17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10(17). We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  9. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2014-11-15

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  10. Sparse signal reconstruction from polychromatic X-ray CT measurements via mass attenuation discretization

    International Nuclear Information System (INIS)

    Gu, Renliang; Dogandžić, Aleksandar

    2014-01-01

    We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beer’s law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach for reconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ℓ 1 -norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of the image density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented

  11. Phase shifts and nonellipsoidal light curves: Challenges from mass determinations in x-ray binary stars

    Science.gov (United States)

    Cantrell, Andrew Glenn

    We consider two types of anomalous observations which have arisen from efforts to measure dynamical masses of X-ray binary stars: (1) Radial velocity curves which seemingly show the primary and the secondary out of antiphase in most systems, and (2) The observation of double-waved light curves which deviate significantly from the ellipsoidal modulations expected for a Roche lobe filling star. We consider both problems with the joint goals of understanding the physical origins of the anomalous observations, and using this understanding to allow robust dynamical determinations of mass in X-ray binary systems. In our analysis of phase-shifted radial velocity curves, we discuss a comprehensive sample of X-ray binaries with published phase-shifted radial velocity curves. We show that the most commonly adopted explanation for phase shifts is contradicted by many observations, and consider instead a generalized form of a model proposed by Smak in 1970. We show that this model is well supported by a range of observations, including some systems which had previously been considered anomalous. We lay the groundwork for the derivation of mass ratios based on our explanation for phase shifts, and we discuss the work necessary to produce more detailed physical models of the phase shift. In our analysis of non-ellipsoidal light curves, we focus on the very well-studied system A0620-00. We present new VIH SMARTS photometry spanning 1999-2007, and supplement this with a comprehensive collection of archival data obtained since 1981. We show that A0620-00 undergoes optical state changes within X-ray quiescence and argue that not all quiescent data should be used for determinations of the inclination. We identify twelve light curves which may reliably be used for determining the inclination. We show that the accretion disk contributes significantly to all twelve curves and is the dominant source of nonellipsoidal variations. We derive the disk fraction for each of the twelve curves

  12. X-ray microscopy with high resolution zone plates -- Recent developments

    International Nuclear Information System (INIS)

    Schneider, G.; Wilhein, T.; Niemann, B.; Guttmann, P.

    1995-01-01

    In order to expand the applications of X-ray microscopy, developments in the fields of zone plate technology, specimen preparation and imaging techniques have been made. A new cross-linked polymer chain electron beam resist allows to record zone plate pattern down to 19 nm outermost zone width. High resolution zone plates in germanium with outermost zone widths down to 19 nm have been developed. In addition, phase zone plates in nickel down to 30 nm zone width have been made by electroplating. In order to enhance the image contrast for weak absorbing objects, the phase contrast method for X-ray microscopy was developed and implemented on the Goettingen X-ray microscope at BESSY. The effects of X-ray absorption on the structure of biological specimen limits the maximum applicable radiation dose and therefore the achievable signal to noise ratio for an artifact-free X-ray image. To improve the stability especially of biological specimen, a cryogenic object chamber has been developed and tested. It turns out that at the operating temperature T ≤ 130 K unfixed biological specimen can be exposed to a radiation dose of 10 9 --10 10 Gy without any observable structural changes. A multiple-angle viewing stage allows to take stereoscopic images with the X-ray microscope, giving a 3D-impression of the object

  13. Diagnostic imaging of gout: comparison of high-resolution US versus conventional X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Rettenbacher, Thomas; Ennemoser, Sybille; Weirich, Harald [Innsbruck Medical University, Department of Radiology, Innsbruck (Austria); Ulmer, Hanno [Innsbruck Medical University, Department of Medical Statistics, Informatics, and Health Economics, Innsbruck (Austria); Hartig, Frank; Klotz, Werner; Herold, Manfred [Innsbruck Medical University, Department of Internal Medicine, Innsbruck (Austria)

    2008-03-15

    The aim was to compare X-ray and ultrasound (US) in diagnosing gout. In a prospective study, 105 consecutive patients with clinical suspicion of gout underwent conventional X-ray und high-resolution US in order to help in arriving at a definite diagnosis. X-ray findings suggestive of gout included soft-tissue opacifications with densities between soft tissue and bone, articular and periarticular bone erosions, and osteophytes at the margins of opacifications or erosions. US findings suggestive of gout included bright stippled foci and hyperechoic soft-tissue areas. Fifty-five patients had a definite diagnosis of gout (102 involved sites), 31 patients were diagnosed as having another disease (59 involved sites), and 19 patients were excluded from the study because a definite diagnosis could not be established. X-ray suggested gout with a sensitivity of 31% (32/102) and a specificity of 93% (55/59), whereas US suggested gout with a sensitivity of 96% (98/102) and a specificity of 73% (43/59). US was much more sensitive than conventional X-ray but less specific. Our data show that US often provided additional diagnostic information in patients with clinical suspicion of gout when laboratory findings and X-ray results were negative or inconclusive and should therefore be used in these cases. (orig.)

  14. Diagnostic imaging of gout: comparison of high-resolution US versus conventional X-ray

    International Nuclear Information System (INIS)

    Rettenbacher, Thomas; Ennemoser, Sybille; Weirich, Harald; Ulmer, Hanno; Hartig, Frank; Klotz, Werner; Herold, Manfred

    2008-01-01

    The aim was to compare X-ray and ultrasound (US) in diagnosing gout. In a prospective study, 105 consecutive patients with clinical suspicion of gout underwent conventional X-ray und high-resolution US in order to help in arriving at a definite diagnosis. X-ray findings suggestive of gout included soft-tissue opacifications with densities between soft tissue and bone, articular and periarticular bone erosions, and osteophytes at the margins of opacifications or erosions. US findings suggestive of gout included bright stippled foci and hyperechoic soft-tissue areas. Fifty-five patients had a definite diagnosis of gout (102 involved sites), 31 patients were diagnosed as having another disease (59 involved sites), and 19 patients were excluded from the study because a definite diagnosis could not be established. X-ray suggested gout with a sensitivity of 31% (32/102) and a specificity of 93% (55/59), whereas US suggested gout with a sensitivity of 96% (98/102) and a specificity of 73% (43/59). US was much more sensitive than conventional X-ray but less specific. Our data show that US often provided additional diagnostic information in patients with clinical suspicion of gout when laboratory findings and X-ray results were negative or inconclusive and should therefore be used in these cases. (orig.)

  15. A Chandra High-Resolution X-ray Image of Centaurus A.

    Science.gov (United States)

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  16. Radio Observations of Ultra-Luminous X-Ray Sources ---Microblazars or Intermediate-Mass Black Holes?---

    Science.gov (United States)

    Körding, E.; Colbert, E.; Falcke, H.

    In recent years Ultra-Luminous X-Ray sources (ULXs) received wide attention, however, their true nature is not yet understood. Many explanations have been suggested, including intermediate-mass black holes, super-Eddington accretion flows, anisotropic emission, and relativistic beaming of microquasars. We model the logN-logS distribution of ULXs assuming that each neutron star or black hole XRB can be described by an accretion disk plus jet model, where the jet is relativistically beamed. The distribution can be either fit by intermediate-mass black holes or by stellar mass black holes with mildly relativistic jets. Even though the jet is intrinsically weaker than the accretion disk, relativistic beaming can in the latter approach lead to the high fluxes observed. To further explore the possibility of microblazars contributing to the ULX phenomenon, we have embarked on a radio-monitoring study of ULXs in nearby galaxies with the VLA. However, up to now no radio flare has been detected. Using the radio/X-ray correlation the upper limits on the radio flux can be converted into upper limits for the black hole masses of MBH ≲ 10^3 M⊙.

  17. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    International Nuclear Information System (INIS)

    Günther, Karoline; Giebing, Christina; Askani, Antonia; Leisegang, Tilmann; Krieg, Marcus; Kyosev, Yordan; Weide, Thomas; Mahltig, Boris

    2015-01-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  18. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Günther, Karoline; Giebing, Christina; Askani, Antonia [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Leisegang, Tilmann [Saxray GmbH, Maria-Reiche-Str. 1, 01109 Dresden (Germany); Krieg, Marcus [TITK, Thüringisches Institut für Textil- und Kunststoff-Forschung e.V., Breitscheidstraße 97, 07407 Rudolstadt (Germany); Kyosev, Yordan; Weide, Thomas [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Mahltig, Boris, E-mail: Boris.Mahltig@hs-niederrhein.de [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany)

    2015-11-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  19. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    Science.gov (United States)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  20. Characterization of metallic nanoparticles by high-resolution X-ray absorption and X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Timna-Josua

    2012-03-15

    In almost all areas of technology, metallic nanoparticles are of interest due to their special thermal, electronic, magnetic and optical properties. Their special properties are mainly due to their small size which implies the relevance of quantum effects as well as the significance of the surface: For 2 nm nanoparticles, the surface-to-volume ratio is already 1:1. However, the identification of surface-to-volume interactions - that are responsible for the new properties - is a difficult task due to the small size that inhibits a lot of 'standard' techniques to be applicable. Here X-ray absorption/emission spectroscopy (XAS/XES) is a favorable tool for the characterization of nanoparticles, independent on size, degree of crystallinity and shape/condition of the surface. Using XAS, a tempered nanosized Co{sub 3}Pt/C catalyst have been investigated. Its outstanding oxygen-reduction reaction (ORR) properties in a fuel cell could be related to a lowered Pt 5d-band center connected to a tightened Pt-Pt bonding distance, leading to a weakening of the oxygen adsorption strength so that the ORR may proceed faster. One drawback remains, however, as the properties found by (standard) XAS are summed up for different chemical environments of the chosen element. Thus, no distinction can be made between, e.g., the pure metal in a nanoparticles' interior and the ligated metal in the outer shells or surface. Here, high-resolution fluorescence-detected XAS (HRFD-XAS) provides additional opportunities as, due to its chemical sensitivity, it leads to site-selective XAS. For a system of 6 nm sized Co nanoparticles, build up of a metallic core surrounded by a protecting shell, that resulted from the 'smooth oxidation' process, this technique of site-selective XAS was proven to be applicable. For the first time, the interior and outer shell of a metallic nanoparticle could be characterized separately. In particular, the Co-hcp phase could be determined for the

  1. LONG-DURATION X-RAY FLASH AND X-RAY-RICH GAMMA-RAY BURSTS FROM LOW-MASS POPULATION III STARS

    International Nuclear Information System (INIS)

    Nakauchi, Daisuke; Kashiyama, Kazumi; Nakamura, Takashi; Suwa, Yudai; Sakamoto, Takanori

    2012-01-01

    Recent numerical simulations suggest that Population III (Pop III) stars were born with masses not larger than ∼100 M ☉ and typically ∼40 M ☉ . By self-consistently considering the jet generation and propagation in the envelope of these low-mass Pop III stars, we find that a Pop III blue supergiant star has the possibility of giving rise to a gamma-ray burst (GRB) even though it keeps a massive hydrogen envelope. We evaluate observational characteristics of Pop III GRBs and predict that Pop III GRBs have a duration of ∼10 5 s in the observer frame and a peak luminosity of ∼5 × 10 50 erg s –1 . Assuming that the E p -L p (or E p -E γ,iso ) correlation holds for Pop III GRBs, we find that the spectrum peak energy falls at approximately a few keV (or ∼100 keV) in the observer frame. We discuss the detectability of Pop III GRBs by future satellite missions such as EXIST and Lobster. If the E p -E γ,iso correlation holds, we have the possibility to detect Pop III GRBs at z ∼ 9 as long-duration X-ray-rich GRBs by EXIST. Conversely, if the E p -L p correlation holds, we have the possibility to detect Pop III GRBs up to z ∼ 19 as long-duration X-ray flashes by Lobster.

  2. Z-pinches as intense x-ray sources for high energy density physics application

    International Nuclear Information System (INIS)

    Matzen, M.K.

    1997-01-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/μs and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75±10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory

  3. Ultra-High Field Magnets for X-Ray and Neutron Scattering using High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States); Bird, M. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Breneman, Bruce C. [General Atomics, San Diego, CA (United States); Coffey, Michael [Cryomagnetics, Oak Ridge, TN (United States); Cutler, Roy I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duckworth, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erwin, R. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Hahn, Seungyong [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Hernandez, Yamali [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Herwig, Kenneth W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holland, Leo D. [General Atomics, San Diego, CA (United States); Lonergan, Kevin M. [Oxford Instruments, Abingdon (United Kingdom); Melhem, Ziad [Oxford Instruments, Abingdon (United Kingdom); Minter, Stephen J. [Cryomagnetics, Oak Ridge, TN (United States); Nelson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Paranthaman, M. Parans [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pierce, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruff, Jacob [Cornell Univ., Ithaca, NY (United States); Shen, Tengming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherline, Todd E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smeibidl, Peter G. [Helmholtz-Zentrum Berlin (HZB), (Germany); Tennant, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); van der Laan, Danko [Advanced Conductor Technologies, LLC, Boulder, CO (United States); Wahle, Robert J. [Helmholtz-Zentrum Berlin (HZB), (Germany); Zhang, Yifei [SuperPower, Inc., Schenectady, NY (United States)

    2017-01-01

    X-ray and neutron scattering techniques are capable of acquiring information about the structure and dynamics of quantum matter. However, the high-field magnet systems currently available at x-ray and neutron scattering facilities in the United States are limited to fields of 16 tesla (T) at maximum, which precludes applications that require and/or study ultra-high field states of matter. This gap in capability—and the need to address it—is a central conclusion of the 2005 National Academy of Sciences report by the Committee on Opportunities in High Magnetic Field Science. To address this gap, we propose a magnet development program that would more than double the field range accessible to scattering experiments. With the development and use of new ultra-high field–magnets, the program would bring into view new worlds of quantum matter with profound impacts on our understanding of advanced electronic materials.

  4. X-ray emission in collisions of highly charged I, Pr, Ho, and Bi ions with a W surface

    International Nuclear Information System (INIS)

    Watanabe, H.; Tona, M.; Ohtani, S.; Sun, J.; Nakamura, N.; Yamada, C.; Yoshiyasu, N.; Sakurai, M.

    2007-01-01

    X-ray emission yields, which are defined as the total number of emitted x-ray photons per incident ion, and dissipated fractions of potential energies through x-ray emission have been measured for slow highly charged ions of I, Pr, Ho, and Bi colliding with a W surface. A larger amount of potential energy was consumed for the x-ray emission with increasing the atomic number and the charge state. The present measurements show that x-ray emission is one of the main decay channels of hollow atoms produced in collisions of very highly charged ions of heavy elements

  5. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  6. High thermal efficiency x-ray energy conversion scheme for advanced fusion reactors

    International Nuclear Information System (INIS)

    Quimby, D.C.; Taussig, R.T.; Hertzberg, A.

    1977-01-01

    This paper reports on a new radiation energy conversion scheme which appears to be capable of producing electricity from the high quality x-ray energy with efficiencies of 60 to 70 percent. This new reactor concept incorporates a novel x-ray radiation boiler and a new thermal conversion device known as an energy exchanger. The low-Z first walls of the radiation boiler are semi-transparent to x-rays, and are kept cool by incoming working fluid, which is subsequently heated to temperatures of 2000 to 3000 0 K in the interior of the boiler by volumetric x-ray absorption. The radiation boiler may be a compact part of the reactor shell since x-rays are readily absorbed in high-Z materials. The energy exchanger transfers the high-temperature working fluid energy to a lower temperature gas which drives a conventional turbine. The overall efficiency of the cycle is characterized by the high temperature of the working fluid. The high thermal efficiencies which appear achievable with this cycle would make an otherwise marginal advanced fusion reactor into an attractive net power producer. The operating principles, initial conceptual design, and engineering problems of the radiation boiler and thermal cycle are presented

  7. Design of a compact high-energy setup for x-ray phase-contrast imaging

    Science.gov (United States)

    Schüttler, Markus; Yaroshenko, Andre; Bech, Martin; Potdevin, Guillaume; Malecki, Andreas; Chabior, Michael; Wolf, Johannes; Tapfer, Arne; Meiser, Jan; Kunka, Danays; Amberger, Maximilian; Mohr, Jürgen; Pfeiffer, Franz

    2014-03-01

    The main shortcoming of conventional biomedical x-ray imaging is the weak soft-tissue contrast caused by the small differences in the absorption coefficients between different materials. This issue can be addressed by x-ray phasesensitive imaging approaches, e.g. x-ray Talbot-Lau grating interferometry. The advantage of the three-grating Talbot-Lau approach is that it allows to acquire x-ray phase-contrast and dark-field images with a conventional lab source. However, through the introduction of the grating interferometer some constraints are imposed on the setup geometry. In general, the grating pitch and the mean x-ray energy determine the setup dimensions. The minimal length of the setup increases linearly with energy and is proportional to p2, where p is the grating pitch. Thus, a high-energy (100 keV) compact grating-based setup for x-ray imaging can be realized only if gratings with aspect-ratio of approximately 300 and a pitch of 1-2 μm were available. However, production challenges limit the availability of such gratings. In this study we consider the use of non-binary phase-gratings as means of designing a more compact grating interferometer for phase-contrast imaging. We present simulation and experimental data for both monochromatic and polychromatic case. The results reveal that phase-gratings with triangular-shaped structures yield visibilities that can be used for imaging purposes at significantly shorter distances than binary gratings. This opens the possibility to design a high-energy compact setup for x-ray phase-contrast imaging. Furthermore, we discuss different techniques to achieve triangular-shaped phase-shifting structures.

  8. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  9. High resolution x-ray microtomography of biological samples: Requirements and strategies for satisfying them

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W. Jr. [Univ. of California, San Francisco, CA (United States)]|[Univ. of California, Davis, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States); Rothman, S.S. [Univ. of California, San Francisco, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-02-01

    High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetration depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography (XMT).

  10. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  11. Mass attenuation coefficients of X-rays in different medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Morabad, R B [Department of Post-Graduate Studies and Research in Physics, Gulbarga University, Gulbarga 585106, Karnataka (India); Kerur, B.R. [Department of Post-Graduate Studies and Research in Physics, Gulbarga University, Gulbarga 585106, Karnataka (India)], E-mail: kerurbrk@yahoo.com

    2010-02-15

    The mass attenuation coefficients of specific parts of several plants, (fruits, leaves, stem and seeds) often used as medicines in the Indian herbal system, have been measured employing NaI (TI)) detector. The electronic setup used is a NaI (TI) detector, which is coupled to MCA for analysis of the spectrum. A source of {sup 241}Am is used to get X-rays in the energy range 8-32 keV from Cu, Rb, Mo, Ag and Ba targets. In the present study, the measured mass attenuation coefficient of Ocimum sanctum, Catharanthus roseus, Trigonella foenum-graecum, Azadirachta indica, Aegle marmelos, Zingiber officinalis, Emblica officinalis, Anacardium occidentale, Momordica charantia and Syzygium cumini show a linear relation with the energy.

  12. Mass attenuation coefficients of X-rays in different medicinal plants

    International Nuclear Information System (INIS)

    Morabad, R.B.; Kerur, B.R.

    2010-01-01

    The mass attenuation coefficients of specific parts of several plants, (fruits, leaves, stem and seeds) often used as medicines in the Indian herbal system, have been measured employing NaI (TI)) detector. The electronic setup used is a NaI (TI) detector, which is coupled to MCA for analysis of the spectrum. A source of 241 Am is used to get X-rays in the energy range 8-32 keV from Cu, Rb, Mo, Ag and Ba targets. In the present study, the measured mass attenuation coefficient of Ocimum sanctum, Catharanthus roseus, Trigonella foenum-graecum, Azadirachta indica, Aegle marmelos, Zingiber officinalis, Emblica officinalis, Anacardium occidentale, Momordica charantia and Syzygium cumini show a linear relation with the energy.

  13. Titanium K-Shell X-Ray Production from High Velocity Wire Arrays Implosions on the 20-MA Z Accelerator

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Beg, F.N.; Clark, R.C.; Coverdale, C.A.; Davis, J.; Deeney, C.; Douglas, M.R.; Nash, T.J.; Ruiz-Comacho, J.; Spielman, R.B.; Struve, K.W.; Thornhill, J.W.; Whitney, K.G.

    1999-01-01

    The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75±15 to 125±20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7±0.1 to 3.2±0.2 keV and obtained a K-shell emission mass participation of up to 12%

  14. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Science.gov (United States)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  15. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    Science.gov (United States)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  16. A high time resolution x-ray diagnostic on the Madison Symmetric Torus

    Science.gov (United States)

    DuBois, Ami M.; Lee, John David; Almagri, Abdulgadar F.

