WorldWideScience

Sample records for high mass matrix-assisted

  1. Matrix-assisted laser desorption fourier transform mass spectrometry for biological compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hettich, R.; Buchanan, M.

    1990-01-01

    The recent development of matrix-assisted UV laser desorption (LD) mass spectrometry has made possible the ionization and detection of extremely large molecules (with molecular weights exceeding 100,000 Daltons). This technique has generated enormous interest in the biological community for the direct examination of large peptides and oligonucleotides. Although this matrix-assisted ionization method has been developed and used almost exclusively with time-of-flight (TOF) mass spectrometers, research is currently in progress to demonstrate this technique with trapped ion mass spectrometers, such as Fourier transform ion cyclotron resonance mass spectrometry (FTMS). The potential capabilities of FTMS for wide mass range, high resolution measurement, and ion trapping experiments suggest that this instrumental technique should be useful for the detailed structural characterization of large ions generated by the matrix-assisted technique. We have recently demonstrated that matrix-assisted ultraviolet laser desorption can be successfully used with FTMS for the ionization of small peptides. The objective of this report is to summarize the application and current limitations of matrix-assisted laser desorption FTMS for the characterization of peptides and oligonucleotides at the isomeric level. 4 refs., 3 figs., 2 tabs.

  2. Newborn screening by matrix-assisted laser desorption/ionization mass spectrometry based on parylene-matrix chip.

    Science.gov (United States)

    Kim, Jo-Il; Noh, Joo-Yoon; Kim, Mira; Park, Jong-Min; Song, Hyun-Woo; Kang, Min-Jung; Pyun, Jae-Chul

    2017-08-01

    Newborn screening for diagnosis of phenylketonuria, homocystinuria, and maple syrup urine disease have been conducted by analyzing the concentration of target amino acids using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) based on parylene-matrix chip. Parylene-matrix chip was applied to MALDI-ToF MS analysis reducing the matrix peaks significantly at low mass-to-charge ratio range (m/z  0.98) and the LODs were ranging from 9.0 to 22.9 μg/mL. Effect of proteins in serum was estimated by comparing MALDI-ToF mass spectra of amino acids-spiked serum before and after the methanol extraction. Interference of other amino acids on analysis of target analyte was determined to be insignificant. From these results, MALDI-ToF MS based on parylene-matrix chip could be applicable to medical diagnosis of neonatal metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Focused Electrospray Deposition for Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    International Nuclear Information System (INIS)

    Jeong, Kyung Hwan; Seo, Jong Cheol; Yoon, Hye Joo; Shin, Seung Koo

    2010-01-01

    Focused electrospray (FES) deposition method is presented for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. FES ion optics consists of two cylindrical focusing electrodes capped with a truncated conical electrode through which an electrospray emitter passes along the cylindrical axis. A spray of charged droplets is focused onto a sample well on a MALDI target plate under atmospheric pressure. The shape and size distributions of matrix crystals are visualized by scanning electron microscope and the mass spectra are obtained by time-of-flight mass spectrometry. Angiotensin II, bradykinin, and substance P are used as test samples, while α-cyano-4-hydroxycinnamic acid and dihydroxybenzoic acid are employed as matrices. FES of a sample/matrix mixture produces fine crystal grains on a 1.3 mm spot and reproducibly yields the mass spectra with little shot-to-shot and spot-to-spot variations. Although FES greatly stabilizes the signals, the space charge due to matrix ions limits the detection sensitivity of peptides. To avoid the space charge problem, we adopted a dual FES/FES mode, which separately deposits matrix and sample by FES in sequence. The dual FES/FES mode reaches the detection sensitivity of 0.88 amol, enabling ultrasensitive detection of peptides by homogeneously depositing matrix and sample under atmospheric pressure

  4. Mass spectrometry imaging of illicit drugs in latent fingerprints by matrix-free and matrix-assisted desorption/ionization techniques.

    Science.gov (United States)

    Skriba, Anton; Havlicek, Vladimir

    2018-02-01

    Compared with classical matrix-assisted laser-desorption ionization mass spectrometry (MALDI), the matrix free-based strategies generate a cleaner background, without significant noise or interference coming from an applied matrix, which is beneficial for the analysis of small molecules, such as drugs of abuse. In this work, we probed the detection efficiency of methamphetamine, heroin and cocaine in nanostructure-assisted laser desorption-ionization (NALDI) and desorption electrospray ionization and compared the sensitivity of these two matrix-free tools with a standard MALDI mass spectrometry experiment. In a typical mass spectrometry imaging (MSI) setup, papillary line latent fingerprints were recorded as a mixture a common skin fatty acid or interfering cosmetics with a drug. In a separate experiment, all drugs (1 µL of 1 μM standard solution) were detected by all three ionization techniques on a target. In the case of cocaine and heroin, NALDI mass spectrometry was the most sensitive and revealed signals even from 0.1 μM solution. The drug/drug contaminant (fatty acid or cosmetics) MSI approach could be used by law enforcement personnel to confirm drug abusers of having come into contact with the suspected drug by use of fingerprint scans at time of apprehension which can aid in reducing the work of lab officials.

  5. Iron oxide nanomatrix facilitating metal ionization in matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Obena, Rofeamor P; Lin, Po-Chiao; Lu, Ying-Wei; Li, I-Che; del Mundo, Florian; Arco, Susan dR; Nuesca, Guillermo M; Lin, Chung-Chen; Chen, Yu-Ju

    2011-12-15

    The significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element. The matrix@MNPs provided 20- to >100-fold enhancement on detection sensitivity of metal ions and unambiguous identification through characteristic isotope patterns and accurate mass (<5 ppm), which may be attributed to its multifunctional role as metal chelator, preconcentrator, absorber, and reservoir of energy. Together with the comparison on the ionization behaviors of various metals having different ionization potentials (IP), we formulated a metal ionization mechanism model, alluding to the role of exciton pooling in matrix@MNP-assisted MALDI-MS. Moreover, the detection of Cu in spiked tap water demonstrated the practicability of this new approach as an efficient and direct alternative tool for fast, sensitive, and accurate determination of trace metal ions in real samples.

  6. Calibration of matrix-assisted laser desorption/ionization time-of-flight peptide mass fingerprinting spectra

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2007-01-01

    This chapter describes a number of aspects important for calibration of matrix-assisted laser desorption/ionization time-of-flight spectra prior to peptide mass fingerprinting searches. Both multipoint internal calibration and mass defect-based calibration is illustrated. The chapter describes ho...

  7. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  8. Alkaloid profiling of the Chinese herbal medicine Fuzi by combination of matrix-assisted laser desorption ionization mass spectrometry with liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Wang, J.; Heijden, R. van der; Spijksma, G.; Reijmers, T.; Wang, M.; Xu, G.; Hankemeier, T.; Greef, J. van der

    2009-01-01

    A matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) method was developed for the high throughput and robust qualitative profiling of alkaloids in Fuzi-the processed lateral roots of the Chinese herbal medicine Aconitum carmichaeli Debx (A. carmichaeli). After optimization,

  9. Assisted inhibition effect of acetylcholinesterase with n-octylphosphonic acid and application in high sensitive detection of organophosphorous pesticides by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry.

    Science.gov (United States)

    Cai, Tingting; Zhang, Li; Wang, Haoyang; Zhang, Jing; Guo, Yinlong

    2011-11-14

    A simple and practical approach to improve the sensitivity of acetylcholinesterase (AChE)-inhibited method has been developed for monitoring organophosphorous (OP) pesticide residues. In this work, matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) was used to detect AChE activity. Due to its good salt-tolerance and low sample consumption, MALDI-FTMS facilitates rapid and high-throughput screening of OP pesticides. Here we describe a new method to obtain low detection limits via employing external reagents. Among candidate compounds, n-octylphosphonic acid (n-Octyl-PA) displays assistant effect to enhance AChE inhibition by OP pesticides. In presence of n-Octyl-PA, the percentages of AChE inhibition still kept correlation with OP pesticide concentrations. The detection limits were improved significantly even by 10(2)-10(3) folds in comparison with conventional enzyme-inhibited methods. Different detection limits of OP pesticides with different toxicities were as low as 0.005 μg L(-1) for high toxic pesticides and 0.05 μg L(-1) for low toxic pesticides. Besides, the reliability of results from this method to analyze cowpea samples had been demonstrated by liquid-chromatography tandem mass spectrometry (LC-MS/MS). The application of this commercial available assistant agent shows great promise to detect OP compounds in complicated biological matrix and broadens the mind for high sensitivity detection of OP pesticide residues in agricultural products. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Matrix-assisted laser desorption/ionization mass spectrometry for the structural characterization of modified oligonucleotides

    International Nuclear Information System (INIS)

    Hurst, G.B.; Hettich, R.L.; Buchanan, M.V.; Stemmler, E.A.

    1993-01-01

    Matrix-assisted laser desorption ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry (FTMS) and MALDI time-of-flight mass spectrometry (TOFMS) are being used to characterize conditions for the efficient desorption and ionization of normal and modified nucleic acid components. Basic and acidic matrix materials have been evaluated on the components. Basic and acidic matrix materials have been evaluated on the FTMS and TOFMS. Using MALDI-FTMS at 355 nm, less fragmentation has been observed using 2,5-dihydroxybenzoic acid, while more extensive fragmentation is observed for basic matrices, such as 1,5-diaminonaphthalene and 9-aminophenanthrene. Elevation of the cell pressure by the addition of Ar or CO 2 provides collisional cooling of desorbed ions, resulting in an enhancement of [M--H] - and structurally significant high-mass fragment ions. Using MALDI-TOFMS at 337 nm, fragmentation is significantly reduced relative to that observed on the FTMS, perhaps as a consequence of the longer times required for FTMS detection. On the FTMS and TOFMS, cluster ions have been observed in the negative ion mode when metal ions are present in the 2,5-dihydroxybenzoic acid matrix. Metal ion additions and clusters with matrix salts have also been observed for dinucleotides. Applications of MALDI-FTMS and MALDI-TOF to the detection of hydroxylated PAH nucleoside adducts are presented

  11. Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van

    2000-01-01

    Chemical analysis for the characterisation of micro-organisms is rapidly evolving, after the recent advent of new ionisation methods in mass spectrometry (MS): electrospray (ES) and matrix-assisted laser desorption/ionisation (MALDI). These methods allow quick characterisation of micro-organisms,

  12. Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry for the Investigation of Proteins and Peptides

    Science.gov (United States)

    Burnum, Kristin E.; Frappier, Sara L.; Caprioli, Richard M.

    2008-07-01

    Mass spectrometry (MS) is an excellent technology for molecular imaging because of its high data dimensionality. MS can monitor thousands of individual molecular data channels measured as mass-to-charge (m/z). We describe the use of matrix-assisted laser desorption/ionization (MALDI) MS for the image analysis of proteins, peptides, lipids, drugs, and metabolites in tissues. We discuss the basic instrumentation and sample preparation methods needed to produce high-resolution images and high image reproducibility. Matrix-addition protocols are briefly discussed along with normal operating procedures, and selected biological and medical applications of MALDI imaging MS are described. We give examples of both two- and three-dimensional imaging, including normal mouse embryo implantation, sperm maturation in mouse epididymis, protein distributions in brain sections, protein alterations as a result of drug administration, and protein changes in brain due to neurodegeneration and tumor formation. Advantages of this technology and future challenges for its improvement are discussed.

  13. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Compounds Containing Carboxyl Groups Using CdTe and CuO Nanoparticles

    OpenAIRE

    Megumi Sakurai; Taro Sato; Jiawei Xu; Soichi Sato; Tatsuya Fujino

    2018-01-01

    Matrix-assisted laser desorption ionization mass spectrometry of compounds containing carboxyl groups was carried out by using semiconductor nanoparticles (CdTe and CuO) as the matrix. Salicylic acid (Sal), glucuronic acid (Glu), ibuprofen (Ibu), and tyrosine (Tyr) were ionized as deprotonated species (carboxylate anions) by using electrons ejected from CdTe after the photoexcitation. When CuO was used as the matrix, the peak intensity of Tyr became high compared with that obtained with CdTe....

  14. Mesoporous tungsten titanate as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of biomolecules

    International Nuclear Information System (INIS)

    Shan Zhe; Han Lu; Yuan Minjia; Deng Chunhui; Zhao Dongyuan; Tu Bo; Yang Pengyuan

    2007-01-01

    In this paper, mesoporous tungsten titanate (WTiO) with different nano-pore structures was utilized as matrix for the analysis of short peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Effect of characteristic features of mesoporous matrices on laser desorption/ionization process was investigated. Experiments showed that the ordered two-dimensional and three-dimensional mesoporous matrices were superior in performance to the non-ordered WTiO matrix. The dramatic enhancement of signal sensitivity by the ordered mesoporous matrices can be reasonably attributed to the ordered structure, which facilitated the understanding on structure-function relationship in mesoporous cavity for laser desorption process of adsorbed biomolecules. With the ordered mesoporous matrix, the short peptides are successfully detected. The presence of trace alkali metal salt effectively increased the analyte ion yields and the MALDI-TOFMS using the inorganic mesoporous matrices displayed a high salt tolerance. The developed technique also showed a satisfactory performance in peptide-mapping and amino-acid sequencing analysis

  15. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Svensson, B; Roepstorff, P

    1996-01-01

    Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy is presen......Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy...... is presented encompassing protein characterization prior to and after cloning of the corresponding gene....

  16. Matrix-assisted laser-desorption-ionization mass spectrometry of proteins using a free-electron laser

    International Nuclear Information System (INIS)

    Cramer, R.; Hillenkamp, F.; Haglund, R.

    1995-01-01

    Matrix-assisted laser desorption-ionization (MALDI) mass spectrometry (MS) is one of the most promising techniques for spectral fingerprinting large molecules, such as proteins, oligonucleotides and carbohydrates. In the usual implementation of this technique, the analyte molecule is dissolved in an aromatic liquid matrix material which resonantly absorbs ultraviolet laser light. Resonant absorption by π-π* transitions volatilizes the matrix and initiates subsequent charge transfer to the analyte molecules, which are detected by time-of-flight mass spectrometry. Recent MALDI-MS studies with Er:YAG (2.94 μm) and CO 2 4 (9.4-10.6 μm) lasers suggest that them is significant unexplored potential for mass spectrometry of macromolecules, including oligonucleotide, in the mid-infrared. Preliminary experiments show that it is possible to capitalize on the rich rovibronic absorption spectrum of virtually all organics to initiate resonant desorption in matrix material over the entire range of pH values. However, the mechanism of charge transfer is particularly problematic for infrared MALDI because of the low photon energy. In this paper, we report the results of MALI-MS studies on small proteins using the Vanderbilt FEL and several matrix materials. Proteins with masses up to roughly 6,000 amu were detected with high resolution in a linear time-of-flight mass spectrometer. By varying the pulse duration using a broadband Pockels cell, we have been able to compare the results of relatively long (5 μs) and short (0.1 μs) irradiation on the desorption and ionization processes. Compared to uv-MALDI spectra of identical analytes obtained with a nitrogen laser (337 nm) in the same time-of-flight spectrometer, the infrared results appear to show that the desorption and ionization process goes on over a somewhat longer time scale

  17. Generation of CsI cluster ions for mass calibration in matrix-assisted laser desorption/ionization mass spectrometry

    NARCIS (Netherlands)

    Lou, X.; Dongen, van J.L.J.; Meijer, E.W.

    2010-01-01

    A simple method was developed for the generation of cesium iodide (CsI) cluster ions up to m/z over 20,000 in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Calibration ions in both positive and negative ion modes can readily be generated from a single MALDI spot of CsI(3)

  18. Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards

    DEFF Research Database (Denmark)

    Mirgorodskaya, O A; Kozmin, Y P; Titov, M I

    2000-01-01

    A method for quantitating proteins and peptides in the low picomole and sub-picomole range has been developed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) with internal (18)O-labeled standards. A simple procedure is proposed to produce such internal standards for...... inhibitor, were quantified by MALDI-time-of-flight (TOF) mass spectrometry.......A method for quantitating proteins and peptides in the low picomole and sub-picomole range has been developed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) with internal (18)O-labeled standards. A simple procedure is proposed to produce such internal standards...

  19. Laser desorption ionization mass spectrometry: Recent progress in matrix-free and label-assisted techniques.

    Science.gov (United States)

    Mandal, Arundhoti; Singha, Monisha; Addy, Partha Sarathi; Basak, Amit

    2017-10-13

    The MALDI-based mass spectrometry, over the last three decades, has become an important analytical tool. It is a gentle ionization technique, usually applicable to detect and characterize analytes with high molecular weights like proteins and other macromolecules. The earlier difficulty of detection of analytes with low molecular weights like small organic molecules and metal ion complexes with this technique arose due to the cluster of peaks in the low molecular weight region generated from the matrix. To detect such molecules and metal ion complexes, a four-prong strategy has been developed. These include use of alternate matrix materials, employment of new surface materials that require no matrix, use of metabolites that directly absorb the laser light, and the laser-absorbing label-assisted LDI-MS (popularly known as LALDI-MS). This review will highlight the developments with all these strategies with a special emphasis on LALDI-MS. © 2017 Wiley Periodicals, Inc.

  20. Characterization of polyesters by matrix-assisted laser desorption/ionization and Fourier transform mass spectrometry.

    Science.gov (United States)

    Mize, Todd H; Simonsick, William J; Amster, I Jonathan

    2003-01-01

    Two homopolyesters, poly(neopentyl glycol-alt-isophthalic acid) and poly(hexanediol-alt-azelaic acid), and two copolyesters, poly(dipropoxylated bisphenol-A-alt-(isophthalic acid-co-adipic acid)) and poly(neopentyl glycol-alt-(adipic acid-co-isophthalic acid)) were analyzed by internal source matrix assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS). The high resolution and high mass accuracy provided by FTMS greatly facilitate the characterization of the polyester and copolyester samples. Isobaric resolution allows the ion abundances of overlapping isotopic envelopes to be assessed. Repeat units were confirmed and end functionality assigned. Single shot mass spectra of the entire polymeric distribution demonstrate that the dynamic range of this internal MALDI source instrument and the analyzer cell exceeds performance of those previously reported for higher field instruments. Corrections of space charge mass shift effects are demonstrated for the analytes using an external calibrant and (subsequent to confirmation of structure) via internal calibration which removes ambiguity due to space charge differences in calibrant and analyte spectra. Capillary gel permeation chromatography was used to prepare low polydispersity samples from a high polydispersity polyester, improving the measurement of molecular weight distribution two-fold while retaining the benefits of high resolution mass spectrometry for elucidation of oligomer identity.

  1. Identification of Fatty Acids, Phospholipids, and Their Oxidation Products Using Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Harmon, Christopher W.; Mang, Stephen A.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-01-01

    Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have found increasing application in the analysis of biological samples. Using these techniques to solve problems in analytical chemistry should be an essential component of the training of undergraduate chemists. We…

  2. Matrix-assisted laser desorption/ionisation mass spectrometry imaging and its development for plant protein imaging

    Directory of Open Access Journals (Sweden)

    Millar A Harvey

    2011-07-01

    Full Text Available Abstract Matrix-Assisted Laser Desorption/Ionisation (MALDI mass spectrometry imaging (MSI uses the power of high mass resolution time of flight (ToF mass spectrometry coupled to the raster of lasers shots across the cut surface of tissues to provide new insights into the spatial distribution of biomolecules within biological tissues. The history of this technique in animals and plants is considered and the potential for analysis of proteins by this technique in plants is discussed. Protein biomarker identification from MALDI-MSI is a challenge and a number of different approaches to address this bottleneck are discussed. The technical considerations needed for MALDI-MSI are reviewed and these are presented alongside examples from our own work and a protocol for MALDI-MSI of proteins in plant samples.

  3. [Separation and identification of bovine lactoferricin by high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/ time of flight mass spectrometry].

    Science.gov (United States)

    An, Meichen; Liu, Ning

    2010-02-01

    A high performance liquid chromatography-matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (HPLC-MALDI-TOF/TOF MS) method was developed for the separation and identification of bovine lactoferricin (LfcinB). Bovine lactoferrin was hydrolyzed by pepsin and then separated by ion exchange chromatography and reversed-phase liquid chromatography (RP-LC). The antibacterial activities of the fractions from RP-LC separation were determined and the protein concentration of the fraction with the highest activity was measured, whose sequence was indentified by MALDI-TOF/TOF MS. The relative molecular mass of LfcinB was 3 124.89 and the protein concentration was 18.20 microg/mL. The method of producing LfcinB proposed in this study has fast speed, high accuracy and high resolution.

  4. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Jie; An, Dongli; Chen, Tengteng; Lin, Zhiwei

    2017-10-01

    In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.

  5. Direct analysis of triterpenes from high-salt fermented cucumbers using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)

    Science.gov (United States)

    High-salt samples present a challenge to mass spectrometry (MS) analysis, particularly when electrospray ionization (ESI) is used, requiring extensive sample preparation steps such as desalting, extraction, and purification. In this study, infrared matrix-assisted laser desorption electrospray ioniz...

  6. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging

    DEFF Research Database (Denmark)

    Li, Bin; Bhandari, Dhaka Ram; Janfelt, Christian

    2014-01-01

    The rhizome of Glycyrrhiza glabra (licorice) was analyzed by high-resolution mass spectrometry imaging and tandem mass spectrometry imaging. An atmospheric pressure matrix-assisted laser desorption/ionization imaging ion source was combined with an orbital trapping mass spectrometer in order to o...... and saponins in legume species, combing the spatially resolved chemical information with morphological details at the microscopic level. Furthermore, the technique offers a scheme capable of high-throughput profiling of metabolites in plant tissues....

  7. Matrix-assisted laser-desorption/ionization mass spectrometric imaging of olanzapine in a single hair using esculetin as a matrix.

    Science.gov (United States)

    Wang, Hang; Wang, Ying; Wang, Ge; Hong, Lizhi

    2017-07-15

    Matrix-assisted laser desorption/ionization-mass spectrometric imaging (MALDI-MSI) for the analysis of intact hair is a powerful tool for monitoring changes in drug consumption. The embedding of a low drug concentration in the hydrophobic hair matrix makes it difficult to extract and detect, and requires an improved method to increase detection sensitivity. In this study, an MSI method using MALDI-Fourier transform ion cyclotron resonance was developed for direct identification and imaging of olanzapine in hair samples using the positive ion mode. Following decontamination, scalp hair samples from an olanzapine user were scraped from the proximal to the distal end three times, and 5mm hair sections were fixed onto an Indium-Tin-Oxide (ITO)-coated microscopic glass slide. Esculetin (6,7-dihydroxy-2H-chromen-2-one) was used as a new hydrophobic matrix to increase the affinity, extraction and ionization efficiency of olanzapine in the hair samples. The spatial distribution of olanzapine was observed using five single hairs from the same drug user. This matrix improves the affinity of olanzapine in hair for molecular imaging with mass spectrometry. This method may provide a detection power for olanzapine to the nanogram level per 5mm hair. Time course changes in the MSI results were also compared with quantitative HPLC-MS/MS for each 5mm segment of single hair shafts selected from the MALDI target. MALDI imaging intensities in single hairs showed good semi-quantitative correlation with the results from conventional HPLC-MS/MS. MALDI-MSI is suitable for monitoring drug intake with a high time resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Phenotypic identification of Porphyromonas gingivalis validated with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Rams, Thomas E; Sautter, Jacqueline D; Getreu, Adam; van Winkelhoff, Arie J

    OBJECTIVE: Porphyromonas gingivalis is a major bacterial pathogen in human periodontitis. This study used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to assess the accuracy of a rapid phenotypic identification scheme for detection of cultivable P.

  9. [Special application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiological diagnostics].

    Science.gov (United States)

    Nagy, Erzsébet; Abrók, Marianna; Bartha, Noémi; Bereczki, László; Juhász, Emese; Kardos, Gábor; Kristóf, Katalin; Miszti, Cecilia; Urbán, Edit

    2014-09-21

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry as a new possibility for rapid identification of bacteria and fungi revolutionized the clinical microbiological diagnostics. It has an extreme importance in the routine microbiological laboratories, as identification of the pathogenic species rapidly will influence antibiotic selection before the final determination of antibiotic resistance of the isolate. The classical methods for identification of bacteria or fungi, based on biochemical tests, are influenced by many environmental factors. The matrix-assisted laser desorption ionization time-of-flight mass spectrometry is a rapid method which is able to identify a great variety of the isolated bacteria and fungi based on the composition of conserved ribosomal proteins. Recently several other applications of the method have also been investigated such as direct identification of pathogens from the positive blood cultures. There are possibilities to identify bacteria from the urine samples in urinary tract infection or from other sterile body fluids. Using selective enrichment broth Salmonella sp from the stool samples can be identified more rapidly, too. The extended spectrum beta-lactamase or carbapenemase production of the isolated bacteria can be also detected by this method helping the antibiotic selection in some cases. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry based methods are suitable to investigate changes in deoxyribonucleic acid or ribonucleic acid, to carry out rapid antibiotic resistance determination or other proteomic analysis. The aim of this paper is to give an overview about present possibilities of using this technique in the clinical microbiological routine procedures.

  10. A novel type of matrix for surface-assisted laser desorption-ionization mass spectrometric detection of biomolecules using metal-organic frameworks.

    Science.gov (United States)

    Fu, Chien-Ping; Lirio, Stephen; Liu, Wan-Ling; Lin, Chia-Her; Huang, Hsi-Ya

    2015-08-12

    A 3D metal-organic framework (MOF) nanomaterial as matrix for surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and tandem mass spectrometry (MS/MS) was developed for the analysis of complex biomolecules. Unlike other nanoparticle matrices, this MOF nanomaterial does not need chemical modification prior to use. An exceptional signal reproducibility as well as very low background interferences in analyzing mono-/di-saccharides, peptides and complex starch digests demonstrate its high potential for biomolecule assays, especially for small molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ghost peaks observed after atmospheric pressure matrix-assisted laser desorption/ionization experiments may disclose new ionization mechanism of matrix-assisted hypersonic velocity impact ionization.

    Science.gov (United States)

    Moskovets, Eugene

    2015-08-30

    Understanding the mechanisms of matrix-assisted laser desorption/ionization (MALDI) promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample had been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laser-less matrix-assisted ionization. An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser had been turned off and the MALDI sample removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly and doubly charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. The observations were partially consistent

  12. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging for Peptide and Protein Analyses: A Critical Review of On-Tissue Digestion

    NARCIS (Netherlands)

    Cillero-Pastor, B.; Heeren, R.M.A.

    2013-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has established itself among the plethora of mass spectrometry applications. In the biomedical field, MALDI-MSI is being more frequently recognized as a new method for the discovery of biomarkers and targets of

  13. Matrix-assisted laser desorption/ionization mass spectrometric imaging for the rapid segmental analysis of methamphetamine in a single hair using umbelliferone as a matrix.

    Science.gov (United States)

    Wang, Hang; Wang, Ying

    2017-07-04

    Segmental hair analysis offers a longer period for retrospective drug detection than blood or urine. Hair is a keratinous fiber and is strongly hydrophobic. The embedding of drugs in hydrophobic hair at low concentrations makes it difficult for extraction and detection with matrix-assisted laser desorption/ionization (MALDI) coupled with mass spectrometric imaging (MSI). In this study, a single scalp hair was longitudinally cut with a cryostat section to a length of 4 mm and fixed onto a stainless steel MALDI plate. Umbelliferone was used as a new hydrophobic matrix to enrich and assist the ionization efficiency of methamphetamine in the hair sample. MALDI-Fourier transform ion cyclotron resonance (FTICR)-MS profiling and imaging were performed for direct detection and mapping of methamphetamine on the longitudinal sections of the single hair sample in positive ion mode. Using MALDI-MSI, the distribution of methamphetamine was observed throughout five longitudinally sectioned hair samples from a drug abuser. The changes of methamphetamine were also semi-quantified by comparing the ratios of methamphetamine/internal standard (I.S). This method improves the detection sensitivity of target drugs embedded in a hair matrix for imaging with mass spectrometry. The method could provide a detection level of methamphetamine down to a nanogram per milligram incorporated into hair. The results were also compared with the conventional high performance liquid chromatography -tandem mass spectrometry (HPLC-MS/MS) method. Changes in the imaging results over time by the MSI method showed good semi-quantitative correlation to the results from the HPLC-MS/MS method. This study provides a powerful tool for drug abuse control and forensic medicine analysis in a narrow time frame, and a reduction in the sample amount required. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Detection of Bacteriocins by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    OpenAIRE

    Rose, Natisha L.; Sporns, Peter; McMullen, Lynn M.

    1999-01-01

    The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the detection of bacteriocins was investigated. A 30-s water wash of the sample on the MALDI-TOF MS probe was effective in removing contaminants of the analyte. This method was used for rapid detection of nisin, pediocin, brochocin A and B, and enterocin A and B from culture supernatants and for detection of enterocin B throughout its purification.

  15. Development of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) for plant metabolite analysis

    Energy Technology Data Exchange (ETDEWEB)

    Korte, Andrew R [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis presents efforts to improve the methodology of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) as a method for analysis of metabolites from plant tissue samples. The first chapter consists of a general introduction to the technique of MALDI-MSI, and the sixth and final chapter provides a brief summary and an outlook on future work.

  16. High fluence deposition of polyethylene glycol films at 1064 nm by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.

    2007-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) has been applied for deposition of thin polyethylene glycol (PEG) films with infrared laser light at 1064 nm. We have irradiated frozen targets (of 1 wt.% PEG dissolved in water) and measured the deposition rate in situ with a quartz crystal 2...... microbalance. The laser fluence needed to produce PEG films turned out to be unexpectedly high with a threshold of 9 J/cm(2) and the deposition rate was much lower than that with laser light at 355 nm. Results from matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI......-TOF-MS) analysis demonstrate that the chemistry, molecular weight and polydispersity of the PEG films were identical to the starting material. Studies of the film surface with scanning electron microscopy (SEM) indicate that the Si-substrate is covered by a relatively homogenous PEG film with few bare spots. (c...

  17. Direct Surface Analysis of Fungal Species by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, Nancy B.(BATTELLE (PACIFIC NW LAB)); Wahl, Jon H.(BATTELLE (PACIFIC NW LAB)); Kingsley, Mark T.(BATTELLE (PACIFIC NW LAB)); Wahl, Karen L.(BATTELLE (PACIFIC NW LAB))

    2001-12-01

    Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium are analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). This study investigates various methods of sample preparation and matrices to determine optimum collection and analysis criteria for fungal analysis by MALDI-MS. Fungi are applied to the MALDI sample target as untreated, sonicated, acid/heat treated, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution is layered over the dried samples and analyzed by MALDI-MS. Statistical analysis of the data show that simply using double stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, but requires the least sample handling.

  18. Quantitative analysis of polyhexamethylene guanidine (PHMG) oligomers via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with an ionic-liquid matrix.

    Science.gov (United States)

    Yoon, Donhee; Lee, Dongkun; Lee, Jong-Hyeon; Cha, Sangwon; Oh, Han Bin

    2015-01-30

    Quantifying polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) with a conventional crystalline matrix generally suffers from poor sample-to-sample or shot-to-shot reproducibility. An ionic-liquid matrix has been demonstrated to mitigate these reproducibility issues by providing a homogeneous sample surface, which is useful for quantifying polymers. In the present study, we evaluated the use of an ionic liquid matrix, i.e., 1-methylimidazolium α-cyano-4-hydroxycinnamate (1-MeIm-CHCA), to quantify polyhexamethylene guanidine (PHMG) samples that impose a critical health hazard when inhaled in the form of droplets. MALDI-TOF mass spectra were acquired for PHMG oligomers using a variety of ionic-liquid matrices including 1-MeIm-CHCA. Calibration curves were constructed by plotting the sum of the PHMG oligomer peak areas versus PHMG sample concentration with a variety of peptide internal standards. Compared with the conventional crystalline matrix, the 1-MeIm-CHCA ionic-liquid matrix had much better reproducibility (lower standard deviations). Furthermore, by using an internal peptide standard, good linear calibration plots could be obtained over a range of PMHG concentrations of at least 4 orders of magnitude. This study successfully demonstrated that PHMG samples can be quantitatively characterized by MALDI-TOFMS with an ionic-liquid matrix and an internal standard. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Benefits of 2.94 μm infrared matrix-assisted laser desorption/ionization for analysis of labile molecules by Fourier transform mass spectrometry

    DEFF Research Database (Denmark)

    Budnik, Bogdan A.; Jensen, Kenneth Bendix; Jørgensen, Thomas J. D.

    2000-01-01

    A 2.94 microm Er:YAG laser was used together with a commercial Fourier transform mass spectrometer to study labile biomolecules. The combination has shown superior performance over conventional 337 nm ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) Fourier transform mass...

  20. Short communication: Identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Barreiro, J R; Ferreira, C R; Sanvido, G B; Kostrzewa, M; Maier, T; Wegemann, B; Böttcher, V; Eberlin, M N; dos Santos, M V

    2010-12-01

    Subclinical mastitis is a common and easily disseminated disease in dairy herds. Its routine diagnosis via bacterial culture and biochemical identification is a difficult and time-consuming process. In this work, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows bacterial identification with high confidence and speed (1 d for bacterial growth and analysis). With the use of MALDI-TOF MS, 33 bacterial culture isolates from milk of different dairy cows from several farms were analyzed, and the results were compared with those obtained by classical biochemical methods. This proof-of-concept case demonstrates the reliability of MALDI-TOF MS bacterial identification, and its increased selectivity as illustrated by the additional identification of coagulase-negative Staphylococcus species and mixed bacterial cultures. Matrix-assisted laser desorption-ionization mass spectrometry considerably accelerates the diagnosis of mastitis pathogens, especially in cases of subclinical mastitis. More immediate and efficient animal management strategies for mastitis and milk quality control in the dairy industry can therefore be applied. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Neutrino mass matrix

    International Nuclear Information System (INIS)

    Strobel, E.L.

    1985-01-01

    Given the many conflicting experimental results, examination is made of the neutrino mass matrix in order to determine possible masses and mixings. It is assumed that the Dirac mass matrix for the electron, muon, and tau neutrinos is similar in form to those of the quarks and charged leptons, and that the smallness of the observed neutrino masses results from the Gell-Mann-Ramond-Slansky mechanism. Analysis of masses and mixings for the neutrinos is performed using general structures for the Majorana mass matrix. It is shown that if certain tentative experimental results concerning the neutrino masses and mixing angles are confirmed, significant limitations may be placed on the Majorana mass matrix. The most satisfactory simple assumption concerning the Majorana mass matrix is that it is approximately proportional to the Dirac mass matrix. A very recent experimental neutrino mass result and its implications are discussed. Some general properties of matrices with structure similar to the Dirac mass matrices are discussed

  2. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    Science.gov (United States)

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  3. Identification of Wheat Varieties Using Matrix-assisted Laser Desorption/Ionisation Time-of-flight Mass Spectrometry and an Artificial Neural network

    DEFF Research Database (Denmark)

    Bloch, Helle Aagaard; Kesmir, Can; Petersen, Marianne Kjerstine

    1999-01-01

    A novel tool for variety identification of wheat (Triticum aestivum L,) has been developed: an artificial neural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness...

  4. DIFFERENTIATION OF AEROMONAS ISOLATES OBTAINED FROM DRINKING WATER DISTRIBUTION SYSTEM USING MATRIX-ASSISTED LASER DESCRIPTION/IONIZATION-MASS SPECTROMETRY (MALDI-MS)

    Science.gov (United States)

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the...

  5. Study of the mechanisms of matrix assisted laser desorption / ionization

    International Nuclear Information System (INIS)

    Manuelli, Pascal

    1995-01-01

    This research thesis aims at a better knowledge of some aspects of a complex mechanism: the matrix-assisted laser desorption/ionization (MALDI). The author first proposes a comparative analysis of results obtained by time-of-flight (TOF) mass spectrometry and by Fourier transform mass spectrometry. He reports the study of the matrix role (notably a polymeric matrix) as a matter submitted to laser desorption. In this respect, the influence of the incident wavelength has been studied. The author also reports a comparative of ions produced by matrix laser desorption (study performed by Fourier transform mass spectrometry) and of neutral molecules (study performed by flash pyrolysis coupled with gas chromatography and with mass spectrometry). Finally, results obtained on derivatives and complexes based on beta-cyclodextrins highlight benefits as well as limitations of this technique [fr

  6. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry: protocol standardization and database expansion for rapid identification of clinically important molds.

    Science.gov (United States)

    Paul, Saikat; Singh, Pankaj; Rudramurthy, Shivaprakash M; Chakrabarti, Arunaloke; Ghosh, Anup K

    2017-12-01

    To standardize the matrix-assisted laser desorption ionization-time of flight mass spectrometry protocols and expansion of existing Bruker Biotyper database for mold identification. Four different sample preparation methods (protocol A, B, C and D) were evaluated. On analyzing each protein extraction method, reliable identification and best log scores were achieved through protocol D. The same protocol was used to identify 153 clinical isolates. Of these 153, 123 (80.3%) were accurately identified by using existing database and remaining 30 (19.7%) were not identified due to unavailability in database. On inclusion of missing main spectrum profile in existing database, all 153 isolates were identified. Matrix-assisted laser desorption ionization-time of flight mass spectrometry can be used for routine identification of clinically important molds.

  7. Screening of Chlamydomonas reinhardtii Populations with Single-Cell Resolution by Using a High-Throughput Microscale Sample Preparation for Matrix-Assisted Laser Desorption Ionization Mass Spectrometry.

    Science.gov (United States)

    Krismer, Jasmin; Sobek, Jens; Steinhoff, Robert F; Fagerer, Stephan R; Pabst, Martin; Zenobi, Renato

    2015-08-15

    The consequences of cellular heterogeneity, such as biocide persistence, can only be tackled by studying each individual in a cell population. Fluorescent tags provide tools for the high-throughput analysis of genomes, RNA transcripts, or proteins on the single-cell level. However, the analysis of lower-molecular-weight compounds that elude tagging is still a great challenge. Here, we describe a novel high-throughput microscale sample preparation technique for single cells that allows a mass spectrum to be obtained for each individual cell within a microbial population. The approach presented includes spotting Chlamydomonas reinhardtii cells, using a noncontact microarrayer, onto a specialized slide and controlled lysis of cells separated on the slide. Throughout the sample preparation, analytes were traced and individual steps optimized using autofluorescence detection of chlorophyll. The lysates of isolated cells are subjected to a direct, label-free analysis using matrix-assisted laser desorption ionization mass spectrometry. Thus, we were able to differentiate individual cells of two Chlamydomonas reinhardtii strains based on single-cell mass spectra. Furthermore, we showed that only population profiles with real single-cell resolution render a nondistorted picture of the phenotypes contained in a population. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    Science.gov (United States)

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  9. Drawing a different picture with pencil lead as matrix-assisted laser desorption/ionization matrix for fullerene derivatives.

    Science.gov (United States)

    Nye, Leanne C; Hungerbühler, Hartmut; Drewello, Thomas

    2018-02-01

    Inspired by reports on the use of pencil lead as a matrix-assisted laser desorption/ionization matrix, paving the way towards matrix-free matrix-assisted laser desorption/ionization, the present investigation evaluates its usage with organic fullerene derivatives. Currently, this class of compounds is best analysed using the electron transfer matrix trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB), which was employed as the standard here. The suitability of pencil lead was additionally compared to direct (i.e. no matrix) laser desorption/ionization-mass spectrometry. The use of (DCTB) was identified as the by far gentler method, producing spectra with abundant molecular ion signals and much reduced fragmentation. Analytically, pencil lead was found to be ineffective as a matrix, however, appears to be an extremely easy and inexpensive method for producing sodium and potassium adducts.

  10. MoS_2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Zhao, Yaju; Deng, Guoqing; Liu, Xiaohui; Sun, Liang; Li, Hui; Cheng, Quan; Xi, Kai; Xu, Danke

    2016-01-01

    This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS_2/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS_2. Moreover, both Ag nanoparticles and the edge of the MoS_2 layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS_2/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS_2/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry. - Highlights: • MoS_2/Ag nanohybrid was applied as a novel matrix in negative-ion MALDI-TOF MS. • The MoS_2/Ag nanohybrid exerted synergistic effect on the detection of small molecules. • The MoS_2/Ag nanohybrid showed good signal reproducibility and low background interferences comparing to organic matrices. • MoS_2/Ag allows simultaneous analysis of multiple drugs and quantification of acetylsalicylic acid in spiked serum samples.

  11. 1,8-Bis(dimethylamino)naphthalene/9-aminoacridine: A new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Calvano, C.D., E-mail: cosimadamiana.calvano@uniba.it [Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy); Monopoli, A.; Ditaranto, N. [Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy); Palmisano, F. [Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy); Centro Interdipartimentale di Ricerca S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari (Italy)

    2013-10-10

    Graphical abstract: -- Highlights: •New binary matrix for less ionizable lipid analysis with no interfering peaks. •Combined MALDI and X-ray photoelectron spectroscopy (XPS) analyses. •Fast lipid fingerprint on Gram positive and Gram negative bacteria by MALDI MS. •Mapping of phospholipids by XPS imaging. •Very fast membrane lipid extraction procedure. -- Abstract: The effectiveness of a novel binary matrix composed of 1,8-bis(dimethylamino)naphthalene (DMAN; proton sponge) and 9-aminoacridine (9AA) for the direct lipid analysis of whole bacterial cells by matrix assisted laser desorption ionization mass spectrometry (MALDI MS) is demonstrated. Deprotonated analyte signals nearly free of matrix-related ions were observed in negative ion mode. The effect of the most important factors (laser energy, pulse voltage, DMAN/9AA ratio, analyte/matrix ratio) was investigated using a Box–Behnken response surface design followed by multi-response optimization in order to simultaneously maximize signal-to-noise (S/N) ratio and resolution. The chemical surface composition of single or mixed matrices was explored by X-ray photoelectron spectroscopy (XPS). Moreover, XPS imaging was used to map the spatial distribution of a model phospholipid in single or binary matrices. The DMAN/9AA binary matrix was then successfully applied to the analysis of intact Gram positive (Lactobacillus sanfranciscensis) or Gram negative (Escherichia coli) microorganisms. About fifty major membrane components (free fatty acids, mono-, di- and tri-glycerides, phospholipids, glycolipids and cardiolipins) were quickly and easily detected over a mass range spanning from ca. 200 to ca. 1600 m/z. Moreover, mass spectra with improved S/N ratio (compared to single matrices), reduced chemical noise and no formation of matrix-clusters were invariably obtained demonstrating the potential of this binary matrix to improve sensitivity.

  12. 1,8-Bis(dimethylamino)naphthalene/9-aminoacridine: A new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry

    International Nuclear Information System (INIS)

    Calvano, C.D.; Monopoli, A.; Ditaranto, N.; Palmisano, F.

    2013-01-01

    Graphical abstract: -- Highlights: •New binary matrix for less ionizable lipid analysis with no interfering peaks. •Combined MALDI and X-ray photoelectron spectroscopy (XPS) analyses. •Fast lipid fingerprint on Gram positive and Gram negative bacteria by MALDI MS. •Mapping of phospholipids by XPS imaging. •Very fast membrane lipid extraction procedure. -- Abstract: The effectiveness of a novel binary matrix composed of 1,8-bis(dimethylamino)naphthalene (DMAN; proton sponge) and 9-aminoacridine (9AA) for the direct lipid analysis of whole bacterial cells by matrix assisted laser desorption ionization mass spectrometry (MALDI MS) is demonstrated. Deprotonated analyte signals nearly free of matrix-related ions were observed in negative ion mode. The effect of the most important factors (laser energy, pulse voltage, DMAN/9AA ratio, analyte/matrix ratio) was investigated using a Box–Behnken response surface design followed by multi-response optimization in order to simultaneously maximize signal-to-noise (S/N) ratio and resolution. The chemical surface composition of single or mixed matrices was explored by X-ray photoelectron spectroscopy (XPS). Moreover, XPS imaging was used to map the spatial distribution of a model phospholipid in single or binary matrices. The DMAN/9AA binary matrix was then successfully applied to the analysis of intact Gram positive (Lactobacillus sanfranciscensis) or Gram negative (Escherichia coli) microorganisms. About fifty major membrane components (free fatty acids, mono-, di- and tri-glycerides, phospholipids, glycolipids and cardiolipins) were quickly and easily detected over a mass range spanning from ca. 200 to ca. 1600 m/z. Moreover, mass spectra with improved S/N ratio (compared to single matrices), reduced chemical noise and no formation of matrix-clusters were invariably obtained demonstrating the potential of this binary matrix to improve sensitivity

  13. Metabolite localization by atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging in whole-body sections and individual organs of the rove beetle Paederus riparius.

    Science.gov (United States)

    Bhandari, Dhaka Ram; Schott, Matthias; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-03-01

    Mass spectrometry imaging provides for non-targeted, label-free chemical imaging. In this study, atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) was used for the first time to describe the chemical distribution of the defensive compounds pederin, pseudopederin, and pederon in tissue sections (16 μm thick) of the rove beetle Paederus riparius. The whole-insect tissue section was scanned with a 20-μm step size. Mass resolution of the orbital trapping mass spectrometer was set to 100,000 at m/z 200. Additionally, organ-specific compounds were identified for brain, nerve cord, eggs, gut, ovaries, and malpighian tubules. To confirm the distribution of the specific compounds, individual organs from the insect were dissected, and MSI experiments were performed on the dissected organs. Three ganglia of the nerve cord, with a dimension of 250-500 μm, were measured with 10-μm spatial resolution. High-quality m/z images, based on high spatial resolution and high mass accuracy were generated. These features helped to assign mass spectral peaks with high confidence. Mass accuracy of the imaging experiments was section. Without any labeling, we assigned key lipids for specific organs to describe their location in the body and to identify morphological structures with a specificity higher than with staining or immunohistology methods.

  14. In Situ Analysis of Bacterial Lipopeptide Antibiotics by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.

    Science.gov (United States)

    Debois, Delphine; Ongena, Marc; Cawoy, Hélène; De Pauw, Edwin

    2016-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a technique developed in the late 1990s enabling the two-dimensional mapping of a broad variety of biomolecules present at the surface of a sample. In many applications including pharmaceutical studies or biomarker discovery, the distribution of proteins, lipids or drugs, and metabolites may be visualized within tissue sections. More recently, MALDI MSI has become increasingly applied in microbiology where the versatility of the technique is perfectly suited to monitor the metabolic dynamics of bacterial colonies. The work described here is focused on the application of MALDI MSI to map secondary metabolites produced by Bacilli, especially lipopeptides, produced by bacterial cells during their interaction with their environment (bacteria, fungi, plant roots, etc.). This chapter addresses the advantages and challenges that the implementation of MALDI MSI to microbiological samples entails, including detailed protocols on sample preparation (from both microbiologist and mass spectrometrist points of view), matrix deposition, and data acquisition and interpretation. Lipopeptide images recorded from confrontation plates are also presented.

  15. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new possibility for the identification and typing of anaerobic bacteria.

    Science.gov (United States)

    Nagy, Elizabeth

    2014-01-01

    Anaerobic bacteria predominate in the normal flora of humans and are important, often life-threatening pathogens in mixed infections originating from the indigenous microbiota. The isolation and identification of anaerobes by phenotypic and DNA-based molecular methods at a species level is time-consuming and laborious. Following the successful adaptation of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the routine laboratory identification of bacteria, the extensive development of a database has been initiated to use this method for the identification of anaerobic bacteria. Not only frequently isolated anaerobic species, but also newly recognized and taxonomically rearranged genera and species can be identified using direct smear samples or whole-cell protein extraction, and even phylogenetically closely related species can be identified correctly by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Typing of anaerobic bacteria on a subspecies level, determination of antibiotic resistance and direct identification of blood culture isolates will revolutionize anaerobe bacteriology in the near future.

  16. Identification of barley and rye varieties using matrix- assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks

    DEFF Research Database (Denmark)

    Bloch, H.A.; Petersen, Marianne Kjerstine; Sperotto, Maria Maddalena

    2001-01-01

    developed, which combines analysis of alcohol-soluble wheat proteins (gliadins) using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks. Here we have applied the same method for the identification of both barley (Hordeum vulgare L.) and rye (Secale cereale L.......) varieties. For barley, 95% of the mass spectra were correctly classified. This is an encouraging result, since in earlier experiments only a grouping into subsets of varieties was possible. However, the method was not useful in the classification of rye, due to the strong similarity between mass spectra...

  17. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N U

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... microL) of a concentrated suspension of isolated chlorosomes directly to the target of the mass spectrometer we have been able to detect bacteriochlorophyll a and all the major homologs of bacteriochlorophyll c. The peak heights of the different bacteriochlorophyll c homologs in the MALDI spectra were...... proportional to peak areas obtained from HPLC analysis of the same sample. The same result was also obtained when whole cells of Chl. tepidum were applied to the target, indicating that MALDI-MS can provide a rapid method for obtaining a semiquantitative determination or finger-print of the bacteriochlorophyll...

  18. Performance of matrix-assisted laser desorption-time of flight mass spectrometry for identification of clinical yeast isolates

    DEFF Research Database (Denmark)

    Rosenvinge, Flemming S; Dzajic, Esad; Knudsen, Elisa

    2013-01-01

    Accurate and fast yeast identification is important when treating patients with invasive fungal disease as susceptibility to antifungal agents is highly species related. Matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF-MS) provides a powerful tool with a clear potential...... spectra output, all 13 isolates were correctly identified, resulting in an overall identification performance of 92%. No misidentifications occurred with the two systems. Of the routine isolates one laboratory identified 99/99 (100%) and 90/99 (91%) to species level by Saramis/Axima and conventional...... identification, respectively, whereas the other laboratory identified 83/98 (85%) to species level by both BioTyper/Bruker and conventional identification. Both MALDI-TOF-MS systems are fast, have built-in databases that cover the majority of clinically relevant Candida species, and have an accuracy...

  19. MoS{sub 2}/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yaju, E-mail: daisy19900911@hotmail.com [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 (China); Deng, Guoqing, E-mail: denggqq@sina.com [Department of Polymer Science and Engineering, Nanjing University, Nanjing, 210023 (China); Liu, Xiaohui, E-mail: lcswyh@126.com [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 (China); Sun, Liang, E-mail: sunliang@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 (China); Li, Hui, E-mail: lihui@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 (China); Cheng, Quan, E-mail: quan.cheng@ucr.edu [Department of Chemistry, University of California, Riverside, CA, 92521 (United States); Xi, Kai, E-mail: xikai@nju.edu.cn [Department of Polymer Science and Engineering, Nanjing University, Nanjing, 210023 (China); Xu, Danke, E-mail: xudanke@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 (China)

    2016-09-21

    This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS{sub 2}/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS{sub 2}. Moreover, both Ag nanoparticles and the edge of the MoS{sub 2} layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS{sub 2}/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS{sub 2}/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry. - Highlights: • MoS{sub 2}/Ag nanohybrid was applied as a novel matrix in negative-ion MALDI-TOF MS. • The MoS{sub 2}/Ag nanohybrid exerted synergistic effect on the detection of small molecules. • The MoS{sub 2}/Ag nanohybrid showed good signal reproducibility and low background interferences comparing to organic matrices. • MoS{sub 2}/Ag allows simultaneous analysis of multiple drugs and quantification of

  20. Capsule Typing of Haemophilus influenzae by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Månsson, Viktor; Gilsdorf, Janet R; Kahlmeter, Gunnar; Kilian, Mogens; Kroll, J Simon; Riesbeck, Kristian; Resman, Fredrik

    2018-03-01

    Encapsulated Haemophilus influenzae strains belong to type-specific genetic lineages. Reliable capsule typing requires PCR, but a more efficient method would be useful. We evaluated capsule typing by using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Isolates of all capsule types (a-f and nontypeable; n = 258) and isogenic capsule transformants (types a-d) were investigated. Principal component and biomarker analyses of mass spectra showed clustering, and mass peaks correlated with capsule type-specific genetic lineages. We used 31 selected isolates to construct a capsule typing database. Validation with the remaining isolates (n = 227) showed 100% sensitivity and 92.2% specificity for encapsulated strains (a-f; n = 61). Blinded validation of a supplemented database (n = 50) using clinical isolates (n = 126) showed 100% sensitivity and 100% specificity for encapsulated strains (b, e, and f; n = 28). MALDI-TOF mass spectrometry is an accurate method for capsule typing of H. influenzae.

  1. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets.

    Science.gov (United States)

    Prod'hom, Guy; Bizzini, Alain; Durussel, Christian; Bille, Jacques; Greub, Gilbert

    2010-04-01

    An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.

  2. MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) of skin: Aspects of sample preparation.

    Science.gov (United States)

    de Macedo, Cristiana Santos; Anderson, David M; Schey, Kevin L

    2017-11-01

    MALDI (matrix assisted laser desorption ionization) Imaging Mass Spectrometry (IMS) allows molecular analysis of biological materials making possible the identification and localization of molecules in tissues, and has been applied to address many questions on skin pathophysiology, as well as on studies about drug absorption and metabolism. Sample preparation for MALDI IMS is the most important part of the workflow, comprising specimen collection and preservation, tissue embedding, cryosectioning, washing, and matrix application. These steps must be carefully optimized for specific analytes of interest (lipids, proteins, drugs, etc.), representing a challenge for skin analysis. In this review, critical parameters for MALDI IMS sample preparation of skin samples will be described. In addition, specific applications of MALDI IMS of skin samples will be presented including wound healing, neoplasia, and infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Phospholipid Topography of Whole-Body Sections of the Anopheles stephensi Mosquito, Characterized by High-Resolution Atmospheric-Pressure Scanning Microprobe Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.

    Science.gov (United States)

    Khalil, Saleh M; Römpp, Andreas; Pretzel, Jette; Becker, Katja; Spengler, Bernhard

    2015-11-17

    High-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) has been employed to study the molecular anatomical structure of rodent malaria vector Anopheles stephensi mosquitoes. A dedicated sample preparation method was developed which suits both, the special tissue properties of the sample and the requirements of high-resolution MALDI imaging. Embedding in 5% carboxymethylcellulose (CMC) was used to maintain the tissue integrity of the whole mosquitoes, being very soft, fragile, and difficult to handle. Individual lipid compounds, specifically representing certain cell types, tissue areas, or organs, were detected and imaged in 20 μm-thick whole-body tissue sections at a spatial resolution of 12 μm per image pixel. Mass spectrometric data and information quality were based on a mass resolution of 70,000 (at m/z 200) and a mass accuracy of better than 2 ppm in positive-ion mode on an orbital trapping mass spectrometer. A total of 67 imaged lipids were assigned by database search and, in a number of cases, identified via additional MS/MS fragmentation studies directly from tissue. This is the first MSI study at 12 μm spatial resolution of the malaria vector Anopheles. The study provides insights into the molecular anatomy of Anopheles stephensi and the distribution and localization of major classes of glycerophospholipids and sphingolipids. These data can be a basis for future experiments, investigating, e.g., the metabolism of Plasmodium-infected and -uninfected Anopheles mosquitoes.

  4. Detection and quantification of neurotensin in human brain tissue by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Gobom, J; Kraeuter, K O; Persson, R

    2000-01-01

    A method was developed for mass spectrometric detection of neurotensin (NT)-like immunoreactivity and quantification of NT in human brain tissue. The method is based on immunoprecipitation followed by analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF......-MS). The identity of the major component of the immunoprecipitates as neurotensin was confirmed by fragment ion analysis on an electrospray ionization quadrupole time-of-flight instrument. MALDI-TOF-MS quantification of NT was achieved using stable-isotope-labeled NT as the internal standard, yielding an error...

  5. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Direct Bacterial Identification from Positive Blood Culture Pellets ▿

    OpenAIRE

    Prod'hom, Guy; Bizzini, Alain; Durussel, Christian; Bille, Jacques; Greub, Gilbert

    2010-01-01

    An ammonium chloride erythrocyte-lysing procedure was used to prepare a bacterial pellet from positive blood cultures for direct matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry analysis. Identification was obtained for 78.7% of the pellets tested. Moreover, 99% of the MALDI-TOF identifications were congruent at the species level when considering valid scores. This fast and accurate method is promising.

  6. Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides

    International Nuclear Information System (INIS)

    Hua Lin; Chen Jianrong; Ge Liya; Tan, Swee Ngin

    2007-01-01

    Silver nanoparticle synthesized from chemical reduction has been successfully utilized as a matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) of peptides. Acting as a substrate to adsorb analytes, as well as a transmission medium for UV laser, silver nanoparticle was found to assist in the desorption/ionization of peptides with little or no induced fragmentation. The size of the nanoparticle was typically in the range of 160 ± 20 nm. One of the key advantages of silver nanoparticle for peptides analysis is its simple step for on-probe sample preparation. In addition, it also minimizes the interferences of sodium dodecyl sulfate (SDS) surfactant background signal, resulting in cleaner mass spectra and more sensitive signal, when compared to α-cyano-4-hydroxycinnamic acid (CCA) matrix

  7. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo

    2013-01-01

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field

  8. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo [Agency for Defense Development, Daejeon (Korea, Republic of)

    2013-09-15

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.

  9. Characterization of O-glycosylated precursors of insulin-like growth factor II by matrix-assisted laser desorption/ionization mass spectrometry

    NARCIS (Netherlands)

    Jespersen, S.; Koedam, J.A.; Hoogerbrugge, C.M.; Tjaden, U.R.; Greef, J. van der; Brande, J.L. van den

    1996-01-01

    High molecular weight precursors of insulin-like growth factor II (IGF-II) were isolated from Cohn fraction IV of human plasma by ultrafiltration, affinity chromatography and reversed-phase high-performance liquid chromatography. Molecular weight determination by matrix-assisted laser

  10. Analysis of Microbial Mixtures by Matrix-assisted Laser Desorption/Ionization time-of-flight Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Karen L.; Wunschel, Sharon C.; Jarman, Kristin H.; Valentine, Nancy B.; Petersen, Catherine E.; Kingsley, Mark T.; Zartolas, Kimberly A.; Saenz, Adam J.

    2002-12-15

    Many different laboratories are currently developing mass-spectrometric techniques to analyze and identify microorganisms. However, minimal work has been done with mixtures of bacteria. To demonstrate that microbial mixtures could be analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), mixed bacterial cultures were analyzed in a double-blind fashion. Nine different bacterial species currently in our MALDI-MS fingerprint library were used to generate 50 different simulated mixed bacterial cultures similar to that done for an initial blind study previously reported.(1) The samples were analyzed by MALDI-MS with automated data extraction and analysis algorithms developed in our laboratory. The components present in the sample were identified correctly to the species level in all but one of the samples. However, correctly eliminating closely related organisms was challenging for the current algorithms, especially in differentiating Serratia marcescens, Escherichia coli, and Yersinia enterocolitica, which have some similarities in their MALDI-MS fingerprints. Efforts to improve the specificity of the algorithms are in progress.

  11. A Simple Sonication Improves Protein Signal in Matrix-Assisted Laser Desorption Ionization Imaging

    Science.gov (United States)

    Lin, Li-En; Su, Pin-Rui; Wu, Hsin-Yi; Hsu, Cheng-Chih

    2018-02-01

    Proper matrix application is crucial in obtaining high quality matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). Solvent-free sublimation was essentially introduced as an approach of homogeneous coating that gives small crystal size of the organic matrix. However, sublimation has lower extraction efficiency of analytes. Here, we present that a simple sonication step after the hydration in standard sublimation protocol significantly enhances the sensitivity of MALDI MSI. This modified procedure uses a common laboratory ultrasonicator to immobilize the analytes from tissue sections without noticeable delocalization. Improved imaging quality with additional peaks above 10 kDa in the spectra was thus obtained upon sonication treatment. [Figure not available: see fulltext.

  12. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory.

    Science.gov (United States)

    Kok, Jen; Chen, Sharon C A; Dwyer, Dominic E; Iredell, Jonathan R

    2013-01-01

    The integration of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) into many clinical microbiology laboratories has revolutionised routine pathogen identification. MALDI-TOF MS complements and has good potential to replace existing phenotypic identification methods. Results are available in a more clinically relevant timeframe, particularly in bacteraemic septic shock. Novel applications include strain typing and the detection of antimicrobial resistance, but these are not widely used. This review discusses the technical aspects, current applications, and limitations of MALDI-TOF MS.

  13. Detection of lung cancer using plasma protein profiling by matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Shevchenko, Valeriy E; Arnotskaya, Natalia E; Zaridze, David G

    2010-01-01

    There are no satisfactory plasma biomarkers which are available for the early detection and monitoring of lung cancer, one of the most frequent cancers worldwide. The aim of this study is to explore the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) to plasma proteomic patterns to distinguish lung cancer patients from healthy individuals. The EDTA plasma samples have been pre-fractionated using magnetic bead kits functionalized with weak cation exchange coatings. We compiled MS protein profiles for 90 patients with squamous cell carcinomas (SCC) and compared them with profiles from 187 healthy controls. The MALDI-ToF spectra were analyzed statistically using ClinProTools bioinformatics software. Depending on the sample used, up to 441 peaks/spectrum could be detected in a mass range of 1000-20,000 Da; 33 of these proteins had statistically differential expression levels between SCC and control plasma (P 90%) in external validation test. These results suggest that plasma MALDI-ToF MS protein profiling can distinguish patients with SCC and also from healthy individuals with relatively high sensitivity and specificity and that MALDI- ToF MS is a potential tool for the screening of lung cancer.

  14. Study of ionization process of matrix molecules in matrix-assisted laser desorption ionization

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kazumasa; Sato, Asami; Hashimoto, Kenro; Fujino, Tatsuya, E-mail: fujino@tmu.ac.jp

    2013-06-20

    Highlights: ► Proton transfer and adduction reaction of matrix in MALDI were studied. ► Hydroxyl group forming intramolecular hydrogen bond was related to the ionization. ► Intramolecular proton transfer in the electronic excited state was the initial step. ► Non-volatile analytes stabilized protonated matrix in the ground state. ► A possible mechanism, “analyte support mechanism”, has been proposed. - Abstract: Proton transfer and adduction reaction of matrix molecules in matrix-assisted laser desorption ionization were studied. By using 2,4,6-trihydroxyacetophenone (THAP), 2,5-dihydroxybenzoic acid (DHBA), and their related compounds in which the position of a hydroxyl group is different, it was clarified that a hydroxyl group forming an intramolecular hydrogen bond is related to the ionization of matrix molecules. Intramolecular proton transfer in the electronic excited state of the matrix and subsequent proton adduction from a surrounding solvent to the charge-separated matrix are the initial steps for the ionization of matrix molecules. Nanosecond pump–probe NIR–UV mass spectrometry confirmed that the existence of analyte molecules having large dipole moment in their structures is necessary for the stabilization of [matrix + H]{sup +} in the electronic ground state.

  15. Dual ultrasonic-assisted dispersive liquid-liquid microextraction coupled with microwave-assisted derivatization for simultaneous determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol by ultra high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhao, Xian-En; Lv, Tao; Zhu, Shuyun; Qu, Fei; Chen, Guang; He, Yongrui; Wei, Na; Li, Guoliang; Xia, Lian; Sun, Zhiwei; Zhang, Shijuan; You, Jinmao; Liu, Shu; Liu, Zhiqiang; Sun, Jing; Liu, Shuying

    2016-03-11

    This paper, for the first time, reported a speedy hyphenated technique of low toxic dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) for the simultaneous determination of 20(S)-protopanaxadiol (PPD) and 20(S)-protopanaxatriol (PPT). The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection using multiple-reaction monitoring (MRM) mode. A mass spectrometry sensitizing reagent, 4'-carboxy-substituted rosamine (CSR) with high reaction activity and ionization efficiency was synthesized and firstly used as derivatization reagent. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS conditions were all optimized in detail. Low toxic brominated solvents were used as extractant instead of traditional chlorinated solvents. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.010 and 0.015ng/mL for PPD and PPT, respectively) were achieved. The main advantages were rapid, sensitive and environmentally friendly, and exhibited high selectivity, accuracy and good matrix effect results. The proposed method was successfully applied to pharmacokinetics of PPD and PPT in rat plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Differentiation of Clinically Relevant mucorales Rhizopus microsporus and R. arrhizus by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS)

    NARCIS (Netherlands)

    Dolatabadi, S.; Kolecka, A.; Versteeg, Matthijs; de Hoog, Sybren G; Boekhout, Teun

    This study addresses the usefulness of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) for reliable identification of the two most frequently occuring clinical species of Rhizopus, namely R. arrhizus with its two varieties arrhizus and delemar and R.