    2015-07-01

    A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared.

  17. Computerized tomography using high resolution X-ray imaging system with a microfocus source

    International Nuclear Information System (INIS)

    Zaprazny, Z.; Korytar, D.; Konopka, P.; Ac, V.; Bielecki, J.

    2011-01-01

    In recent years there is an effort to image an internal structure of an object by using not only conventional 2D X-ray radiography but also using high resolution 3D tomography which is based on reconstruction of multiple 2D projections at various angular positions of the object. We have previously reported [1] the development and basic parameters of a high resolution x-ray imaging system with a microfocus source. We report the recent progress using this high resolution X-ray laboratory system in this work. These first findings show that our system is particularly suitable for light weight and nonmetallic objects such as biological objects, plastics, wood, paper, etc. where phase contrast helps to increase the visibility of the finest structures of the object. Phase-contrast X-ray Computerized Tomography is of our special interest because it is an emerging imaging technique that can be implemented at third generation synchrotron radiation sources and also in laboratory conditions using a microfocus X-ray tube or beam conditioning optics. (authors)

  18. HIGH ENERGY, HIGH BRIGHTNESS X-RAYS PRODUCED BY COMPTON BACKSCATTERING AT THE LIVERMORE PLEIADES FACILITY

    International Nuclear Information System (INIS)

    Tremaine, A M; Anderson, S G; Betts, S; Crane, J; Gibson, D J; Hartemann, F V; Jacob, J S; Frigola, P; Lim, J; Rosenzweig, J; Travish, G

    2005-01-01

    PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10 7 photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 (micro)m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verified the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials

  19. On the limitations and optimisation of high-resolution 3D medical X-ray imaging systems

    International Nuclear Information System (INIS)

    Zhou Shuang; Brahme, Anders

    2011-01-01

    Based on a quantitative analysis of both attenuation and refractive properties of X-ray propagation in human body tissues and the introduction of a mathematical model for image quality analysis, some limitations and optimisation of high-resolution three-dimensional (3D) medical X-ray imaging techniques are studied. A comparison is made of conventional attenuation-based X-ray imaging methods with the phase-contrast X-ray imaging modalities that have been developed recently. The results indicate that it is theoretically possible through optimal design of the X-ray imaging system to achieve high spatial resolution (<100 μm) in 3D medical X-ray imaging of the human body at a clinically acceptable dose level (<10 mGy) by introducing a phase-contrast X-ray imaging technique.

  20. A Self-consistent Model for a Full Cycle of Recurrent Novae—Wind Mass-loss Rate and X-Ray Luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Mariko [Department of Astronomy, Keio University, Hiyoshi, Yokohama 223-8521 (Japan); Saio, Hideyuki [Astronomical Institute, Graduate School of Science, Tohoku University, Sendai, 980-8578 (Japan); Hachisu, Izumi, E-mail: mariko.kato@hc.st.keio.ac.jp [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2017-04-01

    An unexpectedly slow evolution in the pre-optical-maximum phase was suggested in the very short recurrence period of nova M31N 2008-12a. To obtain reasonable nova light curves we have improved our calculation method by consistently combining optically thick wind solutions of hydrogen-rich envelopes with white dwarf (WD) structures calculated by a Henyey-type evolution code. The wind mass-loss rate is properly determined with high accuracy. We have calculated light curve models for 1.2 M {sub ⊙} and 1.38 M {sub ⊙} WDs with mass accretion rates corresponding to recurrence periods of 10 yr and 1 yr, respectively. The outburst lasts 590/29 days, in which the pre-optical-maximum phase is 82/16 days, for 1.2/1.38 M {sub ⊙}, respectively. Optically thick winds start at the end of the X-ray flash and cease at the beginning of the supersoft X-ray phase. We also present supersoft X-ray light curves including a prompt X-ray flash and later supersoft X-ray phase.

  1. Surface slope metrology of highly curved x-ray optics with an interferometric microscope

    Science.gov (United States)

    Gevorkyan, Gevork S.; Centers, Gary; Polonska, Kateryna S.; Nikitin, Sergey M.; Lacey, Ian; Yashchuk, Valeriy V.

    2017-09-01

    The development of deterministic polishing techniques has given rise to vendors that manufacture high quality threedimensional x-ray optics. The surface metrology on these optics remains a difficult task. For the fabrication, vendors usually use unique surface metrology tools, generally developed on site, that are not available in the optical metrology labs at x-ray facilities. At the Advanced Light Source X-Ray Optics Laboratory, we have developed a rather straightforward interferometric-microscopy-based procedure capable of sub microradian characterization of sagittal slope variation of x-ray optics for two-dimensionally focusing and collimating (such as ellipsoids, paraboloids, etc.). In the paper, we provide the mathematical foundation of the procedure and describe the related instrument calibration. We also present analytical expression describing the ideal surface shape in the sagittal direction of a spheroid specified by the conjugate parameters of the optic's beamline application. The expression is useful when analyzing data obtained with such optics. The high efficiency of the developed measurement and data analysis procedures is demonstrated in results of measurements with a number of x-ray optics with sagittal radius of curvature between 56 mm and 480 mm. We also discuss potential areas of further improvement.

  2. High-energy synchrotron X-ray radiography of shock-compressed materials

    Science.gov (United States)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  3. High-resolution X-ray spectra from low-temperature, highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1996-09-01

    The electron beam ion traps (EBIT) at Livermore were designed for studying the x-ray emission of highly charged ions produced and excited by a monoenergetic electron beam. The precision with which the x-ray emission can be analyzed has recently been increased markedly when it became possible to decouple the temperature of the ions from the energy of the electron beam by several orders of magnitude. By adjusting the trap parameters, ion temperatures as low as 15.8±4.4 eV for Ti 20+ and 59.4±9.9 eV for Cs 45+ were achieved. These temperatures were more than two orders of magnitude lower than the energy of the multi-keV electron beam used for the production and excitation of the ions. A discussion of the techniques used to produce and study low-temperature highly charged ions is presented in this progress report. The low ion temperatures enabled measurements heretofore impossible. As an example, a direct observation of the natural line width of fast electric dipole allowed x-ray transitions is described. From the observed natural line width and b making use of the time-energy relations of the uncertainty principle we were able to determine a radiative transition rate of 1.65 fs for the 2p-3d resonance transition in neonlike Cs 45+ . A brief discussion of other high-precision measurements enabled by our new technique is also given

  4. X-ray reflectivity measurements of liquid/solid interfaces under high hydrostatic pressure conditions.

    Science.gov (United States)

    Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin

    2014-01-01

    A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.

  5. Innovation of High Voltage Supply Adjustment Device on Diagnostic X-Ray Machine

    International Nuclear Information System (INIS)

    Sujatno; Wiranto Budi Santoso

    2010-01-01

    Innovation of high voltage supply adjustment device on diagnostic x-ray machine has been carried out. The innovation is conducted by utilizing an electronic circuit as a high voltage adjustment device. Usually a diagnostic x-ray machine utilizes a transformer or an auto-transformer as a high voltage supply adjustment device. A high power diagnostic x-ray machine needs a high power transformer which has big physical dimension. Therefore a box control where the transformer is located has to have big physical dimension. Besides, the price of the transformer is expensive and hardly found in local markets. In this innovation, the transformer is replaced by an electronic circuit. The main component of the electronic circuit is Triac BTA-40. As adjustment device, the triac is controlled by a variable resistor which is coupled by a stepper motor. A step movement of stepper motor varies a value of resistor. The resistor value determines the triac gate voltage. Furthermore the triac will open according to the value of electrical current flowing to the gate. When the gate is open, electrical voltage and current will flow from cathode to anode of the triac. The value of these electrical voltage and current depend on gate open condition. Then this triac output voltage is feed to diagnostic x-ray machine high voltage supply. Therefore the high voltage value of diagnostic x-ray machine is adjusted by the output voltage of the electronic circuit. By using this electronic circuit, the physical dimension of diagnostic x-ray machine box control and the price of the equipment can be reduced. (author)

  6. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  7. A hybrid concept (segmented plus monolithic fused silica shells) for a high-throughput and high-angular resolution x-ray mission (Lynx/X-Ray Surveyor like)

    Science.gov (United States)

    Basso, Stefano; Civitani, Marta; Pareschi, Giovanni; Parodi, Giancarlo

    2017-09-01

    Lynx is a large area and high angular resolution X-ray mission being studied by NASA to be presented to the next Decadal Survey for the implementation in the next decade. It aims to realize an X-ray telescope with the effective area similar to Athena (2 m2 at 1 keV) but with the same angular resolution of Chandra and a much larger Field Of View (up 20 arcmin x 20 arcmin). The science of X-ray Surveyor requires a large-throughput mirror assembly with sub-arcsec angular resolution. These future X-ray mirrors have a set of requirements which, collectively, represents very substantial advances over any currently in operation or planned for missions other than X-ray Surveyor. Of particular importance is achieving low mass per unit collecting area, while maintaining Chandra like angular resolution. Among the possible solutions under study, the direct polishing of both thin monolithic pseudo-cylindrical shells and segments made of fused silica are being considered as viable solutions for the implementation of the mirrors. Fused silica has very good thermomechanical parameters (including a very low CTE), making the material particularly well suited for for the production of the Lynx mirrors. It should be noted that the use of close shells is also very attractive, since the operations for the integration of the shells will be greatly simplified and the area lost due to the vignetting from the interfacing structures minimized even if the management of such big (diameter of 3 m) and thin shells have to be demonstrated. In this paper we will discuss a possible basic layout for a full shell mirror and a hybrid concept (segmented plus monolithic shells made of fused silica) as a second solution, for the Lynx/XRS telescope, discussing preliminary results in terms of optical and mechanical performance.

  8. Measurement of the X-ray mass attenuation coefficients of silver in the 5-20 keV range.

    Science.gov (United States)

    Islam, M Tauhidul; Tantau, Lachlan J; Rae, Nicholas A; Barnea, Zwi; Tran, Chanh Q; Chantler, Christopher T

    2014-03-01

    The X-ray mass attenuation coefficients of silver were measured in the energy range 5-20 keV with an accuracy of 0.01-0.2% on a relative scale down to 5.3 keV, and of 0.09-1.22% on an absolute scale to 5.0 keV. This analysis confirms that with careful choice of foil thickness and careful correction for systematics, especially including harmonic contents at lower energies, the X-ray attenuation of high-Z elements can be measured with high accuracy even at low X-ray energies (silver in the low energy range, indicating the possibility of obtaining high-accuracy X-ray absorption fine structure down to the L1 edge (3.8 keV) of silver. Comparison of results reported here with an earlier data set optimized for higher energies confirms accuracy to within one standard error of each data set collected and analysed using the principles of the X-ray extended-range technique (XERT). Comparison with theory shows a slow divergence towards lower energies in this region away from absorption edges. The methodology developed can be used for the XAFS analysis of compounds and solutions to investigate structural features, bonding and coordination chemistry.

  9. A Catalog Sample of Low-mass Galaxies Observed in X-Rays with Central Candidate Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Nucita, A. A.; Manni, L.; Paolis, F. De; Giordano, M.; Ingrosso, G., E-mail: nucita@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via per Arnesano, CP 193, I-73100, Lecce (Italy)

    2017-03-01

    We present a sample of X-ray-selected candidate black holes in 51 low-mass galaxies with z ≤ 0.055 and masses up to 10{sup 10} M {sub ⊙} obtained by cross-correlating the NASA-SLOAN Atlas with the 3XMM catalog. We have also searched in the available catalogs for radio counterparts of the black hole candidates and find that 19 of the previously selected sources also have a radio counterpart. Our results show that about 37% of the galaxies of our sample host an X-ray source (associated with a radio counterpart) spatially coincident with the galaxy center, in agreement with other recent works. For these nuclear sources, the X-ray/radio fundamental plane relation allows one to estimate the mass of the (central) candidate black holes, which are in the range of 10{sup 4}–2 × 10{sup 8} M {sub ⊙} (with a median value of ≃3 × 10{sup 7} M {sub ⊙} and eight candidates having masses below 10{sup 7} M {sub ⊙}). This result, while suggesting that X-ray emitting black holes in low-mass galaxies may have had a key role in the evolution of such systems, makes it even more urgent to explain how such massive objects formed in galaxies. Of course, dedicated follow-up observations both in the X-ray and radio bands, as well as in the optical, are necessary in order to confirm our results.

  10. Sub-Hour X-Ray Variability of High-Energy Peaked BL Lacertae Objects

    Directory of Open Access Journals (Sweden)

    Bidzina Kapanadze

    2018-03-01

    Full Text Available The study of multi-wavelength flux variability in BL Lacertae objects is very important to discern unstable processes and emission mechanisms underlying their extreme observational features. While the innermost regions of these objects are not accessible from direct observations, we may draw conclusions about their internal structure via the detection of flux variations on various timescales, based on the light-travel argument. In this paper, we review the sub-hour X-ray variability in high-energy peaked BL Lacertae sources (HBLs that are bright at X-rays and provide us with an effective tool to study the details related to the physics of the emitting particles. The X-ray emission of these sources is widely accepted to be a synchrotron radiation from the highest-energy electrons, and the complex spectral variability observed in this band reflects the injection and radiative evolution of freshly-accelerated particles. The detection of sub-hour X-ray flux variability is very important since it can be related to the small-scale jet turbulent structures or triggered by unstable processes occurring in the vicinity of a central supermassive black hole. We summarize the fastest X-ray variability instances detected in bright HBLs and discuss their physical implications.

  11. New techniques provide low-cost X-ray inspection of highly attenuating materials

    International Nuclear Information System (INIS)

    Stupin, D.M.; Mueller, K.H.; Viskoe, D.A.; Howard, B.; Poland, R.W.; Schneberk, D.; Dolan, K.; Thompson, K.; Stoker, G.

    1995-01-01

    As a result of an arms reduction treaty between the United States and the Russian Federation, both countries will each be storing over 40,000 containers of plutonium. To help detect any deterioration of the containers and prevent leakage, the authors are designing a digital radiography and computed tomography system capable of handling this volume reliably, efficiently, and at a lower cost. The materials to be stored have very high x-ray attenuations, and, in the past, were inspected using 1- to 24-MV x-ray sources. This inspection system, however, uses a new scintillating (Lockheed) glass and an integrating CCD camera. Preliminary experiments show that this will permit the use of a 450-kV x-ray source. This low-energy system will cost much less than others designed to use a higher-energy x-ray source because it will require a less expensive source, less shielding, and less floor space. Furthermore, they can achieve a tenfold improvement in spatial resolution by using their knowledge of the point-spread function of the x-ray imaging system and a least-squares fitting technique

  12. X-ray Spectroscopy of High-Z Elements on Nike

    Science.gov (United States)

    Aglitskiy, Y.; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.

    2013-10-01

    Survey X-ray spectrometer covering a spectral range from 0.5 to 19.5 angstroms has been added to the spectroscopic suite of Nike diagnostics. That allows simultaneous observation of both M- and N- spectra of W, Ta and Au with high spectral resolution. Low energy test shots confirmed strong presence of 3-4 transitions of Ni-like W, Ta and Au with X-ray energies as high as 3.5 keV when above mentioned elements were used as the targets. In our continuous effort to support DOE-NNSA's inertial fusion program, the future campaign will cover a wide range of plasma conditions that result in relatively energetic X-ray production. Eventually, absolutely calibrated spectrometers of similar geometry will be fielded at NIF in cooperation with NIF diagnostic group. Work supported by US DOE, Defense Programs.

  13. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    International Nuclear Information System (INIS)

    Jakubek, Jan; Granja, Carlos; Dammer, Jiri; Hanus, Robert; Holy, Tomas; Pospisil, Stanislav; Tykva, Richard; Uher, Josef; Vykydal, Zdenek

    2007-01-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences

  14. Diamond monochromator for high heat flux synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Smither, R.K.; Davey, S.; Purohit, A.

    1992-12-01

    Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond mollochromator system. In this Paper, we consider various aspects, advantage and disadvantages, and promises and pitfalls of such a system and evaluate the comparative an monochromator subjected to the high heat load of the most powerful x-ray beam that will become available in the next few years. The results of experiments performed to evaluate the diffraction properties of a currently available synthetic single crystal diamond are also presented. Fabrication of diamond-based monochromator is within present technical means

  15. High resolution krypton M/sub 4,5/ x-ray emission spectra

    International Nuclear Information System (INIS)

    Perera, R.C.C.; Hettrick, M.C.; Lindle, D.W.

    1987-10-01

    High resolution M/sub 4,5/ (3d → 4p) x-ray emission spectra from a krypton plasma were measured using a recently developed grazing-incidence reflection-grating monochromator/spectrometer with very high flux rates at extreme ultraviolet and soft x-ray wave lengths. The nominal resolving power of the instrument, E/ΔE, is about 300 in this energy range (∼80 eV). Three dipole-allowed 3d → 4p emission lines were observed at 80.98 eV, 80.35 eV and 79.73 eV. A broad peak at about 82.3 eV is tentatively assigned to transitions resulting from Kr 2+ , and effects of excitation energy on M/sub 4,5/ x-ray emission were observed. 9 refs., 3 figs., 1 tab

  16. Detection of Reflection Features in the Neutron Star Low-mass X-Ray Binary Serpens X-1 with NICER

    Science.gov (United States)

    Ludlam, R. M.; Miller, J. M.; Arzoumanian, Z.; Bult, P. M.; Cackett, E. M.; Chakrabarty, D.; Enoto, T.; Fabian, A. C.; Gendreau, K. C.; Guillot, S.; Homan, J.; Jaisawal, G. K.; Keek, L.; La Marr, B.; Malacaria, C.; Markwardt, C. B.; Steiner, J. F.; Strohmayer, T. E.

    2018-05-01

    We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in addition to the signature broad, asymmetric Fe K line. We confirm the presence of these lines by comparing the NICER data to archival observations with XMM-Newton/Reflection Grating Spectrometer (RGS) and NuSTAR. Both features originate close to the innermost stable circular orbit (ISCO). When modeling the lines with the relativistic line model RELLINE, we find that the Fe L blend requires an inner disk radius of {1.4}-0.1+0.2 R ISCO and Fe K is at {1.03}-0.03+0.13 R ISCO (errors quoted at 90%). This corresponds to a position of {17.3}-1.2+2.5 km and {12.7}-0.4+1.6 km for a canonical NS mass ({M}NS}=1.4 {M}ȯ ) and dimensionless spin value of a = 0. Additionally, we employ a new version of the RELXILL model tailored for NSs and determine that these features arise from a dense disk and supersolar Fe abundance.

  17. Constraining the inclination of the Low-Mass X-ray Binary Cen X-4

    Science.gov (United States)

    Hammerstein, Erica K.; Cackett, Edward M.; Reynolds, Mark T.; Miller, Jon M.

    2018-05-01

    We present the results of ellipsoidal light curve modeling of the low mass X-ray binary Cen X-4 in order to constrain the inclination of the system and mass of the neutron star. Near-IR photometric monitoring was performed in May 2008 over a period of three nights at Magellan using PANIC. We obtain J, H and K lightcurves of Cen X-4 using differential photometry. An ellipsoidal modeling code was used to fit the phase folded light curves. The lightcurve fit which makes the least assumptions about the properties of the binary system yields an inclination of 34.9^{+4.9}_{-3.6} degrees (1σ), which is consistent with previous determinations of the system's inclination but with improved statistical uncertainties. When combined with the mass function and mass ratio, this inclination yields a neutron star mass of 1.51^{+0.40}_{-0.55} M⊙. This model allows accretion disk parameters to be free in the fitting process. Fits that do not allow for an accretion disk component in the near-IR flux gives a systematically lower inclination between approximately 33 and 34 degrees, leading to a higher mass neutron star between approximately 1.7 M⊙ and 1.8 M⊙. We discuss the implications of other assumptions made during the modeling process as well as numerous free parameters and their effects on the resulting inclination.

  18. The Complete Local Volume Groups Sample - I. Sample selection and X-ray properties of the high-richness subsample

    Science.gov (United States)

    O'Sullivan, Ewan; Ponman, Trevor J.; Kolokythas, Konstantinos; Raychaudhury, Somak; Babul, Arif; Vrtilek, Jan M.; David, Laurence P.; Giacintucci, Simona; Gitti, Myriam; Haines, Chris P.

    2017-12-01

    We present the Complete Local-Volume Groups Sample (CLoGS), a statistically complete optically selected sample of 53 groups within 80 Mpc. Our goal is to combine X-ray, radio and optical data to investigate the relationship between member galaxies, their active nuclei and the hot intra-group medium (IGM). We describe sample selection, define a 26-group high-richness subsample of groups containing at least four optically bright (log LB ≥ 10.2 LB⊙) galaxies, and report the results of XMM-Newton and Chandra observations of these systems. We find that 14 of the 26 groups are X-ray bright, possessing a group-scale IGM extending at least 65 kpc and with luminosity >1041 erg s-1, while a further three groups host smaller galaxy-scale gas haloes. The X-ray bright groups have masses in the range M500 ≃ 0.5-5 × 1013 M⊙, based on system temperatures of 0.4-1.4 keV, and X-ray luminosities in the range 2-200 × 1041 erg s-1. We find that ∼53-65 per cent of the X-ray bright groups have cool cores, a somewhat lower fraction than found by previous archival surveys. Approximately 30 per cent of the X-ray bright groups show evidence of recent dynamical interactions (mergers or sloshing), and ∼35 per cent of their dominant early-type galaxies host active galactic nuclei with radio jets. We find no groups with unusually high central entropies, as predicted by some simulations, and confirm that CLoGS is in principle capable of detecting such systems. We identify three previously unrecognized groups, and find that they are either faint (LX, R500 < 1042 erg s-1) with no concentrated cool core, or highly disturbed. This leads us to suggest that ∼20 per cent of X-ray bright groups in the local universe may still be unidentified.

  19. OSO-7 observations of high galactic latitude x-ray sources

    International Nuclear Information System (INIS)

    Markert, T.H.; Canizares, C.R.; Clark, G.W.; Li, F.K.; Northridge, P.L.; Sprott, G.F.; Wargo, G.F.

    1976-01-01

    Six hundred days of observations by the MIT X-ray detectors aboard OSO-7 have been analyzed. All-sky maps of X-ray intensity have been constructed from these data. A sample map is displayed. Seven sources with galactic latitude vertical-barb/subi//subi/vertical-bar>10degree, discovered during the mapping process, are reported, and upper limits are set on other high-latitude sources. The OSO-7 results are compared with those of Uhuru and an implication of this comparison, that many of the high-latitude sources may be variable, is discussed

  20. Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Phillips, W.

    1992-01-01

    Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond's performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows

  1. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  2. High efficiency spectro graphs for the EUV and soft x-rays

    International Nuclear Information System (INIS)

    Cash, W.

    1983-01-01

    A basic need of modern UV and x-ray astronomy is the capability to perform high resolution spectroscopy of faint stars. The use of modern grazing incidence optics can be coupled to high blaze angle reflection gratings used in the conical diffraction mount to offer a versatile, efficient approach to the design problem. The authors discuss two designs of interest: an echelle spectrograph for use longward of 100 A, and an Objective Reflection Grating Spectrograph for use in the soft x-rays. General design considerations and measurements of grating efficiencies are also presented

  3. Digital signal processors for cryogenic high-resolution x-ray detector readout

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Drury, Owen B.; Bechstein, Sylke; Hennig, Wolfgang; Momayezi, Michael

    2003-01-01

    We are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer online filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. We discuss DSP performance with our 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy. (author)

  4. REFINED NEUTRON STAR MASS DETERMINATIONS FOR SIX ECLIPSING X-RAY PULSAR BINARIES

    International Nuclear Information System (INIS)

    Rawls, Meredith L.; Orosz, Jerome A.; McClintock, Jeffrey E.; Torres, Manuel A. P.; Bailyn, Charles D.; Buxton, Michelle M.

    2011-01-01

    We present an improved method for determining the mass of neutron stars in eclipsing X-ray pulsar binaries and apply the method to six systems, namely, Vela X-1, 4U 1538-52, SMC X-1, LMC X-4, Cen X-3, and Her X-1. In previous studies to determine neutron star mass, the X-ray eclipse duration has been approximated analytically by assuming that the companion star is spherical with an effective Roche lobe radius. We use a numerical code based on Roche geometry with various optimizers to analyze the published data for these systems, which we supplement with new spectroscopic and photometric data for 4U 1538-52. This allows us to model the eclipse duration more accurately and thus calculate an improved value for the neutron star mass. The derived neutron star mass also depends on the assumed Roche lobe filling factor β of the companion star, where β = 1 indicates a completely filled Roche lobe. In previous work a range of β between 0.9 and 1.0 was usually adopted. We use optical ellipsoidal light-curve data to constrain β. We find neutron star masses of 1.77 ± 0.08 M sun for Vela X-1, 0.87 ± 0.07 M sun for 4U 1538-52 (eccentric orbit), 1.00 ± 0.10 M sun for 4U 1538-52 (circular orbit), 1.04 ± 0.09 M sun for SMC X-1, 1.29 ± 0.05 M sun for LMC X-4, 1.49 ± 0.08 M sun for Cen X-3, and 1.07 ± 0.36 M sun for Her X-1. We discuss the limits of the approximations that were used to derive the earlier mass determinations, and we comment on the implications our new masses have for observationally refining the upper and lower bounds of the neutron star mass distribution.

  5. Present status and issues regarding X-ray medical checkup vehicles in preventive medicine. Usefulness of mass screening for lung cancer by an X-ray medical checkup vehicle

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Yamada, Takaki; Doi, Masaya; Tamanoi, Toshio; Murase, Ken-ya; Mochizuki, Teruhito

    2005-01-01

    Although the prevention of habituation-related diseases has become an important topic in Japan, the early detection of cancers such as lung, gastric, and breast cancers is an important issue for x-ray-related imaging modalities. High cost-benefit and cost-effectiveness are necessary to perform mass screenings such as those for lung cancer. In order to assess cost-benefit and cost-effectiveness, a total of 100 institutions nationwide were investigated, with a 41% of recovery rate. There were at least one or two institutions in each prefecture. Cost-benefit analysis was based on factors including the price of the medical check-up vehicle, its service life, and income from the examinations. The mean price of medical check-up vehicles used for chest X-ray examinations was 4,445,000 yen. Cost-effectiveness analysis was based on the expense incurred to discover one lung cancer. According to our research, the cost-effectiveness involved in detecting one lung cancer by conventional chest X-ray examination was about 2,270,167 yen/person. Since this amount seems unduly high, it is necessary to improve cost-effectiveness. (author)

  6. THE STELLAR MASS–HALO MASS RELATION FOR LOW-MASS X-RAY GROUPS AT 0.5< z< 1 IN THE CDFS WITH CSI

    International Nuclear Information System (INIS)

    Patel, Shannon G.; Kelson, Daniel D.; Williams, Rik J.; Mulchaey, John S.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.

    2015-01-01

    Since z∼1, the stellar mass density locked in low-mass groups and clusters has grown by a factor of ∼8. Here, we make the first statistical measurements of the stellar mass content of low-mass X-ray groups at 0.5mass scales for wide-field optical and infrared surveys. Groups are selected from combined Chandra and XMM-Newton X-ray observations in the Chandra Deep Field South. These ultra-deep observations allow us to identify bona fide low-mass groups at high redshift and enable measurements of their total halo masses. We compute aggregate stellar masses for these halos using galaxies from the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey. Stars comprise ∼3%–4% of the total mass of group halos with masses 10 12.8 mass of Fornax and one-fiftieth the mass of Virgo). Complementing our sample with higher mass halos at these redshifts, we find that the stellar-to-halo mass ratio decreases toward higher halo masses, consistent with other work in the local and high redshift universe. The observed scatter about the stellar–halo mass relation is σ∼0.25 dex, which is relatively small and suggests that total group stellar mass can serve as a rough proxy for halo mass. We find no evidence for any significant evolution in the stellar–halo mass relation since z≲1. Quantifying the stellar content in groups since this epoch is critical given that hierarchical assembly leads to such halos growing in number density and hosting increasing shares of quiescent galaxies

  7. Excitation of Neutron Star f-mode in Low Mass X-ray Binaries

    International Nuclear Information System (INIS)

    Araujo, J C N de; Miranda, O D; Aguiar, O D

    2006-01-01

    Neutron Stars (NSs) present a host of pulsation modes. Only a few of them, however, is of relevance from the gravitational wave (GW) point of view. Among the various possible modes the pulsation energy is mostly stored in the f-mode in which the fluid parameters undergo the largest changes. An important question is how the pulsation modes are excited in NSs. Here we consider the excitation of the f-mode in the accreting NSs belonging to Low Mass X-ray Binaries (LMXBs), which may well be a recurrent source of GWs, since the NSs are continuously receiving matter from their companion stars. We also discuss the detectability of the GWs for the scenario considered here

  8. Phase-Resolved Spectroscopy of the Low-Mass X-ray Binary V801 Ara

    Science.gov (United States)

    Brauer, Kaley; Vrtilek, Saeqa Dil; Peris, Charith; McCollough, Michael

    2018-06-01

    We present phase-resolved optical spectra of the low mass X-ray binary system V801 Ara. The spectra, obtained in 2014 with IMACS on the Magellan/Baade telescope at Las Campanas Observatory, cover the full binary orbit of 3.8 hours. They contain strong emission features allowing us to map the emission of Hα, Hβ, He II λ4686, and the Bowen blend at λ4640. The radial velocity curves of the Bowen blend shows significantly stronger modulation at the orbital period than Hα as expected for the former originating on the secondary with the latter consistent with emission dominated by the disk. Our tomograms of Hα and Hβ are the most detailed studies of these lines for V801 to date and they clearly detect the accretion disk. The Hβ emission extends to higher velocities than Hα, suggesting emission from closer to the neutron star and differentiating temperature variance in the accretion disk for the first time. The center of the accretion disk appears offset from the center-of-mass of the neutron star as has been seen in several other X-ray binaries. This is often interpreted to imply disk eccentricity. Our tomograms do not show strong evidence for a hot spot at the point where the accretion stream hits the disk. This could imply a reduced accretion rate or could be due to the spot being drowned out by bright accretion flow around it. There is enhanced emission further along the disk, however, which implies gas stream interaction downstream of the hot spot.

  9. Differential dose albedo for high-energy X-rays on concrete slab

    International Nuclear Information System (INIS)

    Kato, Hideki

    2006-01-01

    We computed the differential dose albedo (α D ) for high-energy X-rays on a concrete slab when the incident angle, reflection angle, and azimuth angle were changed, by means of Monte Carlo simulation. We found that α D changed with incident, reflection, and azimuth angles to the concrete slab. On the whole, the larger the incident angle, the larger α D tended to become. If the incident angle and reflection angle were the same, the larger the azimuth angle, the smaller α D tended to become. When the incident, reflection, and azimuth angles were the same, the smaller the X-ray energy was, the larger α D became, in the order of 10 MV, 6 MV, and 4 MV X-rays. (author)

  10. A sounding rocket payload for X-ray astronomy employing high-resolution microcalorimeters

    International Nuclear Information System (INIS)

    McCammon, D.; Almy, R.; Deiker, S.; Morgenthaler, J.; Kelley, R.L.; Marshall, F.J.; Moseley, S.H.; Stahle, C.K.; Szymkowiak, A.E.

    1996-01-01

    We have completed a sounding rocket payload that will use a 36 element array of microcalorimeters to obtain a high-resolution spectrum of the diffuse X-ray background between 0.1 and 1 keV. This experiment uses only mechanical collimation of the incoming X-rays, but the cryostat and detector assembly have been designed to be placed at the focus of a conical foil imaging mirror which will be employed on subsequent flights to do spatially resolved spectroscopy of supernova remnants and other extended objects. The detector system is a monolithic array of silicon calorimeters with ion-implanted thermometers and HgTe X-ray absorbers. The 1 mm 2 pixels achieve a resolution of about 8 eV FWHM operating at 60 mK. (orig.)

  11. Fine-pitch glass GEM for high-resolution X-ray imaging

    International Nuclear Information System (INIS)

    Fujiwara, T.; Toyokawa, H.; Mitsuya, Y.

    2016-01-01

    We have developed a fine-pitch glass gas electron multiplier (G-GEM) for high-resolution X-ray imaging. The fine-pitch G-GEM is made of a 400 μm thick photo-etchable glass substrate with 150 μm pitch holes. It is fabricated using the same wet etching technique as that for the standard G-GEM. In this work, we present the experimental results obtained with a single fine-pitch G-GEM with a 50 × 50 mm 2 effective area. We recorded an energy resolution of 16.2% and gas gain up to 5,500 when the detector was irradiated with 5.9 keV X-rays. We present a 50 × 50 mm 2 X-ray radiograph image acquired with a scintillation gas and optical readout system.

  12. X-ray spectroscopy of highly-charged ions in a storage ring. Invited lecture

    International Nuclear Information System (INIS)

    Beyer, H.F.

    1994-11-01

    The purpose of the present lectures is to carry through the methods and procedures necessary for a meaningful spectroscopy of the heaviest few-electron ions in relation to present theories. Results achieved so far in accelerator-based X-ray experiments are highlighted with emphasis on recent developments on heavy-ion storage rings. Starting with a brief account of the basics of one-electron ions, the motivation for doing X-ray spectroscopy of the simplest atomic systems with a high nuclear charge is given. In section 2 X-ray instrumentation and techniques are discussed including the precautions necessary when dealing with fast-beam sources. Peculiarities of heavy-ion storage rings are investigated in section 3 with regard to their use for spectroscopy. In section 4 are discussed results obtained so far on the measurement of the Lamb shift in very heavy ions. Section 5 gives some perspectives for the near future. (orig.)

  13. Simulation of high-resolution X-ray microscopic images for improved alignment

    International Nuclear Information System (INIS)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying; Tian Yangchao

    2011-01-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  14. Preliminary investigation of changes in x-ray multilayer optics subjected to high radiation flux

    International Nuclear Information System (INIS)

    Hockaday, M.P.; Blake, R.L.; Grosso, J.S.; Selph, M.M.; Klein, M.M.; Matuska, W. Jr.; Palmer, M.A.; Liefeld, R.J.

    1985-01-01

    A variety of metal multilayers was exposed to high x-ray flux using Sandia National Laboratories' PROTO II machine in the gas puff mode. Fluxes incident on the multilayers above 700 MW/cm 2 in total radiation, in nominal 20 ns pulses, were realized. The neon hydrogen- and helium-like resonance lines were used to probe the x-ray reflectivity properties of the multilayers as they underwent change of state during the heating pulse. A fluorescer-fiber optic-streak camera system was used to monitor the changes in x-ray reflectivity as a function of time and irradiance. Preliminary results are presented for a W/C multilayer. Work in progress to model the experiment is discussed. 13 refs., 4 figs

  15. X-ray diffraction patterns of single crystals implanted with high-energy light ions

    International Nuclear Information System (INIS)

    Wieteska, K.

    1998-01-01

    X-ray diffraction patterns of silicon and gallium arsenide single crystals implanted with high-energy protons and α-particles were studied. A various models of lattice parameter changes were analysed. The agreement between the simulation and experiment proves that the lattice parameter depth-distribution can be assumed to be proportional to vacancy distribution obtained by Monte-Carlo method and from the Biersack-Ziegler theory. Most of the X-ray experiments were performed using synchrotron source of X-ray radiation in particular in the case of back-reflection and transmission section topographic methods. The new method of direct determination of the implanted ion ranges was proposed using synchrotron radiation back-reflection section topography. A number of new interference phenomena was revealed and explained. These interferences are important in the applications of diffraction theory in studying of the real structure of implanted layers. (author)

  16. High Pressure X-Ray Diffraction Studies on Nanocrystalline Materials

    Science.gov (United States)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2003-01-01

    Application of in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2 to 30 nrn diameter in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (nanoparticles of different grain size.

  17. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Craig, William W.; Christensen, Finn Erland

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X...

  18. High pressure X-ray preionized TEMA-CO2 laser

    NARCIS (Netherlands)

    Bonnie, R.J.M.; Witteman, W.J.

    1987-01-01

    The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5–20

  19. Plastic nuclear track detectors as high x-ray and gamma dosimeters

    International Nuclear Information System (INIS)

    Chong Chon Sing

    1995-01-01

    A brief review of recent studies on the effects of high doses of x-ray and gamma ray on the track registration properties of several plastic track detectors is presented. The bulk etching rates and the etched track sizes have been found to increase with the dose in the range up to 100 Mrad. These results suggest that the changes in track registration characteristics can be employed as an index of the radiation dose in the megarad region. In particular, recent results on the effect of X-ray irradiation on two types of cellulose nitrate track detectors obtained in our laboratory are reported in this paper. (author)

  20. X-Ray diffraction studies of silicon implanted with high energy ions

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.; Graeff, W.

    1998-01-01

    The character of lattice deformation in silicon implanted with high energy alpha-particles and protons was studied using a number of X-ray methods. The experiments included double-crystal spectrometer method as well as single crystal section and projection topography realised both with conventional and synchrotron X-ray sources. All observed diffraction patterns were reasonably explainable assuming the lattice parameter distribution proportional to the vacancy-interstitial distribution coming from the Biersack-ziegler theory. The theoretical rocking curves and distribution in back-reflection double-crystal and section topographs well corresponding to the experimental results were calculated using numerical integration of the takagi-taupin equations

  1. Development of the super high angular resolution principle for X-ray imaging

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2011-01-01

    Development of the Super High Angular Resolution Principle (SHARP) for coded-mask X-ray imaging is presented. We prove that SHARP can be considered as a generalized coded mask imaging method with a coding pattern comprised of diffraction-interference fringes in the mask pattern. The angular resolution of SHARP can be improved by detecting the fringes more precisely than the mask's element size, i.e. by using a detector with a pixel size smaller than the mask's element size. The proposed mission SHARP-X for solar X-ray observations is also briefly discussed. (research papers)

  2. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  3. A high-resolution multiwire area detector for X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Faruqi, A R; Andrews, H [Medical Research Council, Cambridge (UK). Lab. of Molecular Biology

    1989-11-10

    A high-resolution multiwire area detector has been developed for recording X-ray scattering from biological specimens. The detector is 100x100 mm{sup 2} and, under the present operating conditions, has a spatial resolution of about 250 {mu}m in both directions. The detector is set up on a double-mirror focusing camera on a rotating anode X-ray generator and has been used in a number of small-angle experiments, two of which are described in this paper. (orig.).

  4. Study of x-ray emission enhancement via high contrast femtosecond laser interacting with solid foil

    International Nuclear Information System (INIS)

    Chen, Liming; Kando, Masaki; Bulanov, S.V.; Koga, James K.; Tajima, Toshiki; Xu M.H.; Yuan X.H.; Li Y.T.; Dong Q.L.; Zhang J.

    2007-01-01

    We studied the hard x-ray emission and the Kα x-ray conversion efficiency (η K ) produced by 60 fs high contrast frequency doubled Ti: sapphire laser pulse focused on Cu foil target. Cu Kα photon emission obtained with second harmonic laser pulse is more intense than the case of fundamental laser pulse. The Cu η K shows strong dependence on laser nonlinearly skewed pulse shape and reaches the maximum value 4x10 -4 with 100 fs negatively skewed pulse. It shows the electron spectrum shaping contribute to the increase of η K . (author)

  5. High energy X-ray CT system using a linear accelerator for automobile parts inspection

    International Nuclear Information System (INIS)

    Kanamori, T.; Sukita, T.

    1995-01-01

    A high energy X-ray CT system (maximum photon energy: 0.95 MeV) has been developed for industrial use. This system employs a linear accelerator as an X-ray source. It is able to image the cross section of automobile parts and can be applied to a solidification analysis study of the cylinder head in an automobile. This paper describes the features of the system and application results which can be related to solidification analysis of the cylinder head when fabricated from an aluminum casting. Some cross-sectional images are also presented as evidence for nondestructive inspection of automobile parts. (orig.)

  6. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  7. XTE J1701-462 AND ITS IMPLICATIONS FOR THE NATURE OF SUBCLASSES IN LOW-MAGNETIC-FIELD NEUTRON STAR LOW-MASS X-RAY BINARIES

    International Nuclear Information System (INIS)

    Homan, Jeroen; Fridriksson, Joel K.; Remillard, Ronald A.; Lewin, Walter H. G.; Van der Klis, Michiel; Wijnands, Rudy; Altamirano, Diego; Mendez, Mariano; Lin Dacheng; Casella, Piergiorgio; Belloni, Tomaso M.