  17. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry identification of large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G

    DEFF Research Database (Denmark)

    Salgård Jensen, Christian; Dam-Nielsen, Casper; Arpi, Magnus

    2015-01-01

    BACKGROUND: The aim of this study was to investigate whether large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G can be adequately identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF). Previous studies show varying...

  18. Rapid Identification of Intact Staphylococcal Bacteriophages Using Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Dana Štveráková

    2018-04-01

    Full Text Available Staphylococcus aureus is a major causative agent of infections associated with hospital environments, where antibiotic-resistant strains have emerged as a significant threat. Phage therapy could offer a safe and effective alternative to antibiotics. Phage preparations should comply with quality and safety requirements; therefore, it is important to develop efficient production control technologies. This study was conducted to develop and evaluate a rapid and reliable method for identifying staphylococcal bacteriophages, based on detecting their specific proteins using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS profiling that is among the suggested methods for meeting the regulations of pharmaceutical authorities. Five different phage purification techniques were tested in combination with two MALDI-TOF MS matrices. Phages, either purified by CsCl density gradient centrifugation or as resuspended phage pellets, yielded mass spectra with the highest information value if ferulic acid was used as the MALDI matrix. Phage tail and capsid proteins yielded the strongest signals whereas the culture conditions had no effect on mass spectral quality. Thirty-seven phages from Myoviridae, Siphoviridae or Podoviridae families were analysed, including 23 siphophages belonging to the International Typing Set for human strains of S. aureus, as well as phages in preparations produced by Microgen, Bohemia Pharmaceuticals and MB Pharma. The data obtained demonstrate that MALDI-TOF MS can be used to effectively distinguish between Staphylococcus-specific bacteriophages.

  19. Influence of Culture Media on Detection of Carbapenem Hydrolysis by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Ramos, Ana Carolina; Carvalhaes, Cecília Godoy; Cordeiro-Moura, Jhonatha Rodrigo; Rockstroh, Anna Carolina; Machado, Antonia Maria Oliveira; Gales, Ana Cristina

    2016-07-01

    In this study, we evaluated the influence of distinct bacterial growth media on detection of carbapenemase hydrolysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. False-negative results were observed for OXA-25-, OXA-26-, and OXA-72-producing Acinetobacter baumannii isolates grown on MacConkey agar medium. The other culture media showed 100% sensitivity and 100% specificity for detecting carbapenemase. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for the identification of ceratopogonid and culicid larvae.

    Science.gov (United States)

    Steinmann, I C; Pflüger, V; Schaffner, F; Mathis, A; Kaufmann, C

    2013-03-01

    Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was evaluated for the rapid identification of ceratopogonid larvae. Optimal sample preparation as evaluated with laboratory-reared biting midges Culicoides nubeculosus was the homogenization of gut-less larvae in 10% formic acid, and analysis of 0.2 mg/ml crude protein homogenate mixed with SA matrix at a ratio of 1:1.5. Using 5 larvae each of 4 ceratopogonid species (C. nubeculosus, C. obsoletus, C. decor, and Dasyhelea sp.) and of 2 culicid species (Aedes aegypti, Ae. japonicus), biomarker mass sets between 27 and 33 masses were determined. In a validation study, 67 larvae belonging to the target species were correctly identified by automated database-based identification (91%) or manual full comparison (9%). Four specimens of non-target species did not yield identification. As anticipated for holometabolous insects, the biomarker mass sets of adults cannot be used for the identification of larvae, and vice versa, because they share only very few similar masses as shown for C. nubeculosus, C. obsoletus, and Ae. japonicus. Thus, protein profiling by MALDI-TOF as a quick, inexpensive and accurate alternative tool is applicable to identify insect larvae of vector species collected in the field.

  1. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality : Effect of sample preparation on MALDI-MS of synthetic polymers

    NARCIS (Netherlands)

    Kooijman, Pieter C.; Kok, Sander; Honing, Maarten

    2017-01-01

    Rationale: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the

  2. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Anne Mayer-Scholl

    Full Text Available Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology.

  3. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants.

    Science.gov (United States)

    Qin, Liang; Zhang, Yawen; Liu, Yaqin; He, Huixin; Han, Manman; Li, Yanyan; Zeng, Maomao; Wang, Xiaodong

    2018-04-17

    Mass spectrometry imaging (MSI) as a label-free and powerful imaging technique enables in situ evaluation of a tissue metabolome and/or proteome, becoming increasingly popular in the detection of plant endogenous molecules. The characterization of structure and spatial information of endogenous molecules in plants are both very important aspects to better understand the physiological mechanism of plant organism. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a commonly-used tissue imaging technique, which requires matrix to assist in situ detection of a variety of molecules on the surface of a tissue section. In previous studies, MALDI-MSI was mostly used for the detection of molecules from animal tissue sections, compared to plant samples due to cell structural limitations, such as plant cuticles, epicuticular waxes, and cell walls. Despite the enormous progress that has been made in tissue imaging, there is still a challenge for MALDI-MSI suitable for the imaging of endogenous compounds in plants. This review summarises the recent advances in MALDI-MSI, focusing on the application of in situ detection of endogenous molecules in different plant organs, i.e. root, stem, leaf, flower, fruit, and seed. Further improvements on instrumentation sensitivity, matrix selection, image processing and sample preparation will expand the application of MALDI-MSI in plant research. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high performance liquid chromatography with tandem mass spectrometry combined with matrix solid-phase dispersion extraction.

    Science.gov (United States)

    Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie

    2014-11-01

    A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species.

    Science.gov (United States)

    De Carolis, Elena; Vella, Antonietta; Florio, Ada R; Posteraro, Patrizia; Perlin, David S; Sanguinetti, Maurizio; Posteraro, Brunella

    2012-07-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was evaluated for testing susceptibility to caspofungin of wild-type and fks mutant isolates of Candida and Aspergillus. Complete essential agreement was observed with the CLSI reference method, with categorical agreement for 94.1% of the Candida isolates tested. Thus, MALDI-TOF MS is a reliable and accurate method to detect fungal isolates with reduced caspofungin susceptibility.

  6. Semiconductor Nanomaterials-Based Fluorescence Spectroscopic and Matrix-Assisted Laser Desorption/Ionization (MALDI Mass Spectrometric Approaches to Proteome Analysis

    Directory of Open Access Journals (Sweden)

    Suresh Kumar Kailasa

    2013-12-01

    Full Text Available Semiconductor quantum dots (QDs or nanoparticles (NPs exhibit very unusual physico-chemcial and optical properties. This review article introduces the applications of semiconductor nanomaterials (NMs in fluorescence spectroscopy and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS for biomolecule analysis. Due to their unique physico-chemical and optical properties, semiconductors NMs have created many new platforms for investigating biomolecular structures and information in modern biology. These semiconductor NMs served as effective fluorescent probes for sensing proteins and cells and acted as affinity or concentrating probes for enriching peptides, proteins and bacteria proteins prior to MALDI-MS analysis.

  7. Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Caspofungin Susceptibility Testing of Candida and Aspergillus Species

    Science.gov (United States)

    De Carolis, Elena; Vella, Antonietta; Florio, Ada R.; Posteraro, Patrizia; Perlin, David S.; Posteraro, Brunella

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) was evaluated for testing susceptibility to caspofungin of wild-type and fks mutant isolates of Candida and Aspergillus. Complete essential agreement was observed with the CLSI reference method, with categorical agreement for 94.1% of the Candida isolates tested. Thus, MALDI-TOF MS is a reliable and accurate method to detect fungal isolates with reduced caspofungin susceptibility. PMID:22535984

  8. Composite glycerol/graphite/aromatic acid matrices for thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry of heterocyclic compounds.

    Science.gov (United States)

    Esparza, Cesar; Borisov, R S; Varlamov, A V; Zaikin, V G

    2016-10-28

    New composite matrices have been suggested for the analysis of mixtures of different synthetic organic compounds (N-containing heterocycles and erectile dysfunction drugs) by thin layer chromatography/matrix-assisted laser desorption ionization time-of-flight mass spectrometry (TLC/MALDI-TOF). Different mixtures of classical MALDI matrices and graphite particles dispersed in glycerol were used for the registration of MALDI mass spectra directly from TLC plates after analytes separation. In most of cases, the mass spectra possessed [M+H] + ions; however, for some analytes only [M+Na] + and [M+K] + ions were observed. These ions have been used to generate visualized TLC chromatograms. The described approach increases the desorption/ionization efficiencies of analytes separated by TLC, prevent spot blurring, simplifies and decrease time for sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hippocampal lipid differences in Alzheimer's disease: a human brain study using matrix-assisted laser desorption/ionization-imaging mass spectrometry.

    Science.gov (United States)

    Mendis, Lakshini H S; Grey, Angus C; Faull, Richard L M; Curtis, Maurice A

    2016-10-01

    Alzheimer's disease (AD), the leading cause of dementia, is pathologically characterized by β-amyloid plaques and tau tangles. However, there is also evidence of lipid dyshomeostasis-mediated AD pathology. Given the structural diversity of lipids, mass spectrometry is a useful tool for studying lipid changes in AD. Although there have been a few studies investigating lipid changes in the human hippocampus in particular, there are few reports on how lipids change in each hippocampal subfield (e.g., Cornu Ammonis [CA] 1-4, dentate gyrus [DG] etc.). Since each subfield has its own function, we postulated that there could be lipid changes that are unique to each. We used matrix-assisted laser desorption/ionization-imaging mass spectrometry to investigate specific lipid changes in each subfield in AD. Data from the hippocampus region of six age- and gender-matched normal and AD pairs were analyzed with SCiLS lab 2015b software (SCiLS GmbH, Germany; RRID:SCR_014426), using an analysis workflow developed in-house. Hematoxylin, eosin, and luxol fast blue staining were used to precisely delineate each anatomical hippocampal subfield. Putative lipid identities, which were consistent with published data, were assigned using MS/MS. Both positively and negatively charged lipid ion species were abundantly detected in normal and AD tissue. While the distribution pattern of lipids did not change in AD, the abundance of some lipids changed, consistent with trends that have been previously reported. However, our results indicated that the majority of these lipid changes specifically occur in the CA1 region. Additionally, there were many lipid changes that were specific to the DG. Matrix-assisted laser desorption/ionization-imaging mass spectrometry and our analysis workflow provide a novel method to investigate specific lipid changes in hippocampal subfields. Future work will focus on elucidating the role that specific lipid differences in each subfield play in AD pathogenesis.

  10. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    Science.gov (United States)

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  11. Ceria nanocubic-ultrasonication assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis.

    Science.gov (United States)

    Abdelhamid, Hani Nasser; Bhaisare, Mukesh L; Wu, Hui-Fen

    2014-03-01

    A new ceria (CeO2) nanocubic modified surfactant is used as the basis of a novel nano-based microextraction technique for highly sensitive detection of pathogenic bacteria (Pseudomonas aeruginosa and Staphylococcus aureus). The technique uses ultrasound enhanced surfactant-assisted dispersive liquid-liquid microextraction (UESA-DLLME) with and without ceria (CeO2) followed by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). In order to achieve high separation efficiency, we investigated the influential parameters, including extraction time of ultrasonication, type and volume of the extraction solvent and surfactant. Among various surfactants, the cationic surfactants can selectively offer better extraction efficiency on bacteria analysis than that of the anionic surfactants due to the negative charges of bacteria cell membranes. Extractions of the bacteria lysate from aqueous samples via UESA-DLLME-MALDI-MS were successfully achieved by using cetyltrimethyl ammonium bromide (CTAB, 10.0 µL, 1.0×10(-3) M) as surfactants in chlorobenzene (10.0 µL) and chloroform (10.0 µL) as the optimal extracting solvent for P. aeruginosa and S. aureus, respectively. Ceria nanocubic was synthesized, and functionalized with CTAB (CeO2@CTAB) and then characterized using transmission electron microscopy (TEM) and optical spectroscopy (UV and FTIR). CeO2@CTAB demonstrates high extraction efficiency, improve peaks ionization, and enhance resolution. The prime reasons for these improvements are due to the large surface area of nanoparticles, and its absorption that coincides with the wavelength of MALDI laser (337 nm, N2 laser). CeO2@CTAB-based microextraction offers lowest detectable concentrations tenfold lower than that of without nanoceria. The present approach has been successfully applied to detect pathogenic bacteria at low concentrations of 10(4)-10(5) cfu/mL (without ceria) and at 10(3)-10(4) cfu/mL (with ceria) from bacteria suspensions. Finally, the

  12. Influence of secondary structure on in-source decay of protein in matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Takayama, Mitsuo; Osaka, Issey; Sakakura, Motoshi

    2012-01-01

    The susceptibility of the N-Cα bond of the peptide backbone to specific cleavage by in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was studied from the standpoint of the secondary structure of three proteins. A naphthalene derivative, 5-amino-1-naphtol (5,1-ANL), was used as the matrix. The resulting c'-ions, which originate from the cleavage at N-Cα bonds in flexible secondary structures such as turn and bend, and are free from intra-molecular hydrogen-bonded α-helix structure, gave relatively intense peaks. Furthermore, ISD spectra of the proteins showed that the N-Cα bonds of specific amino acid residues, namely Gly-Xxx, Xxx-Asp, and Xxx-Asn, were more susceptible to MALDI-ISD than other amino acid residues. This is in agreement with the observation that Gly, Asp and Asn residues usually located in turns, rather than α-helix. The results obtained indicate that protein molecules embedded into the matrix crystal in the MALDI experiments maintain their secondary structures as determined by X-ray crystallography, and that MALDI-ISD has the capability for providing information concerning the secondary structure of protein.

  13. Identification and localization of trauma-related biomarkers using matrix assisted laser desorption/ionization imaging mass spectrometry

    Science.gov (United States)

    Jones, Kirstin; Reilly, Matthew A.; Glickman, Randolph D.

    2017-02-01

    Current treatments for ocular and optic nerve trauma are largely ineffective and may have adverse side effects; therefore, new approaches are needed to understand trauma mechanisms. Identification of trauma-related biomarkers may yield insights into the molecular aspects of tissue trauma that can contribute to the development of better diagnostics and treatments. The conventional approach for protein biomarker measurement largely relies on immunoaffinity methods that typically can only be applied to analytes for which antibodies or other targeting means are available. Matrix assisted laser-assisted desorption/ionization imaging mass spectrometry (MALDI-IMS) is a specialized application of mass spectrometry that not only is well suited to the discovery of novel or unanticipated biomarkers, but also provides information about the spatial localization of biomarkers in tissue. We have been using MALDI-IMS to find traumarelated protein biomarkers in retina and optic nerve tissue from animal models subjected to ocular injury produced by either blast overpressure or mechanical torsion. Work to date by our group, using MALDI-IMS, found that the pattern of protein expression is modified in the injured ocular tissue as soon as 24 hr post-injury, compared to controls. Specific proteins may be up- or down-regulated by trauma, suggesting different tissue responses to a given injury. Ongoing work is directed at identifying the proteins affected and mapping their expression in the ocular tissue, anticipating that systematic analysis can be used to identify targets for prospective therapies for ocular trauma.

  14. Rapid Quantification of 25-Hydroxyvitamin D3 in Human Serum by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    Science.gov (United States)

    Qi, Yulin; Müller, Miriam; Stokes, Caroline S.; Volmer, Dietrich A.

    2018-04-01

    LC-MS/MS is widely utilized today for quantification of vitamin D in biological fluids. Mass spectrometric assays for vitamin D require very careful method optimization for precise and interference-free, accurate analyses however. Here, we explore chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) as a rapid alternative for quantitative measurement of 25-hydroxyvitamin D3 in human serum, and compare it to results from LC-MS/MS. The method implemented an automated imaging step of each MALDI spot, to locate areas of high intensity, avoid sweet spot phenomena, and thus improve precision. There was no statistically significant difference in vitamin D quantification between the MALDI-MS/MS and LC-MS/MS: mean ± standard deviation for MALDI-MS—29.4 ± 10.3 ng/mL—versus LC-MS/MS—30.3 ± 11.2 ng/mL (P = 0.128)—for the sum of the 25-hydroxyvitamin D epimers. The MALDI-based assay avoided time-consuming chromatographic separation steps and was thus much faster than the LC-MS/MS assay. It also consumed less sample, required no organic solvents, and was readily automated. In this proof-of-concept study, MALDI-MS readily demonstrated its potential for mass spectrometric quantification of vitamin D compounds in biological fluids.

  15. Reproducibility of serum protein profiling by systematic assessment using solid-phase extraction and matrix-assisted laser desorption/ionization mass spectrometry

    DEFF Research Database (Denmark)

    Callesen, Anne K; Christensen, René Depont; Madsen, Jonna S

    2008-01-01

    for serum protein profiling we investigated a range of sample preparation techniques and developed a statistical method based on repeated analyses for evaluation of protein-profiling performance of MALDI MS. Two different solid-phase extraction (SPE) methods were investigated, namely custom......Protein profiling of human serum by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is potentially a new diagnostic tool for early detection of human diseases, including cancer. Sample preparation is a key issue in MALDI MS and the analysis of complex samples such as serum......-made microcolumns and commercially available magnetic beads. Using these two methods, nineteen different sample preparation methods for serum profiling by MALDI MS were systematically tested with regard to matrix selection, stationary phase, selectivity, and reproducibility. Microcolumns were tested with regard...

  16. Phonon-assisted field emission in silicon nanomembranes for time-of-flight mass spectrometry of proteins.

    Science.gov (United States)

    Park, Jonghoo; Aksamija, Zlatan; Shin, Hyun-Cheol; Kim, Hyunseok; Blick, Robert H

    2013-06-12

    Time-of-flight (TOF) mass spectrometry has been considered as the method of choice for mass analysis of large intact biomolecules, which are ionized in low charge states by matrix-assisted-laser-desorption/ionization (MALDI). However, it remains predominantly restricted to the mass analysis of biomolecules with a mass below about 50,000 Da. This limitation mainly stems from the fact that the sensitivity of the standard detectors decreases with increasing ion mass. We describe here a new principle for ion detection in TOF mass spectrometry, which is based upon suspended silicon nanomembranes. Impinging ion packets on one side of the suspended silicon nanomembrane generate nonequilibrium phonons, which propagate quasi-diffusively and deliver thermal energy to electrons within the silicon nanomembrane. This enhances electron emission from the nanomembrane surface with an electric field applied to it. The nonequilibrium phonon-assisted field emission in the suspended nanomembrane connected to an effective cooling of the nanomembrane via field emission allows mass analysis of megadalton ions with high mass resolution at room temperature. The high resolution of the detector will give better insight into high mass proteins and their functions.

  17. Matrix isolation-infrared and mass spectrometric studies of high-temperature molecules

    International Nuclear Information System (INIS)

    Dickinson, S.

    1987-08-01

    Matrix isolation-infrared spectroscopy and mass spectrometry have been developed at AEE Winfrith to study the high-temperature vapour species which could be generated during a hypothetical severe reactor accident. The principles of the techniques and the instruments are described in detail, and examples of their application to specific systems discussed. Although these examples refer to high-temperature chemical species which are relevant to reactor safety assessments, the techniques are equally applicable to other processes where the characterisation of transient vapour-phase species is required. (author)

  18. General 4–zero texture mass matrix parametrizations

    International Nuclear Information System (INIS)

    Barranco, J; Delepine, D; Lopez-Lozano, L

    2014-01-01

    It is performed the diagonalization of a non–Hermitian four–zero texture Yukawa matrix with a general formalism. This procedure leads to 3 possibilities to parametrize the relation between the fermion masses and the elements of the corresponding Yukawa matrix. Then, the matrices that diagonalize each Yukawa mass matrix are combined in order to obtain 9 different theoretical CKM or PMNS mixing matrices [1]. Through a χ 2 analysis, we have constrained the values of the remaining free parameters such as the theoretical mixing matrix matches the latest experimental measurements of the mixing matrices. This analysis was done without assuming any approximations. In the case of the quark sector, it is found that only four different theoretical mixing matrices are compatible with the actual high precision experimental measurement of the CKM matrix elements. For the lepton sector, where the masses of neutrinos are not known, we found that independently of the parametrization that have been chosen, the updated experimental measurements of the mixing angles in the PMNS matrix, imply a mass for the heaviest left–handed neutrino to be ∼ 0.05eV

  19. Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting.

    Science.gov (United States)

    Hettick, Justin M; Green, Brett J; Buskirk, Amanda D; Kashon, Michael L; Slaven, James E; Janotka, Erika; Blachere, Francoise M; Schmechel, Detlef; Beezhold, Donald H

    2008-09-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to generate highly reproducible mass spectral fingerprints for 12 species of fungi of the genus Aspergillus and 5 different strains of Aspergillus flavus. Prior to MALDI-TOF MS analysis, the fungi were subjected to three 1-min bead beating cycles in an acetonitrile/trifluoroacetic acid solvent. The mass spectra contain abundant peaks in the range of 5 to 20kDa and may be used to discriminate between species unambiguously. A discriminant analysis using all peaks from the MALDI-TOF MS data yielded error rates for classification of 0 and 18.75% for resubstitution and cross-validation methods, respectively. If a subset of 28 significant peaks is chosen, resubstitution and cross-validation error rates are 0%. Discriminant analysis of the MALDI-TOF MS data for 5 strains of A. flavus using all peaks yielded error rates for classification of 0 and 5% for resubstitution and cross-validation methods, respectively. These data indicate that MALDI-TOF MS data may be used for unambiguous identification of members of the genus Aspergillus at both the species and strain levels.

  20. Rapid, simple, and highly sensitive analysis of drugs in biological samples using thin-layer chromatography coupled with matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Kuwayama, Kenji; Tsujikawa, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Iwata, Yuko T; Inoue, Hiroyuki

    2012-01-01

    Rapid and precise identification of toxic substances is necessary for urgent diagnosis and treatment of poisoning cases and for establishing the cause of death in postmortem examinations. However, identification of compounds in biological samples using gas chromatography and liquid chromatography coupled with mass spectrometry entails time-consuming and labor-intensive sample preparations. In this study, we examined a simple preparation and highly sensitive analysis of drugs in biological samples such as urine, plasma, and organs using thin-layer chromatography coupled with matrix-assisted laser desorption/ionization mass spectrometry (TLC/MALDI/MS). When the urine containing 3,4-methylenedioxymethamphetamine (MDMA) without sample dilution was spotted on a thin-layer chromatography (TLC) plate and was analyzed by TLC/MALDI/MS, the detection limit of the MDMA spot was 0.05 ng/spot. The value was the same as that in aqueous solution spotted on a stainless steel plate. All the 11 psychotropic compounds tested (MDMA, 4-hydroxy-3-methoxymethamphetamine, 3,4-methylenedioxyamphetamine, methamphetamine, p-hydroxymethamphetamine, amphetamine, ketamine, caffeine, chlorpromazine, triazolam, and morphine) on a TLC plate were detected at levels of 0.05-5 ng, and the type (layer thickness and fluorescence) of TLC plate did not affect detection sensitivity. In addition, when rat liver homogenate obtained after MDMA administration (10 mg/kg) was spotted on a TLC plate, MDMA and its main metabolites were identified using TLC/MALDI/MS, and the spots on a TLC plate were visualized by MALDI/imaging MS. The total analytical time from spotting of intact biological samples to the output of analytical results was within 30 min. TLC/MALDI/MS enabled rapid, simple, and highly sensitive analysis of drugs from intact biological samples and crude extracts. Accordingly, this method could be applied to rapid drug screening and precise identification of toxic substances in poisoning cases and

  1. Peptidylation for the determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-05-23

    Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics.

  2. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices.

    Science.gov (United States)

    Serrano, Carlos A; Zhang, Yi; Yang, Jian; Schug, Kevin A

    2011-05-15

    In this study, two novel ionic liquid matrices (ILMs), N,N-diisopropylethylammonium 3-oxocoumarate and N,N-diisopropylethylammonium dihydroxymonooxoacetophenoate, were tested for the structural elucidation of recently developed aliphatic biodegradable polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The polymers, formed by a condensation reaction of three components, citric acid, octane diol, and an amino acid, are fluorescent, but the exact mechanism behind their luminescent properties has not been fully elucidated. In the original studies, which introduced the polymer class (J. Yang et al., Proc. Natl. Acad. Sci. USA 2009, 106, 10086-10091), a hyper-conjugated cyclic structure was proposed as the source for the photoluminescent behavior. With the use of the two new ILMs, we present evidence that supports the presence of the proposed cyclization product. In addition, the new ILMs, when compared with a previously established ILM, N,N-diisopropylethylammonium α-cyano-3-hydroxycinnimate, provided similar signal intensities and maintained similar spectral profiles. This research also established that the new ILMs provided good spot-to-spot reproducibility and high ionization efficiency compared with corresponding crystalline matrix preparations. Many polymer features revealed through the use of the ILMs could not be observed with crystalline matrices. Ultimately, the new ILMs highlighted the composition of the synthetic polymers, as well as the loss of water that was expected for the formation of the proposed cyclic structure on the polymer backbone. Copyright © 2011 John Wiley & Sons, Ltd.

  3. The minimum amount of "matrix " needed for matrix-assisted pulsed laser deposition of biomolecules

    DEFF Research Database (Denmark)

    Tabetah, Marshall; Matei, Andreea; Constantinescu, Catalin

    2014-01-01

    The ability of matrix-assisted pulsed laser evaporation (MAPLE) technique to transfer and deposit high-quality thin organic, bioorganic, and composite films with minimum chemical modification of the target material has been utilized in numerous applications. One of the outstanding problems in MAPLE...

  4. The Effect of Collimating Lens Focusing on Laser Beam Shape in Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS).

    Science.gov (United States)

    O'Rourke, Matthew B; Raymond, Benjamin B A; Djordjevic, Steven P; Padula, Matthew P

    2018-03-01

    Tissue imaging using matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a well-established technique that, in recent years, has seen wider adoption and novel application. Applications such imaging mass spectrometry (IMS) and biotyping are beginning to gain greater exposure and use; however, with limitations in optimization methods, producing the best result often relies on the ability to customize the physical characteristics of the instrumentation, a task that is challenging for most mass spectrometry laboratories. With this in mind, we have described the effect of making simple adjustments to the laser optics at the final collimating lens area, to adjust the laser beam size and shape in order to allow greater customization of the instrument for improving techniques such as IMS. We have therefore been able to demonstrate that improvements can be made without requiring the help of an electrical engineer or external funding in a way that only costs a small amount of time. Graphical Abstract ᅟ.

  5. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Murray, Patrick R

    2010-02-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid, accurate method for identifying bacteria and fungi recovered on agar culture media. We report herein a method for the direct identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. A total of 212 positive cultures were examined, representing 32 genera and 60 species or groups. The identification of bacterial isolates by MALDI-TOF mass spectrometry was compared with biochemical testing, and discrepancies were resolved by gene sequencing. No identification (spectral score of blood culture broth. Of the bacteria with a spectral score of > or = 1.7, 162 (95.3%) of 170 isolates were correctly identified. All 8 isolates of Streptococcus mitis were misidentified as being Streptococcus pneumoniae isolates. This method provides a rapid, accurate, definitive identification of bacteria within 1 h of detection in positive blood cultures with the caveat that the identification of S. pneumoniae would have to be confirmed by an alternative test.

  6. Fast and reliable diagnosis of XDR Acinetobacter baumannii meningitis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Brunetti, Grazia; Ceccarelli, Giancarlo; Giordano, Alessandra; Navazio, Anna Sara; Vittozzi, Pietro; Venditti, Mario; Raponi, Giammarco

    2018-01-01

    Bacterial meningitis is a medical emergency needing quick and timely diagnosis. Even though meningitis caused by Acinetobacter baumannii is relatively rare, it is associated with high mortality rates especially in neurosurgery patients and represents a serious therapeutic problem due to the limited penetration of effective antibiotics into the cerebrospinal fluid. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) has been effectively used as a rapid method for microbial identification. In this case report we identified A. baumanni by MALDI-TOF technique directly from the CSF drawn from the external ventricular drainage of a patient with severe confusional state and signs of meningism. Simultaneously the antibiotic susceptibility test was performed by automated method from the pellet of the broth-enriched sample. The MALDI-TOF technique allowed microbial identification in less than 30 minutes, and the susceptibility test result was available in eight hours, thus allowing a fast diagnosis ready for prompt and targeted antimicrobial therapy.

  7. Texture zeros in neutrino mass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Dziewit, B., E-mail: bartosz.dziewit@us.edu.pl; Holeczek, J., E-mail: jacek.holeczek@us.edu.pl; Richter, M., E-mail: monikarichter18@gmail.com [University of Silesia, Institute of Physics (Poland); Zajac, S., E-mail: s.zajac@uksw.edu.pl [Cardinal Stefan Wyszyński University in Warsaw, Faculty of Mathematics and Natural Studies (Poland); Zralek, M., E-mail: marek.zralek@us.edu.pl [University of Silesia, Institute of Physics (Poland)

    2017-03-15

    The Standard Model does not explain the hierarchy problem. Before the discovery of nonzero lepton mixing angle θ{sub 13} high hopes in explanation of the shape of the lepton mixing matrix were combined with non-Abelian symmetries. Nowadays, assuming one Higgs doublet, it is unlikely that this is still valid. Texture zeroes, that are combined with abelian symmetries, are intensively studied. The neutrino mass matrix is a natural way to study such symmetries.

  8. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo [Food Safety and Technology Research Centre, State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong Special Administrative Region (China); Shenzhen Key Laboratory of Food Biological Safety Control and State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen (China); Yao, Zhong-Ping, E-mail: zhongping.yao@polyu.edu.hk [Food Safety and Technology Research Centre, State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong Special Administrative Region (China); Shenzhen Key Laboratory of Food Biological Safety Control and State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen (China)

    2015-07-16

    Highlights: • Simplified sample preparation method for direct analysis of edible oils by MALDI-MS. • Establishment of a preliminary MALDI-MS spectral database of edible oils. • Rapid screening of mixed edible oils and gutter oils. - Abstract: Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils.

  9. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry

    International Nuclear Information System (INIS)

    Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo; Yao, Zhong-Ping

    2015-01-01

    Highlights: • Simplified sample preparation method for direct analysis of edible oils by MALDI-MS. • Establishment of a preliminary MALDI-MS spectral database of edible oils. • Rapid screening of mixed edible oils and gutter oils. - Abstract: Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils

  10. Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system.

    Science.gov (United States)

    Richter, S S; Sercia, L; Branda, J A; Burnham, C-A D; Bythrow, M; Ferraro, M J; Garner, O B; Ginocchio, C C; Jennemann, R; Lewinski, M A; Manji, R; Mochon, A B; Rychert, J A; Westblade, L F; Procop, G W

    2013-12-01

    This multicenter study evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry identifications from the VITEK MS system (bioMérieux, Marcy l'Etoile, France) for Enterobacteriaceae typically encountered in the clinical laboratory. Enterobacteriaceae isolates (n = 965) representing 17 genera and 40 species were analyzed on the VITEK MS system (database v2.0), in accordance with the manufacturer's instructions. Colony growth (≤72 h) was applied directly to the target slide. Matrix solution (α-cyano-4-hydroxycinnamic acid) was added and allowed to dry before mass spectrometry analysis. On the basis of the confidence level, the VITEK MS system provided a species, genus only, or no identification for each isolate. The accuracy of the mass spectrometric identification was compared to 16S rRNA gene sequencing performed at MIDI Labs (Newark, DE). Supplemental phenotypic testing was performed at bioMérieux when necessary. The VITEK MS result agreed with the reference method identification for 96.7% of the 965 isolates tested, with 83.8% correct to the species level and 12.8% limited to a genus-level identification. There was no identification for 1.7% of the isolates. The VITEK MS system misidentified 7 isolates (0.7 %) as different genera. Three Pantoea agglomerans isolates were misidentified as Enterobacter spp. and single isolates of Enterobacter cancerogenus, Escherichia hermannii, Hafnia alvei, and Raoultella ornithinolytica were misidentified as Klebsiella oxytoca, Citrobacter koseri, Obesumbacterium proteus, and Enterobacter aerogenes, respectively. Eight isolates (0.8 %) were misidentified as a different species in the correct genus. The VITEK MS system provides reliable mass spectrometric identifications for Enterobacteriaceae.

  11. The importance of matrix-assisted laser desorption ionization–time of flight mass spectrometry for correct identification of Clostridium difficile isolated from chromID C. difficile chromogenic agar

    Directory of Open Access Journals (Sweden)

    Jonathan H.K. Chen

    2017-10-01

    Full Text Available The clinical workflow of using chromogenic agar and matrix-assisted laser desorption ionization time-of-fight mass spectrometry (MALDI-TOF MS for Clostridium difficile identification was evaluated. The addition of MALDI-TOF MS identification after the chromID C. difficile chromogenic agar culture could significantly improve the diagnostic accuracy of C. difficile.

  12. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Shea, Yvonne R; Zelazny, Adrian M; Murray, Patrick R

    2010-10-01

    We evaluated the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the rapid identification of yeast species. Using Bruker Daltonics MALDI BioTyper software, we created a spectral database library with m/z ratios of 2,000 to 20,000 Da for 109 type and reference strains of yeast (44 species in 8 genera). The database was tested for accuracy by use of 194 clinical isolates (23 species in 6 genera). A total of 192 (99.0%) of the clinical isolates were identified accurately by MALDI-TOF MS. The MALDI-TOF MS-based method was found to be reproducible and accurate, with low consumable costs and minimal preparation time.

  13. Ammonium Sulfate Improves Detection of Hydrophilic Quaternary Ammonium Compounds through Decreased Ion Suppression in Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry.

    Science.gov (United States)

    Sugiyama, Eiji; Masaki, Noritaka; Matsushita, Shoko; Setou, Mitsutoshi

    2015-11-17

    Hydrophilic quaternary ammonium compounds (QACs) include derivatives of carnitine (Car) or choline, which are known to have essential bioactivities. Here we developed a technique for improving the detection of hydrophilic QACs using ammonium sulfate (AS) in matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). In MALDI mass spectrometry for brain homogenates, the addition of AS greatly increased the signal intensities of Car, acetylcarnitine (AcCar), and glycerophosphocholine (GPC) by approximately 300-, 700-, and 2500-fold. The marked improvement required a higher AS concentration than that needed for suppressing the potassium adduction on phosphatidylcholine and 2,5-dihydroxybenzoic acid. Adding AS also increased the signal intensities of Car, AcCar, and GPC by approximately 10-, 20-, and 40-fold in MALDI-IMS. Consequently, the distributions of five hydrophilic QACs (Car, AcCar, GPC, choline, and phosphocholine) were simultaneously visualized by this technique. The distinct mechanism from other techniques such as improved matrix application, derivatization, or postionization suggests the great potential of AS addition to achieve higher sensitivity of MALDI-IMS for various analytes.

  14. Structural characterization of native high-methoxylated pectin using nuclear magnetic resonance spectroscopy and ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Comparative use of 2,5-dihydroxybenzoic acid and nor-harmane as UV-MALDI matrices.

    Science.gov (United States)

    Monge, María Eugenia; Negri, R Martín; Kolender, Adriana A; Erra-Balsells, Rosa

    2007-01-01

    The successful analysis by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI-TOF MS) of native and hydrolyzed high-methoxylated pectin samples is described. In order to find the optimal conditions for UV-MALDI-TOF MS analysis several experimental variables were studied such as: different UV-MALDI matrices (nor-harmane, 2,5-dihydroxybenzoic acid), sample preparation methods (mixture, sandwich), inorganic salt addition (doping salts, NaCl, KCl, NH(4)Cl), ion mode (positive, negative), linear and reflectron mode, etc. nor-Harmane has never been used as a UV-MALDI matrix for the analysis of pectins but its use avoids pre-treatment of the sample, such as an enzymatic digestion or an acid hydrolysis, and there is no need to add salts, making the analysis easier and faster. This study suggested an alternative way of analyzing native high-methoxylated pectins, with UV-MALDI-TOF MS, by using nor-harmane as the matrix in negative ion mode. The analysis by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy of the native and hydrolyzed pectin is also briefly described. Copyright (c) 2007 John Wiley & Sons, Ltd.

  15. Matrix-assisted peptide synthesis on nanoparticles.

    Science.gov (United States)

    Khandadash, Raz; Machtey, Victoria; Weiss, Aryeh; Byk, Gerardo

    2014-09-01

    We report a new method for multistep peptide synthesis on polymeric nanoparticles of differing sizes. Polymeric nanoparticles were functionalized via their temporary embedment into a magnetic inorganic matrix that allows multistep peptide synthesis. The matrix is removed at the end of the process for obtaining nanoparticles functionalized with peptides. The matrix-assisted synthesis on nanoparticles was proved by generating various biologically relevant peptides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  16. Identification of wheat varieties using matrix-assisted laserdesorption/ionisation time-of-flight mass spectrometry and anartificial neural network

    DEFF Research Database (Denmark)

    Bloch, Helle Aagaard; Kesmir, Can; Petersen, Marianne Kjerstine

    1999-01-01

    of this novelmethod with respect to various experimental parameters has been tested. The results can be summarised: (i)With this approach 97% of the wheat varieties can be classified correctly with a corresponding correlationcoefficient of 1.0, (ii) The method is fast since the time of extracting gliadins from flour......A novel tool for variety identification of wheat (Triticum aestivum L.) has been developed: an artificialneural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laserdesorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness...... by the identity of the operator making theanalysis. This study demonstrates that a combination of an ANN and MALDI-TOFMS analysis of thegliadin fraction provides a fast and reliable tool for the variety identification of wheat. Copyright 1999 JohnWiley & Sons, Ltd....

  17. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Analysis of Gram-Positive, Catalase-Negative Cocci Not Belonging to the Streptococcus or Enterococcus Genus and Benefits of Database Extension

    DEFF Research Database (Denmark)

    Christensen, Jens Jørgen; Dargis, Rimtas; Hammer, Monja

    2012-01-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry with a Bruker Daltonics microflex LT system was applied to 90 well-characterized catalase-negative, Gram-positive cocci not belonging to the streptococci or enterococci. Biotyper version 2.0.43.1 software...

  18. Neutrino mass matrix: Inverted hierarchy and CP violation

    International Nuclear Information System (INIS)

    Frigerio, Michele; Smirnov, Alexei Yu.

    2003-01-01

    We reconstruct the neutrino mass matrix in the flavor basis, in the case of an inverted mass hierarchy (ordering), using all available experimental data on neutrino masses and oscillations. We analyze the dependence of the matrix elements m αβ on the CP violating Dirac δ and Majorana ρ and σ phases, for different values of the absolute mass scale. We find that the present data admit various structures of the mass matrix: (i) hierarchical structures with a set of small (zero) elements; (ii) structures with equalities among various groups of elements: e-row and/or μτ-block elements, diagonal and/or off-diagonal elements; (iii) 'democratic' structure. We find the values of phases for which these structures are realized. The mass matrix elements can anticorrelate with flavor: inverted partial or complete flavor alignment is possible. For various structures of the mass matrix we identify the possible underlying symmetry. We find that the mass matrix can be reconstructed completely only in particular cases, provided that the absolute scale of the mass is measured. Generally, the freedom related to the Majorana phase σ will not be removed, thus admitting various types of mass matrix

  19. Investigations into ultraviolet matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Heise, Theodore W. [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    Matrix-assisted laser desorption (MALD) is a technique for converting large biomolecules into gas phase ions. Some characteristics of the commonly used uv matrices are determined. Solubilities in methanol range from 0.1 to 0.5 M. Solid phase absorption spectra are found to be similar to solution, but slightly red-shifted. Acoustic and quartz crystal microbalance signals are investigated as possible means of uv-MALD quantitation. Evidence for the existence of desorption thresholds is presented. Threshold values are determined to be in the range of 2 to 3 MW/cm2. A transient imaging technique based on laser-excited fluorescence for monitoring MALD plumes is described. Sensitivity is well within the levels required for studying matrix-assisted laser desorption, where analyte concentrations are significantly lower than those in conventional laser desorption. Results showing the effect of film morphology, particularly film thickness, on plume dynamics are presented. In particular, MALD plumes from thicker films tend to exhibit higher axial velocities. Fluorescent labeling of protein and of DNA is used to allow imaging of their uv-MALD generated plumes. Integrated concentrations are available with respect to time, making it possible to assess the rate of fragmentation. The spatial and temporal distributions are important for the design of secondary ionization schemes to enhance ion yields and for the optimization of ion collection in time-of-flight MS instruments to maximize resolution. Such information could also provide insight into whether ionization is closely associated with the desorption step or whether it is a result of subsequent collisions with the matrix gas (e.g., proton transfer). Although the present study involves plumes in a normal atmosphere, adaptation to measurements in vacuum (e.g., inside a mass spectrometer) should be straightforward.

  20. Metabolomic Analysis of Oxidative and Glycolytic Skeletal Muscles by Matrix-Assisted Laser Desorption/IonizationMass Spectrometric Imaging (MALDI MSI)

    Science.gov (United States)

    Tsai, Yu-Hsuan; Garrett, Timothy J.; Carter, Christy S.; Yost, Richard A.

    2015-06-01

    Skeletal muscles are composed of heterogeneous muscle fibers that have different physiological, morphological, biochemical, and histological characteristics. In this work, skeletal muscles extensor digitorum longus, soleus, and whole gastrocnemius were analyzed by matrix-assisted laser desorption/ionization mass spectrometry to characterize small molecule metabolites of oxidative and glycolytic muscle fiber types as well as to visualize biomarker localization. Multivariate data analysis such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to extract significant features. Different metabolic fingerprints were observed from oxidative and glycolytic fibers. Higher abundances of biomolecules such as antioxidant anserine as well as acylcarnitines were observed in the glycolytic fibers, whereas taurine and some nucleotides were found to be localized in the oxidative fibers.

  1. Emerging and Future Applications of Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry in the Clinical Microbiology Laboratory: A Report of the Association for Molecular Pathology.

    Science.gov (United States)

    Doern, Christopher D; Butler-Wu, Susan M

    2016-11-01

    The performance of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) for routine bacterial and yeast identification as well as direct-from-blood culture bottle identification has been thoroughly evaluated in the peer-reviewed literature. Microbiologists are now moving beyond these methods to apply MS to other areas of the diagnostic process. This review discusses the emergence of advanced matrix-assisted laser desorption ionization time-of-flight MS applications, including the identification of filamentous fungi and mycobacteria and the current and future state of antimicrobial resistance testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. Capillary isoelectric focusing of probiotic bacteria from cow's milk in tapered fused silica capillary with off-line matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Karásek, Pavel; Šalplachta, Jiří; Růžička, F.; Vykydalová, Marie; Kubesová, Anna; Dráb, V.; Roth, Michal; Šlais, Karel

    2013-01-01

    Roč. 788, JUL (2013), s. 193-199 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GAP106/12/0522; GA MV VG20102015023 Institutional support: RVO:68081715 Keywords : capillary isoelectric focusing * matrix-assisted laser desorption/ionization time-of-flight mass spectrometry * lactic acid bacteria Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.517, year: 2013

  3. Correlation between phosphorylation ratios by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis and radioactivities by radioactive assay.

    Science.gov (United States)

    Tsuchiya, Akira; Asai, Daisuke; Kang, Jeong-Hun; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki

    2012-02-15

    To investigate the correlation between the counts per minute (CPM) by radioactivity assay and the phosphorylation ratio by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, we prepared 136 peptide substrates. The correlation coefficient of phosphorylation ratios to CPM was 0.77 for all samples. However, the more the numbers of positively charged amino acids increased, the more the correlation coefficient increased. Although positively charged amino acids can have an effect on the correlation results, MALDI-TOF MS analysis is a useful means for monitoring phosphorylated peptide and protein kinase activity instead of radioactivity assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa

    2011-01-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level...... (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important...

  5. The Characterization of Laser Ablation Patterns and a New Definition of Resolution in Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS).

    Science.gov (United States)

    O'Rourke, Matthew B; Raymond, Benjamin B A; Padula, Matthew P

    2017-05-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) is a technique that has seen a sharp rise in both use and development. Despite this rapid adoption, there have been few thorough investigations into the actual physical mechanisms that underlie the acquisition of IMS images. We therefore set out to characterize the effect of IMS laser ablation patterns on the surface of a sample. We also concluded that the governing factors that control spatial resolution have not been correctly defined and therefore propose a new definition of resolution. Graphical Abstract ᅟ.

  6. Performance of Matrix-Assisted Laser Desorption Ionization−Time of Flight Mass Spectrometry for Identification of Aspergillus, Scedosporium, and Fusarium spp. in the Australian Clinical Setting

    Science.gov (United States)

    Sleiman, Sue; Halliday, Catriona L.; Chapman, Belinda; Brown, Mitchell; Nitschke, Joanne; Lau, Anna F.

    2016-01-01

    We developed an Australian database for the identification of Aspergillus, Scedosporium, and Fusarium species (n = 28) by matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS). In a challenge against 117 isolates, species identification significantly improved when the in-house-built database was combined with the Bruker Filamentous Fungi Library compared with that for the Bruker library alone (Aspergillus, 93% versus 69%; Fusarium, 84% versus 42%; and Scedosporium, 94% versus 18%, respectively). PMID:27252460

  7. Novel, Improved Sample Preparation for Rapid, Direct Identification from Positive Blood Cultures Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry

    OpenAIRE

    Schubert, Sören; Weinert, Kirsten; Wagner, Chris; Gunzl, Beatrix; Wieser, Andreas; Maier, Thomas; Kostrzewa, Markus

    2011-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is widely used for rapid and reliable identification of bacteria and yeast grown on agar plates. Moreover, MALDI-TOF MS also holds promise for bacterial identification from blood culture (BC) broths in hospital laboratories. The most important technical step for the identification of bacteria from positive BCs by MALDI-TOF MS is sample preparation to remove blood cells and host proteins. We present a m...

  8. Ghost peaks observed after AP-MALDI experiment may disclose new ionization mechanism of matrix assisted hypersonic velocity impact ionization

    Science.gov (United States)

    Moskovets, Eugene

    2015-01-01

    RATIONALE Understanding the mechanisms of MALDI promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample has been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laserless matrix-assisted ionization. METHODS An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser was turned off and MALDI sample was removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly- and doubly-charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. RESULTS The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. CONCLUSIONS The observations were partially consistent with a model of

  9. Matrix Assisted and/or Laser Desorption Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometry of WO3 Clusters Formation in Gas Phase. Nanodiamonds, Fullerene, and Graphene Oxide Matrices

    Science.gov (United States)

    Ausekar, Mayuri Vilas; Mawale, Ravi Madhukar; Pazdera, Pavel; Havel, Josef

    2018-03-01

    The formation of W x O y +●/-● clusters in the gas phase was studied by laser desorption ionization (LDI) and matrix assisted laser desorption ionization (MALDI) of solid WO3. LDI produced (WO3) n + ●/- ● ( n = 1-7) clusters. In MALDI, when using nano-diamonds (NDs), graphene oxide (GO), or fullerene (C60) matrices, higher mass clusters were generated. In addition to (WO3) n -● clusters, oxygen-rich or -deficient species were found in both LDI and MALDI (with the total number of clusters exceeding one hundred ≈ 137). This is the first time that such matrices have been used for the generation of(WO3) n + ●/-● clusters in the gas phase, while new high mass clusters (WO3) n -● ( n = 12-19) were also detected. [Figure not available: see fulltext.

  10. Classification of wheat varieties: Use of two-dimensional gel electrophoresis for varieties that can not be classified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and an artificial neural network

    DEFF Research Database (Denmark)

    Jacobsen, Susanne; Nesic, Ljiljana; Petersen, Marianne Kjerstine

    2001-01-01

    Analyzing a gliadin extract by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI- TOF-MS) combined with an artificial neural network (ANN) is a suitable method for identification of wheat varieties. However, the ANN can not distinguish between all different wheat...

  11. Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Aspergillus, Scedosporium, and Fusarium spp. in the Australian Clinical Setting.

    Science.gov (United States)

    Sleiman, Sue; Halliday, Catriona L; Chapman, Belinda; Brown, Mitchell; Nitschke, Joanne; Lau, Anna F; Chen, Sharon C-A

    2016-08-01

    We developed an Australian database for the identification of Aspergillus, Scedosporium, and Fusarium species (n = 28) by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In a challenge against 117 isolates, species identification significantly improved when the in-house-built database was combined with the Bruker Filamentous Fungi Library compared with that for the Bruker library alone (Aspergillus, 93% versus 69%; Fusarium, 84% versus 42%; and Scedosporium, 94% versus 18%, respectively). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories.

    Science.gov (United States)

    van Veen, S Q; Claas, E C J; Kuijper, Ed J

    2010-03-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory.

  13. Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry†

    Science.gov (United States)

    Mandrell, Robert E.; Harden, Leslie A.; Bates, Anna; Miller, William G.; Haddon, William F.; Fagerquist, Clifton K.

    2005-01-01

    Multiple strains of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis isolated from animal, clinical, or food samples have been analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Whole bacterial cells were harvested from colonies or confluent growth on agar and transferred directly into solvent and then to a spot of dried 3-methoxy-4-hydroxycinnamic acid (matrix). Multiple ions in the 5,000- to 15,000-Da mass range were evident in spectra for each strain; one or two ions in the 9,500- to 11,000-Da range were consistently high intensity. “Species-identifying” biomarker ions (SIBIs) were evident from analyses of multiple reference strains for each of the six species, including the genome strains C. jejuni NCTC 11168 and C. jejuni RM1221. Strains grown on nine different combinations of media and atmospheres yielded SIBI masses within ±5 Da with external instrument calibration. The highest-intensity C. jejuni SIBIs were cytosolic proteins, including GroES, HU/HCj, and RplL. Multiple intraspecies SIBIs, corresponding probably to nonsynonymous nucleotide polymorphisms, also provided some intraspecies strain differentiation. MALDI-TOF MS analysis of 75 additional Campylobacter strains isolated from humans, poultry, swine, dogs, and cats revealed (i) associations of SIBI type with source, (ii) strains previously speciated incorrectly, and (iii) “strains” composed of more than one species. MALDI-TOF MS provides an accurate, sensitive, and rapid method for identification of multiple Campylobacter species relevant to public health and food safety. PMID:16204551

  14. Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Mandrell, Robert E; Harden, Leslie A; Bates, Anna; Miller, William G; Haddon, William F; Fagerquist, Clifton K

    2005-10-01

    Multiple strains of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis isolated from animal, clinical, or food samples have been analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Whole bacterial cells were harvested from colonies or confluent growth on agar and transferred directly into solvent and then to a spot of dried 3-methoxy-4-hydroxycinnamic acid (matrix). Multiple ions in the 5,000- to 15,000-Da mass range were evident in spectra for each strain; one or two ions in the 9,500- to 11,000-Da range were consistently high intensity. "Species-identifying" biomarker ions (SIBIs) were evident from analyses of multiple reference strains for each of the six species, including the genome strains C. jejuni NCTC 11168 and C. jejuni RM1221. Strains grown on nine different combinations of media and atmospheres yielded SIBI masses within +/-5 Da with external instrument calibration. The highest-intensity C. jejuni SIBIs were cytosolic proteins, including GroES, HU/HCj, and RplL. Multiple intraspecies SIBIs, corresponding probably to nonsynonymous nucleotide polymorphisms, also provided some intraspecies strain differentiation. MALDI-TOF MS analysis of 75 additional Campylobacter strains isolated from humans, poultry, swine, dogs, and cats revealed (i) associations of SIBI type with source, (ii) strains previously speciated incorrectly, and (iii) "strains" composed of more than one species. MALDI-TOF MS provides an accurate, sensitive, and rapid method for identification of multiple Campylobacter species relevant to public health and food safety.

  15. Electrochemically assisted fast-atom-bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Phillips, L.R.

    1988-01-01

    The hybridization of electrochemistry and fast atom bombardment (FAB) mass spectrometry (MS) creates a new hyphenated technique, referred to as electrochemically assisted FAB (EFAB) MS, which improves the applicability of FAB MS in selectivity and extends the range of compounds to include low polarity molecules, and also reduces mass spectral complications due to matrix-related artifacts. FAB MS has proven to be indispensable in analysis of samples that are otherwise too intractable for conventional MS, such as peptides, oligosaccharides, and oligonucleotides, due to low volatility and ready thermal degradation. There are limits on its applicability, however, in that it works best with samples that are already ionic, or predisposed to become so by simple proton transfer to or from the matrix. A wide range of chemical substances can be ionized/analyzed by electrochemical methods. Therefore, a possible approach towards improving applicability of FAB MS is through its hybridization with electrochemistry. Samples are activated by electrolysis, carried out directly in the sample matrix through use of a modified FAB sample probe which was constructed containing a small electrolytic cell on the tip. In operation, one electrode is held at normal sample-probe/ion-source voltage, while the other electrode can be continuously varied ±15 volts to create electrochemical potentials. Several chemical substances, known to be unresponsive to FAB MS, have been examined by EFAB MS. Resultant spectra generally show a dramatic increases in signal/chemical noise ratio of structurally significant ions when compared to normal FAB spectra

  16. In situ analysis of plant tissue underivatized carbohydrates and on-probe enzymatic degraded starch by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry by using carbon nanotubes as matrix.

    Science.gov (United States)

    Gholipour, Yousef; Nonami, Hiroshi; Erra-Balsells, Rosa

    2008-12-15

    Underivatized carbohydrates of tulip bulb and leaf tissues were characterized in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by using carbon nanotubes (CNTs) as matrix. Two sample preparation methods--(i) depositing CNTs on the fresh tissue slices placed on the probe and (ii) locating semitransparent tissues on a dried layer of CNTs on the probe--were examined. Furthermore, practicability of in situ starch analysis by MALDI-TOF MS was examined by detection of glucose originated from on-probe amyloglucosidase-catalyzed degradation of starch on the tissue surface. Besides, CNTs could efficiently desorb/ionize natural mono-, di-, and oligosaccharides extracted from tulip bulb tissues as well as glucose resulting from starch enzymatic degradation in vitro. These results were compared with those obtained by in situ MALDI-TOF MS analysis of similar tissues. Positive ion mode showed superior signal reproducibility. CNTs deposited under semitransparent tissue could also desorb/ionize neutral carbohydrates, leading to nearly complete elimination of matrix cluster signals but with an increase in tissue-originated signals. Furthermore, several experiments were carried out to compare the efficiency of 2,5-dihydroxybenzoic acid, nor-harmane, alpha-cyano-4-hydroxycinnamic acid, and CNTs as matrices for MALDI of neutral carbohydrates from the intact plant tissue surface and for enzymatic tissue starch degradation; these results are discussed in brief. Among matrices studied, the lowest laser power was needed to acquire carbohydrate signals with high signal-to-noise ratio and resolution when CNTs were used.

  17. Matrix-assisted laser desorption/ionization time-of-flight and nano-electrospray ionization ion trap mass spectrometric characterization of 1-cyano-2-substituted-benz[f]isoindole derivatives of peptides for fluorescence detection

    DEFF Research Database (Denmark)

    Linnemayr, K; Brückner, A; Körner, R

    1999-01-01

    A series of hexa- to decapeptides (molecular mass range 800-1200) were labeled with naphthalene-2,3-dicarboxaldehyde, which preferentially reacts with the primary amino groups of a peptide. A highly stable peptide conjugate is formed, which allows selective analysis by fluorescence at excitation...... and emission wavelengths of 420 and 490 nm, respectively. After removal of unreacted compounds, the peptide conjugates were characterized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight and nano-electrospray ionization (ESI) ion trap mass spectrometry. They readily form both [M + H]+ ions...... by MALDI and both [M + H]+ and [M + 2H]2+ ions by ESI. Furthermore, the fragmentation behavior of the N-terminally tagged peptides, exhibiting an uncharged N-terminus, was investigated applying post-source decay fragmentation with a curved field reflector and collision-induced dissociation...

  18. Localization of an O-glycosylated site in the recombinant barley alpha-amylase 1 produced in yeast and correction of the amino acid sequence using matrix-assisted laser desorption/ionization mass spectrometry of peptide mixtures

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Søgaard, M; Svensson, B

    1994-01-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of peptide mixtures was used to characterize recombinant barley alpha-amylase 1, produced in yeast. Three peptide mixtures were generated by cleavage with CNBr, digestion with endoproteinase Lys-C and Asp-N, respectively...

  19. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: A novel statistical approach for quality scoring.

    Science.gov (United States)

    Kooijman, Pieter C; Kok, Sander J; Weusten, Jos J A M; Honing, Maarten

    2016-05-05

    Preparation of samples according to an optimized method is crucial for accurate determination of polymer sample characteristics by Matrix-Assisted Laser Desorption Ionization (MALDI) analysis. Sample preparation conditions such as matrix choice, cationization agent, deposition technique or even the deposition volume should be chosen to suit the sample of interest. Many sample preparation protocols have been developed and employed, yet finding the optimal sample preparation protocol remains a challenge. Because an objective comparison between the results of diverse protocols is not possible, "gut-feeling" or "good enough" is often decisive in the search for an optimum. This implies that sub-optimal protocols are used, leading to a loss of mass spectral information quality. To address this problem a novel analytical strategy based on MALDI imaging and statistical data processing was developed in which eight parameters were formulated to objectively quantify the quality of sample deposition and optimal MALDI matrix composition and finally sum up to an overall quality score of the sample deposition. These parameters can be established in a fully automated way using commercially available mass spectrometry imaging instruments without any hardware adjustments. With the newly developed analytical strategy the highest quality MALDI spots were selected, resulting in more reproducible and more valuable spectra for PEG in a variety of matrices. Moreover, our method enables an objective comparison of sample preparation protocols for any analyte and opens up new fields of investigation by presenting MALDI performance data in a clear and concise way. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Molecular dynamics simulations of matrix assisted laser desorption ionization: Matrix-analyte interactions

    International Nuclear Information System (INIS)

    Nangia, Shivangi; Garrison, Barbara J.

    2011-01-01

    There is synergy between matrix assisted laser desorption ionization (MALDI) experiments and molecular dynamics (MD) simulations. To understand analyte ejection from the matrix, MD simulations have been employed. Prior calculations show that the ejected analyte molecules remain solvated by the matrix molecules in the ablated plume. In contrast, the experimental data show free analyte ions. The main idea of this work is that analyte molecule ejection may depend on the microscopic details of analyte interaction with the matrix. Intermolecular matrix-analyte interactions have been studied by focusing on 2,5-dihydroxybenzoic acid (DHB; matrix) and amino acids (AA; analyte) using Chemistry at HARvard Molecular Mechanics (CHARMM) force field. A series of AA molecules have been studied to analyze the DHB-AA interaction. A relative scale of AA molecule affinity towards DHB has been developed.

  1. Matrix-assisted laser desorption/ionization mass spectrometry imaging of cell cultures for the lipidomic analysis of potential lipid markers in human breast cancer invasion.

    Science.gov (United States)

    Wang, Shujuan; Chen, Xiaowu; Luan, Hemi; Gao, Dan; Lin, Shuhai; Cai, Zongwei; Liu, Jianjun; Liu, Hongxia; Jiang, Yuyang

    2016-02-28

    Breast cancer is the leading cause of cancer death among women worldwide. Identification of lipid targets that play a role in breast cancer invasion may advance our understanding of the rapid progression of cancer and may lead to the development of new biomarkers for the disease. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was applied for the lipidomic profiling of two poorly invasive and two highly invasive breast cancer cell lines to identify the differentially accumulated lipids related to the invasive phenotype. The four cell lines were individually grown on indium tin oxide (ITO)-coated glass slides, analyzed as cell cultures. The raster width and matrix for detection were optimized to improve detection sensitivity. Optimized MSI measurements were performed directly on the cell culture with 9-aminoacridine as matrix, resulting in 215 endogenous compounds detected in positive ion mode and 267 endogenous compounds in negative ion mode in all the four cell lines, representing the largest group of analytes that have been analyzed from cells by a single MSI study. In highly invasive cell lines, 31 lipids including phosphatidylglycerol (PG) and phosphatidic acids were found upregulated and eight lipids including sphingomyelin (SM) downregulated in negative ion mode. The products of de novo fatty acid synthesis incorporated into membrane phospholipids, like oleic-acid-containing PG, may be involved in mitochondrial dysfunction and thus affect the invasion of breast cancer cells. The deficiency of SM may be related to the disruption of apoptosis in highly invasive cancer cells. This work uncovered more analytes in cells by MSI than previous reports, providing a better visualization and novel insights to advance our understanding of the relationship between rapid progression of breast cancer and lipid metabolism. The most altered lipids may aid the discovery of diagnostic markers and therapeutic targets of breast cancer. Copyright

  2. Layered double hydroxides/polymer thin films grown by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R.; Matei, A.; Mitu, B.; Ionita, M.D.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest–Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Corobea, M.C. [National R. and S. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021, Bucharest (Romania)

    2013-09-30

    Due to their highly tunable properties, layered double hydroxides (LDHs) are an emerging class of the favorably layered crystals used for the preparation of multifunctional polymer/layered crystal nanocomposites. In contrast to cationic clay materials with negatively charge layers, LDHs are the only host lattices with positively charged layers (brucite-like), with interlayer exchangeable anions and intercalated water. In this work, the deposition of thin films of Mg and Al based LDH/polymers nanocomposites by laser techniques is reported. Matrix assisted pulsed laser evaporation was the method used for thin films deposition. The Mg–Al LDHs capability to act as a host for polymers and to produce hybrid LDH/polymer films has been investigated. Polyethylene glycol with different molecular mass compositions and ethylene glycol were used as polymers. The structure and surface morphology of the deposited LDH/polymers films were examined by X-ray diffraction, Fourier transform infra-red spectroscopy, atomic force microscopy and scanning electron microscopy. - Highlights: • Hybrid composites deposited by matrix assisted pulsed laser evaporation (MAPLE). • Mg–Al layered double hydroxides (LDH) and polyethylene glycol (PEG) are used. • Mixtures of PEG1450 and LDH were deposited by MAPLE. • Deposited thin films preserve the properties of the starting material. • The film wettability can be controlled by the amount of PEG.

  3. Exploration of polyamide structure-property relationships by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Barrère, Caroline; Rejaibi, Majed; Curat, Aurélien; Hubert-Roux, Marie; Lavanant, Hélène; Afonso, Carlos; Kebir, Nasreddine; Desilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne

    2014-08-15

    Polyamides (PA) are among the most used classes of polymers because of their attractive properties. Depending on the nature and proportion of the co-monomers used for their synthesis, they can exhibit a very large range of melting temperatures (Tm ). This study aims at the correlation of data from mass spectrometry (MS) with differential scanning calorimetry (DSC) and X-ray diffraction analyses to relate molecular structure to physical properties such as melting temperature, enthalpy change and crystallinity rate. Six different PA copolymers with molecular weights around 3500 g mol(-1) were synthesized with varying proportions of different co-monomers (amino-acid AB/di-amine AA/di-acid BB). Their melting temperature, enthalpy change and crystallinity rate were measured by DSC and X-ray diffraction. Their structural characterization was carried out by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Because of the poor solubility of PA, a solvent-free sample preparation strategy was used with 2,5-dihydroxybenzoic acid (2,5-DHB) as the matrix and sodium iodide as the cationizing agent. The different proportions of the repeating unit types led to the formation of PA with melting temperatures ranging from 115°C to 185°C. The structural characterization of these samples by MALDI-TOF-MS revealed a collection of different ion distributions with different sequences of repeating units (AA, BB; AB/AA, BB and AB) in different proportions according to the mixture of monomers used in the synthesis. The relative intensities of these ion distributions were related to sample complexity and structure. They were correlated to DSC and X-ray results, to explain the observed physical properties. The structural information obtained by MALDI-TOF-MS provided a better understanding of the variation of the PA melting temperature and established a structure-properties relationship. This work will allow future PA designs to be monitored. Copyright

  4. Direct identification of bacteria in blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: a new methodological approach.