    2010-01-01

    We report on an analysis of Rossi X-Ray Timing Explorer data of the transient neutron star low-mass X-ray binary (NS-LMXB) XTE J1701-462, obtained during its 2006-2007 outburst. The X-ray properties of the source changed between those of various types of NS-LMXB subclasses. At high luminosities, the source switched between two types of Z source behavior and at low luminosities we observed a transition from Z source to atoll source behavior. These transitions between subclasses primarily manifest themselves as changes in the shapes of the tracks in X-ray color-color (CD) and hardness-intensity diagrams (HID), but they are accompanied by changes in the kHz quasi-periodic oscillations, broadband variability, burst behavior, and/or X-ray spectra. We find that for most of the outburst the low-energy X-ray flux is a good parameter to track the gradual evolution of the tracks in CD and HID, allowing us to resolve the evolution of the source in greater detail than before and relate the observed properties to other NS-LMXBs. We further find that during the transition from Z to atoll, characteristic behavior known as the atoll upper banana can equivalently be described as the final stage of a weakening Z source flaring branch, thereby blurring the line between the two subclasses. Our findings strongly suggest that the wide variety in behavior observed in NS-LXMBs with different luminosities can be linked through changes in a single variable parameter, namely the mass accretion rate, without the need for additional differences in the neutron star parameters or viewing angle. We briefly discuss the implications of our findings for the spectral changes observed in NS-LMXBs and suggest that, contrary to what is often assumed, the position along the color-color tracks of Z sources is not determined by the instantaneous mass accretion rate.

  8. Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas

    International Nuclear Information System (INIS)

    Weninger, Clemens

    2015-10-01

    Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The

  9. High resolution X-ray spectroscopy of thermal plasmas

    International Nuclear Information System (INIS)

    Canizares, C.R.

    1990-01-01

    This paper concentrates on reviewing highlights of the Focal Plane Crystal Spectrometer (FPCS) results on thermal plasmas, particularly supernova remnants (SNRs) and clusters of galaxies from the Einstein observatory. During Einstein's short but happy life, we made over 400 observations with the FPCS of 40 different objects. Three quarters of these were objects in which the emission was primarily from optically thin thermal plasma, primarily supernova remnants (SNRs) and clusters of galaxies. Thermal plasmas provide an excellent illustration of how spectral data, particularly high resolution spectral data, can be an important tool for probing the physical properties of astrophysical objects. (author)

  10. High resolution X-ray spectroscopy in light antiprotonic atoms

    CERN Document Server

    Borchert, G L; Augsburger, M A; Castelli, C M; Chatellard, D; Egger, J P; El-Khoury, P; Elble, M; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    2000-01-01

    At the LEAR facility, CERN, antiprotonic L alpha transitions in light elements have been investigated with a focussing crystal spectrometer. The high resolution of the experiment allowed for the first time to resolve in pH/pH the 2/sup 3/P/sub 0/ state from the close-lying states 2/sup 3/P/sub 2/, 2/sup 1/P/sub 1/, and 2/sup 3/P /sub 1/. In pD the corresponding transitions were found to be more than an order of magnitude broader. To a large extent the results for pH support the meson exchange model. (15 refs).

  11. High resolution X-ray tomography for stationary multiphase flows

    International Nuclear Information System (INIS)

    Schmitz, D.; Reinecke, N.; Petritsch, G.; Mewes, D.

    1998-01-01

    The high resolution which can be obtained by computer assisted tomography is used to investigate the liquid distribution and void fraction in random and structured packing. With a spatial resolution of 0.4x0.4mm 2 it is possible even to detect thin liquid films on structured packings. The experimental set-up consists of a custom-built second generation tomograph. The imaged object consists of a column filled with either a random ceramic packing of spheres or a structured metal packing. The liquid and void fraction distribution in random and structured packings with a quiescent gaseous phase is visualized. The water/air system is used. The liquid distributor consists of a perforated plate. The experimental hold-up values averaged over the column cross-section are in good agreement with empirical equations. (author)

  12. High resolution x-ray CMT: Reconstruction methods

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.K.

    1997-02-01

    This paper qualitatively discusses the primary characteristics of methods for reconstructing tomographic images from a set of projections. These reconstruction methods can be categorized as either {open_quotes}analytic{close_quotes} or {open_quotes}iterative{close_quotes} techniques. Analytic algorithms are derived from the formal inversion of equations describing the imaging process, while iterative algorithms incorporate a model of the imaging process and provide a mechanism to iteratively improve image estimates. Analytic reconstruction algorithms are typically computationally more efficient than iterative methods; however, analytic algorithms are available for a relatively limited set of imaging geometries and situations. Thus, the framework of iterative reconstruction methods is better suited for high accuracy, tomographic reconstruction codes.

  13. X-ray transitions in highly charged neonlike ions

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; von Gjoeler, S.; Bitter, M.

    1987-11-01

    Wavelength measurements of n=3 to n=2 transitions in neonlike Xe 44+ , La 47+ , Nd 50+ , and Eu 53+ have been made using a high-resolution Bragg-crystal spectrometer on the Princeton Large Torus tokamak. The measurements cover the wavelength regions 2.00 to 3.00 (angstrom) and include the electric dipole, and the electric and magnetic quadrupole transitions. The measured wavelengths are compared to energy levels obtained from a multiconfigurational Dirac-Fock calculation. Systematic differences between the experimental and theoretical values are found, which vary smoothly with atomic number. The magnitude of the differences depends on the particular type of transition and ranges from -2.8 eV to +2.2 eV. Inclusion of electron correlation corrections due to ground state correlations and (super) Coster-Kronig type fluctuations in the theoretical energies is shown to reduce the differences for some but not all types of transitions

  14. High-pressure X-ray diffraction studies of potassium chlorate

    Energy Technology Data Exchange (ETDEWEB)

    Pravica, Michael; Bai, Ligang; Bhattacharya, Neelanjan (UNLV)

    2012-03-15

    Two static high-pressure X-ray diffraction (XRD) studies of potassium chlorate have been performed at pressures of up to {approx}14.3 GPa in a diamond anvil cell at ambient temperature using the 16 ID-B undulator beamline at the Advanced Photon Source for the X-ray source. The first experiment was conducted to ascertain decomposition rates of potassium chlorate as a function of pressure. Below 2 GPa, the sample was observed to decompose rapidly in the presence of the X-ray beam and release oxygen. Above 2 GPa (near the phase I phase II transition), the decomposition rate dramatically slowed so that good quality XRD patterns could be acquired. This suggests a phase-dependent decomposition rate. In the second study, X-ray diffraction spectra were collected at pressures from 2 to 14.3 GPa by aligning virgin portions of the sample into the focused X-ray beam at each pressure. The results suggest the co-existence of mixed monoclinic (I) and rhombohedral (II) phases of potassium chlorate near 2 GPa. At pressures beyond 4 GPa, the XRD patterns show a very good fit to KClO{sub 3} in the rhombohedral phase with space group R3m, in agreement with earlier studies. No further phase transitions were observed with pressure. Decompression of the sample to ambient pressure indicated mixed phases I and II coupled with a small amount of synchrotron X-ray-induced decomposition product. The equation of state within this pressure regime has been determined.

  15. Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions

    Science.gov (United States)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.

    2014-01-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  16. Short-time X-ray diffraction with an efficient-optimized, high repetition-rate laser-plasma X-ray-source

    International Nuclear Information System (INIS)

    Kaehle, Stephan

    2009-01-01

    This thesis deals with the production and application of ultrashort X-ray pulses. In the beginning different possibilities for the production of X-ray pulses with pulse durations of below one picosecond are presented, whereby the main topic lies on the so called laser-plasma X-ray sources with high repetition rate. In this case ultrashort laser pulses are focused on a metal, so that in the focus intensities of above 10 16 W/cm 2 dominate. In the ideal case in such way ultrafast electrons are produced, which are responsible for line radiation. In these experiments titanium K α radiation is produced, thes photons possess an energy of 4.51 keV. For the efficient production of line radiation here the Ti:Sa laser is optimized in view of the laser energy and the pulse shape and the influence of the different parameters on the K α production systematically studied. The influences of laser intensity, system-conditioned pre-pulses and of phase modulation are checked. It turns out that beside the increasement of the K α radiation by a suited laser intensity a reduction of the X-ray background radiation is of deciding importance for the obtaining of clear diffraction images. This background radiation is mainly composed of bremsstrahlung. It can be suppressed by the avoidance of intrinsic pre-pulses and by means of 2nd-order phase modulation. By means of optical excitation and X-ray exploration experiments the production of acoustic waves after ultrashort optical excitation in a 150 nm thick Ge(111) film on Si(111) is studied. These acoustic waves are driven by thermal (in this time scale time-independent) and electronic (time dependent) pressure amounts. As essential results it turns out that the relative amount of the electronic pressure increases with decreasing excitation density [de

  17. A fast search strategy for gravitational waves from low-mass x-ray binaries

    International Nuclear Information System (INIS)

    Messenger, C; Woan, G

    2007-01-01

    We present a new type of search strategy designed specifically to find continuously emitting gravitational wave sources in known binary systems. A component of this strategy is based on the incoherent summation of frequency-modulated binary signal sidebands, a method previously employed in the detection of electromagnetic pulsar signals from radio observations. The search pipeline can be divided into three stages: the first is a wide bandwidth, F-statistic search demodulated for sky position. This is followed by a fast second stage in which areas in frequency space are identified as signal candidates through the frequency domain convolution of the F-statistic with an approximate signal template. For this second stage only precise information on the orbit period and approximate information on the orbital semi-major axis are required a priori. For the final stage we propose a fully coherent Markov chain Monte Carlo based follow-up search on the frequency subspace defined by the candidates identified by the second stage. This search is particularly suited to the low-mass x-ray binaries, for which orbital period and sky position are typically well known and additional orbital parameters and neutron star spin frequency are not. We note that for the accreting x-ray millisecond pulsars, for which spin frequency and orbital parameters are well known, the second stage can be omitted and the fully coherent search stage can be performed. We describe the search pipeline with respect to its application to a simplified phase model and derive the corresponding sensitivity of the search

  18. X-ray spectroscopic study of high-temperature plasmas by curved crystal spectrometer

    International Nuclear Information System (INIS)

    Morita, Shigeru.

    1983-07-01

    Extensive studies have been carried out on the structure of X-ray spectra from the highly stripped ions of first transition elements and their behavior in high temperature plasma, using a high resolution crystal spectrometer. Calculation was made on the design and the use of a curved crystal spectrometer for plasma diagnostics. A Johann type crystal spectrometer for measuring X-ray lines was constructed on the basis of the calculation. The characteristics of curved crystals of LiF, Ge and quartz used for the measurement of Kα lines from first transition elements were investigated. Vacuum sparks have been formed for producing high temperature plasma which emits X-ray lines from highly stripped ions. Two different structures of vacuum spark plasma were shown, that is, thermalized point plasma and extended plasma associated with non-thermal electrons. The X-ray lines from the extended plasma, those associated with the K shell from the point plasma and the Kα lines of Ti through Zn from the point plasma have been observed. (Kako, I.)

  19. Bayesian Multiscale Analysis of X-Ray Jet Features in High Redshift Quasars

    Science.gov (United States)

    McKeough, Kathryn; Siemiginowska, A.; Kashyap, V.; Stein, N.

    2014-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet’s relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. We implement a sophisticated Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) (Esch et al. 2004; Conners & van Dyk 2007), to analyze jet features in 11 Chandra images of high redshift quasars (z ~ 2 - 4.8). Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. We measured the ratios of the X-ray and radio luminosities of the detected features and found that they are consistent with the CMB radiation relationship. We derived a range of the bulk lorentz factor (Γ) for detected jet features under the CMB jet emission model. There is no discernible trend of Γ with redshift within the sample. The efficiency of the X-ray emission between the detected jet feature and the corresponding quasar also shows no correlation with redshift. This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. We thank Teddy Cheung for providing the VLA radio images. Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D. N., Connors, A., Karovska, M., & van Dyk, D. A. 2004, ApJ, 610, 1213

  20. The impact of X-rays on molecular cloud fragmentation and the inital mass function

    NARCIS (Netherlands)

    Hocuk, S.; Spaans, M.

    2010-01-01

    Star formation is regulated through a variety of feedback processes. In this study, we treat feedback by X-rays and discuss its implications. Our aim is to investigate whether star formation is significantly affected when a star forming cloud resides in the vicinity of a strong X-ray source. We

  1. A CHANGE IN THE QUIESCENT X-RAY SPECTRUM OF THE NEUTRON STAR LOW-MASS X-RAY BINARY MXB 1659-29

    Energy Technology Data Exchange (ETDEWEB)

    Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock Street, Detroit, MI 48201 (United States); Brown, E. F. [Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory, and the Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Cumming, A. [Department of Physics, McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada); Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Fridriksson, J. K.; Wijnands, R. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Science Park 904, 1098-XH Amsterdam (Netherlands); Homan, J., E-mail: ecackett@wayne.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139 (United States)

    2013-09-10

    The quasi-persistent neutron star low-mass X-ray binary MXB 1659-29 went into quiescence in 2001, and we have followed its quiescent X-ray evolution since. Observations over the first 4 yr showed a rapid drop in flux and temperature of the neutron star atmosphere, interpreted as cooling of the neutron star crust which had been heated during the 2.5 yr outburst. However, observations taken approximately 1400 and 2400 days into quiescence were consistent with each other, suggesting the crust had reached thermal equilibrium with the core. Here we present a new Chandra observation of MXB 1659-29 taken 11 yr into quiescence and 4 yr since the last Chandra observation. This new observation shows an unexpected factor of {approx}3 drop in count rate and change in spectral shape since the last observation, which cannot be explained simply by continued cooling. Two possible scenarios are that either the neutron star temperature has remained unchanged and there has been an increase in the column density, or, alternatively the neutron star temperature has dropped precipitously and the spectrum is now dominated by a power-law component. The first scenario may be possible given that MXB 1659-29 is a near edge-on system, and an increase in column density could be due to build-up of material in, and a thickening of, a truncated accretion disk during quiescence. But, a large change in disk height may not be plausible if standard accretion disk theory holds during quiescence. Alternatively, the disk may be precessing, leading to a higher column density during this latest observation.

  2. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    Science.gov (United States)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x-ray

  3. Burn out or fade away? On the X-ray and magnetic death of intermediate mass stars

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Jeremy J.; Kashyap, Vinay; Günther, H. Moritz; Wright, Nicholas J. [Smithsonian Astrophysical Observatory, MS-3, 60 Garden Street, Cambridge, MA 02138 (United States); Braithwaite, Jonathan, E-mail: jdrake@cfa.harvard.edu [Argelander Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany)

    2014-05-10

    The nature of the mechanisms apparently driving X-rays from intermediate mass stars lacking strong convection zones or massive winds remains poorly understood, and the possible role of hidden, lower mass close companions is still unclear. A 20 ks Chandra HRC-I observation of HR 4796A, an 8 Myr old main sequence A0 star devoid of close stellar companions, has been used to search for a signature or remnant of magnetic activity from the Herbig Ae phase. X-rays were not detected and the X-ray luminosity upper limit was L{sub X} ≤ 1.3 × 10{sup 27} erg s{sup –1}. The result is discussed in the context of various scenarios for generating magnetic activity, including rotational shear and subsurface convection. A dynamo driven by natal differential rotation is unlikely to produce observable X rays, chiefly because of the difficulty in getting the dissipated energy up to the surface of the star. A subsurface convection layer produced by the ionization of helium could host a dynamo that should be effective throughout the main sequence but can only produce X-ray luminosities of the order 10{sup 25} erg s{sup –1}. This luminosity lies only moderately below the current detection limit for Vega. Our study supports the idea that X-ray production in Herbig Ae/Be stars is linked largely to the accretion process rather than the properties of the underlying star, and that early A stars generally decline in X-ray luminosity at least 100,000 fold in only a few million years.

  4. In-situ high-P, T X-ray microtomographic imaging during large deformation

    DEFF Research Database (Denmark)

    Wang, Y; Lesher, Charles

    2011-01-01

    We have examined the microstructural evolution of a two-phase composite (olivine + Fe-Ni-S) during large shear deformation, using a newly developed high-pressure X-ray tomography microscope. Two samples were examined: a load-bearing framework–type texture, where the alloy phase (Fe-Ni-S) was pres...

  5. Solid State High Voltage Supply for EB and X-Ray Generators

    Czech Academy of Sciences Publication Activity Database

    Zobač, Martin; Vlček, Ivan

    2009-01-01

    Roč. 44, 5-6 (2009), s. 73-75 ISSN 0861-4717 R&D Projects: GA AV ČR KAN300100702 Institutional research plan: CEZ:AV0Z20650511 Keywords : high voltage supply * electron beam generator * x-ray generator Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  6. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

    Science.gov (United States)

    Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas

    2017-12-01

    In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

  7. A structural view of Pd model catalysts : high-pressure surface X-Ray diffraction

    NARCIS (Netherlands)

    Rijn, Richard van

    2012-01-01

    This thesis describes the development of a combined high-pressure/ultrahigh-vacuum flow reactor for the study of model catalysts by means of surface x-ray diffraction and grazing incidence small angle scattering. The system was used to measure a stability diagram for the different oxide phases

  8. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    International Nuclear Information System (INIS)

    Marrs, R.E.; Bennett, C.; Chen, M.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab

  9. Correlation between X-ray and high energy gamma-ray emission form Cygnus X-3

    International Nuclear Information System (INIS)

    Weekes, T.C.; Danaher, S.; Fegan, D.J.; Porter, N.A.

    1981-01-01

    In May-June 1980, the 4.8 hour modulated X-ray flux from Cygnus X-3 underwent a significant change in the shape of the light curve; this change correlates with the peak in the high-energy (E > 2 x 10 12 eV) gamma ray emission at the same epoch. (orig.)

  10. Constraining omega from X-ray properties of clusters of galaxies at high redshifts

    DEFF Research Database (Denmark)

    Sadat, R.; Blanchard, A.; Oukbir, J.

    1997-01-01

    Properties of high redshift clusters are a fundamental source of information for cosmology. It has been shown by Oukbir and Blanchard (1997) that the combined knowledge of the redshift distribution of X-ray clusters of galaxies and the luminosity-temperature correlation, L-X - T-X, provides a pow...

  11. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    International Nuclear Information System (INIS)

    Anderson, S.G.; Barty, C.P.J.; Betts, S.M.; Brown, W.J.; Crane, J.K.; Cross, R.R.; Fittinghoff, D.N.; Gibson, D.J.; Hartemann, F.V.; Kuba, J.; LaSage, G.P.; Rosenzweig, J.B.; Slaughter, D.R.; Springer, P.T.; Tremaine, A.M.

    2003-01-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10 20 photons/s/0.1% bandwidth/mm 2 /mrad 2 . Initial results are reported and compared to theoretical calculations

  12. High Pressure X-ray Absorption Studies on Correlated-Electron Systems

    International Nuclear Information System (INIS)

    Cornelius, Andrew L.

    2016-01-01

    This project used high pressure to alter the electron-electron and electron-lattice interactions in rare earth and actinide compounds. Knowledge of these properties is the starting points for a first-principles understanding of electronic and electronically related macroscopic properties. The research focused on a systematic study of x-ray absorption measurements on rare earth and actinide compounds.

  13. Evaluation of high packing density powder X-ray screens by Monte Carlo methods

    International Nuclear Information System (INIS)

    Liaparinos, P.; Kandarakis, I.; Cavouras, D.; Kalivas, N.; Delis, H.; Panayiotakis, G.

    2007-01-01

    Phosphor materials are employed in intensifying screens of both digital and conventional X-ray imaging detectors. High packing density powder screens have been developed (e.g. screens in ceramic form) exhibiting high-resolution and light emission properties, and thus contributing to improved image transfer characteristics and higher radiation to light conversion efficiency. For the present study, a custom Monte Carlo simulation program was used in order to examine the performance of ceramic powder screens, under various radiographic conditions. The model was developed using Mie scattering theory for the description of light interactions, based on the physical characteristics (e.g. complex refractive index, light wavelength) of the phosphor material. Monte Carlo simulations were carried out assuming: (a) X-ray photon energy ranging from 18 up to 49 keV, (b) Gd 2 O 2 S:Tb phosphor material with packing density of 70% and grain size of 7 μm and (c) phosphor thickness ranging between 30 and 70 mg/cm 2 . The variation of the Modulation Transfer Function (MTF) and the Luminescence Efficiency (LE) with respect to the X-ray energy and the phosphor thickness was evaluated. Both aforementioned imaging characteristics were shown to take high values at 49 keV X-ray energy and 70 mg/cm 2 phosphor thickness. It was found that high packing density screens may be appropriate for use in medical radiographic systems

  14. A CHANDRA PERSPECTIVE ON GALAXY-WIDE X-RAY BINARY EMISSION AND ITS CORRELATION WITH STAR FORMATION RATE AND STELLAR MASS: NEW RESULTS FROM LUMINOUS INFRARED GALAXIES

    International Nuclear Information System (INIS)

    Lehmer, B. D.; Jenkins, L. P.; Alexander, D. M.; Goulding, A. D.; Roberts, T. P.; Bauer, F. E.; Brandt, W. N.; Ptak, A.

    2010-01-01

    We present new Chandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D H ∼ 20 cm -2 . The LIRGs in our sample have total infrared (8-1000 μm) luminosities in the range of L IR ∼ (1-8) x 10 11 L sun . The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M * ) for the sample. Under the assumption that the galaxy-wide 2-10 keV luminosity (L gal HX ) traces the combined emission from high-mass X-ray binaries (HMXBs) and low-mass X-ray binaries, and that the power output from these components is linearly correlated with SFR and M * , respectively, we constrain the relation L gal HX = αM * + βSFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of α = (9.05 ± 0.37) x 10 28 erg s -1 M -1 sun and β = (1.62 ± 0.22) x 10 39 erg s -1 (M sun yr -1 ) -1 . This scaling provides a more physically meaningful estimate of L gal HX , with ∼0.1-0.2 dex less scatter, than a direct linear scaling with SFR. Our results suggest that HMXBs dominate the galaxy-wide X-ray emission for galaxies with SFR/M * ∼>5.9 x 10 -11 yr -1 , a factor of ∼2.9 times lower than previous estimates. We find that several of the most powerful LIRGs and ULIRGs, with SFR/M * ∼> 10 -9 yr -1 , appear to be X-ray underluminous with respect to our best-fit relation. We argue that these galaxies are likely to contain X-ray binaries residing in compact star-forming regions

  15. High-brightness beamline for x-ray spectroscopy at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Jones, G. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States); Lindle, D.W. [Univ. of Nevada, Las Vegas, NV (United States)

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard x-ray beamline, and its brightness will be an order of magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12 m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS.

  16. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  17. Total Reflection X-ray Fluorescence Analysis (TXRF) using the high flux SAXS camera

    CERN Document Server

    Wobrauschek, P; Pepponi, G; Bergmann, A; Glatter, O

    2002-01-01

    Combining the high photon flux from a rotating anode X-ray tube with an X-ray optical component to focus and monochromatize the X-ray beam is the most promising instrumentation for best detection limits in the modern XRF laboratory. This is realized by using the design of a high flux SAXS camera in combination with a 4 kW high brilliant rotating Cu anode X-ray tube with a graded elliptically bent multilayer and including a new designed module for excitation in total reflection geometry within the beam path. The system can be evacuated thus reducing absorption and scattering of air and removing the argon peak in the spectra. Another novelty is the use of a Peltier cooled drift detector with an energy resolution of 148 eV at 5.9 keV and 5 mm sup 2 area. For Co detection limits of about 300 fg determined by a single element standard have been achieved. Testing a real sample NIST 1643d led to detection limits in the range of 300 ng/l for the medium Z.

  18. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    International Nuclear Information System (INIS)

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; Mancuso, Christopher; Perez-Hernandez, Jose A.; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L.; Tarazkar, Maryam; Romanov, Dmitri A.; Levis, Robert J.; Gaffney, Jim A.; Foord, Mark; Libby, Stephen B.; Jaron-Becker, Agnieskzka; Becker, Andreas; Plaja, Luis; Muranane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2015-01-01

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching - the constructive addition of x-ray waves from a large number of atoms - favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidt-limited pulse trains of ~100 attoseconds

  19. Development of X-ray CCD camera system with high readout rate using ASIC

    International Nuclear Information System (INIS)

    Nakajima, Hiroshi; Matsuura, Daisuke; Anabuki, Naohisa; Miyata, Emi; Tsunemi, Hiroshi; Doty, John P.; Ikeda, Hirokazu; Katayama, Haruyoshi

    2009-01-01

    We report on the development of an X-ray charge-coupled device (CCD) camera system with high readout rate using application-specific integrated circuit (ASIC) and Camera Link standard. The distinctive ΔΣ type analog-to-digital converter is introduced into the chip to achieve effective noise shaping and to obtain a high resolution with relatively simple circuits. The unit test proved moderately low equivalent input noise of 70μV with a high readout pixel rate of 625 kHz, while the entire chip consumes only 100 mW. The Camera Link standard was applied for the connectivity between the camera system and frame grabbers. In the initial test of the whole system, we adopted a P-channel CCD with a thick depletion layer developed for X-ray CCD camera onboard the next Japanese X-ray astronomical satellite. The characteristic X-rays from 109 Cd were successfully read out resulting in the energy resolution of 379(±7)eV (FWHM) at 22.1 keV, that is, ΔE/E=1.7% with a readout rate of 44 kHz.

  20. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging

    International Nuclear Information System (INIS)

    Arvanitis, C. D.; Bohndiek, S. E.; Royle, G.; Blue, A.; Liang, H. X.; Clark, A.; Prydderch, M.; Turchetta, R.; Speller, R.

    2007-01-01

    Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525x525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25x25 μm pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10 5 electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 μm, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at ∼0.44 μC/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a:Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled to structured CsI:Tl can

  1. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    International Nuclear Information System (INIS)

    Chow, P.; Xiao, Y. M.; Rod, E.; Bai, L. G.; Shen, G. Y.; Sinogeikin, S.; Gao, N.; Ding, Y.; Mao, H.-K.

    2015-01-01

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input field of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation

  2. X-ray CT high-density artefact suppression in cryosurgery

    International Nuclear Information System (INIS)

    Wei Jikun; Sandison, George A; Chen Laigao; Liang Yun; Xu, Lisa X

    2002-01-01

    Advantages of x-ray CT for imaging guidance of cryosurgery include 3D visualization of frozen and unfrozen tissue and calibration of temperature in the tissue water-ice interface (0-10 deg. C) to Hounsfield units. However, use of x-ray CT images and their thermal calibration can be compromised by the cryoprobes generating high-density streak artefacts. A new subtraction technique for artefact suppression is proposed and tested in prostate cryosurgery simulations. By subtracting the measured CT x-ray projection profile without cryoprobes from the profile with cryoprobes plus iceballs, one obtains the combined profile of the cryoprobes and a low value background. Polynomial interpolation to obtain the background profile allows its addition to the original profile without probes. The result may then be fed to a conventional filtered back-projection routine to reconstruct the probe-free image. Finally the cryoprobe pixels in the originally constructed image with probes and iceballs are added back to the probe-free image to get the final artefact-suppressed image. The major advantage of this subtraction technique is that it can successfully suppress the high-density artefacts in bone-abundant body regions such as the pelvis. X-ray CT images of cryoprobe arrays in a homogeneous gelatin phantom and the pelvic region of an anthropomorphic Rando phantom containing a human skeleton were generated. After suppression, cryoprobe metal artefact streaks are reduced and visualization of the positions and dimensions of the cryoprobes are well preserved. (note)

  3. Combined analysis of 1,3-benzodioxoles by crystalline sponge X-ray crystallography and laser desorption ionization mass spectrometry.

    Science.gov (United States)

    Hayashi, Yukako; Ohara, Kazuaki; Taki, Rika; Saeki, Tomomi; Yamaguchi, Kentaro

    2018-03-12

    The crystalline sponge (CS) method, which employs single-crystal X-ray diffraction to determine the structure of an analyte present as a liquid or an oil and having a low melting point, was used in combination with laser desorption ionization mass spectrometry (LDI-MS). 1,3-Benzodioxole derivatives were encapsulated in CS and their structures were determined by combining X-ray crystallography and MS. After the X-ray analysis, the CS was subjected to imaging mass spectrometry (IMS) with an LDI spiral-time-of-flight mass spectrometer (TOF-MS). The ion detection area matched the microscopic image of the encapsulated CS. In addition, the accumulated 1D mass spectra showed that fragmentation of the guest molecule (hereafter, guest) can be easily visualized without any interference from the fragment ions of CS except for two strong ion peaks derived from the tridentate ligand TPT (2,4,6-tris(4-pyridyl)-1,3,5-triazine) of the CS and its fragment. X-ray analysis clearly showed the presence of the guest as well as the π-π, CH-halogen, and CH-O interactions between the guest and the CS framework. However, some guests remained randomly diffused in the nanopores of CS. In addition, the detection limit was less than sub-pmol order based on the weight and density of CS determined by X-ray analysis. Spectroscopic data, such as UV-vis and NMR, also supported the encapsulation of the guest through the interaction between the guest and CS components. The results denote that the CS-LDI-MS method, which combines CS, X-ray analysis and LDI-MS, is effective for structure determination.

  4. Discovery of a highly variable dipping ultraluminous X-ray source in M94

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dacheng; Irwin, Jimmy A. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Webb, Natalie A.; Barret, Didier [CNRS, IRAP, 9 avenue du Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France); Remillard, Ronald A., E-mail: dlin@ua.edu [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139-4307 (United States)

    2013-12-20

    We report the discovery of a new ultraluminous X-ray source (ULX) 2XMM J125048.6+410743 within the spiral galaxy M94. The source has been observed by ROSAT, Chandra, and XMM-Newton on several occasions, exhibiting as a highly variable persistent source or a recurrent transient with a flux variation factor of ≳100, a high duty cycle (at least ∼70%), and a peak luminosity of L {sub X} ∼ 2 × 10{sup 39} erg s{sup –1} (0.2-10 keV, absorbed). In the brightest observation, the source is similar to typical low-luminosity ULXs, with the spectrum showing a high-energy cutoff but harder than that from a standard accretion disk. There are also sporadical short dips, accompanied by spectral softening. In a fainter observation with L {sub X} ∼ 3.6 × 10{sup 38} erg s{sup –1}, the source appears softer and is probably in the thermal state seen in Galactic black hole X-ray binaries (BHBs). In an even fainter observation (L {sub X} ∼ 9 × 10{sup 37} erg s{sup –1}), the spectrum is harder again, and the source might be in the steep-power-law state or the hard state of BHBs. In this observation, the light curve might exhibit ∼7 hr (quasi-)periodic large modulations over two cycles. The source also has a possible point-like optical counterpart from Hubble Space Telescope images. In terms of the colors and the luminosity, the counterpart is probably a G8 supergiant or a compact red globular cluster containing ∼2 × 10{sup 5} K dwarfs, with some possible weak UV excess that might be ascribed to accretion activity. Thus, our source is a candidate stellar-mass BHB with a supergiant companion or with a dwarf companion residing in a globular cluster. Our study supports that some low-luminosity ULXs are supercritically accreting stellar-mass BHBs.

  5. High-Resolution X-Ray Spectra of the Symbiotic Star SS73 17

    Science.gov (United States)

    Eze, R. N. C.; Luna, G. J. M.; Smith, R. K.

    2010-01-01

    SS73 17 was an innocuous Mira-type symbiotic star until the International Gamma-Ray Astrophysics Laboratory and Swift discovered its bright hard X-ray emission, adding it to the small class of "hard X-ray emitting symbiotics." Suzaku observations in 2006 then showed it emits three bright iron lines as well, with little to no emission in the 0.3-2.0 keV bandpass. We present here follow-up observations with the Chandra High Energy Transmission Grating and Suzaku that confirm the earlier detection of strong emission lines of Fe K(alpha) fluorescence, Fe XXV and Fe XXVI but also show significantly more soft X-ray emission. The high-resolution spectrum also shows emission lines of other highly ionized ions as Si xiv and possibly S XVI. In addition, a re-analysis of the 2006 Suzaku data using the latest calibration shows that the hard (15-50 keV) X-ray emission is brighter than previously thought and remains constant in both the 2006 and 2008 data. The G ratio calculated from the Fe xxv lines shows that these lines are thermal, not photoionized, in origin.With the exception of the hard X-ray emission, the spectra from both epochs can be fit using thermal radiation assuming a differential emission measure based on a cooling-flow model combined with a full and partial absorber. We show that acceptable fits can be obtained for all the data in the 1-10 keV band varying only the partial absorber. Based on the temperature and accretion rate, the thermal emission appears to be arising from the boundary layer between the accreting white dwarf and the accretion disk.

  6. HIGH-RESOLUTION X-RAY SPECTRA OF THE SYMBIOTIC STAR SS73 17

    International Nuclear Information System (INIS)

    Eze, R. N. C.; Luna, G. J. M.; Smith, R. K.

    2010-01-01

    SS73 17 was an innocuous Mira-type symbiotic star until the International Gamma-Ray Astrophysics Laboratory and Swift discovered its bright hard X-ray emission, adding it to the small class of 'hard X-ray emitting symbiotics'. Suzaku observations in 2006 then showed it emits three bright iron lines as well, with little to no emission in the 0.3-2.0 keV bandpass. We present here follow-up observations with the Chandra High Energy Transmission Grating and Suzaku that confirm the earlier detection of strong emission lines of Fe Kα fluorescence, Fe XXV and Fe XXVI but also show significantly more soft X-ray emission. The high-resolution spectrum also shows emission lines of other highly ionized ions as Si XIV and possibly S XVI. In addition, a re-analysis of the 2006 Suzaku data using the latest calibration shows that the hard (15-50 keV) X-ray emission is brighter than previously thought and remains constant in both the 2006 and 2008 data. The G ratio calculated from the Fe XXV lines shows that these lines are thermal, not photoionized, in origin. With the exception of the hard X-ray emission, the spectra from both epochs can be fit using thermal radiation assuming a differential emission measure based on a cooling-flow model combined with a full and partial absorber. We show that acceptable fits can be obtained for all the data in the 1-10 keV band varying only the partial absorber. Based on the temperature and accretion rate, the thermal emission appears to be arising from the boundary layer between the accreting white dwarf and the accretion disk.

  7. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.

    Science.gov (United States)

    Philipp, Hugh T; Tate, Mark W; Purohit, Prafull; Shanks, Katherine S; Weiss, Joel T; Gruner, Sol M

    2016-03-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  8. High resolution hard x-ray microscope on a second generation synchrotron source

    International Nuclear Information System (INIS)

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-01-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  9. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-03-20

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ {sub cr} ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs make a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.

  10. High resolution x-ray lensless imaging by differential holographic encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  11. High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Diling [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Guizar-Sicairos, Manuel [Univ. of Rochester, NY (United States). Inst. of Optics; Wu, Benny [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Scherz, Andreas [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Acremann, Yves [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Tyliszczak, Tolek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Fischer, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for X-ray Optics; Friedenberger, Nina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Ollefs, Katharina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Farle, Michael [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Fienup, James R. [Univ. of Rochester, NY (United States). Inst. of Optics; Stöhr, Joachim [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)

    2010-07-01

    X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  12. Low-mass X-ray binaries from black hole retaining globular clusters

    Science.gov (United States)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-06-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs, whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  13. Low-mass X-ray binaries and globular clusters streamers and arcs in NGC 4278

    Energy Technology Data Exchange (ETDEWEB)

    D' Abrusco, R.; Fabbiano, G. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Brassington, N. J. [Center for Astrophysics Research, University of Hertfordshire, College Lane Campus, Hatfield, Hertordshire, AL10 9AB (United Kingdom)

    2014-03-01

    We report significant inhomogeneities in the projected two-dimensional spatial distributions of low-mass X-ray binaries (LMXBs) and globular clusters (GCs) of the intermediate mass elliptical galaxy NGC 4278. In the inner region of NGC 4278, a significant arc-like excess of LMXBs extending south of the center at ∼50'' in the western side of the galaxy can be associated with a similar overdensity of the spatial distribution of red GCs from Brassington et al. Using a recent catalog of GCs produced by Usher et al. and covering the whole field of the NGC 4278 galaxy, we have discovered two other significant density structures outside the D {sub 25} isophote to the W and E of the center of NGC 4278, associated with an overdensity and an underdensity, respectively. We discuss the nature of these structures in the context of the similar spatial inhomogeneities discovered in the LMXBs and GCs populations of NGC 4649 and NGC 4261, respectively. These features suggest streamers from disrupted and accreted dwarf companions.

  14. Notes on a local study on effectiveness and risk of X-ray mass chest screening

    International Nuclear Information System (INIS)

    Barbina, V.; Leonardi, M.

    1987-01-01

    This contribution consists of some special remarks, which may be of general interest, on the results of a local investigation on effectiveness and radiological risk of mass chest screening carried out in Friuli Venezia Giulia, an area of North-East Italy limited by well defined geographical and administrative borders. Population is about 1,300,000, ten percent of which is undergoing X-ray chest screening each year. The results of the study are in the working report of the technical workshop on mass screening organized on 4-5 December 1984 in Luxembourg by CEC and CEA. The study itself does not intend to have any character of generality. It has been proposed as an example of syntetic methodology for other similar local investigations which could possibly constitute a reliable basis for putting together larger ones, of national range, as already mentioned in the report. The conclusions on the results of this study seem obvious to us, however, we are aware that any obvious conclusion must be considered very carefully especially when dealing with a very complex matter as epidemiologic statistic, and particularly if we consider the previous papers on this subject as well as other reports presented in the workshop. Finally, we hope that our remarks may at least contribute as a good background for further discussion

  15. Low-mass X-ray binaries from black-hole retaining globular clusters

    Science.gov (United States)

    Giesler, Matthew; Clausen, Drew; Ott, Christian D.

    2018-03-01

    Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH-binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.

  16. Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic X-ray scattering instrument

    Science.gov (United States)

    Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy

    2015-04-14

    A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.

  17. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission

    Science.gov (United States)

    Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; hide

    2013-01-01

    High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  18. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    Science.gov (United States)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  19. THE LONGEST TIMESCALE X-RAY VARIABILITY REVEALS EVIDENCE FOR ACTIVE GALACTIC NUCLEI IN THE HIGH ACCRETION STATE

    International Nuclear Information System (INIS)

    Zhang Youhong

    2011-01-01

    The All Sky Monitor (ASM) on board the Rossi X-ray Timing Explorer has continuously monitored a number of active galactic nuclei (AGNs) with similar sampling rates for 14 years, from 1996 January to 2009 December. Utilizing the archival ASM data of 27 AGNs, we calculate the normalized excess variances of the 300-day binned X-ray light curves on the longest timescale (between 300 days and 14 years) explored so far. The observed variance appears to be independent of AGN black-hole mass and bolometric luminosity. According to the scaling relation of black-hole mass (and bolometric luminosity) from galactic black hole X-ray binaries (GBHs) to AGNs, the break timescales that correspond to the break frequencies detected in the power spectral density (PSD) of our AGNs are larger than the binsize (300 days) of the ASM light curves. As a result, the singly broken power-law (soft-state) PSD predicts the variance to be independent of mass and luminosity. Nevertheless, the doubly broken power-law (hard-state) PSD predicts, with the widely accepted ratio of the two break frequencies, that the variance increases with increasing mass and decreases with increasing luminosity. Therefore, the independence of the observed variance on mass and luminosity suggests that AGNs should have soft-state PSDs. Taking into account the scaling of the break timescale with mass and luminosity synchronously, the observed variances are also more consistent with the soft-state than the hard-state PSD predictions. With the averaged variance of AGNs and the soft-state PSD assumption, we obtain a universal PSD amplitude of 0.030 ± 0.022. By analogy with the GBH PSDs in the high/soft state, the longest timescale variability supports the standpoint that AGNs are scaled-up GBHs in the high accretion state, as already implied by the direct PSD analysis.