    Science.gov (United States)

    Kroumova, Vesselina; Gobbato, Elisa; Basso, Elisa; Mucedola, Luca; Giani, Tommaso; Fortina, Giacomo

    2011-08-15

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has recently been demonstrated to be a powerful tool for the rapid identification of bacteria from growing colonies. In order to speed up the identification of bacteria, several authors have evaluated the usefulness of this MALDI-TOF MS technology for the direct and quick identification bacteria from positive blood cultures. The results obtained so far have been encouraging but have also shown some limitations, mainly related to the bacterial growth and to the presence of interference substances belonging to the blood cultures. In this paper, we present a new methodological approach that we have developed to overcome these limitations, based mainly on an enrichment of the sample into a growing medium before the extraction process, prior to mass spectrometric analysis. The proposed method shows important advantages for the identification of bacterial strains, yielding an increased identification score, which gives higher confidence in the results. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Matrix-assisted laser desorption-ionization mass spectrometry peptide mass fingerprinting for proteome analysis: identification efficiency after on-blot or in-gel digestion with and without desalting procedures.

    Science.gov (United States)

    Lamer, S; Jungblut, P R

    2001-03-10

    In theory, peptide mass fingerprinting by matrix assisted laser desorption-ionization mass spectrometry (MALDI-MS) has the potential to identify all of the proteins detected by silver staining on gels. In practice, if the genome of the organism investigated is completely sequenced, using current techniques, all proteins stained by Coomassie Brilliant Blue can be identified. This loss of identification sensitivity of ten to hundred-fold is caused by loss of peptides by surface contacts. Therefore, we performed digestion and transfer of peptides in the lower microl range and reduced the number of steps. The peptide mix obtained from in-gel or on-blot digestion was analyzed directly after digestion or after concentration on POROS R2 beads. Eight protein spots of a 2-DE gel from Mycobacterium bovis BCG were identified using these four preparation procedures for MALDI-MS. Overall, on-blot digestion was as effective as in-gel digestion. Whereas higher signal intensities resulted after concentration, hydrophilic peptides are better detected by direct measurement of the peptide mix without POROS R2 concentration.

  6. Detection and Quantification of 4-Methylimidazole in Cola by Matrix-assisted Laser Desorption Ionization Mass Spectrometry with Fe2O3 Nanoparticles on Zeolite.

    Science.gov (United States)

    Fujii, Yosuke; Ding, Yuqi; Umezawa, Taichi; Akimoto, Takafumi; Xu, Jiawei; Uchida, Takashi; Fujino, Tatsuya

    2018-01-01

    Food additives generally used in carbonated drinks, such as 4-methylimidazole (4MI), caffeine (Caf?), citric acid (CA), and aspartame (Apm), were measured by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) using nanometer-sized particles of iron oxide (Fe 2 O 3 NPs). The quantification of 4MI in Coca Cola (C-cola) was carried out. In order to improve the reproducibility of the peak intensities, Fe 2 O 3 NPs loaded on ZSM5 zeolite were used as the matrix for quantification. By using 2-ethylimidazole (2EI) as the internal standard, the amount of 4MI in C-cola was determined to range from 88 to 65 μg/355 mL. The results agree with the published value (approx. 72 μg/355 mL). It was found that MALDI using Fe 2 O 3 was applicable to the quantification of 4MI in C-cola.

  7. Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues.

    Science.gov (United States)

    Drexler, Dieter M; Garrett, Timothy J; Cantone, Joseph L; Diters, Richard W; Mitroka, James G; Prieto Conaway, Maria C; Adams, Stephen P; Yost, Richard A; Sanders, Mark

    2007-01-01

    The properties and potential liabilities of drug candidate are investigated in detailed ADME assays and in toxicity studies, where findings are placed in context of exposure to dosed drug and metabolites. The complex nature of biological samples may necessitate work-up procedures prior to high performance liquid chromatography-mass spectrometric (HPLC-MS) analysis of endogenous or xenobiotic compounds. This concept can readily be applied to biological fluids such as blood or urine, but in localized samples such as organs and tissues potentially important spatial, thus anatomical, information is lost during sample preparation as the result of homogenization and extraction procedures. However, the localization of test article or spatial identification of metabolites may be critical to the understanding of the mechanism of target-organ toxicity and its relevance to clinical safety. Tissue imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) and ion trap mass spectrometry (MS) with higher order mass spectrometric scanning functions was utilized for localization of dosed drug or metabolite in tissue. Laser capture microscopy (LCM) was used to obtain related samples from tissue for analyses by standard MALDI-MS and HPLC-MS. In a toxicology study, rats were administered with a high dosage of a prodrug for 2 weeks. Birefringent microcrystalline material (10-25 microm) was observed in histopathologic formalin-fixed tissue samples. Direct analysis by IMS provided the identity of material in the microcrystals as circulating active drug while maintaining spatial orientation. Complementary data from visual cross-polarized light microscopy as well as standard MALDI-MS and HPLC-MS experiments on LCM samples validated the qualitative results obtained by IMS. Furthermore, the HPLC-MS analysis on the LCM samples afforded a semi-quantitative assessment of the crystalline material in the tissue samples. IMS by MALDI ion trap MS proved sensitive

  8. Coumarins as new matrices for matrix-assisted laser-desorption/ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of hydrophobic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hang, E-mail: hangwang@sjtu.edu.cn [Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China); Dai, Bona [Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240 (China); Liu, Bin [Key Laboratory of Kidney Disease Pathogenesis and Intervention of Hubei Province, College of Medicine, Hubei Polytechnic University, Huangshi, Hubei 435003 (China); Lu, Han [Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 197, Rui Jin Er Road, Shanghai 200025 (China)

    2015-07-02

    Highlights: • Coumarins were used as new MALDI matrices. • Coumarins were used for MALDI-FT ICR MS detection of hydrophobic compounds. • DCA had improvement in detection sensitivity, stability, selectivity and reproducibility. • DCA was applied to sterols detection in yeast cells. - Abstract: Hydrophobic compounds with hydroxyl, aldehyde or ketone groups are generally difficult to detect using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), because these compounds have low proton affinity and are poorly ionized by MALDI. Herein, coumarins have been used as new matrices for MALDI-MS analysis of a variety of hydrophobic compounds with low ionization efficiency, including steroids, coenzyme Q10, a cyclic lipopeptide and cholesterol oleate. Five coumarins, including coumarin, umbelliferone, esculetin, 7-hydroxycoumarin-3-carboxylic acid (HCA) and 6,7-dihydroxycoumarin-3-carboxylic acid (DCA), were compared with the conventional matrices of 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA). Coumarins with hydroxyl or carboxylic acid groups enabled detection. Taking DCA as an example, this matrix proved to be superior to DHB or CHCA in detection sensitivity, stability, spot-to-spot and sample-to-sample reproducibility, and accuracy. DCA increased the stability of the target compounds and decreased the loss of water. The [M + Na]{sup +} peaks were observed for all target compounds by adding NaCl as an additive, and the [M − H{sub 2}O + H]{sup +} and [M + H]{sup +} peaks decreased. DCA was selected for the identification of sterols in yeast cells, and thirteen sterols were detected by Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry. This work demonstrates the potential of DCA as a new matrix for detection of hydrophobic molecules by MALDI-MS and provides an alternative tool for screening sterols in antifungal research.

  9. Automated Intelligent Assistant for mass spectrometry operation

    International Nuclear Information System (INIS)

    Filby, E.E.; Rankin, R.A.; Yoshida, D.E.

    1991-01-01

    The Automated Intelligent Assistant is designed to insure that our mass spectrometers produce timely, high-quality measurement data. The design combines instrument interfacing and expert system technology to automate an adaptable set-point damage prevention strategy. When shutdowns occur, the Assistant can help guide troubleshooting efforts. Stored real-time data will help our development program upgrade and improve the system, and also make it possible to re-run previously-observed instrument problems as ''live'' training exercises for the instrument operators. Initial work has focused on implementing the Assistant for the instrument ultra-high vacuum components. 14 refs., 5 figs

  10. Rapid Differentiation of Haemophilus influenzae and Haemophilus haemolyticus by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry with ClinProTools Mass Spectrum Analysis.

    Science.gov (United States)

    Chen, Jonathan H K; Cheng, Vincent C C; Wong, Chun-Pong; Wong, Sally C Y; Yam, Wing-Cheong; Yuen, Kwok-Yung

    2017-09-01

    Haemophilus influenzae is associated with severe invasive disease, while Haemophilus haemolyticus is considered part of the commensal flora in the human respiratory tract. Although the addition of a custom mass spectrum library into the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system could improve identification of these two species, the establishment of such a custom database is technically complicated and requires a large amount of resources, which most clinical laboratories cannot afford. In this study, we developed a mass spectrum analysis model with 7 mass peak biomarkers for the identification of H. influenzae and H. haemolyticus using the ClinProTools software. We evaluated the diagnostic performance of this model using 408 H. influenzae and H. haemolyticus isolates from clinical respiratory specimens from 363 hospitalized patients and compared the identification results with those obtained with the Bruker IVD MALDI Biotyper. The IVD MALDI Biotyper identified only 86.9% of H. influenzae (311/358) and 98.0% of H. haemolyticus (49/50) clinical isolates to the species level. In comparison, the ClinProTools mass spectrum model could identify 100% of H. influenzae (358/358) and H. haemolyticus (50/50) clinical strains to the species level and significantly improved the species identification rate (McNemar's test, P mass spectrometry to handle closely related bacterial species when the proprietary spectrum library failed. This approach should be useful for the differentiation of other closely related bacterial species. Copyright © 2017 American Society for Microbiology.

  11. An in-house assay is superior to Sepsityper for direct matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification of yeast species in blood cultures.

    Science.gov (United States)

    Bidart, Marie; Bonnet, Isabelle; Hennebique, Aurélie; Kherraf, Zine Eddine; Pelloux, Hervé; Berger, François; Cornet, Muriel; Bailly, Sébastien; Maubon, Danièle

    2015-05-01

    We developed an in-house assay for the direct identification, by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, of yeasts in blood culture. Sixty-one representative strains from 12 species were analyzed in spiked blood cultures. Our assay accurately identified 95 of 107 (88.8%) positive blood cultures and outperformed the commercial Sepsityper kit (81.7% identification). Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Growth of thin fullerene films by matrix assisted pulsed laser evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    C60 fullerene thin films of average thickness of more than 100 nm on silicon substrates can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.......5 J/cm2 the dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. For high fluences high-resolution SEM images of MAPLE deposited films reveal large circular features on the surface with high amount of material concentrated at edges. These features......, observed over a wide range of laser fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in films...

  13. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues?

    Science.gov (United States)

    van Belkum, Alex; Welker, Martin; Pincus, David; Charrier, Jean Philippe; Girard, Victoria

    2017-11-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement. © The Korean Society for Laboratory Medicine.

  14. Label-assisted mass spectrometry for the acceleration of reaction discovery and optimization

    Science.gov (United States)

    Cabrera-Pardo, Jaime R.; Chai, David I.; Liu, Song; Mrksich, Milan; Kozmin, Sergey A.

    2013-05-01

    The identification of new reactions expands our knowledge of chemical reactivity and enables new synthetic applications. Accelerating the pace of this discovery process remains challenging. We describe a highly effective and simple platform for screening a large number of potential chemical reactions in order to discover and optimize previously unknown catalytic transformations, thereby revealing new chemical reactivity. Our strategy is based on labelling one of the reactants with a polyaromatic chemical tag, which selectively undergoes a photoionization/desorption process upon laser irradiation, without the assistance of an external matrix, and enables rapid mass spectrometric detection of any products originating from such labelled reactants in complex reaction mixtures without any chromatographic separation. This method was successfully used for high-throughput discovery and subsequent optimization of two previously unknown benzannulation reactions.

  15. On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry.

    Science.gov (United States)

    Calvano, Cosima Damiana; van der Werf, Inez Dorothé; Sabbatini, Luigia; Palmisano, Francesco

    2015-05-01

    The simultaneous identification of lipids and proteins by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) after direct on-plate processing of micro-samples supported on colloidal graphite is demonstrated. Taking advantages of large surface area and thermal conductivity, graphite provided an ideal substrate for on-plate proteolysis and lipid extraction. Indeed proteins could be efficiently digested on-plate within 15 min, providing sequence coverages comparable to those obtained by conventional in-solution overnight digestion. Interestingly, detection of hydrophilic phosphorylated peptides could be easily achieved without any further enrichment step. Furthermore, lipids could be simultaneously extracted/identified without any additional treatment/processing step as demonstrated for model complex samples such as milk and egg. The present approach is simple, efficient, of large applicability and offers great promise for protein and lipid identification in very small samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Proteogenomic biomarkers for identification of Francisella species and subspecies by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    Science.gov (United States)

    Durighello, Emie; Bellanger, Laurent; Ezan, Eric; Armengaud, Jean

    2014-10-07

    Francisella tularensis is the causative agent of tularemia. Because some Francisella strains are very virulent, this species is considered by the Centers for Disease Control and Prevention to be a potential category A bioweapon. A mass spectrometry method to quickly and robustly distinguish between virulent and nonvirulent Francisella strains is desirable. A combination of shotgun proteomics and whole-cell matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry on the Francisella tularensis subsp. holarctica LVS defined three protein biomarkers that allow such discrimination: the histone-like protein HU form B, the 10 kDa chaperonin Cpn10, and the 50S ribosomal protein L24. We established that their combined detection by whole-cell MALDI-TOF spectrum could enable (i) the identification of Francisella species, and (ii) the prediction of their virulence level, i.e., gain of a taxonomical level with the identification of Francisella tularensis subspecies. The detection of these biomarkers by MALDI-TOF mass spectrometry is straightforward because of their abundance and the absence of other abundant protein species closely related in terms of m/z. The predicted molecular weights for the three biomarkers and their presence as intense peaks were confirmed with MALDI-TOF/MS spectra acquired on Francisella philomiragia ATCC 25015 and on Francisella tularensis subsp. tularensis CCUG 2112, the most virulent Francisella subspecies.

  17. Matrix effect in analysis of pesticide residues in fruits and vegetables by high performance liquid chromatography with quadrupole-time of flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Andoralov A.M.

    2017-03-01

    Full Text Available For modern food safety control are using techniques that allow to determinate a large number of components. So for determination of pesticide residues in fruits and vegetables commonly used methods of gas and liquid chromatography with time-of-flight mass-spectrometric detection. This system allows to carry out quantitative determination several hundreds of pesticides and their identification by the characteristic fragments of the mass spectrum. The main problem when using mass spectrometric detection is a matrix effect, which is caused by the influence of matrix components extracted with pesticides from the sample. In this work, attempts have been made to reduce the influence of the matrix in the analysis of pesticide residues by high performance liquid chromatography with time of flight mass spectrometry (HPLC / TOFMS.

  18. A new ultrafast and high-throughput mass spectrometric approach for the therapeutic drug monitoring of the multi-targeted anti-folate pemetrexed in plasma from lung cancer patients

    NARCIS (Netherlands)

    R.J.W. Meesters (Roland); R. Cornelissen (Robin); R.J. van Klaveren (Rob); R. de Jonge (Robert); E. den Boer (Ethan); J. Lindemans (Jan); T.M. Luider (Theo)

    2010-01-01

    textabstractAn analytical assay has been developed and validated for ultrafast and high-throughput mass spectrometric determination of pemetrexed concentrations in plasma using matrix assisted laser desorption/ionization-triple quadrupole-tandem mass spectrometry. Patient plasma samples spiked with

  19. Nanoparticle-assisted laser desorption/ionization mass spectrometry: Novel sample preparation methods and nanoparticle screening for plant metabolite imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yagnik, Gargey B. [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    The main goal of the presented research is development of nanoparticle based matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). This dissertation includes the application of previously developed data acquisition methods, development of novel sample preparation methods, application and comparison of novel nanoparticle matrices, and comparison of two nanoparticle matrix application methods for MALDI-MS and MALDI-MS imaging.

  20. Matrix-assisted ultraviolet laser desorption/ionization time-of-flight mass spectrometry of beta-(1 --> 3), beta-(1 --> 4)-xylans from Nothogenia fastigiata using nor-harmane as matrix.

    Science.gov (United States)

    Fukuyama, Yuko; Kolender, Adriana A; Nishioka, Masae; Nonami, Hiroshi; Matulewicz, María C; Erra-Balsells, Rosa; Cerezo, Alberto S

    2005-01-01

    Three xylan fractions isolated from the red seaweed Nothogenia fastigiata (Nemaliales) were analyzed by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (UV-MALDI-TOFMS). UV-MALDI-TOFMS was carried out in the linear and reflectron modes, and as routine in the positive and negative ion modes. Of the several matrices tested, nor-harmane was the only effective one giving good spectra in the positive ion mode. The number-average molar masses of two of the fractions, calculated from the distribution profiles, were lower than those determined previously by (1)H NMR analysis, suggesting a decrease in the ionization efficiency with increasing molecular weight; weight-average molar mass and polydispersity index were also determined. As the xylans retained small but significant quantities of calcium salts, the influence of added Ca(2+) as CaCl(2) on UV-MALDI-MS was investigated. The simultaneous addition of sodium chloride and calcium chloride was also analyzed. Addition of sodium chloride did not change the distribution profile of the native sample showing that the inhibitory effect is due to Ca(2+) and not to Cl(-). Addition of calcium chloride with 1:1 analyte/salt molar ratio gave spectra with less efficient desorption/ionization of oligomers; the signals of these oligomers were completely suppressed when the addition of the salt became massive (1:100 analyte/salt molar ratio). Copyright (c) 2005 John Wiley & Sons, Ltd.

  1. Identification of pathogenic microorganisms directly from positive blood vials by matrix-assisted laser desorption/ionization time of flight mass spectrometry

    DEFF Research Database (Denmark)

    Nonnemann, Bettina; Tvede, Michael; Bjarnsholt, Thomas

    2013-01-01

    Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is a promising and fast method for identifying fungi and bacteria directly from positive blood cultures. Various pre-treatment methods for MALDI-TOF MS identification have been reported for this purpose. In......-house results for identification of bacterial colonies by MALDI-TOF MS using a cut-off score of 1.5 did not reduce the diagnostic accuracy compared with the recommended cut-off score of 1.8. A 3-month consecutive study of positive blood cultures was carried out in our laboratory to evaluate whether...... the Sepsityper™ Kit (Bruker Daltonics) with Biotyper 2.0 software could be used as a fast diagnostic tool for bacteria and fungi and whether a 1.5 cut-off score could improve species identification compared with the recommended score of 1.8. Two hundred and fifty-six positive blood vials from 210 patients and 19...

  2. Direct detection of the plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae in infected rice seedlings using matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Kajiwara, Hideyuki

    2016-01-01

    The plant pathogens Burkholderia glumae, Burkholderia gladioli pv. gladioli, and Erwinia chrysanthemi pv. zeae were directly detected in extracts from infected rice seedlings by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method did not require culturing of the pathogens on artificial medium. In the MALDI-TOF MS analysis, peaks originating from bacteria were found in extracts from infected rice seedlings. The spectral peaks showed significantly high scores, in spite of minor differences in spectra. The spectral peaks originating from host plant tissues did not affect this direct MALDI-TOF MS analysis for the rapid identification of plant pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Direct bacterial identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry: A systematic review and meta-analysis.

    Science.gov (United States)

    Ruiz-Aragón, Jesús; Ballestero-Téllez, Mónica; Gutiérrez-Gutiérrez, Belén; de Cueto, Marina; Rodríguez-Baño, Jesús; Pascual, Álvaro

    2017-10-27

    The rapid identification of bacteraemia-causing pathogens could assist clinicians in the timely prescription of targeted therapy, thereby reducing the morbidity and mortality of this infection. In recent years, numerous techniques that rapidly and directly identify positive blood cultures have been marketed, with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) being one of the most commonly used. The aim of this systematic review and meta-analysis was to evaluate the accuracy of MALDI-TOF (Bruker ® ) for the direct identification of positive blood culture bottles. A meta-analysis was performed to summarize the results of the 32 studies evaluated. The overall quality of the studies was moderate. For Gram-positive bacteria, overall rates of correct identification of the species ranged from 0.17 to 0.98, with a cumulative rate (random-effects model) of 0.72 (95% CI: 0.64-0.80). For Gram-negative bacteria, correct identification rates ranged from 0.66 to 1.00, with a cumulative effect of 0.92 (95% CI: 0.88-0.95). For Enterobacteriaceae, the rate was 0.96 (95% CI: 0.94-0.97). MALDI-TOF mass spectrometry shows high accuracy for the correct identification of Gram-negative bacteria, particularly Enterobacteriaceae, directly from positive blood culture bottles, and moderate accuracy for the identification of Gram-positive bacteria (low for some species). Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  4. A three-parameter neutrino mass matrix with maximal CP violation

    International Nuclear Information System (INIS)

    Grimus, W.; Lavoura, L.

    2009-01-01

    Using the seesaw mechanism, we construct a model for the light-neutrino Majorana mass matrix which yields trimaximal lepton mixing together with maximal CP violation and maximal atmospheric-neutrino mixing. We demonstrate that, in our model, the light-neutrino mass matrix retains its form under the one-loop renormalization-group evolution. With our neutrino mass matrix, the absolute neutrino mass scale is a function of |U e3 | and of the atmospheric mass-squared difference. We study the effective mass in neutrinoless ββ decay as a function of |U e3 |, showing that it contains a fourfold ambiguity

  5. Structural analyses of sucrose laurate regioisomers by mass spectrometry techniques

    DEFF Research Database (Denmark)

    Lie, Aleksander; Stensballe, Allan; Pedersen, Lars Haastrup

    2015-01-01

    6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore the physic......6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore.......8, respectively, and Orbitrap HRMS confirmed the mass of [M+Na]+ (m/z 547.2712). ESI-MS/MS on the precursor ion [M+Na]+ resulted in product ion mass spectra showing two high-intensity signals for each sample. 6-O-Lauroyl sucrose produced signals located at m/z 547.27 and m/z 385.21, corresponding to the 6-O...

  6. Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry of friction modifier additives analyzed directly from base oil solutions.

    Science.gov (United States)

    Widder, Lukas; Brennerb, Josef; Huttera, Herbert

    2014-01-01

    To develop new products and to apply measures of quality control quick and simple accessibility of additive composition in automo- tive lubrication is important. The aim of this study was to investigate the possibility of analyzing organic friction modifier additives by means of atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry [AP-MALDI-MS] from lubricant solu- tions without the use of additional separation techniques. Analyses of selected friction modifier ethoxylated tallow amines and oleic acid amide were compared using two ionization methods, positive-ion electrospray ionization (ESI) and AP-MALDI, using a LTQ Orbitrap mass spectrometer. Pure additives were characterized from solvent solutions, as well as from synthetic and mineral base oil mixtures. Detected ions of pure additive samples consisted mainly of [M + H]+, but also alkaLi metal adducts [M + Na]+ and [M + K]+ could be seen. Characterizations of blends of both friction modifiers from the base oil mixtures were carried out as well and showed significant inten- sities for several additive peaks. Thus, this work shows a method to directly analyze friction modifier additives used in the automotive industry from an oil blend via the use of AP-MALDI without any further separation steps. The method presented will further simplify the acquisition of data on lubricant composition and additives. Furthermore, it allows the perspective of analyzing additive reaction products directly from formulated oil blends.

  7. A survey of useful salt additives in matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry of lipids: introducing nitrates for improved analysis.

    Science.gov (United States)

    Griffiths, Rian L; Bunch, Josephine

    2012-07-15

    Matrix-assisted laser desorption/ionization (MALDI) is a powerful technique for the direct analysis of lipids in complex mixtures and thin tissue sections, making it an extremely attractive method for profiling lipids in health and disease. Lipids are readily detected as [M+H](+), [M+Na](+) and [M+K](+) ions in positive ion MALDI mass spectrometry (MS) experiments. This not only decreases sensitivity, but can also lead to overlapping m/z values of the various adducts of different lipids. Additives can be used to promote formation of a particular adduct, improving sensitivity, reducing spectral complexity and enhancing structural characterization in collision-induced dissociation (CID) experiments. Li(+), Na(+), K(+), Cs(+) and NH(4)(+) cations were considered as a range of salt types (acetates, chlorides and nitrates) incorporated into DHB matrix solutions at concentrations between 5 and 80 mM. The study was extended to evaluate the effect of these additives on CID experiments of a lipid standard, after optimization of collision energy parameters. Experiments were performed on a hybrid quadrupole time-of-flight (QqTOF) instrument. The systematic evaluation of new and existing additives in MALDI-MS and MS/MS of lipids demonstrated the importance of additive cation and anion choice and concentration for tailoring spectral results. The recommended choice of additive depends on the desired outcomes of the experiment to be performed (MS or MS/MS). Nitrates are found to be particularly useful additives for lipid analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: a Fundamental Shift in the Routine Practice of Clinical Microbiology

    Science.gov (United States)

    Clark, Andrew E.; Kaleta, Erin J.; Arora, Amit

    2013-01-01

    SUMMARY Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the “nuts and bolts” of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care. PMID:23824373

  9. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology.

    Science.gov (United States)

    Clark, Andrew E; Kaleta, Erin J; Arora, Amit; Wolk, Donna M

    2013-07-01

    Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.

  10. Hydrophilic interaction chromatography coupled matrix assisted laser desorption/ionization mass spectrometry for molecular analysis of organic compounds in medicines, tea, and coffee.

    Science.gov (United States)

    Wang, Ren-Qi; Bao, Kai; Croué, Jean-Philippe; Ng, Siu Choon

    2013-11-21

    Natural occurring organic compounds from food, natural organic matter, as well as metabolic products have received intense attention in current chemical and biological studies. Examination of unknown compounds in complex sample matrices is hampered by the limited choices for data readout and molecular elucidation. Herein, we report a generic method of hydrophilic interaction chromatography (HILIC) coupled with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid characterization of ingredients in pharmaceutical compounds, tea, and coffee. The analytes were first fractionated using a cationic HILIC column prior to MALDI-MS analyses. It was found that the retention times of a compound arising from different samples were consistent under the same conditions. Accordingly, molecules can be readily characterized by both the mass and chromatographic retention time. The retention behaviors of acidic and basic compounds on the cationic HILIC column were found to be significantly influenced by the pH of mobile phases, whereas neutral compounds depicted a constant retention time at different pH. The general HILIC-MALDI-MS method is feasible for fast screening of naturally occurring organic compounds. A series of homologs can be determined if they have the same retention behavior. Their structural features can be elucidated by considering their mass differences and hydrophilic properties as determined by HILIC chromatogram.

  11. A matrix-assisted laser desorption/ionization mass spectroscopy method for the analysis of small molecules by integrating chemical labeling with the supramolecular chemistry of cucurbituril.

    Science.gov (United States)

    Ding, Jun; Xiao, Hua-Ming; Liu, Simin; Wang, Chang; Liu, Xin; Feng, Yu-Qi

    2018-10-05

    Although several methods have realized the analysis of low molecular weight (LMW) compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) by overcoming the problem of interference with MS signals in the low mass region derived from conventional organic matrices, this emerging field still requires strategies to address the issue of analyzing complex samples containing LMW components in addition to the LMW compounds of interest, and solve the problem of lack of universality. The present study proposes an integrated strategy that combines chemical labeling with the supramolecular chemistry of cucurbit [n]uril (CB [n]) for the MALDI MS analysis of LMW compounds in complex samples. In this strategy, the target LMW compounds are first labeled by introducing a series of bifunctional reagents that selectively react with the target analytes and also form stable inclusion complexes with CB [n]. Then, the labeled products act as guest molecules that readily and selectively form stable inclusion complexes with CB [n]. This strategy relocates the MS signals of the LMW compounds of interest from the low mass region suffering high interference to the high mass region where interference with low mass components is absent. Experimental results demonstrate that a wide range of LMW compounds, including carboxylic acids, aldehydes, amines, thiol, and cis-diols, can be successfully detected using the proposed strategy, and the limits of detection were in the range of 0.01-1.76 nmol/mL. In addition, the high selectivity of the labeling reagents for the target analytes in conjunction with the high selectivity of the binding between the labeled products and CB [n] ensures an absence of signal interference with the non-targeted LMW components of complex samples. Finally, the feasibility of the proposed strategy for complex sample analysis is demonstrated by the accurate and rapid quantitative analysis of aldehydes in saliva and herbal

  12. Identification of Candida species isolated from vulvovaginitis using matrix assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Alizadeh, Majid; Kolecka, Anna; Boekhout, Teun; Zarrinfar, Hossein; Ghanbari Nahzag, Mohamad A; Badiee, Parisa; Rezaei-Matehkolaei, Ali; Fata, Abdolmajid; Dolatabadi, Somayeh; Najafzadeh, Mohammad J

    2017-12-01

    Vulvovaginal candidiasis (VVC) is a common problem in women. The purpose of this study was to identify Candida isolates by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) from women with vulvovaginitis that were referred to Ghaem Hospital, Mashhad, Iran. This study was conducted on 65 clinical samples isolated from women that were referred to Ghaem Hospital. All specimens were identified using phenotyping techniques, such as microscopy and culture on Sabouraud dextrose agar and corn meal agar. In addition, all isolates were processed for MALDI-TOF MS identification. Out of the 65 analyzed isolates, 61 (94%) samples were recognized by MALDI-TOF MS. However, the remaining four isolates (6%) had no reliable identification. According to the results, C. albicans (58.5%) was the most frequently isolated species, followed by C. tropicalis (16.9%), C. glabrata (7.7%), C. parapsilosis (7.7%), and guilliermondii (3.1%). As the findings indicated, MALDI TOF MS was successful in the identification of clinical Candida species. C. albicans was identified as the most common Candida species isolated from the women with VVC. Moreover, C. tropicalis was the most common species among the non- albicans Candida species.

  13. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform.

    Science.gov (United States)

    Pan, Sheng; Rush, John; Peskind, Elaine R; Galasko, Douglas; Chung, Kathryn; Quinn, Joseph; Jankovic, Joseph; Leverenz, James B; Zabetian, Cyrus; Pan, Catherine; Wang, Yan; Oh, Jung Hun; Gao, Jean; Zhang, Jianpeng; Montine, Thomas; Zhang, Jing

    2008-02-01

    Targeted quantitative proteomics by mass spectrometry aims to selectively detect one or a panel of peptides/proteins in a complex sample and is particularly appealing for novel biomarker verification/validation because it does not require specific antibodies. Here, we demonstrated the application of targeted quantitative proteomics in searching, identifying, and quantifying selected peptides in human cerebrospinal spinal fluid (CSF) using a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF)-based platform. The approach involved two major components: the use of isotopic-labeled synthetic peptides as references for targeted identification and quantification and a highly selective mass spectrometric analysis based on the unique characteristics of the MALDI instrument. The platform provides high confidence for targeted peptide detection in a complex system and can potentially be developed into a high-throughput system. Using the liquid chromatography (LC) MALDI TOF/TOF platform and the complementary identification strategy, we were able to selectively identify and quantify a panel of targeted peptides in the whole proteome of CSF without prior depletion of abundant proteins. The effectiveness and robustness of the approach associated with different sample complexity, sample preparation strategies, as well as mass spectrometric quantification were evaluated. Other issues related to chromatography separation and the feasibility for high-throughput analysis were also discussed. Finally, we applied targeted quantitative proteomics to analyze a subset of previously identified candidate markers in CSF samples of patients with Parkinson's disease (PD) at different stages and Alzheimer's disease (AD) along with normal controls.

  14. Automated MALDI Matrix Coating System for Multiple Tissue Samples for Imaging Mass Spectrometry

    Science.gov (United States)

    Mounfield, William P.; Garrett, Timothy J.

    2012-03-01

    Uniform matrix deposition on tissue samples for matrix-assisted laser desorption/ionization (MALDI) is key for reproducible analyte ion signals. Current methods often result in nonhomogenous matrix deposition, and take time and effort to produce acceptable ion signals. Here we describe a fully-automated method for matrix deposition using an enclosed spray chamber and spray nozzle for matrix solution delivery. A commercial air-atomizing spray nozzle was modified and combined with solenoid controlled valves and a Programmable Logic Controller (PLC) to control and deliver the matrix solution. A spray chamber was employed to contain the nozzle, sample, and atomized matrix solution stream, and to prevent any interference from outside conditions as well as allow complete control of the sample environment. A gravity cup was filled with MALDI matrix solutions, including DHB in chloroform/methanol (50:50) at concentrations up to 60 mg/mL. Various samples (including rat brain tissue sections) were prepared using two deposition methods (spray chamber, inkjet). A linear ion trap equipped with an intermediate-pressure MALDI source was used for analyses. Optical microscopic examination showed a uniform coating of matrix crystals across the sample. Overall, the mass spectral images gathered from tissues coated using the spray chamber system were of better quality and more reproducible than from tissue specimens prepared by the inkjet deposition method.

  15. Fast screening of short-chain chlorinated paraffins in indoor dust samples by graphene-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Huang, Xiu; Liu, Qian; Gao, Wei; Wang, Yawei; Nie, Zhou; Yao, Shouzhuo; Jiang, Guibin

    2018-03-01

    As an important class of emerging chemical contaminants, short-chain chlorinated paraffins (SCCPs) are considered as one of the most challenging groups of compounds to analyze. In this paper, we report a new method for fast screening of SCCPs based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with graphene as a matrix and 2,5,6,9-tetrachlorodecane as an internal standard. We found that the use of graphene as MALDI matrix generated high peak intensities for SCCPs while producing few background noises. The ion fragmentation mechanisms of SCCPs in MALDI are discussed in detail. Under the optimized conditions, much lower detection limits of SCCP congeners (0.1-5ng/mL) than those reported previously were obtained. Other distinct advantages such as short analysis time and simplified sample preparation procedures are also demonstrated. The method was successfully applied in fast screening of SCCPs in indoor dust samples and monitoring of human exposure levels to SCCPs, and the results were verified by gas chromatography coupled to negative chemical ionization quadrupole time-of-flight high-resolution mass spectrometry. This work not only offers a new promising tool for SCCP studies, but also further demonstrates the promise of graphene as a new generation of MALDI matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Neutrino mass matrix and hierarchy

    International Nuclear Information System (INIS)

    Kaus, Peter; Meshkov, Sydney

    2003-01-01

    We build a model to describe neutrinos based on strict hierarchy, incorporating as much as possible, the latest known data, for Δsol and Δatm, and for the mixing angles determined from neutrino oscillation experiments, including that from KamLAND. Since the hierarchy assumption is a statement about mass ratios, it lets us obtain all three neutrino masses. We obtain a mass matrix, Mν and a mixing matrix, U, where both Mν and U are given in terms of powers of Λ, the analog of the Cabibbo angle λ in the Wolfenstein representation, and two parameters, ρ and κ, each of order one. The expansion parameter, Λ, is defined by Λ2 = m2/m3 = √(Δsol/Δatm) ≅ 0.16, and ρ expresses our ignorance of the lightest neutrino mass m1, (m1 ρΛ4m3), while κ scales s13 to the experimental upper limit, s13 = κΛ2 ≅ 0.16κ. These matrices are similar in structure to those for the quark and lepton families, but with Λ about 1.6 times larger than the λ for the quarks and charged leptons. The upper limit for the effective neutrino mass in double β-decay experiments is 4 x 10-3eV if s13 = 0 and 6 x 10-3eV if s13 is maximal. The model, which is fairly unique, given the hierarchy assumption and the data, is compared to supersymmetric extension and texture zero models of mass generation

  17. Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ferreira, L; Sánchez-Juanes, F; Porras-Guerra, I; García-García, M I; García-Sánchez, J E; González-Buitrago, J M; Muñoz-Bellido, J L

    2011-04-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows a fast and reliable bacterial identification from culture plates. Direct analysis of clinical samples may increase its usefulness in samples in which a fast identification of microorganisms can guide empirical treatment, such as blood cultures (BC). Three hundred and thirty BC, reported as positive by the automated BC incubation device, were processed by conventional methods for BC processing, and by a fast method based on direct MALDI-TOF MS. Three hundred and eighteen of them yield growth on culture plates, and 12 were false positive. The MALDI-TOF MS-based method reported that no peaks were found, or the absence of a reliable identification profile, in all these false positive BC. No mixed cultures were found. Among these 318 BC, we isolated 61 Gram-negatives (GN), 239 Gram-positives (GP) and 18 fungi. Microorganism identifications in GN were coincident with conventional identification, at the species level, in 83.3% of BC and, at the genus level, in 96.6%. In GP, identifications were coincident with conventional identification in 31.8% of BC at the species level, and in 64.8% at the genus level. Fungaemia was not reliably detected by MALDI-TOF. In 18 BC positive for Candida species (eight C. albicans, nine C. parapsilosis and one C. tropicalis), no microorganisms were identified at the species level, and only one (5.6%) was detected at the genus level. The results of the present study show that this fast, MALDI-TOF MS-based method allows bacterial identification directly from presumptively positive BC in a short time (<30 min), with a high accuracy, especially when GN bacteria are involved. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  18. Ceramic matrix composites by microwave assisted CVI

    International Nuclear Information System (INIS)

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. Potential advantages of microwave assisted CVI are noted and numerical studies of microwave assisted CVI are reviewed. The models predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results on silicon-based composite systems. The role played by the relative ability of fiber and matrix to dissipate microwave energy is noted. Results suggest that microwave induced inverted gradients can be exploited to promote inside-out densification. 10 refs., 2 figs

  19. Determination of saccharides in fruit juices by capillary electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Žídková, Jitka; Chmelík, Josef

    2001-01-01

    Roč. 36, č. 4 (2001), s. 417-421 ISSN 1076-5174 R&D Projects: GA MZe EP9410 Institutional research plan: CEZ:AV0Z4031919 Keywords : fruit juices * adulteration * matrix-assisted laser deasorption Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.685, year: 2001

  20. Source-identifying biomarker ions between environmental and clinical Burkholderia pseudomallei using whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Niyompanich, Suthamat; Jaresitthikunchai, Janthima; Srisanga, Kitima; Roytrakul, Sittiruk; Tungpradabkul, Sumalee

    2014-01-01

    Burkholderia pseudomallei is the causative agent of melioidosis, which is an endemic disease in Northeast Thailand and Northern Australia. Environmental reservoirs, including wet soils and muddy water, serve as the major sources for contributing bacterial infection to both humans and animals. The whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has recently been applied as a rapid, accurate, and high-throughput tool for clinical diagnosis and microbiological research. In this present study, we employed a whole-cell MALDI-TOF MS approach for assessing its potency in clustering a total of 11 different B. pseudomallei isolates (consisting of 5 environmental and 6 clinical isolates) with respect to their origins and to further investigate the source-identifying biomarker ions belonging to each bacterial group. The cluster analysis demonstrated that six out of eleven isolates were grouped correctly to their sources. Our results revealed a total of ten source-identifying biomarker ions, which exhibited statistically significant differences in peak intensity between average environmental and clinical mass spectra using ClinProTools software. Six out of ten mass ions were assigned as environmental-identifying biomarker ions (EIBIs), including, m/z 4,056, 4,214, 5,814, 7,545, 7,895, and 8,112, whereas the remaining four mass ions were defined as clinical-identifying biomarker ions (CIBIs) consisting of m/z 3,658, 6,322, 7,035, and 7,984. Hence, our findings represented, for the first time, the source-specific biomarkers of environmental and clinical B. pseudomallei.

  1. Multivariate analysis of matrix-assisted laser desorption/ionization mass spectrometric data related to glycoxidation products of human globins in nephropathic patients.

    Science.gov (United States)

    Lapolla, Annunziata; Ragazzi, Eugenio; Andretta, Barbara; Fedele, Domenico; Tubaro, Michela; Seraglia, Roberta; Molin, Laura; Traldi, Pietro

    2007-06-01

    To clarify the possible pathogenetic role of oxidation products originated from the glycation of proteins, human globins from nephropathic patients have been studied by matrix-assisted laser desorption/ionization mass spectrometry (MALDI), revealing not only unglycated and monoglycated globins, but also a series of different species. For the last ones, structural assignments were tentatively done on the basis of observed masses and expectations for the Maillard reaction pattern. Consequently, they must be considered only propositive, and the discussion which will follow must be considered in this view. In our opinion this approach does not seem to compromise the intended diagnostic use of the data because distinctions are valid even if the assignments are uncertain. We studied nine healthy subjects and 19 nephropathic patients and processed the data obtained from the MALDI spectra using a multivariate analysis. Our results showed that multivariate analytical techniques enable differential aspects of the profile of molecular species to be identified in the blood of end stage nephropathic patients. A correct grouping can be achieved by principal component analysis (PCA) and the results suggest that several products involved in carbonyl stress exist in nephropathic patients. These compounds may have a relevant role as specific markers of the pathological state.

  2. Magic neutrino mass matrix and the Bjorken-Harrison-Scott parameterization

    International Nuclear Information System (INIS)

    Lam, C.S.

    2006-01-01

    Observed neutrino mixing can be described by a tribimaximal MNS matrix. The resulting neutrino mass matrix in the basis of a diagonal charged lepton mass matrix is both 2-3 symmetric and magic. By a magic matrix, I mean one whose row sums and column sums are all identical. I study what happens if 2-3 symmetry is broken but the magic symmetry is kept intact. In that case, the mixing matrix is parameterized by a single complex parameter U e3 , in a form discussed recently by Bjorken, Harrison, and Scott

  3. Hydrophilic interaction chromatography coupled matrix assisted laser desorption/ionization mass spectrometry for molecular analysis of organic compounds in medicines, tea, and coffee

    KAUST Repository

    Wang, Renqi

    2013-01-01

    Natural occurring organic compounds from food, natural organic matter, as well as metabolic products have received intense attention in current chemical and biological studies. Examination of unknown compounds in complex sample matrices is hampered by the limited choices for data readout and molecular elucidation. Herein, we report a generic method of hydrophilic interaction chromatography (HILIC) coupled with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid characterization of ingredients in pharmaceutical compounds, tea, and coffee. The analytes were first fractionated using a cationic HILIC column prior to MALDI-MS analyses. It was found that the retention times of a compound arising from different samples were consistent under the same conditions. Accordingly, molecules can be readily characterized by both the mass and chromatographic retention time. The retention behaviors of acidic and basic compounds on the cationic HILIC column were found to be significantly influenced by the pH of mobile phases, whereas neutral compounds depicted a constant retention time at different pH. The general HILIC-MALDI-MS method is feasible for fast screening of naturally occurring organic compounds. A series of homologs can be determined if they have the same retention behavior. Their structural features can be elucidated by considering their mass differences and hydrophilic properties as determined by HILIC chromatogram. © 2013 The Royal Society of Chemistry.

  4. Technological Development of High-Performance MALDI Mass Spectrometry Imaging for the Study of Metabolic Biology

    Energy Technology Data Exchange (ETDEWEB)

    Feenstra, Adam D. [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    This thesis represents efforts made in technological developments for the study of metabolic biology in plants, specifically maize, using matrix-assisted laser desorption/ ionization-mass spectrometry imaging.

  5. Neutrino Mass Matrix Textures: A Data-driven Approach

    CERN Document Server

    Bertuzzo, E; Machado, P A N

    2013-01-01

    We analyze the neutrino mass matrix entries and their correlations in a probabilistic fashion, constructing probability distribution functions using the latest results from neutrino oscillation fits. Two cases are considered: the standard three neutrino scenario as well as the inclusion of a new sterile neutrino that potentially explains the reactor and gallium anomalies. We discuss the current limits and future perspectives on the mass matrix elements that can be useful for model building.

  6. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia.

    Directory of Open Access Journals (Sweden)

    Anne L M Vlek

    Full Text Available Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS allows the identification of microorganisms directly from positive blood culture broths. Use of the MALDI-TOF MS for rapid identification of microorganisms from blood culture broths can reduce the turnaround time to identification and may lead to earlier appropriate treatment of bacteremia. During February and April 2010, direct MALDI-TOF MS was routinely performed on all positive blood cultures. During December 2009 and March 2010 no direct MALDI-TOF MS was used. Information on antibiotic therapy was collected from the hospital and intensive care units' information systems from all positive blood cultures during the study period. In total, 253 episodes of bacteremia were included of which 89 during the intervention period and 164 during the control period. Direct performance of MALDI-TOF MS on positive blood culture broths reduced the time till species identification by 28.8-h and was associated with an 11.3% increase in the proportion of patients receiving appropriate antibiotic treatment 24 hours after blood culture positivity (64.0% in the control period versus 75.3% in the intervention period (p0.01. Routine implementation of this technique increased the proportion of patients on adequate antimicrobial treatment within 24 hours.

  7. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia.

    Science.gov (United States)

    Vlek, Anne L M; Bonten, Marc J M; Boel, C H Edwin

    2012-01-01

    Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows the identification of microorganisms directly from positive blood culture broths. Use of the MALDI-TOF MS for rapid identification of microorganisms from blood culture broths can reduce the turnaround time to identification and may lead to earlier appropriate treatment of bacteremia. During February and April 2010, direct MALDI-TOF MS was routinely performed on all positive blood cultures. During December 2009 and March 2010 no direct MALDI-TOF MS was used. Information on antibiotic therapy was collected from the hospital and intensive care units' information systems from all positive blood cultures during the study period. In total, 253 episodes of bacteremia were included of which 89 during the intervention period and 164 during the control period. Direct performance of MALDI-TOF MS on positive blood culture broths reduced the time till species identification by 28.8-h and was associated with an 11.3% increase in the proportion of patients receiving appropriate antibiotic treatment 24 hours after blood culture positivity (64.0% in the control period versus 75.3% in the intervention period (p0.01)). Routine implementation of this technique increased the proportion of patients on adequate antimicrobial treatment within 24 hours.

  8. Matrix-assisted laser desorption/ionization time of flight mass spectrometry peptide mass fingerprints and post source decay: a tool for the identification and analysis of phloem proteins from Cucurbita maxima Duch. separated by two-dimensional polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Haebel, S; Kehr, J

    2001-08-01

    A combination of gel electrophoresis and mass spectrometry was used to analyze the soluble proteins from phloem sap of Cucurbita maxima Duch. Phloem proteins were separated using two-dimensional gel electrophoresis. Coomassie-stained spots were cut out and subjected to tryptic digestion. To identify proteins, peptide mass fingerprints were determined by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. In addition, MALDI-TOF post source decay measurements were used to obtain partial sequence information for the proteins. Results from both approaches were used for database searches. In this study, 17 proteins in the mass range 5-50 kDa were analyzed. Of these proteins six could be clearly identified, seven showed significant homologies to known plant proteins, and four were not significantly homologous to database entries. The present study suggests that the applied method is feasible for a large-scale analysis and identification of phloem proteins derived from different organs or from plants kept under various physiological conditions.

  9. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): A revolutionary shift in clinical diagnostic microbiology.

    Science.gov (United States)

    Nomura, Fumio

    2015-06-01

    Rapid and accurate identification of microorganisms, a prerequisite for appropriate patient care and infection control, is a critical function of any clinical microbiology laboratory. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a quick and reliable method for identification of microorganisms, including bacteria, yeast, molds, and mycobacteria. Indeed, there has been a revolutionary shift in clinical diagnostic microbiology. In the present review, the state of the art and advantages of MALDI-TOF MS-based bacterial identification are described. The potential of this innovative technology for use in strain typing and detection of antibiotic resistance is also discussed. This article is part of a Special Issue entitled: Medical Proteomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Daily Serum Collection after Acellular Dermal Matrix-Assisted Breast Reconstruction

    Directory of Open Access Journals (Sweden)

    Glenda Giorgia Caputo

    2015-05-01

    Full Text Available BackgroundThe acellular dermal matrix (ADM-assisted breast reconstruction technique is widely known, but discouraging results due to early postoperative complications have been reported. As the literature identifies seroma as the most common issue after breast surgery without identifying its pathogenesis, we aimed to report the trend of postoperative daily serum collection after ADM-assisted breast reconstruction and compare it with data in the literature in order to discover more about this little-known topic.MethodsA retrospective study on 28 consecutive patients who received ADM-assisted breast reconstruction between February 2013 and February 2014 was performed. In order to reduce the number of variables that could affect serum production, only one brand of ADM was used and all tissues were handled gently and precisely. The daily drainage volume was recorded per patient during the first four days of hospitalization. Likewise, postoperative complications were noted during routine follow-up.ResultsIn total, five (17.9% bilateral and 23 (82.1% unilateral ADM-assisted breast reconstructions (33 implants were performed. The mean age, body mass index, and length of hospital stay were 53.6 years, 21.3 kg/m2, and 4.5 days, respectively. One major complication led to implant loss (3.0%, and nine minor complications were successfully treated with ambulatory surgery (27.3%. Serum collection linearly decreased after 24 hours postoperatively.ConclusionsDaily drainage decreased following the theoretical decline of acute inflammation. In concordance with the literature, daily serum production may not be related to the use of ADM.

  11. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: Effect of sample preparation on MALDI-MS of synthetic polymers.

    Science.gov (United States)

    Kooijman, Pieter C; Kok, Sander; Honing, Maarten

    2017-02-28

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the aim of the experiment. Because the underlying principles of MALDI are still not fully known, a priori determination of optimal sample preparation protocols is often not possible. Employing an automated sample preparation quality assessment method recently presented by us we quantified the sample preparation quality obtained using various sample preparation protocols. Six conventional matrices with and without added potassium as a cationization agent and six ionic liquid matrices (ILMs) were assessed using poly(ethylene glycol) (PEG), polytetrahydrofuran (PTHF) and poly(methyl methacrylate) (PMMA) as samples. All sample preparation protocols were scored and ranked based on predefined quality parameters and spot-to-spot repeatability. Clearly distinctive preferences were observed in matrix identity and cationization agent for PEG, PTHF and PMMA, as the addition of an excess of potassium cationization agent results in an increased score for PMMA and a contrasting matrix-dependent effect for PTHF and PEG. The addition of excess cationization agent to sample mixtures dissipates any overrepresentation of high molecular weight polymer species. Our results show reduced ionization efficiency and similar sample deposit homogeneity for all tested ILMs, compared with well-performing conventional MALDI matrices. The results published here represent a start in the unsupervised quantification of sample preparation quality for MALDI samples. This method can select the best sample preparation parameters for any synthetic polymer sample and the results can be used to formulate hypotheses on MALDI principles. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2013-01-01

    Thin films of C60 were deposited by matrix-assisted pulsed laser evaporation (MAPLE) from a frozen target of anisole with 0.67 wt% C60. Above a fluence of 1.5 J/cm2 the C60 films are strongly non-uniform and are resulting from transfer of matrix-droplets containing fullerenes. At low fluence...... the fullerene molecules in the films are intact, the surface morphology is substantially improved and there are no measurable traces of the matrix molecules in the film. This may indicate a regime of dominant evaporation at low fluence which merges into the MAPLE regime of liquid ejection of the host matrix...

  13. Matrix-assisted laser desorption/ionization time of flight mass spectrometry for comprehensive indexing of East African ixodid tick species.

    Science.gov (United States)

    Rothen, Julian; Githaka, Naftaly; Kanduma, Esther G; Olds, Cassandra; Pflüger, Valentin; Mwaura, Stephen; Bishop, Richard P; Daubenberger, Claudia

    2016-03-15

    The tick population of Africa includes several important genera belonging to the family Ixodidae. Many of these ticks are vectors of protozoan and rickettsial pathogens including Theileria parva that causes East Coast fever, a debilitating cattle disease endemic to eastern, central and southern Africa. Effective surveillance of tick-borne pathogens depends on accurate identification and mapping of their tick vectors. A simple and reproducible technique for rapid and reliable differentiation of large numbers of closely related field-collected ticks, which are often difficult and tedious to discriminate purely by morphology, will be an essential component of this strategy. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is increasingly becoming a useful tool in arthropod identification and has the potential to overcome the limitations of classical morphology-based species identification. In this study, we applied MALDI-TOF MS to a collection of laboratory and field ticks found in Eastern Africa. The objective was to determine the utility of this proteomic tool for reliable species identification of closely related afrotropical ticks. A total of 398 ixodid ticks from laboratory maintained colonies, extracted from the hides of animals or systematically collected from vegetation in Kenya, Sudan and Zimbabwe were analyzed in the present investigation. The cytochrome c oxidase I (COI) genes from 33 specimens were sequenced to confirm the tentatively assigned specimen taxa identity on the basis of morphological analyses. Subsequently, the legs of ticks were homogenized and analyzed by MALDI-TOF MS. A collection of reference mass spectra, based on the mass profiles of four individual ticks per species, was developed and deposited in the spectral database SARAMIS™. The ability of these superspectra (SSp.) to identify and reliably validate a set of ticks was demonstrated using the remaining individual 333 ticks. Ultimately, ten

  14. A homemade high-resolution orthogonal-injection time-of-flight mass spectrometer with a heated capillary inlet

    International Nuclear Information System (INIS)

    Guo Changjuan; Huang Zhengxu; Gao Wei; Nian Huiqing; Chen Huayong; Dong Junguo; Shen Guoying; Fu Jiamo; Zhou Zhen

    2008-01-01

    We describe a homemade high-resolution orthogonal-injection time-of-flight (O-TOF) mass spectrometer combing a heated capillary inlet. The O-TOF uses a heated capillary tube combined with a radio-frequency only quadrupole (rf-only quadrupole) as an interface to help the ion transmission from the atmospheric pressure to the low-pressure regions. The principle, configuration of the O-TOF, and the performance of the instrument are introduced in this paper. With electrospray ion source, the performances of the mass resolution, the sensitivity, the mass range, and the mass accuracy are described. We also include our results obtained by coupling atmospheric pressure matrix-assisted laser deporption ionization with this instrument

  15. An algorithm for mass matrix calculation of internally constrained molecular geometries

    International Nuclear Information System (INIS)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-01

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model

  16. An algorithm for mass matrix calculation of internally constrained molecular geometries.

    Science.gov (United States)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-28

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model.

  17. Specific Cα-C Bond Cleavage of β-Carbon-Centered Radical Peptides Produced by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    Science.gov (United States)

    Nagoshi, Keishiro; Yamakoshi, Mariko; Sakamoto, Kenya; Takayama, Mitsuo

    2018-04-01

    Radical-driven dissociation (RDD) of hydrogen-deficient peptide ions [M - H + H]·+ has been examined using matrix-assisted laser dissociation/ionization in-source decay mass spectrometry (MALDI-ISD MS) with the hydrogen-abstracting matrices 4-nitro-1-naphthol (4,1-NNL) and 5-nitrosalicylic acid (5-NSA). The preferential fragment ions observed in the ISD spectra include N-terminal [a] + ions and C-terminal [x]+, [y + 2]+, and [w]+ ions which imply that β-carbon (Cβ)-centered radical peptide ions [M - Hβ + H]·+ are predominantly produced in MALDI conditions. RDD reactions from the peptide ions [M - Hβ + H]·+ successfully explains the fact that both [a]+ and [x]+ ions arising from cleavage at the Cα-C bond of the backbone of Gly-Xxx residues are missing from the ISD spectra. Furthermore, the formation of [a]+ ions originating from the cleavage of Cα-C bond of deuterated Ala(d3)-Xxx residues indicates that the [a]+ ions are produced from the peptide ions [M - Hβ + H]·+ generated by deuteron-abstraction from Ala(d3) residues. It is suggested that from the standpoint of hydrogen abstraction via direct interactions between the nitro group of matrix and hydrogen of peptides, the generation of the peptide radical ions [M - Hβ + H]·+ is more favorable than that of the α-carbon (Cα)-centered radical ions [M - Hα + H]·+ and the amide nitrogen-centered radical ions [M - HN + H]·+, while ab initio calculations indicate that the formation of [M - Hα + H]·+ is energetically most favorable. [Figure not available: see fulltext.

  18. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting.

    Science.gov (United States)

    Christner, Martin; Rohde, Holger; Wolters, Manuel; Sobottka, Ingo; Wegscheider, Karl; Aepfelbacher, Martin

    2010-05-01

    Early and adequate antimicrobial therapy has been shown to improve the clinical outcome in bloodstream infections (BSI). To provide rapid pathogen identification for targeted treatment, we applied matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry fingerprinting to bacteria directly recovered from blood culture bottles. A total of 304 aerobic and anaerobic blood cultures, reported positive by a Bactec 9240 system, were subjected in parallel to differential centrifugation with subsequent mass spectrometry fingerprinting and reference identification using established microbiological methods. A representative spectrum of bloodstream pathogens was recovered from 277 samples that grew a single bacterial isolate. Species identification by direct mass spectrometry fingerprinting matched reference identification in 95% of these samples and worked equally well for aerobic and anaerobic culture bottles. Application of commonly used score cutoffs to classify the fingerprinting results led to an identification rate of 87%. Mismatching mostly resulted from insufficient bacterial numbers and preferentially occurred with Gram-positive samples. The respective spectra showed low concordance to database references and were effectively rejected by score thresholds. Spiking experiments and examination of the respective study samples even suggested applicability of the method to mixed cultures. With turnaround times around 100 min, the approach allowed for reliable pathogen identification at the day of blood culture positivity, providing treatment-relevant information within the critical phase of septic illness.

  19. Identification by Molecular Methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Antifungal Susceptibility Profiles of Clinically Significant Rare Aspergillus Species in a Referral Chest Hospital in Delhi, India.

    Science.gov (United States)

    Masih, Aradhana; Singh, Pradeep K; Kathuria, Shallu; Agarwal, Kshitij; Meis, Jacques F; Chowdhary, Anuradha

    2016-09-01

    Aspergillus species cause a wide spectrum of clinical infections. Although Aspergillus fumigatus and Aspergillus flavus remain the most commonly isolated species in aspergillosis, in the last decade, rare and cryptic Aspergillus species have emerged in diverse clinical settings. The present study analyzed the distribution and in vitro antifungal susceptibility profiles of rare Aspergillus species in clinical samples from patients with suspected aspergillosis in 8 medical centers in India. Further, a matrix-assisted laser desorption ionization-time of flight mass spectrometry in-house database was developed to identify these clinically relevant Aspergillus species. β-Tubulin and calmodulin gene sequencing identified 45 rare Aspergillus isolates to the species level, except for a solitary isolate. They included 23 less common Aspergillus species belonging to 12 sections, mainly in Circumdati, Nidulantes, Flavi, Terrei, Versicolores, Aspergillus, and Nigri Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified only 8 (38%) of the 23 rare Aspergillus isolates to the species level. Following the creation of an in-house database with the remaining 14 species not available in the Bruker database, the MALDI-TOF MS identification rate increased to 95%. Overall, high MICs of ≥2 μg/ml were noted for amphotericin B in 29% of the rare Aspergillus species, followed by voriconazole in 20% and isavuconazole in 7%, whereas MICs of >0.5 μg/ml for posaconazole were observed in 15% of the isolates. Regarding the clinical diagnoses in 45 patients with positive rare Aspergillus species cultures, 19 (42%) were regarded to represent colonization. In the remaining 26 patients, rare Aspergillus species were the etiologic agent of invasive, chronic, and allergic bronchopulmonary aspergillosis, allergic fungal rhinosinusitis, keratitis, and mycetoma. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Identification by Molecular Methods and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and Antifungal Susceptibility Profiles of Clinically Significant Rare Aspergillus Species in a Referral Chest Hospital in Delhi, India

    Science.gov (United States)

    Masih, Aradhana; Singh, Pradeep K.; Kathuria, Shallu; Agarwal, Kshitij

    2016-01-01

    Aspergillus species cause a wide spectrum of clinical infections. Although Aspergillus fumigatus and Aspergillus flavus remain the most commonly isolated species in aspergillosis, in the last decade, rare and cryptic Aspergillus species have emerged in diverse clinical settings. The present study analyzed the distribution and in vitro antifungal susceptibility profiles of rare Aspergillus species in clinical samples from patients with suspected aspergillosis in 8 medical centers in India. Further, a matrix-assisted laser desorption ionization–time of flight mass spectrometry in-house database was developed to identify these clinically relevant Aspergillus species. β-Tubulin and calmodulin gene sequencing identified 45 rare Aspergillus isolates to the species level, except for a solitary isolate. They included 23 less common Aspergillus species belonging to 12 sections, mainly in Circumdati, Nidulantes, Flavi, Terrei, Versicolores, Aspergillus, and Nigri. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) identified only 8 (38%) of the 23 rare Aspergillus isolates to the species level. Following the creation of an in-house database with the remaining 14 species not available in the Bruker database, the MALDI-TOF MS identification rate increased to 95%. Overall, high MICs of ≥2 μg/ml were noted for amphotericin B in 29% of the rare Aspergillus species, followed by voriconazole in 20% and isavuconazole in 7%, whereas MICs of >0.5 μg/ml for posaconazole were observed in 15% of the isolates. Regarding the clinical diagnoses in 45 patients with positive rare Aspergillus species cultures, 19 (42%) were regarded to represent colonization. In the remaining 26 patients, rare Aspergillus species were the etiologic agent of invasive, chronic, and allergic bronchopulmonary aspergillosis, allergic fungal rhinosinusitis, keratitis, and mycetoma. PMID:27413188

  1. Identification of Blood Culture Isolates Directly from Positive Blood Cultures by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and a Commercial Extraction System: Analysis of Performance, Cost, and Turnaround Time

    OpenAIRE

    Lagacé-Wiens, Philippe R. S.; Adam, Heather J.; Karlowsky, James A.; Nichol, Kimberly A.; Pang, Paulette F.; Guenther, Jodi; Webb, Amanda A.; Miller, Crystal; Alfa, Michelle J.

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry represents a revolution in the rapid identification of bacterial and fungal pathogens in the clinical microbiology laboratory. Recently, MALDI-TOF has been applied directly to positive blood culture bottles for the rapid identification of pathogens, leading to reductions in turnaround time and potentially beneficial patient impacts. The development of a commercially available extraction kit (Bruker Sepsit...

  2. Matrix Assisted Pulsed Laser Evaporation for growth of fullerene thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster Nielsen, Søren

    C60 fullerene thin films of average thickness of more than 100 nm can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant...... fraction of the film molecules are C60 transferred to the substrate without any fragmentation. Highresolution SEM images of MAPLE deposited films reveal large circular droplets on the surface with high amount of material concentrated at edges (Fig. 1A). These features, observed over a wide range of laser...... fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in production of films with smooth surfaces and minimal...

  3. Microfluidic Isoelectric Focusing of Amyloid Beta Peptides Followed by Micropillar-Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry.

    Science.gov (United States)

    Mikkonen, Saara; Jacksén, Johan; Roeraade, Johan; Thormann, Wolfgang; Emmer, Åsa

    2016-10-18

    A novel method for preconcentration and purification of the Alzheimer's disease related amyloid beta (Aβ) peptides by isoelectric focusing (IEF) in 75 nL microchannels combined with their analysis by micropillar-matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) is presented. A semiopen chip-based setup, consisting of open microchannels covered by a lid of a liquid fluorocarbon, was used. IEF was performed in a mixture of four small and chemically well-defined amphoteric carriers, glutamic acid, aspartyl-histidine (Asp-His), cycloserine (cSer), and arginine, which provided a stepwise pH gradient tailored for focusing of the C-terminal Aβ peptides with a pI of 5.3 in the boundary between cSer and Asp-His. Information about the focusing dynamics and location of the foci of Aβ peptides and other compounds was obtained using computer simulation and by performing MALDI-MS analysis directly from the open microchannel. With the established configuration, detection was performed by direct sampling of a nanoliter volume containing the focused Aβ peptides from the microchannel, followed by deposition of this volume onto a chip with micropillar MALDI targets. In addition to purification, IEF preconcentration provides at least a 10-fold increase of the MALDI-MS-signal. After immunoprecipitation and concentration of the eluate in the microchannel, IEF-micropillar-MALDI-MS is demonstrated to be a suitable platform for detection of Aβ peptides in human cerebrospinal fluid as well as in blood plasma.

  4. Direct identification of bacteria from charcoal-containing blood culture bottles using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry.

    Science.gov (United States)

    Wüppenhorst, N; Consoir, C; Lörch, D; Schneider, C

    2012-10-01

    Several protocols for direct matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) from positive blood cultures are currently used to speed up the diagnostic process of bacteraemia. Identification rates are high and results are accurate for the BACTEC™ system and for charcoal-free bottles. Only a few studies have evaluated protocols for charcoal-containing BacT/ALERT bottles reaching substantially lower identification rates. We established a new protocol for sample preparation from aerobic and anaerobic positive charcoal-containing BacT/ALERT blood culture bottles and measured the protein profiles (n = 167). Then, we integrated this protocol in the routine workflow of our laboratory (n = 212). During the establishment of our protocol, 74.3 % of bacteria were correctly identified to the species level, in 23.4 %, no result and in 2.4 %, a false identification were obtained. Reliable criteria for correct species identification were a score value ≥1.400 and a best match on rank 1-3 of the same species. Identification rates during routine workflow were 77.8 % for correct identification, 20.8 % for not identified samples and 1.4 % for discordant identification. In conclusion, our results indicate that MALDI-TOF MS is possible, even from charcoal-containing blood cultures. Reliable criteria for correct species identification are a score value ≥1.400 and a best match on rank 1-3 of a single species.