  20. Design of high voltage power supply of miniature X-ray tube based on resonant Royer

    International Nuclear Information System (INIS)

    Liu Xiyao; Zeng Guoqiang; Tan Chengjun; Luo Qun; Gong Chunhui; Huang Rui

    2013-01-01

    Background: In recent years, X rays are widely used in various fields. With the rapid development of national economy, the demand of high quality, high reliability, and high stability miniature X-ray tube has grown rapidly. As an important core component of miniature X-ray tube, high voltage power supply has attracted wide attention. Purpose: To match miniature, the high voltage power supply should be small, lightweight, good quality, etc. Based on the basic performance requirements of existing micro-X-ray tube high voltage power supply, this paper designs an output from 0 to -30 kV adjustable miniature X-ray tube voltage DC power supply. Compared to half-bridge and full-bridge switching-mode power supply, its driving circuit is simple. With working on the linear condition, it has no switching noise. Methods: The main circuit makes use of DC power supply to provide the energy. The resonant Royer circuit supplies sine wave which drives to the high frequency transformer's primary winding with resultant sine-like high voltage appearing across the secondary winding. Then, the voltage doubling rectifying circuit would achieve further boost. In the regulator circuit, a feedback control resonant transistor base current is adopted. In order to insulate air, a silicone rubber is used for high pressure part packaging, and the output voltage is measured by the dividing voltage below -5 kV. Results: The stability of circuit is better than 0.2%/6 h and the percent of the output ripple voltage is less than 0.3%. Keeping the output voltage constant, the output current can reach 57 μA by changing the size of load resistor. This high voltage power supply based on resonant Royer can meet the requirement of miniature X-ray tube. Conclusions: The circuit can satisfy low noise, low ripple, low power and high voltage regulator power supply design. However, its efficiency is not high enough because of the linear condition. In the next design, to further reduce power consumption, we

  1. The 2011 Outburst of Recurrent Nova T Pyx: X-Ray Observations Expose the White Dwarf Mass and Ejection Dynamics

    Science.gov (United States)

    Chomiuk, Laura; Nelson, Thomas; Mukai, Koji; Solokoski, J. L.; Rupen, Michael P.; Page, Kim L.; Osborne, Julian P.; Kuulkers, Erik; Mioduszewski, Amy J.; Roy, Nirupam; hide

    2014-01-01

    The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign.We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (approximately 45 electron volts) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (approximately 1 M). The late turn-on time of the super-soft component yields a large nova ejecta mass (approximately greater than 10(exp -5) solar mass), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a approximately 1 kiloelectron volt thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.

  2. Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array

    Science.gov (United States)

    Muchovej, Stephen; Carlstrom, John E.; Cartwright, John; Greer, Christopher; Hawkins, David; Hennessey, Ryan; Joy, Marshall; Lamb, James; Leitch, Erik M.; Loh, Michael; hide

    2006-01-01

    We report measurements of the Sunyaev-Zel'dovich (SZ) effect in three high redshift (0.89 less than or equal to z less than or equal to 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer - the Sunyaev-Zel'dovich Array (SZA) - built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium, and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9 (sup +0.5)(sub -0.4) x 10(exp 14) solar mass for Cl J1415.1+3612, 3.4 (sup +0.6)(sub -0.5) x 10(exp 14) solar mass for Cl J1429.0+4241 and 7.2 (sup +1.3)(sub -0.9) x 10(exp 14) solar mass for Cl J1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements.

  3. Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver

    Science.gov (United States)

    Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-10-01

    Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.

  4. Determination of ash content of coal by mass absorption coefficient measurements at two X-ray energies

    International Nuclear Information System (INIS)

    Fookes, R.A.; Gravitis, V.L.; Watt, J.S.

    1977-01-01

    A method for determining the ash content of coal is proposed. It involves measurements proportional to mass absorption coefficients of coal at two X-ray energies. These measurements can be made using X-ray transmission or scatter techniques. Calculations based on transmission of narrow beams of X-rays have shown that ash can be determined to about 1wt%(1 sigma) in coal of widely varying ash content and composition. Experimentally, ash content was determined to 0.67wt% by transmission techniques and 1.0wt% by backscatter techniques in coal samples from the Bulli seam, NSW, Australia, having ash in the range 11-34wt%. For samples with a much wider range of coal composition (7-53wt% ash and 0-25wt% iron in the ash), ash content was determined by backscatter measurements to 1.62wt%. The method produced ash determinations at least as accurate as those produced by the established technique which compensates for variation in iron content of the ash by X-ray fluorescence analysis for iron. Compared with the established technique, it has the advantage of averaging analysis over much larger volumes of coal, but the disadvantage that much more precise measurements of X-ray intensities are required. (author)

  5. Evidence for a constant initial mass function in early-type galaxies based on their X-ray binary populations

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, Mark B.; Zepf, Stephen E. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Maccarone, Thomas J. [Texas Tech University, Physics Department, Box 41051, Lubbock, TX 79409 (United States); Kundu, Arunav [Eureka Scientific, Inc., 2452 Delmer Street, Suite 100 Oakland, CA 94602 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Lehmer, Bret D. [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Maraston, Claudia, E-mail: mpeacock@msu.edu [Institute of Cosmology and Gravitation, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

    2014-04-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom-heavy IMFs. These bottom-heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars (NSs) and black holes (BHs). In this paper, we specifically predict the variation in the number of BHs and NSs based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary (LMXB) populations of nearby early-type galaxies. In these binaries, an NS or BH accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of BHs and NSs present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low-mass galaxies to a steep power-law IMF (with slope x = 2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  6. Evidence for a constant initial mass function in early-type galaxies based on their X-ray binary populations

    International Nuclear Information System (INIS)

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Gonzalez, Anthony H.; Lehmer, Bret D.; Maraston, Claudia

    2014-01-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom-heavy IMFs. These bottom-heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars (NSs) and black holes (BHs). In this paper, we specifically predict the variation in the number of BHs and NSs based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary (LMXB) populations of nearby early-type galaxies. In these binaries, an NS or BH accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of BHs and NSs present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low-mass galaxies to a steep power-law IMF (with slope x = 2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  7. FORMATION OF BLACK HOLE LOW-MASS X-RAY BINARIES IN HIERARCHICAL TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Naoz, Smadar; Stephan, Alexander P. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Fragos, Tassos [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland); Geller, Aaron; Rasio, Frederic A., E-mail: snaoz@astro.ucla.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60201 (United States)

    2016-05-10

    The formation of black hole (BH) low-mass X-ray binaries (LMXB) poses a theoretical challenge, as low-mass companions are not expected to survive the common-envelope scenario with the BH progenitor. Here we propose a formation mechanism that skips the common-envelope scenario and relies on triple-body dynamics. We study the evolution of hierarchical triples following the secular dynamical evolution up to the octupole-level of approximation, including general relativity, tidal effects, and post-main-sequence evolution such as mass loss, changes to stellar radii, and supernovae. During the dynamical evolution of the triple system the “eccentric Kozai-Lidov” mechanism can cause large eccentricity excitations in the LMXB progenitor, resulting in three main BH-LMXB formation channels. Here we define BH-LMXB candidates as systems where the inner BH-companion star crosses its Roche limit. In the “eccentric” channel (∼81% of the LMXBs in our simulations) the donor star crosses its Roche limit during an extreme eccentricity excitation while still on a wide orbit. Second, we find a “giant” LMXB channel (∼11%), where a system undergoes only moderate eccentricity excitations but the donor star fills its Roche-lobe after evolving toward the giant branch. Third, we identify a “classical” channel (∼8%), where tidal forces and magnetic braking shrink and circularize the orbit to short periods, triggering mass-transfer. Finally, for the giant channel we predict an eccentric (∼0.3–0.6) preferably inclined (∼40°, ∼140°) tertiary, typically on a wide enough orbit (∼10{sup 4} au) to potentially become unbound later in the triple evolution. While this initial study considers only one representative system and neglects BH natal kicks, we expect our scenario to apply across a broad region of parameter space for triple-star systems.

  8. A study on the digital image transfer application mass chest X-ray system up-grade

    International Nuclear Information System (INIS)

    Kim, Sun Chil; Park, Jong Sam; Lee, Jon Il

    2003-01-01

    By converting movable indirect mass chest X-ray devices for vehicles into digital systems and upgrading it to share information with the hospital's medical image information system, excellencies have been confirmed as a result of installing and running this type of system and are listed hereinafter. Upgrading analog systems, such as indirect mass chest X-ray devices dependent on printed film, to digital systems allows them to be run and managed much more efficiently, contributing to the increase in the stability and the efficiency of the system. Unlike existing images, communication based on DICOM standards allow images to be compatible with the hospital's outer and inner network PACS systems, extending the scope of the radiation departments information system. Assuming chest-exclusive indirect mass chest X-rays, a linked development of CAD (Computer Aided Diagnosis, Detector) becomes possible. By applying wireless Internet, Web-PACS for movable indirect mass chest X-ray devices for vehicles will become possible. Research in these fields must continue and if the superior image quality and convenience of digital systems are confirmed, I believe that the conversion of systems still dependent on analog images to modernized digital systems is a must

  9. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    Science.gov (United States)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

  10. X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition

    International Nuclear Information System (INIS)

    Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Neumayer, P.; Landen, O. L.; Girard, F.; Jadaud, J. P.; Wagon, F.; Huser, G.; Schein, J.; Constantin, C.

    2008-01-01

    The conversion efficiency of 351 nm laser light to soft x rays (0.1-5 keV) was measured for Au, U, and high Z mixture ''cocktails'' used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 10 14 and 10 15 W/cm 2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ∼0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10 14 W/cm 2 laser intensity and of 80% at 10 15 W/cm 2 . The M-band flux (2-5 keV) is negligible at 10 14 W/cm 2 reaching ∼1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10 15 W/cm 2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

  11. X-ray Conversion Efficiency of high-Z hohlraum wall materials for indirect drive ignition

    International Nuclear Information System (INIS)

    Dewald, E.; Rosen, M.; Glenzer, S.H.; Suter, L.J.; Girard, F.; Jadaud, J.P.; Schein, J.; Constantin, C.G.; Neumayer, P.; Landen, O.

    2008-01-01

    We measure the conversion efficiency of 351 nm laser light to soft x-rays (0.1-5 keV) for Au, U and high Z mixtures 'cocktails' used for hohlraum wall materials in indirect drive ICF. We use spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates to achieve constant and uniform laser intensities of 10 14 and 10 15 W/cm 2 over the target surface that are relevant for the future ignition experiments on NIF. The absolute time and spectrally-resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses is subtracted. After ∼0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10 14 W/cm 2 laser intensity and of 80% at 10 15 W/cm 2 . The M-band flux (2-5 keV) is negligible at 10 14 W/cm 2 reaching ∼1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10 15 W/cm 2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. Our LASNEX simulations show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux

  12. Novel opportunities for sub-meV inelastic X-ray scattering at high-repetition rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY (United States). National Synchrotron Light Source II; Geloni, Gianluca; Madsen, Anders [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Shvyd' ko, Yuri [Argonne National Laboratory, IL (United States). Advanced Photon Source; Sutter, John [Diamond Light Source Ltd., Didcot (United Kingdom)

    2015-08-15

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup -1} spectral and momentum transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup -1} are required to close the gap in energy-momentum space between high and low frequency probes. We show that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a hundred-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than possible with storage-ring based radiation sources. Wave-optics propagation shows that about 7 x 10{sup 12} ph/s in a 90-μeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  13. Novel opportunities for sub-meV inelastic X-ray scattering at high-repetition rate self-seeded X-ray free-electron lasers

    International Nuclear Information System (INIS)

    Chubar, Oleg; Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri

    2015-08-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm -1 spectral and momentum transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm -1 are required to close the gap in energy-momentum space between high and low frequency probes. We show that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a hundred-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than possible with storage-ring based radiation sources. Wave-optics propagation shows that about 7 x 10 12 ph/s in a 90-μeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  14. Observation of material, thickness, and bremsstrahlung x-ray intensity dependent effects in moderate and high Z targets in a gamma and x-ray LIDAR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Ayaz-Maierhafer, Birsen; Laubach, Mitchell A. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2015-06-01

    A high energy gamma and x-ray LIDAR system consisting of a fast pulse (~50 ps, FWHM) LINAC and a Cherenkov detection system was used to investigate response differences among materials, their thicknesses, and bremsstrahlung x-ray intensities. The energies and pulse width of electrons used to produce bremsstrahlung x-rays were set at 20 or 40 MeV and 50 ps FWHM duration, respectively. The Cherenkov detector was built with a fused silica glass optically coupled to a 51 mm fast timing photomultiplier tube, which has an intrinsic energy threshold of 340.7 keV for Compton backscattered gammas. Such a fast detection system yields a coincidence resolving time of 93 ps FWHM, which is equivalent to a depth resolving capability of about 3 cm FWHM. The thicknesses of iron and lead targets were varied from 1 in. to 7 in. with a step of 1 in., and the thicknesses of DU were varied from 1/3 in. to 1 in. with a step of 1/3 in. The experimental results show that iron targets tend to produce a factor of five less observed x-rays and gammas, with less energetic photoelectron frequency distributions, compared with DU and lead targets for the same beam intensity and target thicknesses. Additionally, the self-shielding effect causes the lead to yield more gammas than the DU considering the experimental observation point. For the setup used in this study, a charge per pulse in the range of 1–2.5 nC yields the best resolving capability between the DU and lead targets.

  15. X-Ray Temperatures, Luminosities, and Masses from XMM-Newton Follow-up of the First Shear-selected Galaxy Cluster Sample

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Amruta J.; Hughes, John P. [Department of Physics and Astronomy, Rutgers the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Wittman, David, E-mail: amrejd@physics.rutgers.edu, E-mail: jph@physics.rutgers.edu, E-mail: dwittman@physics.ucdavis.edu [Department of Physics, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States)

    2017-04-20

    We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shear peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L {sub X} − T {sub X} relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (∼48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined.

  16. Mass estimates from optical-light curves for binary X-ray sources

    International Nuclear Information System (INIS)

    Avni, Y.

    1978-01-01

    The small amplitude variations with orbital phase of the optical light from X-ray binaries are caused by the changing geometrical aspect of the primary as seen by a fixed observer. The shape and the amplitude of the light curve depends on the stellar masses and on the orbital elements. The light curve can, therefore, be used to determine, or set limits on, the parameters of the binary system. A self-consistent procedure for the calculation of the light curve can be formulated if the primary is formulated if the primary is uniformly rotating at an angular velocity equal to the angular velocity of its orbital revolution in a circular orbit, and if the primary is in a hydrostatic and radiative equilibrium in the co-rotating frame. When the primary is further approximated to be centrally condensed, the above set of assumptions is called the standard picture. The standard picture is described, its validity discussed and its application to various systems reviewed. (C.F.)

  17. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  18. Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering

    Science.gov (United States)

    Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team

    Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  19. Production of High Harmonic X-Ray Radiation from Non-linear Thomson at LLNL PLEIADES

    CERN Document Server

    Lim, Jae; Betts, Shawn; Crane, John; Doyuran, Adnan; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    We describe an experiment for production of high harmonic x-ray radiation from Thomson backscattering of an ultra-short high power density laser by a relativistic electron beam at the PLEIADES facility at LLNL. In this scenario, electrons execute a “figure-8” motion under the influence of the high-intensity laser field, where the constant characterizing the field strength is expected to exceed unity: $aL=e*EL/m*c*ωL ≥ 1$. With large $aL$ this motion produces high harmonic x-ray radiation and significant broadening of the spectral peaks. This paper is intended to give a layout of the PLEIADES experiment, along with progress towards experimental goals.

  20. High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles

    NARCIS (Netherlands)

    Huotari, Simo; Suljoti, Edlira; Sahle, Christoph J.; Raedel, Stephanie; Monaco, Giulio; de Groot, Frank M. F.

    2015-01-01

    We report high-resolution x-ray Raman scattering studies of high-order multipole spectra of rare earth 4d -> 4f excitations (the N-4,N-5 absorption edge) in nanoparticles of the phosphates LaPO4, CePO4, PrPO4, and NdPO4. We also present corresponding data for La 5p -> 5d excitations (the O-2,O-3

  1. High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials

    International Nuclear Information System (INIS)

    Snigireva, I; Snigirev, A

    2013-01-01

    We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals

  2. Sub-Hour X-Ray Variability of High-Energy Peaked BL Lacertae Objects

    OpenAIRE

    Bidzina Kapanadze

    2018-01-01

    The study of multi-wavelength flux variability in BL Lacertae objects is very important to discern unstable processes and emission mechanisms underlying their extreme observational features. While the innermost regions of these objects are not accessible from direct observations, we may draw conclusions about their internal structure via the detection of flux variations on various timescales, based on the light-travel argument. In this paper, we review the sub-hour X-ray variability in high-e...

  3. High pressure X-ray preionized TEMA-CO2 laser

    Science.gov (United States)

    Bonnie, R. J. M.; Witteman, W. J.

    1987-09-01

    The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5-20 atm, yielding a specific laser output in the order of 35 J/l.

  4. High-pressure powder x-ray diffraction experiments on Zn at low temperature

    CERN Document Server

    Takemura, K; Fujihisa, H; Kikegawa, T

    2002-01-01

    High-pressure powder x-ray diffraction experiments have been performed on Zn with a He-pressure medium at low temperature. When the sample was compressed in the He medium at low temperature, large nonhydrostaticity developed, yielding erroneous lattice parameters. On the other hand, when the pressure was changed at high temperatures, good hydrostaticity was maintained. No anomaly in the volume dependence of the c/a axial ratio has been found.

  5. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Padmore, H. A.

    2016-01-01

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs via numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4"t"h or 5"t"h order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.

  6. Hygromorphic characterization of softwood under high resolution X-ray tomography for hygrothermal simulation

    Science.gov (United States)

    El Hachem, Chady; Abahri, Kamilia; Vicente, Jérôme; Bennacer, Rachid; Belarbi, Rafik

    2018-03-01

    Because of their complex hygromorphic shape, microstructural study of wooden materials behavior has recently been the point of interest of researchers. The purpose of this study, in a first part, consists in characterizing by high resolution X-ray tomography the microstructural properties of spruce wood. In a second part, the subresulting geometrical parameters will be incorporated when evaluating the wooden hygrothermal transfers behavior. To do so, volume reconstructions of 3 Dimensional images (3D), obtained with a voxel size of 0.5 μm were achieved. The post-treatment of the corresponding volumes has given access to averages and standard deviations of lumens' diameters and cell walls' thicknesses. These results were performed for both early wood and latewood. Further, a segmentation approach for individualizing wood lumens was developed, which presents an important challenge in understanding localized physical properties. In this context, 3D heat and mass transfers within the real reconstructed geometries took place in order to highlight the effect of wood directions on the equivalent conductivity and moisture diffusion coefficients. Results confirm that the softwood cellular structure has a critical impact on the reliability of the studied physical parameters.

  7. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  8. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  9. Automated high pressure cell for pressure jump x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  10. Automated high pressure cell for pressure jump x-ray diffraction

    International Nuclear Information System (INIS)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-01-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  11. X-ray spectroscopic diagnostics of high-temperature dense plasmas created in different gaseous media

    International Nuclear Information System (INIS)

    Skobelev, I.Y.; Dyakin, V.M.; Faenov, A.Y.

    1997-01-01

    The investigations of emission x-ray spectra of multicharged ions of some chemical elements (S, F, Ar, Fr, O) have been carried out. These atoms are contained in gases and consequently can be used as diagnostic elements in a dense plasma focus experiments. The investigations were done in the dense high-temperature plasma (N e ∼ 10 21 cm -3 , T e ∼ 500 eV) created by laser heating of high-pressure gas puff targets, and X-ray spectrographs with a spherically bent mica crystals were used for spectra observations. Some new spectroscopic results (line identifications, high-precision wavelength measurements) have been obtained and have been applied to determine a spatial distribution of plasma parameters. It is shown that spectroscopic techniques used is a very suitable tool for studies of a plasma with complicated spatial structure

  12. A high resolution, high counting rate bidimensional, MWPC imaging detector for small angle X-ray diffraction studies

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Sawyer, E.C.; Stephenson, R.

    1981-07-01

    The performance is reported of a 200 mm x 200 mm X-ray imaging MWPC aimed at applications in small angle X-ray diffraction and scattering. With quantum energies of approximately 8 keV high spatial resolution (+- 0.5 mm x +- 0.14 mm) with a capability for data taking at >approximately 350 kHz is reported. The detection efficiency is approximately 75% and the detector operates as a sealed unit with a long lifetime. (author)

  13. O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data

    Science.gov (United States)

    Cohen, David

    O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra

  14. Advanced ceramic matrix composites for high energy x-ray generation

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2011-01-01

    High energy x-ray targets are the anodes used in high performance tubes, designed to work for long operating times and at high power. Such tubes are used in computed tomography (CT) scan machines. Usually the tubes used in CT scanners have to continuously work at high temperatures and for longer scan durations in order to get maximum information during a single scan. These anodes are composed of a refractory substrate which supports a refractory metallic coating. The present work is a review of the development of a ceramic metal composite based on aluminium nitride (AlN) and molybdenum for potential application as the substrate. This composite is surface engineered by coating with tungsten, the most popular material for high energy x-ray targets. To spray metallic coatings on the surface of ceramic matrix composites dc blown arc plasma is employed. The objective is to increase the performance and the life of an x-ray tube. Aluminium nitride-molybdenum ceramic matrix composites were produced by uniaxial hotpressing mixtures of AlN and Mo powders. These composites were characterized for their mechanical, thermal, electrical and micro-structural properties. An optimized composition was selected which contained 25 vol.% of metallic phase dispersed in the AlN matrix. These composites were produced in the actual size of an anode and coated with tungsten through dc blown arc plasma spraying. The results have shown that sintering of large size anodes is possible through uniaxial pressing, using a modified sintering cycle

  15. Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering

    International Nuclear Information System (INIS)

    Rueff, J.P.

    2007-06-01

    Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)

  16. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  17. Diagnosing high density, fast-evolving plasmas using x-ray lasers

    International Nuclear Information System (INIS)

    Cauble, R.; Da Silva, L.B.; Barbee, T.W. Jr.

    1994-09-01

    As x-ray laser (XRL) research has matured, it has become possible to reliably utilize XRLs for applications in the laboratory. Laser coherence, high brightness and short pulse duration all make the XRL a unique tool for the diagnosis of laboratory plasmas. The high brightness of XRLs makes them well-suited for imaging and for interferometry when used in conjunction with multilayer mirrors and beamsplitters. We have utilized a soft x-ray laser in such an imaging system to examine laser-produced plasmas using radiography, moire deflectometry, and interferometry. Radiography experiments yield 100-200 ps snapshots of laser driven foils at a resolution of 1-2 μm. Moire deflectometry with an XRL has been used to probe plasmas at higher density than by optical means. Interferograms, which allow direct measurement of electron density in laser plasmas, have been obtained with this system

  18. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  19. Method and apparatus for digitally based high speed x-ray spectrometer

    International Nuclear Information System (INIS)

    Warburton, W.K.; Hubbard, B.

    1997-01-01

    A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a ''hardwired'' processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer. 19 figs

  20. High brightness--multiple beamlets source for patterned X-ray production

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA; Ji, Qing [Albany, CA; Barletta, William A [Oakland, CA; Jiang, Ximan [El Cerrito, CA; Ji, Lili [Albany, CA

    2009-10-27

    Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 .mu.m, with inter-aperture spacings of 12 .mu.m. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.

  1. High-energy x-ray CT and its application for digital engineering

    International Nuclear Information System (INIS)

    Kamimura, H.; Sadaoka, N.

    2005-01-01

    A high-energy x-ray computed tomography system and x-ray CT data handling software have been developed for digital engineering; internal dimension measurement, density analysis, actual and designed shape comparison, STL file generation, and support for reverse engineering and rapid prototyping. The system is designed to collect accurate images in short scanning time (10 s per section) using a MeV-energy electron linear accelerator and highly sensitive semiconductor detectors in order to scan large objects made of aluminum and/or iron. An excellent environment in digital engineering is provided by the software products; 'StereoCooker' for 3D bitmap CAD (rendering, feature extraction, dimensional measurement, and shape comparison, etc.), 'FeatureMaker' for translating bitmap CT data to CAD data including feature information, and 'Wingware' for realizing an Windows PC cluster system 'WINGluster' to apply CT data analysis. (author)

  2. Design of scanning motion control system for high-energy X-ray industrial CT

    International Nuclear Information System (INIS)

    Duan Liming

    2008-01-01

    A scanning motion control system was developed for the high-energy X-ray industrial computerized tomography (CT). The system consists of an industrial control computer, a counter card, a control card, servo drivers, servo motors, working platforms, gratings and control software. Based on windows driver model(WDM) mode, the composition of the driver pro- gram for the system was studied. Took the motor control card as an example, the method to develop the driver program was researched, and the intercourse process between the device driver program and the user-program was analyzed. The real-time control of the system was implemented using the WDM driver. The real-time performance and reliability of the system can satisfy the requirement of high-energy X-ray industrial CT. (authors)

  3. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  4. Demonstration of a transient high gain nickel-like xenon ion x-ray laser

    International Nuclear Information System (INIS)

    Lu, Peixiang; Kawachi, Tetsuya; Kishimoto, Maki

    2003-01-01

    We demonstrate a high gain nickel-like xenon ion x-ray laser using a picosecond-laser-irradiated gas puff target. The elongated x-ray laser plasma column was produced by irradiating the gas puff target with line-focused double picosecond laser pulses with a total energy of 18 J in a travelling-wave excitation scheme. Strong lasing at 9.98 nm was observed, and a high gain coefficient of 17.4 cm -1 was measured on the transient collisionally excited 4d-4p, J=0-1 transition for nickel-like xenon ion with target lengths up to 0.45 cm. A weak nickel-like lasing line at a shorter wavelength of 9.64 nm was also observed with a gain coefficient of 5.9 cm -1 . (author)

  5. Predicting skeletal muscle mass from dual-energy X-ray absorptiometry in Japanese prepubertal children.

    Science.gov (United States)

    Midorikawa, T; Ohta, M; Hikihara, Y; Torii, S; Sakamoto, S

    2017-10-01

    We aimed to develop regression-based prediction equations for estimating total and regional skeletal muscle mass (SMM) from measurements of lean soft tissue mass (LSTM) using dual-energy X-ray absorptiometry (DXA) and investigate the validity of these equations. In total, 144 healthy Japanese prepubertal children aged 6-12 years were divided into 2 groups: the model development group (62 boys and 38 girls) and the validation group (26 boys and 18 girls). Contiguous MRI images with a 1-cm slice thickness were obtained from the first cervical vertebra to the ankle joints as reference data. The SMM was calculated from the summation of the digitized cross-sectional areas. Total and regional LSTM was measured using DXA. Strong significant correlations were observed between the site-matched SMM (total, arms, trunk and legs) measured by MRI and the LSTM obtained by DXA in the model development group for both boys and girls (R 2 adj =0.86-0.97, Pprediction equations were applied to the validation group, the measured total (boys 9.47±2.21 kg; girls 8.18±2.62 kg) and regional SMM were very similar to the predicted values for both boys (total SMM 9.40±2.39 kg) and girls (total SMM 8.17±2.57 kg). The results of the Bland-Altman analysis for the validation group did not indicate any bias for either boys or girls with the exception of the arm region for the girls. These results suggest that the DXA-derived prediction equations are precise and accurate for the estimation of total and regional SMM in Japanese prepubertal boys and girls.

  6. Structure investigation, spectral, thermal, X-ray and mass characterization of piroxicam and its metal complexes

    Science.gov (United States)

    Zayed, M. A.; Nour El-Dien, F. A.; Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-10-01

    [M(H 2L) 2](A) 2. yH 2O (where H 2L: neutral piroxicam (Pir), A: Cl - in case of Ni(II) or acetate anion in case of Cu(II) and Zn(II) ions and y=0-2.5) and [M(H 2L) 3](A) z. yH 2O (A: SO 42- in case of Fe(II) ion ( z=1) or Cl - in case of Fe(III) ( z=3) and Co(II) ions ( z=2) and y=1-4) chelates are prepared and characterized using elemental analyses, IR, magnetic and electronic reflectance measurements, mass spectra and thermal analyses. IR spectra reveal that Pir behaves a neutral bidentate ligand coordinated to the metal ions through the pyridyl-N and carbonyl-O of the amide moiety. The reflectance and magnetic moment measurements reveal that these chelates have tetrahedral, square planar and octahedral geometrical structures. Mass spectra and thermal analyses are also used to confirm the proposed formulae and the possible fragments resulted from fragmentation of Pir and its chelates. The thermal behaviour of the chelates (TGA and DTA) are discussed in detail and the thermal stability of the anhydrous chelates follow the order Ni(II)≅Cu(II)X-ray powder diffraction was also used as a confirmatory tool to elucidate the crystallinity of the chelates.

  7. Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaolong; He, Yongning, E-mail: yongning@mail.xjtu.edu.cn; Peng, Wenbo; Huang, Zhiyong; Qi, Xiaomeng; Pan, Zijian; Zhang, Wenting [School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Liang; Liu, Jinliang; Zhang, Zhongbing; Ouyang, Xiaoping [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-04-25

    The pulse radiation detectors are sorely needed in the fields of nuclear reaction monitoring, material analysis, astronomy study, spacecraft navigation, and space communication. In this work, we demonstrate a nanosecond X-ray detector based on ZnO single crystal semiconductor, which emerges as a promising compound-semiconductor radiation detection material for its high radiation tolerance and advanced large-size bulk crystal growth technique. The resistivity of the ZnO single crystal is as high as 10{sup 13} Ω cm due to the compensation of the donor defects (V{sub O}) and acceptor defects (V{sub Zn} and O{sub i}) after high temperature annealing in oxygen. The photoconductive X-ray detector was fabricated using the high resistivity ZnO single crystal. The rise time and fall time of the detector to a 10 ps pulse electron beam are 0.8 ns and 3.3 ns, respectively, indicating great potential for ultrafast X-ray detection applications.

  8. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    Science.gov (United States)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  9. High count-rate study of two TES x-ray microcalorimeters with different transition temperatures

    Science.gov (United States)

    Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.

    2017-10-01

    We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T cs had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T c (faster) device, and 5.8 eV FWHM with 97% throughput with the lower T c (slower) device at 722 Hz.

  10. Theoretical x-ray absorption investigation of high pressure ice and compressed graphite

    International Nuclear Information System (INIS)

    Shaw, Dawn M; Tse, John S

    2007-01-01

    The x-ray absorption spectra (XAS) of high pressure ices II, VIII, and IX have been computed with the Car-Parrinello plane wave pseudopotential method. XAS for the intermediate structures obtained from uniaxial compression of hexagonal graphite along the c-axis are also studied. Whenever possible, comparisons to available experimental results are made. The reliability of the computational methods for the XAS for these structures is discussed

  11. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    International Nuclear Information System (INIS)

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-01-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  12. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  13. X ray and EUV spectroscopic measurements of highly charged tungsten ions relevant to fusion plasmas

    International Nuclear Information System (INIS)

    Radtke, R; Biedermann, C; Mandelbaum, P; Schwob, J L

    2007-01-01

    Using high-resolution x ray and extreme ultraviolet (EUV) spectrometry, the line emission of W 28+ - W 50+ ions was measured at the Berlin Electron Beam Ion Trap (EBIT). Our study encompasses a wide range of wavelengths (5-800 A) and includes the observation of electric and magnetic dipole lines. The results of our measurements are compared with predicted transition wavelengths from ab initioatomic structure calculations

  14. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 angstrom) x-rays of 10-ps pulse duration, with a flux of ∼ 10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table-top'' LSS of monochromatic gamma radiation may become feasible

  15. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0 2 laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photon/sec level, after the ongoing ATF C0 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table- top'' LSS of monochromatic gamma radiation may become feasible

  16. Specification for high voltage cable plug and socket connections for medical X-ray equipment

    International Nuclear Information System (INIS)

    1980-01-01

    Under the direction of the Light Engineering Standards Committee, a British Standard Specification has been prepared for three-conductor and four-conductor high-voltage cable plug and socket connections for medical X-ray equipment. The standard deals with the essential dimensions to ensure mechanical interchangeability, the recommended dimensions, the wiring connections to contacts of plug and socket and the marking of contacts of plug and socket. (U.K.)

  17. HPHT growth and x-ray characterization of high-quality type IIa diamond.

    Science.gov (United States)

    Burns, R C; Chumakov, A I; Connell, S H; Dube, D; Godfried, H P; Hansen, J O; Härtwig, J; Hoszowska, J; Masiello, F; Mkhonza, L; Rebak, M; Rommevaux, A; Setshedi, R; Van Vaerenbergh, P

    2009-09-09

    The trend in synchrotron radiation (x-rays) is towards higher brilliance. This may lead to a very high power density, of the order of hundreds of watts per square millimetre at the x-ray optical elements. These elements are, typically, windows, polarizers, filters and monochromators. The preferred material for Bragg diffracting optical elements at present is silicon, which can be grown to a very high crystal perfection and workable size as well as rather easily processed to the required surface quality. This allows x-ray optical elements to be built with a sufficient degree of lattice perfection and crystal processing that they may preserve transversal coherence in the x-ray beam. This is important for the new techniques which include phase-sensitive imaging experiments like holo-tomography, x-ray photon correlation spectroscopy, coherent diffraction imaging and nanofocusing. Diamond has a lower absorption coefficient than silicon, a better thermal conductivity and lower thermal expansion coefficient which would make it the preferred material if the crystal perfection (bulk and surface) could be improved. Synthetic HPHT-grown (high pressure, high temperature) type Ib material can readily be produced in the necessary sizes of 4-8 mm square and with a nitrogen content of typically a few hundred parts per million. This material has applications in the less demanding roles such as phase plates: however, in a coherence-preserving beamline, where all elements must be of the same high quality, its quality is far from sufficient. Advances in HPHT synthesis methods have allowed the growth of type IIa diamond crystals of the same size as type Ib, but with substantially lower nitrogen content. Characterization of this high purity type IIa material has been carried out with the result that the crystalline (bulk) perfection of some of the HPHT-grown materials is approaching the quality required for the more demanding applications such as imaging applications and imaging

  18. High energy x-ray scattering studies of strongly correlated oxides

    International Nuclear Information System (INIS)

    Hatton, Peter D; Wilkins, S B; Spencer, P D; Zimmermann, M v; D'Almeida, T

    2003-01-01

    Many transition metal oxides display strongly correlated charge, spin, or orbital ordering resulting in varied phenomena such as colossal magnetoresistance, high temperature superconductivity, metal-insulator transitions etc. X-ray scattering is one of the principle techniques for probing the structural response to such effects. In this paper, we discuss and review the use of synchrotron radiation high energy x-rays (50-200 keV) for the study of transition metal oxides such as nickelates (La 2-x Sr x NiO 4 ) and manganites (La 2-2x Sr 1+2x Mn 2 O 7 ). High energy x-rays have sufficient penetration to allow us to study large flux-grown single crystals. The huge increase in sample scattering volume means that extremely weak peaks can be observed. This allows us to study very weak charge ordering. Measurements of the intensity, width and position of the charge ordering satellites as a function of temperature provide us with quantitative measures of the charge amplitude, inverse correlation length and wavevector of the charge ordering

  19. Automatic X-ray television rig for high-speed radiography of polycrystals

    International Nuclear Information System (INIS)

    Bezbakh, V.D.; Garasim, Yu.A.; Oshkaderov, S.P.; Pet'kov, V.V.

    1993-01-01

    The high-speed radiography method is used for studying the phase and structural transformation in metals and alloys during rapid changes in temperature. In order to improve the effectiveness of this method the Institute of Metal Physics, Ukrainian Academy of Sciences, has developed an automatic rig for high-speed radiography of polycrystalline materials using a television method for recording the x-ray diffraction patterns. The rig, described here, consists of an x-ray block, a vacuum chamber, a device for programmed electro-contact heating of specimens, a system for imaging and scanning x-ray diffraction patterns, and a system for collecting and analyzing the data. Focusing is carried out by the Zeeman-Bolin method. The new rig helps to significantly reduce the recording time and ensures adequate quality and reliability of the recorded diffraction image over a wide range of temperatures. Data using the rig is presented for high-speed radiography for cooling a specimen of G20 steel. 4 refs., 4 figs

  20. Workshop on cooling of x-ray monochromators on high power beamlines

    International Nuclear Information System (INIS)

    Matsushita, T.; Ishikawa, T.

    1989-03-01

    This report is a Workshop on Cooling of X-ray Monochromators on High Power Beamlines held on August 31, 1988 at the Photon Factory during the Third International Conference on Synchrotron Radiation Instrumentation (SRI88). On high power beamlines, especially on insertion device beamlines, heating of crystal monochromators is becoming a serious problem: Researchers observe that the intensity of the X-ray beam on the sample is not proportional to the source intensity because of thermal distortion of the monochromator crystal. This problem will be even more serious on beamlines for the next generation X-ray rings. In the very tight program of the SRI88 conference, only 2 speakers were able to give invited talks closely related to this problem in the session of OPTICAL COMPONENTS FOR HIGH POWER BEAMLINES on Wednesday morning of August 31, 1988. We held this workshop in the afternoon of the same day with the intention of offering further opportunities to exchange information on efforts underway at various laboratories and to discuss ideas how to solve this problem. We also intended that the workshop would be a 'follow-up' to the X-ray optics workshop held at ESRF, Grenoble in September 1987, where the importance of crystal cooling was strongly pointed out. There were 32 participants from 7 countries. 12 people represented their experiences and ideas for reducing thermal distortion of crystal monochromators. Following those presentations, there were discussions on collaborations for solving this important problem. The attendees agreed that exchange of information should be continued by holding such meetings at reasonable intervals. (J.P.N.)

  1. A high rate, low noise, x-ray silicon strip detector system

    International Nuclear Information System (INIS)

    Ludewigt, B.; Jaklevic, J.; Kipnis, I.; Rossington, C.; Spieler, H.

    1993-11-01

    An x-ray detector system, based on a silicon strip detector wire-bonded to a low noise charge-senstive amplifier integrated circuit, has been developed for synchrotron radiation experiments which require very high count rates and good energy resolution. Noise measurements and x-ray spectra were taken using a 6 mm long, 55 μm pitch strip detector in conjunction with a prototype 16-channel charge-sensitive preamplifier, both fabricated using standard 1.2 μm CMOS technology. The detector system currently achieves an energy resolution of 350 eV FWHM at 5.9 key, 2 μs peaking time, when cooled to -5 degree C

  2. Structured photocathodes for improved high-energy x-ray efficiency in streak cameras

    Energy Technology Data Exchange (ETDEWEB)

    Opachich, Y. P., E-mail: opachiyp@nv.doe.gov; Huffman, E.; Koch, J. A. [National Security Technologies, LLC, Livermore, California 94551 (United States); Bell, P. M.; Bradley, D. K.; Hatch, B.; Landen, O. L.; MacPhee, A. G.; Nagel, S. R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Chen, N.; Gopal, A.; Udin, S. [Nanoshift LLC, Emeryville, California 94608 (United States); Feng, J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Hilsabeck, T. J. [General Atomics, San Diego, California 92121 (United States)

    2016-11-15

    We have designed and fabricated a structured streak camera photocathode to provide enhanced efficiency for high energy X-rays (1–12 keV). This gold coated photocathode was tested in a streak camera and compared side by side against a conventional flat thin film photocathode. Results show that the measured electron yield enhancement at energies ranging from 1 to 10 keV scales well with predictions, and that the total enhancement can be more than 3×. The spatial resolution of the streak camera does not show degradation in the structured region. We predict that the temporal resolution of the detector will also not be affected as it is currently dominated by the slit width. This demonstration with Au motivates exploration of comparable enhancements with CsI and may revolutionize X-ray streak camera photocathode design.

  3. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    International Nuclear Information System (INIS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8 m and capable of 10 5 resolving power.

  4. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.

    1991-05-01

    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  5. Changes of soft X-ray emission spectra of oxygen and copper in high Tc superconductors

    International Nuclear Information System (INIS)

    Fukushima, Sei; Gohshi, Yohichi; Kohiki, Shigemi; Saitoh, Naoki

    1989-01-01

    X-ray induced soft X-ray emission spectroscopy is one of the bulk analysis methods used to characterize high-Tc superconductor. In this report, some observations on the changes in O Kα and Cu L spectra of thin layer LnBa 2 Cu 3 O 7-δ (Ln=Er,Gd) samples are presented. From the measurement of O Kα, no discernible difference was found between those of Gd compounds which were composed single phase or not. It may be said that the electronic structure of p state localized on the O is not sensitive to the change of Tc or zero-resistance temperature. From the measurement of Cu L spectra, it was found that Cu Lα of only Gd containing compounds has a low energy shoulder

  6. X-ray diffraction studies of silicon implanted with high energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Wieteska, K [Institute of Atomic Energy, Otwock-Swierk, (Poland); Wierzchowski, W [Institute of Electronic Materials Technology, Warsaw, (Poland); Graeff, W [Hasylab at Desy, Hamburg, (Germany)

    1997-12-31

    The character of lattice deformation in silicon in implanted with high energy {alpha} particles and protons was studied with a number of X-ray methods. The experiments included double crystal spectrometer method as well as single crystal section and projection topography realised both with conventional and synchrotron X-ray sources. All observed diffraction patterns were reasonably explainable assuming the lattice parameter depth distribution proportional to the vacancy-interstitial distribution coming from the Biersack-Ziegler theory. The theoretical rocking curves and density distribution in back-reflection double-crystal and section topography well corresponding to experimental results were calculated using numerical integration of the Takagi-Taupin equations. 9 figs.