  5. Froggatt-Nielsen hierarchy and the neutrino mass matrix

    International Nuclear Information System (INIS)

    Kamikado, H.; Takasugi, E.

    2008-05-01

    We study the neutrino mass matrix derived from the seesaw mechanism in which the neutrino Yukawa couplings and the heavy Majorana neutrino mass matrix are controlled by the Froggatt-Nielsen mechanism. In order to obtain the large neutrino mixings, two Froggatt-Nielsen fields are introduced with a complex vacuum expectation values. As a by-product, CP violation is systematically induced even if the order one couplings of FN fields are real. We show several predictions of this model, such as θ 13 , the Dirac CP phase, two Majorana CP phases, the effective mass of the neutrinoless double beta decay and the leptogenesis. The prediction of the branching ratio of μ→eγ is also given in SUSY model. (orig.)

  6. A simple method for rapid microbial identification from positive monomicrobial blood culture bottles through matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Lin, Jung-Fu; Ge, Mao-Cheng; Liu, Tsui-Ping; Chang, Shih-Cheng; Lu, Jang-Jih

    2017-06-30

    Rapid identification of microbes in the bloodstream is crucial in managing septicemia because of its high disease severity, and direct identification from positive blood culture bottles through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can shorten the turnaround time. Therefore, we developed a simple method for rapid microbiological identification from positive blood cultures by using MALDI-TOF MS. We modified previously developed methods to propose a faster, simpler and more economical method, which includes centrifugation and hemolysis. Specifically, our method comprises two-stage centrifugation with gravitational acceleration (g) at 600g and 3000g, followed by the addition of a lysis buffer and another 3000g centrifugation. In total, 324 monomicrobial bacterial cultures were identified. The success rate of species identification was 81.8%, which is comparable with other complex methods. The identification success rate was the highest for Gram-negative aerobes (85%), followed by Gram-positive aerobes (78.2%) and anaerobes (67%). The proposed method requires less than 10 min, costs less than US$0.2 per usage, and facilitates batch processing. We conclude that this method is feasible for clinical use in microbiology laboratories, and can serve as a reference for treatments or further complementary diagnostic testing. Copyright © 2017. Published by Elsevier B.V.

  7. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis.

    Science.gov (United States)

    Bibi, Aisha; Ju, Huangxian

    2016-04-01

    A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Direct identification of bacteria from positive BacT/ALERT blood culture bottles using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    Science.gov (United States)

    Mestas, Javier; Felsenstein, Susanna; Bard, Jennifer Dien

    2014-11-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is a fast and robust method for the identification of bacteria. In this study, we evaluate the performance of a laboratory-developed lysis method (LDT) for the rapid identification of bacteria from positive BacT/ALERT blood culture bottles. Of the 168 positive bottles tested, 159 were monomicrobial, the majority of which were Gram-positive organisms (61.0% versus 39.0%). Using a cut-off score of ≥1.7, 80.4% of the organisms were correctly identified to the species level, and the identification rate of Gram-negative organisms (90.3%) was found to be significantly greater than that of Gram-positive organisms (78.4%). The simplicity and cost-effectiveness of the LDT enable it to be fully integrated into the routine workflow of the clinical microbiology laboratory, allowing for rapid identification of Gram-positive and Gram-negative bacteria within an hour of blood culture positivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. High-Throughput and Rapid Screening of Low-Mass Hazardous Compounds in Complex Samples.

    Science.gov (United States)

    Wang, Jing; Liu, Qian; Gao, Yan; Wang, Yawei; Guo, Liangqia; Jiang, Guibin

    2015-07-07

    Rapid screening and identification of hazardous chemicals in complex samples is of extreme importance for public safety and environmental health studies. In this work, we report a new method for high-throughput, sensitive, and rapid screening of low-mass hazardous compounds in complex media without complicated sample preparation procedures. This method is achieved based on size-selective enrichment on ordered mesoporous carbon followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis with graphene as a matrix. The ordered mesoporous carbon CMK-8 can exclude interferences from large molecules in complex samples (e.g., human serum, urine, and environmental water samples) and efficiently enrich a wide variety of low-mass hazardous compounds. The method can work at very low concentrations down to part per trillion (ppt) levels, and it is much faster and more facile than conventional methods. It was successfully applied to rapidly screen and identify unknown toxic substances such as perfluorochemicals in human serum samples from athletes and workers. Therefore, this method not only can sensitively detect target compounds but also can identify unknown hazardous compounds in complex media.

  10. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid strain typing of Bacillus coagulans.

    Science.gov (United States)

    Sato, Jun; Nakayama, Motokazu; Tomita, Ayumi; Sonoda, Takumi; Hasumi, Motomitsu; Miyamoto, Takahisa

    2017-01-01

    In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and repetitive-PCR (rep-PCR) were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype.

  11. Cu2+-assisted two dimensional charge-mass double focusing gel electrophoresis and mass spectrometric analysis of histone variants.

    Science.gov (United States)

    Zhang, Wenyang; Tang, Xuemei; Ding, Mengjie; Zhong, Hongying

    2014-12-10

    Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu(2+) with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton-acid-urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu(2+) chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu(2+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Differentiation of Lactobacillus brevis strains using Matrix-Assisted-Laser-Desorption-Ionization-Time-of-Flight Mass Spectrometry with respect to their beer spoilage potential.

    Science.gov (United States)

    Kern, Carola C; Vogel, Rudi F; Behr, Jürgen

    2014-06-01

    Lactobacillus (L.) brevis is one of the most frequently encountered bacteria in beer-spoilage incidents. As the species Lactobacillus brevis comprises strains showing varying ability to grow in beer, ranging from growth in low hopped wheat to highly hopped pilsner beer, differentiation and classification of L. brevis with regard to their beer-spoiling ability is of vital interest for the brewing industry. Matrix-Assisted-Laser-Desorption-Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown as a powerful tool for species and sub-species differentiation of bacterial isolates and is increasingly used for strain-level differentiation. Seventeen L. brevis strains, representative of different spoilage types, were characterized according to their tolerance to iso-alpha-acids and their growth in wheat-, lager- and pilsner beer. MALDI-TOF MS spectra were acquired to perform strain-level identification, cluster analysis and biomarker detection. Strain-level identification was achieved in 90% out of 204 spectra. Misidentification occurred nearly exclusively among strains belonging to the same spoilage type. Though spectra of strongly beer-spoiling strains showed remarkable similarity, no decisive single markers were detected to be present in all strains of one group. However, MALDI-TOF MS spectra can be reliably assigned to the corresponding strain and thus allow to track single strains and connect them to their physiological properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Protein secondary structure and stability determined by combining exoproteolysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Villanueva, Josep; Villegas, Virtudes; Querol, Enrique; Avilés, Francesc X; Serrano, Luis

    2002-09-01

    In the post-genomic era, several projects focused on the massive experimental resolution of the three-dimensional structures of all the proteins of different organisms have been initiated. Simultaneously, significant progress has been made in the ab initio prediction of protein three-dimensional structure. One of the keys to the success of such a prediction is the use of local information (i.e. secondary structure). Here we describe a new limited proteolysis methodology, based on the use of unspecific exoproteases coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), to map quickly secondary structure elements of a protein from both ends, the N- and C-termini. We show that the proteolytic patterns (mass spectra series) obtained can be interpreted in the light of the conformation and local stability of the analyzed proteins, a direct correlation being observed between the predicted and the experimentally derived protein secondary structure. Further, this methodology can be easily applied to check rapidly the folding state of a protein and characterize mutational effects on protein conformation and stability. Moreover, given global stability information, this methodology allows one to locate the protein regions of increased or decreased conformational stability. All of this can be done with a small fraction of the amount of protein required by most of the other methods for conformational analysis. Thus limited exoproteolysis, together with MALDI-TOF MS, can be a useful tool to achieve quickly the elucidation of protein structure and stability. Copyright 2002 John Wiley & Sons, Ltd.

  14. Highly sensitive bacterial susceptibility test against penicillin using parylene-matrix chip.

    Science.gov (United States)

    Park, Jong-Min; Kim, Jo-Il; Song, Hyun-Woo; Noh, Joo-Yoon; Kang, Min-Jung; Pyun, Jae-Chul

    2015-09-15

    This work presented a highly sensitive bacterial antibiotic susceptibility test through β-lactamase assay using Parylene-matrix chip. β-lactamases (EC 3.5.2.6) are an important family of enzymes that confer resistance to β-lactam antibiotics by catalyzing the hydrolysis of these antibiotics. Here we present a highly sensitive assay to quantitate β-lactamase-mediated hydrolysis of penicillin into penicilloic acid. Typically, MALDI-TOF mass spectrometry has been used to quantitate low molecular weight analytes and to discriminate them from noise peaks of matrix fragments that occur at low m/z ratios (m/ztest was carried out using Parylene-matrix chip and MALDI-TOF mass spectrometry. The Parylene-matrix chip was successfully used to quantitate penicillin (m/z: [PEN+H](+)=335.1 and [PEN+Na](+)=357.8) and penicilloic acid (m/z: [PA+H](+)=353.1) in a β-lactamase assay with minimal interference of low molecular weight noise peaks. The β-lactamase assay was carried out with an antibiotic-resistant E. coli strain and an antibiotic-susceptible E. coli strain, revealing that the minimum number of E. coli cells required to screen for antibiotic resistance was 1000 cells for the MALDI-TOF mass spectrometry/Parylene-matrix chip assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Recognition of Streptococcus pseudoporcinus Colonization in Women as a Consequence of Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Group B Streptococcus Identification.

    Science.gov (United States)

    Suwantarat, Nuntra; Grundy, Maureen; Rubin, Mayer; Harris, Renee; Miller, Jo-Anne; Romagnoli, Mark; Hanlon, Ann; Tekle, Tsigereda; Ellis, Brandon C; Witter, Frank R; Carroll, Karen C

    2015-12-01

    During a 14-month period of using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for group B streptococcus (GBS) identification, we recovered 32 (1%) Streptococcus pseudoporcinus isolates from 3,276 GBS screening cultures from female genital sources (25 isolates from pregnant women and 7 from nonpregnant women). An additional two S. pseudoporcinus isolates were identified from a urine culture and a posthysterectomy wound culture. These isolates were found to cross-react with three different GBS antigen agglutination kits, PathoDx (Remel) (93%), Prolex (Pro-Lab Diagnostics) (38%), and Streptex (Remel) (53%). New approaches to bacterial identification in routine clinical microbiology laboratories may affect the prevalence of S. pseudoporcinus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Application of consistent fluid added mass matrix to core seismic

    International Nuclear Information System (INIS)

    Koo, K. H.; Lee, J. H.

    2003-01-01

    In this paper, the application algorithm of a consistent fluid added mass matrix including the coupling terms to the core seismic analysis is developed and installed at SAC-CORE3.0 code. As an example, we assumed the 7-hexagon system of the LMR core and carried out the vibration modal analysis and the nonlinear time history seismic response analysis using SAC-CORE3.0. Used consistent fluid added mass matrix is obtained by using the finite element program of the FAMD(Fluid Added Mass and Damping) code. From the results of the vibration modal analysis, the core duct assemblies reveal strongly coupled vibration modes, which are so different from the case of in-air condition. From the results of the time history seismic analysis, it was verified that the effects of the coupled terms of the consistent fluid added mass matrix are significant in impact responses and the dynamic responses

  17. Characterization of lysozyme films produced by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, Peter

    2007-01-01

    Thin lysozyme films of thickness up to more than 100 nm have been produced in a dry environment by MAPLE (matrix assisted pulsed laser evaporation) from a water ice matrix. Analysis of the films demonstrates that a significant part of the lysozyme molecules is transferred to the substrate without...

  18. A novel cluster of Mycobacterium abscessus complex revealed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Suzuki, Hiromichi; Yoshida, Shiomi; Yoshida, Atsushi; Okuzumi, Katsuko; Fukusima, Atsuhito; Hishinuma, Akira

    2015-12-01

    Mycobacterium abscessus complex is a rapidly growing mycobacterium consisting of 3 subspecies, M. abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. However, rapid and accurate species identification is difficult. We first evaluated a suitable protocol of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for distinguishing these subspecies. Then, we studied spectral signals by MALDI-TOF MS in 59 M. abscessus, 42 M. massiliense, and 2 M. bolletii. Among several specific spectral signals, 4 signals clearly differentiate M. massiliense from the other 2 subspecies, M. abscessus and M. bolletii. Moreover, 6 of the 42 M. massiliense isolates showed a spectral pattern similar to M. abscessus. These isolates correspond to the distinctive class of M. massiliense (cluster D) which is closer to M. abscessus by the previous variable number tandem repeat analysis. These results indicate that MALDI-TOF MS is not only useful for the identification of 3 subspecies of M. abscessus complex but also capable of distinguishing clusters of M. massiliense. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Evaluation of synthase and hemisynthase activities of glucosamine-6-phosphate synthase by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Gaucher-Wieczorek, Florence; Guérineau, Vincent; Touboul, David; Thétiot-Laurent, Sophie; Pelissier, Franck; Badet-Denisot, Marie-Ange; Badet, Bernard; Durand, Philippe

    2014-08-01

    Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5'-diphospho-N-acetyl-D-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts D-fructose-6-phosphate (Fru-6P) and L-glutamine (Gln) into D-glucosamine-6-phosphate (GlcN-6P) and L-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A microwave-mediated saponification of galactosylceramide and galactosylceramide I3-sulfate and identification of their lyso-compounds by delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Taketomi, T; Hara, A; Uemura, K; Kurahashi, H; Sugiyama, E

    1996-07-16

    Small amounts of galactosylceramide (cerebroside) and galactosylceramide I3-sulfate (sulfatide) obtained from porcine spinal cord and equine kidney were deacylated by a rapid method of microwave-mediated saponification to prepare their lyso-compounds. Mass spectra of their protonated or deprotonated molecular ion peaks were detected by recently developed new technology of a delayed extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometer with reflector detector in positive or negative ion mode. Long chain bases of lysocerebroside and lysosulfatide were different between porcine spinal cord and equine kidney, but similar to each other in the same organ, suggesting their common synthetic pathway. It is noted that the new rapid method can be similarly applied to the deacylation of both cerebroside and sulfatide in contrast to our classical method which was able to be applied to cerebroside, but not to sulfatide.

  1. Dansyl-peptides matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) and tandem mass spectrometric (MS/MS) features improve the liquid chromatography/MALDI-MS/MS analysis of the proteome.

    Science.gov (United States)

    Chiappetta, Giovanni; Ndiaye, Sega; Demey, Emmanuelle; Haddad, Iman; Marino, Gennaro; Amoresano, Angela; Vinh, Joëlle

    2010-10-30

    Peptide tagging is a useful tool to improve matrix-assisted laser desorption/ionization tandem mass spectrometric (MALDI-MS/MS) analysis. We present a new application of the use of the dansyl chloride (DNS-Cl). DNS-Cl is a specific primary amine reagent widely used in protein biochemistry. It adds a fluorescent dimethylaminonaphthalene moiety to the molecule. The evaluation of MALDI-MS and MS/MS analyses of dansylated peptides shows that dansylation raises the ionization efficiency of the most hydrophilic species compared with the most hydrophobic ones. Consequently, higher Mascot scores and protein sequence coverage are obtained by combining MS and MS/MS data of native and tagged samples. The N-terminal DNS-Cl sulfonation improves the peptide fragmentation and promotes the generation of b-fragments allowing better peptide sequencing. In addition, we set up a labeling protocol based on the microwave chemistry. Peptide dansylation proved to be a rapid and cheap method to improve the performance of liquid chromatography (LC)/MALDI-MS/MS analysis at the proteomic scale in terms of peptide detection and sequence coverage. Copyright © 2010 John Wiley & Sons, Ltd.

  2. Rapid identification of bacteria in positive blood culture by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Schmidt, V; Jarosch, A; März, P; Sander, C; Vacata, V; Kalka-Moll, W

    2012-03-01

    Blood culture is probably the most significant specimen used for the diagnosis of bacterial infections, especially for bloodstream infections. In the present study, we compared the resin-containing BD BACTEC™ Plus-Aerobic (Becton Dickinson), non-charcoal-containing BacT/Alert(®) SA (bioMérieux), and charcoal-containing BacT/Alert(®) FA (bioMérieux) blood culture bottles with direct identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 103 bacterial isolates, from clinical blood cultures, representing the most frequent 13 genera and 24 species were examined. Bacteria were extracted from positive blood culture broth by density centrifugation and then subjected to identification by MALDI-TOF MS using two different volumes and chemical treatments. Overall, correct identification by MALDI-TOF MS was obtained for the BD BACTEC™ Plus-Aerobic, BacT/Alert(®) SA, and BacT/Alert(®) FA blood culture bottles in 72%, 45.6%, and 23%, respectively, for gram-negative bacteria in 86.6%, 69.2%, and 47.1%, respectively, and for gram-positive bacteria in 60.0%, 28.8%, and 5.4%, respectively. The lack of identification was observed mainly with viridans streptococci. Depending on the blood culture bottles used in routine diagnostic procedures and the protocol for bacterial preparation, the applied MALDI-TOF MS represents an efficient and rapid method for direct bacterial identification.

  3. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry rapid detection of carbapenamase activity in Acinetobacter baumannii isolates

    Directory of Open Access Journals (Sweden)

    Noha Abouseada

    2017-01-01

    Full Text Available Introduction: Carbapenamase-producing Acinetobacter baumannii are an increasing threat in hospitals and Intensive Care Units. Accurate and rapid detection of carbapenamase producers has a great impact on patient improvement and aids in implementation of infection control measures. Aim: In this study, we describe the use of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI TOF MS to identify carbapenamase-producing A. baumannii isolates in up to 3 h. Isolates and Methods: A total of 50 A. baumannii isolates (of which 39 were carabapenamase producers were tested using MALDI TOF MS. Isolates were incubated for 3 h with 0.25 mg/ml up to 2 mg/ml of imipenem (IMP at 37°C. Supernatants were analysed by MALDI TOF to analyse peaks corresponding to IMP (300 Da and an IMP metabolite (254 Da using UltrafleXtreme (Bruker Daltonics, Bremen, Germany. Results: All carbapenamase-producing isolates were evidenced by the disappearance or reduction in intensity of the 300 Da peak of IPM and the appearance of a 254 Da peak of the IPM metabolite. In isolates that did not produce carbapenamase, the IPM 300 Da peak remained intact. Conclusion: MALDI TOF is a promising tool in the field of diagnostic microbiology that has the ability to transfer identification and antimicrobial susceptibility testing time from days to hours.

  4. Acid-base-driven matrix-assisted mass spectrometry for targeted metabolomics

    Czech Academy of Sciences Publication Activity Database

    Shroff, R.; Rulíšek, Lubomír; Doubský, J.; Svatoš, Aleš

    2009-01-01

    Roč. 106, č. 25 (2009), s. 10092-10096 ISSN 0027-8424 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : clinical diagnostic * matrix design * positive/negative ions * MALDI Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.432, year: 2009

  5. Reliable and reproducible method for rapid identification of Nocardia species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Toyokawa, Masahiro; Kimura, Keigo; Nishi, Isao; Sunada, Atsuko; Ueda, Akiko; Sakata, Tomomi; Asari, Seishi

    2013-01-01

    Recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been challenged for the identification of Nocardia species. However, the standard ethanol-formic acid extraction alone is insufficient in allowing the membrane proteins of Nocardia species to be ionized by the matrix. We therefore aimed to establish our new extraction method for the MALDI-TOF MS-based identification of Nocardia species isolates. Our modified extraction procedure is through dissociation in 0.5% Tween-20 followed by bacterial heat-inactivation, mechanical breaking of the cell wall by acid-washed glass beads and protein extraction with formic acid and acetonitrile. As reference methods for species identification, full-length 16S rRNA gene sequencing and some phenotypical tests were used. In a first step, we made our own Nocardia database by analyzing 13 strains (13 different species including N. elegans, N. otitidiscaviarum, N. asiatica, N. abscessus, N. brasiliensis, N. thailandica, N. farcinica, N. nova, N. mikamii, N. cyriacigeorgica, N. asteroids, Nocardiopsis alba, and Micromonospora sp.) and registered to the MALDI BioTyper database. Then we established our database. The analysis of 12 challenge strains using the our database gave a 100% correct identification, including 8 strains identified to the species level and 4 strains to the genus level (N. elegans, N. nova, N. farcinica, Micromonospora sp.) according to the manufacture's log score specifications. In the estimation of reproducibility of our method intended for 4 strains, both within-run and between-run reproducibility were excellent. These data indicates that our method for rapid identification of Nocardia species is with reliability, reproducibility and cost effective.

  6. Rapid and sensitive determination of major polyphenolic components in Euphoria longana Lam. seeds using matrix solid-phase dispersion extraction and UHPLC with hybrid linear ion trap triple quadrupole mass spectrometry.

    Science.gov (United States)

    Rathore, Atul S; Sathiyanarayanan, L; Deshpande, Shreekant; Mahadik, Kakasaheb R

    2016-11-01

    A rapid and sensitive method for the extraction and determination of four major polyphenolic components in Euphoria longana Lam. seeds is presented for the first time based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry. Matrix solid-phase dispersion method was designed for the extraction of Euphoria longana seed constituents and compared with microwave-assisted extraction and ultrasonic-assisted extraction methods. An Ultra high performance liquid chromatography with hybrid triple quadrupole linear ion-trap mass spectrometry method was developed for quantitative analysis in multiple-reaction monitoring mode in negative electrospray ionization. The chromatographic separation was accomplished using an ACQUITY UPLC BEH C 18 (2.1 mm × 50 mm, 1.7 μm) column with gradient elution of 0.1% aqueous formic acid and 0.1% formic acid in acetonitrile. The developed method was validated with acceptable linearity (r 2 > 0.999), precision (RSD ≤ 2.22%) and recovery (RSD ≤ 2.35%). The results indicated that matrix solid-phase dispersion produced comparable extraction efficiency compared with other methods nevertheless was more convenient and time-saving with reduced requirements on sample and solvent volumes. The proposed method is rapid and sensitive in providing a promising alternative for extraction and comprehensive determination of active components for quality control of Euphoria longana products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS for rapid strain typing of Bacillus coagulans.

    Directory of Open Access Journals (Sweden)

    Jun Sato

    Full Text Available In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS and repetitive-PCR (rep-PCR were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype.

  8. Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry.

    Science.gov (United States)

    Bergman, Nina; Shevchenko, Denys; Bergquist, Jonas

    2014-01-01

    This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.

  9. Rapid Detection and Identification of Candidemia by Direct Blood Culturing on Solid Medium by Use of Lysis-Centrifugation Method Combined with Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS)

    Science.gov (United States)

    Idelevich, Evgeny A.; Grünastel, Barbara

    2016-01-01

    ABSTRACT Candida sepsis is a life-threatening condition with increasing prevalence. In this study, direct blood culturing on solid medium using a lysis-centrifugation procedure enabled successful Candida species identification by matrix-assisted laser desorption–ionization time of flight mass spectrometry on average 3.8 h (Sabouraud agar) or 7.4 h (chocolate agar) before the positivity signal for control samples in Bactec mycosis-IC/F or Bactec Plus aerobic/F bottles, respectively. Direct culturing on solid medium accelerated candidemia diagnostics compared to that with automated broth-based systems. PMID:27795344

  10. Rapid Detection and Identification of Candidemia by Direct Blood Culturing on Solid Medium by Use of Lysis-Centrifugation Method Combined with Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Idelevich, Evgeny A; Grünastel, Barbara; Becker, Karsten

    2017-01-01

    Candida sepsis is a life-threatening condition with increasing prevalence. In this study, direct blood culturing on solid medium using a lysis-centrifugation procedure enabled successful Candida species identification by matrix-assisted laser desorption-ionization time of flight mass spectrometry on average 3.8 h (Sabouraud agar) or 7.4 h (chocolate agar) before the positivity signal for control samples in Bactec mycosis-IC/F or Bactec Plus aerobic/F bottles, respectively. Direct culturing on solid medium accelerated candidemia diagnostics compared to that with automated broth-based systems. Copyright © 2016 American Society for Microbiology.

  11. Contribution to high voltage matrix switches reliability

    International Nuclear Information System (INIS)

    Lausenaz, Yvan

    2000-01-01

    Nowadays, power electronic equipment requirements are important, concerning performances, quality and reliability. On the other hand, costs have to be reduced in order to satisfy the market rules. To provide cheap, reliability and performances, many standard components with mass production are developed. But the construction of specific products must be considered following these two different points: in one band you can produce specific components, with delay, over-cost problems and eventuality quality and reliability problems, in the other and you can use standard components in a adapted topologies. The CEA of Pierrelatte has adopted this last technique of power electronic conception for the development of these high voltage pulsed power converters. The technique consists in using standard components and to associate them in series and in parallel. The matrix constitutes high voltage macro-switch where electrical parameters are distributed between the synchronized components. This study deals with the reliability of these structures. It brings up the high reliability aspect of MOSFETs matrix associations. Thanks to several homemade test facilities, we obtained lots of data concerning the components we use. The understanding of defects propagation mechanisms in matrix structures has allowed us to put forwards the necessity of robust drive system, adapted clamping voltage protection, and careful geometrical construction. All these reliability considerations in matrix associations have notably allowed the construction of a new matrix structure regrouping all solutions insuring reliability. Reliable and robust, this product has already reaches the industrial stage. (author) [fr

  12. Ejection of matrix-polymer clusters in matrix-assisted laser evaporation: Experimental observations

    International Nuclear Information System (INIS)

    Sellinger, Aaron T; Leveugle, Elodie; Gogick, Kristy; Peman, Guillaume; Zhigilei, Leonid V; Fitz-Gerald, James M

    2007-01-01

    The morphology of polymer films deposited with the matrix-assisted pulsed laser evaporation (MAPLE) technique is explored for various target compositions and laser fluences. Composite targets of 1 to 5 wt.% poly(methyl methacrylate), PMMA, dissolved in a volatile matrix material, toluene, were ablated using an excimer laser at fluences ranging from 0.045 J/cm 2 to 0.75 J/cm 2 . Films were deposited on Si substrates at room temperature in a dynamic 100 mTorr Ar atmosphere. Scanning electron microscopy (SEM) imaging revealed that the morphology of the deposited films varied significantly with both laser fluence and PMMA concentration. The morphologies of large deposited particles were similar to that of deflated ''balloons''. It is speculated that during ablation of the frozen target, clusters comprised of both polymer and solvent ranging from 100 nm to 10 μm in size are ejected and deposited onto the substrate. The solvent begins to evaporate from the clusters during flight from the target, but does not completely evaporate until deposited on the room temperature substrate. The dynamics of the toluene evaporation may lead to the formation of the deflated structures. This explanation is supported by the observation of stable polymer-matrix droplets ejected in molecular dynamics simulations of MAPLE

  13. Multi-imaging of Cytokinin and Abscisic Acid on the Roots of Rice (Oryza sativa) Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    Science.gov (United States)

    Shiono, Katsuhiro; Hashizaki, Riho; Nakanishi, Toyofumi; Sakai, Tatsuko; Yamamoto, Takushi; Ogata, Koretsugu; Harada, Ken-Ichi; Ohtani, Hajime; Katano, Hajime; Taira, Shu

    2017-09-06

    Plant hormones act as important signaling molecules that regulate responses to abiotic stress as well as plant growth and development. Because their concentrations of hormones control the physiological responses in the target tissue, it is important to know the distributions and concentrations in the tissues. However, it is difficult to determine the hormone concentration on the plant tissue as a result of the limitations of conventional methods. Here, we report the first multi-imaging of two plant hormones, one of cytokinin [i.e., trans-zeatin (tZ)] and abscisic acid (ABA) using a new technology, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) imaging. Protonated signals of tZ (m/z 220.1) and ABA (m/z 265.3) were chosen on longitudinal sections of rice roots for MS imaging. tZ was broadly distributed about 40 mm behind the root apex but was barely detectable at the apex, whereas ABA was mainly detected at the root apex. Multi-imaging using MALDI-TOF-MS enabled the visualization of the localization and quantification of plant hormones. Thus, this tool is applicable to a wide range of plant species growing under various environmental conditions.

  14. Visualization of dynamic change in contraction-induced lipid composition in mouse skeletal muscle by matrix-assisted laser desorption/ionization imaging mass spectrometry.

    Science.gov (United States)

    Goto-Inoue, Naoko; Manabe, Yasuko; Miyatake, Shouta; Ogino, Shinya; Morishita, Ai; Hayasaka, Takahiro; Masaki, Noritaka; Setou, Mitsutoshi; Fujii, Nobuharu L

    2012-06-01

    Lipids in skeletal muscle play a fundamental role both in normal muscle metabolism and in disease states. Skeletal muscle lipid accumulation is associated with several chronic metabolic disorders, including obesity, insulin resistance, and type 2 diabetes. However, it is poorly understood whether the lipid composition of skeletal muscle changes by contraction, due to the complexity of lipid molecular species. In this study, we used matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) to investigate changes in skeletal muscle lipid composition induced by contraction. We successfully observed the reduction of diacylglycerol and triacylglycerol, which are generally associated with muscle contraction. Interestingly, we found the accumulation of some saturated and mono-unsaturated fatty acids and poly-unsaturated fatty acids containing phosphatidylcholine in contracted muscles. Moreover, the distributions of several types of lipid were changed by contraction. Our results show that changes in the lipid amount, lipid composition, and energy metabolic activity can be evaluated in each local spot of cells and tissues at the same time using MALDI-IMS. In conclusion, MALDI-IMS is a powerful tool for studying lipid changes associated with contractions.

  15. Thymol treatment of bacteria prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis aids in identifying certain bacteria at the subspecies level.

    Science.gov (United States)

    Holland, Ricky D; Wilkes, Jon G; Cooper, Willie M; Alusta, Pierre; Williams, Anna; Pearce, Bruce; Beaudoin, Michael; Buzatu, Dan

    2014-12-15

    The identification of bacteria based on mass spectra produced by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has become routine since its introduction in 1996. The major drawback is that bacterial patterns produced by MALDI are dependent on sample preparation prior to analysis. This results in poor reproducibility in identifying bacterial types and between laboratories. The need for a more broadly applicable and useful sample handling procedure is warranted. Thymol was added to the suspension solvent of bacteria prior to MALDI analysis. The suspension solvent consisted of ethanol, water and TFA. The bacterium was added to the thymol suspension solvent and heated. An aliquot of the bacterial suspension was mixed directly with the matrix solution at a 9:1 ratio, matrix/bacteria solution, respectively. The mixture was then placed on the MALDI plate and allowed to air dry before MALDI analysis. The thymol method improved the quality of spectra and number of peaks when compared to other sample preparation procedures studied. The bacterium-identifying biomarkers assigned to four strains of E. coli were statistically 95% reproducible analyzed on three separate days. The thymol method successfully differentiated between the four E. coli strains. In addition, the thymol procedure could identify nine out of ten S. enterica serovars over a 3-day period and nine S. Typhimurium strains from the other ten serovars 90% of the time over the same period. The thymol method can identify certain bacteria at the sub-species level and yield reproducible results over time. It improves the quality of spectra by increasing the number of peaks when compared to the other sample preparation methods assessed in this study. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.

  16. Rapid identification of pathogens directly from blood culture bottles by Bruker matrix-assisted laser desorption laser ionization-time of flight mass spectrometry versus routine methods.

    Science.gov (United States)

    Jamal, Wafaa; Saleem, Rola; Rotimi, Vincent O

    2013-08-01

    The use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of microorganisms directly from blood culture is an exciting dimension to the microbiologists. We evaluated the performance of Bruker SepsiTyper kit™ (STK) for direct identification of bacteria from positive blood culture. This was done in parallel with conventional methods. Nonrepetitive positive blood cultures from 160 consecutive patients were prospectively evaluated by both methods. Of 160 positive blood cultures, the STK identified 114 (75.6%) isolates and routine conventional method 150 (93%). Thirty-six isolates were misidentified or not identified by the kit. Of these, 5 had score of >2.000 and 31 had an unreliable low score of <1.7. Four of 8 yeasts were identified correctly. The average turnaround time using the STK was 35 min, including extraction steps and 30:12 to 36:12 h with routine method. The STK holds promise for timely management of bacteremic patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. The sensitivity of direct identification from positive BacT/ALERT™ (bioMérieux) blood culture bottles by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is low.

    Science.gov (United States)

    Szabados, F; Michels, M; Kaase, M; Gatermann, S

    2011-02-01

    Recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been presented as a novel method for the direct identification of bacteria from positive blood culture bottles. The rate of the MALDI TOF MS-based identification in the present study from positive BacT/ALERT (bioMérieux, Marcy l'Etoile, France) blood culture bottles was 30%, which is far below the previously reported sensitivities using the BACTEC (Becton Dickinson, Franklin Lakes, NJ, USA) system. We also found evidence that the Biotyper algorithm did not identify a second pathogen in cases of positive BacT/ALERT blood culture bottles containing two different species. © 2010 The Authors. Journal Compilation © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  18. Feasibility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) networking in university hospitals in Brussels.

    Science.gov (United States)

    Martiny, D; Cremagnani, P; Gaillard, A; Miendje Deyi, V Y; Mascart, G; Ebraert, A; Attalibi, S; Dediste, A; Vandenberg, O

    2014-05-01

    The mutualisation of analytical platforms might be used to address rising healthcare costs. Our study aimed to evaluate the feasibility of networking a unique matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) system for common use in several university hospitals in Brussels, Belgium. During a one-month period, 1,055 successive bacterial isolates from the Brugmann University Hospital were identified on-site using conventional techniques; these same isolates were also identified using a MALDI-TOF MS system at the Porte de Hal Laboratory by sending target plates and identification projects via transportation and the INFECTIO_MALDI software (Infopartner, Nancy, France), respectively. The occurrence of transmission problems (MS networking always provided a faster identification result than conventional techniques, except when chromogenic culture media and oxidase tests were used (p MS networking could lead to substantial annual cost savings. MALDI-TOF MS networking presents many advantages, and few conventional techniques (optochin and oxidase tests) are required to ensure the same quality in patient care from the distant laboratory. Nevertheless, such networking should not be considered unless there is a reorganisation of workflow, efficient communication between teams, qualified technologists and a reliable IT department and helpdesk to manage potential connectivity problems.

  19. Identification of Cronobacter species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with an optimized analysis method.

    Science.gov (United States)

    Wang, Qi; Zhao, Xiao-Juan; Wang, Zi-Wei; Liu, Li; Wei, Yong-Xin; Han, Xiao; Zeng, Jing; Liao, Wan-Jin

    2017-08-01

    Rapid and precise identification of Cronobacter species is important for foodborne pathogen detection, however, commercial biochemical methods can only identify Cronobacter strains to genus level in most cases. To evaluate the power of mass spectrometry based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS) for Cronobacter species identification, 51 Cronobacter strains (eight reference and 43 wild strains) were identified by both MALDI-TOF MS and 16S rRNA gene sequencing. Biotyper RTC provided by Bruker identified all eight reference and 43 wild strains as Cronobacter species, which demonstrated the power of MALDI-TOF MS to identify Cronobacter strains to genus level. However, using the Bruker's database (6903 main spectra products) and Biotyper software, the MALDI-TOF MS analysis could not identify the investigated strains to species level. When MALDI-TOF MS analysis was performed using the combined in-house Cronobacter database and Bruker's database, bin setting, and unweighted pair group method with arithmetic mean (UPGMA) clustering, all the 51 strains were clearly identified into six Cronobacter species and the identification accuracy increased from 60% to 100%. We demonstrated that MALDI-TOF MS was reliable and easy-to-use for Cronobacter species identification and highlighted the importance of establishing a reliable database and improving the current data analysis methods by integrating the bin setting and UPGMA clustering. Copyright © 2017. Published by Elsevier B.V.

  20. Depletion of atmospheric muon-neutrino fluxes and structure of Majorana mass matrix

    International Nuclear Information System (INIS)

    Tanimoto, Morimitsu; Matsuda, Masahisa

    1993-01-01

    We study the structures of the Dirac and Majorana mass matrices which give rise to the large lepton mixing expected from the depleted atmospheric muonneutrino flux. In the case that the Majorana mass matrix has a hierarchy for generations, a certain kind of the neutrino Dirac mass matrix with the hierarchical structure leads to the large lepton mixing between the second generation and the third one. Our model-independent analyses serve the model-building of the mass matrices based on the quark-lepton unified theory. (orig.)

  1. Salting-out assisted liquid-liquid extraction coupled to ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of tetracycline residues in infant foods.

    Science.gov (United States)

    Moreno-González, David; García-Campaña, Ana M

    2017-04-15

    The use of salting-out assisted liquid-liquid extraction (SALLE) combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) has been evaluated for the determination of tetracyclines in infant foods based on meat and vegetables or in milk. To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized. Analytical performances of the method were satisfactory, obtaining limits of quantification lower than 0.48μgkg -1 in all cases. The precision, expressed as relative standard deviation (%, RSD) was below 11.3%. The extraction efficiency for fortified samples ranged from 89.2 to 96.8%, with RSDs lower than 7.3%. Matrix effect was evaluated for all samples studied, being lower than |21|% in all cases. In relation to the low solvent consumption, the proposed methodology could be considered rapid, cheap and environmentally friendly. Its applicability has been successfully tested in a wide range of infant foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    Science.gov (United States)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  3. Organic salt NEDC (N-naphthylethylenediamine dihydrochloride) assisted laser desorption ionization mass spectrometry for identification of metal ions in real samples.

    Science.gov (United States)

    Hou, Jian; Chen, Suming; Zhang, Ning; Liu, Huihui; Wang, Jianing; He, Qing; Wang, Jiyun; Xiong, Shaoxiang; Nie, Zongxiu

    2014-07-07

    The significance of metals in life and their epidemiological effects necessitate the development of a direct, efficient, and rapid method of analysis. The matrix assisted laser desorption/ionization technique is on the horns of a dilemma of metal analysis as the conventional matrixes have high background in the low mass range. An organic salt, NEDC (N-naphthylethylenediamine dihydrochloride), is applied as a matrix for identification of metal ions in the negative ion mode in the present work. Sixteen metal ions, Ba(2+), Ca(2+), Cd(2+), Ce(3+), Co(2+), Cu(2+), Fe(3+), Hg(2+), K(+), Mg(2+), Mn(2+), Na(+), Ni(2+), Pb(2+), Sn(2+) and Zn(2+), in the form of their chloride-adducted clusters were systematically tested. Mass spectra can provide unambiguous identification through accurate mass-to-charge ratios and characteristic isotope patterns. Compared to ruthenium ICP standard solution, tris(2,2'-bipyridyl)dichlororuthenium(ii) (C30H24N6Cl2Ru) can form organometallic chloride adducts to discriminate from the inorganic ruthenium by this method. After evaluating the sensitivity for Ca, Cu, Mg, Mn, Pb and Zn and plotting their quantitation curves of signal intensity versus concentration, we determined magnesium concentration in lake water quantitatively to be 5.42 mg L(-1) using the standard addition method. There is no significant difference from the result obtained with ICP-OES, 5.8 mg L(-1). Human urine and blood were also detected to ascertain the multi-metal analysis ability of this strategy in complex samples. At last, we explored its applicability to tissue slice and visualized sodium and potassium distribution by mass spectrometry imaging in the normal Kunming mouse brain.

  4. Fluorographene as a Mass Spectrometry Probe for High-Throughput Identification and Screening of Emerging Chemical Contaminants in Complex Samples.

    Science.gov (United States)

    Huang, Xiu; Liu, Qian; Huang, Xiaoyu; Nie, Zhou; Ruan, Ting; Du, Yuguo; Jiang, Guibin

    2017-01-17

    Mass spectrometry techniques for high-throughput analysis of complex samples are of profound importance in many areas such as food safety, omics studies, and environmental health science. Here we report the use of fluorographene (FG) as a new mass spectrometry probe for high-throughput identification and screening of emerging chemical contaminants in complex samples. FG was facilely synthesized by one-step exfoliation of fluorographite. With FG as a matrix or probe in matrix-assisted or surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (MALDI- or SELDI-TOF MS), higher sensitivity (detection limits at ppt or subppt levels), and better reproducibility were achieved than with other graphene-based materials due to the unique chemical structure and self-assembly properties of FG. The method was validated with different types of real complex samples. By using FG as a SELDI probe, we could easily detect trace amount of bisphenol S in paper products and high-fat canned food samples. Furthermore, we have successfully identified and screened as many as 28 quaternary ammonium halides in sewage sludge samples collected from municipal wastewater treatment plants. These results demonstrate that FG probe is a powerful tool for high-throughput analysis of complex samples by MS.

  5. Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

    Science.gov (United States)

    Schubert, Sören; Weinert, Kirsten; Wagner, Chris; Gunzl, Beatrix; Wieser, Andreas; Maier, Thomas; Kostrzewa, Markus

    2011-11-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is widely used for rapid and reliable identification of bacteria and yeast grown on agar plates. Moreover, MALDI-TOF MS also holds promise for bacterial identification from blood culture (BC) broths in hospital laboratories. The most important technical step for the identification of bacteria from positive BCs by MALDI-TOF MS is sample preparation to remove blood cells and host proteins. We present a method for novel, rapid sample preparation using differential lysis of blood cells. We demonstrate the efficacy and ease of use of this sample preparation and subsequent MALDI-TOF MS identification, applying it to a total of 500 aerobic and anaerobic BCs reported to be positive by a Bactec 9240 system. In 86.5% of all BCs, the microorganism species were correctly identified. Moreover, in 18/27 mixed cultures at least one isolate was correctly identified. A novel method that adjusts the score value for MALDI-TOF MS results is proposed, further improving the proportion of correctly identified samples. The results of the present study show that the MALDI-TOF MS-based method allows rapid (directly from positive BCs and with high accuracy. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Ultrananocrystalline Diamond Membranes for Detection of High-Mass Proteins

    Science.gov (United States)

    Kim, H.; Park, J.; Aksamija, Z.; Arbulu, M.; Blick, R. H.

    2016-12-01

    Mechanical resonators realized on the nanoscale by now offer applications in mass sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical mass sensors should be of extremely small size to achieve zepto- or yoctogram sensitivity in weighing single molecules similar to a classical scale. However, the small effective size and long response time for weighing biomolecules with a cantilever restricts their usefulness as a high-throughput method. Commercial mass spectrometry (MS), on the other hand, such as electrospray ionization and matrix-assisted laser desorption and ionization (MALDI) time of flight (TOF) and their charge-amplifying detectors are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as TOF. The principle we describe here for ion detection is based on the conversion of kinetic energy of the biomolecules into thermal excitation of chemical vapor deposition diamond nanomembranes via phonons followed by phonon-mediated detection via field emission of thermally emitted electrons. We fabricate ultrathin diamond membranes with large lateral dimensions for MALDI TOF MS of high-mass proteins. These diamond membranes are realized by straightforward etching methods based on semiconductor processing. With a minimal thickness of 100 nm and cross sections of up to 400 ×400 μ m2 , the membranes offer extreme aspect ratios. Ion detection is demonstrated in MALDI TOF analysis over a broad range from insulin to albumin. The resulting data in detection show much enhanced resolution as compared to existing detectors, which can offer better sensitivity and overall performance in resolving protein masses.

  7. Nonzero θ13 and neutrino masses from the modified tri-bi-maximal neutrino mixing matrix

    International Nuclear Information System (INIS)

    Damanik, A.

    2014-01-01

    There are 3 types of neutrino mixing matrices: tri-bi-maximal, bi-maximal and democratic. These 3 types of neutrino mixing matrices predict that the mixing angle θ 13 should be null. Motivated by the recent experimental evidence of nonzero and relatively large θ 13 , we modified the tribimaximal mixing matrix by introducing a simple perturbation matrix into tribimaximal neutrino mixing matrix. In this scenario, we obtained nonzero mixing angle θ 13 =7.9 degrees which is in agreement with the present experimental results. By imposing 2 zeros texture into the obtained neutrino mass matrix from modified tribimaximal mixing matrix, we then have the neutrino mass spectrum in normal hierarchy. Some phenomenological implications are also discussed. It appears that if we use the solar neutrino squared-mass difference to determine the values of neutrino masses, then we cannot have the correct value for the atmospheric squared-mass difference. Conversely, if we use the experimental value of the squared-mass difference to determine the neutrino masses, then we cannot have the correct value for the solar neutrino squared-mass difference

  8. Empirical Coulomb matrix elements and the mass of 22Al

    International Nuclear Information System (INIS)

    Whitehead, R.R.; Watt, A.; Kelvin, D.; Rutherford, H.J.

    1976-01-01

    An attempt has been made to obtain a set of Coulomb matrix elements which fit the known Coulomb energy shifts in the nuclei of mass 18 to 22. The interaction obtained fits the data well with only a few exceptions, one of these being the Coulomb shift of the notorious third 0 + state in 18 Ne. These Coulomb matrix elements are used together with the Chung-Wildenthal interaction to obtain a new prediction for the mass excess of 22 Al. The results indicate that 22 Al should be bound against proton emission. (Auth.)

  9. Distribution of erlotinib in rash and normal skin in cancer patients receiving erlotinib visualized by matrix assisted laser desorption/ionization mass spectrometry imaging.

    Science.gov (United States)

    Nishimura, Meiko; Hayashi, Mitsuhiro; Mizutani, Yu; Takenaka, Kei; Imamura, Yoshinori; Chayahara, Naoko; Toyoda, Masanori; Kiyota, Naomi; Mukohara, Toru; Aikawa, Hiroaki; Fujiwara, Yasuhiro; Hamada, Akinobu; Minami, Hironobu

    2018-04-06

    The development of skin rashes is the most common adverse event observed in cancer patients treated with epidermal growth factor receptor-tyrosine kinase inhibitors such as erlotinib. However, the pharmacological evidence has not been fully revealed. Erlotinib distribution in the rashes was more heterogeneous than that in the normal skin, and the rashes contained statistically higher concentrations of erlotinib than adjacent normal skin in the superficial skin layer (229 ± 192 vs. 120 ± 103 ions/mm 2 ; P = 0.009 in paired t -test). LC-MS/MS confirmed that the concentration of erlotinib in the skin rashes was higher than that in normal skin in the superficial skin layer (1946 ± 1258 vs. 1174 ± 662 ng/cm 3 ; P = 0.028 in paired t -test). The results of MALDI-MSI and LC-MS/MS were well correlated (coefficient of correlation 0.879, P distribution of erlotinib in the skin tissue was visualized using non-labeled MALDI-MSI. Erlotinib concentration in the superficial layer of the skin rashes was higher than that in the adjacent normal skin. We examined patients with advanced pancreatic cancer who developed skin rashes after treatment with erlotinib and gemcitabine. We biopsied both the rash and adjacent normal skin tissues, and visualized and compared the distribution of erlotinib within the skin using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The tissue concentration of erlotinib was also measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with laser microdissection.

  10. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R.M.

    2015-01-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  11. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  12. Direct bacterial identification in positive blood cultures by use of two commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry systems.

    Science.gov (United States)

    Chen, Jonathan H K; Ho, Pak-Leung; Kwan, Grace S W; She, Kevin K K; Siu, Gilman K H; Cheng, Vincent C C; Yuen, Kwok-Yung; Yam, Wing-Cheong

    2013-06-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of bacteria and fungi was recently introduced in microbiology laboratories. This technology could greatly improve the clinical management of patients and guidance for chemotherapy. In this study, we used a commercial MALDI Sepsityper extraction method to evaluate the performance of two commercial MALDI-TOF MS systems, the Vitek MS IVD (bioMérieux) and the Microflex LT Biotyper (Bruker Daltonics) for direct bacterial identification in positive blood cultures. In 181 monomicrobial cultures, both systems generated genus to species level identifications for >90% of the specimens (Biotyper, 177/181 [97.8%]; Vitek MS IVD, 167/181 [92.3%]). Overall, the Biotyper system generated significantly more accurate identifications than the Vitek MS IVD system (P = 0.016; 177 versus 167 out of 181 specimens). The Biotyper system identified the minority species among polymicrobial blood cultures. We also compared the performance of an in-house extraction method with that of the Sepsityper on both MALDI-TOF MS systems. The in-house method generated more correct identifications at the genus level than the Sepsityper (96.7% versus 93.5%) on the Biotyper system, whereas the two methods exhibited the same performance level (88.0% versus 88.0%) on the Vitek MS IVD system. Our study confirmed the practical advantages of MALDI-TOF MS, and our in-house extraction method reduced the reagent cost to $1 per specimen, with a shorter turnaround time of 3 h, which is highly cost-effective for a diagnostic microbiology service.

  13. Production of active lysozyme films by matrix assisted pulsed laser evaporation at 355 nm

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Kingshott, P.

    2007-01-01

    Thin lysozyme films have been produced in a dry environment by MAPLE (matrix assisted pulsed laser evaporation) from a water ice matrix irradiated by laser light at 355 nm above the absorption threshold of the protein. A significant part of the lysozyme molecules are transferred to the film without...

  14. Comparison of Vitek Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Versus Conventional Methods in Candida Identification.

    Science.gov (United States)

    Keçeli, Sema Aşkın; Dündar, Devrim; Tamer, Gülden Sönmez

    2016-02-01

    Candida species are generally identified by conventional methods such as germ tube or morphological appearance on corn meal agar, biochemical methods using API kits and molecular biological methods. Alternative to these methods, rapid and accurate identification methods of microorganisms called matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDİ-TOF MS) has recently been described. In this study, Candida identification results by API Candida kit, API 20C AUX kit and identifications on corn meal agar (CMA) are compared with the results obtained on Vitek-MS. All results were confirmed by sequencing internal transcribed spacer (ITS) regions of rDNA. Totally, 97 Candida strains were identified by germ tube test, CMA, API and Vitek-MS. Vitek-MS results were compatible with 74.2 % of API 20C AUX and 81.4 % of CMA results. The difference between the results of API Candida and API 20C AUX was detected. The ratio of discrepancy between Vitek-MS and API 20C AUX was 25.8 %. Candida species mostly identified as C. famata or C. tropicalis by and not compatible with API kits were identified as C. albicans by Vitek-MS. Sixteen Candida species having discrepant results with Vitek-MS, API or CMA were randomly chosen, and ITS sequence analysis was performed. The results of sequencing were compatible 56.2 % with API 20C AUX, 50 % with CMA and 93.7 % with Vitek-MS. When compared with conventional identification methods, MS results are more reliable and rapid for Candida identification. MS system may be used as routine identification method in clinical microbiology laboratories.

  15. Direct identification of pathogens from positive blood cultures using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Rodríguez-Sánchez, B; Sánchez-Carrillo, C; Ruiz, A; Marín, M; Cercenado, E; Rodríguez-Créixems, M; Bouza, E

    2014-07-01

    In recent years, matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has proved a rapid and reliable method for the identification of bacteria and yeasts that have already been isolated. The objective of this study was to evaluate this technology as a routine method for the identification of microorganisms directly from blood culture bottles (BCBs), before isolation, in a large collection of samples. For this purpose, 1000 positive BCBs containing 1085 microorganisms have been analysed by conventional phenotypic methods and by MALDI-TOF MS. Discrepancies have been resolved using molecular methods: the amplification and sequencing of the 16S rRNA gene or the Superoxide Dismutase gene (sodA) for streptococcal isolates. MALDI-TOF predicted a species- or genus-level identification of 81.4% of the analysed microorganisms. The analysis by episode yielded a complete identification of 814 out of 1000 analysed episodes (81.4%). MALDI-TOF identification is available for clinicians within hours of a working shift, as oppose to 18 h later when conventional identification methods are performed. Moreover, although further improvement of sample preparation for polymicrobial BCBs is required, the identification of more than one pathogen in the same BCB provides a valuable indication of unexpected pathogens when their presence may remain undetected in Gram staining. Implementation of MALDI-TOF identification directly from the BCB provides a rapid and reliable identification of the causal pathogen within hours. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  16. Rapid and sensitive determination of phytosterols in functional foods and medicinal herbs by using UHPLC-MS/MS with microwave-assisted derivatization combined with dual ultrasound-assisted dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Sun, Jing; Zhao, Xian-En; Dang, Jun; Sun, Xiaoyan; Zheng, Longfang; You, Jinmao; Wang, Xiao

    2017-02-01

    In this work, a hyphenated technique of dual ultrasound-assisted dispersive liquid-liquid microextraction combined with microwave-assisted derivatization followed by ultra high performance liquid chromatography tandem mass spectrometry has been developed for the determination of phytosterols in functional foods and medicinal herbs. Multiple reaction monitoring mode was used for the tandem mass spectrometry detection. A mass spectrometry sensitive reagent, 4'-carboxy-substituted rosamine, has been used as the derivatization reagent for five phytosterols, and internal standard diosgenin was used for the first time. Parameters for the dual microextraction, microwave-assisted derivatization, and ultra high performance liquid chromatography tandem mass spectrometry were all optimized in detail. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect, extremely low limits of detection (0.005-0.015 ng/mL) and limits of quantification (0.030-0.10 ng/mL) were achieved. The proposed method was compared with previously reported methods. It showed better sensitivity, selectivity, and accuracy. The matrix effect was also significantly reduced. The proposed method was successfully applied to the determination of five phytosterols in vegetable oil (sunflower oil, olive oil, corn oil, peanut oil), milk and orange juice (soymilk, peanut milk, orange juice), and medicinal herbs (Ginseng, Ganoderma lucidum, Cordyceps, Polygonum multiflorum) for the quality control of functional foods and medicinal herbs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electrospray Ionization with High-Resolution Mass Spectrometry as a Tool for Lignomics: Lignin Mass Spectrum Deconvolution

    Science.gov (United States)

    Andrianova, Anastasia A.; DiProspero, Thomas; Geib, Clayton; Smoliakova, Irina P.; Kozliak, Evguenii I.; Kubátová, Alena

    2018-05-01

    The capability to characterize lignin, lignocellulose, and their degradation products is essential for the development of new renewable feedstocks. Electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR TOF-MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di-, and triarene lignin model compounds as well as kraft alkali lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol L-1 formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9000 Da or higher, depending on the mass analyzer. The obtained M n and M w values of 1500 and 2500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrix-assisted laser desorption/ionization (MALDI)-HR TOF-MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ion mobility ESI-HR Q-TOF-MS. [Figure not available: see fulltext.

  18. Evaluation of VITEK mass spectrometry (MS), a matrix-assisted laser desorption ionization time-of-flight MS system for identification of anaerobic bacteria.

    Science.gov (United States)

    Lee, Wonmok; Kim, Myungsook; Yong, Dongeun; Jeong, Seok Hoon; Lee, Kyungwon; Chong, Yunsop

    2015-01-01

    By conventional methods, the identification of anaerobic bacteria is more time consuming and requires more expertise than the identification of aerobic bacteria. Although the matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems are relatively less studied, they have been reported to be a promising method for the identification of anaerobes. We evaluated the performance of the VITEK MS in vitro diagnostic (IVD; 1.1 database; bioMérieux, France) in the identification of anaerobes. We used 274 anaerobic bacteria isolated from various clinical specimens. The results for the identification of the bacteria by VITEK MS were compared to those obtained by phenotypic methods and 16S rRNA gene sequencing. Among the 249 isolates included in the IVD database, the VITEK MS correctly identified 209 (83.9%) isolates to the species level and an additional 18 (7.2%) at the genus level. In particular, the VITEK MS correctly identified clinically relevant and frequently isolated anaerobic bacteria to the species level. The remaining 22 isolates (8.8%) were either not identified or misidentified. The VITEK MS could not identify the 25 isolates absent from the IVD database to the species level. The VITEK MS showed reliable identifications for clinically relevant anaerobic bacteria.

  19. Ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride as a novel matrix for rapid quantitative and qualitative determination of serum free fatty acids by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yaping [Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005 (China); Wang, Yanmin [Department of Clinical Laboratory, Heze Municipal Hospital, Shandong (China); Guo, Shuai; Guo, Yumei; Liu, Hui [Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005 (China); Li, Zhili, E-mail: lizhili@ibms.pumc.edu.cn [Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005 (China)

    2013-09-10

    Graphical abstract: -- Highlights: •A novel MALDI matrix for the detection of serum free fatty acids is ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride. •Multiple point internal standard calibration curves were constructed for nine FFAs, respectively, with excellent correlation coefficients between 0.991 and 0.999. •The MALDI-MS approach was used to rapidly differentiate the patients with and without hyperglycemia and healthy controls. -- Abstract: The blood free fatty acids (FFAs), which provide energy to the cell and act as substrates in the synthesis of fats, lipoproteins, liposaccharides, and eicosanoids, involve in a number of important physiological processes. In the present study, matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) with ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride (ATNEDC) as a novel MALDI matrix in a negative ion mode was employed to directly quantify serum FFAs. Multiple point internal standard calibration curves between the concentration ratios of individual fatty acids to internal standard (IS, C{sub 17:0}) versus their corresponding intensity ratios were constructed for C{sub 14:0}, C{sub 16:1}, C{sub 16:0}, C{sub 18:0}, C{sub 18:1}, C{sub 18:2}, C{sub 18:3}, C{sub 20:4}, and C{sub 22:6}, respectively, in their mixture, with correlation coefficients between 0.991 and 0.999 and limits of detection (LODs) between 0.2 and 5.4 μM, along with the linear dynamic range of more than two orders of magnitude. The results indicate that the multiple point internal standard calibration could reduce the impact of ion suppression and improve quantification accuracy in the MALDI mode. The quantitative results of nine FFAs from 339 serum samples, including 161 healthy controls, 118 patients with hyperglycemia and 60 patients without hyperglycemia show that FFAs levels in hyperglycemic patient sera are significantly higher than those in healthy

  20. Ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride as a novel matrix for rapid quantitative and qualitative determination of serum free fatty acids by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Zhang, Yaping; Wang, Yanmin; Guo, Shuai; Guo, Yumei; Liu, Hui; Li, Zhili

    2013-01-01

    Graphical abstract: -- Highlights: •A novel MALDI matrix for the detection of serum free fatty acids is ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride. •Multiple point internal standard calibration curves were constructed for nine FFAs, respectively, with excellent correlation coefficients between 0.991 and 0.999. •The MALDI-MS approach was used to rapidly differentiate the patients with and without hyperglycemia and healthy controls. -- Abstract: The blood free fatty acids (FFAs), which provide energy to the cell and act as substrates in the synthesis of fats, lipoproteins, liposaccharides, and eicosanoids, involve in a number of important physiological processes. In the present study, matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) with ammonia-treated N-(1-naphthyl) ethylenediamine dihydrochloride (ATNEDC) as a novel MALDI matrix in a negative ion mode was employed to directly quantify serum FFAs. Multiple point internal standard calibration curves between the concentration ratios of individual fatty acids to internal standard (IS, C 17:0 ) versus their corresponding intensity ratios were constructed for C 14:0 , C 16:1 , C 16:0 , C 18:0 , C 18:1 , C 18:2 , C 18:3 , C 20:4 , and C 22:6 , respectively, in their mixture, with correlation coefficients between 0.991 and 0.999 and limits of detection (LODs) between 0.2 and 5.4 μM, along with the linear dynamic range of more than two orders of magnitude. The results indicate that the multiple point internal standard calibration could reduce the impact of ion suppression and improve quantification accuracy in the MALDI mode. The quantitative results of nine FFAs from 339 serum samples, including 161 healthy controls, 118 patients with hyperglycemia and 60 patients without hyperglycemia show that FFAs levels in hyperglycemic patient sera are significantly higher than those in healthy controls and patients without

  1. Measurement of laser activated electron tunneling from semiconductor zinc oxide to adsorbed organic molecules by a matrix assisted laser desorption ionization mass spectrometer

    International Nuclear Information System (INIS)

    Zhong Hongying; Fu Jieying; Wang Xiaoli; Zheng Shi

    2012-01-01

    Highlights: ► Irradiation of photons with energies more than the band gap generates electron–hole pairs. ► Electron tunneling probability is dependent on the electron mobility. ► Tunneling electrons are captured by charge deficient atoms. ► Unpaired electrons induce cleavages of chemical bonds. - Abstract: Measurement of light induced heterogeneous electron transfer is important for understanding of fundamental processes involved in chemistry, physics and biology, which is still challenging by current techniques. Laser activated electron tunneling (LAET) from semiconductor metal oxides was observed and characterized by a MALDI (matrix assisted laser desorption ionization) mass spectrometer in this work. Nanoparticles of ZnO were placed on a MALDI sample plate. Free fatty acids and derivatives were used as models of organic compounds and directly deposited on the surface of ZnO nanoparticles. Irradiation of UV laser (λ = 355 nm) with energy more than the band gap of ZnO produces ions that can be detected in negative mode. When TiO 2 nanoparticles with similar band gap but much lower electron mobility were used, these ions were not observed unless the voltage on the sample plate was increased. The experimental results indicate that laser induced electron tunneling is dependent on the electron mobility and the strength of the electric field. Capture of low energy electrons by charge-deficient atoms of adsorbed organic molecules causes unpaired electron-directed cleavages of chemical bonds in a nonergodic pathway. In positive detection mode, electron tunneling cannot be observed due to the reverse moving direction of electrons. It should be able to expect that laser desorption ionization mass spectrometry is a new technique capable of probing the dynamics of electron tunneling. LAET offers advantages as a new ionization dissociation method for mass spectrometry.

  2. Direct analysis and identification of pathogenic Lichtheimia species by matrix-assisted laser desorption ionization-time of flight analyzer-mediated mass spectrometry.

    Science.gov (United States)

    Schrödl, Wieland; Heydel, Tilo; Schwartze, Volker U; Hoffmann, Kerstin; Grosse-Herrenthey, Anke; Walther, Grit; Alastruey-Izquierdo, Ana; Rodriguez-Tudela, Juan Luis; Olias, Philipp; Jacobsen, Ilse D; de Hoog, G Sybren; Voigt, Kerstin

    2012-02-01

    Zygomycetes of the order Mucorales can cause life-threatening infections in humans. These mucormycoses are emerging and associated with a rapid tissue destruction and high mortality. The resistance of Mucorales to antimycotic substances varies between and within clinically important genera such as Mucor, Rhizopus, and Lichtheimia. Thus, an accurate diagnosis before onset of antimycotic therapy is recommended. Matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF) mass spectrometry (MS) is a potentially powerful tool to rapidly identify infectious agents on the species level. We investigated the potential of MALDI-TOF MS to differentiate Lichtheimia species, one of the most important agents of mucormycoses. Using the Bruker Daltonics FlexAnalysis (version 3.0) software package, a spectral database library with m/z ratios of 2,000 to 20,000 Da was created for 19 type and reference strains of clinically relevant Zygomycetes of the order Mucorales (12 species in 7 genera). The database was tested for accuracy by use of 34 clinical and environmental isolates of Lichtheimia comprising a total of five species. Our data demonstrate that MALDI-TOF MS can be used to clearly discriminate Lichtheimia species from other pathogenic species of the Mucorales. Furthermore, the method is suitable to discriminate species within the genus. The reliability and robustness of the MALDI-TOF-based identification are evidenced by high score values (above 2.3) for the designation to a certain species and by moderate score values (below 2.0) for the discrimination between clinically relevant (Lichtheimia corymbifera, L. ramosa, and L. ornata) and irrelevant (L. hyalospora and L. sphaerocystis) species. In total, all 34 strains were unequivocally identified by MALDI-TOF MS with score values of >1.8 down to the generic level, 32 out of 34 of the Lichtheimia isolates (except CNM-CM 5399 and FSU 10566) were identified accurately with score values of >2 (probable species

  3. Direct Analysis and Identification of Pathogenic Lichtheimia Species by Matrix-Assisted Laser Desorption Ionization–Time of Flight Analyzer-Mediated Mass Spectrometry

    Science.gov (United States)

    Schrödl, Wieland; Heydel, Tilo; Schwartze, Volker U.; Hoffmann, Kerstin; Große-Herrenthey, Anke; Walther, Grit; Alastruey-Izquierdo, Ana; Rodriguez-Tudela, Juan Luis; Olias, Philipp; Jacobsen, Ilse D.; de Hoog, G. Sybren

    2012-01-01

    Zygomycetes of the order Mucorales can cause life-threatening infections in humans. These mucormycoses are emerging and associated with a rapid tissue destruction and high mortality. The resistance of Mucorales to antimycotic substances varies between and within clinically important genera such as Mucor, Rhizopus, and Lichtheimia. Thus, an accurate diagnosis before onset of antimycotic therapy is recommended. Matrix-assisted laser desorption ionization (MALDI)–time of flight (TOF) mass spectrometry (MS) is a potentially powerful tool to rapidly identify infectious agents on the species level. We investigated the potential of MALDI-TOF MS to differentiate Lichtheimia species, one of the most important agents of mucormycoses. Using the Bruker Daltonics FlexAnalysis (version 3.0) software package, a spectral database library with m/z ratios of 2,000 to 20,000 Da was created for 19 type and reference strains of clinically relevant Zygomycetes of the order Mucorales (12 species in 7 genera). The database was tested for accuracy by use of 34 clinical and environmental isolates of Lichtheimia comprising a total of five species. Our data demonstrate that MALDI-TOF MS can be used to clearly discriminate Lichtheimia species from other pathogenic species of the Mucorales. Furthermore, the method is suitable to discriminate species within the genus. The reliability and robustness of the MALDI-TOF-based identification are evidenced by high score values (above 2.3) for the designation to a certain species and by moderate score values (below 2.0) for the discrimination between clinically relevant (Lichtheimia corymbifera, L. ramosa, and L. ornata) and irrelevant (L. hyalospora and L. sphaerocystis) species. In total, all 34 strains were unequivocally identified by MALDI-TOF MS with score values of >1.8 down to the generic level, 32 out of 34 of the Lichtheimia isolates (except CNM-CM 5399 and FSU 10566) were identified accurately with score values of >2 (probable species

  4. Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Can Precisely Discriminate the Lineages of Listeria monocytogenes and Species of Listeria.

    Science.gov (United States)

    Ojima-Kato, Teruyo; Yamamoto, Naomi; Takahashi, Hajime; Tamura, Hiroto

    2016-01-01

    The genetic lineages of Listeria monocytogenes and other species of the genus Listeria are correlated with pathogenesis in humans. Although matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a prevailing tool for rapid and reliable microbial identification, the precise discrimination of Listeria species and lineages remains a crucial issue in clinical settings and for food safety. In this study, we constructed an accurate and reliable MS database to discriminate the lineages of L. monocytogenes and the species of Listeria (L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, L. grayi, and L. rocourtiae) based on the S10-spc-alpha operon gene encoded ribosomal protein mass spectrum (S10-GERMS) proteotyping method, which relies on both genetic information (genomics) and observed MS peaks in MALDI-TOF MS (proteomics). The specific set of eight biomarkers (ribosomal proteins L24, L6, L18, L15, S11, S9, L31 type B, and S16) yielded characteristic MS patterns for the lineages of L. monocytogenes and the different species of Listeria, and led to the construction of a MS database that was successful in discriminating between these organisms in MALDI-TOF MS fingerprinting analysis followed by advanced proteotyping software Strain Solution analysis. We also confirmed the constructed database on the proteotyping software Strain Solution by using 23 Listeria strains collected from natural sources.

  5. The Evolution of MALDI-TOF Mass Spectrometry toward Ultra-High-Throughput Screening: 1536-Well Format and Beyond.

    Science.gov (United States)

    Haslam, Carl; Hellicar, John; Dunn, Adrian; Fuetterer, Arne; Hardy, Neil; Marshall, Peter; Paape, Rainer; Pemberton, Michelle; Resemannand, Anja; Leveridge, Melanie

    2016-02-01

    Mass spectrometry (MS) offers a label-free, direct-detection method, in contrast to fluorescent or colorimetric methodologies. Over recent years, solid-phase extraction-based techniques, such as the Agilent RapidFire system, have emerged that are capable of analyzing samples in high-throughput screening (HTS). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) offers an alternative for high-throughput MS detection. However, sample preparation and deposition onto the MALDI target, as well as interference from matrix ions, have been considered limitations for the use of MALDI for screening assays. Here we describe the development and validation of assays for both small-molecule and peptide analytes using MALDI-TOF coupled with nanoliter liquid handling. Using the JMJD2c histone demethylase and acetylcholinesterase as model systems, we have generated robust data in a 1536 format and also increased sample deposition to 6144 samples per target. Using these methods, we demonstrate that this technology can deliver fast sample analysis time with low sample volume, and data comparable to that of current RapidFire assays. © 2015 Society for Laboratory Automation and Screening.

  6. Analysis of the differentially expressed low molecular weight peptides in human serum via an N-terminal isotope labeling technique combining nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong

    2012-11-15

    Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Evaluation of a simple protein extraction method for species identification of clinically relevant staphylococci by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Matsuda, Naoto; Matsuda, Mari; Notake, Shigeyuki; Yokokawa, Hirohide; Kawamura, Yoshiaki; Hiramatsu, Keiichi; Kikuchi, Ken

    2012-12-01

    In clinical microbiology, bacterial identification is labor-intensive and time-consuming. A solution for this problem is the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In this study, we evaluated a modified protein extraction method of identification performed on target plates (on-plate extraction method) with MALDI-TOF (Bruker Microflex LT with Biotyper version 3.0) and compared it to 2 previously described methods: the direct colony method and a standard protein extraction method (standard extraction method). We evaluated the species of 273 clinical strains and 14 reference strains of staphylococci. All isolates were characterized using the superoxide dismutase A sequence as a reference. For the species identification, the on-plate, standard extraction, and direct colony methods identified 257 isolates (89.5%), 232 isolates (80.8%), and 173 isolates (60.2%), respectively, with statistically significant differences among the three methods (P extraction method is at least as good as standard extraction in identification rate and has the advantage of a shorter processing time.

  8. Microorganisms in cryopreserved semen and culture media used in the in vitro production (IVP) of bovine embryos identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS).

    Science.gov (United States)

    Zampieri, Dávila; Santos, Vanessa G; Braga, Patrícia A C; Ferreira, Christina R; Ballottin, Daniela; Tasic, Ljubica; Basso, Andréa C; Sanches, Bruno V; Pontes, José H F; da Silva, Bárbara Pereira; Garboggini, Fabiana Fantinatti; Eberlin, Marcos N; Tata, Alessandra

    2013-09-01

    Commercial cattle breeders produce their own herd offspring for the dairy and beef market using artificial insemination. The procedure involves sanitary risks associated with the collection and commercialization of the germplasm, and the in vitro production and transfer of the bovine embryos must be monitored by strict health surveillance. To avoid the spreading of infectious diseases, one must rely on using controlled and monitored germplasm, media, and reagents that are guaranteed free of pathogens. In this article, we investigated the use of a new mass spectrometric approach for fast and accurate identification of bacteria and fungi in bovine semen and in culture media employed in the embryo in vitro production process. The microorganisms isolated from samples obtained in a commercial bovine embryo IVP setting were identified in a few minutes by their conserved peptide/protein profile, obtained applying matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), matched against a commercial database. The successful microorganisms MS identification has been confirmed by DNA amplification and sequencing. Therefore, the MS technique seems to offer a powerful tool for rapid and accurate microorganism identification in semen and culture media samples. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Decision peptide-driven: a free software tool for accurate protein quantification using gel electrophoresis and matrix assisted laser desorption ionization time of flight mass spectrometry.

    Science.gov (United States)

    Santos, Hugo M; Reboiro-Jato, Miguel; Glez-Peña, Daniel; Nunes-Miranda, J D; Fdez-Riverola, Florentino; Carvallo, R; Capelo, J L

    2010-09-15

    The decision peptide-driven tool implements a software application for assisting the user in a protocol for accurate protein quantification based on the following steps: (1) protein separation through gel electrophoresis; (2) in-gel protein digestion; (3) direct and inverse (18)O-labeling and (4) matrix assisted laser desorption ionization time of flight mass spectrometry, MALDI analysis. The DPD software compares the MALDI results of the direct and inverse (18)O-labeling experiments and quickly identifies those peptides with paralleled loses in different sets of a typical proteomic workflow. Those peptides are used for subsequent accurate protein quantification. The interpretation of the MALDI data from direct and inverse labeling experiments is time-consuming requiring a significant amount of time to do all comparisons manually. The DPD software shortens and simplifies the searching of the peptides that must be used for quantification from a week to just some minutes. To do so, it takes as input several MALDI spectra and aids the researcher in an automatic mode (i) to compare data from direct and inverse (18)O-labeling experiments, calculating the corresponding ratios to determine those peptides with paralleled losses throughout different sets of experiments; and (ii) allow to use those peptides as internal standards for subsequent accurate protein quantification using (18)O-labeling. In this work the DPD software is presented and explained with the quantification of protein carbonic anhydrase. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. Solid-Phase Extraction Strategies to Surmount Body Fluid Sample Complexity in High-Throughput Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Bladergroen, Marco R.; van der Burgt, Yuri E. M.

    2015-01-01

    For large-scale and standardized applications in mass spectrometry- (MS-) based proteomics automation of each step is essential. Here we present high-throughput sample preparation solutions for balancing the speed of current MS-acquisitions and the time needed for analytical workup of body fluids. The discussed workflows reduce body fluid sample complexity and apply for both bottom-up proteomics experiments and top-down protein characterization approaches. Various sample preparation methods that involve solid-phase extraction (SPE) including affinity enrichment strategies have been automated. Obtained peptide and protein fractions can be mass analyzed by direct infusion into an electrospray ionization (ESI) source or by means of matrix-assisted laser desorption ionization (MALDI) without further need of time-consuming liquid chromatography (LC) separations. PMID:25692071

  11. Effects of dynamic matrix remodelling on en masse migration of fibroblasts on collagen matrices.

    Science.gov (United States)

    Ozcelikkale, Altug; Dutton, J Craig; Grinnell, Frederick; Han, Bumsoo

    2017-10-01

    Fibroblast migration plays a key role during various physiological and pathological processes. Although migration of individual fibroblasts has been well studied, migration in vivo often involves simultaneous locomotion of fibroblasts sited in close proximity, so-called ' en masse migration', during which intensive cell-cell interactions occur. This study aims to understand the effects of matrix mechanical environments on the cell-matrix and cell-cell interactions during en masse migration of fibroblasts on collagen matrices. Specifically, we hypothesized that a group of migrating cells can significantly deform the matrix, whose mechanical microenvironment dramatically changes compared with the undeformed state, and the alteration of the matrix microenvironment reciprocally affects cell migration. This hypothesis was tested by time-resolved measurements of cell and extracellular matrix movement during en masse migration on collagen hydrogels with varying concentrations. The results illustrated that a group of cells generates significant spatio-temporal deformation of the matrix before and during the migration. Cells on soft collagen hydrogels migrate along tortuous paths, but, as the matrix stiffness increases, cell migration patterns become aligned with each other and show coordinated migration paths. As cells migrate, the matrix is locally compressed, resulting in a locally stiffened and dense matrix across the collagen concentration range studied. © 2017 The Author(s).

  12. In situ liquid-liquid extraction as a sample preparation method for matrix-assisted laser desorption/ionization MS analysis of polypeptide mixtures

    DEFF Research Database (Denmark)

    Kjellström, Sven; Jensen, Ole Nørregaard

    2003-01-01

    A novel liquid-liquid extraction (LLE) procedure was investigated for preparation of peptide and protein samples for matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). LLE using ethyl acetate as the water-immiscible organic solvent enabled segregation of hydrophobic...... matrix to the organic solvent enhanced the efficiency of the LLE-MALDI MS method for analysis of hydrophobic peptides and proteins. LLE-MALDI MS enabled the detection of the hydrophobic membrane protein bacteriorhodopsin as a component in a simple protein mixture. Peptide mixtures containing...... phosphorylated, glycosylated, or acylated peptides were successfully separated and analyzed by the in situ LLE-MALDI MS technique and demonstrate the potential of this method for enhanced separation and structural analysis of posttranslationally modified peptides in proteomics research....

  13. Species Identification and Delineation of Pathogenic Mucorales by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Shao, Jin; Wan, Zhe; Li, Ruoyu; Yu, Jin

    2018-04-01

    This study aimed to validate the effectiveness of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based identification of filamentous fungi of the order Mucorales. A total of 111 isolates covering six genera preserved at the Research Center for Medical Mycology of Peking University were selected for MALDI-TOF MS analysis. We emphasized the study of 23 strains of Mucor irregularis predominantly isolated from patients in China. We first used the Bruker Filamentous Fungi library (v1.0) to identify all 111 isolates. To increase the identification rate, we created a compensatory in-house database, the Beijing Medical University (BMU) database, using 13 reference strains covering 6 species, including M. irregularis , Mucor hiemalis , Mucor racemosus , Cunninghamella bertholletiae , Cunninghamella phaeospora , and Cunninghamella echinulata All 111 isolates were then identified by MALDI-TOF MS using a combination of the Bruker library and BMU database. MALDI-TOF MS identified 55 (49.5%) and 74 (66.7%) isolates at the species and genus levels, respectively, using the Bruker Filamentous Fungi library v1.0 alone. A combination of the Bruker library and BMU database allowed MALDI-TOF MS to identify 90 (81.1%) and 111 (100%) isolates at the species and genus levels, respectively, with a significantly increased accuracy rate. MALDI-TOF MS poorly identified Mucorales when the Bruker library was used alone due to its lack of some fungal species. In contrast, this technique perfectly identified M. irregularis after main spectrum profiles (MSPs) of relevant reference strains were added to the Bruker library. With an expanded Bruker library, MALDI-TOF MS is an effective tool for the identification of pathogenic Mucorales. Copyright © 2018 American Society for Microbiology.

  14. Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria

    Science.gov (United States)

    Burnham, Carey-Ann D.; Bythrow, Maureen; Garner, Omai B.; Ginocchio, Christine C.; Jennemann, Rebecca; Lewinski, Michael A.; Manji, Ryhana; Mochon, A. Brian; Procop, Gary W.; Richter, Sandra S.; Sercia, Linda; Westblade, Lars F.; Ferraro, Mary Jane; Branda, John A.

    2013-01-01

    Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting. PMID:23658261

  15. Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria.

    Science.gov (United States)

    Rychert, Jenna; Burnham, Carey-Ann D; Bythrow, Maureen; Garner, Omai B; Ginocchio, Christine C; Jennemann, Rebecca; Lewinski, Michael A; Manji, Ryhana; Mochon, A Brian; Procop, Gary W; Richter, Sandra S; Sercia, Linda; Westblade, Lars F; Ferraro, Mary Jane; Branda, John A

    2013-07-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting.

  16. Mass spectrometry

    DEFF Research Database (Denmark)

    Nyvang Hartmeyer, Gitte; Jensen, Anne Kvistholm; Böcher, Sidsel

    2010-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently being introduced for the rapid and accurate identification of bacteria. We describe 2 MALDI-TOF MS identification cases - 1 directly on spinal fluid and 1 on grown bacteria. Rapidly obtained...

  17. Large νμ-ντ mixing and the structure of right-handed Majorana mass matrix

    International Nuclear Information System (INIS)

    Matsuda, Masahisa

    1993-01-01

    Recent solar neutrino and atmospheric neutrino experiment suggest the existence of the large lepton mixing among 2nd and 3rd generation neutrino. This fact gives the important information on the structure of right-handed Majorana neutrino. It is shown that, if we assume that the neutrino Dirac mass matrix is similar to the mass matrix of the up-quark sector, the large lepton mixing among the 2nd and the 3rd generation requires the hierarchical structure of the Majorana mass matrix. This model-independent analyses serve the model-building of the mass matrices based on the quark-lepton unified theory. (author)

  18. Flexible xxx-asp/asn and gly-xxx residues of equine cytochrome C in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.

    Science.gov (United States)

    Takayama, Mitsuo

    2012-01-01

    The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx-Asp/Asn and Gly-Xxx, were identified from the discontinuous intense peak of c'-ions originating from specific cleavage at N-Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c'-ions originating from N-Cα bond cleavage at Xxx-Asp/Asn and Gly-Xxx residues, but also C-terminal side complement z'-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX.

  19. Flexible Xxx–Asp/Asn and Gly–Xxx Residues of Equine Cytochrome c in Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mass Spectrometry

    Science.gov (United States)

    Takayama, Mitsuo

    2012-01-01

    The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx–Asp/Asn and Gly–Xxx, were identified from the discontinuous intense peak of c′-ions originating from specific cleavage at N–Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c′-ions originating from N–Cα bond cleavage at Xxx–Asp/Asn and Gly–Xxx residues, but also C-terminal side complement z′-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX. PMID:24349908

  20. Applications of copolymer for rapid identification of bacteria in blood culture broths using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ashizawa, Kazuho; Murata, Syota; Terada, Takashi; Ito, Daisuke; Bunya, Masaru; Watanabe, Koji; Teruuchi, Yoko; Tsuchida, Sachio; Satoh, Mamoru; Nishimura, Motoi; Matsushita, Kazuyuki; Sugama, Yuji; Nomura, Fumio

    2017-08-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can be used to identify pathogens in blood culture samples. However, sample pretreatment is needed for direct identification of microbes in blood culture bottles. Conventional protocols are complex and time-consuming. Therefore, in this study, we developed a method for collecting bacteria using polyallylamine-polystyrene copolymer for application in wastewater treatment technology. Using representative bacterial species Escherichia coli and Staphylococcus capitis, we found that polyallylamine-polystyrene can form visible aggregates with bacteria, which can be identified using MALDI-TOF MS. The processing time of our protocol was as short as 15min. Hemoglobin interference in MALDI spectra analysis was significantly decreased in our method compared with the conventional method. In a preliminary experiment, we evaluated the use of our protocol to identify clinical isolates from blood culture bottles. MALDI-TOF MS-based identification of 17 strains from five bacterial species (E. coli, Klebsiella pneumoniae, Enterococcus faecalis, S. aureus, and S. capitis) collected by our protocol was satisfactory. Prospective large-scale studies are needed to further evaluate the clinical application of this novel and simple method of collecting bacteria in blood culture bottles. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS

    Science.gov (United States)

    Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua

    2018-01-01

    Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. [Figure not available: see fulltext.

  2. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species.

    Science.gov (United States)

    Alanio, A; Beretti, J-L; Dauphin, B; Mellado, E; Quesne, G; Lacroix, C; Amara, A; Berche, P; Nassif, X; Bougnoux, M-E

    2011-05-01

    New Aspergillus species have recently been described with the use of multilocus sequencing in refractory cases of invasive aspergillosis. The classical phenotypic identification methods routinely used in clinical laboratories failed to identify them adequately. Some of these Aspergillus species have specific patterns of susceptibility to antifungal agents, and misidentification may lead to inappropriate therapy. We developed a matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)-based strategy to adequately identify Aspergillus species to the species level. A database including the reference spectra of 28 clinically relevant species from seven Aspergillus sections (five common and 23 unusual species) was engineered. The profiles of young and mature colonies were analysed for each reference strain, and species-specific spectral fingerprints were identified. The performance of the database was then tested on 124 clinical and 16 environmental isolates previously characterized by partial sequencing of the β-tubulin and calmodulin genes. One hundred and thirty-eight isolates of 140 (98.6%) were correctly identified. Two atypical isolates could not be identified, but no isolate was misidentified (specificity: 100%). The database, including species-specific spectral fingerprints of young and mature colonies of the reference strains, allowed identification regardless of the maturity of the clinical isolate. These results indicate that MALDI-TOF MS is a powerful tool for rapid and accurate identification of both common and unusual species of Aspergillus. It can give better results than morphological identification in clinical laboratories. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  3. Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization Sepsityper™ and time of flight mass spectrometry.

    Science.gov (United States)

    Kok, Jen; Thomas, Lee C; Olma, Thomas; Chen, Sharon C A; Iredell, Jonathan R

    2011-01-01

    Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a novel method for the direct identification of bacteria from blood culture broths. We evaluate for the first time, the performance of the MALDI Sepsityper™ Kit and MS for the identification of bacteria compared to standard phenotypic methods using the manufacturer's specified bacterial identification criteria (spectral scores ≥1.700-1.999 and ≥2.000 indicated identification to genus and species level, respectively). Five hundred and seven positive blood culture broths were prospectively examined, of which 379 (74.8%; 358 monomicrobial, 21 polymicrobial) were identified by MALDI-TOF MS; 195 (100%) and 132 (67.7%) of 195 gram-positive; and 163 (100%) and 149 (91.4%) of 163 gram-negative organisms from monomicrobial blood cultures were correctly identified to genus and species level, respectively. Spectral scores blood culture broths, including 31.6% and 32.3% of gram-positive and polymicrobial blood cultures, respectively. Significantly more gram-negative organisms were identified compared to gram-positive organisms at species level (pblood cultures were misidentified, but at species level only; including four monomicrobial blood cultures with Streptococcus oralis/mitis that were misidentified as Streptococcus pneumoniae. Positive predictive values for the direct identification of both gram-positive and gram-negative bacteria from monomicrobial blood culture broths to genus level were 100%. A diagnostic algorithm for positive blood culture broths that incorporates gram staining and MALDI-TOF MS should identify the majority of pathogens, particularly to genus level.

  4. Comparative study on Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation of urease thin films

    International Nuclear Information System (INIS)

    Smausz, Tomi; Megyeri, Gabor; Kekesi, Renata; Vass, Csaba; Gyoergy, Eniko; Sima, Felix; Mihailescu, Ion N.; Hopp, Bela

    2009-01-01

    Urease thin films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE) and Pulsed Laser Deposition from two types of targets: frozen water solutions of urease with different concentrations (1-10% m/v) and pure urease pellets. The fluence of the ablating KrF excimer laser was varied between 300 and 2200 mJ/cm 2 . Fourier transform infrared spectra of the deposited films showed no difference as compared to the original urease. Morphologic studies proved that the films consist of a smooth 'base' layer with embedded micrometer-sized droplets. Absorption-coefficient measurements contradicted the traditional 'absorptive matrix' model for MAPLE deposition. The laser energy was absorbed by urease clusters leading to a local heating-up and evaporation of the frozen matrix from the uppermost layer accompanied by the release of dissolved urease molecules. Significant enzymatic activity of urease was preserved only during matrix assisted transfer.

  5. Capitalizing Resolving Power of Density Gradient Ultracentrifugation by Freezing and Precisely Slicing Centrifuged Solution: Enabling Identification of Complex Proteins from Mitochondria by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Haiqing Yu

    2016-01-01

    Full Text Available Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types.

  6. [Identification of mycobacteria by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry--using reference strains and clinical isolates of Mycobacterium].

    Science.gov (United States)

    Niitsuma, Katsunao; Saito, Miwako; Koshiba, Shizuko; Kaneko, Michiyo

    2014-05-01

    Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) method is being played an important role for the inspection of clinical microorganism as a rapid and the price reduction. Mass spectra obtained by measuring become points of identification whether the peak pattern match any species mass spectral pattern. We currently use MALDI-TOF MS for rapid and accurate diagnosis of inactivated reference and clinical isolates of Mycobacterium because of the improved pretreatment techniques compared with former inspection methods that pose a higher risk of infection to the operator. The identification matching rate of score value (SV) peak pattern spectra was compared with that of conventional methods such as strain diffusion/amplification. Also, cultures were examined after a fixed number of days. Compared with the initial inspection technique, the pretreatment stage of current MALDI-TOF MS inspection techniques can improve the analysis of inactivated acid-fast bacteria that are often used as inspection criteria strains of clinical isolates. Next, we compared the concordance rate for identification between MALDI-TOF MS and conventional methods such as diffusion/amplification by comparison of peak pattern spectra and evaluated SV spectra to identify differences in the culture media after the retention period. In examination of 158 strains of clinical isolated Mycobacterium tuberculosis complex (MTC), the identification coincidence rate in the genus level in a matching pattern was 99.4%, when the species level was included 94.9%. About 37 strains of nontuberculous mycobacteria (NTM), the identification coincidence rate in the genus level was 94.6%. M. bovis BCG (Tokyo strain) in the reference strain was judged by the matching pattern to be MTC, and it suggested that they are M. tuberculosis and affinity species with high DNA homology. Nontuberculous mycobacterial M. gordonae strain JATA 33-01 shared peak pattern spectra, excluding the

  7. Instant screening and verification of carbapenemase activity in Bacteroides fragilis in positive blood culture, using matrix-assisted laser desorption ionization--time of flight mass spectrometry.

    Science.gov (United States)

    Johansson, Åsa; Nagy, Elisabeth; Sóki, József

    2014-08-01

    Rapid identification of isolates in positive blood cultures are of great importance to secure correct treatment of septicaemic patients. As antimicrobial resistance is increasing, rapid detection of resistance is crucial. Carbapenem resistance in Bacteroides fragilis associated with cfiA-encoded class B metallo-beta-lactamase is emerging. In our study we spiked blood culture bottles with 26 B. fragilis strains with various cfiA-status and ertapenem MICs. By using main spectra specific for cfiA-positive and cfiA-negative B. fragilis strains, isolates could be screened for resistance. To verify strains that were positive in the screening, a carbapenemase assay was performed where the specific peaks of intact and hydrolysed ertapenem were analysed with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). We show here that it is possible to correctly identify B. fragilis and to screen for enzymic carbapenem resistance directly from the pellet of positive blood cultures. The carbapenemase assay to verify the presence of the enzyme was successfully performed on the pellet from the direct identification despite the presence of blood components. The result of the procedure was achieved in 3 h. Also the Bruker mass spectrometric β-lactamase assay (MSBL assay) prototype software was proven not only to be based on an algorithm that correlated with the manual inspection of the spectra, but also to improve the interpretation by showing the variation in the dataset. © 2014 The Authors.

  8. Mass Spectrometry for Research and Application in Therapeutic Drug Monitoring or Clinical and Forensic Toxicology.

    Science.gov (United States)

    Maurer, Hans H

    2018-04-30

    This paper reviews current applications of various hyphenated low- and high-resolution mass spectrometry techniques in the field of therapeutic drug monitoring and clinical/forensic toxicology in both research and practice. They cover gas chromatography, liquid chromatography, matrix-assisted laser desorption ionization, or paper spray ionization coupled to quadrupole, ion trap, time-of-flight, or Orbitrap mass analyzers.

  9. Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial

    DEFF Research Database (Denmark)

    Lasch, Peter; Wahab, Tara; Weil, Sandra

    2015-01-01

    In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics...... mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible...... by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained...

  10. Ribosomal subunit protein typing using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification and discrimination of Aspergillus species.

    Science.gov (United States)

    Nakamura, Sayaka; Sato, Hiroaki; Tanaka, Reiko; Kusuya, Yoko; Takahashi, Hiroki; Yaguchi, Takashi

    2017-04-26

    Accurate identification of Aspergillus species is a very important subject. Mass spectral fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is generally employed for the rapid identification of fungal isolates. However, the results are based on simple mass spectral pattern-matching, with no peak assignment and no taxonomic input. We propose here a ribosomal subunit protein (RSP) typing technique using MALDI-TOF MS for the identification and discrimination of Aspergillus species. The results are concluded to be phylogenetic in that they reflect the molecular evolution of housekeeping RSPs. The amino acid sequences of RSPs of genome-sequenced strains of Aspergillus species were first verified and compared to compile a reliable biomarker list for the identification of Aspergillus species. In this process, we revealed that many amino acid sequences of RSPs (about 10-60%, depending on strain) registered in the public protein databases needed to be corrected or newly added. The verified RSPs were allocated to RSP types based on their mass. Peak assignments of RSPs of each sample strain as observed by MALDI-TOF MS were then performed to set RSP type profiles, which were then further processed by means of cluster analysis. The resulting dendrogram based on RSP types showed a relatively good concordance with the tree based on β-tubulin gene sequences. RSP typing was able to further discriminate the strains belonging to Aspergillus section Fumigati. The RSP typing method could be applied to identify Aspergillus species, even for species within section Fumigati. The discrimination power of RSP typing appears to be comparable to conventional β-tubulin gene analysis. This method would therefore be suitable for species identification and discrimination at the strain to species level. Because RSP typing can characterize the strains within section Fumigati, this method has potential as a powerful and reliable tool in

  11. Surface analysis by imaging mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vidová, Veronika; Volný, Michael; Lemr, Karel; Havlíček, Vladimír

    2009-01-01

    Roč. 74, 7-8 (2009), s. 1101-1116 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z50200510 Keywords : secondary ion mass spectrometry * matrix assisted laser desorption ionization * mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.856, year: 2009

  12. Integration of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in blood culture diagnostics: a fast and effective approach.

    Science.gov (United States)

    Klein, Sabrina; Zimmermann, Stefan; Köhler, Christine; Mischnik, Alexander; Alle, Werner; Bode, Konrad A

    2012-03-01

    Sepsis is a major cause of mortality in hospitalized patients worldwide, with lethality rates ranging from 30 to 70 %. Sepsis is caused by a variety of different pathogens, and rapid diagnosis is of outstanding importance, as early and adequate antimicrobial therapy correlates with positive clinical outcome. In recent years, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) fingerprinting has become a powerful tool in microbiological diagnostics. The direct identification of micro-organisms in a positive blood culture by MALDI-TOF MS can shorten the diagnostic procedure significantly. Therefore, the aim of the present study was to evaluate whether identification rates could be improved by using the new Sepsityper kit from Bruker Daltonics for direct isolation and identification of bacteria from positive blood cultures by MALDI-TOF MS compared with the use of conventional separator gel columns, and to integrate the MALDI-TOF MS-based identification method into the routine course of blood culture diagnostics in the setting of a microbiological laboratory at a university hospital in Germany. The identification of Gram-negative bacteria by MALDI-TOF MS was significantly better using the Sepsityper kit compared with a separator gel tube-based method (99 and 68 % correct identification, respectively). For Gram-positive bacteria, only 73 % were correctly identified by MALDI-TOF with the Sepsityper kit and 59 % with the separator gel tube assay. A major problem of both methods was the poor identification of Gram-positive grape-like clustered cocci. As differentiation of Staphylococcus aureus from coagulase-negative staphylococci is of clinical importance, a PCR was additionally established that was capable of identifying S. aureus directly from positive blood cultures, thus closing this diagnostic gap. Another benefit of the PCR approach is the possibility of directly detecting the genes responsible for meticillin

  13. Weak cation exchange magnetic beads coupled with matrix-assisted laser desorption ionization-time of flight-mass spectrometry in screening serum protein markers in osteopenia.

    Science.gov (United States)

    He, Wei-Tao; Liang, Bo-Cheng; Shi, Zhen-Yu; Li, Xu-Yun; Li, Chun-Wen; Shi, Xiao-Lin

    2016-01-01

    The present study aimed at investigating the weak cation magnetic separation technology and matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) in screening serum protein markers of osteopenia from ten postmenopausal women and ten postmenopausal women without osteopenia as control group, to find a new method for screening biomarkers and establishing a diagnostic model for primary type I osteoporosis. Serum samples were collected from postmenopausal women with osteopenia and postmenopausal women with normal bone mass. Proteins were extracted from serum samples by weak cation exchange magnetic beads technology, and mass spectra acquisition was done by MALDI-TOF-MS. The visualization and comparison of data sets, statistical peak evaluation, model recognition, and discovery of biomarker candidates were handled by the proteinchip data analysis system software(ZJU-PDAS). The diagnostic models were established using genetic arithmetic based support vector machine (SVM). The SVM result with the highest Youden Index was selected as the model. Combinatorial Peaks having the highest accuracy in distinguishing different samples were selected as potential biomarker. From the two group serum samples, a total of 133 differential features were selected. Ten features with significant intensity differences were screened. In the pair-wise comparisons, processing of MALDI-TOF spectra resulted in the identification of ten differential features between postmenopausal women with osteopenia and postmenopausal women with normal bone mass. The difference of features by Youden index showed that the highest features had a mass to charge ratio of 1699 and 3038 Da. A diagnosis model was established with these two peaks as the candidate marker, and the specificity of the model is 100 %, the sensitivity was 90 % by leave-one-out cross validation test. The two groups of specimens in SVM results on the scatter plot could be clearly distinguished. The peak

  14. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media

    Directory of Open Access Journals (Sweden)

    Ying Li

    2017-06-01

    Full Text Available We evaluated the accuracy of the Bruker Biotyper matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS system at identifying clinical isolates of Aspergillus species that were grown on agar media. A total of 381 non-duplicate Aspergillus isolates representing 21 different Aspergillus species identified by molecular analysis were included in this study. The Bruker Biotyper MALDI-TOF MS system was able to identify 30.2% (115/381 of the isolates to the species level (score values of ≥2.000 and 49.3% to the genus level (score values of 1.700–1.999. When the identification cutoff value was lowered from ≥2.000 to ≥1.700, the species-level identification rate increased to 79.5% with a slight rise of false identification from 2.6 to 5.0%. From another aspect, a correct species-level identification rate of 89% could be reached by the Bruker Biotyper MALDI-TOF MS system regardless of the score values obtained. The Bruker Biotyper MALDI-TOF MS system had a moderate performance in identification of Aspergillus directly inoculated on solid agar media. Continued expansion of the Bruker Biotyper MALDI-TOF MS database and adoption of alternative cutoff values for interpretation are required to improve the performance of the system for identifying highly diverse species of clinically encountered Aspergillus isolates.

  15. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media.

    Science.gov (United States)

    Li, Ying; Wang, He; Zhao, Yu-Pei; Xu, Ying-Chun; Hsueh, Po-Ren

    2017-01-01

    We evaluated the accuracy of the Bruker Biotyper matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) system at identifying clinical isolates of Aspergillus species that were grown on agar media. A total of 381 non-duplicate Aspergillus isolates representing 21 different Aspergillus species identified by molecular analysis were included in this study. The Bruker Biotyper MALDI-TOF MS system was able to identify 30.2% (115/381) of the isolates to the species level (score values of ≥2.000) and 49.3% to the genus level (score values of 1.700-1.999). When the identification cutoff value was lowered from ≥2.000 to ≥1.700, the species-level identification rate increased to 79.5% with a slight rise of false identification from 2.6 to 5.0%. From another aspect, a correct species-level identification rate of 89% could be reached by the Bruker Biotyper MALDI-TOF MS system regardless of the score values obtained. The Bruker Biotyper MALDI-TOF MS system had a moderate performance in identification of Aspergillus directly inoculated on solid agar media. Continued expansion of the Bruker Biotyper MALDI-TOF MS database and adoption of alternative cutoff values for interpretation are required to improve the performance of the system for identifying highly diverse species of clinically encountered Aspergillus isolates.

  16. Methylobacterium Species Promoting Rice and Barley Growth and Interaction Specificity Revealed with Whole-Cell Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF/MS Analysis.

    Directory of Open Access Journals (Sweden)

    Akio Tani

    Full Text Available Methylobacterium species frequently inhabit plant surfaces and are able to utilize the methanol emitted from plants as carbon and energy sources. As some of the Methylobacterium species are known to promote plant growth, significant attention has been paid to the mechanism of growth promotion and the specificity of plant-microbe interactions. By screening our Methylobacterium isolate collection for the high growth promotion effect in vitro, we selected some candidates for field and pot growth tests for rice and barley, respectively. We found that inoculation resulted in better ripening of rice seeds, and increased the size of barley grains but not the total yield. In addition, using whole-cell matrix-assister laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS analysis, we identified and classified Methylobacterium isolates from Methylobacterium-inoculated rice plants. The inoculated species could not be recovered from the rice plants, and in some cases, the Methylobacterium community structure was affected by the inoculation, but not with predomination of the inoculated species. The isolates from non-inoculated barley of various cultivars grown in the same field fell into just two species. These results suggest that there is a strong selection pressure at the species level of Methylobacterium residing on a given plant species, and that selection of appropriate species that can persist on the plant is important to achieve growth promotion.

  17. Fundamental study of hydrogen-attachment-induced peptide fragmentation occurring in the gas phase and during the matrix-assisted laser desorption/ionization process.

    Science.gov (United States)

    Asakawa, Daiki; Takahashi, Hidenori; Iwamoto, Shinichi; Tanaka, Koichi

    2018-05-09

    Mass spectrometry with hydrogen-radical-mediated fragmentation techniques has been used for the sequencing of proteins/peptides. The two methods, matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) and hydrogen attachment/abstraction dissociation (HAD) are known as hydrogen-radical-mediated fragmentation techniques. MALDI-ISD occurs during laser induced desorption processes, whereas HAD utilizes the association of hydrogen with peptide ions in the gas phase. In this study, the general mechanisms of MALDI-ISD and HAD of peptides were investigated. We demonstrated the fragmentation of four model peptides and investigated the fragment formation pathways using density functional theory (DFT) calculations. The current experimental and computational joint study indicated that MALDI-ISD and HAD produce aminoketyl radical intermediates, which immediately undergo radical-induced cleavage at the N-Cα bond located on the C-terminal side of the radical site, leading to the c'/z˙ fragment pair. In the case of MALDI-ISD, the z˙ fragments undergo a subsequent reaction with the matrix to give z' and matrix adducts of the z fragments. In contrast, the c' and z˙ fragments react with hydrogen atoms during the HAD processes, and various fragment species, such as c˙, c', z˙ and z', were observed in the HAD-MS/MS mass spectra.

  18. Carbon nanotubes as adsorbent of solid-phase extraction and matrix for laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Pan, Chensong; Xu, Songyun; Zou, Hanfa; Guo, Zhong; Zhang, Yu; Guo, Baochuan

    2005-02-01

    A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 microL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized.

  19. Neutrino mass matrices with two vanishing cofactors and Fritzsch texture for charged lepton mass matrix

    Science.gov (United States)

    Wang, Weijian; Guo, Shu-Yuan; Wang, Zhi-Gang

    2016-04-01

    In this paper, we study the cofactor 2 zero neutrino mass matrices with the Fritzsch-type structure in charged lepton mass matrix (CLMM). In the numerical analysis, we perform a scan over the parameter space of all the 15 possible patterns to get a large sample of viable scattering points. Among the 15 possible patterns, three of them can accommodate the latest lepton mixing and neutrino mass data. We compare the predictions of the allowed patterns with their counterparts with diagonal CLMM. In this case, the severe cosmology bound on the neutrino mass set a strong constraint on the parameter space, rendering two patterns only marginally allowed. The Fritzsch-type CLMM will have impact on the viable parameter space and give rise to different phenomenological predictions. Each allowed pattern predicts the strong correlations between physical variables, which is essential for model selection and can be probed in future experiments. It is found that under the no-diagonal CLMM, the cofactor zeros structure in neutrino mass matrix is unstable as the running of renormalization group (RG) from seesaw scale to the electroweak scale. A way out of the problem is to propose the flavor symmetry under the models with a TeV seesaw scale. The inverse seesaw model and a loop-induced model are given as two examples.

  20. High-throughput peptide mass fingerprinting and protein macroarray analysis using chemical printing strategies

    International Nuclear Information System (INIS)

    Sloane, A.J.; Duff, J.L.; Hopwood, F.G.; Wilson, N.L.; Smith, P.E.; Hill, C.J.; Packer, N.H.; Williams, K.L.; Gooley, A.A.; Cole, R.A.; Cooley, P.W.; Wallace, D.B.

    2001-01-01

    We describe a 'chemical printer' that uses piezoelectric pulsing for rapid and accurate microdispensing of picolitre volumes of fluid for proteomic analysis of 'protein macroarrays'. Unlike positive transfer and pin transfer systems, our printer dispenses fluid in a non-contact process that ensures that the fluid source cannot be contaminated by substrate during a printing event. We demonstrate automated delivery of enzyme and matrix solutions for on-membrane protein digestion and subsequent peptide mass fingerprinting (pmf) analysis directly from the membrane surface using matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). This approach bypasses the more commonly used multi-step procedures, thereby permitting a more rapid procedure for protein identification. We also highlight the advantage of printing different chemistries onto an individual protein spot for multiple microscale analyses. This ability is particularly useful when detailed characterisation of rare and valuable sample is required. Using a combination of PNGase F and trypsin we have mapped sites of N-glycosylation using on-membrane digestion strategies. We also demonstrate the ability to print multiple serum samples in a micro-ELISA format and rapidly screen a protein macroarray of human blood plasma for pathogen-derived antigens. We anticipate that the 'chemical printer' will be a major component of proteomic platforms for high-throughput protein identification and characterisation with widespread applications in biomedical and diagnostic discovery

  1. Three loop massive operator matrix elements and asymptotic Wilson coefficients with two different masses

    Directory of Open Access Journals (Sweden)

    J. Ablinger

    2017-08-01

    Full Text Available Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two different masses. In the case of the charm and bottom quarks, the usual decoupling of one heavy mass at a time no longer holds, since the ratio of the respective masses, η=mc2/mb2∼1/10, is not small enough. Therefore, the usual variable flavor number scheme (VFNS has to be generalized. The renormalization procedure in the two-mass case is different from the single mass case derived in [1]. We present the moments N=2,4 and 6 for all contributing operator matrix elements, expanding in the ratio η. We calculate the analytic results for general values of the Mellin variable N in the flavor non-singlet case, as well as for transversity and the matrix element Agq(3. We also calculate the two-mass scalar integrals of all topologies contributing to the gluonic operator matrix element Agg. As it turns out, the expansion in η is usually inapplicable for general values of N. We therefore derive the result for general values of the mass ratio. From the single pole terms we derive, now in a two-mass calculation, the corresponding contributions to the 3-loop anomalous dimensions. We introduce a new general class of iterated integrals and study their relations and present special values. The corresponding functions are implemented in computer-algebraic form.

  2. Complex Masses in the S-Matrix

    International Nuclear Information System (INIS)

    Rupp, G.; Coito, S.; Beveren, E. van

    2010-01-01

    Most excited hadrons have multiparticle strong decay modes, which can often be described as resulting from intermediate states containing one or two resonances. In a theoretical approach, such a description in terms of quasi-two-particle initial and final states leads to unitarity violations, because of the complex masses of the involved resonances. In the present paper, an empirical algebraic procedure is presented to restore unitarity of the S-matrix while preserving its symmetry. Preliminary results are presented in a first application to S-wave ππ scattering, in the framework of the Resonance-Spectrum Expansion. (author)

  3. A novel magnet focusing plate for matrix-assisted laser desorption/ionization analysis of magnetic bead-bound analytes.

    Science.gov (United States)

    Gode, David; Volmer, Dietrich A

    2013-05-15

    Magnetic beads are often used for serum profiling of peptide and protein biomarkers. In these assays, the bead-bound analytes are eluted from the beads prior to mass spectrometric analysis. This study describes a novel matrix-assisted laser desorption/ionization (MALDI) technique for direct application and focusing of magnetic beads to MALDI plates by means of dedicated micro-magnets as sample spots. Custom-made MALDI plates with magnetic focusing spots were made using small nickel-coated neodymium micro-magnets integrated into a stainless steel plate in a 16 × 24 (384) pattern. For demonstrating the proof-of-concept, commercial C-18 magnetic beads were used for the extraction of a test compound (reserpine) from aqueous solution. Experiments were conducted to study focusing abilities, the required laser energies, the influence of a matrix compound, dispensing techniques, solvent choice and the amount of magnetic beads. Dispensing the magnetic beads onto the micro-magnet sample spots resulted in immediate and strong binding to the magnetic surface. Light microscope images illustrated the homogeneous distribution of beads across the surfaces of the magnets, when the entire sample volume containing the beads was pipetted onto the surface. Subsequent MALDI analysis of the bead-bound analyte demonstrated excellent and reproducible ionization yields. The surface-assisted laser desorption/ionization (SALDI) properties of the strongly light-absorbing γ-Fe2O3-based beads resulted in similar ionization efficiencies to those obtained from experiments with an additional MALDI matrix compound. This feasibility study successfully demonstrated the magnetic focusing abilities for magnetic bead-bound analytes on a novel MALDI plate containing small micro-magnets as sample spots. One of the key advantages of this integrated approach is that no elution steps from magnetic beads were required during analyses compared with conventional bead experiments. Copyright © 2013 John Wiley

  4. General structure of democratic mass matrix of quark sector in E{sub 6} model

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, R., E-mail: rciftci@cern.ch [Ankara (Turkey); Çiftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch [Ankara University, Ankara (Turkey)

    2016-03-25

    An extension of the Standard Model (SM) fermion sector, which is inspired by the E{sub 6} Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.

  5. A peptidomic approach for monitoring and characterising peptide cyanotoxins produced in Italian lakes by matrix-assisted laser desorption/ionisation and quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Ferranti, Pasquale; Nasi, Antonella; Bruno, Milena; Basile, Adriana; Serpe, Luigi; Gallo, Pasquale

    2011-05-15

    In recent years, the occurrence of cyanobacterial blooms in eutrophic freshwaters has been described all over the world, including most European countries. Blooms of cyanobacteria may produce mixtures of toxic secondary metabolites, called cyanotoxins. Among these, the most studied are microcystins, a group of cyclic heptapeptides, because of their potent hepatotoxicity and activity as tumour promoters. Other peptide cyanotoxins have been described whose structure and toxicity have not been thoroughly studied. Herein we present a peptidomic approach aimed to characterise and quantify the peptide cyanotoxins produced in two Italian lakes, Averno and Albano. The procedure was based on matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry mass spectrometry (MALDI-TOF-MS) analysis for rapid detection and profiling of the peptide mixture complexity, combined with liquid chromatography/electrospray ionisation quadrupole time-of- flight tandem mass spectrometry (LC/ESI-Q-TOF-MS/MS) which provided unambiguous structural identification of the main compounds, as well as accurate quantitative analysis of microcystins. In the case of Lake Averno, a novel variant of microcystin-RR and two novel anabaenopeptin variants (Anabaenopeptins B(1) and Anabaenopeptin F(1)), presenting homoarginine in place of the commonly found arginine, were detected and characterised. In Lake Albano, the peculiar peptide patterns in different years were compared, as an example of the potentiality of the peptidomic approach for fast screening analysis, prior to fine structural analysis and determination of cyanotoxins, which included six novel aeruginosin variants. This approach allows for wide range monitoring of cyanobacteria blooms, and to collect data for evaluating possible health risks to consumers, through the panel of the compounds produced along different years. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to rpoB gene sequencing for species identification of bloodstream infection staphylococcal isolates.

    Science.gov (United States)

    Spanu, T; De Carolis, E; Fiori, B; Sanguinetti, M; D'Inzeo, T; Fadda, G; Posteraro, B

    2011-01-01

    As a result of variable expression of biochemical characters, misidentification by conventional phenotypic means often occurs with clinical isolates belonging to Staphylococcus species. Therefore, we evaluated the use of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of 450 blood isolates of the most relevant staphylococcal species, using sequence analysis of the rpoB gene as the reference method. A correct species identification by MALDI-TOF was obtained in 99.3% (447/450), with only three isolates being misidentified. In addition, MALDI-TOF correctly identified all the staphylococcal subspecies studied, including Staphylococcus capitis subsp. capitis and subsp. urealyticus, Staphylococcus cohnii subsp. urealyticus, Staphylococcus hominis subsp. novobiosepticus and subsp. hominis, Staphylococcus saprophyticus subsp. saprophyticus, Staphylococcus schleiferi subsp. schleiferi and Staphylococcus sciuri subsp. sciuri. Thus, MALDI-TOF MS-based species identification of staphylococci can be routinely achieved without any substantial costs for consumables or the time needed for labour-intensive DNA sequence analysis. © 2010 The Authors. Journal Compilation © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  7. Identification of Coagulase-Negative Staphylococci from Bovine Intramammary Infection by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    Science.gov (United States)

    Gonçalves, Juliano Leonel; Barreiro, Juliana Regina; Braga, Patrícia Aparecida de Campos; Prada e Silva, Luis Felipe; Eberlin, Marcos Nogueira

    2014-01-01

    Coagulase-negative staphylococci (CoNS) are among the main pathogens causing bovine intramammary infection (IMI) in many countries. However, one of the limitations related to the specific diagnosis of CoNS is the lack of an accurate, rapid, and convenient method that can differentiate the bacterial species comprising this group. The aim of this study was to evaluate the ability of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) to accurately identify CoNS species in dairy cow IMI. In addition, the study aimed to determine the frequency of CoNS species causing bovine IMI. A total of 108 bacterial isolates were diagnosed as CoNS by microbiological cultures from two milk samples collected from 21 dairy herds; the first sample was collected at the cow level (i.e., 1,242 composite samples from all quarters), while the second sample was collected at the mammary quarter level (i.e., 1,140 mammary samples collected from 285 cows). After CoNS isolation was confirmed by microbiological culture for both samples, all CoNS isolates (n = 108) were genotypically differentiated by PCR restriction fragment length polymorphism (RFLP) analysis of a partial groEL gene sequence and subjected to the MALDI-TOF MS identification procedure. MALDI-TOF MS correctly identified 103 (95.4%) of the CoNS isolates identified by PCR-RFLP at the species level. Eleven CoNS species isolated from bovine IMI were identified by PCR-RFLP, and the most prevalent species was Staphylococcus chromogenes (n = 80; 74.1%). In conclusion, MALDI-TOF MS may be a reliable alternative method for differentiating CoNS species causing bovine IMI. PMID:24622096

  8. Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization Sepsityper™ and time of flight mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Jen Kok

    Full Text Available Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS is a novel method for the direct identification of bacteria from blood culture broths. We evaluate for the first time, the performance of the MALDI Sepsityper™ Kit and MS for the identification of bacteria compared to standard phenotypic methods using the manufacturer's specified bacterial identification criteria (spectral scores ≥1.700-1.999 and ≥2.000 indicated identification to genus and species level, respectively. Five hundred and seven positive blood culture broths were prospectively examined, of which 379 (74.8%; 358 monomicrobial, 21 polymicrobial were identified by MALDI-TOF MS; 195 (100% and 132 (67.7% of 195 gram-positive; and 163 (100% and 149 (91.4% of 163 gram-negative organisms from monomicrobial blood cultures were correctly identified to genus and species level, respectively. Spectral scores <1.700 (no identification were obtained in 128/507 (25.2% positive blood culture broths, including 31.6% and 32.3% of gram-positive and polymicrobial blood cultures, respectively. Significantly more gram-negative organisms were identified compared to gram-positive organisms at species level (p<0.0001. Five blood cultures were misidentified, but at species level only; including four monomicrobial blood cultures with Streptococcus oralis/mitis that were misidentified as Streptococcus pneumoniae. Positive predictive values for the direct identification of both gram-positive and gram-negative bacteria from monomicrobial blood culture broths to genus level were 100%. A diagnostic algorithm for positive blood culture broths that incorporates gram staining and MALDI-TOF MS should identify the majority of pathogens, particularly to genus level.

  9. Enzyme-coupled nanoparticles-assisted laser desorption ionization mass spectrometry for searching for low-mass inhibitors of enzymes in complex mixtures.

    Science.gov (United States)

    Salwiński, Aleksander; Da Silva, David; Delépée, Raphaël; Maunit, Benoît

    2014-04-01

    In this report, enzyme-coupled magnetic nanoparticles (EMPs) were shown to be an effective affinity-based tool for finding specific interactions between enzymatic targets and the low-mass molecules in complex mixtures using classic MALDI-TOF apparatus. EMPs used in this work act as nonorganic matrix enabling ionization of small molecules without any interference in the low-mass range (enzyme-coupled nanoparticles-assisted laser desorption ionization MS, ENALDI MS) and simultaneously carry the superficial specific binding sites to capture inhibitors present in a studied mixture. We evaluated ENALDI approach in two complementary variations: 'ion fading' (IF-ENALDI), based on superficial adsorption of inhibitors and 'ion hunting' (IH-ENALDI), based on selective pre-concentration of inhibitors. IF-ENALDI was applied for two sets of enzyme-inhibitor pairs: tyrosinase-glabridin and trypsin-leupeptin and for the real plant sample: Sparrmannia discolor leaf and stem methanol extract. The efficacy of IH-ENALDI was shown for the pair of trypsin-leupeptin. Both ENALDI approaches pose an alternative for bioassay-guided fractionation, the common method for finding inhibitors in the complex mixtures.

  10. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    Science.gov (United States)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  11. Biomedical application of MALDI mass spectrometry for small-molecule analysis.

    Science.gov (United States)

    van Kampen, Jeroen J A; Burgers, Peter C; de Groot, Ronald; Gruters, Rob A; Luider, Theo M

    2011-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high tolerance towards salts and buffers, and the possibility to store sample on the target plate. The successful application of the technique is, however, hampered by low molecular weight (LMW) matrix-derived interference signals and by poor reproducibility of signal intensities during quantitative analyses. In this review, we focus on the biomedical application of MALDI-MS for the analysis of small molecules and discuss its favorable properties and its challenges as well as strategies to improve the performance of the technique. Furthermore, practical aspects and applications are presented. © 2010 Wiley Periodicals, Inc.

  12. Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method.

    Science.gov (United States)

    Ferreira, L; Sánchez-Juanes, F; Muñoz-Bellido, J L; González-Buitrago, J M

    2011-07-01

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a fast and reliable technology for the identification of microorganisms with proteomics approaches. Here, we compare an intact cell method and a protein extraction method before application on the MALDI plate for the direct identification of microorganisms in both urine and blood culture samples from clinical microbiology laboratories. The results show that the intact cell method provides excellent results for urine and is a good initial method for blood cultures. The extraction method complements the intact cell method, improving microorganism identification from blood culture. Thus, we consider that MALDI-TOF MS performed directly on urine and blood culture samples, with the protocols that we propose, is a suitable technique for microorganism identification, as compared with the routine methods used in the clinical microbiology laboratory. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.

  13. Study of the matrix specific mass discrimination effects during inductively coupled plasma mass spectrometry isotope ratio measurements

    International Nuclear Information System (INIS)

    Vassileva, E.; Quetel, Ch.R.

    2004-01-01

    Sample matrix related effects on mass discrimination during inductively coupled plasma mass spectrometry (ICP-MS) isotope ratio measurements have only been rarely reported. However, they can lead to errors larger than the uncertainty claimed on the ratio results when not properly taken into account or corrected for. These matrix specific affects were experienced during an Isotope Dilution Mass Spectrometry (IDMS) campaign we carried out for the certification of the Cd amount content in some food digest samples (7% acidity and salts content around 450μg g -1 ). Dilution was not possible for Cd only present at the low ng g -1 level. Up to 1% difference was observed on Cd isotope ratio results between measurements performed directly or after matrix separation. This was a significant difference considering that less than 1.5% relative combined uncertainty was eventually estimated for these IDMS measurements. Similar results could be obtained either way after the implementation of necessary corrections. The direct measurement approach associated to a correction for mass discrimination effects using the food digest sample itself (and the IUPAC table values as reference for the natural Cd isotopic composition) was preferred as it was the easiest. Consequently, the impact of matrix effects on mass discrimination during isotope ratio measurements with two types of ICP- MS (quadrupole and magnetic sector instruments) was studied for 4 elements (Li, Cu, Cd and Tl). Samples of varying salinity (up to 0.25%) and acidity (up to 7%) characteristics were prepared using isotopic certified reference materials of these elements. The long term and short-term stability, respectively reproducibility and repeatability, of the results, as well as the evolution of the difference to certified ratio values were monitored. As expected the 13 investigated isotopic ratios were all sensitive to variations in salt and acid concentrations. Our experiments also showed that simultaneous variation

  14. A simple algorithm improves mass accuracy to 50-100 ppm for delayed extraction linear MALDI-TOF mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Christopher A.; Benner, W. Henry

    2001-10-31

    A simple mathematical technique for improving mass calibration accuracy of linear delayed extraction matrix assisted laser desorption ionization time-of-flight mass spectrometry (DE MALDI-TOF MS) spectra is presented. The method involves fitting a parabola to a plot of Dm vs. mass data where Dm is the difference between the theoretical mass of calibrants and the mass obtained from a linear relationship between the square root of m/z and ion time of flight. The quadratic equation that describes the parabola is then used to correct the mass of unknowns by subtracting the deviation predicted by the quadratic equation from measured data. By subtracting the value of the parabola at each mass from the calibrated data, the accuracy of mass data points can be improved by factors of 10 or more. This method produces highly similar results whether or not initial ion velocity is accounted for in the calibration equation; consequently, there is no need to depend on that uncertain parameter when using the quadratic correction. This method can be used to correct the internally calibrated masses of protein digest peaks. The effect of nitrocellulose as a matrix additive is also briefly discussed, and it is shown that using nitrocellulose as an additive to a CHCA matrix does not significantly change initial ion velocity but does change the average position of ions relative to the sample electrode at the instant the extraction voltage is applied.

  15. Three loop massive operator matrix elements and asymptotic Wilson coefficients with two different masses

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Hasselhuhn, A.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); IHES, Bures-sur-Yvette (France)

    2017-05-15

    Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two different masses. In the case of the charm and bottom quarks, the usual decoupling of one heavy mass at a time no longer holds, since the ratio of the respective masses, η=m{sup 2}{sub c}/m{sup 2}{sub b}∝1/10, is not small enough. Therefore, the usual variable flavor number scheme (VFNS) has to be generalized. The renormalization procedure in the two-mass case is different from the single mass case derived earlier (I. Bierenbaum, J: Bluemlein, S. Klein, 2009). We present the moments N=2,4 and 6 for all contributing operator matrix elements, expanding in the ratio η. We calculate the analytic results for general values of the Mellin variable N in the flavor non-singlet case, as well as for transversity and the matrix element A{sup (3)}{sub gq}. We also calculate the two-mass scalar integrals of all topologies contributing to the gluonic operator matrix element A{sub gg}. As it turns out, the expansion in η is usually inapplicable for general values of N. We therefore derive the result for general values of the mass ratio. From the single pole terms we derive, now in a two-mass calculation, the corresponding contributions to the 3-loop anomalous dimensions. We introduce a new general class of iterated integrals and study their relations and present special values. The corresponding functions are implemented in computer-algebraic form.

  16. Mass Medication Clinic (MMC) Patient Medical Assistant (PMA) System Training Initiative

    Science.gov (United States)

    2007-06-01

    AD_________________ Award Number: W81XWH-06-2-0045 TITLE: Mass Medication Clinic (MMC) Patient ...SUBTITLE 5a. CONTRACT NUMBER Mass Medication Clinic (MMC) Patient Medical Assistant (PMA) System Training Initiative 5b. GRANT NUMBER W81XWH-06-2...sections will describe the events, results, and accomplishments of this study. With validation through this project the Patient Medical Assistant

  17. Antifouling booster biocide extraction from marine sediments: a fast and simple method based on vortex-assisted matrix solid-phase extraction.

    Science.gov (United States)

    Caldas, Sergiane Souza; Soares, Bruno Meira; Abreu, Fiamma; Castro, Ítalo Braga; Fillmann, Gilberto; Primel, Ednei Gilberto

    2018-03-01

    This paper reports the development of an analytical method employing vortex-assisted matrix solid-phase dispersion (MSPD) for the extraction of diuron, Irgarol 1051, TCMTB (2-thiocyanomethylthiobenzothiazole), DCOIT (4,5-dichloro-2-n-octyl-3-(2H)-isothiazolin-3-one), and dichlofluanid from sediment samples. Separation and determination were performed by liquid chromatography tandem-mass spectrometry. Important MSPD parameters, such as sample mass, mass of C18, and type and volume of extraction solvent, were investigated by response surface methodology. Quantitative recoveries were obtained with 2.0 g of sediment sample, 0.25 g of C18 as the solid support, and 10 mL of methanol as the extraction solvent. The MSPD method was suitable for the extraction and determination of antifouling biocides in sediment samples, with recoveries between 61 and 103% and a relative standard deviation lower than 19%. Limits of quantification between 0.5 and 5 ng g -1 were obtained. Vortex-assisted MPSD was shown to be fast and easy to use, with the advantages of low cost and reduced solvent consumption compared to the commonly employed techniques for the extraction of booster biocides from sediment samples. Finally, the developed method was applied to real samples. Results revealed that the developed extraction method is effective and simple, thus allowing the determination of biocides in sediment samples.

  18. Delineation of Stenotrophomonas maltophilia isolates from cystic fibrosis patients by fatty acid methyl ester profiles and matrix-assisted laser desorption/ionization time-of-flight mass spectra using hierarchical cluster analysis and principal component analysis.

    Science.gov (United States)

    Vidigal, Pedrina Gonçalves; Mosel, Frank; Koehling, Hedda Luise; Mueller, Karl Dieter; Buer, Jan; Rath, Peter Michael; Steinmann, Joerg

    2014-12-01

    Stenotrophomonas maltophilia is an opportunist multidrug-resistant pathogen that causes a wide range of nosocomial infections. Various cystic fibrosis (CF) centres have reported an increasing prevalence of S. maltophilia colonization/infection among patients with this disease. The purpose of this study was to assess specific fingerprints of S. maltophilia isolates from CF patients (n = 71) by investigating fatty acid methyl esters (FAMEs) through gas chromatography (GC) and highly abundant proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and to compare them with isolates obtained from intensive care unit (ICU) patients (n = 20) and the environment (n = 11). Principal component analysis (PCA) of GC-FAME patterns did not reveal a clustering corresponding to distinct CF, ICU or environmental types. Based on the peak area index, it was observed that S. maltophilia isolates from CF patients produced significantly higher amounts of fatty acids in comparison with ICU patients and the environmental isolates. Hierarchical cluster analysis (HCA) based on the MALDI-TOF MS peak profiles of S. maltophilia revealed the presence of five large clusters, suggesting a high phenotypic diversity. Although HCA of MALDI-TOF mass spectra did not result in distinct clusters predominantly composed of CF isolates, PCA revealed the presence of a distinct cluster composed of S. maltophilia isolates from CF patients. Our data suggest that S. maltophilia colonizing CF patients tend to modify not only their fatty acid patterns but also their protein patterns as a response to adaptation in the unfavourable environment of the CF lung. © 2014 The Authors.

  19. Fingerprinting of egg and oil binders in painted artworks by matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of lipid oxidation by-products.

    Science.gov (United States)

    Calvano, C D; van der Werf, I D; Palmisano, F; Sabbatini, L

    2011-06-01

    A matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based approach was applied for the detection of various lipid classes, such as triacylglycerols (TAGs) and phospholipids (PLs), and their oxidation by-products in extracts of small (50-100 μg) samples obtained from painted artworks. Ageing of test specimens under various conditions, including the presence of different pigments, was preliminarily investigated. During ageing, the TAGs and PLs content decreased, whereas the amount of diglycerides, short-chain oxidative products arising from TAGs and PLs, and oxidized TAGs and PLs components increased. The examination of a series of model paint samples gave a clear indication that specific ions produced by oxidative cleavage of PLs and/or TAGs may be used as markers for egg and drying oil-based binders. Their elemental composition and hypothetical structure are also tentatively proposed. Moreover, the simultaneous presence of egg and oil binders can be easily and unambiguously ascertained through the simultaneous occurrence of the relevant specific markers. The potential of the proposed approach was demonstrated for the first time by the analysis of real samples from a polyptych of Bartolomeo Vivarini (fifteenth century) and a "French school" canvas painting (seventeenth century).

  20. The matrix effect in secondary ion mass spectrometry

    Science.gov (United States)

    Seah, M. P.; Shard, A. G.

    2018-05-01

    Matrix effects in the secondary ion mass spectrometry (SIMS) of selected elemental systems have been analyzed to investigate the applicability of a mathematical description of the matrix effect, called here the charge transfer (CT) model. This model was originally derived for proton exchange and organic positive secondary ions, to characterise the enhancement or suppression of intensities in organic binary systems. In the systems considered in this paper protons are specifically excluded, which enables an assessment of whether the model applies for electrons as well. The present importance is in organic systems but, here we analyse simpler inorganic systems. Matrix effects in elemental systems cannot involve proton transfer if there are no protons present but may be caused by electron transfer and so electron transfer may also be involved in the matrix effects for organic systems. There are general similarities in both the magnitudes of the ion intensities as well as the matrix effects for both positive and negative secondary ions in both systems and so the CT model may be more widely applicable. Published SIMS analyses of binary elemental mixtures are analyzed. The data of Kim et al., for the Pt/Co system, provide, with good precision, data for such a system. This gives evidence for the applicability of the CT model, where electron, rather than proton, transfer is the matrix enhancing and suppressing mechanism. The published data of Prudon et al., for the important Si/Ge system, provides further evidence for the effects for both positive and negative secondary ions and allows rudimentary rules to be developed for the enhancing and suppressing species.

  1. Prediction of Streptococcus uberis clinical mastitis risk using Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) in dairy herds.

    Science.gov (United States)

    Archer, Simon C; Bradley, Andrew J; Cooper, Selin; Davies, Peers L; Green, Martin J

    2017-09-01

    The purpose of this study was to evaluate whether the risk of Streptococcus uberis clinical mastitis at cow level could be predicted from the historical presence of specific strains of S. uberis on dairy farms. Matrix-assisted laser desorption ionization time of flight mass spectrometry was used to identify S. uberis isolates potentially capable of contagious transmission. Data were available from 10,652 cows from 52 English and Welsh dairy farms over a 14 month period, and 521 isolates of S. uberis from clinical mastitis cases were available for analysis. As well as the temporal herd history of clinical mastitis associated with particular S. uberis strains, other exposure variables included cow parity, stage of lactation, milk yield, and somatic cell count. Observations were structured longitudinally as repeated weekly measures through the study period for each cow. Data were analyzed in a Bayesian framework using multilevel logistic regression models. Similarity of mass spectral profiles between isolates of S. uberis from consecutive clinical cases of mastitis in herds was used to indicate potential for contagious phenotypic characteristics. Cross validation showed that new isolates with these characteristics could be identified with an accuracy of 90% based on bacterial protein mass spectral characteristics alone. The cow-level risk in any week of these S. uberis clinical mastitis cases increased with the presence of the same specific strains of S. uberis in other cows in the herd during the previous 2 weeks. The final statistical model indicated there would be a 2-3 fold increase in the risk of S. uberis clinical mastitis associated with particular strains if these occurred in the herd 1 and 2 weeks previously. The results suggest that specific strains of S. uberis may be involved with contagious transmission, and predictions based on their occurrence could be used as an early warning surveillance system to enhance the control of S. uberis mastitis. Copyright

  2. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution.

    Science.gov (United States)

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ.

  3. Genetic, phenotypic and matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based identification of anaerobic bacteria and determination of their antimicrobial susceptibility at a University Hospital in Japan.

    Science.gov (United States)

    Yunoki, Tomoyuki; Matsumura, Yasufumi; Nakano, Satoshi; Kato, Karin; Hotta, Go; Noguchi, Taro; Yamamoto, Masaki; Nagao, Miki; Takakura, Shunji; Ichiyama, Satoshi

    2016-05-01

    The accuracies of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and the phenotypic method using VITEK 2 were compared to the accuracy of 16S rRNA sequence analysis for the identification of 170 clinically isolated anaerobes. The antimicrobial susceptibility of the isolates was also evaluated. Genetic analysis identified 21 Gram-positive species in 14 genera and 29 Gram-negative species in 11 genera. The most frequently isolated genera were Prevotella spp. (n = 46), Bacteroides spp. (n = 25) and Clostridium spp. (n = 25). MALDI-TOF MS correctly identified more isolates compared with VITEK 2 at the species (80 vs. 58%, respectively; p anaerobic agents indicated that the isolates of the three most frequently identified anaerobic genera exhibited good antimicrobial susceptibility. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of molds of the Fusarium genus.

    Science.gov (United States)

    Triest, David; Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Normand, Anne-Cécile; Piarroux, Renaud; Detandt, Monique; Hendrickx, Marijke

    2015-02-01

    The rates of infection with Fusarium molds are increasing, and a diverse number of Fusarium spp. belonging to different species complexes can cause infection. Conventional species identification in the clinical laboratory is time-consuming and prone to errors. We therefore evaluated whether matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a useful alternative. The 289 Fusarium strains from the Belgian Coordinated Collections of Microorganisms (BCCM)/Institute of Hygiene and Epidemiology Mycology (IHEM) culture collection with validated sequence-based identities and comprising 40 species were used in this study. An identification strategy was developed, applying a standardized MALDI-TOF MS assay and an in-house reference spectrum database. In vitro antifungal testing was performed to assess important differences in susceptibility between clinically relevant species/species complexes. We observed that no incorrect species complex identifications were made by MALDI-TOF MS, and 82.8% of the identifications were correct to the species level. This success rate was increased to 91% by lowering the cutoff for identification. Although the identification of the correct species complex member was not always guaranteed, antifungal susceptibility testing showed that discriminating between Fusarium species complexes can be important for treatment but is not necessarily required between members of a species complex. With this perspective, some Fusarium species complexes with closely related members can be considered as a whole, increasing the success rate of correct identifications to 97%. The application of our user-friendly MALDI-TOF MS identification approach resulted in a dramatic improvement in both time and accuracy compared to identification with the conventional method. A proof of principle of our MALDI-TOF MS approach in the clinical setting using recently isolated Fusarium strains demonstrated its validity. Copyright © 2015

  5. Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of Molds of the Fusarium Genus

    Science.gov (United States)

    Stubbe, Dirk; De Cremer, Koen; Piérard, Denis; Normand, Anne-Cécile; Piarroux, Renaud; Detandt, Monique; Hendrickx, Marijke

    2014-01-01

    The rates of infection with Fusarium molds are increasing, and a diverse number of Fusarium spp. belonging to different species complexes can cause infection. Conventional species identification in the clinical laboratory is time-consuming and prone to errors. We therefore evaluated whether matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a useful alternative. The 289 Fusarium strains from the Belgian Coordinated Collections of Microorganisms (BCCM)/Institute of Hygiene and Epidemiology Mycology (IHEM) culture collection with validated sequence-based identities and comprising 40 species were used in this study. An identification strategy was developed, applying a standardized MALDI-TOF MS assay and an in-house reference spectrum database. In vitro antifungal testing was performed to assess important differences in susceptibility between clinically relevant species/species complexes. We observed that no incorrect species complex identifications were made by MALDI-TOF MS, and 82.8% of the identifications were correct to the species level. This success rate was increased to 91% by lowering the cutoff for identification. Although the identification of the correct species complex member was not always guaranteed, antifungal susceptibility testing showed that discriminating between Fusarium species complexes can be important for treatment but is not necessarily required between members of a species complex. With this perspective, some Fusarium species complexes with closely related members can be considered as a whole, increasing the success rate of correct identifications to 97%. The application of our user-friendly MALDI-TOF MS identification approach resulted in a dramatic improvement in both time and accuracy compared to identification with the conventional method. A proof of principle of our MALDI-TOF MS approach in the clinical setting using recently isolated Fusarium strains demonstrated its validity. PMID:25411180

  6. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Bernard La Scola

    Full Text Available BACKGROUND: With long delays observed between sampling and availability of results, the usefulness of blood cultures in the context of emergency infectious diseases has recently been questioned. Among methods that allow quicker bacterial identification from growing colonies, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF mass spectrometry was demonstrated to accurately identify bacteria routinely isolated in a clinical biology laboratory. In order to speed up the identification process, in the present work we attempted bacterial identification directly from blood culture bottles detected positive by the automate. METHODOLOGY/PRINCIPAL FINDINGS: We prospectively analysed routine MALDI-TOF identification of bacteria detected in blood culture by two different protocols involving successive centrifugations and then lysis by trifluoroacetic acid or formic acid. Of the 562 blood culture broths detected as positive by the automate and containing one bacterial species, 370 (66% were correctly identified. Changing the protocol from trifluoroacetic acid to formic acid improved identification of Staphylococci, and overall correct identification increased from 59% to 76%. Lack of identification was observed mostly with viridans streptococci, and only one false positive was observed. In the 22 positive blood culture broths that contained two or more different species, only one of the species was identified in 18 samples, no species were identified in two samples and false species identifications were obtained in two cases. The positive predictive value of bacterial identification using this procedure was 99.2%. CONCLUSIONS/SIGNIFICANCE: MALDI-TOF MS is an efficient method for direct routine identification of bacterial isolates in blood culture, with the exception of polymicrobial samples and viridans streptococci. It may replace routine identification performed on colonies, provided improvement for the specificity of blood culture

  7. Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry.

    Science.gov (United States)

    La Scola, Bernard; Raoult, Didier

    2009-11-25

    With long delays observed between sampling and availability of results, the usefulness of blood cultures in the context of emergency infectious diseases has recently been questioned. Among methods that allow quicker bacterial identification from growing colonies, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry was demonstrated to accurately identify bacteria routinely isolated in a clinical biology laboratory. In order to speed up the identification process, in the present work we attempted bacterial identification directly from blood culture bottles detected positive by the automate. We prospectively analysed routine MALDI-TOF identification of bacteria detected in blood culture by two different protocols involving successive centrifugations and then lysis by trifluoroacetic acid or formic acid. Of the 562 blood culture broths detected as positive by the automate and containing one bacterial species, 370 (66%) were correctly identified. Changing the protocol from trifluoroacetic acid to formic acid improved identification of Staphylococci, and overall correct identification increased from 59% to 76%. Lack of identification was observed mostly with viridans streptococci, and only one false positive was observed. In the 22 positive blood culture broths that contained two or more different species, only one of the species was identified in 18 samples, no species were identified in two samples and false species identifications were obtained in two cases. The positive predictive value of bacterial identification using this procedure was 99.2%. MALDI-TOF MS is an efficient method for direct routine identification of bacterial isolates in blood culture, with the exception of polymicrobial samples and viridans streptococci. It may replace routine identification performed on colonies, provided improvement for the specificity of blood culture broths growing viridans streptococci is obtained in the near future.

  8. Cost Savings Realized by Implementation of Routine Microbiological Identification by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Tran, Anthony; Alby, Kevin; Kerr, Alan; Jones, Melissa; Gilligan, Peter H

    2015-08-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is an emerging technology for rapid identification of bacterial and fungal isolates. In comparison to conventional methods, this technology is much less labor intensive and can provide accurate and reliable results in minutes from a single isolated colony. We compared the cost of performing the bioMérieux Vitek MALDI-TOF MS with conventional microbiological methods to determine the amount saved by the laboratory by converting to the new technology. Identification costs for 21,930 isolates collected between April 1, 2013, and March 31, 2014, were directly compared for MALDI-TOF MS and conventional methodologies. These isolates were composed of commonly isolated organisms, including commonly encountered aerobic and facultative bacteria and yeast but excluding anaerobes and filamentous fungi. Mycobacterium tuberculosis complex and rapidly growing mycobacteria were also evaluated for a 5-month period during the study. Reagent costs and a total cost analysis that included technologist time in addition to reagent expenses and maintenance service agreement costs were analyzed as part of this study. The use of MALDI-TOF MS equated to a net savings of $69,108.61, or 87.8%, in reagent costs annually compared to traditional methods. When total costs are calculated to include technologist time and maintenance costs, traditional identification would have cost $142,532.69, versus $68,886.51 with the MALDI-TOF MS method, resulting in a laboratory savings of $73,646.18, or 51.7%, annually by adopting the new technology. The initial cost of the instrument at our usage level would be offset in about 3 years. MALDI-TOF MS not only represents an innovative technology for the rapid and accurate identification of bacterial and fungal isolates, it also provides a significant cost savings for the laboratory. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS.

    Science.gov (United States)

    Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua

    2018-04-01

    Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H] - ) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. Graphical Abstract ᅟ.

  10. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion.

    Science.gov (United States)

    Boksa, Kevin; Otte, Andrew; Pinal, Rodolfo

    2014-09-01

    A novel method for the simultaneous production and formulation of pharmaceutical cocrystals, matrix-assisted cocrystallization (MAC), is presented. Hot-melt extrusion (HME) is used to create cocrystals by coprocessing the drug and coformer in the presence of a matrix material. Carbamazepine (CBZ), nicotinamide (NCT), and Soluplus were used as a model drug, coformer, and matrix, respectively. The MAC product containing 80:20 (w/w) cocrystal:matrix was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, and powder X-ray diffraction. A partial least squares (PLS) regression model was developed for quantifying the efficiency of cocrystal formation. The MAC product was estimated to be 78% (w/w) cocrystal (theoretical 80%), with approximately 0.3% mixture of free (unreacted) CBZ and NCT, and 21.6% Soluplus (theoretical 20%) with the PLS model. A physical mixture (PM) of a reference cocrystal (RCC), prepared by precipitation from solution, and Soluplus resulted in faster dissolution relative to the pure RCC. However, the MAC product with the exact same composition resulted in considerably faster dissolution and higher maximum concentration (∼five-fold) than those of the PM. The MAC product consists of high-quality cocrystals embedded in a matrix. The processing aspect of MAC plays a major role on the faster dissolution observed. The MAC approach offers a scalable process, suitable for the continuous manufacturing and formulation of pharmaceutical cocrystals. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. The Exploration of Peptide Biomarkers in Malignant Pleural Effusion of Lung Cancer Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2017-01-01

    Full Text Available Background. Diagnoses of malignant pleural effusion (MPE are a crucial problem in clinics. In our study, we compared the peptide profiles of MPE and tuberculosis pleural effusion (TPE to investigate the value of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS in diagnosis of MPE. Material and Methods. The 46 MPE and 32 TPE were randomly assigned to training set and validation set. Peptides were isolated by weak cation exchange magnetic beads and peaks in the m/z range of 800–10000 Da were analyzed. Comparing the peptide profile between 30 MPE and 22 TPE samples in training set by ClinProTools software, we screened the specific biomarkers and established a MALDI-TOF-MS classification of MPE. Finally, the other 16 MPE and 10 TPE were included to verify the model. We additionally determined carcinoembryonic antigen (CEA in MPE and TPE samples using electrochemiluminescent immunoassay method. Results. Five peptide peaks (917.37 Da, 4469.39 Da, 1466.5 Da, 4585.21 Da, and 3216.87 Da were selected to separate MPE and TPE by MALDI-TOF-MS. The sensitivity, specificity, and accuracy of the classification were 93.75%, 100%, and 96.15%, respectively, after blinded test. The sensitivity of CEA was significantly lower than MALDI-TOF-MS classification (P=0.035. Conclusions. The results indicate MALDI-TOF-MS is a potential method for diagnosing MPE.

  12. A Silicon Nanomembrane Detector for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) of Large Proteins

    OpenAIRE

    Park, Jonghoo; Blick, Robert

    2013-01-01

    We describe a MALDI-TOF ion detector based on freestanding silicon nanomembrane technology. The detector is tested in a commercial MALDI-TOF mass spectrometer with equimolar mixtures of proteins. The operating principle of the nanomembrane detector is based on phonon-assisted field emission from these silicon nanomembranes, in which impinging ion packets excite electrons in the nanomembrane to higher energy states. Thereby the electrons can overcome the vacuum barrier and escape from the surf...

  13. Multisample matrix-assisted laser desorption source for molecular beams of neutral peptides

    International Nuclear Information System (INIS)

    Lupulescu, C.; Abd El Rahim, M.; Antoine, R.; Barbaire, M.; Broyer, M.; Dagany, X.; Maurelli, J.; Rayane, D.; Dugourd, Ph.

    2006-01-01

    We developed and tested a multisample laser desorption source for producing stable molecular beams of neutral peptides. Our apparatus is based on matrix-assisted laser desorption technique. The source consists of 96 different targets which may be scanned by a software control procedure. Examples of molecular beams of neutral peptides are presented, as well as the influence of the different source parameters on the jet

  14. Identification and Quantification of N-Acyl Homoserine Lactones Involved in Bacterial Communication by Small-Scale Synthesis of Internal Standards and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    Science.gov (United States)

    Leipert, Jan; Treitz, Christian; Leippe, Matthias; Tholey, Andreas

    2017-12-01

    N-acyl homoserine lactones (AHL) are small signal molecules involved in the quorum sensing of many gram-negative bacteria, and play an important role in biofilm formation and pathogenesis. Present analytical methods for identification and quantification of AHL require time-consuming sample preparation steps and are hampered by the lack of appropriate standards. By aiming at a fast and straightforward method for AHL analytics, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Suitable MALDI matrices, including crystalline and ionic liquid matrices, were tested and the fragmentation of different AHL in collision-induced dissociation MS/MS was studied, providing information about characteristic marker fragments ions. Employing small-scale synthesis protocols, we established a versatile and cost-efficient procedure for fast generation of isotope-labeled AHL standards, which can be used without extensive purification and yielded accurate standard curves. Quantitative analysis was possible in the low pico-molar range, with lower limits of quantification reaching from 1 to 5 pmol for different AHL. The developed methodology was successfully applied in a quantitative MALDI MS analysis of low-volume culture supernatants of Pseudomonas aeruginosa. [Figure not available: see fulltext.

  15. Measurement of the Top Quark Mass Using the Matrix Element Technique in Dilepton Final States

    CERN Document Server

    Abazov, Victor Mukhamedovich

    2016-08-18

    We present a measurement of the top quark mass in ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to ttbar events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton + jets final state of ttbar decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93 +- 1.84 GeV.

  16. Axial spatial distribution focusing: improving MALDI-TOF/RTOF mass spectrometric performance for high-energy collision-induced dissociation of biomolecules.

    Science.gov (United States)

    Belgacem, O; Pittenauer, E; Openshaw, M E; Hart, P J; Bowdler, A; Allmaier, G

    2016-02-15

    For the last two decades, curved field reflectron technology has been used in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometers, assisting in the generation of post-source-decay (PSD) or collision-induced dissociation (CID) without decelerating precursor ions, producing true high-energy CID spectra. The result was the generation of product ion mass spectra with product ions typical of high-energy (10 keV and beyond) collision processes. The disadvantage of this approach was the lack of resolution in CID spectra resulting from the excess laser energy deposition used to generate those MS/MS spectra. The work presented in this study overcomes this limitation and includes comprehensive examples of high-energy and high-resolution CID MALDI-MS/MS spectra of biomolecules. The devices used in this study are TOF/RTOF instruments equipped with a high-vacuum MALDI ion source. High-resolution and high-energy CID spectra result from the use of axial spatial distribution focusing (ASDF) in combination with curved field reflectron technology. A CID spectrum of the P14 R1 peptide exhibits product ion resolution in excess of 10,000 (FWHM) but at the same time yields typical high-energy product ions such as w- and [y-2]-type ion series. High-energy CID spectra of lipids, exemplified by a glycerophospholipid and triglyceride, demonstrate C-C backbone fragmentation elucidating the presence of a hydroxyl group in addition to double-bond positioning. A complex high mannose carbohydrate (Man)8 (GlcNAc)2 was also studied at 20 keV collision energy and revealed further high-energy product ions with very high resolution, allowing unambiguous detection and characterization of cross-ring cleavage-related ions. This is the first comprehensive study using a MALDI-TOF/RTOF instrument equipped with a curved field reflectron and an ASDF device prior to the reflectron. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley

  17. High-frequency matrix converter with square wave input

    Science.gov (United States)

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  18. Lepton mixing matrix element U13 and new assignments of universal texture for quark and lepton mass matrices

    International Nuclear Information System (INIS)

    Matsuda, Koichi; Nishiura, Hiroyuki

    2004-01-01

    We reanalyze the mass matrix model of quarks and leptons that gives a unified description of quark and lepton mass matrices with the same texture form. By investigating possible types of assignment for the texture components of the lepton mass matrix, we find that a different assignment for neutrinos than for charged leptons can also lead to consistent values of the Maki-Nakagawa-Sakata-Pontecorv (MNSP) lepton mixing matrix. We also find that the predicted value for the lepton mixing matrix element U 13 of the model depends on the assignment. A proper assignment will be discriminated by future experimental data for U 13

  19. Processing of C60 thin films by Matrix-Assisted Pulsed Laser Evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2011-01-01

    Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPLE...

  20. MARCC (Matrix-Assisted Reader Chromatin Capture): an antibody-free method to enrich and analyze combinatorial nucleosome modifications

    Science.gov (United States)

    Su, Zhangli

    2016-01-01

    Combinatorial patterns of histone modifications are key indicators of different chromatin states. Most of the current approaches rely on the usage of antibodies to analyze combinatorial histone modifications. Here we detail an antibody-free method named MARCC (Matrix-Assisted Reader Chromatin Capture) to enrich combinatorial histone modifications. The combinatorial patterns are enriched on native nucleosomes extracted from cultured mammalian cells and prepared by micrococcal nuclease digestion. Such enrichment is achieved by recombinant chromatin-interacting protein modules, or so-called reader domains, which can bind in a combinatorial modification-dependent manner. The enriched chromatin can be quantified by western blotting or mass spectrometry for the co-existence of histone modifications, while the associated DNA content can be analyzed by qPCR or next-generation sequencing. Altogether, MARCC provides a reproducible, efficient and customizable solution to enrich and analyze combinatorial histone modifications. PMID:26131849

  1. Heterotrophic monitoring at a drinking water treatment plant by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry after different drinking water treatments.

    Science.gov (United States)

    Sala-Comorera, Laura; Blanch, Anicet R; Vilaró, Carles; Galofré, Belén; García-Aljaro, Cristina

    2017-10-01

    The aim of this work was to assess the suitability of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for routine heterotrophic monitoring in a drinking water treatment plant. Water samples were collected from raw surface water and after different treatments during two campaigns over a 1-year period. Heterotrophic bacteria were studied and isolates were identified by MALDI-TOF MS. Moreover, the diversity index and the coefficient of population similarity were also calculated using biochemical fingerprinting of the populations studied. MALDI-TOF MS enabled us to characterize and detect changes in the bacterial community composition throughout the water treatment plant. Raw water showed a large and diverse population which was slightly modified after initial treatment steps (sand filtration and ultrafiltration). Reverse osmosis had a significant impact on the microbial diversity, while the final chlorination step produced a shift in the composition of the bacterial community. Although MALDI-TOF MS could not identify all the isolates since the available MALDI-TOF MS database does not cover all the bacterial diversity in water, this technique could be used to monitor bacterial changes in drinking water treatment plants by creating a specific protein profile database for tracking purposes.

  2. Analysis of phloem protein patterns from different organs of Cucurbita maxima Duch. by matrix-assisted laser desorption/ionization time of flight mass spectroscopy combined with sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    Science.gov (United States)

    Kehr, J; Haebel, S; Blechschmidt-Schneider, S; Willmitzer, L; Steup, M; Fisahn, J

    1999-02-01

    Sieve tubes mediate the long-distance transport of nutrients and signals between source and sink organs of plants. To detect mobile phloem proteins that are differentially distributed in source and sink organs of Cucurbita maxima, we used both one-dimensional gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Both techniques revealed that phloem protein patterns depend on the sampling site: whilst several proteins were consistently observed in all phloem samples studied others appeared to occur in a organ-specific manner. For a characterization and identification of distinct phloem polypeptides, two approaches were chosen. First, protein bands resolved by SDS-PAGE were eluted from the polyacrylamide gel and the masses of the proteins were then determined by MALDI-TOF MS. Second, proteins resolved by SDS-PAGE were subjected to proteolytic degradation and the resulting peptides were analyzed by MALDI-TOF MS: the masses of the proteolytic peptides were used for a database search. By the latter approach, three mobile phloem compounds were identified as the phloem-specific protein PP2 (D.E. Bostwick et al., 1992, The Plant Cell 4, 1539-1548) a chymotrypsin and an aspartic proteinase inhibitor. None of the other polypeptides studied corresponded to any of the protein sequences present in the database. Furthermore, MALDI-TOF MS analyses indicated that some of the mobile phloem proteins occur in a covalently modified form and that the extent of the modification depends upon the plant organ.

  3. High resolution mass spectrometry method and system for analysis of whole proteins and other large molecules

    Science.gov (United States)

    Reilly, Peter T. A. [Knoxville, TN; Harris, William A [Naperville, IL

    2010-03-02

    A matrix assisted laser desorption/ionization (MALDI) method and related system for analyzing high molecular weight analytes includes the steps of providing at least one matrix-containing particle inside an ion trap, wherein at least one high molecular weight analyte molecule is provided within the matrix-containing particle, and MALDI on the high molecular weight particle while within the ion trap. A laser power used for ionization is sufficient to completely vaporize the particle and form at least one high molecular weight analyte ion, but is low enough to avoid fragmenting the high molecular weight analyte ion. The high molecular weight analyte ion is extracted out from the ion trap, and is then analyzed using a detector. The detector is preferably a pyrolyzing and ionizing detector.

  4. Ion yields in UV-MALDI mass spectrometry as a function of excitation laser wavelength and optical and physico-chemical properties of classical and halogen-substituted MALDI matrixes.

    Science.gov (United States)

    Soltwisch, Jens; Jaskolla, Thorsten W; Hillenkamp, Franz; Karas, Michael; Dreisewerd, Klaus

    2012-08-07

    The laser wavelength constitutes a key parameter in ultraviolet-matrix-assisted laser desorption ionization-mass spectrometry (UV-MALDI-MS). Optimal analytical results are only achieved at laser wavelengths that correspond to a high optical absorption of the matrix. In the presented work, the wavelength dependence and the contribution of matrix proton affinity to the MALDI process were investigated. A tunable dye laser was used to examine the wavelength range between 280 and 355 nm. The peptide and matrix ion signals recorded as a function of these irradiation parameters are displayed in the form of heat maps, a data representation that furnishes multidimensional data interpretation. Matrixes with a range of proton affinities from 809 to 866 kJ/mol were investigated. Among those selected are the standard matrixes 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA) as well as five halogen-substituted cinnamic acid derivatives, including the recently introduced 4-chloro-α-cyanocinnamic acid (ClCCA) and α-cyano-2,4-difluorocinnamic acid (DiFCCA) matrixes. With the exception of DHB, the highest analyte ion signals were obtained toward the red side of the peak optical absorption in the solid state. A stronger decline of the molecular analyte ion signals generated from the matrixes was consistently observed at the low wavelength side of the peak absorption. This effect is mainly the result of increased fragmentation of both analyte and matrix ions. Optimal use of multiply halogenated matrixes requires adjustment of the excitation wavelength to values below that of the standard MALDI lasers emitting at 355 (Nd:YAG) or 337 nm (N(2) laser). The combined data provide new insights into the UV-MALDI desorption/ionization processes and indicate ways to improve the analytical sensitivity.

  5. Surface-MALDI mass spectrometry in biomaterials research

    DEFF Research Database (Denmark)

    Griesser, H.J.; Kingshott, P.; McArthur, S.L.

    2004-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) has been used for over a decade for the determination of purity and accurate molecular masses of macromolecular analytes, such as proteins, in solution. In the last few years the technique has been adapted to become a new...... surfaces and detecting their molecular ions with high mass resolution and at levels much below monolayer coverage. Thus, Surface-MALDI-MS offers unique means of addressing biomaterial surface analysis needs, such as identification of the proteins and lipids that adsorb from multicomponent biological...... solutions in vitro and in vivo, the study of interactions between biomaterial surfaces and biomolecules, and identification of surface-enriched additives and contaminants. Surface-MALDI-MS is rapid, experimentally convenient, overcomes limitations in mass resolution and sensitivity of established...

  6. Quantification of the PR-39 cathelicidin compound in porcine blood by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Smolira, Anna; Hałas, Stanisław; Wessely-Szponder, Joanna

    2015-10-15

    The PR-39 porcine cathelicidin occurs naturally in animal neutrophils. Its main function is antimicrobial activity, which potentially can be used in antibiotic treatments in veterinary medicine. Investigations concerning such a use require the detection and quantification of PR-39 in a given sample. The aim of this work is to determine the concentration of PR-39 contained in porcine blood. Prior to matrix-assisted laser desorption/ionization (MALDI) analysis, the porcine blood sample was subjected to crude extraction in order to release the active form of PR-39 from the neutrophil granules. Next, gel filtration chromatography was performed to separate PR-39 from other cathelicidins present in porcine blood. Positive ion MALDI time-of-flight (TOF) mass spectra of the resulting portion of lyophilisate with unknown PR-39 content were acquired in linear mode. To quantify PR-39 in the lyophilisate sample, the standard addition method was applied. The PR-39 concentration obtained in the lyophilisate sample was then converted into the peptide concentration in porcine blood. The linear fit function of the constructed calibration curve indicates an excellent correlation between the PR-39 peak intensity and the added quantity of synthetic PR-39 (R(2) = 0.994) and a low relative standard deviation of the slope = 1.98%. From the x-intercept of the straight line, we estimated the PR-39 concentration in porcine blood to be 20.5 ± 4.6 ng/mL. The MALDI method was successfully applied for the quantitative analysis of PR-39 found in porcine blood. Compared with other available methods, it is relatively easy, inexpensive and not time-consuming. Despite the method having lower accuracy than the enzyme-linked immunosorbent assay (ELISA), the results obtained here, by a much simpler method, are in good agreement with the literature data. Copyright © 2015 John Wiley & Sons, Ltd.

  7. The two-mass contribution to the three-loop pure singlet operator matrix element

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de; Schoenwald, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-11-15

    We present the two-mass QCD contributions to the pure singlet operator matrix element at three loop order in x-space. These terms are relevant for calculating the structure function F{sub 2}(x,Q{sup 2}) at O(α{sup 3}{sub s}) as well as for the matching relations in the variable flavor number scheme and the heavy quark distribution functions at the same order. The result for the operator matrix element is given in terms of generalized iterated integrals that include square root letters in the alphabet, depending also on the mass ratio through the main argument. Numerical results are presented.

  8. Imipenem-avibactam: a novel combination for the rapid detection of carbapenemase activity in Enterobacteriaceae and Acinetobacter baumannii by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Oviaño, Marina; Bou, Germán

    2017-02-01

    In the present study, we propose a novel matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based method for detecting carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii. For this, we analyzed a series of 131 isolates. Among them, a total of 115 Enterobacteriaceae: 79 of them carrying a carbapenemase enzyme (15bla KPC , 7bla NDM , 11bla IMP , 12bla VIM , and 34bla OXA-48 ) and 16 A. baumannii isolates: 15 of them carrying carbapenemases (10bla OXA-23, 2bla OXA-58, 2bla OXA-24 , and 1bla OXA-237 ). The rest of the isolates were noncarbapenemase producers and used as negative controls. The isolates were submitted to susceptibility testing using a combination of imipenem-avibactam and analysis by the MALDI-TOF Biotyper Compass software (Bruker Daltonik, Germany). The assay showed an overall sensitivity and specificity for carbapenemase detection of 98% and 100%, respectively. The combination of imipenem and avibactam displayed activity against KPC and OXA-48-producing Enterobacteriaceae and thus represents a new strategy for identifying and confirming these carbapenemases. However, the combination did not provide any benefit over A. baumannii. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Graphene/TiO2 nanocomposite based solid-phase extraction and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for lipidomic profiling of avocado (Persea americana Mill.).

    Science.gov (United States)

    Shen, Qing; Yang, Mei; Li, Linqiu; Cheung, Hon-Yeung

    2014-12-10

    Phospholipids possess important physiological, structural and nutritional functions in biological systems. This study described a solid-phase extraction (SPE) method, employing graphene and titanium dioxide (G/TiO2) nanocomposite as sorbent, for the selective isolation and enrichment of phospholipids from avocado (Persea americana Mill.). Based on the principal that the phosphoryl group in the phospholipid can interact with TiO2 via a bridging bidentate mode, an optimum condition was established for SPE, and was successfully applied to prepare avocado samples. The extracts were monitored by matrix-assisted laser desorption ionization time-of-flight/tandem mass spectrometry (MALDI-TOF/MS) in both positive-ion and negative-ion modes. Results showed that phospholipids could be efficiently extracted in a clean manner by G/TiO2 based SPE. In addition, the signals of phospholipids were enhanced while the noise was reduced. Some minor peaks became more obvious. In conclusion, the nanocomposite material of G/TiO2 was proved to be a promising sorbent for selective separation of phospholipids from crude lipid extract. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS)

    Science.gov (United States)

    Fernandes, Anna Maria A. P.; Vendramini, Pedro H.; Galaverna, Renan; Schwab, Nicolas V.; Alberici, Luciane C.; Augusti, Rodinei; Castilho, Roger F.; Eberlin, Marcos N.

    2016-12-01

    Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels.

  11. Examination of the skin barrier repair/wound healing process using a living skin equivalent model and matrix-assisted laser desorption-ionization-mass spectrometry imaging.

    Science.gov (United States)

    Lewis, E E L; Barrett, M R T; Freeman-Parry, L; Bojar, R A; Clench, M R

    2018-04-01

    Examination of the skin barrier repair/wound healing process using a living skin equivalent (LSE) model and matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to identify lipids directly involved as potential biomarkers. These biomarkers may be used to determine whether an in vivo wound is going to heal for example if infected. An in vitro LSE model was wounded with a scalpel blade and assessed at day 4 post-wounding by histology and MALDI-MSI. Samples were sectioned at wound site and were either formalin-fixed paraffin-embedded (FFPE) for histology or snapped frozen (FF) for MSI analysis. The combination of using an in vitro wounded skin model with MSI allowed the identification of lipids involved in the skin barrier repair/wound healing process. The technique was able to highlight lipids directly in the wound site and distinguish differences in lipid distribution between the epidermis and wound site. This novel method of coupling an in vitro LSE with MSI allowed in-depth molecular analysis of the skin barrier repair/wound healing process. The technique allowed the identification of lipids directly involved in the skin barrier repair/wound healing process, indicating these biomarkers may be potentially be used within the clinic. These biomarkers will help to determine, which stage of the skin barrier repair/wound healing process the wound is in to provide the best treatment. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Anderson, Neil W; Buchan, Blake W; Riebe, Katherine M; Parsons, Lauren N; Gnacinski, Stacy; Ledeboer, Nathan A

    2012-03-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for the identification of bacteria. Factors that may alter protein profiles, including growth conditions and presence of exogenous substances, could hinder identification. Bacterial isolates identified by conventional methods were grown on various media and identified using the MALDI Biotyper (Bruker Daltonics, Billerica, MA) using a direct smear method and an acid extraction method. Specimens included 23 Pseudomonas isolates grown on blood agar, Pseudocel (CET), and MacConkey agar (MAC); 20 Staphylococcus isolates grown on blood agar, colistin-nalidixic acid agar (CNA), and mannitol salt agar (MSA); and 25 enteric isolates grown on blood agar, xylose lysine deoxycholate agar (XLD), Hektoen enteric agar (HE), salmonella-shigella agar (SS), and MAC. For Pseudomonas spp., the identification rate to genus using the direct method was 83% from blood, 78% from MAC, and 94% from CET. For Staphylococcus isolates, the identification rate to genus using the direct method was 95% from blood, 75% from CNA, and 95% from MSA. For enteric isolates, the identification rate to genus using the direct method was 100% from blood, 100% from MAC, 100% from XLD, 92% from HE, and 87% from SS. Extraction enhanced identification rates. The direct method of MALDI-TOF analysis of bacteria from selective and differential media yields identifications of varied confidence. Notably, Staphylococci spp. from CNA exhibit low identification rates. Extraction enhances identification rates and is recommended for colonies from this medium.

  13. Identification of proteins in a human pleural exudate using two-dimensional preparative liquid-phase electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Nilsson, C L; Puchades, M; Westman, A; Blennow, K; Davidsson, P

    1999-01-01

    Pleural effusion may occur in patients suffering from physical trauma or systemic disorders such as infection, inflammation, or cancer. In order to investigate proteins in a pleural exudate from a patient with severe pneumonia, we used a strategy that combined preparative two-dimensional liquid-phase electrophoresis (2-D LPE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and Western blotting. Preparative 2-D LPE is based on the same principles as analytical 2-D gel electrophoresis, except that the proteins remain in liquid phase during the entire procedure. In the first dimension, liquid-phase isoelectric focusing allows for the enrichment of proteins in liquid fractions. In the Rotofor cell, large volumes (up to 55 mL) and protein amounts (up to 1-2 g) can be loaded. Several low abundance proteins, cystatin C, haptoglobin, transthyretin, beta2-microglobulin, and transferrin, were detected after liquid-phase isoelectric focusing, through Western blotting analysis, in a pleural exudate (by definition, >25 g/L total protein). Direct MALDI-TOF-MS analysis of proteins in a Rotofor fraction is demonstrated as well. MALDI-TOF-MS analysis of a tryptic digest of a continuous elution sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) fraction confirmed the presence of cystatin C. By applying 2-D LPE, MALDI-TOF-MS, and Western blotting to the analysis of this pleural exudate, we were able to confirm the identity of proteins of potential diagnostic value. Our findings serve to illustrate the usefulness of this combination of methods in the analysis of pathological fluids.

  14. Unusual analyte-matrix adduct ions and mechanism of their formation in MALDI TOF MS of benzene-1,3,5-tricarboxamide and urea compounds

    NARCIS (Netherlands)

    Lou, X.; Fransen, M.; Stals, P.J.M.; Mes, T.; Bovee, R.; Dongen, van J.L.J.; Meijer, E.W.

    2013-01-01

    Analyte-matrix adducts are normally absent under typical matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) conditions. Interestingly, though, in the analysis of several types of organic compounds synthesized in our laboratory, analyte-matrix adduct ion peaks

  15. Matrix effect on the determination of synthetic corticosteroids and diuretics by liquid chromatography-tandem mass spectrometry

    Science.gov (United States)

    Dikunets, M. A.; Appolonova, S. A.; Rodchenkov, G. M.

    2009-04-01

    This work presents a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) procedure for selective and reliable screening of corticosteroids and diuretics in human urine. Sample preparation included the extraction, evaporation of the organic extract under nitrogen, and solution of the dry residue. The extract was analyzed by HPLC combined with tandem mass spectrometry using electro-spraying ionization at atmospheric pressure with negative ion recording. The mass spectra of all compounds were recorded, and the characteristic ions, retention times, and detection limits were determined. The procedure was validated by evaluating the degree of the matrix suppression of ionization, extraction of analytes from human biological liquid, and the selectivity and specificity of determination.

  16. Development of a rapid and simplified protocol for direct bacterial identification from positive blood cultures by using matrix assisted laser desorption ionization time-of- flight mass spectrometry.

    Science.gov (United States)

    Jakovljev, Aleksandra; Bergh, Kåre

    2015-11-06

    Bloodstream infections represent serious conditions carrying a high mortality and morbidity rate. Rapid identification of microorganisms and prompt institution of adequate antimicrobial therapy is of utmost importance for a successful outcome. Aiming at the development of a rapid, simplified and efficient protocol, we developed and compared two in-house preparatory methods for the direct identification of bacteria from positive blood culture flasks (BD BACTEC FX system) by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF MS). Both methods employed saponin and distilled water for erythrocyte lysis. In method A the cellular pellet was overlaid with formic acid on the MALDI TOF target plate for protein extraction, whereas in method B the pellet was exposed to formic acid followed by acetonitrile prior to placing on the target plate. Best results were obtained by method A. Direct identification was achieved for 81.9 % and 65.8 % (50.3 % and 26.2 % with scores >2.0) of organisms by method A and method B, respectively. Overall concordance with final identification was 100 % to genus and 97.9 % to species level. By applying a lower cut-off score value, the levels of identification obtained by method A and method B increased to 89.3 % and 77.8 % of organisms (81.9 % and 65.8 % identified with scores >1.7), respectively. Using the lowered score criteria, concordance with final results was obtained for 99.3 % of genus and 96.6 % of species identifications. The reliability of results, rapid performance (approximately 25 min) and applicability of in-house method A have contributed to implementation of this robust and cost-effective method in our laboratory.

  17. Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: characterization by internal transcribed spacer, β-Tubulin, and calmodulin gene sequencing, metabolic fingerprinting, and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Tam, Emily W T; Chen, Jonathan H K; Lau, Eunice C L; Ngan, Antonio H Y; Fung, Kitty S C; Lee, Kim-Chung; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2014-04-01

    Aspergillus nomius and Aspergillus tamarii are Aspergillus species that phenotypically resemble Aspergillus flavus. In the last decade, a number of case reports have identified A. nomius and A. tamarii as causes of human infections. In this study, using an internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, only 8 of 11 clinical isolates reported as A. flavus in our clinical microbiology laboratory by phenotypic methods were identified as A. flavus. The other three isolates were A. nomius (n = 2) or A. tamarii (n = 1). The results corresponded with those of metabolic fingerprinting, in which the A. flavus, A. nomius, and A. tamarii strains were separated into three clusters based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC MS) analysis. The first two patients with A. nomius infections had invasive aspergillosis and chronic cavitary and fibrosing pulmonary and pleural aspergillosis, respectively, whereas the third patient had A. tamarii colonization of the airway. Identification of the 11 clinical isolates and three reference strains by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) showed that only six of the nine strains of A. flavus were identified correctly. None of the strains of A. nomius and A. tamarii was correctly identified. β-Tubulin or the calmodulin gene should be the gene target of choice for identifying A. flavus, A. nomius, and A. tamarii. To improve the usefulness of MALDI-TOF MS, the number of strains for each species in MALDI-TOF MS databases should be expanded to cover intraspecies variability.

  18. Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: Characterization by Internal Transcribed Spacer, β-Tubulin, and Calmodulin Gene Sequencing, Metabolic Fingerprinting, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    Science.gov (United States)

    Tam, Emily W. T.; Chen, Jonathan H. K.; Lau, Eunice C. L.; Ngan, Antonio H. Y.; Fung, Kitty S. C.; Lee, Kim-Chung; Lam, Ching-Wan; Yuen, Kwok-Yung

    2014-01-01

    Aspergillus nomius and Aspergillus tamarii are Aspergillus species that phenotypically resemble Aspergillus flavus. In the last decade, a number of case reports have identified A. nomius and A. tamarii as causes of human infections. In this study, using an internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, only 8 of 11 clinical isolates reported as A. flavus in our clinical microbiology laboratory by phenotypic methods were identified as A. flavus. The other three isolates were A. nomius (n = 2) or A. tamarii (n = 1). The results corresponded with those of metabolic fingerprinting, in which the A. flavus, A. nomius, and A. tamarii strains were separated into three clusters based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC MS) analysis. The first two patients with A. nomius infections had invasive aspergillosis and chronic cavitary and fibrosing pulmonary and pleural aspergillosis, respectively, whereas the third patient had A. tamarii colonization of the airway. Identification of the 11 clinical isolates and three reference strains by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) showed that only six of the nine strains of A. flavus were identified correctly. None of the strains of A. nomius and A. tamarii was correctly identified. β-Tubulin or the calmodulin gene should be the gene target of choice for identifying A. flavus, A. nomius, and A. tamarii. To improve the usefulness of MALDI-TOF MS, the number of strains for each species in MALDI-TOF MS databases should be expanded to cover intraspecies variability. PMID:24452174

  19. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    Warters, R.L.; Brizgys, L.M.; Lyons, B.W.

    1987-01-01

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 0 C and 45 0 C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 0 C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 37 0 C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 0 C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  20. Discovery of putative salivary biomarkers for Sjögren's syndrome using high resolution mass spectrometry and bioinformatics.

    Science.gov (United States)

    Zoukhri, Driss; Rawe, Ian; Singh, Mabi; Brown, Ashley; Kublin, Claire L; Dawson, Kevin; Haddon, William F; White, Earl L; Hanley, Kathleen M; Tusé, Daniel; Malyj, Wasyl; Papas, Athena

    2012-03-01

    The purpose of the current study was to determine if saliva contains biomarkers that can be used as diagnostic tools for Sjögren's syndrome (SjS). Twenty seven SjS patients and 27 age-matched healthy controls were recruited for these studies. Unstimulated glandular saliva was collected from the Wharton's duct using a suction device. Two µl of salvia were processed for mass spectrometry analyses on a prOTOF 2000 matrix-assisted laser desorption/ionization orthogonal time of flight (MALDI O-TOF) mass spectrometer. Raw data were analyzed using bioinformatic tools to identify biomarkers. MALDI O-TOF MS analyses of saliva samples were highly reproducible and the mass spectra generated were very rich in peptides and peptide fragments in the 750-7,500 Da range. Data analysis using bioinformatic tools resulted in several classification models being built and several biomarkers identified. One model based on 7 putative biomarkers yielded a sensitivity of 97.5%, specificity of 97.8% and an accuracy of 97.6%. One biomarker was present only in SjS samples and was identified as a proteolytic peptide originating from human basic salivary proline-rich protein 3 precursor. We conclude that salivary biomarkers detected by high-resolution mass spectrometry coupled with powerful bioinformatic tools offer the potential to serve as diagnostic/prognostic tools for SjS.

  1. Salting-out assisted liquid-liquid extraction combined with gas chromatography-mass spectrometry for the determination of pyrethroid insecticides in high salinity and biological samples.

    Science.gov (United States)

    Niu, Zongliang; Yu, Chunwei; He, Xiaowen; Zhang, Jun; Wen, Yingying

    2017-09-05

    A salting-out assisted liquid-liquid extraction (SALLE) combined with gas chromatography-mass spectrometry (GC-MS) method was developed for the determination of four pyrethroid insecticides (PYRs) in high salinity and biological samples. Several parameters including sample pH, salting-out solution volume and salting-out solution pH influencing the extraction efficiency were systematically investigated with the aid of orthogonal design. The optimal extraction conditions of SALLE were: 4mL of salting-out solution with pH=4 and the sample pH=3. Under the optimum extraction and determination conditions, good responses for four PYRs were obtained in a range of 5-5000ng/mL, with linear coefficients greater than 0.998. The recoveries of the four PYRs ranged from 74% to 110%, with standard deviations ranging from 1.8% to 9.8%. The limits of detection based on a signal-to-noise ratio of 3 were between 1.5-60.6ng/mL. The method was applied to the determination of PYRs in urine, seawater and wastewater samples with a satisfactory result. The results demonstrated that this SALLE-GC-MS method was successfully applied to determine PYRs in high salinity and biological samples. SALLE avoided the need for the elimination of salinity and protein in the sample matrix, as well as clean-up of the extractant. Most of all, no centrifugation or any special apparatus are required, make this a promising method for rapid sample preparation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Matrix-assisted laser desorption/ionization sample preparation optimization for structural characterization of poly(styrene-co-pentafluorostyrene) copolymers

    International Nuclear Information System (INIS)

    Tisdale, Evgenia; Kennedy, Devin; Wilkins, Charles

    2014-01-01

    Graphical abstract: -- Highlights: •We optimized sample preparation for MALDI TOF poly(styrene-copentafluorostyrene) co-polymers. •Influence of matrix choice was investigated. •Influence of matrix/analyte ratio was examined. •Influence of analyte/salt ratio (for Ag+ salt) was studied. -- Abstract: The influence of the sample preparation parameters (the choice of the matrix, matrix:analyte ratio, salt:analyte ratio) was investigated and optimal conditions were established for the MALDI time-of-flight mass spectrometry analysis of the poly(styrene-co-pentafluorostyrene) copolymers. These were synthesized by atom transfer radical polymerization. Use of 2,5-dihydroxybenzoic acid as matrix resulted in spectra with consistently high ion yields for all matrix:analyte:salt ratios tested. The optimized MALDI procedure was successfully applied to the characterization of three copolymers obtained by varying the conditions of polymerization reaction. It was possible to establish the nature of the end groups, calculate molecular weight distributions, and determine the individual length distributions for styrene and pentafluorostyrene monomers, contained in the resulting copolymers. Based on the data obtained, it was concluded that individual styrene chain length distributions are more sensitive to the change in the composition of the catalyst (the addition of small amount of CuBr 2 ) than is the pentafluorostyrene component distribution

  3. Matrix-assisted laser desorption/ionization sample preparation optimization for structural characterization of poly(styrene-co-pentafluorostyrene) copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Tisdale, Evgenia; Kennedy, Devin; Wilkins, Charles, E-mail: cwilkins@uark.edu

    2014-01-15

    Graphical abstract: -- Highlights: •We optimized sample preparation for MALDI TOF poly(styrene-copentafluorostyrene) co-polymers. •Influence of matrix choice was investigated. •Influence of matrix/analyte ratio was examined. •Influence of analyte/salt ratio (for Ag+ salt) was studied. -- Abstract: The influence of the sample preparation parameters (the choice of the matrix, matrix:analyte ratio, salt:analyte ratio) was investigated and optimal conditions were established for the MALDI time-of-flight mass spectrometry analysis of the poly(styrene-co-pentafluorostyrene) copolymers. These were synthesized by atom transfer radical polymerization. Use of 2,5-dihydroxybenzoic acid as matrix resulted in spectra with consistently high ion yields for all matrix:analyte:salt ratios tested. The optimized MALDI procedure was successfully applied to the characterization of three copolymers obtained by varying the conditions of polymerization reaction. It was possible to establish the nature of the end groups, calculate molecular weight distributions, and determine the individual length distributions for styrene and pentafluorostyrene monomers, contained in the resulting copolymers. Based on the data obtained, it was concluded that individual styrene chain length distributions are more sensitive to the change in the composition of the catalyst (the addition of small amount of CuBr{sub 2}) than is the pentafluorostyrene component distribution.

  4. Surface morphology of thin lysozyme films produced by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Purice, Andreea; Schou, Jørgen; Pryds, Nini

    2007-01-01

    Thin films of the protein, lysozyme, have been deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Frozen targets of 0.3-1.0 wt.% lysozyme dissolved in ultrapure water were irradiated by laser light at 355 mn with a fluence of 2 J/cm(2). The surface quality of the thin....... The concentration of lysozyme in the ice matrix apparently does not play any significant role for the morphology of the film. The morphology obtained with MAPLE has been compared with results for direct laser irradiation of a pressed lysozyme sample (i.e. pulsed laser deposition (PLD)). (C) 2007 Elsevier B.V. All...

  5. Matrix-assisted laser desorption/ionization sample preparation optimization for structural characterization of poly(styrene-co-pentafluorostyrene) copolymers.

    Science.gov (United States)

    Tisdale, Evgenia; Kennedy, Devin; Xu, Xiaodong; Wilkins, Charles

    2014-01-15

    The influence of the sample preparation parameters (the choice of the matrix, matrix:analyte ratio, salt:analyte ratio) was investigated and optimal conditions were established for the MALDI time-of-flight mass spectrometry analysis of the poly(styrene-co-pentafluorostyrene) copolymers. These were synthesized by atom transfer radical polymerization. Use of 2,5-dihydroxybenzoic acid as matrix resulted in spectra with consistently high ion yields for all matrix:analyte:salt ratios tested. The optimized MALDI procedure was successfully applied to the characterization of three copolymers obtained by varying the conditions of polymerization reaction. It was possible to establish the nature of the end groups, calculate molecular weight distributions, and determine the individual length distributions for styrene and pentafluorostyrene monomers, contained in the resulting copolymers. Based on the data obtained, it was concluded that individual styrene chain length distributions are more sensitive to the change in the composition of the catalyst (the addition of small amount of CuBr2) than is the pentafluorostyrene component distribution. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Growth of thin films of low molecular weight proteins by matrix assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Matei, Andreea; Schou, Jørgen; Constantinescu, C.

    2011-01-01

    Thin films of lysozyme and myoglobin grown by matrix assisted pulsed laser evaporation (MAPLE) from a water ice matrix have been investigated. The deposition rate of these two low molecular weight proteins (lysozyme: 14307 amu and myoglobin: 17083 amu) exhibits a maximum of about 1–2 ng/cm2 per....... The results for lysozyme demonstrate that the fragmentation rate of the proteins during the MAPLE process is not influenced by the pH of the water solution prior to freezing....

  7. New strategy for the determination of gliadins in maize- or rice-based foods matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: fractionation of gliadins from maize or rice prolamins by acidic treatment.

    Science.gov (United States)

    Hernando, Alberto; Valdes, Israel; Méndez, Enrique

    2003-08-01

    A procedure for determining small quantities of gliadins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) in gluten-free foods containing relatively large amounts of prolamin proteins from maize or rice is described. We report for the first time that gliadins, the ethanol-soluble wheat prolamin fraction, can be quantitatively solubilized in 1.0 M acetic acid, while the corresponding ethanol-soluble maize or rice prolamin fraction remains insoluble in acetic acid. We describe a methodology for the detection of gliadins in maize and rice foods based on a two-step procedure of extraction (60% aqueous ethanol followed by 1 M acetic acid). Subsequent MALDI-TOFMS analysis of the resulting acidic extract from these gluten-free foods clearly confirms the presence of a typical mass pattern corresponding to gliadin components, ranging from 30 to 45 kDa. Depending on the percentages of maize or rice flours employed in the elaboration of these foods, the combined procedure enables levels of gliadins from 100 to 400 ppm to be detected. The efficiency of this combined procedure corroborates enzyme-linked immunosorbent assay data for a large number of maize/rice gluten-free foods by means of direct visualization of the characteristic gliadin mass pattern in maize or rice foods. Copyright 2003 John Wiley & Sons, Ltd.

  8. Connecting Majorana phases to the geometric parameters of the Majorana unitarity triangle in a neutrino mass matrix model

    Science.gov (United States)

    Verma, Surender; Bhardwaj, Shankita

    2018-05-01

    We have investigated a possible connection between the Majorana phases and geometric parameters of Majorana unitarity triangle (MT) in two-texture zero neutrino mass matrix. Such analytical relations can, also, be obtained for other theoretical models viz. hybrid textures, neutrino mass matrix with vanishing minors and have profound implications for geometric description of C P violation. As an example, we have considered the two-texture zero neutrino mass model to obtain a relation between Majorana phases and MT parameters that may be probed in various lepton number violating processes. In particular, we find that Majorana phases depend on only one of the three interior angles of the MT in each class of two-texture zero neutrino mass matrix. We have also constructed the MT for class A , B , and C neutrino mass matrices. Nonvanishing areas and nontrivial orientations of these Majorana unitarity triangles indicate nonzero C P violation as a generic feature of this class of mass models.

  9. Neutrino mass from laboratory: contribution of double beta decay to the neutrino mass matrix

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    2001-01-01

    Double beta decay is indispensable to solve the question of the neutrino mass matrix together with ν oscillation experiments. The most sensitive experiment - since eight years the HEIDELBERG-MOSCOW experiment in Gran-Sasso - already now, with the experimental limit of ν > < 0.26 eV practically excludes degenerate ν mass scenarios allowing neutrinos as hot dark matter in the universe for the smallangle MSW solution of the solar neutrino problem. It probes cosmological models including hot dark matter already now on the level of future satellite experiments MAP and PLANCK. It further probes many topics of beyond SM physics at the TeV scale. Future experiments should give access to the multi-TeV range and complement on many ways the search for new physics at future colliders like LHC and NLC. For neutrino physics some of them (GENIUS) will allow to test almost all neutrino mass scenarios allowed by the present neutrino oscillation experiments

  10. Direct identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) from positive blood culture bottles: An opportunity to customize growth conditions for fastidious organisms causing bloodstream infections.

    Science.gov (United States)

    Sharma, Megha; Gautam, Vikas; Mahajan, Monika; Rana, Sudesh; Majumdar, Manasi; Ray, Pallab

    2017-10-01

    Culture-negative bacteraemia has been an enigmatic entity with respect to its aetiological agents. In an attempt to actively identify those positive blood cultures that escape isolation and detection on routine workflow, an additional step of MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) based detection was carried out directly from the flagged blood culture bottles. Blood samples from 200 blood culture bottles that beeped positive with automated (BACTEC) system and showed no growth of organism on routine culture media, were subjected to analysis by MALDI-TOF MS. Forty seven of the 200 (23.5%) bacterial aetiology could be established by bottle-based method. Based on these results, growth on culture medium could be achieved for the isolates by providing special growth conditions to the fastidious organisms. Direct identification by MALDI-TOF MS from BACTEC-positive bottles provided an opportunity to isolate those fastidious organisms that failed to grow on routine culture medium by providing them with necessary alterations in growth environment.

  11. The characterisation of molecular boric acid by mass spectrometry and matrix isolation-infrared spectroscopy

    International Nuclear Information System (INIS)

    Ogden, J.S.; Young, N.A.; Bowsher, B.R.

    1987-10-01

    Boric acid (H 3 BO 3 ) is used as a soluble neutron absorber in the coolant of pressurised water reactors and will be an important species in defining the fission product chemistry of severe reactor accidents. Mass spectrometry and matrix isolation-infrared spectroscopy have been used to characterise boric acid in the vapour phase and hence assess the implications of any chemical interactions. Crystalline orthoboric acid vaporises to yield molecular H 3 BO 3 when heated in vacuum to approximately 40 0 C. The infrared spectrum of the vapour species isolated in low-temperature nitrogen matrices shows characteristic absorptions at 3668.5 (E'), 1426.2 (E'), 1009.9 (E'), 675.0 (A''), 513.8 (A'') and 448.9 (E') cm -1 , consistent with C 3h symmetry. These spectral assignments are supported by extensive isotope labelling, and by a partial normal co-ordinate analysis. These data will be used to quantify specific thermodynamic functions and hence assist in determining the magnitude of reactions such as boric acid with caesium iodide. (author)

  12. The emergence of mass spectrometry in biochemical research

    OpenAIRE

    1995-01-01

    The initial steps toward routinely applying mass spectrometry in the biochemical laboratory have been achieved. In the past, mass spectrometry was confined to the realm of small, relatively stable molecules; large or thermally labile molecules did not survive the desorption and ionization processes intact. Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry allow for the analysis of both small and large biomolecules through "mild" desorption...

  13. Ambient Profiling of Phenolic Content in Tea Infusions by Matrix-Assisted Ionization in Vacuum

    Science.gov (United States)

    Cody, Robert B.

    2018-05-01

    Matrix-assisted ionization in vacuum (MAIV) was used to analyze the polyphenol content of ten different tea infusions. Nine different Camellia sinensis infusions were analyzed including three green teas, two black teas, two oolong teas, jasmine tea, and white tea. An infusion of rooibos (Aspalathus linearis) tea was also analyzed. Each freshly brewed tea was diluted 1:1 with methanol, and 100 ppm of phenolphthalein was added as an internal standard. An excess of 3-nitrobenzonitrile (NBN) was added to each vial, and the solution containing NBN crystals was analyzed by aspiration directly into the mass spectrometer sampling orifice. A working curve constructed for dilutions of catechin with phenolphthalein internal standard showed good linearity for five replicates of each concentration. The measured relative abundances of flavonoid polyphenols in each tea were in good agreement with previously reported values. Polyphenol content in tea infusions varied from 19.2 to 108.6 mg 100 mL-1. In addition to the expected catechin flavonoids, abundant quinic acid and gallic acid was detected in the C. sinensis infusions. Characteristic A. linearis flavonoids were detected in the rooibos tea.

  14. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard; Raoult, Didier

    2013-07-01

    During the past 5 years, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories.

  15. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    De Carolis, E; Posteraro, B; Lass-Flörl, C; Vella, A; Florio, A R; Torelli, R; Girmenia, C; Colozza, C; Tortorano, A M; Sanguinetti, M; Fadda, G

    2012-05-01

    Accurate species discrimination of filamentous fungi is essential, because some species have specific antifungal susceptibility patterns, and misidentification may result in inappropriate therapy. We evaluated matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for species identification through direct surface analysis of the fungal culture. By use of culture collection strains representing 55 species of Aspergillus, Fusarium and Mucorales, a reference database was established for MALDI-TOF MS-based species identification according to the manufacturer's recommendations for microflex measurements and MALDI BioTyper 2.0 software. The profiles of young and mature colonies were analysed for each of the reference strains, and species-specific spectral fingerprints were obtained. To evaluate the database, 103 blind-coded fungal isolates collected in the routine clinical microbiology laboratory were tested. As a reference method for species designation, multilocus sequencing was used. Eighty-five isolates were unequivocally identified to the species level (≥99% sequence similarity); 18 isolates producing ambiguous results at this threshold were initially rated as identified to the genus level only. Further molecular analysis definitively assigned these isolates to the species Aspergillus oryzae (17 isolates) and Aspergillus flavus (one isolate), concordant with the MALDI-TOF MS results. Excluding nine isolates that belong to the fungal species not included in our reference database, 91 (96.8%) of 94 isolates were identified by MALDI-TOF MS to the species level, in agreement with the results of the reference method; three isolates were identified to the genus level. In conclusion, MALDI-TOF MS is suitable for the routine identification of filamentous fungi in a medical microbiology laboratory. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  16. Matrix-assisted laser desorption ionization time of flight mass spectrometry and diagnostic testing for prosthetic joint infection in the clinical microbiology laboratory.

    Science.gov (United States)

    Peel, Trisha N; Cole, Nicolynn C; Dylla, Brenda L; Patel, Robin

    2015-03-01

    Identification of pathogen(s) associated with prosthetic joint infection (PJI) is critical for patient management. Historically, many laboratories have not routinely identified organisms such as coagulase-negative staphylococci to the species level. The advent of matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has enhanced clinical laboratory capacity for accurate species-level identification. The aim of this study was to describe the species-level identification of microorganisms isolated from periprosthetic tissue and fluid specimens using MALDI-TOF MS alongside other rapid identification tests in a clinical microbiology laboratory. Results of rapid identification of bacteria isolated from periprosthetic joint fluid and/or tissue specimens were correlated with clinical findings at Mayo Clinic, Rochester, Minnesota, between May 2012 and May 2013. There were 178 PJI and 82 aseptic failure (AF) cases analyzed, yielding 770 organisms (median, 3/subject; range, 1-19/subject). MALDI-TOF MS was employed for the identification of 455 organisms (59%) in 197 subjects (123 PJIs and 74 AFs), with 89% identified to the species level using this technique. Gram-positive bacteria accounted for 68% and 93% of isolates in PJI and AF, respectively. However, the profile of species associated with infection compared to specimen contamination differed. Staphylococcus aureus and Staphylococcus caprae were always associated with infection, Staphylococcus epidermidis and Staphylococcus lugdunensis were equally likely to be a pathogen or a contaminant, whereas the other coagulase-negative staphylococci were more frequently contaminants. Most streptococcal and Corynebacterium isolates were pathogens. The likelihood that an organism was a pathogen or contaminant differed with the prosthetic joint location, particularly in the case of Propionibacterium acnes. MALDI-TOF MS is a valuable tool for the identification of bacteria isolated from patients

  17. The mass spectrum of the Schwinger model with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Poznan Univ. (Poland). Faculty of Physics; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Cyprus Univ., Nicosia (Cyprus). Dept. of Physics

    2013-07-15

    We show the feasibility of tensor network solutions for lattice gauge theories in Hamiltonian formulation by applying matrix product states algorithms to the Schwinger model with zero and non-vanishing fermion mass. We introduce new techniques to compute excitations in a system with open boundary conditions, and to identify the states corresponding to low momentum and different quantum numbers in the continuum. For the ground state and both the vector and scalar mass gaps in the massive case, the MPS technique attains precisions comparable to the best results available from other techniques.

  18. Theory of quark mixing matrix and invariant functions of mass matrices

    International Nuclear Information System (INIS)

    Jarlskog, C.

    1987-10-01

    The outline of this talk is as follows: The origin of the quark mixing matrix. Super elementary theory of flavour projection operators. Equivalences and invariances. The commutator formalism and CP violation. CP conditions for any number of families. The 'angle' between the quark mass matrices. Application to Fritzsch and Stech matrices. References. (author)

  19. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry identification of large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G.

    Science.gov (United States)

    Jensen, Christian Salgård; Dam-Nielsen, Casper; Arpi, Magnus

    2015-08-01

    The aim of this study was to investigate whether large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G can be adequately identified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF). Previous studies show varying results, with an identification rate from below 50% to 100%. Large colony beta-hemolytic streptococci containing Lancefield groups A, C, and G isolated from blood cultures between January 1, 2007 and May 1, 2012 were included in the study. Isolates were identified to the species level using a combination of phenotypic characteristics and 16s rRNA sequencing. The isolates were subjected to MALDI-ToF analysis. We used a two-stage approach starting with the direct method. If no valid result was obtained we proceeded to an extraction protocol. Scores above 2 were considered valid identification at the species level. A total of 97 Streptococcus pyogenes, 133 Streptococcus dysgalactiae, and 2 Streptococcus canis isolates were tested; 94%, 66%, and 100% of S. pyogenes, S. dysgalactiae, and S. canis, respectively, were correctly identified by MALDI-ToF. In most instances when the isolates were not identified by MALDI-ToF this was because MALDI-ToF was unable to differentiate between S. pyogenes and S. dysgalactiae. By removing two S. pyogenes reference spectra from the MALDI-ToF database the proportion of correctly identified isolates increased to 96% overall. MALDI-ToF is a promising method for discriminating between S. dysgalactiae, S. canis, and S. equi, although more strains need to be tested to clarify this.

  20. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes.

    Science.gov (United States)

    Abdelhamid, Hani Nasser

    2018-03-01

    Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks. Graphical abstract An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.

  1. Identification of Low Molecular Weight Glutenin Alleles by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) in Common Wheat (Triticum aestivum L.)

    Science.gov (United States)

    Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun

    2015-01-01

    Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end

  2. Neutrino oscillation observables from mass matrix structure

    International Nuclear Information System (INIS)

    Winter, Walter

    2008-01-01

    We present a systematic procedure to establish a connection between complex neutrino mass matrix textures and experimental observables, including the Dirac CP phase. In addition, we illustrate how future experimental measurements affect the selection of textures in the (θ 13 ,δ CP )-plane. For the mixing angles, we use generic assumptions motivated by quark-lepton complementarity. We allow for any combination between U l and U ν , as well as we average over all present complex phases. We find that individual textures lead to very different distributions of the observables, such as to large or small leptonic CP violation. In addition, we find that the extended quark-lepton complementarity approach motivates future precision measurements of δ CP at the level of θ C ≅11 deg

  3. A new combined method of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction for the determination of neurotransmitters in rat brain microdialysates by ultra high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Zheng, Longfang; Zhao, Xian-En; Zhu, Shuyun; Tao, Yanduo; Ji, Wenhua; Geng, Yanling; Wang, Xiao; Chen, Guang; You, Jinmao

    2017-06-01

    In this work, for the first time, a new hyphenated technique of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction has been developed for the simultaneous determination of monoamine neurotransmitters (MANTs) and their biosynthesis precursors and metabolites. The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry detection using multiple-reaction monitoring mode. A pair of mass spectrometry sensitizing reagents, d 0 -10-methyl-acridone-2-sulfonyl chloride and d 3 -10-methyl-acridone-2-sulfonyl chloride, as stable isotope probes was utilized to facilely label neurotransmitters, respectively. The heavy labeled MANTs standards were prepared and used as internal standards for quantification to minimize the matrix effects in mass spectrometry analysis. Low toxic bromobenzene (extractant) and acetonitrile (dispersant) were utilized in microextraction procedure. Under the optimized conditions, good linearity was observed with the limits of detection (S/N>3) and limits of quantification (S/N>10) in the range of 0.002-0.010 and 0.015-0.040nmol/L, respectively. Meanwhile, it also brought acceptable precision (4.2-8.8%, peak area RSDs %) and accuracy (recovery, 96.9-104.1%) results. This method was successfully applied to the simultaneous determination of monoamine neurotransmitters and their biosynthesis precursors and metabolites in rat brain microdialysates of Parkinson's disease and normal rats. This provided a new method for the neurotransmitters related studies in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Inverse mass matrix via the method of localized lagrange multipliers

    Czech Academy of Sciences Publication Activity Database

    González, José A.; Kolman, Radek; Cho, S.S.; Felippa, C.A.; Park, K.C.

    2018-01-01

    Roč. 113, č. 2 (2018), s. 277-295 ISSN 0029-5981 R&D Projects: GA MŠk(CZ) EF15_003/0000493; GA ČR GA17-22615S Institutional support: RVO:61388998 Keywords : explicit time integration * inverse mass matrix * localized Lagrange multipliers * partitioned analysis Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 2.162, year: 2016 https://onlinelibrary.wiley.com/doi/10.1002/nme.5613

  5. Diagonalization of quark mass matrices and the Cabibbo-Kobayashi-Maskawa matrix

    International Nuclear Information System (INIS)

    Rasin, A.

    1997-08-01

    I discuss some general aspect of diagonalizing the quark mass matrices and list all possible parametrizations of the Cabibbo-Kobayashi-Maskawa matrix (CKM) in terms of three rotation angles and a phase. I systematically study the relation between the rotations needed to diagonalize the Yukawa matrices and various parametrizations of the CKM. (author). 17 refs, 1 tab

  6. Mass spectrometry of acoustically levitated droplets.

    Science.gov (United States)

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption.

  7. Direct identification of microorganisms from positive blood cultures using the lysis-filtration technique and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): a multicentre study.

    Science.gov (United States)

    Farina, Claudio; Arena, Fabio; Casprini, Patrizia; Cichero, Paola; Clementi, Massimo; Cosentino, Marina; Degl'Innocenti, Roberto; Giani, Tommaso; Luzzaro, Francesco; Mattei, Romano; Mauri, Carola; Nardone, Maria; Rossolini, Gian Maria; Serna Ortega, Paula Andrea; Vailati, Francesca

    2015-04-01

    Microbial identification from blood cultures is essential to institute optimal antibiotic therapy and improve survival possibilities. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied to identify bacteria and yeasts from positive blood cultures broths. The aim of this multicentre study was to evaluate the reliability of the lysis-filtration technique associated with MALDI-TOF MS to directly identify microorganisms from 765 positive blood cultures collected in six Italian hospitals. Overall, 675/765 (78.1%) blood isolates were correctly identified at the species level, with significant differences between Gram-negative and Gram-positive bacteria (92.6%, and 69.8%, respectively). Some difficulties arise in identifying Streptococcus pneumoniae, Staphylococcus aureus, yeasts and anaerobes. The lysis-filtration protocol is a suitable procedure in terms of performance in identifying microorganisms, but it is quite expensive and technically time-consuming since the time of filtration is not regular for all the samples. The application of the MALDI-TOF MS technique to the direct microbial identification from positive blood cultures is a very promising approach, even if more experience must be gained to minimize errors and costs.

  8. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  9. A Lie-Theoretic Perspective on O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains.

    Science.gov (United States)

    Lee, Kiju; Wang, Yunfeng; Chirikjian, Gregory S

    2007-11-01

    Over the past several decades a number of O(n) methods for forward and inverse dynamics computations have been developed in the multi-body dynamics and robotics literature. A method was developed in 1974 by Fixman for O(n) computation of the mass-matrix determinant for a serial polymer chain consisting of point masses. In other recent papers, we extended this method in order to compute the inverse of the mass matrix for serial chains consisting of point masses. In the present paper, we extend these ideas further and address the case of serial chains composed of rigid-bodies. This requires the use of relatively deep mathematics associated with the rotation group, SO(3), and the special Euclidean group, SE(3), and specifically, it requires that one differentiates functions of Lie-group-valued argument.

  10. Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease.

    Science.gov (United States)

    Chen, Yanfeng; Allegood, Jeremy; Liu, Ying; Wang, Elaine; Cachón-Gonzalez, Begoña; Cox, Timothy M; Merrill, Alfred H; Sullards, M Cameron

    2008-04-15

    The quality of tissue imaging by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) depends on the effectiveness of the matrix deposition, especially for lipids that may dissolve in the solvent used for the matrix application. This article describes the use of an oscillating capillary nebulizer (OCN) to spray small droplets of matrix aerosol onto the sample surface for improved matrix homogeneity, reduced crystal size, and controlled solvent effects. This system was then applied to the analysis of histological slices of brains from mice with homozygous disruption of the hexb gene (hexb-/-), a model of Tay-Sachs and Sandhoff disease, versus the functionally normal heterozygote (hexb+/-) by imaging MALDI-MS. This allowed profiling and localization of many different lipid species, and of particular interest, ganglioside GM2, asialo-GM2 (GA2), and sulfatides (ST). The presence of these compounds was confirmed by analysis of brain extracts using electrospray ionization in conjunction with tandem mass spectrometry (MS/MS). The major fatty acid of the ceramide backbone of both GM2 and GA2 was identified as stearic acid (18:0) versus nervonic acid (24:1) for ST by both tissue-imaging MS and ESI-MS/MS. GM2 and GA2 were highly elevated in hexb-/- and were both localized in the granular cell region of the cerebellum. ST, however, was localized mainly in myelinated fiber (white matter) region of the cerebellum as well as in the brain stem with a relatively uniform distribution and had similar relative signal intensity for both hexb+/- and hexb-/- brain. It was also observed that there were distinct localizations for numerous other lipid subclasses; hence, imaging MALDI-MS could be used for "lipidomic" studies. These results illustrate the usefulness of tissue-imaging MALDI-MS with matrix deposition by OCN for histologic comparison of lipids in tissues such as brains from this mouse model of Tay-Sachs and Sandhoff disease.

  11. Texture one zero Dirac neutrino mass matrix with vanishing determinant or trace condition

    Science.gov (United States)

    Singh, Madan

    2018-06-01

    In the light of non-zero and relatively large value of rector mixing angle (θ13), we have performed a detailed analysis of texture one zero neutrino mass matrix Mν in the scenario of vanishing determinant/trace conditions, assuming the Dirac nature of neutrinos. In both the scenarios, normal mass ordering is ruled out for all the six possibilities of Mν, however for inverted mass ordering, only two are found to be viable with the current neutrino oscillation data at 3σ confidence level. Numerical and some approximate analytical results are presented.

  12. Using matrix peaks to map topography: Increased mass resolution and enhanced sensitivity in chemical imaging

    NARCIS (Netherlands)

    McDonnell, Liam A.; Mize, Todd H.; Luxembourg, Stefan L.; Koster, Sander; Eijkel, Gert B.; Verpoorte, Elisabeth; De Rooij, Nico F.; Heeren, Ron M. A.

    2003-01-01

    It is well known in secondary ion mass spectrometry (SIMS) that sample topography leads to decreased mass resolution. Specifically, the ion's time of flight is dependent on where it was generated. Here, using matrix-enhanced SIMS, it is demonstrated that, in addition to increasing the yield of

  13. Determination of benzothiazole and benzotriazole derivates in tire and clothing textile samples by high performance liquid chromatography-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Avagyan, Rozanna; Sadiktsis, Ioannis; Thorsén, Gunnar; Östman, Conny; Westerholm, Roger

    2013-09-13

    A high performance liquid chromatography-tandem mass spectrometry method utilizing electrospray ionization in positive and negative mode has been developed for the separation and detection of benzothiazole and benzotriazole derivates. Ultra-sonication assisted solvent extraction of these compounds has also been developed and the overall method demonstrated on a selected clothing textile and an automobile tire sample. Matrix effects and extraction recoveries, as well as linearity and limits of detection have been evaluated. The calibration curves spanned over more than two orders of magnitude with coefficients of correlation R(2)>0.99 and the limits of detection and the limits of quantification were in the range 1.7-58pg injected and 18-140pg/g, respectively. The extraction recoveries ranged between 69% and 102% and the matrix effects between 75% and 101%. Benzothiazole and benzotriazole derivates were determined in the textile sample and benzothiazole derivatives determined in the tire sample with good analytical performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The use of Gram stain and matrix-assisted laser desorption ionization time-of-flight mass spectrometry on positive blood culture: synergy between new and old technology.

    Science.gov (United States)

    Fuglsang-Damgaard, David; Nielsen, Camilla Houlberg; Mandrup, Elisabeth; Fuursted, Kurt

    2011-10-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is promising as an alternative to more costly and cumbersome methods for direct identifications in blood cultures. We wanted to evaluate a simplified pre-treatment method for using MALDI-TOF-MS directly on positive blood cultures using BacT/Alert blood culture system, and to test an algorithm combining the result of the initial microscopy with the result suggested by MALDI-TOF-MS. Using the recommended cut-off score of 1.7 the best results were obtained among Gram-negative rods with correct identifications in 91% of Enterobacteriaceae, 83% in aerobic/non-fermentative Gram-negative rods, whereas results were more modest among Gram-positive cocci with correct identifications in 52% of Staphylococci, 54% in Enterococci and only 20% in Streptococci. Combining the results of Gram stain with the top reports by MALDI-TOF-MS, increased the sensitivity from 91% to 93% in the score range from 1.5 to 1.7 and from 48% to 85% in the score range from 1.3 to 1.5. Thus, using this strategy and accepting a cut-off at 1.3 instead of the suggested 1.7, overall sensitivity could be increased from 88.1% to 96.3%. MALDI-TOF-MS is an efficient method for direct routine identification of bacterial isolates in blood culture, especially when combined with the result of the Gram stain. © 2011 The Authors. APMIS © 2011 APMIS.

  15. Rapid and easy detection of low-level resistance to vancomycin in methicillin-resistant Staphylococcus aureus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Asakura, Kota; Azechi, Takuya; Sasano, Hiroshi; Matsui, Hidehito; Hanaki, Hideaki; Miyazaki, Motoyasu; Takata, Tohru; Sekine, Miwa; Takaku, Tomoiku; Ochiai, Tomonori; Komatsu, Norio; Shibayama, Keigo; Katayama, Yuki; Yahara, Koji

    2018-01-01

    Vancomycin-intermediately resistant Staphylococcus aureus (VISA) and heterogeneous VISA (hVISA) are associated with treatment failure. hVISA contains only a subpopulation of cells with increased minimal inhibitory concentrations, and its detection is problematic because it is classified as vancomycin-susceptible by standard susceptibility testing and the gold-standard method for its detection is impractical in clinical microbiology laboratories. Recently, a research group developed a machine-learning classifier to distinguish VISA and hVISA from vancomycin-susceptible S. aureus (VSSA) according to matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) data. Nonetheless, the sensitivity of hVISA classification was found to be 76%, and the program was not completely automated with a graphical user interface. Here, we developed a more accurate machine-learning classifier for discrimination of hVISA from VSSA and VISA among MRSA isolates in Japanese hospitals by means of MALDI-TOF MS data. The classifier showed 99% sensitivity of hVISA classification. Furthermore, we clarified the procedures for preparing samples and obtaining MALDI-TOF MS data and developed all-in-one software, hVISA Classifier, with a graphical user interface that automates the classification and is easy for medical workers to use; it is publicly available at https://github.com/bioprojects/hVISAclassifier. This system is useful and practical for screening MRSA isolates for the hVISA phenotype in clinical microbiology laboratories and thus should improve treatment of MRSA infections.

  16. Diagnostic performance of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry in blood bacterial infections: a systematic review and meta-analysis.

    Science.gov (United States)

    Scott, Jamie S; Sterling, Sarah A; To, Harrison; Seals, Samantha R; Jones, Alan E

    2016-07-01

    Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has shown promise in decreasing time to identification of causative organisms compared to traditional methods; however, the utility of MALDI-TOF MS in a heterogeneous clinical setting is uncertain. To perform a systematic review on the operational performance of the Bruker MALDI-TOF MS system and evaluate published cut-off values compared to traditional blood cultures. A comprehensive literature search was performed. Studies were included if they performed direct MALDI-TOF MS analysis of blood culture specimens in human patients with suspected bacterial infections using the Bruker Biotyper software. Sensitivities and specificities of the combined studies were estimated using a hierarchical random effects linear model (REML) incorporating cut-off scores of ≥1.7 and ≥2.0. Fifty publications were identified, with 11 studies included after final review. The estimated sensitivity utilising a cut-off of ≥2.0 from the combined studies was 74.6% (95% CI = 67.9-89.3%), with an estimated specificity of 88.0% (95% CI = 74.8-94.7%). When assessing a cut-off of ≥1.7, the combined sensitivity increases to 92.8% (95% CI = 87.4-96.0%), but the estimated specificity decreased to 81.2% (95% CI = 61.9-96.6%). In this analysis, MALDI-TOF MS showed acceptable sensitivity and specificity in bacterial speciation with the current recommended cut-off point compared to blood cultures; however, lowering the cut-off point from ≥2.0 to ≥1.7 would increase the sensitivity of the test without significant detrimental effect on the specificity, which could improve clinician confidence in their results.

  17. Cost Analysis of Implementing Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Plus Real-Time Antimicrobial Stewardship Intervention for Bloodstream Infections.

    Science.gov (United States)

    Patel, Twisha S; Kaakeh, Rola; Nagel, Jerod L; Newton, Duane W; Stevenson, James G

    2017-01-01

    Studies evaluating rapid diagnostic testing plus stewardship intervention have consistently demonstrated improved clinical outcomes for patients with bloodstream infections. However, the cost of implementing new rapid diagnostic testing can be significant, and such testing usually does not generate additional revenue. There are minimal data evaluating the impact of adding matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid organism identification and dedicating pharmacy stewardship personnel time on the total hospital costs. A cost analysis was performed utilizing patient data generated from the hospital cost accounting system and included additional costs of MALDI-TOF equipment, supplies and personnel, and dedicated pharmacist time for blood culture review and of making interventions to antimicrobial therapy. The cost analysis was performed from a hospital perspective for 3-month blocks before and after implementation of MALDI-TOF plus stewardship intervention. A total of 480 patients with bloodstream infections were included in the analysis: 247 in the preintervention group and 233 in the intervention group. Thirty-day mortality was significantly improved in the intervention group (12% versus 21%, P cost per bloodstream infection was lower in the intervention group ($42,580 versus $45,019). Intensive care unit cost per bloodstream infection accounted for the largest share of the total costs in each group and was also lower in the intervention group ($10,833 versus $13,727). Implementing MALDI-TOF plus stewardship review and intervention decreased mortality for patients with bloodstream infections. Despite the additional costs of implementing MALDI-TOF and of dedicating pharmacy stewardship personnel time to interventions, the total hospital costs decreased by $2,439 per bloodstream infection, for an approximate annual cost savings of $2.34 million. Copyright © 2016 American Society for Microbiology.

  18. A Rapid Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Method for Single-Plasmid Tracking in an Outbreak of Carbapenem-Resistant Enterobacteriaceae

    Science.gov (United States)

    Lau, Anna F.; Wang, Honghui; Weingarten, Rebecca A.; Drake, Steven K.; Suffredini, Anthony F.; Garfield, Mark K.; Chen, Yong; Gucek, Marjan; Youn, Jung-Ho; Stock, Frida; Tso, Hanna; DeLeo, Jim; Cimino, James J.; Frank, Karen M.

    2014-01-01

    Carbapenem-resistant Enterobacteriaceae (CRE) have spread globally and represent a serious and growing threat to public health. Rapid methods for tracking plasmids carrying carbapenemase genes could greatly benefit infection control efforts. Here, we demonstrate that real-time, direct tracking of a single plasmid in a bacterial strain responsible for an outbreak is possible using a commercial matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system. In this case, we retrospectively tracked the blaKPC carbapenemase gene-bearing pKpQIL plasmid responsible for a CRE outbreak that occurred at the NIH Clinical Center in 2011. An ∼11,109-Da MS peak corresponding to a gene product of the blaKPC pKpQIL plasmid was identified and characterized using a combination of proteomics and molecular techniques. This plasmid peak was present in spectra from retrospectively analyzed K. pneumoniae outbreak isolates, concordant with results from whole-genome sequencing, and absent from a diverse control set of blaKPC-negative clinical Enterobacteriaceae isolates. Notably, the gene characterized here is located adjacent to the blaKPC Tn4401 transposon on the pKpQIL plasmid. Sequence analysis demonstrates the presence of this gene in other blaKPC Tn4401-containing plasmids and suggests that this signature MS peak may be useful in tracking other plasmids conferring carbapenem resistance. Plasmid identification using this MALDI-TOF MS method was accomplished in as little as 10 min from isolated colonies and 30 min from positive (spiked) blood cultures, demonstrating the potential clinical utility for real-time plasmid tracking in an outbreak. PMID:24850353

  19. Substrate Effect on Carbon/Ceramic Mixed Matrix Membrane Prepared by a Vacuum-Assisted Method for Desalination

    Directory of Open Access Journals (Sweden)

    Yingjun Song

    2018-05-01

    Full Text Available This work investigates the effect of various membrane substrates and coating conditions on the formation of carbon/ceramic mixed matrix membranes for desalination application. The substrates were impregnated with phenolic resin via a vacuum-assisted method followed by carbonization under an inert gas. Substrates with pore sizes of 100 nm required a single impregnation step only, where short vacuum times (<120 s resulted in low quality membranes with defects. For vacuum times of ≥120 s, high quality membranes with homogeneous impregnation were prepared leading to high salt rejection (>90% and high water fluxes (up to 25 L m−2 h−1. The increase in water flux as a function of the vacuum time confirms the vacuum etching effect resulting from the vacuum-assisted method. Substrates with pore sizes of 140 nm required two impregnation steps. These pores were too large for the ceramic inter-particle space to be filled with phenolic resin via a single step. In the second impregnation step, increasing the concentration of the phenolic resin resulted in membranes with lower water fluxes. These results indicate that thicker films were formed by increasing the phenolic resin concentration. In the case of substrates with pores of 600 nm, these pores were too large and inter-particle space filling with phenolic resin was not attained.

  20. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid identification of fungal rhinosinusitis pathogens.

    Science.gov (United States)

    Huang, Yanfei; Wang, Jinglin; Zhang, Mingxin; Zhu, Min; Wang, Mei; Sun, Yufeng; Gu, Haitong; Cao, Jingjing; Li, Xue; Zhang, Shaoya; Lu, Xinxin

    2017-03-01

    Filamentous fungi are among the most important pathogens, causing fungal rhinosinusitis (FRS). Current laboratory diagnosis of FRS pathogens mainly relies on phenotypic identification by culture and microscopic examination, which is time consuming and expertise dependent. Although matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS has been employed to identify various fungi, its efficacy in the identification of FRS fungi is less clear. A total of 153 FRS isolates obtained from patients were analysed at the Clinical Laboratory at the Beijing Tongren Hospital affiliated to the Capital Medical University, between January 2014 and December 2015. They were identified by traditional phenotypic methods and Bruker MALDI-TOF MS (Bruker, Biotyper version 3.1), respectively. Discrepancies between the two methods were further validated by sequencing. Among the 153 isolates, 151 had correct species identification using MALDI-TOF MS (Bruker, Biot 3.1, score ≥2.0 or 2.3). MALDI-TOF MS enabled identification of some very closely related species that were indistinguishable by conventional phenotypic methods, including 1/10 Aspergillus versicolor, 3/20 Aspergillus flavus, 2/30 Aspergillus fumigatus and 1/20 Aspergillus terreus, which were misidentified by conventional phenotypic methods as Aspergillus nidulans, Aspergillus oryzae, Aspergillus japonicus and Aspergillus nidulans, respectively. In addition, 2/2 Rhizopus oryzae and 1/1 Rhizopus stolonifer that were identified only to the genus level by the phenotypic method were correctly identified by MALDI-TOF MS. MALDI-TOF MS is a rapid and accurate technique, and could replace the conventional phenotypic method for routine identification of FRS fungi in clinical microbiology laboratories.

  1. Rapid determination of trace nitrophenolic organics in water by combining solid-phase extraction with surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Chen, Y C; Shiea, J; Sunner, J

    2000-01-01

    A rapid technique for the screening of trace compounds in water by combining solid-phase extraction (SPE) with activated carbon surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry is demonstrated. Activated carbon is used both as the sorbent in SPE and as the solid in the SALDI matrix system. This eliminates the need for an SPE elution process. After the analytes have been adsorbed on the surfaces of the activated carbon during SPE extraction, the activated carbon is directly mixed with the SALDI liquid and mass spectrometric analysis is performed. Trace phenolic compounds in water were used to demonstrate the effectiveness of the method. The detection limit for these compounds is in the ppb to ppt range. Copyright 2000 John Wiley & Sons, Ltd.

  2. Characterization of Bacteria in Ballast Water Using MALDI-TOF Mass Spectrometry

    Digital Repository Service at National Institute of Oceanography (India)

    Emami, K.; Askari, V.; Ullrich, M.; Mohinudeen, K.; Anil, A.C.; Khandeparker, L.; Burgess, J.G.; Mesbahi, E.

    To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since...

  3. Structural Characterization of Neutral Saccharides by Negative Ion MALDI Mass Spectrometry Using a Superbasic Proton Sponge as Deprotonating Matrix

    Science.gov (United States)

    Calvano, Cosima Damiana; Cataldi, Tommaso R. I.; Kögel, Julius F.; Monopoli, Antonio; Palmisano, Francesco; Sundermeyer, Jorge

    2017-08-01

    The superbasic proton sponge 1,8-bis(tripyrrolidinylphosphazenyl)naphthalene (TPPN) has been successfully employed for the structural characterization of neutral saccharides, cyclodextrins, and saccharide alditols by matrix assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). Owing to its inherently high basicity, TPPN is capable of deprotonating neutral carbohydrates (M) providing an efficient and simple way to produce gas-phase [M - H]- ions. Highly informative negative ions MS/MS spectra showing several diagnostic fragment ions were obtained, mainly A-type cross-ring and C-type glycosidic cleavages. Indeed, cross-ring cleavages of monosaccharides with formation of 0,2A, 0,3A, 2,4A, 2,5A, 3,5A, and 0,3X product ions dominate the MS/MS spectra. A significant difference between reducing (e.g., lactose, maltose) and non-reducing disaccharides (e.g., sucrose, trehalose) was observed. Though disaccharides with the anomeric positions blocked give rise to deprotonated molecules, [M - H]-, at m/ z 341.1, reducing ones exhibited a peak at m/ z 340.1, most likely as radical anion, [M - H•- H]-•. The superiority of TPPN was clearly demonstrated by comparison with well recognized matrices, such as 2,5-dihydroxybenzoic acid and 2',4',6'-trihydroxyacetophenone (positive ion mode) and nor-harman (negative ion mode). MALDI MS/MS experiments on isotopically labeled sugars have greatly supported the interpretation of plausible fragmentation pathways.

  4. Comparative evaluation of matrix-assisted laser desorption ionisation-time of flight mass spectrometry and conventional phenotypic-based methods for identification of clinically important yeasts in a UK-based medical microbiology laboratory.

    Science.gov (United States)

    Fatania, Nita; Fraser, Mark; Savage, Mike; Hart, Jason; Abdolrasouli, Alireza

    2015-12-01

    Performance of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) was compared in a side-by side-analysis with conventional phenotypic methods currently in use in our laboratory for identification of yeasts in a routine diagnostic setting. A diverse collection of 200 clinically important yeasts (19 species, five genera) were identified by both methods using standard protocols. Discordant or unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene. MALDI-TOF and conventional methods were in agreement for 182 isolates (91%) with correct identification to species level. Eighteen discordant results (9%) were due to rarely encountered species, hence the difficulty in their identification using traditional phenotypic methods. MALDI-TOF MS enabled rapid, reliable and accurate identification of clinically important yeasts in a routine diagnostic microbiology laboratory. Isolates with rare, unusual or low probability identifications should be confirmed using robust molecular methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Direct identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS from positive blood culture bottles: An opportunity to customize growth conditions for fastidious organisms causing bloodstream infections

    Directory of Open Access Journals (Sweden)

    Megha Sharma

    2017-01-01

    Full Text Available Culture-negative bacteraemia has been an enigmatic entity with respect to its aetiological agents. In an attempt to actively identify those positive blood cultures that escape isolation and detection on routine workflow, an additional step of MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry based detection was carried out directly from the flagged blood culture bottles. Blood samples from 200 blood culture bottles that beeped positive with automated (BACTEC system and showed no growth of organism on routine culture media, were subjected to analysis by MALDI-TOF MS. Forty seven of the 200 (23.5% bacterial aetiology could be established by bottle-based method. Based on these results, growth on culture medium could be achieved for the isolates by providing special growth conditions to the fastidious organisms. Direct identification by MALDI-TOF MS from BACTEC-positive bottles provided an opportunity to isolate those fastidious organisms that failed to grow on routine culture medium by providing them with necessary alterations in growth environment.

  6. Strategy BMT Al-Ittihad Using Matrix IE, Matrix SWOT 8K, Matrix SPACE and Matrix TWOS

    Directory of Open Access Journals (Sweden)

    Nofrizal Nofrizal

    2018-03-01

    Full Text Available This research aims to formulate and select BMT Al-Ittihad Rumbai strategy to face the changing of business environment both from internal environment such as organization resources, finance, member and external business such as competitor, economy, politics and others. This research method used Analysis of EFAS, IFAS, IE Matrix, SWOT-8K Matrix, SPACE Matrix and TWOS Matrix. our hope from this research it can assist BMT Al-Ittihad in formulating and selecting strategies for the sustainability of BMT Al-Ittihad in the future. The sample in this research is using purposive sampling technique that is the manager and leader of BMT Al-IttihadRumbaiPekanbaru. The result of this research shows that the position of BMT Al-Ittihad using IE Matrix, SWOT-8K Matrix and SPACE Matrix is in growth position, stabilization and aggressive. The choice of strategy after using TWOS Matrix is market penetration, market development, vertical integration, horizontal integration, and stabilization (careful.

  7. MALDI-MS analysis and theoretical evaluation of olanzapine as a UV laser desorption ionization (LDI) matrix.

    Science.gov (United States)

    Musharraf, Syed Ghulam; Ameer, Mariam; Ali, Arslan

    2017-01-05

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) being soft ionization technique, has become a method of choice for high-throughput analysis of proteins and peptides. In this study, we have explored the potential of atypical anti-psychotic drug olanzapine (OLZ) as a matrix for MALDI-MS analysis of peptides aided with the theoretical studies. Seven small peptides were employed as target analytes to check performance of olanzapine and compared with conventional MALDI matrix α-cyano-4-hydroxycinnamic acid (HCCA). All peptides were successfully detected when olanzapine was used as a matrix. Moreover, peptides angiotensin Ι and angiotensin ΙΙ were detected with better S/N ratio and resolution with this method as compared to their analysis by HCCA. Computational studies were performed to determine the thermochemical properties of olanzapine in order to further evaluate its similarity to MALDI matrices which were found in good agreement with the data of existing MALDI matrices. Copyright © 2016. Published by Elsevier B.V.

  8. Prognostic Metabolite Biomarkers for Soft Tissue Sarcomas Discovered by Mass Spectrometry Imaging

    Science.gov (United States)

    Lou, Sha; Balluff, Benjamin; Cleven, Arjen H. G.; Bovée, Judith V. M. G.; McDonnell, Liam A.

    2017-02-01

    Metabolites can be an important read-out of disease. The identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients is one of the main current research aspects. Mass spectrometry has become the technique of choice for metabolomics studies, and mass spectrometry imaging (MSI) enables their visualization in patient tissues. In this study, we used MSI to identify prognostic metabolite biomarkers in high grade sarcomas; 33 high grade sarcoma patients, comprising osteosarcoma, leiomyosarcoma, myxofibrosarcoma, and undifferentiated pleomorphic sarcoma were analyzed. Metabolite MSI data were obtained from sections of fresh frozen tissue specimens with matrix-assisted laser/desorption ionization (MALDI) MSI in negative polarity using 9-aminoarcridine as matrix. Subsequent annotation of tumor regions by expert pathologists resulted in tumor-specific metabolite signatures, which were then tested for association with patient survival. Metabolite signals with significant clinical value were further validated and identified by high mass resolution Fourier transform ion cyclotron resonance (FTICR) MSI. Three metabolite signals were found to correlate with overall survival ( m/z 180.9436 and 241.0118) and metastasis-free survival ( m/z 160.8417). FTICR-MSI identified m/z 241.0118 as inositol cyclic phosphate and m/z 160.8417 as carnitine.

  9. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Ståhlman, Marcus; Ejsing, Christer S.; Tarasov, Kirill

    2009-01-01

    Technological advances in mass spectrometry and meticulous method development have produced several shotgun lipidomic approaches capable of characterizing lipid species by direct analysis of total lipid extracts. Shotgun lipidomics by hybrid quadrupole time-of-flight mass spectrometry allows...... the absolute quantification of hundreds of molecular glycerophospholipid species, glycerolipid species, sphingolipid species and sterol lipids. Future applications in clinical cohort studies demand detailed lipid molecule information and the application of high-throughput lipidomics platforms. In this review...... we describe a novel high-throughput shotgun lipidomic platform based on 96-well robot-assisted lipid extraction, automated sample infusion by mircofluidic-based nanoelectrospray ionization, and quantitative multiple precursor ion scanning analysis on a quadrupole time-of-flight mass spectrometer...

  10. Matrix effects in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Chen, Xiaoshan.

    1995-01-01

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the open-quotes Fasselclose quotes TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids

  11. Rapid profiling of antimicrobial compounds characterising B. subtilis TR50 cell-free filtrate by high-performance liquid chromatography coupled to high-resolution Orbitrap™ mass spectrometry.

    Science.gov (United States)

    Monaci, Linda; Quintieri, Laura; Caputo, Leonardo; Visconti, Angelo; Baruzzi, Federico

    2016-01-15

    Several Bacillus strains, typically isolated from different food sources, represent renowned producers of a multitude of low and high molecular weight compounds, including lipopeptides and macrolactones, with an importance for their antimicrobial activity. The high homology shared by many of these compounds also occurring as closely related isoforms poses a challenge in their prompt detection. Identification and structural elucidation is generally achieved by matrix-assisted laser desorption/ionization (MALDI) or liquid chromatography (LC) coupled to mass spectrometry (MS) after a pre-fractionation and/or purification step of the extract. In this paper we report the application of a method based on LC separation and high-resolution Orbitrap™-based MS for the rapid screening of raw filtrate of the strain Bacillus subtilis TR50 endowed with antimicrobial activity, without requiring any sample pre-treatment. Upon direct analysis of the cell-free filtrate of Bacillus subtilis TR50 by high-resolution mass spectrometry (HRMS), different compounds families, that proved to exert a remarked antimicrobial activity against several foodborne pathogens, can be readily displayed along the chromatographic run. Among them, three different classes were identified and characterized belonging to the iturin, fengycin and surfactin groups. The high resolving power and accurate mass accuracy provided by the HRMS system in use ensured an enhanced selectivity compared to other mass spectrometers. In addition, after activation of the HCD cell, the HR-MS/MS spectra can provide insights in the structural elucidation of several compounds. The acquisition of HRMS spectra of raw filtrates of subtilis strains allows untargeted analysis of the major classes of compounds produced to be performed, thus facilitating identification of other unknown bioactive molecules after retrospective analysis. These features make this approach a fast tool applicable to the rapid screening and further

  12. A Measurement of the Top Quark Mass in 1.96 TeV Proton-Antiproton Collisions Using a Novel Matrix Element Method

    International Nuclear Information System (INIS)

    CDF Collaboration; Freeman, John; Freeman, John

    2007-01-01

    A measurement of the top quark mass in t(bar t) → l + jets candidate events, obtained from p(bar p) collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t(bar t) production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb -1 data sample, using events with a high-p T lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M meas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c 2

  13. A Measurement of the Top Quark Mass in 1.96 TeV Proton-Antiproton Collisions Using a Novel Matrix Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, John [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    A measurement of the top quark mass in t$\\bar{t}$ → l + jets candidate events, obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t$\\bar{t}$ production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb-1 data sample, using events with a high-pT lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find Mmeas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c2.

  14. Use of matrix assisted laser desorption ionisation-time of flight mass spectrometry in a paediatric clinical laboratory for identification of bacteria commonly isolated from cystic fibrosis patients.

    Science.gov (United States)

    Desai, Ankita Patel; Stanley, Theresa; Atuan, Maria; McKey, Jonelle; Lipuma, John J; Rogers, Beverly; Jerris, Robert

    2012-09-01

    Matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) has been described as a rapid, accurate method for bacterial identification. To investigate the ability of the technique, using the unamended database supplied with the system, to identify bacteria commonly isolated in cystic fibrosis (CF) patients. Organisms commonly isolated from CF patients identified by MALDI-TOF MS were compared to conventional phenotypic and genotypic analyses. For MALDI-TOF MS, the direct colony technique was used routinely with one extraction procedure performed on a mucoid Pseudomonas aeruginosa. For 24 unique CF specimens, workload comparison and time to identification were assessed. Of 464 tested isolates, conventional (phenotypic and genotypic) identification compared to MALDI-TOF MS showed complete genus, species agreement in 92%, with genus agreement in 98%. This included 29 isolates within the Burkholderia cepacia complex. All 29 were correctly identified to the genus level and 24 of these were speciated. Time to identification with 47 bacterial isolates from 24 CF patients showed identification of 85% of isolates by MALDI-TOF MS at 48 h of incubation, compared to only 34% with conventional methods. Using the unamended database supplied with the system, MALDI-TOF MS provides rapid and reliable identification of bacteria isolated from CF specimens. Time to identification studies showed that the use of same day, same method for organism identification will decrease time to result and optimise microbiology workflow.

  15. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors.

    Science.gov (United States)

    Karas, M; Glückmann, M; Schäfer, J

    2000-01-01

    A new model for the ionization processes in UV matrix-assisted laser desorption/ionization (MALDI) which accounts for the major phenomena observed is presented and discussed. The model retains elements of earlier approaches, such as photoionization and photochemical reactions, but it redefines these in the light of new working questions, most importantly why only singly charged ions are detected. Based on experimental evidence, the formation of singly and multiply charged clusters by a deficiency/excess of ions and also by photoionization and subsequent photochemical processes is pointed out to be the major ionization processes, which typically occur in parallel. The generation of electrons and their partial loss into the surrounding vacuum and solid, on the one hand, results in a positively charged ion-neutral plume facilitating a high overall ionization yield. On the other hand, these electrons, and also the large excess of protonated matrix ions in the negative ion mode, induce effective ion reneutralization in the plume. These neutralization processes are most effective for the highly charged cluster ions initially formed. Their fragmentation behaviour is evidenced in fast metastable fragmentation characteristics and agrees well with an electron capture dissociation mechanism and the enthalpy transfer upon neutralization forms the rationale for the prominent fragmentation and intense chemical noise accompanying successful MALDI. Within the course of the paper, cross-correlations with other desorption/ionization techniques and with earlier discussions on their mechanisms are drawn. Copyright 2000 John Wiley & Sons, Ltd.

  16. Direct detection of carbapenemase-associated proteins of Acinetobacter baumannii using nanodiamonds coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Chang, Kai-Chih; Chung, Chin-Yi; Yeh, Chen-Hsing; Hsu, Kuo-Hsiu; Chin, Ya-Ching; Huang, Sin-Siang; Liu, Bo-Rong; Chen, Hsi-An; Hu, Anren; Soo, Po-Chi; Peng, Wen-Ping

    2018-04-01

    The appearance and spread of carbapenem-resistant Acinetobacter baumannii (CRAB) pose a challenge for optimization of antibiotic therapies and outbreak preventions. The carbapenemase production can be detected through culture-based methods (e.g. Modified Hodge Test-MHT) and DNA based methods (e.g. Polymerase Chain Reaction-PCR). The culture-based methods are time-consuming, whereas those of PCR assays need only a few hours but due to its specificity, can only detect known genetic targets encoding carbapenem-resistance genes. Therefore, new approaches to detect carbapenemase-producing A. baumannii are of great importance. Here, we have developed a rapid and novel method using detonation nanodiamonds (DNDs) as a platform for concentration and extraction of A. baumannii carbapenemase-associated proteins prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF-MS) analysis. To concentrate and extract the A. baumannii carbapenemase-associated proteins, we tested several protein precipitation conditions and found a 0.5% trifluoroacetic acid (TFA) solution within the bacterial suspension could result in strong ion signals with DNDs. A total of 66 A. baumannii clinical-isolates including 51 carbapenem-resistant strains and 15 carbapenem-susceptible strains were tested. Our result showed that among the 51 carbapenem-resistant strains 49 strains had a signal at m/z ~40,279 (±87); among the 15 carbapenem-susceptible strains, 4 strains showed a signal at m/z ~40,279. With on-diamond digestion, we confirmed that the captured protein at m/z ~40,279 was related to ADC family extended-spectrum class C beta-lactamase, from A. baumannii. Using this ADC family protein as a biomarker (m/z ~ 40,279) for carbapenem susceptibility testing of A. baumannii, the sensitivity and the specificity could reach 96% and 73% as compared to traditional imipenem susceptibility testing (MIC results). However, the sensitivity and specificity of this method

  17. Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature

    DEFF Research Database (Denmark)

    Rodrigo, K.; Czuba, P.; Toftmann, B.

    2006-01-01

    The dependence of the surface morphology on the substrate temperature during film deposition was investigated for polyethylene glycol (PEG) films by matrix-assisted pulsed laser evaporation (MAPLE). The surface structure was studied with a combined technique of optical imaging and AFM measurements...

  18. Variety identification of wheat using mass spectrometry with neural networks and the influence of mass spectra processing prior to neural network analysis

    DEFF Research Database (Denmark)

    Sørensen, Helle Aagaard; Sperotto, Maria Maddalena; Petersen, M.

    2002-01-01

    The performance of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks in wheat variety classification is further evaluated.(1) Two principal issues were studied: (a) the number of varieties that could be classified correctly; and (b) various means of....... With the final method, it was possible to classify 30 wheat varieties with 87% correctly classified mass spectra and a correlation coefficient of 0.90....

  19. A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae.

    Science.gov (United States)

    Lau, Anna F; Wang, Honghui; Weingarten, Rebecca A; Drake, Steven K; Suffredini, Anthony F; Garfield, Mark K; Chen, Yong; Gucek, Marjan; Youn, Jung-Ho; Stock, Frida; Tso, Hanna; DeLeo, Jim; Cimino, James J; Frank, Karen M; Dekker, John P

    2014-08-01

    Carbapenem-resistant Enterobacteriaceae (CRE) have spread globally and represent a serious and growing threat to public health. Rapid methods for tracking plasmids carrying carbapenemase genes could greatly benefit infection control efforts. Here, we demonstrate that real-time, direct tracking of a single plasmid in a bacterial strain responsible for an outbreak is possible using a commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system. In this case, we retrospectively tracked the bla(KPC) carbapenemase gene-bearing pKpQIL plasmid responsible for a CRE outbreak that occurred at the NIH Clinical Center in 2011. An ∼ 11,109-Da MS peak corresponding to a gene product of the bla(KPC) pKpQIL plasmid was identified and characterized using a combination of proteomics and molecular techniques. This plasmid peak was present in spectra from retrospectively analyzed K. pneumoniae outbreak isolates, concordant with results from whole-genome sequencing, and absent from a diverse control set of bla(KPC)-negative clinical Enterobacteriaceae isolates. Notably, the gene characterized here is located adjacent to the bla(KPC) Tn4401 transposon on the pKpQIL plasmid. Sequence analysis demonstrates the presence of this gene in other bla(KPC) Tn4401-containing plasmids and suggests that this signature MS peak may be useful in tracking other plasmids conferring carbapenem resistance. Plasmid identification using this MALDI-TOF MS method was accomplished in as little as 10 min from isolated colonies and 30 min from positive (spiked) blood cultures, demonstrating the potential clinical utility for real-time plasmid tracking in an outbreak. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Electrospray and MALDI mass spectrometry in the identification of spermicides in criminal investigations.

    Science.gov (United States)

    Hollenbeck, T P; Siuzdak, G; Blackledge, R D

    1999-07-01

    Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry have been used to examine evidence in a sexual assault investigation. Because condoms are being used increasingly by sexual assailants and some condom brands include the spermicide nonoxynol-9 (nonylphenoxy polyethoxyethanol) in the lubricant formulation, the recovery, and identification of nonoxynol-9 from evidence items may assist in proving corpus delicti. A method was developed for the recovery of nonoxynol-9 from internal vaginal swabs and for its identification by reverse phase liquid chromatography/electrospray ionization mass spectrometry (LC ESI-MS), nanoelectrospray ionization (nanoESI) mass spectrometry, and high resolution MALDI Fourier transform mass spectrometry (MALDI-FTMS). The method was tested on extracts from precoitus, immediate postcoitus, and four-hours postcoitus vaginal swabs provided by a volunteer whose partner does not normally use condoms, but for this trial used a condom having a water-soluble gel-type lubricant that includes 5% nonoxynol-9 in its formulation. Subsequently, LC ESI-MS was used to identify traces of nonoxynol-9 from the internal vaginal swab of a victim of a sexual assault.

  1. Measurement of the top quark mass in the dilepton final state using the matrix element method

    Energy Technology Data Exchange (ETDEWEB)

    Grohsjean, Alexander [Ludwig Maximilian Univ., Munich (Germany)

    2008-12-15

    The top quark, discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron Collider, is the heaviest known fundamental particle. The precise knowledge of its mass yields important constraints on the mass of the yet-unobserved Higgs boson and allows to probe for physics beyond the Standard Model. The first measurement of the top quark mass in the dilepton channel with the Matrix Element method at the D0 experiment is presented. After a short description of the experimental environment and the reconstruction chain from hits in the detector to physical objects, a detailed review of the Matrix Element method is given. The Matrix Element method is based on the likelihood to observe a given event under the assumption of the quantity to be measured, e.g. the mass of the top quark. The method has undergone significant modifications and improvements compared to previous measurements in the lepton+jets channel: the two undetected neutrinos require a new reconstruction scheme for the four-momenta of the final state particles, the small event sample demands the modeling of additional jets in the signal likelihood, and a new likelihood is designed to account for the main source of background containing tauonic Z decay. The Matrix Element method is validated on Monte Carlo simulated events at the generator level. For the measurement, calibration curves are derived from events that are run through the full D0 detector simulation. The analysis makes use of the Run II data set recorded between April 2002 and May 2008 corresponding to an integrated luminosity of 2.8 fb-1. A total of 107 t$\\bar{t}$ candidate events with one electron and one muon in the final state are selected. Applying the Matrix Element method to this data set, the top quark mass is measured to be mtopRun IIa = 170.6 ± 6.1(stat.)-1.5+2.1(syst.)GeV; mtopRun IIb = 174.1 ± 4.4(stat.)-1.8+2.5(syst.)GeV; m

  2. Development of high-spatial and high-mass resolution mass spectrometric imaging (MSI) and its application to the study of small metabolites and endogenous molecules of plants

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Ji Hyun [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    High-spatial and high-mass resolution laser desorption ionization (LDI) mass spectrometric (MS) imaging technology was developed for the attainment of MS images of higher quality containing more information on the relevant cellular and molecular biology in unprecedented depth. The distribution of plant metabolites is asymmetric throughout the cells and tissues, and therefore the increase in the spatial resolution was pursued to reveal the localization of plant metabolites at the cellular level by MS imaging. For achieving high-spatial resolution, the laser beam size was reduced by utilizing an optical fiber with small core diameter (25 μm) in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer. Matrix application was greatly improved using oscillating capillary nebulizer. As a result, single cell level spatial resolution of ~ 12 μm was achieved. MS imaging at this high spatial resolution was directly applied to a whole Arabidopsis flower and the substructures of an anther and single pollen grains at the stigma and anther were successfully visualized. MS imaging of high spatial resolution was also demonstrated to the secondary roots of Arabidopsis thaliana and a high degree of localization of detected metabolites was successfully unveiled. This was the first MS imaging on the root for molecular species. MS imaging with high mass resolution was also achieved by utilizing the LTQ-Orbitrap mass spectrometer for the direct identification of the surface metabolites on the Arabidopsis stem and root and differentiation of isobaric ions having the same nominal mass with no need of tandem mass spectrometry (MS/MS). MS imaging at high-spatial and high-mass resolution was also applied to cer1 mutant of the model system Arabidopsis thaliana to demonstrate its usefulness in biological studies and reveal associated metabolite changes in terms of spatial distribution and/or abundances compared to those of wild-type. The spatial

  3. The expression profile of phosphatidylinositol in high spatial resolution imaging mass spectrometry as a potential biomarker for prostate cancer.

    Directory of Open Access Journals (Sweden)

    Takayuki Goto

    Full Text Available High-resolution matrix-assisted laser desorption/ionization imaging mass spectrometry (HR-MALDI-IMS is an emerging application for the comprehensive and detailed analysis of the spatial distribution of ionized molecules in situ on tissue slides. HR-MALDI-IMS in negative mode in a mass range of m/z 500-1000 was performed on optimal cutting temperature (OCT compound-embedded human prostate tissue samples obtained from patients with prostate cancer at the time of radical prostatectomy. HR-MALDI-IMS analysis of the 14 samples in the discovery set identified 26 molecules as highly expressed in the prostate. Tandem mass spectrometry (MS/MS showed that these molecules included 14 phosphatidylinositols (PIs, 3 phosphatidylethanolamines (PEs and 3 phosphatidic acids (PAs. Among the PIs, the expression of PI(18:0/18:1, PI(18:0/20:3 and PI(18:0/20:2 were significantly higher in cancer tissue than in benign epithelium. A biomarker algorithm for prostate cancer was formulated by analyzing the expression profiles of PIs in cancer tissue and benign epithelium of the discovery set using orthogonal partial least squares discriminant analysis (OPLS-DA. The sensitivity and specificity of this algorithm for prostate cancer diagnosis in the 24 validation set samples were 87.5 and 91.7%, respectively. In conclusion, HR-MALDI-IMS identified several PIs as being more highly expressed in prostate cancer than benign prostate epithelium. These differences in PI expression profiles may serve as a novel diagnostic tool for prostate cancer.

  4. Detecting Biosignatures Associated with Minerals by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transorm Mass Spectromety (GALDI-FTMS)

    Energy Technology Data Exchange (ETDEWEB)

    C. Doc Richardson; J. Michelle Kotler; Nancy W. Hinman; Timothy R. McJunkin; Jill R. Scott

    2008-07-01

    The ability to detect carbon signatures that can be linked to complex, possibly biogenic, organic molecules is imperative in research into the origin and distribution of life in our solar system particularly when used in conjunction with inorganic, mineralogical, and isotopic signatures that provide strong evidence for geochemical influences of living organisms on their environment. Ideally, the method used to detect these signatures must (i) accurately and automatically translate the organic and other information into usable forms, (ii) precisely distinguish such information from alternative compositions, (iii) operate with high spatial resolution coupled with precise location abilities, and (iv) require little to no sample preparation because of the potential for contamination. Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform mass spectrometer (FTMS) has been used to determine the presence of bio/organic molecules (BOM) associated with different minerals and mineraloids including oxide, sulfate, carbonate, chloride, and silicate minerals. BOM is defined as an organic structure that can be produced by living organisms or derived from another organic compound made by living organisms (i.e., degradation product). GALDI requires no sample preparation because the mineral matrix assists desorption. Ultimately, however, the detectability of BOM is controlled by the desorption efficiency, ionization efficiency, and the specific experimental conditions. Results from experiments with combinations of known BOM and mineral standards indicated that the detectability of BOM increased with decreasing concentration, contrary to most analytical procedures. Results suggest that BOM when combined with certain minerals is more easily detected than when combined with other minerals. Such conclusions can guide selection of appropriate samples for sample return missions.

  5. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    Science.gov (United States)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy

  6. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    International Nuclear Information System (INIS)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli; Ostman, Pekka; Ojanperae, Ilkka; Kotiaho, Tapio; Kauppila, Tiina J.; Kostiainen, Risto

    2011-01-01

    Highlights: → DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. → DAPPI-MS has better urine matrix tolerance over DESI-MS. → Urine matrix can affect the ionization mechanism in DAPPI. → DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 μg mL -1 ) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  7. Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Suni, Niina M.; Lindfors, Pia; Laine, Olli [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Ostman, Pekka; Ojanperae, Ilkka [Hjelt Institute, Department of Forensic Medicine, University of Helsinki, P.O. Box 40, Helsinki FI-00014 (Finland); Kotiaho, Tapio [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Kauppila, Tiina J. [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland); Kostiainen, Risto, E-mail: risto.kostiainen@helsinki.fi [Division of Pharmaceutical Chemistry, University of Helsinki, P.O. Box 56, Helsinki FI-00014 (Finland)

    2011-08-05

    Highlights: {yields} DAPPI-MS and DESI-MSI in the analysis of drugs of abuse from urine. {yields} DAPPI-MS has better urine matrix tolerance over DESI-MS. {yields} Urine matrix can affect the ionization mechanism in DAPPI. {yields} DAPPI-MS/MS can be used for screening of drugs from urine after sample pretreatment. - Abstract: We have studied the matrix effect within direct analysis of benzodiazepines and opioids from urine with desorption electrospray ionization-mass spectrometry (DESI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). The urine matrix was found to affect the ionization mechanism of the opioids in DAPPI-MS favoring proton transfer over charge exchange reaction. The sensitivity for the drugs in solvent matrix was at the same level with DESI-MS and DAPPI-MS (LODs 0.05-6 {mu}g mL{sup -1}) but the decrease in sensitivity due to the urine matrix was higher with DESI (typically 20-160-fold) than with DAPPI (typically 2-15-fold) indicating better matrix tolerance of DAPPI over DESI. Also in MS/MS mode, DAPPI provided better sensitivity than DESI for the drugs in urine. The feasibility of DAPPI-MS/MS was then studied in screening the same drugs from five authentic, forensic post mortem urine samples. A reference measurement with gas chromatography-mass spectrometry (GC-MS) (including pretreatment) revealed 16 findings from the samples, whereas with DAPPI-MS/MS after sample pretreatment, 15 findings were made. Sample pretreatment was found necessary, since only eight findings were made from the same samples untreated.

  8. Matrix-assisted laser desorption/ionization mass spectrometric analysis of poly(3,4-ethylenedioxythiophene) in solid-state dye-sensitized solar cells: comparison of in situ photoelectrochemical polymerization in aqueous micellar and organic media.

    Science.gov (United States)

    Zhang, Jinbao; Ellis, Hanna; Yang, Lei; Johansson, Erik M J; Boschloo, Gerrit; Vlachopoulos, Nick; Hagfeldt, Anders; Bergquist, Jonas; Shevchenko, Denys

    2015-04-07

    Solid-state dye-sensitized solar cells (sDSCs) are devoid of such issues as electrolyte evaporation or leakage and electrode corrosion, which are typical for traditional liquid electrolyte-based DSCs. Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most popular and efficient p-type conducting polymers that are used in sDSCs as a solid-state hole-transporting material. The most convenient way to deposit this insoluble polymer into the dye-sensitized mesoporous working electrode is in situ photoelectrochemical polymerization. Apparently, the structure and the physicochemical properties of the generated conducting polymer, which determine the photovoltaic performance of the corresponding solar cell, can be significantly affected by the preparation conditions. Therefore, a simple and fast analytical method that can reveal information on polymer chain length, possible chemical modifications, and impurities is strongly required for the rapid development of efficient solar energy-converting devices. In this contribution, we applied matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for the analysis of PEDOT directly on sDSCs. It was found that the PEDOT generated in aqueous micellar medium possesses relatively shorter polymeric chains than the PEDOT deposited from an organic medium. Furthermore, the micellar electrolyte promotes a transformation of one of the thiophene terminal units to thiophenone. The introduction of a carbonyl group into the PEDOT molecule impedes the growth of the polymer chain and reduces the conductivity of the final polymer film. Both the simplicity of sample preparation (only application of the organic matrix onto the solar cell is needed) and the rapidity of analysis hold the promise of making MALDI MS an essential tool for the physicochemical characterization of conducting polymer-based sDSCs.

  9. High Sensitivity and High Detection Specificity of Gold-Nanoparticle-Grafted Nanostructured Silicon Mass Spectrometry for Glucose Analysis.

    Science.gov (United States)

    Tsao, Chia-Wen; Yang, Zhi-Jie

    2015-10-14

    Desorption/ionization on silicon (DIOS) is a high-performance matrix-free mass spectrometry (MS) analysis method that involves using silicon nanostructures as a matrix for MS desorption/ionization. In this study, gold nanoparticles grafted onto a nanostructured silicon (AuNPs-nSi) surface were demonstrated as a DIOS-MS analysis approach with high sensitivity and high detection specificity for glucose detection. A glucose sample deposited on the AuNPs-nSi surface was directly catalyzed to negatively charged gluconic acid molecules on a single AuNPs-nSi chip for MS analysis. The AuNPs-nSi surface was fabricated using two electroless deposition steps and one electroless etching step. The effects of the electroless fabrication parameters on the glucose detection efficiency were evaluated. Practical application of AuNPs-nSi MS glucose analysis in urine samples was also demonstrated in this study.

  10. Double Beta Decay and Neutrino Masses Accuracy of the Nuclear Matrix Elements

    International Nuclear Information System (INIS)

    Faessler, Amand

    2005-01-01

    The neutrinoless double beta decay is forbidden in the standard model of the electroweak and strong interaction but allowed in most Grand Unified Theories (GUT's). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass, the neutrinoless double beta decay is allowed. Apart of one claim that the neutrinoless double beta decay in 76 Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUT's and the minimal R-parity violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUT's. For that one has to assume that the specific mechanism is the leading one for the neutrinoless double beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present contribution, one discusses the accuracy of the present status of calculating the nuclear matrix elements and the corresponding limits of GUT's and supersymmetric parameters

  11. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.

    OpenAIRE

    Kirpekar, F; Douthwaite, S; Roepstorff, P

    2000-01-01

    We present a method to screen RNA for posttranscriptional modifications based on Matrix Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). After the RNA is digested to completion with a nucleotide-specific RNase, the fragments are analyzed by mass spectrometry. A comparison of the observed mass data with the data predicted from the gene sequence identifies fragments harboring modified nucleotides. Fragments larger than dinucleotides were valuable for the identification of post...

  12. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix

    International Nuclear Information System (INIS)

    Mesalhy, Osama; Lafdi, Khalid; Elgafy, Ahmed; Bowman, Keith

    2005-01-01

    In this paper, the melting process inside an irregular geometry filled with high thermal conductivity porous matrix saturated with phase change material PCM is investigated numerically. The numerical model is resting on solving the volume averaged conservation equations for mass, momentum and energy with phase change (melting) in the porous medium. The convection motion of the liquid phase inside the porous matrix is solved considering the Darcy, Brinkman and Forchiemer effects. A local thermal non-equilibrium assumption is considered due to the large difference in thermal properties between the solid matrix and PCM by applying a two energy equation model. The numerical code shows good agreement for pure PCM melting with another published numerical work. Through this study it is found that the presence of the porous matrix has a great effect on the heat transfer and melting rate of the PCM energy storage. Decreasing the porosity of the matrix increases the melting rate, but it also damps the convection motion. It is also found that the best technique to enhance the response of the PCM storage is to use a solid matrix with high porosity and high thermal conductivity

  13. Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ ionization mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Cvačka, Josef; Jiroš, Pavel; Šobotník, Jan; Hanus, Robert; Svatoš, Aleš

    2006-01-01

    Roč. 32, č. 2 (2006), s. 409-434 ISSN 0098-0331 Institutional research plan: CEZ:AV0Z40550506 Keywords : lithium 2,5-dihydroxybenzoate * mass spectrometry * termites * cuticular hydrocarbons Subject RIV: CC - Organic Chemistry Impact factor: 1.896, year: 2006

  14. Survey of matrix materials for solidified radioactive high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Gurwell, W.E.

    1981-09-01

    Pacific Northwest Laboratory (PNL) has been investigating advanced waste forms, including matrix waste forms, that may provide a very high degree of stability under the most severe repository conditions. The purpose of this study was to recommend practical matrix materials for future development that most enhance the stability of the matrix waste forms. The functions of the matrix were reviewed. Desirable matrix material properties were discussed and listed relative to the matrix functions. Potential matrix materials were discussed and recommendations were made for future matrix development. The matrix mechanically contains waste cores, reduces waste form temperatures, and is capable of providing a high-quality barrier to leach waters. High-quality barrier matrices that separate and individually encapsulate the waste cores are fabricated by powder fabrication methods, such as sintering, hot pressing, and hot isostatic pressing. Viable barrier materials are impermeable, extremely corrosion resistant, and mechanically strong. Three material classes potentially satisfy the requirements for a barrier matrix and are recommended for development: titanium, glass, and graphite. Polymers appear to be marginally adequate, and a more thorough engineering assessment of their potential should be made.

  15. Survey of matrix materials for solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Gurwell, W.E.

    1981-09-01

    Pacific Northwest Laboratory (PNL) has been investigating advanced waste forms, including matrix waste forms, that may provide a very high degree of stability under the most severe repository conditions. The purpose of this study was to recommend practical matrix materials for future development that most enhance the stability of the matrix waste forms. The functions of the matrix were reviewed. Desirable matrix material properties were discussed and listed relative to the matrix functions. Potential matrix materials were discussed and recommendations were made for future matrix development. The matrix mechanically contains waste cores, reduces waste form temperatures, and is capable of providing a high-quality barrier to leach waters. High-quality barrier matrices that separate and individually encapsulate the waste cores are fabricated by powder fabrication methods, such as sintering, hot pressing, and hot isostatic pressing. Viable barrier materials are impermeable, extremely corrosion resistant, and mechanically strong. Three material classes potentially satisfy the requirements for a barrier matrix and are recommended for development: titanium, glass, and graphite. Polymers appear to be marginally adequate, and a more thorough engineering assessment of their potential should be made

  16. Multiresidue analysis of multiclass pesticides and polyaromatic hydrocarbons in fatty fish by gas chromatography tandem mass spectrometry and evaluation of matrix effect.

    Science.gov (United States)

    Chatterjee, Niladri S; Utture, Sagar; Banerjee, Kaushik; Ahammed Shabeer, T P; Kamble, Narayan; Mathew, Suseela; Ashok Kumar, K

    2016-04-01

    This paper reports a selective and sensitive method for multiresidue determination of 119 chemical residues including pesticides and polyaromatic hydrocarbons (PAH) in high fatty fish matrix. The novel sample preparation method involved extraction of the target analytes from homogenized fish meat (5 g) in acetonitrile (15 mL, 1% acetic acid) after three-phase partitioning with hexane (2 mL) and the remaining aqueous layer. An aliquot (1.5 mL) of the acetonitrile layer was aspirated and subjected to two-stage dispersive solid phase extraction (dSPE) cleanup and the residues were finally estimated by gas chromatography mass spectrometry with selected reaction monitoring (GC-MS/MS). The co-eluted matrix components were identified on the basis of their accurate mass by GC with quadrupole time of flight MS. Addition of hexane during extraction and optimized dSPE cleanup significantly minimized the matrix effects. Recoveries at 10, 25 and 50 μg/kg were within 60-120% with associated precision, RSD<11%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Nucleon scalar matrix elements with N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-12-15

    We investigate scalar matrix elements of the nucleon using N{sub f}=2+1+1 flavors of maximally twisted mass fermions at a fixed value of the lattice spacing of a{approx}0.078 fm. We compute disconnected contributions to the relevant three-point functions using an efficient noise reduction technique. Using these methods together with an only multiplicative renormalization applicable for twisted mass fermions, allows us to obtain accurate results in the light and strange sector. (orig.)

  18. A silicon nanomembrane detector for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of large proteins.

    Science.gov (United States)

    Park, Jonghoo; Blick, Robert H

    2013-10-11

    We describe a MALDI-TOF ion detector based on freestanding silicon nanomembrane technology. The detector is tested in a commercial MALDI-TOF mass spectrometer with equimolar mixtures of proteins. The operating principle of the nanomembrane detector is based on phonon-assisted field emission from these silicon nanomembranes, in which impinging ion packets excite electrons in the nanomembrane to higher energy states. Thereby the electrons can overcome the vacuum barrier and escape from the surface of the nanomembrane via field emission. Ion detection is demonstrated of apomyoglobin (16,952 Da), aldolase (39,212 Da), bovine serum albumin (66,430 Da), and their equimolar mixtures. In addition to the three intact ions, a large number of fragment ions are also revealed by the silicon nanomembrane detector, which are not observable with conventional detectors.

  19. A Silicon Nanomembrane Detector for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS of Large Proteins

    Directory of Open Access Journals (Sweden)

    Jonghoo Park

    2013-10-01

    Full Text Available We describe a MALDI-TOF ion detector based on freestanding silicon nanomembrane technology. The detector is tested in a commercial MALDI-TOF mass spectrometer with equimolar mixtures of proteins. The operating principle of the nanomembrane detector is based on phonon-assisted field emission from these silicon nanomembranes, in which impinging ion packets excite electrons in the nanomembrane to higher energy states. Thereby the electrons can overcome the vacuum barrier and escape from the surface of the nanomembrane via field emission. Ion detection is demonstrated of apomyoglobin (16,952 Da, aldolase (39,212 Da, bovine serum albumin (66,430 Da, and their equimolar mixtures. In addition to the three intact ions, a large number of fragment ions are also revealed by the silicon nanomembrane detector, which are not observable with conventional detectors.

  20. Symmetric neutrino mass matrix with two zeros in SUSY SO(10) GUT

    International Nuclear Information System (INIS)

    Bando, Masako; Kaneko, Satoru; Obara, Midori; Tanimoto, Morimitsu

    2004-01-01

    We study the symmetric 2-zero texture of lepton and quark mass matrix, for the SUSY SO(10) GUT model including the Pati-Salam symmetry. We show that our model can simultaneously explain the current neutrino experimental data, predicted rate of lepton flavor violating processes are safely below the experimental bounds and baryon asymmetry of the universe can be obtained through thermal leptogenesis. (author)

  1. A Derivatization and Validation Strategy for Determining the Spatial Localization of Endogenous Amine Metabolites in Tissues using MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Manier, M. Lisa; Spraggins, Jeffrey M.; Reyzer, Michelle L.; Norris, Jeremy L.; Caprioli, Richard M.

    2014-01-01

    Imaging mass spectrometry (IMS) studies increasingly focus on endogenous small molecular weight metabolites and consequently bring special analytical challenges. Since analytical tissue blanks do not exist for endogenous metabolites, careful consideration must be given to confirm molecular identity. Here we present approaches for the improvement in detection of endogenous amine metabolites such as amino acids and neurotransmitters in tissues through chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) IMS. Chemical derivatization with 4-hydroxy-3-methoxycinnamaldehyde (CA) was used to improve sensitivity and specificity. CA was applied to the tissue via MALDI sample targets precoated with a mixture of derivatization reagent and ferulic acid (FA) as a MALDI matrix. Spatial distributions of chemically derivatized endogenous metabolites in tissue were determined by high-mass resolution and MSn imaging mass spectrometry. We highlight an analytical strategy for metabolite validation whereby tissue extracts are analyzed by high-performance liquid chromatography (HPLC)-MS/MS to unambiguously identify metabolites and distinguish them from isobaric compounds. PMID:25044893

  2. Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.

    Science.gov (United States)

    Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan

    2011-11-01

    This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.

  3. Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Vidal-Acuña, M Reyes; Ruiz-Pérez de Pipaón, Maite; Torres-Sánchez, María José; Aznar, Javier

    2017-12-08

    An expanded library of matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been constructed using the spectra generated from 42 clinical isolates and 11 reference strains, including 23 different species from 8 sections (16 cryptic plus 7 noncryptic species). Out of a total of 379 strains of Aspergillus isolated from clinical samples, 179 strains were selected to be identified by sequencing of beta-tubulin or calmodulin genes. Protein spectra of 53 strains, cultured in liquid medium, were used to construct an in-house reference database in the MALDI-TOF MS. One hundred ninety strains (179 clinical isolates previously identified by sequencing and the 11 reference strains), cultured on solid medium, were blindy analyzed by the MALDI-TOF MS technology to validate the generated in-house reference database. A 100% correlation was obtained with both identification methods, gene sequencing and MALDI-TOF MS, and no discordant identification was obtained. The HUVR database provided species level (score of ≥2.0) identification in 165 isolates (86.84%) and for the remaining 25 (13.16%) a genus level identification (score between 1.7 and 2.0) was obtained. The routine MALDI-TOF MS analysis with the new database, was then challenged with 200 Aspergillus clinical isolates grown on solid medium in a prospective evaluation. A species identification was obtained in 191 strains (95.5%), and only nine strains (4.5%) could not be identified at the species level. Among the 200 strains, A. tubingensis was the only cryptic species identified. We demonstrated the feasibility and usefulness of the new HUVR database in MALDI-TOF MS by the use of a standardized procedure for the identification of Aspergillus clinical isolates, including cryptic species, grown either on solid or liquid media. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For

  4. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  5. [Application of mass spectrometry in mycology].

    Science.gov (United States)

    Quiles Melero, Inmaculada; Peláez, Teresa; Rezusta López, Antonio; Garcia-Rodríguez, Julio

    2016-06-01

    MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry (MS) is becoming an essential tool in most microbiology laboratories. At present, by using a characteristic fungal profile obtained from whole cells or through simple extraction protocols, MALDI-TOF MS allows the identification of pathogenic fungi with a high performance potential. This methodology decreases the laboratory turnaround time, optimizing the detection of mycoses. This article describes the state-of-the-art of the use of MALDI-TOF MS for the detection of human clinical fungal pathogens in the laboratory and discusses the future applications of this technology, which will further improve routine mycological diagnosis. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  6. Preparation and characterisation of high-density ionic liquids incorporating halobismuthate anions.

    Science.gov (United States)

    Cousens, Nico E A; Taylor Kearney, Leah J; Clough, Matthew T; Lovelock, Kevin R J; Palgrave, Robert G; Perkin, Susan

    2014-07-28

    A range of ionic liquids containing dialkylimidazolium cations and halobismuthate anions ([BiBr(x)Cl(y)I(z)](-) and [Bi2Br(x)Cl(y)I(z)](-)) were synthesised by combining dialkylimidazolium halide ionic liquids with bismuth(III) halide salts. The majority were room temperature liquids, all with very high densities. The neat ionic liquids and their mixtures with 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide were characterised using Densitometry, Viscometry, NMR Spectroscopy, Electrospray Ionisation Mass Spectrometry (ESI), Liquid Secondary Ion Mass Spectrometry (LSIMS), Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI), X-Ray Photoelectron Spectroscopy (XPS) and Thermogravimetric Analysis (TGA), to establish their speciation and suitability for high-temperature applications.

  7. Liquid chromatography tandem mass spectrometry method using solid-phase extraction and bead-beating-assisted matrix solid-phase dispersion to quantify the fungicide tebuconazole in controlled frog exposure study: analysis of water and animal tissue

    DEFF Research Database (Denmark)

    Hansen, Martin; Poulsen, Rikke; Luong, Xuan

    2014-01-01

    and on tissue from exposed and non-exposed adult X. laevis. Using solid-phase extraction (SPE), the analytical method allows for quantification of tebuconazole at concentrations as low as 3.89 pg mL(-1) in 10 mL water samples. Using bead-beating-assisted matrix solid-phase dispersion (MSPD), it was possible...

  8. 1-(3-aminopropyl)-3-butylimidazolium bromide for carboxyl group derivatization: potential applications in high sensitivity peptide identification by mass spectrometry.

    Science.gov (United States)

    Qiao, Xiaoqiang; Zhou, Yuan; Hou, Chunyan; Zhang, Xiaodan; Yang, Kaiguang; Zhang, Lihua; Zhang, Yukui

    2013-03-01

    The cationic reagent 1-(3-aminopropyl)-3-butylimidazolium bromide (BAPI) was exploited for the derivatization of carboxyl groups on peptides. Nearly 100% derivatization efficiency was achieved with the synthetic peptide RVYVHPI (RI-7). Furthermore, the peptide derivative was stable in a 0.1% TFA/water solution or a 0.1% (v/v) TFA/acetonitrile/water solution for at least one week. The effect of BAPI derivatization on the ionization of the peptide RI-7 was further investigated, and the detection sensitivity was improved >42-fold via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), thus outperforming the commercial piperazine derivatization approach. Moreover, the charge states of the peptide were largely increased via BAPI derivatization by electrospray ionization (ESI) MS. The results indicate the potential merits of BAPI derivatization for high sensitivity peptide analysis by MS.

  9. Mass spectrometry imaging of illicit drugs in latent fingerprints by matrix-free and matrix-assisted desorption/ionization techniques.

    Czech Academy of Sciences Publication Activity Database

    Škríba, Anton; Havlíček, Vladimír

    2018-01-01

    Roč. 24, č. 1 (2018), s. 124-128 ISSN 1469-0667 R&D Projects: GA MŠk(CZ) LO1509; GA ČR(CZ) GA16-20229S Institutional support: RVO:61388971 Keywords : MALDI * Mass spectrometry imaging * NALDI Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 1.022, year: 2016

  10. Development of an improved rapid BACpro® protocol and a method for direct identification from blood-culture-positive bottles using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Yonezawa, Takatoshi; Watari, Tomohisa; Ashizawa, Kazuho; Hanada, Daisuke; Yanagiya, Takako; Watanabe, Naoki; Terada, Takashi; Tomoda, Yutaka; Fujii, Satoshi

    2018-05-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been incorporated into pathogenic bacterial identification methods and has improved their rapidity. Various methods have been reported to directly identify bacteria with MALDI-TOF MS by pretreating culture medium in blood culture bottles. Rapid BACpro® (Nittobo Medical Co., Ltd.) is a pretreatment kit for effective collection of bacteria with cationic copolymers. However, the Rapid BACpro® pretreatment kit is adapted only for MALDI Biotyper (Bruker Daltonics K.K.), and there has been a desire to expand its use to VITEK MS (VMS; bioMerieux SA). We improved the protocol and made it possible to analyze with VMS. The culture medium bacteria collection method was changed to a method with centrifugation after hemolysis using saponin; the cationic copolymer concentration was changed to 30% of the original concentration; the sequence with which reagents were added was changed; and a change was made to an ethanol/formic acid extraction method. The improved protocol enhanced the identification performance. When VMS was used, the identification rate was 100% with control samples. With clinical samples, the identification agreement rate with the cell smear method was 96.3%. The improved protocol is effective in blood culture rapid identification, being both simpler and having an improved identification performance compared with the original. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effects of the molar mass of the matrix on electrical properties, structure and morphology of plasticized PANI-PMMA blends

    International Nuclear Information System (INIS)

    Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Mohamed, Abdellatif Belhadj

    2008-01-01

    The effects of the molar mass of polymethylmethacrylate (PMMA) on electrical, structural and morphological properties of conductive polyaniline-polymethylmethacrylate blends have been studied. We have plasticized the PMMA matrix by using dioctyl phthalate (DioPh). Three different molar masses of PMMA, 15 000, 120 000 and 350 000 g mol -1 , have been used. The x-ray diffraction analysis showed amorphous structure for all our studied PANI-PMMA blend films. The SEM micrographs showed more aggregation with the lowest molar mass of PMMA matrix. The direct current (dc) and alternating current (ac) electrical conductivities have been investigated in the temperature range 20-300 K and frequency range 7-1 x 10 8 Hz. The results of this study indicate an increase of the conductivity when the molar mass of PMMA decreases. With the lowest molar mass of PMMA (15 000 g mol -1 ), we obtained the lowest percolation threshold (p c ∼0.3%). The dc conductivity is governed by Mott's three-dimensional variable range hopping (3D VRH) model; different Mott's parameters have been evaluated. At high frequencies, the ac conductivity follows the power law σ(ω,T) = A(T)ω s(T,ω) , which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed decrease in the frequency exponent s with increasing temperature suggests that the correlated barrier hopping (CBH) model best describes the ac conduction mechanism. All our blends are well described by the scaling law σ(ω)/σ dc = 1+(ω/ω c ) n with n∼0.51-0.52

  12. An ultra-sensitive instrument for collision activated dissociation mass spectrometry with high mass resolution

    International Nuclear Information System (INIS)

    Louter, G.J.

    1982-01-01

    During the last decade Collision Activated Dissociation Mass Spectrometry (CAD-MS) has developed into an important and sometimes unique technique for the structure elucidation of ions. An extensive description of the double stage MS is given, which has been especially devloped for CAD-MS. A high mass resolution and a very high sensitivity are obtained by application of special techniques like post-acceleration of fragment ions, quadrupole (Q-pole) lenses and an electro-optical, simultaneous ion detection system. The operation of the rather complex ion-optics is demonstrated by application of a computer simulation of the tandem MS. Special attention is given to the action of the four Q-pole lenses and the second sector magnet upon curvature and position of the mass focal plane. Two mass calibration methods are described for the fragment spectra. The so-called polynomial-method applies a fifth-order polynomial approximation of the functional relation between position on the detector and corresponding relative momentum of fragment ions. The second method uses the matrix model of the instrument. The detector consists of two channelplates (CEMA), a fibre optics slab, coated with a phosphor layer, a camera objective and a 1024-channels photodiode-array. A bio-chemical and an organic-chemical application of the instrument are given. As bio-chemical application the peak m/z 59 in the pyrolysis mass spectrum of complete mycobacteria is identified. As an example of organic-chemical application the fragmentation process of 2,3-butadienoic acid has been investigated. (Auth.)

  13. 4TH International Conference on High-Temperature Ceramic Matrix Composites

    National Research Council Canada - National Science Library

    2001-01-01

    .... Topic to be covered include fibers, interfaces, interphases, non-oxide ceramic matrix composites, oxide/oxide ceramic matrix composites, coatings, and applications of high-temperature ceramic matrix...

  14. Is energy pooling necessary in ultraviolet matrix-assisted laser desorption/ionization?

    Science.gov (United States)

    Lin, Hou-Yu; Song, Botao; Lu, I-Chung; Hsu, Kuo-Tung; Liao, Chih-Yu; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2014-01-15

    Energy pooling has been suggested as the key process for generating the primary ions during ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI). In previous studies, decreases in fluorescence quantum yields as laser fluence increased for 2-aminobenzoic acid, 2,5-dihydroxybenzoic acid (2,5-DHB), and 3-hydroxypicolinic acid were used as evidence of energy pooling. This work extends the research to other matrices and addresses whether energy pooling is a universal property in UV-MALDI. Energy pooling was investigated in a time-resolved fluorescence experiment by using a short laser pulse (355 nm, 20 ps pulse width) for excitation and a streak camera (1 ps time resolution) for fluorescence detection. The excited-state lifetime of 2,5-DHB decreased with increases in laser fluence. This suggests that a reaction occurs between two excited molecules, and that energy pooling may be one of the possible reactions. However, the excited-state lifetime of 2,4,6-trihydroxyacetophenone (THAP) did not change with increases in laser fluence. The upper limit of the energy pooling rate constant for THAP is estimated to be approximately 100-500 times smaller than that of 2,5-DHB. The small energy pooling rate constant for THAP indicates that the potential contribution of the energy pooling mechanism to the generation of THAP matrix primary ions should be reconsidered. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Constraints on a general 3-generation neutrino mass matrix from neutrino data application to the MSSM with R-parity violation

    CERN Document Server

    Abada, A

    2000-01-01

    We consider a general symmetric $(3\\times 3)$ mass matrix for three generations of neutrinos. Imposing the constraints, from the atmospheric neutrino and solar neutrino anomalies as well as from the CHOOZ experiment, on the mass squared differences and on the mixing angles, we identify the ranges of allowed inputs for the 6 matrix elements. We apply our results to Majorana left-handed neutrino masses generated at tree level and through The present experimental results on neutrinos from laboratories, cosmology and astrophysics are implemented to either put bounds on trilinear ($\\lambda_{ijk}, or constrain combinations of products of these couplings.

  16. Validity of M-3Y force equivalent G-matrix elements for calculations of the nuclear structure in heavy mass region

    International Nuclear Information System (INIS)

    Cheng Lan; Huang Weizhi; Zhou Baosen

    1996-01-01

    Using the matrix elements of M-3Y force as the equivalent G-matrix elements, the spectra of 210 Pb, 206 Pb, 206 Hg and 210 Po are calculated in the framework of the Folded Diagram Method. The results show that such equivalent matrix elements are suitable for microscopic calculations of the nuclear structure in heavy mass region

  17. A method to detect metal–drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors

    International Nuclear Information System (INIS)

    Abdelhamid, Hani Nasser; Wu, Hui-Fen

    2012-01-01

    Highlights: ► Probe transition metals-complexes based on noncovalent functionalized graphene for MALDI-MS. ► Study interaction of transition metals complexes with pathogenic bacteria. ► Propose a new biosensor for two pathogenic bacteria. - Abstract: A new method was proposed to probe the interactions between transition metals of Fe(II), Fe(III), Cu(II) with a non steroidal anti-inflammatory drug (NSAID), flufenamic acid (FF) using graphene as a matrix for Graphene assisted laser desorption ionization mass spectrometry (GALDI-MS). Metal–drug complexation was confirmed via UV absorption spectroscopy, fluorescence spectroscopy, pH meter, and change in solution conductivity. The optimal molar ratios for these complexation interactions are stoichiometry 1:2 in both Cu(II) and Fe(II) complexes, and 1:3 in Fe(III) complexes at physiological pH (7.4). Metal complexation of the drug could enhance fluorescence for 20 fold which is due to the charge transfer reaction or increase rigidity of the drug. The main interaction between graphene and flufenamic acid is the Π–Π interaction which allows us to probe the metal–drug complexation. The GALDI-MS could sensitively detect the drug at m/z 281.0 Da (protonated molecule) with detection limit 2.5 pmol (1.0 μM) and complexation at m/z 661.0, 654.0 and 933.0 Da corresponding to [Cu(II)(FF) 2 (H 2 O) 2 + H] + , [Fe(II)(FF) 2 (H 2 O) 2 + H] + and [Fe(III) (FF) 3 (H 2 O) 2 + H] + , respectively (with limit of detection (LOD) 2.0 pmol (10.0 μM). Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) spectra show change in the protein profile of intact pathogenic bacteria (Pseudomonas aeroginosa, Staphylococcus aureus). The change in the ionization ability (mainly proton affinity) of pathogenic bacteria may be due to the interactions between the bacteria with the drug (or its complexes). Shielding carboxylic group by metals and increase the hydrophilicity could enhance the biocompatibility of complexes

  18. Diffusive transfer to membranes as an effective interface between gel electrophoresis and mass spectrometry

    Science.gov (United States)

    Ogorzalek Loo, Rachel R.; Mitchell, Charles; Stevenson, Tracy I.; Loo, Joseph A.; Andrews, Philip C.

    1997-12-01

    Diffusive transfer was examined as a blotting method to transfer proteins from polyacrylamide gels to membranes for ultraviolet matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The method is well-suited for transfers from isoelectric focusing (IEF) gels. Spectra have been obtained for 11 pmol of 66 kDa albumin loaded onto an IEF gel and subsequently blotted to polyethylene. Similarly, masses of intact carbonic anhydrase and hemoglobin were obtained from 14 and 20 pmol loadings. This methodology is also compatible with blotting high molecular weight proteins, as seen for 6 pmol of the 150 kDa monoclonal antibody anti-[beta]-galactosidase transferred to Goretex. Polypropylene, Teflon, Nafion and polyvinylidene difluoride (PVDF) also produced good spectra following diffusive transfer. Only analysis from PVDF required that the membrane be kept wet prior to application of matrix. Considerations in mass accuracy for analysis from large-area membranes with continuous extraction and delayed extraction were explored, as were remedies for surface charging. Vapor phase CNBr cleavage was applied to membrane-bound samples for peptide mapping.

  19. Transfer matrix in the quasiclassical approximation with constant and position-dependent mass, resonant tunneling

    International Nuclear Information System (INIS)

    Perez-Alvarez, R.; Rodriguez-Coppola, H.; Lopez-Gondar, J.; Izquierdo, M.L.

    1987-11-01

    We develop the quasiclassical approximation for the effective Hamiltonians describing nonhomogeneous systems and we deduce the wave function, the applicability conditions and the connection rules around the turning points. Based on the transfer matrix (TM) formalism we obtain expressions for the transmission coefficient of multiple barriers, the energy levels of multiple wells and the quasistationary levels of a well open by one, and by the two sides. The dispersion relation of a periodic potential profile with variable mass problem is also given. We discuss resonant tunneling for a system of multiple barriers. The transmission coefficient of such a barrier is maximum at energies close to the levels of the inner well when the end barriers are high enough and symmetric. (author). 20 refs, 1 fig

  20. Data on endogenous bovine ovarian follicular cells peptides and small proteins obtained through Top-down High Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Valérie Labas

    2017-08-01

    Full Text Available The endogenous peptides and small proteins extracted from bovine ovarian follicular cells (oocytes, cumulus and granulosa cells were identified by Top-down High Resolution Mass Spectrometry (TD-HR-MS/MS in order to annotate peptido- and proteoforms detected using qualitative and quantitative profiling method based on ICM-MS (Intact Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. The description and analysis of these Top-down MS data in the context of oocyte quality biomarkers research are available in the original research article of Labas et al. (2017 http://dx.doi.org/10.1016/j.jprot.2017.03.027 [1]. Raw data derived from this peptidomic/proteomic analysis have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (dataset identifier PXD004892. Here, we described the inventory of all identified peptido- and proteoforms including their biochemical and structural features, and functional annotation of correspondent proteins. This peptide/protein inventory revealed that TD-HR-MS/MS was appropriate method for both global and targeted proteomic analysis of ovarian tissues, and it can be further employed as a reference for other studies on follicular cells including single oocytes.

  1. Determination of Elizabethkingia Diversity by MALDI-TOF Mass Spectrometry and Whole-Genome Sequencing

    DEFF Research Database (Denmark)

    Eriksen, Helle Brander; Gumpert, Heidi; Faurholt, Cecilie Haase

    2017-01-01

    In a hospital-acquired infection with multidrug-resistant Elizabethkingia, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene analysis identified the pathogen as Elizabethkingia miricola. Whole-genome sequencing, genus-level core genome analysis, and in...

  2. Species level identification of coagulase negative Staphylococcus spp. from buffalo using matrix-assisted laser desorption ionization-time of flight mass spectrometry and cydB real-time quantitative PCR.

    Science.gov (United States)

    Pizauro, Lucas J L; de Almeida, Camila C; Soltes, Glenn A; Slavic, Durda; Rossi-Junior, Oswaldo D; de Ávila, Fernando A; Zafalon, Luiz F; MacInnes, Janet I

    2017-05-01

    Incorrect identification of Staphylococcus spp. can have serious clinical and zoonotic repercussions. Accordingly, the aim of this study was to determine if matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and/or cydB real- time quantitative PCR (qPCR) could be used to accurately identify coagulase negative Staphylococcus spp. (CoNS) obtained from buffalo milk and milking environment samples. Seventy-five of 84 CoNS isolates could be identified to the species level (score value >1.99) using MALDI-TOF MS. However, as determined by cytochrome d ubiquinol oxidase subunit II (cydB) qPCR and by 16S RNA and cydB gene sequencing, 10S. agnetis strains were wrongly identified as S. hyicus by MALDI-TOF MS. In addition, 9 isolates identified by MALDI-TOF only to the genus level (score values between 1.70 and 1.99) could be identified to species by cydB qPCR. Our findings suggest that MALDI-TOF MS is a reliable method for rapid identification of S. chromogenes and S. epidermidis (species of interest both in human and veterinary medicine) and may be able to correctly identify other Staphylococcus spp. However, at present not all Staphylococcus spp. found in buffalo milk can be accurately identified by MALDI-TOF MS and for these organisms, the cydB qPCR developed in the current study may provide a reliable alternative method for rapid identification of CoNS species. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry in genomics research.

    Directory of Open Access Journals (Sweden)

    Jiannis Ragoussis

    2006-07-01

    Full Text Available The beginning of this millennium has seen dramatic advances in genomic research. Milestones such as the complete sequencing of the human genome and of many other species were achieved and complemented by the systematic discovery of variation at the single nucleotide (SNP and whole segment (copy number polymorphism level. Currently most genomics research efforts are concentrated on the production of whole genome functional annotations, as well as on mapping the epigenome by identifying the methylation status of CpGs, mainly in CpG islands, in different tissues. These recent advances have a major impact on the way genetic research is conducted and have accelerated the discovery of genetic factors contributing to disease. Technology was the critical driving force behind genomics projects: both the combination of Sanger sequencing with high-throughput capillary electrophoresis and the rapid advances in microarray technologies were keys to success. MALDI-TOF MS-based genome analysis represents a relative newcomer in this field. Can it establish itself as a long-term contributor to genetics research, or is it only suitable for niche areas and for laboratories with a passion for mass spectrometry? In this review, we will highlight the potential of MALDI-TOF MS-based tools for resequencing and for epigenetics research applications, as well as for classical complex genetic studies, allele quantification, and quantitative gene expression analysis. We will also identify the current limitations of this approach and attempt to place it in the context of other genome analysis technologies.

  4. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Physical matrix correction for RFA of mass and special glasses

    International Nuclear Information System (INIS)

    Medicus, G.; Ritter, R.

    1984-01-01

    A theoretical matrix correction model with relatively complex mass absorption coefficients is reported, which takes into account the adsorption of the stimulating radiation and the radiation in the specimen to be measured, as well as the geometry of the spectrometer. With the realized concept of an effective primary wave length, good correction results were obtained over large regions of concentrations and elements. The computer program renders possible besides of the usual reference measurement at uniform reference wave length - the reference of several elements in the specimen to one special element of the reference specimen. The correction method was tested with 42 test glasses, which were previously analyzed. (author)

  6. Matrix Optical Absorption in UV-MALDI MS.

    Science.gov (United States)

    Robinson, Kenneth N; Steven, Rory T; Bunch, Josephine

    2018-03-01

    In ultraviolet matrix-assisted laser desorption/ionization mass spectrometry (UV-MALDI MS) matrix compound optical absorption governs the uptake of laser energy, which in turn has a strong influence on experimental results. Despite this, quantitative absorption measurements are lacking for most matrix compounds. Furthermore, despite the use of UV-MALDI MS to detect a vast range of compounds, investigations into the effects of laser energy have been primarily restricted to single classes of analytes. We report the absolute solid state absorption spectra of the matrix compounds α-cyano-4-hydroxycinnamic acid (CHCA), para-nitroaniline (PNA), 2-mercaptobenzothiazole (MBT), 2,5-dihydroxybenzoic acid (2,5-DHB), and 2,4,6-trihydroxyacetophenone (THAP). The desorption/ionization characteristics of these matrix compounds with respect to laser fluence was investigated using mixed systems of matrix with either angiotensin II, PC(34:1) lipid standard, or haloperidol, acting as representatives for typical classes of analyte encountered in UV-MALDI MS. The first absolute solid phase spectra for PNA, MBT, and THAP are reported; additionally, inconsistencies between previously published spectra for CHCA are resolved. In light of these findings, suggestions are made for experimental optimization with regards to matrix and laser wavelength selection. The relationship between matrix optical cross-section and wavelength-dependant threshold fluence, fluence of maximum ion yield, and R, a new descriptor for the change in ion intensity with fluence, are described. A matrix cross-section of 1.3 × 10 -17 cm -2 was identified as a potential minimum for desorption/ionization of analytes. Graphical Abstract ᅟ.

  7. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    Directory of Open Access Journals (Sweden)

    Roberto Rella

    2009-04-01

    Full Text Available The matrix assisted pulsed laser evaporation (MAPLE technique has been used for the deposition of metal dioxide (TiO2, SnO2 nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit towards ethanol and acetone are presented.

  8. Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.

    Science.gov (United States)

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.

  9. Distance descending ordering method: An O(n) algorithm for inverting the mass matrix in simulation of macromolecules with long branches

    Science.gov (United States)

    Xu, Xiankun; Li, Peiwen

    2017-11-01

    Fixman's work in 1974 and the follow-up studies have developed a method that can factorize the inverse of mass matrix into an arithmetic combination of three sparse matrices-one of them is positive definite and needs to be further factorized by using the Cholesky decomposition or similar methods. When the molecule subjected to study is of serial chain structure, this method can achieve O (n) time complexity. However, for molecules with long branches, Cholesky decomposition about the corresponding positive definite matrix will introduce massive fill-in due to its nonzero structure. Although there are several methods can be used to reduce the number of fill-in, none of them could strictly guarantee for zero fill-in for all molecules according to our test, and thus cannot obtain O (n) time complexity by using these traditional methods. In this paper we present a new method that can guarantee for no fill-in in doing the Cholesky decomposition, which was developed based on the correlations between the mass matrix and the geometrical structure of molecules. As a result, the inverting of mass matrix will remain the O (n) time complexity, no matter the molecule structure has long branches or not.

  10. Transfer matrix in 1D Schroedinger problems with constant and position-dependent mass

    International Nuclear Information System (INIS)

    Perez-Alvarez, R.; Rodriguez-Coppola, H.

    1987-10-01

    We consider the transfer matrix method for obtaining properties of standard wells and barriers in one-dimensional Schroedinger problems with constant and position-dependent mass. We report the formulae for the energy levels of a well and the transmission coefficient of a barrier. We demonstrate the continuity between virtual bound states and bound states in a well of position-dependent mass and the relation between the zero energy gap states of a periodic potential problem with the corresponding energies of the non-periodic ones with transmission coefficient equal to one. The calculations were carried out for a wide class of potential profiles. (author). 30 refs, 2 figs

  11. The Microwave-assisted Synthesis of Polyethersulfone (PES as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B

    Directory of Open Access Journals (Sweden)

    Khusna Widhyahrini

    2017-10-01

    How to Cite: Widhyahrini, K., Handayani, N., Wahyuningrum, D., Nurbaiti, S., Radiman, C.L. (2017. The Microwave-assisted Synthesis of Polyethersulfone (PES as A Matrix in Immobilization of Candida antarctica Lipase B (Cal-B. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3: 343-350 (doi:10.9767/bcrec.12.3.774.343-350

  12. Antifungal Susceptibility Testing of Aspergillus spp. by Using a Composite Correlation Index (CCI)-Based Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method Appears To Not Offer Benefit over Traditional Broth Microdilution Testing.

    Science.gov (United States)

    Gitman, Melissa R; McTaggart, Lisa; Spinato, Joanna; Poopalarajah, Rahgavi; Lister, Erin; Husain, Shahid; Kus, Julianne V

    2017-07-01

    Aspergillus spp. cause serious invasive lung infections, and Aspergillus fumigatus is the most commonly encountered clinically significant species. Voriconazole is considered to be the drug of choice for treating A. fumigatus infections; however, rising resistance rates have been reported. We evaluated a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based method for the differentiation between wild-type and non-wild-type isolates of 20 Aspergillus spp. (including 2 isolates of Aspergillus ustus and 1 of Aspergillus calidoustus that were used as controls due their intrinsic low azole susceptibility with respect to the in vitro response to voriconazole). At 30 and 48 h of incubation, there was complete agreement between Cyp51A sequence analysis, broth microdilution, and MALDI-TOF MS classification of isolates as wild type or non-wild type. In this proof-of-concept study, we demonstrated that MALDI-TOF MS can be used to accurately detect A. fumigatus strains with reduced voriconazole susceptibility. However, rather than proving to be a rapid and simple method for antifungal susceptibility testing, this particular MS-based method showed no benefit over conventional testing methods. © Crown copyright 2017.

  13. Antifungal Susceptibility Testing of Aspergillus spp. by Using a Composite Correlation Index (CCI)-Based Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Method Appears To Not Offer Benefit over Traditional Broth Microdilution Testing

    Science.gov (United States)

    Gitman, Melissa R.; McTaggart, Lisa; Spinato, Joanna; Poopalarajah, Rahgavi; Lister, Erin; Husain, Shahid

    2017-01-01

    ABSTRACT Aspergillus spp. cause serious invasive lung infections, and Aspergillus fumigatus is the most commonly encountered clinically significant species. Voriconazole is considered to be the drug of choice for treating A. fumigatus infections; however, rising resistance rates have been reported. We evaluated a matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)-based method for the differentiation between wild-type and non-wild-type isolates of 20 Aspergillus spp. (including 2 isolates of Aspergillus ustus and 1 of Aspergillus calidoustus that were used as controls due their intrinsic low azole susceptibility with respect to the in vitro response to voriconazole). At 30 and 48 h of incubation, there was complete agreement between Cyp51A sequence analysis, broth microdilution, and MALDI-TOF MS classification of isolates as wild type or non-wild type. In this proof-of-concept study, we demonstrated that MALDI-TOF MS can be used to accurately detect A. fumigatus strains with reduced voriconazole susceptibility. However, rather than proving to be a rapid and simple method for antifungal susceptibility testing, this particular MS-based method showed no benefit over conventional testing methods. PMID:28404678

  14. Multiple-ion-beam time-of-flight mass spectrometer

    International Nuclear Information System (INIS)

    Rohrbacher, Andreas; Continetti, Robert E.

    2001-01-01

    An innovative approach to increase the throughput of mass spectrometric analyses using a multiple-ion-beam mass spectrometer is described. Two sample spots were applied onto a laser desorption/ionization target and each spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation (261.75 nm) to produce ions by laser-desorption ionization. Acceleration of the ions in an electric field created parallel ion beams that were focused by two parallel einzel lens systems. After a flight path of 2.34 m, the ions were detected with a microchannel plate-phosphor screen assembly coupled with a charge coupled device camera that showed two resolved ion beams. Time-of-flight mass spectra were also obtained with this detector. Experiments were performed using both metal atom cations (Ti + and Cr + ) produced by laser desorption/ionization and the molecular ions of two different proteins (myoglobin and lysozyme), created by matrix assisted laser desorption/ionization using an excess of nicotinic acid as matrix

  15. Ion irradiation effects on the matrix phase of SiCf/SiC composites prepared by the whisker growing assisted CVI process

    International Nuclear Information System (INIS)

    Park, Kyeong Hwan; Park, Ji Yeon; Kang, Suk Min; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog

    2005-01-01

    SiC f /SiC composites are one of promising candidates for structural material of the next generation energy system such as GFR and fusion reactors. A number of fabrication methods have been studied for obtaining an outstanding SiC f /SiC composite with a high density, high crystallinity and purity. SiC f /SiC composites consisted of whisker-reinforced matrix have a great potential at the viewpoint both of the fabrication process and the mechanical properties. SiC whiskers formed between SiC fibers improve the densification of SiC matrix during CVI process. In addition, the reinforced whiskers would be likely to enhance the mechanical properties of matrix and SiC f /SiC composite. While there has been significant developmental work on manufacturing the SiC f /SiC composite by the whisker growing assisted CVI process, detailed understanding of what effects the complex in the operating conditions combined with realistic materials property data is not adequately understood. Especially, its irradiation effects are even less clear and not well understood. A method of charged-particle irradiation is the most important R and D topics for simulating the core conditions of the advanced nuclear systems. Many studies on radiation effects of SiC and SiC f /SiC composites using a method of ion irradiation have in progress for R and D of the advanced nuclear systems. In this present work, changes of the mechanical property of SiC whisker-reinforced matrix in SiC f /SiC composite were evaluated by means of the depth sensing indentation method before and after chargedparticle irradiation

  16. Mass spectrometry of rhenium complexes: a comparative study by using LDI-MS, MALDI-MS, PESI-MS and ESI-MS.

    Science.gov (United States)

    Petroselli, Gabriela; Mandal, Mridul Kanti; Chen, Lee Chuin; Ruiz, Gustavo T; Wolcan, Ezequiel; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa

    2012-03-01

    A group of rhenium (I) complexes including in their structure ligands such as CF(3)SO(3)-, CH(3)CO(2)-, CO, 2,2'-bipyridine, dipyridil[3,2-a:2'3'-c]phenazine, naphthalene-2-carboxylate, anthracene-9-carboxylate, pyrene-1-carboxylate and 1,10-phenanthroline have been studied for the first time by mass spectrometry. The probe electrospray ionization (PESI) is a technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid metal needle. In this work, mass spectra for organometallic complexes obtained by PESI were compared with those obtained by classical ESI and high flow rate electrospray ionization assisted by corona discharge (HF-ESI-CD), an ideal method to avoid decomposition of the complexes and to induce their oxidation to yield intact molecular cation radicals in gas state [M](+·) and to produce their reduction yielding the gas species [M](-·). It was found that both techniques showed in general the intact molecular ions of the organometallics studied and provided additional structure characteristic diagnostic fragments. As the rhenium complexes studied in the present work showed strong absorption in the UV-visible region, particularly at 355 nm, laser desorption ionization (LDI) mass spectrometry experiments could be conducted. Although intact molecular ions could be detected in a few cases, LDI mass spectra showed diagnostic fragments for characterization of the complexes structure. Furthermore, matrix-assisted laser desorption ionization (MALDI) mass spectra were obtained. Nor-harmane, a compound with basic character, was used as matrix, and the intact molecular ions were detected in two examples, in negative ion mode as the [M](-·) species. Results obtained with 2-[(2E)-3-(4-tert-buthylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) as matrix are also described. LDI experiments provided more information about the rhenium complex structures than did the MALDI ones. Copyright © 2012 John Wiley & Sons, Ltd.

  17. A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach.

    Science.gov (United States)

    Wang, Hsin-Yao; Lee, Tzong-Yi; Tseng, Yi-Ju; Liu, Tsui-Ping; Huang, Kai-Yao; Chang, Yung-Ta; Chen, Chun-Hsien; Lu, Jang-Jih

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA), one of the most important clinical pathogens, conducts an increasing number of morbidity and mortality in the world. Rapid and accurate strain typing of bacteria would facilitate epidemiological investigation and infection control in near real time. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid and cost-effective tool for presumptive strain typing. To develop robust method for strain typing based on MALDI-TOF spectrum, machine learning (ML) is a promising algorithm for the construction of predictive model. In this study, a strategy of building templates of specific types was used to facilitate generating predictive models of methicillin-resistant Staphylococcus aureus (MRSA) strain typing through various ML methods. The strain types of the isolates were determined through multilocus sequence typing (MLST). The area under the receiver operating characteristic curve (AUC) and the predictive accuracy of the models were compared. ST5, ST59, and ST239 were the major MLST types, and ST45 was the minor type. For binary classification, the AUC values of various ML methods ranged from 0.76 to 0.99 for ST5, ST59, and ST239 types. In multiclass classification, the predictive accuracy of all generated models was more than 0.83. This study has demonstrated that ML methods can serve as a cost-effective and promising tool that provides preliminary strain typing information about major MRSA lineages on the basis of MALDI-TOF spectra.

  18. Typing of vancomycin-resistant enterococci with MALDI-TOF mass spectrometry in a nosocomial outbreak setting

    DEFF Research Database (Denmark)

    Holzknecht, B J; Dargis, R; Pedersen, M

    2018-01-01

    OBJECTIVES: To investigate the usefulness of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) typing as a first-line epidemiological tool in a nosocomial outbreak of vancomycin-resistant Enterococcus faecium (VREfm). METHODS: Fifty-five VREfm isolates...

  19. Investigation of matrix effects in 193 nm laser ablation-inductively coupled plasma-mass spectrometry analysis using reference glasses of different transparencies

    International Nuclear Information System (INIS)

    Czas, J.; Jochum, K.P.; Stoll, B.; Weis, U.; Yang, Q.-C.; Jacob, D.E.; Andreae, M.O.

    2012-01-01

    The degree of transparency of glasses, which depends on the Fe content, may influence the ablation behavior during laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis. To test possible matrix effects when using a 193 nm Nd:YAG laser, we have analyzed transparent and opaque NIST, BAM and USGS reference glasses. These reference materials are ideal for such investigations, because they are well characterized, most elements are homogeneously distributed at the micrometer scale, and their Fe content varies over a very large range, from 16 to 130,000 μg g −1 . Our measurements show that the fractionation factors of refractory and volatile lithophile elements, such as Sr, Ba, and Rb, are 1.00 ± 0.03 and independent of the degree of transparency. However, for volatile chalcophile/siderophile elements (e.g., Zn and Pb) the fractionation factors vary significantly between 0.7 and 1, depending on the spot sizes and the transparency of the material. Mass-load-induced matrix effects may also influence the accuracy of LA-ICP-MS analysis. They are less than 2% for the lithophile and up to 10% for volatile chalcophile/siderophile elements when the mass load varies by a factor 2.4. Relative sensitivity factors used for calibration of lithophile elements agree within uncertainty limits for transparent and opaque glasses when using a 193 nm laser. Even for volatile/chalcophile elements they differ only by 5–10%. The reliability of the LA-ICP-MS analyses is demonstrated by presenting concentration data of 27 trace elements in the NIST, BAM and USGS reference glasses using NIST SRM 612 for calibration, where highly accurate reference values are available. For trace element concentrations in the range between 1 and 500 μg g −1 , the reproducibility and the uncertainties at the 95% confidence level of the measurements vary between 1–4%, and 7–10%, respectively. - Highlights: ► Matrix effects are low for lithophile elements using a 193 nm laser

  20. Serum protein profiling and proteomics in autistic spectrum disorder using magnetic bead-assisted mass spectrometry.

    Science.gov (United States)

    Taurines, Regina; Dudley, Edward; Conner, Alexander C; Grassl, Julia; Jans, Thomas; Guderian, Frank; Mehler-Wex, Claudia; Warnke, Andreas; Gerlach, Manfred; Thome, Johannes

    2010-04-01

    The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Proteomic profiling has been used in the past for biomarker research in several non-psychiatric and psychiatric disorders and could provide new insights, potentially presenting a useful tool for generating such biomarkers in autism. Serum protein pre-fractionation with C8-magnetic beads and protein profiling by matrix-assisted laser desorption/ionisation-time of flight-mass spectrometry (MALDI-ToF-MS) were used to identify possible differences in protein profiles in patients and controls. Serum was obtained from 16 patients (aged 8-18) and age-matched controls. Three peaks in the MALDI-ToF-MS significantly differentiated the ASD sample from the control group. Sub-grouping the ASD patients into children with and without comorbid Attention Deficit and Hyperactivity Disorder, ADHD (ASD/ADHD+ patients, n = 9; ASD/ADHD- patients, n = 7), one peak distinguished the ASD/ADHD+ patients from controls and ASD/ADHD- patients. Our results suggest that altered protein levels in peripheral blood of patients with ASD might represent useful biomarkers for this devastating psychiatric disorder.

  1. Reactive bonding mediated high mass loading of individualized single-walled carbon nanotubes in an elastomeric polymer

    Science.gov (United States)

    Zhao, Liping; Li, Yongjin; Qiu, Jishan; You, Jichun; Dong, Wenyong; Cao, Xiaojun

    2012-09-01

    A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m-1). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance.A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m-1). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance. Electronic supplementary information (ESI) available: Conductivity test of the SEBS-SWCNTs film, transmission spectra and sheet resistance for the spin-coated SEBS-SWCNTs thin films on PET slides. See DOI: 10

  2. Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix

    Science.gov (United States)

    Hou, Junjie; Xie, Zhensheng; Xue, Peng; Cui, Ziyou; Chen, Xiulan; Li, Jing; Cai, Tanxi; Wu, Peng; Yang, Fuquan

    2010-01-01

    Selecting an appropriate matrix solution is one of the most effective means of increasing the ionization efficiency of phosphopeptides in matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In this study, we systematically assessed matrix combinations of 2, 6-dihydroxyacetophenone (DHAP) and diammonium hydrogen citrate (DAHC), and demonstrated that the low ratio DHAP/DAHC matrix was more effective in enhancing the ionization of phosphopeptides. Low femtomole level of phosphopeptides from the tryptic digests of α-casein and β-casein was readily detected by MALDI-TOF-MS in both positive and negative ion mode without desalination or phosphopeptide enrichment. Compared with the DHB/PA matrix, the optimized DHAP/DAHC matrix yielded superior sample homogeneity and higher phosphopeptide measurement sensitivity, particularly when multiple phosphorylated peptides were assessed. Finally, the DHAP/DAHC matrix was applied to identify phosphorylation sites from α-casein and β-casein and to characterize two phosphorylation sites from the human histone H1 treated with Cyclin-Dependent Kinase-1 (CDK1) by MALDI-TOF/TOF MS. PMID:20339515

  3. Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix

    Directory of Open Access Journals (Sweden)

    Junjie Hou

    2010-01-01

    Full Text Available Selecting an appropriate matrix solution is one of the most effective means of increasing the ionization efficiency of phosphopeptides in matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS. In this study, we systematically assessed matrix combinations of 2, 6-dihydroxyacetophenone (DHAP and diammonium hydrogen citrate (DAHC, and demonstrated that the low ratio DHAP/DAHC matrix was more effective in enhancing the ionization of phosphopeptides. Low femtomole level of phosphopeptides from the tryptic digests of α-casein and β-casein was readily detected by MALDI-TOF-MS in both positive and negative ion mode without desalination or phosphopeptide enrichment. Compared with the DHB/PA matrix, the optimized DHAP/DAHC matrix yielded superior sample homogeneity and higher phosphopeptide measurement sensitivity, particularly when multiple phosphorylated peptides were assessed. Finally, the DHAP/DAHC matrix was applied to identify phosphorylation sites from α-casein and β-casein and to characterize two phosphorylation sites from the human histone H1 treated with Cyclin-Dependent Kinase-1 (CDK1 by MALDI-TOF/TOF MS.

  4. Further properties of high-mass multijet events at the Fermilab proton-antiproton collider

    International Nuclear Information System (INIS)

    Abe, F.; Akimoto, H.; Akopian, A.; Albrow, M.G.; Amendolia, S.R.; Amidei, D.; Antos, J.; Anway-Wiese, C.; Aota, S.; Apollinari, G.; Asakawa, T.; Ashmanskas, W.; Atac, M.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Badgett, W.; Bagdasarov, S.; Bailey, M.W.; Bao, J.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barzi, E.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Benton, D.; Beretvas, A.; Berge, J.P.; Berryhill, J.; Bertolucci, S.; Bhatti, A.; Biery, K.; Binkley, M.; Bisello, D.; Blair, R.E.; Blocker, C.; Bodek, A.; Bokhari, W.; Bolognesi, V.; Bortoletto, D.; Boudreau, J.; Breccia, L.; Bromberg, C.; Bruner, N.; Buckley-Geer, E.; Budd, H.S.; Burkett, K.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Cammerata, J.; Campagnari, C.; Campbell, M.; Caner, A.; Carithers, W.; Carlsmith, D.; Castro, A.; Cauz, D.; Cen, Y.; Cervelli, F.; Chang, P.S.; Chang, P.T.; Chao, H.Y.; Chapman, J.; Cheng, M.; Chiarelli, G.; Chikamatsu, T.; Chiou, C.N.; Christofek, L.; Cihangir, S.; Clark, A.G.; Cobal, M.; Contreras, M.; Conway, J.; Cooper, J.; Cordelli, M.; Couyoumtzelis, C.; Crane, D.; Cronin-Hennessy, D.; Culbertson, R.; Cunningham, J.D.; Daniels, T.; DeJongh, F.; Delchamps, S.; DellAgnello, S.; DellOrso, M.; Demina, R.; Demortier, L.; Denby, B.; Deninno, M.; Derwent, P.F.; Devlin, T.; Dittmann, J.R.; Donati, S.; Done, J.; Dorigo, T.; Dunn, A.; Eddy, N.; Einsweiler, K.; Elias, J.E.; Ely, R.; Engels, E. Jr.; Errede, D.; Errede, S.; Fan, Q.; Fiori, I.; Flaugher, B.; Foster, G.W.; Franklin, M.; Frautschi, M.; Freeman, J.; Friedman, J.; Frisch, H.; Fuess, T.A.; Fukui, Y.; Funaki, S.; Gagliardi, G.; Galeotti, S.; Gallinaro, M.; Garcia-Sciveres, M.; Garfinkel, A.F.; Gay, C.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Glenzinski, D.; Gold, M.; Gonzalez, J.; Gordon, A.; Goshaw, A.T.; Goulianos, K.; Grassmann, H.; Groer, L.

    1996-01-01

    The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD matrix element calculations, and QCD parton shower Monte Carlo predictions suggests that 2→2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state. copyright 1996 The American Physical Society

  5. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2012-09-01

    Full Text Available Positive matrix factorization (PMF was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA and cooking OA (COA factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA and ammonium nitrate (NO3-OA, respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69. Two semi-volatile oxygenated OA (OOA factors, i.e., a less oxidized (LO-OOA and a more oxidized (MO-OOA, were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO and Ox(= O3 + NO2. The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both

  6. Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data

    Directory of Open Access Journals (Sweden)

    I. M. Ulbrich

    2009-05-01

    Full Text Available The organic aerosol (OA dataset from an Aerodyne Aerosol Mass Spectrometer (Q-AMS collected at the Pittsburgh Air Quality Study (PAQS in September 2002 was analyzed with Positive Matrix Factorization (PMF. Three components – hydrocarbon-like organic aerosol OA (HOA, a highly-oxygenated OA (OOA-1 that correlates well with sulfate, and a less-oxygenated, semi-volatile OA (OOA-2 that correlates well with nitrate and chloride – are identified and interpreted as primary combustion emissions, aged SOA, and semivolatile, less aged SOA, respectively. The complexity of interpreting the PMF solutions of unit mass resolution (UMR AMS data is illustrated by a detailed analysis of the solutions as a function of number of components and rotational forcing. A public web-based database of AMS spectra has been created to aid this type of analysis. Realistic synthetic data is also used to characterize the behavior of PMF for choosing the best number of factors, and evaluating the rotations of non-unique solutions. The ambient and synthetic data indicate that the variation of the PMF quality of fit parameter (Q, a normalized chi-squared metric vs. number of factors in the solution is useful to identify the minimum number of factors, but more detailed analysis and interpretation are needed to choose the best number of factors. The maximum value of the rotational matrix is not useful for determining the best number of factors. In synthetic datasets, factors are "split" into two or more components when solving for more factors than were used in the input. Elements of the "splitting" behavior are observed in solutions of real datasets with several factors. Significant structure remains in the residual of the real dataset after physically-meaningful factors have been assigned and an unrealistic number of factors would be required to explain the remaining variance. This residual structure appears to be due to variability in the spectra of the components

  7. Networks of ultra-fine Ag nanocrystals in a Teflon AF (registered) matrix by vapour phase e-beam-assisted deposition

    International Nuclear Information System (INIS)

    Biswas, A; Bayer, I S; Marken, B; Pounds, T D; Norton, M G

    2007-01-01

    We have fabricated nanocomposite thin films comprising silver (Ag) nanoparticles dispersed in a Teflon AF (registered) polymer matrix using electron-beam-assisted physical vapour deposition. Four different Ag nanoparticle volume fillings (20%, 35%, 70% and 75%) were achieved by varying the relative metal-polymer evaporation rates with the formation of highly crystalline Ag nanoparticles regardless of the filling ratio. The present fabrication technique allowed full control over dispersion uniformity of nanoparticles in the polymer network. At 20% and 35% metal volume fillings, the nanocomposite film morphology consists of a uniformly dispersed assembly of equiaxed isolated Ag nanoparticles. At higher metal volume fractions the nanocomposite structures displayed two different and unique Ag nanoparticle arrangements within the polymer matrix. In particular, at 70% metal filling, the formation of irregularly shaped clusters of individually assembled nanocrystals was observed. At a slightly higher volume filling (75%), larger irregularly shaped Ag nanocrystals that appeared to be the result of coalescence and grain growth were observed. Finally, a composite theory developed by Tandon and Weng was used to estimate various elastic properties of the nanocomposite films. At high metal filling, the reinforcing effect of the Ag nanoparticles was reflected as approximately a sixfold increase in the elastic modulus compared to the virgin polymer film. Possible applications of such ultra-fine metal nanoparticles networks are discussed

  8. Simplified sample preparation method for protein identification by matrix-assisted laser desorption/ionization mass spectrometry: in-gel digestion on the probe surface

    DEFF Research Database (Denmark)

    Stensballe, A; Jensen, Ole Nørregaard

    2001-01-01

    /ionization-time of flight mass spectrometry (MALDI-TOF-MS) is used as the first protein screening method in many laboratories because of its inherent simplicity, mass accuracy, sensitivity and relatively high sample throughput. We present a simplified sample preparation method for MALDI-MS that enables in-gel digestion...... for protein identification similar to that obtained by the traditional protocols for in-gel digestion and MALDI peptide mass mapping of human proteins, i.e. approximately 60%. The overall performance of the novel on-probe digestion method is comparable with that of the standard in-gel sample preparation...... protocol while being less labour intensive and more cost-effective due to minimal consumption of reagents, enzymes and consumables. Preliminary data obtained on a MALDI quadrupole-TOF tandem mass spectrometer demonstrated the utility of the on-probe digestion protocol for peptide mass mapping and peptide...

  9. Yersinia enterocolitica in Diagnostic Fecal Samples from European Dogs and Cats: Identification by Fourier Transform Infrared Spectroscopy and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    Science.gov (United States)

    Stamm, Ivonne; Hailer, Mandy; Depner, Barbara; Kopp, Peter A.

    2013-01-01

    Yersinia enterocolitica is the main cause of yersiniosis in Europe, one of the five main bacterial gastrointestinal diseases of humans. Beside pigs, companion animals, especially dogs and cats, were repeatedly discussed in the past as a possible source of pathogenic Y. enterocolitica. To investigate the presence and types of Y. enterocolitica in companion animals, a total of 4,325 diagnostic fecal samples from dogs and 2,624 samples from cats were tested. The isolates obtained were differentiated by using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and Fourier transform infrared spectroscopy (FT-IR). Isolated Y. enterocolitica strains were bioserotyped. The detection of the ail gene by PCR and confirmation by FT-IR were used as a pathogenicity marker. Y. enterocolitica strains were isolated from 198 (4.6%) of the dog and 8 (0.3%) of the cat fecal samples investigated. One hundred seventy-nine isolates from dogs were analyzed in detail. The virulence factor Ail was detected in 91.6% of isolates. Isolates of biotype 4 (54.7%) and, to a lesser extent, biotypes 2 (23.5%), 3 (11.2%), and 5 (2.2%) were detected. The remaining 8.4% of strains belonged to the ail-negative biotype 1A. All 7 isolates from cats that were investigated in detail were ail positive. These results indicate that companion animals could be a relevant reservoir for a broad range of presumptively human-pathogenic Y. enterocolitica types. MALDI-TOF MS and FT-IR proved to be valuable methods for the rapid identification of Y. enterocolitica, especially in regard to the large number of samples that were investigated in a short time frame. PMID:23284028

  10. Yersinia enterocolitica in diagnostic fecal samples from European dogs and cats: identification by fourier transform infrared spectroscopy and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Stamm, Ivonne; Hailer, Mandy; Depner, Barbara; Kopp, Peter A; Rau, Jörg

    2013-03-01

    Yersinia enterocolitica is the main cause of yersiniosis in Europe, one of the five main bacterial gastrointestinal diseases of humans. Beside pigs, companion animals, especially dogs and cats, were repeatedly discussed in the past as a possible source of pathogenic Y. enterocolitica. To investigate the presence and types of Y. enterocolitica in companion animals, a total of 4,325 diagnostic fecal samples from dogs and 2,624 samples from cats were tested. The isolates obtained were differentiated by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and Fourier transform infrared spectroscopy (FT-IR). Isolated Y. enterocolitica strains were bioserotyped. The detection of the ail gene by PCR and confirmation by FT-IR were used as a pathogenicity marker. Y. enterocolitica strains were isolated from 198 (4.6%) of the dog and 8 (0.3%) of the cat fecal samples investigated. One hundred seventy-nine isolates from dogs were analyzed in detail. The virulence factor Ail was detected in 91.6% of isolates. Isolates of biotype 4 (54.7%) and, to a lesser extent, biotypes 2 (23.5%), 3 (11.2%), and 5 (2.2%) were detected. The remaining 8.4% of strains belonged to the ail-negative biotype 1A. All 7 isolates from cats that were investigated in detail were ail positive. These results indicate that companion animals could be a relevant reservoir for a broad range of presumptively human-pathogenic Y. enterocolitica types. MALDI-TOF MS and FT-IR proved to be valuable methods for the rapid identification of Y. enterocolitica, especially in regard to the large number of samples that were investigated in a short time frame.

  11. Bioaerosol detection by aerosol TOF-mass spectrometry: Application of matrix assisted laser desorption/ionisation

    NARCIS (Netherlands)

    Wuijckhuijse, A.L. van; Stowers, M.A.; Kientz, Ch.E.; Marijnissen, J.C.M.; Scarlett, B.

    2000-01-01

    In previous publications the use of an aerosol time of flight mass spectrometer was reported for the on-line measurements of aerosols (Weiss 1997, Kievit 1995). The apparatus is capable of measuring the size as well as the chemical composition, by the use of Laser Desorption/Ionisation (LDI), of an

  12. High temperature resin matrix composites for aerospace structures

    Science.gov (United States)

    Davis, J. G., Jr.

    1980-01-01

    Accomplishments and the outlook for graphite-polyimide composite structures are briefly outlined. Laminates, skin-stiffened and honeycomb sandwich panels, chopped fiber moldings, and structural components were fabricated with Celion/LARC-160 and Celion/PMR-15 composite materials. Interlaminar shear and flexure strength data obtained on as-fabricated specimens and specimens that were exposed for 125 hours at 589 K indicate that epoxy sized and polyimide sized Celion graphite fibers exhibit essentially the same behavior in a PMR-15 matrix composite. Analyses and tests of graphite-polyimide compression and shear panels indicate that utilization in moderately loaded applications offers the potential for achieving a 30 to 50 percent reduction in structural mass compared to conventional aluminum panels. Data on effects of moisture, temperature, thermal cycling, and shuttle fluids on mechanical properties indicate that both LARC-160 and PMR-15 are suitable matrix materials for a graphite-polyimide aft body flap. No technical road blocks to building a graphite-polyimide composite aft body flap are identified.

  13. Functionalized porphyrin conjugate thin films deposited by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Iordache, S. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Popescu, A.C.; Popescu, C.E.; Dorcioman, G.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Bucharest-Magurele (Romania); Ciucu, A.A. [University of Bucharest, Faculty of Chemistry, Bucharest (Romania); Balan, A.; Stamatin, I. [University of Bucharest, 3Nano-SAE Research Center, PO Box MG-38, Bucharest-Magurele (Romania); Fagadar-Cosma, E. [Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223-Timisoara (Romania); Chrisey, D.B. [Tulane University, Departments of Physics and Biomedical Engineering, New Orleans, LA 70118 (United States)

    2013-08-01

    We report on the deposition of nanostructured porphyrin-base, 5(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin thin films by matrix assisted pulsed laser evaporation onto silicon substrates with screen-printed electrodes. AFM investigations have shown that at 400 mJ/cm{sup 2} fluence a topographical transition takes place from the platelet-like stacking porphyrin-based nanostructures in a perpendicular arrangement to a quasi-parallel one both relative to the substrate surface. Raman spectroscopy has shown that the chemical structure of the deposited thin films is preserved for fluences within the range of 200–300 mJ/cm{sup 2}. Cyclic voltammograms have demonstrated that the free porphyrin is appropriate as a single mediator for glucose in a specific case of screen-printed electrodes, suggesting potential for designing a new class of biosensors.

  14. A quantitative approach for pesticide analysis in grape juice by direct interfacing of a matrix compatible SPME phase to dielectric barrier discharge ionization-mass spectrometry.

    Science.gov (United States)

    Mirabelli, Mario F; Gionfriddo, Emanuela; Pawliszyn, Janusz; Zenobi, Renato

    2018-02-12

    We evaluated the performance of a dielectric barrier discharge ionization (DBDI) source for pesticide analysis in grape juice, a fairly complex matrix due to the high content of sugars (≈20% w/w) and pigments. A fast sample preparation method based on direct immersion solid-phase microextraction (SPME) was developed, and novel matrix compatible SPME fibers were used to reduce in-source matrix suppression effects. A high resolution LTQ Orbitrap mass spectrometer allowed for rapid quantification in full scan mode. This direct SPME-DBDI-MS approach was proven to be effective for the rapid and direct analysis of complex sample matrices, with limits of detection in the parts-per-trillion (ppt) range and inter- and intra-day precision below 30% relative standard deviation (RSD) for samples spiked at 1, 10 and 10 ng ml -1 , with overall performance comparable or even superior to existing chromatographic approaches.

  15. A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods.

    Science.gov (United States)

    Berisha, Arton; Dold, Sebastian; Guenther, Sabine; Desbenoit, Nicolas; Takats, Zoltan; Spengler, Bernhard; Römpp, Andreas

    2014-08-30

    An ideal method for bioanalytical applications would deliver spatially resolved quantitative information in real time and without sample preparation. In reality these requirements can typically not be met by a single analytical technique. Therefore, we combine different mass spectrometry approaches: chromatographic separation, ambient ionization and imaging techniques, in order to obtain comprehensive information about metabolites in complex biological samples. Samples were analyzed by laser desorption followed by electrospray ionization (LD-ESI) as an ambient ionization technique, by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging for spatial distribution analysis and by high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) for quantitation and validation of compound identification. All MS data were acquired with high mass resolution and accurate mass (using orbital trapping and ion cyclotron resonance mass spectrometers). Grape berries were analyzed and evaluated in detail, whereas wheat seeds and mouse brain tissue were analyzed in proof-of-concept experiments. In situ measurements by LD-ESI without any sample preparation allowed for fast screening of plant metabolites on the grape surface. MALDI imaging of grape cross sections at 20 µm pixel size revealed the detailed distribution of metabolites which were in accordance with their biological function. HPLC/ESI-MS was used to quantify 13 anthocyanin species as well as to separate and identify isomeric compounds. A total of 41 metabolites (amino acids, carbohydrates, anthocyanins) were identified with all three approaches. Mass accuracy for all MS measurements was better than 2 ppm (root mean square error). The combined approach provides fast screening capabilities, spatial distribution information and the possibility to quantify metabolites. Accurate mass measurements proved to be critical in order to reliably combine data from different MS

  16. Uniform thin films of TiO2 nanoparticles deposited by matrix-assisted pulsed laser evaporation

    International Nuclear Information System (INIS)

    Caricato, A.P.; Manera, M.G.; Martino, M.; Rella, R.; Romano, F.; Spadavecchia, J.; Tunno, T.; Valerini, D.

    2007-01-01

    We report morphological and optical properties of a colloidal TiO 2 nanoparticle film, deposited on a quartz substrate by using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. Atomic Force Microscopy demonstrated that a good uniformity of the deposition can be obtained. The presence of agglomerates with dimensions of about 1 μm in size was noticed. Form UV-vis transmission spectra, recorded in the 200-800 nm range, the optical constants and the energy gap were determined besides the film thickness. The optical constants resulted in agreement with the values reported in literature for TiO 2 nanoparticle thin films

  17. Climate Change Discourse in Mass Media: Application of Computer-Assisted Content Analysis

    Science.gov (United States)

    Kirilenko, Andrei P.; Stepchenkova, Svetlana O.

    2012-01-01

    Content analysis of mass media publications has become a major scientific method used to analyze public discourse on climate change. We propose a computer-assisted content analysis method to extract prevalent themes and analyze discourse changes over an extended period in an objective and quantifiable manner. The method includes the following: (1)…

  18. Determination of steroid hormones in fish tissues by microwave-assisted extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Guedes-Alonso, Rayco; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2017-12-15

    Steroid hormones produce adverse effects on biota as well as bioaccumulation in fish and seafood, making it necessary to develop methodologies to evaluate these compounds in samples related to the food chain. This work presents an analytical method for evaluating 15 steroid hormones in fish tissue. It is based on microwave-assisted extraction and solid-phase extraction coupled to ultra-high-performance liquid chromatography tandem mass spectrometry (MAE-SPE-UHPLC-MS/MS). The proposed method shows appropriate detection limits (0.14-49.0ngg -1 ), recoveries in the range of 50% and good repeatability. After optimization, the method was applied to different tissues from two small fishes of the Canary Islands that constitute an important level of the food web (Boops boops and Sphoeroides marmoratus) and were exposed to the outfall of the Las Palmas de Gran Canaria wastewater treatment plant. The concentrations of eight detected compounds ranged from below the quantification limits to 3.95μgg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Suspected-target pesticide screening using gas chromatography-quadrupole time-of-flight mass spectrometry with high resolution deconvolution and retention index/mass spectrum library.

    Science.gov (United States)

    Zhang, Fang; Wang, Haoyang; Zhang, Li; Zhang, Jing; Fan, Ruojing; Yu, Chongtian; Wang, Wenwen; Guo, Yinlong

    2014-10-01

    A strategy for suspected-target screening of pesticide residues in complicated matrices was exploited using gas chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS). The screening workflow followed three key steps of, initial detection, preliminary identification, and final confirmation. The initial detection of components in a matrix was done by a high resolution mass spectrum deconvolution; the preliminary identification of suspected pesticides was based on a special retention index/mass spectrum (RI/MS) library that contained both the first-stage mass spectra (MS(1) spectra) and retention indices; and the final confirmation was accomplished by accurate mass measurements of representative ions with their response ratios from the MS(1) spectra or representative product ions from the second-stage mass spectra (MS(2) spectra). To evaluate the applicability of the workflow in real samples, three matrices of apple, spinach, and scallion, each spiked with 165 test pesticides in a set of concentrations, were selected as the models. The results showed that the use of high-resolution TOF enabled effective extractions of spectra from noisy chromatograms, which was based on a narrow mass window (5 mDa) and suspected-target compounds identified by the similarity match of deconvoluted full mass spectra and filtering of linear RIs. On average, over 74% of pesticides at 50 ng/mL could be identified using deconvolution and the RI/MS library. Over 80% of pesticides at 5 ng/mL or lower concentrations could be confirmed in each matrix using at least two representative ions with their response ratios from the MS(1) spectra. In addition, the application of product ion spectra was capable of confirming suspected pesticides with specificity for some pesticides in complicated matrices. In conclusion, GC-QTOF MS combined with the RI/MS library seems to be one of the most efficient tools for the analysis of suspected-target pesticide residues

  20. Coffee-ring effects in laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L

    2013-03-05

    This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.