  7. Microstructures for high-energy x-ray and particle-imaging applications

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Stone, G.F.; Hawryluk, A.M.

    1981-05-01

    Coded imaging techniques using thick, micro-Fresnel zone plates as coded apertures have been used to image x-ray emissions (2-20 keV) and 3.5 MeV Alpha particle emissions from laser driven micro-implosions. Image resolution in these experiments was 3-8 μm. Extension of this coded imaging capability to higher energy x-rays (approx. 100 keV) and more penetrating charged particles (e.g. approx. 15 MeV protons) requires the fabrication of very thick (50-200 μm), high aspect ratio (10:1), gold Fresnel zone plates with narrow linewidths (5-25 μm) for use as coded aperatures. A reactive ion etch technique in oxygen has been used to produce thick zone plate patterns in polymer films. The polymer patterns serve as electroplating molds for the subsequent fabrication of the free-standing gold zone plate structures

  8. A Soft X-ray Spectrometer using a Highly Dispersive Multilayer Grating

    International Nuclear Information System (INIS)

    Warwick, Tony; Padmore, Howard; Voronov, Dmitriy; Yashchuk, Valeriy

    2010-01-01

    There is a need for higher resolution spectrometers as a tool for inelastic x-ray scattering. Currently, resolving power around R = 10,000 is advertised. Measured RIXS spectra are often limited by this instrumental resolution and higher resolution spectrometers using conventional gratings would be prohibitively large. We are engaged in a development program to build blazed multilayer grating structures for diffracting soft x-rays in high order. This leads to spectrometers with dispersion much higher than is possible using metal coated-gratings. The higher dispersion then provides higher resolution and the multilayer gratings are capable of operating away from grazing incidence as required. A spectrometer design is presented with a total length 3.8m and capable of 10 5 resolving power.

  9. Pollen structure visualization using high-resolution laboratory-based hard X-ray tomography.

    Science.gov (United States)

    Li, Qiong; Gluch, Jürgen; Krüger, Peter; Gall, Martin; Neinhuis, Christoph; Zschech, Ehrenfried

    2016-10-14

    A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and internal structures of pine pollen - including exine, intine and cellular structures - are clearly visualized. The specific volumes of these structures are calculated from the tomographic data. The systematic three-dimensional study of pollen grains provides morphological and structural information about taxonomic characters that are essential in palynology. Such studies have a direct impact on disciplines such as forestry, agriculture, horticulture, plant breeding and biodiversity. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    International Nuclear Information System (INIS)

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10 12 watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10 9 watts) and can be focussed to intensities of /approximately/10 16 W/cm 2 . Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs

  11. A microprogrammable high-speed data collection system for position sensitive X-ray detectors

    International Nuclear Information System (INIS)

    Hashizume, H.

    1984-01-01

    A high-speed data acquisition system has been designed which collects digital data from one- and two-dimensional position sensitive X-ray detectors at a maximum average data rate of 1 MHz. The system consists of two separate fast buffer memories, a 64 K word by 20-bit main storage, two timers, a display controller, a computer interface and a keyboard, controlled by a specially designed microprogrammable microprocessor. Data collection is performed by executing a microprogram stored in the control storage; data coming from a detector are first accumulated in a small but fast buffer memory by hardware and transferred to the main storage under control of the microprogram. This design not only permits time-resolved data collections but also provides maximum speed, flexibility and cost-effectiveness simultaneously. The system also accepts data from integrated detectors such as TV cameras. The system has been designed for use in experiments at conventional and synchrotron X-ray sources. (orig.)

  12. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Oskinova, L. M.; Hamann, W.-R. [Institute for Physics and Astronomy, University Potsdam, 14476 Potsdam (Germany); Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52245 (United States); Huenemoerder, D. P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37663 (United States); Pollock, A. M. T., E-mail: lida@astro.physik.uni-potsdam.de [European Space Agency XMM-Newton Science Operations Centre, European Space Astronomy Centre, Apartado 78, Villanueva de la Canada, 28691 Madrid (Spain)

    2012-03-10

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.

  13. Concept development of X-ray mass thickness detection for irradiated items upon electron beam irradiation processing

    Science.gov (United States)

    Qin, Huaili; Yang, Guang; Kuang, Shan; Wang, Qiang; Liu, Jingjing; Zhang, Xiaomin; Li, Cancan; Han, Zhiwei; Li, Yuanjing

    2018-02-01

    The present project will adopt the principle and technology of X-ray imaging to quickly measure the mass thickness (wherein the mass thickness of the item =density of the item × thickness of the item) of the irradiated items and thus to determine whether the packaging size and inside location of the item will meet the requirements for treating thickness upon electron beam irradiation processing. The development of algorithm of X-ray mass thickness detector as well as the prediction of dose distribution have been completed. The development of the algorithm was based on the X-ray attenuation. 4 standard modules, Al sheet, Al ladders, PMMA sheet and PMMA ladders, were selected for the algorithm development. The algorithm was optimized until the error between tested mass thickness and standard mass thickness was less than 5%. Dose distribution of all energy (1-10 MeV) for each mass thickness was obtained using Monte-carlo method and used for the analysis of dose distribution, which provides the information of whether the item will be penetrated or not, as well as the Max. dose, Min. dose and DUR of the whole item.

  14. High-resolution x-ray computed tomography to understand ruminant phylogeny

    Science.gov (United States)

    Costeur, Loic; Schulz, Georg; Müller, Bert

    2014-09-01

    High-resolution X-ray computed tomography has become a vital technique to study fossils down to the true micrometer level. Paleontological research requires the non-destructive analysis of internal structures of fossil specimens. We show how X-ray computed tomography enables us to visualize the inner ear of extinct and extant ruminants without skull destruction. The inner ear, a sensory organ for hearing and balance has a rather complex three-dimensional morphology and thus provides relevant phylogenetical information what has been to date essentially shown in primates. We made visible the inner ears of a set of living and fossil ruminants using the phoenix x-ray nanotom®m (GE Sensing and Inspection Technologies GmbH). Because of the high absorbing objects a tungsten target was used and the experiments were performed with maximum accelerating voltage of 180 kV and a beam current of 30 μA. Possible stem ruminants of the living families are known in the fossil record but extreme morphological convergences in external structures such as teeth is a strong limitation to our understanding of the evolutionary history of this economically important group of animals. We thus investigate the inner ear to assess its phylogenetical potential for ruminants and our first results show strong family-level morphological differences.

  15. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    International Nuclear Information System (INIS)

    Ulbricht, Gerhard; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint; Bumble, Bruce

    2015-01-01

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV

  16. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ulbricht, Gerhard, E-mail: ulbricht@physics.ucsb.edu; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Bumble, Bruce [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91125 (United States)

    2015-06-22

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV.

  17. High-Frequency X-ray Variability Detection in A Black Hole Transient with USA.

    Energy Technology Data Exchange (ETDEWEB)

    Shabad, Gayane

    2000-10-16

    Studies of high-frequency variability (above {approx}100 Hz) in X-ray binaries provide a unique opportunity to explore the fundamental physics of spacetime and matter, since the orbital timescale on the order of several milliseconds is a timescale of the motion of matter through the region located in close proximity to a compact stellar object. The detection of weak high-frequency signals in X-ray binaries depends on how well we understand the level of Poisson noise due to the photon counting statistics, i.e. how well we can understand and model the detector deadtime and other instrumental systematic effects. We describe the preflight timing calibration work performed on the Unconventional Stellar Aspect (USA) X-ray detector to study deadtime and timing issues. We developed a Monte Carlo deadtime model and deadtime correction methods for the USA experiment. The instrumental noise power spectrum can be estimated within {approx}0.1% accuracy in the case when no energy-dependent instrumental effect is present. We also developed correction techniques to account for an energy-dependent instrumental effect. The developed methods were successfully tested on USA Cas A and Cygnus X-1 data. This work allowed us to make a detection of a weak signal in a black hole candidate (BHC) transient.

  18. X-ray spectroscopy for high energy-density X pinch density and temperature measurements (invited)

    International Nuclear Information System (INIS)

    Pikuz, S.A.; Shelkovenko, T.A.; Chandler, K.M.; Mitchell, M.D.; Hammer, D.A.; Skobelev, I.Y.; Shlyaptseva, A.S.; Hansen, S.B.

    2004-01-01

    X pinch plasmas produced from fine metal wires can reach near solid densities and temperatures of 1 keV or even more. Plasma conditions change on time scales as short as 5-10 ps as determined using an x-ray streak camera viewing a focusing crystal spectrograph or directly viewing the plasma through multiple filters on a single test. As a result, it is possible to determine plasma conditions from spectra with ∼10 ps time resolution. Experiments and theory are now coming together to give a consistent picture of the dynamics and kinetics of these high energy density plasmas with very high temporal and spatial precision. A set of diagnostic techniques used in experiments for spectrally, temporally, and spatially resolved measurements of X pinch plasmas is described. Results of plasma parameter determination from these measurements are presented. X ray backlighting of one x-pinch by another with ∼30 ps x-ray pulses enables the dynamics and kinetics to be correlated in time

  19. Direct electron acceleration in plasma waveguides for compact high-repetition-rate x-ray sources

    International Nuclear Information System (INIS)

    Lin, M-W; Jovanovic, I

    2014-01-01

    Numerous applications in fundamental and applied research, security, and industry require robust, compact sources of x-rays, with a particular recent interest in monochromatic, spatially coherent, and ultrafast x-ray pulses in well-collimated beams. Such x-ray sources usually require production of high-quality electron beams from compact accelerators. Guiding a radially polarized laser pulse in a plasma waveguide has been proposed for realizing direct laser acceleration (DLA), where the electrons are accelerated by the axial electric field of a co-propagating laser pulse (Serafim et al 2000 IEEE Trans. Plasma Sci. 28 1190). A moderate laser peak power is required for DLA when compared to laser wakefield acceleration, thus offering the prospect for high repetition rate operation. By using a density-modulated plasma waveguide for DLA, the acceleration distance can be extended with pulse guiding, while the density-modulation with proper axial structure can realize the quasi-phase matching between the laser pulses and electrons for a net gain accumulation (York et al 2008 Phys. Rev. Lett. 100 195001; York et al 2008 J. Opt. Soc. Am. B 25 B137; Palastro et al 2008 Phys. Rev. E 77 036405). We describe the development and application of a test particle model and particle-in-cell model for DLA. Experimental setups designed for fabrication of optically tailored plasma waveguides via the ignitor-heater scheme, and for generation and characterization of radially polarized short pulses used to drive DLA, are presented. (paper)

  20. Apparatus development for high-pressure X-ray diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Martinez, L.G.; Orlando, M.T.D.; Rossi, J.L.; Passamai Junior, J.L.; Melo, F.C.L.; Ferreira, F.F.

    2006-01-01

    Some phenomena in the field of condensed matter physics can be studied when the matter is submitted to extreme conditions of pressure, magnetic fields or temperatures. Once submitted to these conditions it is generally necessary to measure the properties of the matter in situ. The existence of a synchrotron light laboratory in Brazil opens up the chance of studying materials in extreme conditions by techniques like X-ray diffraction and absorption. However, when compared to high-energy synchrotrons accelerators, the Brazilian source offers a narrower energy range and lower flux. These facts impose limitation to perform diffraction experiments by energy dispersion and, consequently, the use of pressure cells with denser anvils like diamond. However, for a lower-pressure range, preliminary studies showed the viability of measurements in an angular dispersion configuration. This allows the use of silicon carbide anvils B 4C . In this work it is described the development of a hydrostatic pressure cell suitable for X-rays diffraction measurements in the Brazilian Synchrotron Light Laboratory using materials and technologies developed by the institutions and researchers involved in this project (IPEN, UFES, CTA and LNLS). This development can provide the scientific community with the possibility of performing X-ray diffraction measurements under hydrostatic pressure, initially up to 2 GPa, with possibilities of increasing the maximum pressure to higher values, with or without application of magnetic fields and high or low temperatures. (author)

  1. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  2. Obtaining high degree of circular polarization at X-ray FELs via a reverse undulator taper

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2013-08-15

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate. It can be used at different X-ray FEL facilities, in particular at LCLS after installation of the helical afterburner in the near future.

  3. Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hoo Min; Yoon, Joon [Dept. of Radiological technology, Dongnam Health University, Suwon (Korea, Republic of); Kim, Hyun Ju [Dept. of Radiology, Soonchunhyang University Hospital Buchen, Bucheon (Korea, Republic of)

    2014-09-15

    The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.

  4. Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus

    International Nuclear Information System (INIS)

    Lee, Hoo Min; Yoon, Joon; Kim, Hyun Ju

    2014-01-01

    The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier

  5. Radio and X-ray observations of a multiple impulsive solar burst with high time resolution

    International Nuclear Information System (INIS)

    Kosugi, T.

    1981-01-01

    A well-developed multiple impulsive microwave burst occurred on February 17, 1979 simultaneously with a hard X-ray burst and a large group of type III bursts at metric wavelengths. The whole event is composed of serveral subgroups of elementary spike bursts. Detailed comparisons between these three classes of emissions with high time resolution of approx. equal to0.5 s reveal that individual type III bursts coincide in time with corresponding elementary X-ray and microwave spike bursts. It suggests that a non-thermal electron pulse generating a type III spike burst is produced simultaneously with those responsible for the corresponding hard X-ray and microwave spike bursts. The rise and decay characteristic time scales of the elementary spike burst are << 1 s, and approx. equal to1 s and approx. equal to3 s for type III, hard X-ray and microwave emissions respectively. Radio interferometric observations made at 17 GHz reveal that the spatial structure varies from one subgroup to others while it remains unchanged in a subgroup. Spectral evolution of the microwave burst seems to be closely related to the spatial evolution. The spatial evolution together with the spectral evolution suggests that the electron-accelerating region shifts to a different location after it stays at one location for several tens of seconds, duration of a subgroup of elementary spike bursts. We discuss several requirements for a model of the impulsive burst which come out from these observational results, and propose a migrating double-source model. (orig.)

  6. Testing the Paradigm that Ultraluminous X-Ray Sources as a Class Represent Accreting Intermediate-Mass Black Holes

    Science.gov (United States)

    Berghea, C. T.; Weaver, K. A.; Colbert, E. J. M.; Roberts, T. P.

    2008-11-01

    To test the idea that ultraluminous X-ray sources (ULXs) in external galaxies represent a class of accreting intermediate-mass black holes (IMBHs), we have undertaken a program to identify ULXs and a lower luminosity X-ray comparison sample with the highest quality data in the Chandra archive. We establish as a general property of ULXs that the most X-ray-luminous objects possess the flattest X-ray spectra (in the Chandra bandpass). No prior sample studies have established the general hardening of ULX spectra with luminosity. This hardening occurs at the highest luminosities (absorbed luminosity >=5 × 1039 erg s-1) and is in line with recent models arguing that ULXs are actually stellar mass black holes. From spectral modeling, we show that the evidence originally taken to mean that ULXs are IMBHs—i.e., the "simple IMBH model"—is nowhere near as compelling when a large sample of ULXs is looked at properly. During the last couple of years, XMM-Newton spectroscopy of ULXs has to a large extent begun to negate the simple IMBH model based on fewer objects. We confirm and expand these results, which validates the XMM-Newton work in a broader sense with independent X-ray data. We find that (1) cool-disk components are present with roughly equal probability and total flux fraction for any given ULX, regardless of luminosity, and (2) cool-disk components extend below the standard ULX luminosity cutoff of 1039 erg s-1, down to our sample limit of 1038.3 erg s-1. The fact that cool-disk components are not correlated with luminosity damages the argument that cool disks indicate IMBHs in ULXs, for which strong statistical support was never found.

  7. Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy

    Science.gov (United States)

    Limandri, S.; Robledo, J.; Tirao, G.

    2018-06-01

    High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.

  8. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.

    Science.gov (United States)

    Wyndham, E S; Favre, M; Valdivia, M P; Valenzuela, J C; Chuaqui, H; Bhuyan, H

    2010-09-01

    We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 μs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

  9. Highly ionized copper contribution to the soft X-ray emission in a plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Zoita, V; Patran, A [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania); Larour, J [Ecole Polytechnique, Palaiseau (France). Lab. de Physique des Milieux Ionises

    1997-12-31

    In order to discriminate between the contributions of the gas plasma and of the anode (solid or plasma) to the soft X-ray emission in a plasma focus device, a series of experiments was carried out using the following combinations of experimental conditions: various gases, different absorption filters and viewing different regions in front of the centre electrode. The experiments were performed on the IPF-2/20 plasma focus device using the following working gases: helium, neon and helium-argon mixtures. The diagnostics used: magnetic probe for current derivative, PIN diode for the minimum pinch radius detection, PIN diodes for the soft X-ray emission, scintillator-photomultiplier detector for the hard X-ray emission. From the analysis of the various diagnostics data recorded with very good time correlation, it followed that the soft K-ray signals had a strong contribution from optical transitions of the highly ionised Cu (Cu XX to XXII) emitting in the range 0.8-1.3 nm. (author). 7 figs., 9 refs.

  10. Heat transfer issues in high-heat-load synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Mills, D.M.

    1994-09-01

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements

  11. Large area, low capacitance Si(Li) detectors for high rate x-ray applications

    International Nuclear Information System (INIS)

    Rossington, C.S.; Fine, P.M.; Madden, N.W.

    1992-10-01

    Large area, single-element Si(Li) detectors have been fabricated using a novel geometry which yields detectors with reduced capacitance and hence reduced noise at short amplifier pulse-processing times. A typical device employing the new geometry with a thickness of 6 mm and an active area of 175 mm 2 has a capacitance of only 0.5 pf, compared to 2.9 pf for a conventional planar device with equivalent dimensions. These new low capacitance detectors, used in conjunction with low capacitance field effect transistors, will result in x-ray spectrometers capable of operating at very high count rates while still maintaining excellent energy resolution. The spectral response of the low capacitance detectors to a wide range of x-ray energies at 80 K is comparable to typical state-of-the-art conventional Si(Li) devices. In addition to their low capacitance, the new devices offer other advantages over conventional detectors. Detector fabrication procedures, I-V and C-V characteristics, noise performance, and spectral response to 2-60 keV x-rays are described

  12. Monte Carlo simulation on hard X-ray dose produced in interaction between high intensity laser and solid target

    International Nuclear Information System (INIS)

    Yang Bo; Qiu Rui; Li Junli; Zhang Hui

    2014-01-01

    The X-ray dose produced in the interaction between high intensity laser and solid target was studied by simulation using Monte Carlo code. Compared with experimental results, the calculation model was verified. The calculation model was used to study the effect on X-ray dose with different electron temperatures, target materials (including Au, Cu and PE) and thicknesses. The results indicate that the X-ray dose is mainly determined by the electron temperature, and will be affected by the target parameters. X-ray dose of Au is about 1.2 times that of Cu, and is about 5 times that of PE (polyethylene). In addition, compared with other target thickness, when target thickness is the mean range of electron in the target, X-ray dose is relatively large. These results will provide references on evaluating the ionizing radiation dose for laser devices. (authors)

  13. High-resolution imaging of coronary calcifications by intense low-energy fluoroscopic X-ray obtained from synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, S.; Sugishita, Y.; Takeda, T.; Itai, Y.; Tada, J.; Hyodo, K.; Ando, M. [Inst. of Clinical Medicine, Univ. of Tsukuba, Ibaraki (Japan). Dept. of Cardiology

    2000-07-01

    In order to obtain an intense monochromatic low-energy X-ray from synchrotron radiation (SR) and apply it to detect coronary calcifications, the SR beam was reflected with a silicon crystal to be expanded (150 mm in height and 80 mm in width) and to be monochromatized at an energy level of 37 keV. The X-ray was intermittently irradiated to obtain dynamic imaging of 30 images/s. Images were recorded by a digital fluorography system. The low-energy X-ray from SR sharply visualized calcification of coronary arteries, while conventional X-ray could not visualize coronary calcification. The intense monochromatic low-energy X-ray from SR is sensitive, has high-resolution for imaging coronary calcification and may serve as a screening method for coronary artery disease.

  14. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    International Nuclear Information System (INIS)

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Shen, Guoyin; Shibazaki, Yuki; Wang, Yanbin

    2015-01-01

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10 5 frames/second (fps) in air and up to ∼10 4 fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures

  15. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Shen, Guoyin [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Shibazaki, Yuki [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai 980-8578 (Japan); Wang, Yanbin [GeoSoilEnviroCARS, Center for Advanced Radiation Sources, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637 (United States)

    2015-07-15

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperat