WorldWideScience

Sample records for high hydrological complexity

  1. Strategies to reduce the complexity of hydrologic data assimilation for high-dimensional models

    Science.gov (United States)

    Hernandez, F.; Liang, X.

    2017-12-01

    Probabilistic forecasts in the geosciences offer invaluable information by allowing to estimate the uncertainty of predicted conditions (including threats like floods and droughts). However, while forecast systems based on modern data assimilation algorithms are capable of producing multi-variate probability distributions of future conditions, the computational resources required to fully characterize the dependencies between the model's state variables render their applicability impractical for high-resolution cases. This occurs because of the quadratic space complexity of storing the covariance matrices that encode these dependencies and the cubic time complexity of performing inference operations with them. In this work we introduce two complementary strategies to reduce the size of the covariance matrices that are at the heart of Bayesian assimilation methods—like some variants of (ensemble) Kalman filters and of particle filters—and variational methods. The first strategy involves the optimized grouping of state variables by clustering individual cells of the model into "super-cells." A dynamic fuzzy clustering approach is used to take into account the states (e.g., soil moisture) and forcings (e.g., precipitation) of each cell at each time step. The second strategy consists in finding a compressed representation of the covariance matrix that still encodes the most relevant information but that can be more efficiently stored and processed. A learning and a belief-propagation inference algorithm are developed to take advantage of this modified low-rank representation. The two proposed strategies are incorporated into OPTIMISTS, a state-of-the-art hybrid Bayesian/variational data assimilation algorithm, and comparative streamflow forecasting tests are performed using two watersheds modeled with the Distributed Hydrology Soil Vegetation Model (DHSVM). Contrasts are made between the efficiency gains and forecast accuracy losses of each strategy used in

  2. Gradation of complexity and predictability of hydrological processes

    Science.gov (United States)

    Sang, Yan-Fang; Singh, Vijay P.; Wen, Jun; Liu, Changming

    2015-06-01

    Quantification of the complexity and predictability of hydrological systems is important for evaluating the impact of climate change on hydrological processes, and for guiding water activities. In the literature, the focus seems to have been on describing the complexity of spatiotemporal distribution of hydrological variables, but little attention has been paid to the study of complexity gradation, because the degree of absolute complexity of hydrological systems cannot be objectively evaluated. Here we show that complexity and predictability of hydrological processes can be graded into three ranks (low, middle, and high). The gradation is based on the difference in the energy distribution of hydrological series and that of white noise under multitemporal scales. It reflects different energy concentration levels and contents of deterministic components of the hydrological series in the three ranks. Higher energy concentration level reflects lower complexity and higher predictability, but scattered energy distribution being similar to white noise has the highest complexity and is almost unpredictable. We conclude that the three ranks (low, middle, and high) approximately correspond to deterministic, stochastic, and random hydrological systems, respectively. The result of complexity gradation can guide hydrological observations and modeling, and identification of similarity patterns among different hydrological systems.

  3. Model complexity control for hydrologic prediction

    NARCIS (Netherlands)

    Schoups, G.; Van de Giesen, N.C.; Savenije, H.H.G.

    2008-01-01

    A common concern in hydrologic modeling is overparameterization of complex models given limited and noisy data. This leads to problems of parameter nonuniqueness and equifinality, which may negatively affect prediction uncertainties. A systematic way of controlling model complexity is therefore

  4. Visualizing complex (hydrological) systems with correlation matrices

    Science.gov (United States)

    Haas, J. C.

    2016-12-01

    When trying to understand or visualize the connections of different aspects of a complex system, this often requires deeper understanding to start with, or - in the case of geo data - complicated GIS software. To our knowledge, correlation matrices have rarely been used in hydrology (e.g. Stoll et al., 2011; van Loon and Laaha, 2015), yet they do provide an interesting option for data visualization and analysis. We present a simple, python based way - using a river catchment as an example - to visualize correlations and similarities in an easy and colorful way. We apply existing and easy to use python packages from various disciplines not necessarily linked to the Earth sciences and can thus quickly show how different aquifers work or react, and identify outliers, enabling this system to also be used for quality control of large datasets. Going beyond earlier work, we add a temporal and spatial element, enabling us to visualize how a system reacts to local phenomena such as for example a river, or changes over time, by visualizing the passing of time in an animated movie. References: van Loon, A.F., Laaha, G.: Hydrological drought severity explained by climate and catchment characteristics, Journal of Hydrology 526, 3-14, 2015, Drought processes, modeling, and mitigation Stoll, S., Hendricks Franssen, H. J., Barthel, R., Kinzelbach, W.: What can we learn from long-term groundwater data to improve climate change impact studies?, Hydrology and Earth System Sciences 15(12), 3861-3875, 2011

  5. Global-Scale Hydrology: Simple Characterization of Complex Simulation

    Science.gov (United States)

    Koster, Randal D.

    1999-01-01

    Atmospheric general circulation models (AGCMS) are unique and valuable tools for the analysis of large-scale hydrology. AGCM simulations of climate provide tremendous amounts of hydrological data with a spatial and temporal coverage unmatched by observation systems. To the extent that the AGCM behaves realistically, these data can shed light on the nature of the real world's hydrological cycle. In the first part of the seminar, I will describe the hydrological cycle in a typical AGCM, with some emphasis on the validation of simulated precipitation against observations. The second part of the seminar will focus on a key goal in large-scale hydrology studies, namely the identification of simple, overarching controls on hydrological behavior hidden amidst the tremendous amounts of data produced by the highly complex AGCM parameterizations. In particular, I will show that a simple 50-year-old climatological relation (and a recent extension we made to it) successfully predicts, to first order, both the annual mean and the interannual variability of simulated evaporation and runoff fluxes. The seminar will conclude with an example of a practical application of global hydrology studies. The accurate prediction of weather statistics several months in advance would have tremendous societal benefits, and conventional wisdom today points at the use of coupled ocean-atmosphere-land models for such seasonal-to-interannual prediction. Understanding the hydrological cycle in AGCMs is critical to establishing the potential for such prediction. Our own studies show, among other things, that soil moisture retention can lead to significant precipitation predictability in many midlatitude and tropical regions.

  6. Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps.

    Science.gov (United States)

    Warscher, M; Strasser, U; Kraller, G; Marke, T; Franz, H; Kunstmann, H

    2013-05-01

    [1] Runoff generation in Alpine regions is typically affected by snow processes. Snow accumulation, storage, redistribution, and ablation control the availability of water. In this study, several robust parameterizations describing snow processes in Alpine environments were implemented in a fully distributed, physically based hydrological model. Snow cover development is simulated using different methods from a simple temperature index approach, followed by an energy balance scheme, to additionally accounting for gravitational and wind-driven lateral snow redistribution. Test site for the study is the Berchtesgaden National Park (Bavarian Alps, Germany) which is characterized by extreme topography and climate conditions. The performance of the model system in reproducing snow cover dynamics and resulting discharge generation is analyzed and validated via measurements of snow water equivalent and snow depth, satellite-based remote sensing data, and runoff gauge data. Model efficiency (the Nash-Sutcliffe coefficient) for simulated runoff increases from 0.57 to 0.68 in a high Alpine headwater catchment and from 0.62 to 0.64 in total with increasing snow model complexity. In particular, the results show that the introduction of the energy balance scheme reproduces daily fluctuations in the snowmelt rates that trace down to the channel stream. These daily cycles measured in snowmelt and resulting runoff rates could not be reproduced by using the temperature index approach. In addition, accounting for lateral snow transport changes the seasonal distribution of modeled snowmelt amounts, which leads to a higher accuracy in modeling runoff characteristics.

  7. The relation between geometry, hydrology and stability of complex hillslopes examined using low-dimensional hydrological models

    NARCIS (Netherlands)

    Talebi, A.

    2008-01-01

    Key words: Hillslope geometry, Hillslope hydrology, Hillslope stability, Complex hillslopes, Modeling shallow landslides, HSB model, HSB-SM model.

    The hydrologic response of a hillslope to rainfall involves a complex, transient saturated-unsaturated interaction that usually leads to a

  8. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  9. Critical Hydrologic and Atmospheric Measurements in Complex Alpine Regions

    Science.gov (United States)

    Parlange, M. B.; Bou-Zeid, E.; Barrenetxea, G.; Krichane, M.; Ingelrest, F.; Couach, O.; Luyet, V.; Vetterli, M.; Lehning, M.; Duffy, C.; Tobin, C.; Selker, J.; Kumar, M.

    2007-12-01

    The Alps are often referred to as the « Water Towers of Europe » and as such play an essential role in European water resources. The impact of climatic change is expected to be particularly pronounced in the Alps and the lack of detailed hydrologic field observations is problematic for predictions of hydrologic and hazard assessment. Advances in information technology and communications provide important possibilities to improve the situation with relatively few measurements. We will present sensorscope technology (arrays of wireless weather stations including soil moisture, pressure, and temperature) that has now been deployed at the Le Genepi and Grand St. Bernard pass. In addition, a Distributed Temperature Sensor array on the stream beds has been deployed and stream discharge monitored. The high spatial resolution data collected in these previously "ungaged" regions are used in conjunction with new generation hydrologic models. The framework as to what is possible today with sensor arrays and modeling in extreme mountain environments is discussed.

  10. Fish utilisation of wetland nurseries with complex hydrological connectivity.

    Directory of Open Access Journals (Sweden)

    Ben Davis

    Full Text Available The physical and faunal characteristics of coastal wetlands are driven by dynamics of hydrological connectivity to adjacent habitats. Wetlands on estuary floodplains are particularly dynamic, driven by a complex interplay of tidal marine connections and seasonal freshwater flooding, often with unknown consequences for fish using these habitats. To understand the patterns and subsequent processes driving fish assemblage structure in such wetlands, we examined the nature and diversity of temporal utilisation patterns at a species or genus level over three annual cycles in a tropical Australian estuarine wetland system. Four general patterns of utilisation were apparent based on CPUE and size-structure dynamics: (i classic nursery utlisation (use by recently settled recruits for their first year (ii interrupted peristence (iii delayed recruitment (iv facultative wetland residence. Despite the small self-recruiting 'facultative wetland resident' group, wetland occupancy seems largely driven by connectivity to the subtidal estuary channel. Variable connection regimes (i.e. frequency and timing of connections within and between different wetland units (e.g. individual pools, lagoons, swamps will therefore interact with the diversity of species recruitment schedules to generate variable wetland assemblages in time and space. In addition, the assemblage structure is heavily modified by freshwater flow, through simultaneously curtailing persistence of the 'interrupted persistence' group, establishing connectivity for freshwater spawned members of both the 'facultative wetland resident' and 'delayed recruitment group', and apparently mediating use of intermediate nursery habitats for marine-spawned members of the 'delayed recruitment' group. The diversity of utilisation pattern and the complexity of associated drivers means assemblage compositions, and therefore ecosystem functioning, is likely to vary among years depending on variations in hydrological

  11. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    Science.gov (United States)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  12. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  13. Governance and decision making in complex socio-hydrological systems

    Science.gov (United States)

    Elshorbagy, Amin; Wheater, Howard; Gober, Patricia; Hassanzadeh, Elmira

    2017-04-01

    Manitoba. The model highlights the spatial tradeoffs across the three provinces and sectoral trade-offs among the differing water uses. These trade-offs represent challenging dilemmas for water management decisions in a complex system. The study reveals the need for a holistic framework of water resources analysis that can dynamically capture the feedback loops among hydrological, social, and administrative/political analysis units to support public discussion of critical water tradeoffs and a consensual water value framework to guide future development decisions.

  14. Flood Hazards: Communicating Hydrology and Complexity to the Public

    Science.gov (United States)

    Holmes, R. R.; Blanchard, S. F.; Mason, R. R.

    2010-12-01

    user specifies. In the future, with new GPS enabled cell-phones, notifications could be sent to users based on their proximity to flood hazards. Educational measures also should communicate the hydrologic underpinnings and uncertainties of the complex science of flood hydrology in an understandable manner to a non-technical public. Education can be especially beneficial and important for those in a policy-making role or those who find themselves in an area of potential flood hazards. Case studies, such as the fatal June 11, 2010 flash flood on the Little Missouri River in Arkansas, if presented in a way that the public will absorb, powerfully illustrate the importance of flood hazard awareness and the cost of living unaware. Additionally, such crucial points as the connection between the accuracy of flood-probability estimates and the density (and longevity) of the basic data sources (such as the USGS streamgage or the National Weather Service raingage networks) and the residual risks that both communities and individuals face have to continually be stressed to the general public and policy makers alike. In short, success in flood hazards communication (both prescriptive warnings and education) requires a fusion of the social sciences and hydrology.

  15. Hydrology

    Science.gov (United States)

    Sharp, John M.

    1977-01-01

    Lists many recent research projects in hydrology, including flow in fractured media, improvements in remote-sensing techniques, effects of urbanization on water resources, and developments in drainage basins. (MLH)

  16. Hydrology

    International Nuclear Information System (INIS)

    Obando G, E.

    1989-01-01

    Isotopical techniques are used in hydrology area for exploration, evaluation and exploration of water investigation. These techniques have been used successfully and are often the best or only means for providing certain hydrogeological parameters

  17. Hydrology

    Science.gov (United States)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  18. Hydrologi

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    Hydro1ogi er den videnskab, der omhand1er jordens vand, dets forekomst, cirku1ation og forde1ing, dets kemiske og fysiske egenskaber samt indvirkning på omgivelserne, herunder dets relation ti1 alt liv på jorden. Således lyder en b1andt mange definitioner på begrebet hydrologi, og som man kan se...

  19. The subcatchment- and catchment-scale hydrology of a boreal headwater peatland complex with sporadic permafrost.

    Science.gov (United States)

    Sonnentag, O.; Helbig, M.; Connon, R.; Hould Gosselin, G.; Ryu, Y.; Karoline, W.; Hanisch, J.; Moore, T. R.; Quinton, W. L.

    2017-12-01

    The permafrost region of the Northern Hemisphere has been experiencing twice the rate of climate warming compared to the rest of the Earth, resulting in the degradation of the cryosphere. A large portion of the high-latitude boreal forests of northwestern Canada grows on low-lying organic-rich lands with relative warm and thin isolated, sporadic and discontinuous permafrost. Along this southern limit of permafrost, increasingly warmer temperatures have caused widespread permafrost thaw leading to land cover changes at unprecedented rates. A prominent change includes wetland expansion at the expense of Picea mariana (black spruce)-dominated forest due to ground surface subsidence caused by the thawing of ice-rich permafrost leading to collapsing peat plateaus. Recent conceptual advances have provided important new insights into high-latitude boreal forest hydrology. However, refined quantitative understanding of the mechanisms behind water storage and movement at subcatchment and catchment scales is needed from a water resources management perspective. Here we combine multi-year daily runoff measurements with spatially explicit estimates of evapotranspiration, modelled with the Breathing Earth System Simulator, to characterize the monthly growing season catchment scale ( 150 km2) hydrological response of a boreal headwater peatland complex with sporadic permafrost in the southern Northwest Territories. The corresponding water budget components at subcatchment scale ( 0.1 km2) were obtained from concurrent cutthroat flume runoff and eddy covariance evapotranspiration measurements. The highly significant linear relationships for runoff (r2=0.64) and evapotranspiration (r2=0.75) between subcatchment and catchment scales suggest that the mineral upland-dominated downstream portion of the catchment acts hydrologically similar to the headwater portion dominated by boreal peatland complexes. Breakpoint analysis in combination with moving window statistics on multi

  20. Hydrological Dynamics In High Mountain Catchment Areas of Central Norway

    Science.gov (United States)

    Löffler, Jörg; Rößler, Ole

    Large-scaled landscape structure is regarded as a mosaic of ecotopes where process dynamics of water and energy fluxes are analysed due to its effects on ecosystem functioning. The investigations have been carried out in the continental most Vågå/Oppland high mountains in central Norway since 1994 (LÖFFLER &WUNDRAM 1999, 2000, 2001). Additionally, comparable investigations started in 2000 dealing with the oceanic high mountain landscapes on same latitudes (LÖFFLER et al. 2001). The theoretical and methodological framework of the project is given by the Landscape-Ecological Complex Analysis (MOSIMANN 1984, 1985) and its variations due to technical and principle methodical challenges in this high mountain landscape (KÖHLER et al. 1994, LÖFFLER 1998). The aim of the project is to characterize high mountain ecosystem structure, functioning and dynamics within small catchment areas, that are chosen in two different altitudinal belts each in the eastern continental and the western oceanic region of central Norway. In the frame of this research project hydrological and meteorological measurements on ground water, percolation and soil moisture dynamics as well as on evaporation, air humidity and air-, surface- and soil-temperatures have been conducted. On the basis of large-scaled landscape-ecological mappings (LÖFFLER 1997) one basic meteorological station and several major data logger run stations have been installed in representative sites of each two catchment areas in the low and mid alpine belts of the investigation regions ( JUNGet al. 1997, LÖFFLER &WUNDRAM 1997). Moreover, spatial differentiations of groundwater level, soil moisture and temperature profiles have been investigated by means of hand held measurements at different times of the day, during different climatic situations and different seasons. Daily and annual air-, surface- and soil-temperature dynamics are demonstrated by means of thermoisopleth-diagrams for different types of ecotopes of the

  1. Using a Budyko Derived Index to Evaluate the Internal Hydrological Variability of Catchments in Complex Terrain

    Science.gov (United States)

    Dominguez, M.

    2017-12-01

    Headwater catchments in complex terrain typically exhibit significant variations in microclimatic conditions across slopes. This microclimatic variability in turn, modifies land surface properties presumably altering the hydrologic dynamics of these catchments. The extent to which differences in microclimate and land cover dictate the partition of water and energy fluxes within a catchment is still poorly understood. In this study, we attempt to do an assessment of the effects of aspect, elevation and latitude (which are the principal factors that define microclimate conditions) on the hydrologic behavior of the hillslopes within catchments with complex terrain. Using a distributed hydrologic model on a number of catchments at different latitudes, where data is available for calibration and validation, we estimate the different components of the water balance to obtain the aridity index (AI = PET/P) and the evaporative index (EI = AET/P) of each slope for a number of years. We use Budyko's curve as a framework to characterize the inter-annual variability in the hydrologic response of the hillslopes in the studied catchments, developing a hydrologic sensitivity index (HSi) based on the relative change in Budyko's curve components (HSi=ΔAI/ΔEI). With this method, when the HSi values of a given hillslope are larger than 1 the hydrologic behavior of that part of the catchment is considered sensitive to changes in climatic conditions, while values approaching 0 would indicate the opposite. We use this approach as a diagnostic tool to discern the effect of aspect, elevation, and latitude on the hydrologic regime of the slopes in complex terrain catchments and to try to explain observed patterns of land cover conditions on these types of catchments.

  2. Quantifying the changes in the High Mountain Asia snow hydrology

    Science.gov (United States)

    Yoon, Y.; Kumar, S.; Mocko, D. M.; Rosenberg, R. I.; Kwon, Y.; Forman, B. A.; Zaitchik, B. F.

    2017-12-01

    The melting of snow and glaciers in the High Mountain Asia (HMA) provides the water needs of approximately 1.3 billion people in the region. Increasing temperatures have large effects on the hydrologic cycle, influencing snowmelt, snowpack, stream flow, and water runoff, which can impact all aspects of water security, such as water allocation, conservation, efficiency and land-use planning. Most mountain regions, however, remain ungauged without in-situ measurement of precipitation or snowpack due to the complex terrain, and thus it is difficult to understand the regional water balance and assess how it might change in the future. In this study, we focus on characterizing the spatiotemporal patterns of snowpack states and fluxes over the last 30+ years (1980 - present) and assessing the relationship between snowmelt and runoff. The Noah land surface model with multi-parameterization options, version 3.6 (Noah-MP.3.6) in the NASA Land Information System (LIS) is used to establish a high resolution (1 km) modeling environment over the HMA. Combining information from satellite observations and the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) is used to provide an effective way to develop spatially and temporally continuous estimates of changes. To improve the spatial representativeness of the precipitation field for modeling at 1km resolution, the input field is downscaled using a stochastic downscaling method with the monthly WorldClim data. The other meteorological inputs (e.g., air temperature, humidity, pressure, wind, and downward shortwave and longwave) are corrected for elevation through lapse-rate and slope-aspect methods. Evaluation of the model estimates is presented using satellite-derived data (e.g., MODIS and GRACE) and reanalysis products (e.g., CMC and ERA-interim).

  3. Calibration process of highly parameterized semi-distributed hydrological model

    Science.gov (United States)

    Vidmar, Andrej; Brilly, Mitja

    2017-04-01

    Hydrological phenomena take place in the hydrological system, which is governed by nature, and are essentially stochastic. These phenomena are unique, non-recurring, and changeable across space and time. Since any river basin with its own natural characteristics and any hydrological event therein, are unique, this is a complex process that is not researched enough. Calibration is a procedure of determining the parameters of a model that are not known well enough. Input and output variables and mathematical model expressions are known, while only some parameters are unknown, which are determined by calibrating the model. The software used for hydrological modelling nowadays is equipped with sophisticated algorithms for calibration purposes without possibility to manage process by modeler. The results are not the best. We develop procedure for expert driven process of calibration. We use HBV-light-CLI hydrological model which has command line interface and coupling it with PEST. PEST is parameter estimation tool which is used widely in ground water modeling and can be used also on surface waters. Process of calibration managed by expert directly, and proportionally to the expert knowledge, affects the outcome of the inversion procedure and achieves better results than if the procedure had been left to the selected optimization algorithm. First step is to properly define spatial characteristic and structural design of semi-distributed model including all morphological and hydrological phenomena, like karstic area, alluvial area and forest area. This step includes and requires geological, meteorological, hydraulic and hydrological knowledge of modeler. Second step is to set initial parameter values at their preferred values based on expert knowledge. In this step we also define all parameter and observation groups. Peak data are essential in process of calibration if we are mainly interested in flood events. Each Sub Catchment in the model has own observations group

  4. Hydrological performance assessment on siting the high level radioactive waste repository

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Wang Ju; Wang Zhiming; Su Rui; Lv Chuanhe; Zong Zihua

    2007-01-01

    Based on the research experiences in China and some developed countries in the world, the processes and methods on hydrological performance assessment for the siting of high radioactive repository are discussed in this paper. The methods and contents of hydrological performance assessment are discussed respectively for region, area and site hydrological investigation stages. At the same time, the hydrological performance assessment of the potential site for high level radioactive waste in China is introduced. (authors)

  5. eWaterCycle: A high resolution global hydrological model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  6. Does model performance improve with complexity? A case study with three hydrological models

    Science.gov (United States)

    Orth, Rene; Staudinger, Maria; Seneviratne, Sonia I.; Seibert, Jan; Zappa, Massimiliano

    2015-04-01

    In recent decades considerable progress has been made in climate model development. Following the massive increase in computational power, models became more sophisticated. At the same time also simple conceptual models have advanced. In this study we validate and compare three hydrological models of different complexity to investigate whether their performance varies accordingly. For this purpose we use runoff and also soil moisture measurements, which allow a truly independent validation, from several sites across Switzerland. The models are calibrated in similar ways with the same runoff data. Our results show that the more complex models HBV and PREVAH outperform the simple water balance model (SWBM) in case of runoff but not for soil moisture. Furthermore the most sophisticated PREVAH model shows an added value compared to the HBV model only in case of soil moisture. Focusing on extreme events we find generally improved performance of the SWBM during drought conditions and degraded agreement with observations during wet extremes. For the more complex models we find the opposite behavior, probably because they were primarily developed for prediction of runoff extremes. As expected given their complexity, HBV and PREVAH have more problems with over-fitting. All models show a tendency towards better performance in lower altitudes as opposed to (pre-) alpine sites. The results vary considerably across the investigated sites. In contrast, the different metrics we consider to estimate the agreement between models and observations lead to similar conclusions, indicating that the performance of the considered models is similar at different time scales as well as for anomalies and long-term means. We conclude that added complexity does not necessarily lead to improved performance of hydrological models, and that performance can vary greatly depending on the considered hydrological variable (e.g. runoff vs. soil moisture) or hydrological conditions (floods vs. droughts).

  7. A high-resolution European dataset for hydrologic modeling

    Science.gov (United States)

    Ntegeka, Victor; Salamon, Peter; Gomes, Goncalo; Sint, Hadewij; Lorini, Valerio; Thielen, Jutta

    2013-04-01

    There is an increasing demand for large scale hydrological models not only in the field of modeling the impact of climate change on water resources but also for disaster risk assessments and flood or drought early warning systems. These large scale models need to be calibrated and verified against large amounts of observations in order to judge their capabilities to predict the future. However, the creation of large scale datasets is challenging for it requires collection, harmonization, and quality checking of large amounts of observations. For this reason, only a limited number of such datasets exist. In this work, we present a pan European, high-resolution gridded dataset of meteorological observations (EFAS-Meteo) which was designed with the aim to drive a large scale hydrological model. Similar European and global gridded datasets already exist, such as the HadGHCND (Caesar et al., 2006), the JRC MARS-STAT database (van der Goot and Orlandi, 2003) and the E-OBS gridded dataset (Haylock et al., 2008). However, none of those provide similarly high spatial resolution and/or a complete set of variables to force a hydrologic model. EFAS-Meteo contains daily maps of precipitation, surface temperature (mean, minimum and maximum), wind speed and vapour pressure at a spatial grid resolution of 5 x 5 km for the time period 1 January 1990 - 31 December 2011. It furthermore contains calculated radiation, which is calculated by using a staggered approach depending on the availability of sunshine duration, cloud cover and minimum and maximum temperature, and evapotranspiration (potential evapotranspiration, bare soil and open water evapotranspiration). The potential evapotranspiration was calculated using the Penman-Monteith equation with the above-mentioned meteorological variables. The dataset was created as part of the development of the European Flood Awareness System (EFAS) and has been continuously updated throughout the last years. The dataset variables are used as

  8. 99mTc-EDTA and 99mTc-DTPA complexes as hydrological tracers

    International Nuclear Information System (INIS)

    Dominguez, J.; Borroto, J.; Nazco, J.; Perez, E.; Gamboa, R.; Cruz, J.

    2002-01-01

    The [ 99m Tc-DTPA] 2- and [ 99m Tc-EDTA] 1- were evaluated as radiotracers for short time hydrological studies. Their complex stability after labelling with 9.25 GBq of 99m Tc, the behaviour against pH variations, from 5 to 9, in simulated solutions and in natural river waters and the sorption of these compounds on the river sediments, were tested in laboratory experiments. Finally field double tracing experiments were carried out for each of labelling complexes and Rhodamine WT. From recovery calculations not losses of the 99m Tc activity were observed. The shape of the RTD curves of the [ 99m Tc-DTPA] 2- and [ 99m Tc-EDTA] 1 were quite similar to the Rhodamine Wt ones. May be concluded that both complexes behaved conservatively on the studied environmental conditions. (author)

  9. Influence of Beaver Dams on Channel Complexity, Hydrology, and Temperature Regime in a Mountainous Stream

    Science.gov (United States)

    Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.

    2013-12-01

    Beaver dams and beaver activity affect hydrologic processes, sediment transport, channel complexity and water quality of streams. Beaver ponds, which form behind beaver dams, increase in-channel water storage affecting the timing and volume of flow and resulting in the attenuation and flattening of the hydrograph. Channel complexity also increases the potential for transient storage (both surface and subsurface) and influences stream temperature. Impacts of beaver dams and beaver activity on stream responses are difficult to quantify because responses are dynamic and spatially variable. Few studies have focused on the reach scale temporal influences on stream responses and further research is needed particularly in quantifying the influence of beaver dams and their role in shaping the stream habitat. This study explores the changing hydrology and temperature regime of Curtis Creek, a mountainous stream located in Northern Utah, in a 560 m long reach where groundwater exchanges and temperature differences were observed over a three-year period. We have collected continuous stream discharge, stream temperature data and performed tracer experiments. During the first year, we were able to capture the pre-beaver activity. In the second year, we captured the impacts of some beaver activity with only a few dams built in the reach, while the third year included the effects of an entire active beaver colony. By the end of the study period, a single thread channel had been transformed into a channel with side channels and backwaters at multiple locations therefore increasing channel complexity. The cumulative influence of beaver dams on reach scale discharge resulted in a slightly losing reach that developed into a gaining reach. At the smaller sub-reach scale, both losing to gaining and gaining to losing transformations were observed. Temperature differences showed a warming effect of beaver dams at the reach scale. The reach stream temperature difference increased on

  10. Hydrological Response and Complex Impact Pathways of the 2015/2016 El Niño in Eastern and Southern Africa

    Science.gov (United States)

    Siderius, C.; Gannon, K. E.; Ndiyoi, M.; Opere, A.; Batisani, N.; Olago, D.; Pardoe, J.; Conway, D.

    2018-01-01

    The 2015/2016 El Niño has been classified as one of the three most severe on record. El Niño teleconnections are commonly associated with droughts in southern Africa and high precipitation in eastern Africa. Despite their relatively frequent occurrence, evidence for their hydrological effects and impacts beyond agriculture is limited. We examine the hydrological response and impact pathways of the 2015/2016 El Niño in eastern and southern Africa, focusing on Botswana, Kenya, and Zambia. We use in situ and remotely sensed time series of precipitation, river flow, and lake levels complemented by qualitative insights from interviews with key organizations in each country about awareness, impacts, and responses. Our results show that drought conditions prevailed in large parts of southern Africa, reducing runoff and contributing to unusually low lake levels in Botswana and Zambia. Key informants characterized this El Niño through record high temperatures and water supply disruption in Botswana and through hydroelectric load shedding in Zambia. Warnings of flood risk in Kenya were pronounced, but the El Niño teleconnection did not materialize as expected in 2015/2016. Extreme precipitation was limited and caused localized impacts. The hydrological impacts in southern Africa were severe and complex, strongly exacerbated by dry antecedent conditions, recent changes in exposure and sensitivity and management decisions. Improved understanding of hydrological responses and the complexity of differing impact pathways can support design of more adaptive, region-specific management strategies.

  11. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  12. Hydrological simulation approaches for BMPs and LID practices in highly urbanized area and development of hydrological performance indicator system

    Directory of Open Access Journals (Sweden)

    Yan-wei Sun

    2014-04-01

    Full Text Available Urbanization causes hydrological change and increases stormwater runoff volumes, leading to flooding, erosion, and the degradation of instream ecosystem health. Best management practices (BMPs, like detention ponds and infiltration trenches, have been widely used to control flood runoff events for the past decade. However, low impact development (LID options have been proposed as an alternative approach to better mimic the natural flow regime by using decentralized designs to control stormwater runoff at the source, rather than at a centralized location in the watershed. For highly urbanized areas, LID stormwater management practices such as bioretention cells and porous pavements can be used to retrofit existing infrastructure and reduce runoff volumes and peak flows. This paper describes a modeling approach to incorporate these LID practices and the two BMPs of detention ponds and infiltration trenches in an existing hydrological model to estimate the impacts of BMPs and LID practices on the surface runoff. The modeling approach has been used in a parking lot located in Lenexa, Kansas, USA, to predict hydrological performance of BMPs and LID practices. A performance indicator system including the flow duration curve, peak flow frequency exceedance curve, and runoff coefficient have been developed in an attempt to represent impacts of BMPs and LID practices on the entire spectrum of the runoff regime. Results demonstrate that use of these BMPs and LID practices leads to significant stormwater control for small rainfall events and less control for flood events.

  13. Hydrologic consistency as a basis for assessing complexity of monthly water balance models for the continental United States

    Science.gov (United States)

    Martinez, Guillermo F.; Gupta, Hoshin V.

    2011-12-01

    Methods to select parsimonious and hydrologically consistent model structures are useful for evaluating dominance of hydrologic processes and representativeness of data. While information criteria (appropriately constrained to obey underlying statistical assumptions) can provide a basis for evaluating appropriate model complexity, it is not sufficient to rely upon the principle of maximum likelihood (ML) alone. We suggest that one must also call upon a "principle of hydrologic consistency," meaning that selected ML structures and parameter estimates must be constrained (as well as possible) to reproduce desired hydrological characteristics of the processes under investigation. This argument is demonstrated in the context of evaluating the suitability of candidate model structures for lumped water balance modeling across the continental United States, using data from 307 snow-free catchments. The models are constrained to satisfy several tests of hydrologic consistency, a flow space transformation is used to ensure better consistency with underlying statistical assumptions, and information criteria are used to evaluate model complexity relative to the data. The results clearly demonstrate that the principle of consistency provides a sensible basis for guiding selection of model structures and indicate strong spatial persistence of certain model structures across the continental United States. Further work to untangle reasons for model structure predominance can help to relate conceptual model structures to physical characteristics of the catchments, facilitating the task of prediction in ungaged basins.

  14. Wetland Hydrology

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  15. Changing Hydrology in Glacier-fed High Altitude Andean Peatbogs

    Science.gov (United States)

    Slayback, D. A.; Yager, K.; Baraer, M.; Mohr, K. I.; Argollo, J.; Wigmore, O.; Meneses, R. I.; Mark, B. G.

    2012-12-01

    Montane peatbogs in the glacierized Andean highlands of Peru and Bolivia provide critical forage for camelids (llama and alpaca) in regionally extensive pastoral agriculture systems. During the long dry season, these wetlands often provide the only available green forage. A key question for the future of these peatbog systems, and the livelihoods they support, is the impact of climate change and glacier recession on their hydrology, and thus forage production. We have already documented substantial regional glacier recession, of, on average, approximately 30% of surface area over the past two decades. As glaciers begin to retreat under climate change, there is initially a period of increased meltwater outflow, culminating in a period of "peak water", and followed by a continual decline in outflows. Based on previous work, we know that some glaciers in the region have already passed peak water conditions, and are now declining. To better understand the impacts of these processes on peatbog hydrology and productivity, we have begun collecting a variety of surface data at several study sites in both Bolivia and Peru. These include precipitation, stream flow, water levels, water chemistry and isotope analyses, and peatbog biodiversity and biomass. These measurements will be used in conjunction with a regional model driven by satellite data to predict likely future impacts. We will present the results from these initial surface measurements, and an overview of satellite datasets to be used in the regional model.

  16. Watershed sensitivity and hydrologic response to high-resolution climate model

    Science.gov (United States)

    Troin, M.; Caya, D.

    2012-12-01

    shows similar skillful in capturing observed climate in QC basins. The added value of CRCM-45km is more apparent in the BC basin characterized by complex topographical features. For QC basins, CRCM-45km and CGCM3 results in hydrographs that are close to the one simulated using observational data. The spring peak flow is well simulated. CRCM-45km displays higher performance in simulating streamflow in the BC basin due to its better ability in capturing climate conditions in the catchment. When compared to the CRCM-45km's climatology, CRCM-15km does not improve the simulation of temperature and precipitation in the basins. The hydrograph simulated by CRCM-15km is similar to that of CRCM-45km that follows the simulated hydrograph using observational data. Our results suggest CRCM-45km and GCMs have comparable performances in simulating streamflow in watersheds where the topography is not complex. The added value of CRCM-45km is more evident in environments that present physiographic details that cannot be resolved in GCMs such as mountains. However, the benefits of CRCM-15km are not clearly apparent in our modeling results. More investigations are needed to identify the advantages in using RCMs at very high-resolution for hydrological applications.

  17. High-speed limnology: using advanced sensors to investigate spatial variability in biogeochemistry and hydrology.

    Science.gov (United States)

    Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A

    2015-01-06

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  18. Development of hydrological models and surface process modelization Study case in High Mountain slopes

    International Nuclear Information System (INIS)

    Loaiza, Juan Carlos; Pauwels, Valentijn R

    2011-01-01

    Hydrological models are useful because allow to predict fluxes into the hydrological systems, which is useful to predict foods and violent phenomenon associated to water fluxes, especially in materials under a high meteorization level. The combination of these models with meteorological predictions, especially with rainfall models, allow to model water behavior into the soil. On most of cases, this type of models is really sensible to evapotranspiration. On climatic studies, the superficial processes have to be represented adequately. Calibration and validation of these models is necessary to obtain reliable results. This paper is a practical exercise of application of complete hydrological information at detailed scale in a high mountain catchment, considering the soil use and types more representatives. The information of soil moisture, infiltration, runoff and rainfall is used to calibrate and validate TOPLATS hydrological model to simulate the behavior of soil moisture. The finds show that is possible to implement an hydrological model by means of soil moisture information use and an equation of calibration by Extended Kalman Filter (EKF).

  19. On modeling complex interplay in small-scale self-organized socio-hydrological systems

    Science.gov (United States)

    Muneepeerakul, Rachata

    2017-04-01

    Successful and sustainable socio-hydrological systems, as in any coupled natural human-systems, require effective governance, which depends on the existence of proper infrastructure (both hard and soft). Recent work has addressed systems in which resource users and the organization responsible for maintaining the infrastructure are separate entities. However, many socio-hydrological systems, especially in developing countries, are small and without such formal division of labor; rather, such division of labor typically arises from self-organization within the population. In this work, we modify and mathematically operationalize a conceptual framework by developing a system of differential equations that capture the strategic behavior within such a self-organized population, its interplay with infrastructure characteristics and hydrological dynamics, and feedbacks between these elements. The model yields a number of insightful conditions related to long-term sustainability and collapse of the socio-hydrological system in the form of relationships between biophysical and social factors. These relationships encapsulate nonlinear interactions of these factors. The modeling framework is grounded in a solid conceptual foundation upon which additional modifications and realism can be built for potential reconciliation between socio-hydrology with other related fields and further applications.

  20. High resolution weather data for urban hydrological modelling and impact assessment, ICT requirements and future challenges

    Science.gov (United States)

    ten Veldhuis, Marie-claire; van Riemsdijk, Birna

    2013-04-01

    Hydrological analysis of urban catchments requires high resolution rainfall and catchment information because of the small size of these catchments, high spatial variability of the urban fabric, fast runoff processes and related short response times. Rainfall information available from traditional radar and rain gauge networks does no not meet the relevant scales of urban hydrology. A new type of weather radars, based on X-band frequency and equipped with Doppler and dual polarimetry capabilities, promises to provide more accurate rainfall estimates at the spatial and temporal scales that are required for urban hydrological analysis. Recently, the RAINGAIN project was started to analyse the applicability of this new type of radars in the context of urban hydrological modelling. In this project, meteorologists and hydrologists work closely together in several stages of urban hydrological analysis: from the acquisition procedure of novel and high-end radar products to data acquisition and processing, rainfall data retrieval, hydrological event analysis and forecasting. The project comprises of four pilot locations with various characteristics of weather radar equipment, ground stations, urban hydrological systems, modelling approaches and requirements. Access to data processing and modelling software is handled in different ways in the pilots, depending on ownership and user context. Sharing of data and software among pilots and with the outside world is an ongoing topic of discussion. The availability of high resolution weather data augments requirements with respect to the resolution of hydrological models and input data. This has led to the development of fully distributed hydrological models, the implementation of which remains limited by the unavailability of hydrological input data. On the other hand, if models are to be used in flood forecasting, hydrological models need to be computationally efficient to enable fast responses to extreme event conditions. This

  1. Evaluate Hydrologic Response on Spatiotemporal Characteristics of Rainfall Using High Resolution Radar Rainfall Data and WRF-Hydro Model

    Science.gov (United States)

    Gao, S.; Fang, N. Z.

    2017-12-01

    A previously developed Dynamic Moving Storm (DMS) generator is a multivariate rainfall model simulating the complex nature of precipitation field: spatial variability, temporal variability, and storm movement. Previous effort by the authors has investigated the sensitivity of DMS parameters on corresponding hydrologic responses by using synthetic storms. In this study, the DMS generator has been upgraded to generate more realistic precipitation field. The dependence of hydrologic responses on rainfall features was investigated by dissecting the precipitation field into rain cells and modifying their spatio-temporal specification individually. To retrieve DMS parameters from radar rainfall data, rain cell segmentation and tracking algorithms were respectively developed and applied on high resolution radar rainfall data (1) to spatially determine the rain cells within individual radar image and (2) to temporally analyze their dynamic behavior. Statistics of DMS parameters were established by processing a long record of rainfall data (10 years) to keep the modification on real storms within the limit of regional climatology. Empirical distributions of the DMS parameters were calculated to reveal any preferential pattern and seasonality. Subsequently, the WRF-Hydro model forced by the remodeled and modified precipitation was used for hydrologic simulation. The study area was the Upper Trinity River Basin (UTRB) watershed, Texas; and two kinds of high resolution radar data i.e. the Next-Generation Radar (NEXRAD) level III Digital Hybrid Reflectivity (DHR) product and Multi-Radar Multi-Sensor (MRMS) precipitation rate product, were utilized to establish parameter statistics and to recreate/remodel historical events respectively. The results demonstrated that rainfall duration is a significant linkage between DMS parameters and their hydrologic impacts—any combination of spatiotemporal characteristics that keep rain cells longer over the catchment will produce higher

  2. High resolution time-lapse gravity field from GRACE for hydrological modelling

    DEFF Research Database (Denmark)

    Krogh, Pernille Engelbredt

    Calibration of large scale hydrological models have traditionally been performed using point observations, which are often sparsely distributed. The Gravity Recovery And Climate Experiment (GRACE) mission provides global remote sensing information about mass fluxes with unprecedented accuracy...... than for the mascon only solution, but later than the GLDAS/Noah TWS and the CNES/GRGS SH solutions. The deviations are 10–20 days. From this point of view, the tuning of hydrological models with KBRR data is certainly feasible, though highly time consuming and complicated at the moment. The method...

  3. Hydrological evaluation of five sedimentary rocks for high-level waste disposal

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Kanehiro, B.Y.

    1986-01-01

    Utilizing performance criteria that are based upon siting guidelines issued by DOE for postclosure as well as preclosure conditions, a preliminary hydrologic evaluation and ranking is being conducted to determine the suitability of five sedimentary rocks as potential host rocks for a high-level radioactive waste repository. Based upon both quantitative and qualitative considerations, the hydrological ranking of the rocks in order of their potential as a host rock for the disposal of radioactive wastes would be shale, anhydrock, sandstone, chalk, and carbonates, with the first three rocks being significantly better than the remaining two types

  4. Response and adaptation of grapevine cultivars to hydrological conditions forced by a changing climate in a complex landscape

    Science.gov (United States)

    De Lorenzi, Francesca; Bonfante, Antonello; Alfieri, Silvia Maria; Monaco, Eugenia; De Mascellis, Roberto; Manna, Piero; Menenti, Massimo

    2014-05-01

    requirements were determined. To assess cultivars adaptability, hydrological requirements were evaluated against hydrological indicators. A probabilistic assessment of adaptability was performed, and the inaccuracy of estimated hydrological requirements was accounted for by the error of estimate and its distribution. Maps of cultivars potential distribution, i.e. locations where each cultivar is expected to be compatible with climate, were derived and possible options for adaptation to climate change were defined. The 2021 - 2050 climate scenario was characterized by higher temperatures throughout the year and by a significant decrease in precipitation during spring and autumn. The results have shown the relevant variability of soils water regime and its effects on cultivars adaptability. In the future climate scenario, a hydrological indicator (i.e. relative evapotranspiration deficit - RETD), averaged over the growing season, showed an average increase of 5-8 %, and more pronounced increases occurred in the phenological phases of berry formation and ripening. At the locations where soil hydrological conditions were favourable (like the ancient terraces), hydrological indicators were quite similar in both climate scenarios and the adaptability of the cultivars was high both in the reference and future climate case. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: climate change, Vitis vinifera L., simulation model, yield response functions, potential cultivation area.

  5. Socio-Hydrology of Channel Flows in Complex River Basins: Rivers, Canals, and Distributaries in Punjab, Pakistan

    Science.gov (United States)

    Wescoat, James L.; Siddiqi, Afreen; Muhammad, Abubakr

    2018-01-01

    This paper presents a socio-hydrologic analysis of channel flows in Punjab province of the Indus River basin in Pakistan. The Indus has undergone profound transformations, from large-scale canal irrigation in the mid-nineteenth century to partition and development of the international river basin in the mid-twentieth century, systems modeling in the late-twentieth century, and new technologies for discharge measurement and data analytics in the early twenty-first century. We address these processes through a socio-hydrologic framework that couples historical geographic and analytical methods at three levels of flow in the Punjab. The first level assesses Indus River inflows analysis from its origins in 1922 to the present. The second level shows how river inflows translate into 10-daily canal command deliveries that vary widely in their conformity with canal entitlements. The third level of analysis shows how new flow measurement technologies raise questions about the performance of established methods of water scheduling (warabandi) on local distributaries. We show how near real-time measurement sheds light on the efficiency and transparency of surface water management. These local socio-hydrologic changes have implications in turn for the larger scales of canal and river inflow management in complex river basins.

  6. Embedding complex hydrology in the regional climate system – Dynamic coupling across different modelling domains

    DEFF Research Database (Denmark)

    Butts, Michael; Drews, Martin; Larsen, Morten Andreas Dahl

    2014-01-01

    the atmosphere and the groundwater via the land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions, not normally accounted for in climate models. Meso-scale processes are important for climate in general and rainfall in particular. Hydrological......To improve our understanding of the impacts of feedback between the atmosphere and the terrestrial water cycle including groundwater and to improve the integration of water resource management modelling for climate adaption we have developed a dynamically coupled climate–hydrological modelling...... impacts are assessed at the catchment scale, the most important scale for water management. Feedback between groundwater, the land surface and the atmosphere occurs across a range of scales. Recognising this, the coupling was developed to allow dynamic exchange of water and energy at the catchment scale...

  7. Hydrological impact of high-density small dams in a humid catchment, Southeast China

    Science.gov (United States)

    Lu, W.; Lei, H.; Yang, D.

    2017-12-01

    The Jiulong River basin is a humid catchment with a drainage area of 14,741 km2; however, it has over 1000 hydropower stations within it. Such catchment with high-density small dams is scarce in China. Yet few is known about the impact of high-density small dams on streamflow changes. To what extent the large number of dams alters the hydrologic patterns is a fundamental scientific issue for water resources management, flood control, and aquatic ecological environment protection. Firstly, trend and change point analyses are applied to determine the characteristics of inter-annual streamflow. Based on the detected change point, the study period is divided into two study periods, the ``natural'' and ``disturbed'' periods. Then, a geomorphology-based hydrological model (GBHM) and the fixing-changing method are adopted to evaluate the relative contributions of climate variations and damming to the changes in streamflow at each temporal scale (i.e., from daily, monthly to annual). Based on the simulated natural streamflow, the impact of dam construction on hydrologic alteration and aquatic ecological environment will be evaluated. The hydrologic signatures that will be investigated include flood peak, seasonality of streamflow, and the inter-annual variability of streamflow. In particular, the impacts of damming on aquatic ecological environment will be investigated using eco-flow metrics and indicators of hydrologic alteration (IHA) which contains 33 individual streamflow statistics that are closely related to aquatic ecosystem. The results of this study expect to provide a reference for reservoir operation considering both ecological and economic benefits of such operations in the catchment with high-density dams.

  8. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system

    OpenAIRE

    Li, Xin; Liu, Shaomin; Xiao, Qin; Ma, Mingguo; Jin, Rui; Che, Tao; Wang, Weizhen; Hu, Xiaoli; Xu, Ziwei; Wen, Jianguang; Wang, Liangxu

    2017-01-01

    We introduce a multiscale dataset obtained from Heihe Watershed Allied Telemetry Experimental Research (HiWATER) in an oasis-desert area in 2012. Upscaling of eco-hydrological processes on a heterogeneous surface is a grand challenge. Progress in this field is hindered by the poor availability of multiscale observations. HiWATER is an experiment designed to address this challenge through instrumentation on hierarchically nested scales to obtain multiscale and multidisciplinary data. The HiWAT...

  9. Assessment of groundwater response to droughts in a complex runoff-dominated watershed by using an integrated hydrologic model

    Science.gov (United States)

    Woolfenden, L. R.; Hevesi, J. A.; Nishikawa, T.

    2014-12-01

    Groundwater is an important component of the water supply, especially during droughts, within the Santa Rosa Plain watershed (SRPW), California, USA. The SRPW is 680 km2 and includes a network of natural and engineered stream channels. Streamflow is strongly seasonal, with high winter flows, predominantly intermittent summer flows, and comparatively rapid response time to larger storms. Groundwater flow is influenced primarily by complex geology, spatial and temporal variation in recharge, and pumping for urban, agricultural, and rural demands. Results from an integrated hydrologic model (GSFLOW) for the SRPW were analyzed to assess the effect of droughts on groundwater resources during water years 1976-2010. Model results indicate that, in general, below-average precipitation during historical drought periods reduced groundwater recharge (focused within stream channels and diffuse outside of channels on alluvial plains), groundwater evapotranspiration (ET), and groundwater discharge to streams (baseflow). In addition, recharge during wet periods was not sufficient to replenish groundwater-storage losses caused by drought and groundwater pumping, resulting in an overall 150 gigaliter loss in groundwater storage for water years 1976-2010. During drought periods, lower groundwater levels from reduced recharge broadly increased the number and length of losing-stream reaches, and seepage losses in streams became a higher percentage of recharge relative to the diffuse recharge outside of stream channels (for example, seepage losses in streams were 36% of recharge in 2006 and 57% at the end of the 2007-09 drought). Reductions in groundwater storage during drought periods resulted in decreased groundwater ET (loss of riparian habitat) and baseflow, especially during the warmer and dryer months (May through September) when groundwater is the dominant component of streamflow.

  10. Hydrologic analyses in support of the Navajo Generating Station–Kayenta Mine Complex environmental impact statement

    Science.gov (United States)

    Leake, Stanley A.; Macy, Jamie P.; Truini, Margot

    2016-06-01

    reclamation operations within the Kayenta Mine permit boundary since 1973.The KMC part of the proposed project requires approval by the Office of Surface Mining (OSM) of a significant revision of the mine’s permit to operate in accordance with the Surface Mine Control and Reclamation Act (Public Law 95-87, 91 Stat. 445 [30 U.S.C. 1201 et seq.]). The revision will identify coal resource areas that may be used to continue extracting coal at the present rate of approximately 8.2 million tons per year. The Kayenta Mine Complex uses water pumped from the D and N aquifers beneath PWCC’s leasehold to support mining and reclamation activities. Prior to 2006, water from the PWCC well field also was used to transport coal by way of a coal-slurry pipeline to the now-closed Mohave Generating Station. Water usage at the leasehold was approximately 4,100 acre-feet per year (acre-ft/yr) during the period the pipeline was in use, and declined to an average 1,255 acre-ft/yr from 2006 to 2011. The Probable Hydrologic Consequences (PHC) section of the mining and reclamation permit must be modified to project the consequences of extended water use by the mine for the duration of the KMC part of the project, including a post-mining reclamation period.Since 1971, the U.S. Geological Survey (USGS) has conducted the Black Mesa Monitoring Program, which consists of monitoring water levels and water quality in the N aquifer, compiling information on water use by PWCC and tribal communities, maintaining several stream-gaging stations, measuring discharge at selected springs, conducting special studies, and reporting findings. These data are useful in evaluating the effects on the N aquifer from PWCC and community pumping, and the effects of variable precipitation.The EIS will assess the impacts of continued pumping on the N aquifer, including changes in storage, water quality, and effects on spring and baseflow discharge, by proposed mining through 2044, and during the reclamation process to 2057

  11. How much cryosphere model complexity is just right? Exploration using the conceptual cryosphere hydrology framework

    Directory of Open Access Journals (Sweden)

    T. M. Mosier

    2016-09-01

    Full Text Available Making meaningful projections of the impacts that possible future climates would have on water resources in mountain regions requires understanding how cryosphere hydrology model performance changes under altered climate conditions and when the model is applied to ungaged catchments. Further, if we are to develop better models, we must understand which specific process representations limit model performance. This article presents a modeling tool, named the Conceptual Cryosphere Hydrology Framework (CCHF, that enables implementing and evaluating a wide range of cryosphere modeling hypotheses. The CCHF represents cryosphere hydrology systems using a set of coupled process modules that allows easily interchanging individual module representations and includes analysis tools to evaluate model outputs. CCHF version 1 (Mosier, 2016 implements model formulations that require only precipitation and temperature as climate inputs – for example variations on simple degree-index (SDI or enhanced temperature index (ETI formulations – because these model structures are often applied in data-sparse mountain regions, and perform relatively well over short periods, but their calibration is known to change based on climate and geography. Using CCHF, we implement seven existing and novel models, including one existing SDI model, two existing ETI models, and four novel models that utilize a combination of existing and novel module representations. The novel module representations include a heat transfer formulation with net longwave radiation and a snowpack internal energy formulation that uses an approximation of the cold content. We assess the models for the Gulkana and Wolverine glaciated watersheds in Alaska, which have markedly different climates and contain long-term US Geological Survey benchmark glaciers. Overall we find that the best performing models are those that are more physically consistent and representative, but no single model performs

  12. Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain

    Science.gov (United States)

    Webb, Ryan W.; Fassnacht, Steven R.; Gooseff, Michael N.

    2018-01-01

    In many mountainous regions around the world, snow and soil moisture are key components of the hydrologic cycle. Preferential flow paths of snowmelt water through snow have been known to occur for years with few studies observing the effect on soil moisture. In this study, statistical analysis of the topographical and hydrological controls on the spatiotemporal variability of snow water equivalent (SWE) and soil moisture during snowmelt was undertaken at a subalpine forested setting with north, south, and flat aspects as a seasonally persistent snowpack melts. We investigated if evidence of preferential flow paths in snow can be observed and the effect on soil moisture through measurements of snow water equivalent and near-surface soil moisture, observing how SWE and near-surface soil moisture vary on hillslopes relative to the toes of hillslopes and flat areas. We then compared snowmelt infiltration beyond the near-surface soil between flat and sloping terrain during the entire snowmelt season using soil moisture sensor profiles. This study was conducted during varying snowmelt seasons representing above-normal, relatively normal, and below-normal snow seasons in northern Colorado. Evidence is presented of preferential meltwater flow paths at the snow-soil interface on the north-facing slope causing increases in SWE downslope and less infiltration into the soil at 20 cm depth; less association is observed in the near-surface soil moisture (top 7 cm). We present a conceptualization of the meltwater flow paths that develop based on slope aspect and soil properties. The resulting flow paths are shown to divert at least 4 % of snowmelt laterally, accumulating along the length of the slope, to increase the snow water equivalent by as much as 170 % at the base of a north-facing hillslope. Results from this study show that snow acts as an extension of the vadose zone during spring snowmelt and future hydrologic investigations will benefit from studying the snow and soil

  13. Landscape-Scale Disturbance: Insights into the Complexity of Catchment Hydrology in the Mountaintop Removal Mining Region of the Eastern United States

    Directory of Open Access Journals (Sweden)

    Andrew J. Miller

    2016-07-01

    Full Text Available Few land disturbances impact watersheds at the scale and extent of mountaintop removal mining (MTM. This practice removes forests, soils and bedrock to gain access to underground coal that results in likely permanent and wholesale changes that impact catchment hydrology, geochemistry and ecosystem health. MTM is the dominant driver of land cover changes in the central Appalachian Mountains region of the United States, converting forests to mine lands and burying headwater streams. Despite its dominance on the landscape, determining the hydrological impacts of MTM is complicated by underground coal mines that significantly alter groundwater hydrology. To provide insight into how coal mining impacts headwater catchments, we compared the hydrologic responses of an MTM and forested catchment using event rainfall-runoff analysis, modeling and isotopic approaches. Despite similar rainfall characteristics, hydrology in the two catchments differed in significant ways, but both catchments demonstrated threshold-mediated hydrologic behavior that was attributed to transient storage and the release of runoff from underground mines. Results suggest that underground mines are important controls for runoff generation in both obviously disturbed and seemingly undisturbed catchments and interact in uncertain ways with disturbance from MTM. This paper summarizes our results and demonstrates the complexity of catchment hydrology in the MTM region.

  14. Complexity-aware high efficiency video coding

    CERN Document Server

    Correa, Guilherme; Agostini, Luciano; Cruz, Luis A da Silva

    2016-01-01

    This book discusses computational complexity of High Efficiency Video Coding (HEVC) encoders with coverage extending from the analysis of HEVC compression efficiency and computational complexity to the reduction and scaling of its encoding complexity. After an introduction to the topic and a review of the state-of-the-art research in the field, the authors provide a detailed analysis of the HEVC encoding tools compression efficiency and computational complexity.  Readers will benefit from a set of algorithms for scaling the computational complexity of HEVC encoders, all of which take advantage from the flexibility of the frame partitioning structures allowed by the standard.  The authors also provide a set of early termination methods based on data mining and machine learning techniques, which are able to reduce the computational complexity required to find the best frame partitioning structures. The applicability of the proposed methods is finally exemplified with an encoding time control system that emplo...

  15. Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database

    Science.gov (United States)

    Verdin, Kristine L.

    2017-07-17

    The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.

  16. High-resolution numerical modeling of meteorological and hydrological conditions during May 2014 floods in Serbia

    Science.gov (United States)

    Vujadinovic, Mirjam; Vukovic, Ana; Cvetkovic, Bojan; Pejanovic, Goran; Nickovic, Slobodan; Djurdjevic, Vladimir; Rajkovic, Borivoj; Djordjevic, Marija

    2015-04-01

    In May 2014 west Balkan region was affected by catastrophic floods in Serbia, Bosnia and Herzegovina and eastern parts of Croatia. Observed precipitation amount were extremely high, on many stations largest ever recorded. In the period from 12th to 18th of May, most of Serbia received between 50 to 100 mm of rainfall, while western parts of the country, which were influenced the most, had over 200 mm of rainfall, locally even more than 300 mm. This very intense precipitation came when the soil was already saturated after a very wet period during the second half of April and beginning of May, when most of Serbia received between 120 i 170 mm of rainfall. New abundant precipitation on already saturated soil increased surface and underground water flow, caused floods, soil erosion and landslides. High water levels, most of them record breaking, were measured on the Sava, Drina, Dunav, Kolubara, Ljig, Ub, Toplica, Tamnava, Jadar, Zapadna Morava, Velika Morava, Mlava and Pek river. Overall, two cities and 17 municipals were severely affected by the floods, 32000 people were evacuated from their homes, while 51 died. Material damage to the infrastructure, energy power system, crops, livestock funds and houses is estimated to more than 2 billion euro. Although the operational numerical weather forecast gave in generally good precipitation prediction, flood forecasting in this case was mainly done through the expert judgment rather than relying on dynamic hydrological modeling. We applied an integrated atmospheric-hydrologic modelling system to some of the most impacted catchments in order to timely simulate hydrological response, and examine its potentials as a flood warning system. The system is based on the Non-hydrostatic Multiscale Model NMMB, which is a numerical weather prediction model that can be used on a broad range of spatial and temporal scales. Its non-hydrostatic module allows high horizontal resolution and resolving cloud systems as well as large

  17. Hydrologic Simulation in Mediterranean flood prone Watersheds using high-resolution quality data

    Science.gov (United States)

    Eirini Vozinaki, Anthi; Alexakis, Dimitrios; Pappa, Polixeni; Tsanis, Ioannis

    2015-04-01

    Flooding is a significant threat causing lots of inconveniencies in several societies, worldwide. The fact that the climatic change is already happening, increases the flooding risk, which is no longer a substantial menace to several societies and their economies. The improvement of spatial-resolution and accuracy of the topography and land use data due to remote sensing techniques could provide integrated flood inundation simulations. In this work hydrological analysis of several historic flood events in Mediterranean flood prone watersheds (island of Crete/Greece) takes place. Satellite images of high resolution are elaborated. A very high resolution (VHR) digital elevation model (DEM) is produced from a GeoEye-1 0.5-m-resolution satellite stereo pair and is used for floodplain management and mapping applications such as watershed delineation and river cross-section extraction. Sophisticated classification algorithms are implemented for improving Land Use/ Land Cover maps accuracy. In addition, soil maps are updated with means of Radar satellite images. The above high-resolution data are innovatively used to simulate and validate several historical flood events in Mediterranean watersheds, which have experienced severe flooding in the past. The hydrologic/hydraulic models used for flood inundation simulation in this work are HEC-HMS and HEC-RAS. The Natural Resource Conservation Service (NRCS) curve number (CN) approach is implemented to account for the effect of LULC and soil on the hydrologic response of the catchment. The use of high resolution data provides detailed validation results and results of high precision, accordingly. Furthermore, the meteorological forecasting data, which are also combined to the simulation model results, manage the development of an integrated flood forecasting and early warning system tool, which is capable of confronting or even preventing this imminent risk. The research reported in this paper was fully supported by the

  18. Robust Hydrological Forecasting for High-resolution Distributed Models Using a Unified Data Assimilation Approach

    Science.gov (United States)

    Hernandez, F.; Liang, X.

    2017-12-01

    Reliable real-time hydrological forecasting, to predict important phenomena such as floods, is invaluable to the society. However, modern high-resolution distributed models have faced challenges when dealing with uncertainties that are caused by the large number of parameters and initial state estimations involved. Therefore, to rely on these high-resolution models for critical real-time forecast applications, considerable improvements on the parameter and initial state estimation techniques must be made. In this work we present a unified data assimilation algorithm called Optimized PareTo Inverse Modeling through Inverse STochastic Search (OPTIMISTS) to deal with the challenge of having robust flood forecasting for high-resolution distributed models. This new algorithm combines the advantages of particle filters and variational methods in a unique way to overcome their individual weaknesses. The analysis of candidate particles compares model results with observations in a flexible time frame, and a multi-objective approach is proposed which attempts to simultaneously minimize differences with the observations and departures from the background states by using both Bayesian sampling and non-convex evolutionary optimization. Moreover, the resulting Pareto front is given a probabilistic interpretation through kernel density estimation to create a non-Gaussian distribution of the states. OPTIMISTS was tested on a low-resolution distributed land surface model using VIC (Variable Infiltration Capacity) and on a high-resolution distributed hydrological model using the DHSVM (Distributed Hydrology Soil Vegetation Model). In the tests streamflow observations are assimilated. OPTIMISTS was also compared with a traditional particle filter and a variational method. Results show that our method can reliably produce adequate forecasts and that it is able to outperform those resulting from assimilating the observations using a particle filter or an evolutionary 4D variational

  19. Obtaining high-resolution stage forecasts by coupling large-scale hydrologic models with sensor data

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.

    2017-12-01

    We investigate how "big" quantities of distributed sensor data can be coupled with a large-scale hydrologic model, in particular the National Water Model (NWM), to obtain hyper-resolution forecasts. The recent launch of the NWM provides a great example of how growing computational capacity is enabling a new generation of massive hydrologic models. While the NWM spans an unprecedented spatial extent, there remain many questions about how to improve forecast at the street-level, the resolution at which many stakeholders make critical decisions. Further, the NWM runs on supercomputers, so water managers who may have access to their own high-resolution measurements may not readily be able to assimilate them into the model. To that end, we ask the question: how can the advances of the large-scale NWM be coupled with new local observations to enable hyper-resolution hydrologic forecasts? A methodology is proposed whereby the flow forecasts of the NWM are directly mapped to high-resolution stream levels using Dynamical System Identification. We apply the methodology across a sensor network of 182 gages in Iowa. Of these sites, approximately one third have shown to perform well in high-resolution flood forecasting when coupled with the outputs of the NWM. The quality of these forecasts is characterized using Principal Component Analysis and Random Forests to identify where the NWM may benefit from new sources of local observations. We also discuss how this approach can help municipalities identify where they should place low-cost sensors to most benefit from flood forecasts of the NWM.

  20. Global system for hydrological monitoring and forecasting in real time at high resolution

    Science.gov (United States)

    Ortiz, Enrique; De Michele, Carlo; Todini, Ezio; Cifres, Enrique

    2016-04-01

    This project presented at the EGU 2016 born of solidarity and the need to dignify the most disadvantaged people living in the poorest countries (Africa, South America and Asia, which are continually exposed to changes in the hydrologic cycle suffering events of large floods and/or long periods of droughts. It is also a special year this 2016, Year of Mercy, in which we must engage with the most disadvantaged of our Planet (Gaia) making available to them what we do professionally and scientifically. The project called "Global system for hydrological monitoring and forecasting in real time at high resolution" is Non-Profit and aims to provide at global high resolution (1km2) hydrological monitoring and forecasting in real time and continuously coupling Weather Forecast of Global Circulation Models, such us GFS-0.25° (Deterministic and Ensembles Run) forcing a physically based distributed hydrological model computationally efficient, such as the latest version extended of TOPKAPI model, named TOPKAPI-eXtended. Finally using the MCP approach for the proper use of ensembles for Predictive Uncertainty assessment essentially based on a multiple regression in the Normal space, can be easily extended to use ensembles to represent the local (in time) smaller or larger conditional predictive uncertainty, as a function of the ensemble spread. In this way, each prediction in time accounts for both the predictive uncertainty of the ensemble mean and that of the ensemble spread. To perform a continuous hydrological modeling with TOPKAPI-X model and have hot start of hydrological status of watersheds, the system assimilated products of rainfall and temperature derived from remote sensing, such as product 3B42RT of TRMM NASA and others.The system will be integrated into a Decision Support System (DSS) platform, based on geographical data. The DSS is a web application (For Pc, Tablet/Mobile phone): It does not need installation (all you need is a web browser and an internet

  1. Using measures of information content and complexity of time series as hydrologic metrics

    Science.gov (United States)

    The information theory has been previously used to develop metrics that allowed to characterize temporal patterns in soil moisture dynamics, and to evaluate and to compare performance of soil water flow models. The objective of this study was to apply information and complexity measures to characte...

  2. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    Science.gov (United States)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  3. High-Resolution Hydrological Sub-Seasonal Forecasting for Water Resources Management Over Europe

    Science.gov (United States)

    Wood, E. F.; Wanders, N.; Pan, M.; Sheffield, J.; Samaniego, L. E.; Thober, S.; Kumar, R.; Prudhomme, C.; Houghton-Carr, H.

    2017-12-01

    For decision-making at the sub-seasonal and seasonal time scale, hydrological forecasts with a high temporal and spatial resolution are required by water managers. So far such forecasts have been unavailable due to 1) lack of availability of meteorological seasonal forecasts, 2) coarse temporal resolution of meteorological seasonal forecasts, requiring temporal downscaling, 3) lack of consistency between observations and seasonal forecasts, requiring bias-correction. The EDgE (End-to-end Demonstrator for improved decision making in the water sector in Europe) project commissioned by the ECMWF (C3S) created a unique dataset of hydrological seasonal forecasts derived from four global climate models (CanCM4, FLOR-B01, ECMF, LFPW) in combination with four global hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), resulting in 208 forecasts for any given day. The forecasts provide a daily temporal and 5-km spatial resolution, and are bias corrected against E-OBS meteorological observations. The forecasts are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs), created in collaboration with the end-user community of the EDgE project (e.g. the percentage of ensemble realizations above the 10th percentile of monthly river flow, or below the 90th). Results show skillful forecasts for discharge from 3 months to 6 months (latter for N Europe due to snow); for soil moisture up to three months due precipitation forecast skill and short initial condition memory; and for groundwater greater than 6 months (lowest skill in western Europe.) The SCIIs are effective in communicating both forecast skill and uncertainty. Overall the new system provides an unprecedented ensemble for seasonal forecasts with significant skill over Europe to support water management. The consistency in both the GCM forecasts and the LSM parameterization ensures a stable and reliable forecast framework and methodology, even if additional GCMs or LSMs are added in the future.

  4. A Merging Framework for Rainfall Estimation at High Spatiotemporal Resolution for Distributed Hydrological Modeling in a Data-Scarce Area

    Directory of Open Access Journals (Sweden)

    Yinping Long

    2016-07-01

    Full Text Available Merging satellite and rain gauge data by combining accurate quantitative rainfall from stations with spatial continuous information from remote sensing observations provides a practical method of estimating rainfall. However, generating high spatiotemporal rainfall fields for catchment-distributed hydrological modeling is a problem when only a sparse rain gauge network and coarse spatial resolution of satellite data are available. The objective of the study is to present a satellite and rain gauge data-merging framework adapting for coarse resolution and data-sparse designs. In the framework, a statistical spatial downscaling method based on the relationships among precipitation, topographical features, and weather conditions was used to downscale the 0.25° daily rainfall field derived from the Tropical Rainfall Measuring Mission (TRMM Multisatellite Precipitation Analysis (TMPA precipitation product version 7. The nonparametric merging technique of double kernel smoothing, adapting for data-sparse design, was combined with the global optimization method of shuffled complex evolution, to merge the downscaled TRMM and gauged rainfall with minimum cross-validation error. An indicator field representing the presence and absence of rainfall was generated using the indicator kriging technique and applied to the previously merged result to consider the spatial intermittency of daily rainfall. The framework was applied to estimate daily precipitation at a 1 km resolution in the Qinghai Lake Basin, a data-scarce area in the northeast of the Qinghai-Tibet Plateau. The final estimates not only captured the spatial pattern of daily and annual precipitation with a relatively small estimation error, but also performed very well in stream flow simulation when applied to force the geomorphology-based hydrological model (GBHM. The proposed framework thus appears feasible for rainfall estimation at high spatiotemporal resolution in data-scarce areas.

  5. Effects of Using High-Density Rain Gauge Networks and Weather Radar Data on Urban Hydrological Analyses

    Directory of Open Access Journals (Sweden)

    Seong-Sim Yoon

    2017-11-01

    Full Text Available Flood prediction is difficult in urban areas because only sparse gauge data and radar data of low accuracy are usually used to analyze flooding and inundation. Sub-basins of urban areas are extremely small, so rainfall data of high spatial resolution are required for analyzing complex drainage systems with high spatial variability. This study aimed to produce three types of quantitative precipitation estimation (QPE products using rainfall data that was derived from 190 gauges, including the new high-density rain-gauge network operated by the SK Planet company, and the automated weather stations of the Korea Meteorological Administration, along with weather radar data. This study also simulated urban runoff for the Gangnam District of Seoul, South Korea, using the obtained QPE products to evaluate hydraulic and hydrologic impacts according to three rainfall fields. The accuracy of this approach was assessed in terms of the amount and spatial distribution of rainfall in an urban area. The QPE products provided highly accurate results and simulations of peak runoff and overflow phenomena. They also accurately described the spatial variability of the rainfall fields. Overall, the integration of high-density gauge data with radar data proved beneficial for quantitative rainfall estimation.

  6. Tools for Virtual Collaboration Designed for High Resolution Hydrologic Research with Continental-Scale Data Support

    Science.gov (United States)

    Duffy, Christopher; Leonard, Lorne; Shi, Yuning; Bhatt, Gopal; Hanson, Paul; Gil, Yolanda; Yu, Xuan

    2015-04-01

    Using a series of recent examples and papers we explore some progress and potential for virtual (cyber-) collaboration inspired by access to high resolution, harmonized public-sector data at continental scales [1]. The first example describes 7 meso-scale catchments in Pennsylvania, USA where the watershed is forced by climate reanalysis and IPCC future climate scenarios (Intergovernmental Panel on Climate Change). We show how existing public-sector data and community models are currently able to resolve fine-scale eco-hydrologic processes regarding wetland response to climate change [2]. The results reveal that regional climate change is only part of the story, with large variations in flood and drought response associated with differences in terrain, physiography, landuse and/or hydrogeology. The importance of community-driven virtual testbeds are demonstrated in the context of Critical Zone Observatories, where earth scientists from around the world are organizing hydro-geophysical data and model results to explore new processes that couple hydrologic models with land-atmosphere interaction, biogeochemical weathering, carbon-nitrogen cycle, landscape evolution and ecosystem services [3][4]. Critical Zone cyber-research demonstrates how data-driven model development requires a flexible computational structure where process modules are relatively easy to incorporate and where new data structures can be implemented [5]. From the perspective of "Big-Data" the paper points out that extrapolating results from virtual observatories to catchments at continental scales, will require centralized or cloud-based cyberinfrastructure as a necessary condition for effectively sharing petabytes of data and model results [6]. Finally we outline how innovative cyber-science is supporting earth-science learning, sharing and exploration through the use of on-line tools where hydrologists and limnologists are sharing data and models for simulating the coupled impacts of catchment

  7. Hydrological Applications of a High-Resolution Radar Precipitation Data Base for Sweden

    Science.gov (United States)

    Olsson, Jonas; Berg, Peter; Norin, Lars; Simonsson, Lennart

    2017-04-01

    There is an increasing need for high-resolution observations of precipitation on local, regional, national and even continental level. Urbanization and other environmental changes often make societies more vulnerable to intense short-duration rainfalls (cloudbursts) and their consequences in terms of e.g. flooding and landslides. Impact and forecasting models of these hazards put very high demands on the rainfall input in terms of both resolution and accuracy. Weather radar systems obviously have a great potential in this context, but also limitations with respect to e.g. conversion algorithms and various error sources that may have a significant impact on the subsequent hydrological modelling. In Sweden, the national weather radar network has been in operation for nearly three decades, but until recently the hydrological applications have been very limited. This is mainly because of difficulties in managing the different errors and biases in the radar precipitation product, which made it hard to demonstrate any distinct added value as compared with gauge-based precipitation products. In the last years, however, in light of distinct progress in developing error correction procedures, substantial efforts have been made to develop a national gauge-adjusted radar precipitation product - HIPRAD (High-Resolution Precipitation from Gauge-Adjusted Weather Radar). In HIPRAD, the original radar precipitation data are scaled to match the monthly accumulations in a national grid (termed PTHBV) created by optimal interpolation of corrected daily gauge observations, with the intention to attain both a high spatio-temporal resolution and accurate long-term accumulations. At present, HIPRAD covers the period 2000-present with resolutions 15 min and 2×2 km2. A key motivation behind the development of HIPRAD is the intention to increase the temporal resolution in the national flood forecasting system from 1 day to 1 hour. Whereas a daily time step is sufficient to describe the

  8. Geochemistry and hydrology of a calcareous fen within the Savage Fen wetlands complex, Minnesota, USA

    Science.gov (United States)

    Komor, S.C.

    1994-01-01

    Savage Fen is a wetlands complex at the base of north-facing bluffs in the Minnesota River Valley. The complex includes 27.8 hectares of calcareous fen that host rare calciphile plants whose populations are declining in Minnesota. Water and sediment compositions in the calcareous fen were studied to gain a better understanding of the hydrologie System that sustains the rare vegetation. Groundwater in the fen is a calcium-magnesium-bicarbonate type with circumneutral pH values. The groundwater composition is the resuit of interactions among water, dissolved and gaseous carbon species, carbonates, and ion exchangers. Shallow groundwater is distinguished from deep groundwater by smaller concentrations of chloride, sulfate, magnesium, and sodium, and larger concentrations of calcium, bicarbonate, hydrogen sulfide, and ammonium. Magnesian calcite is the prevalent carbonate in unconsolidated sedimentary fill beneath the fen and is an important source and sink for dissolved calcium, magnesium, and inorganic carbon. Calcite concentrations just below the water table are small because aerobic and anaerobic oxidation of organic matter increase the partial pressure of carbon dioxide (PCO2), decrease pH, and cause calcite to dissolve. Thick calcite accumulations just above the water table, in the root zone of calciphile plants, result from water table fluctuations and attendant changes in PCO2. Groundwater beneath Savage Fen recharges in lakes and ponds south of the fen and upwells to the surface within the fen. Water at the water table is a mixture of upwelling groundwater and water near the surface that flows downslope from higher elevations in the fen. Changes in oxygen and hydrogen isotope compositions of shallow groundwater indicate that the proportion of upwelling groundwater in shallow groundwater decreases downgradient in the calcareous fen. Encroachment of reed grasses into the calcareous fen may reflect human-caused disturbances in the recharge area.

  9. The hydrological cycle in the high Pamir Mountains: how temperature and seasonal precipitation distribution influence stream flow in the Gunt catchment, Tajikistan

    Science.gov (United States)

    Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P.

    2014-12-01

    Complex climatic interactions control hydrological processes in high mountains that in their turn regulate the erosive forces shaping the relief. To unravel the hydrological cycle of a glaciated watershed (Gunt River) considered representative of the Pamirs' hydrologic regime we developed a remote sensing-based approach. At the boundary between two distinct climatic zones dominated by Westerlies and Indian summer monsoon, the Pamir is poorly instrumented and only a few in situ meteorological and hydrological data are available. We adapted a suitable conceptual distributed hydrological model (J2000g). Interpolations of the few available in situ data are inadequate due to strong, relief induced, spatial heterogeneities. Instead we use raster data, preferably from remote sensing sources depending on availability and validation. We evaluate remote sensing-based precipitation and temperature products. MODIS MOD11 surface temperatures show good agreement with in situ data, perform better than other products and represent a good proxy for air temperatures. For precipitation we tested remote sensing products as well as the HAR10 climate model data and the interpolation-based APHRODITE dataset. All products show substantial differences both in intensity and seasonal distribution with in-situ data. Despite low resolutions, the datasets are able to sustain high model efficiencies (NSE ≥0.85). In contrast to neighbouring regions in the Himalayas or the Hindukush, discharge is dominantly the product of snow and glacier melt and thus temperature is the essential controlling factor. 80% of annual precipitation is provided as snow in winter and spring contrasting peak discharges during summer. Hence, precipitation and discharge are negatively correlated and display complex hysteresis effects that allow to infer the effect of inter-annual climatic variability on river flow. We infer the existence of two subsurface reservoirs. The groundwater reservoir (providing 40% of annual

  10. Learning from Nature - Mapping of Complex Hydrological and Geomorphological Process Systems for More Realistic Modelling of Hazard-related Maps

    Science.gov (United States)

    Chifflard, Peter; Tilch, Nils

    2010-05-01

    Introduction Hydrological or geomorphological processes in nature are often very diverse and complex. This is partly due to the regional characteristics which vary over time and space, as well as changeable process-initiating and -controlling factors. Despite being aware of this complexity, such aspects are usually neglected in the modelling of hazard-related maps due to several reasons. But particularly when it comes to creating more realistic maps, this would be an essential component to consider. The first important step towards solving this problem would be to collect data relating to regional conditions which vary over time and geographical location, along with indicators of complex processes. Data should be acquired promptly during and after events, and subsequently digitally combined and analysed. Study area In June 2009, considerable damage occurred in the residential area of Klingfurth (Lower Austria) as a result of great pre-event wetness and repeatedly heavy rainfall, leading to flooding, debris flow deposit and gravitational mass movement. One of the causes is the fact that the meso-scale watershed (16 km²) of the Klingfurth stream is characterised by adverse geological and hydrological conditions. Additionally, the river system network with its discharge concentration within the residential zone contributes considerably to flooding, particularly during excessive rainfall across the entire region, as the flood peaks from different parts of the catchment area are superposed. First results of mapping Hydro(geo)logical surveys across the entire catchment area have shown that - over 600 gravitational mass movements of various type and stage have occurred. 516 of those have acted as a bed load source, while 325 mass movements had not reached the final stage yet and could thus supply bed load in the future. It should be noted that large mass movements in the initial or intermediate stage were predominately found in clayey-silty areas and weathered material

  11. Exploring the linkage between drought, high temperatures, and hydrologic sensitivities: A case study of the 2012 Great Plains drought.

    Science.gov (United States)

    Livneh, B.; Hoerling, M. P.

    2014-12-01

    The occurrence of drought is associated with agricultural loss, water supply shortfalls, and other economic impacts. Here we explore the physical relationships between precipitation deficits, high temperatures, and hydrologic responses as a pathway to better anticipate drought impacts. Current methodologies to predict hydrologic scarcity include local monitoring of river flows, remote sensing of land-surface wetness, drought indices, expert judgment, climate indices (e.g. SST-relationships) and the application of hydrologic models. At longer lead times, predictions of drought have most frequently been made on the basis of GCM ensembles, with subsequent downscaling of those to scales over which hydrologic predictions can be made. This study focuses on two important aspects of drought. First, we explore the causal hydro-climatic timeline of a drought event, namely (a) the lack of precipitation, which serves to reduce soil moisture and produce (b) a skewed Bowen ratio, i.e. comparatively more sensible heating (warming) with less ET, resulting in (c) anomalously warm conditions. We seek to assess the extent to which the lack of precipitation contributes to warming temperatures, and the further effects of that warming on hydrology and the severity of drought impacts. An ensemble of GCM simulations will be used to explore the evolution of the land surface energy budget during a recent Great Plains drought event, which will subsequently be used to drive a hydrologic model. Second, we examine the impacts of the critical assumptions relating climatic variables with water demand, specifically the relationship between potential evapotranspiration (PET) and temperature. The common oversimplification in relating PET to temperature is explored against a more physically consistent energy balance estimate of PET, using the Penman-Monteith approach and the hydrologic impacts are presented. Results from this work are anticipated to have broad relevance for future water management

  12. Extreme hydrological events and the influence of reservoirs in a highly regulated river basin of northeastern Spain

    Directory of Open Access Journals (Sweden)

    S.M. Vicente-Serrano

    2017-08-01

    New hydrological insights: Results reveal a general reduction in the occurrence of extreme precipitation events in the Segre basin from 1950 to 2013, which corresponded to a general reduction in high flows measured at various gauged stations across the basin. While this study demonstrates spatial differences in the decrease of streamflow between the headwaters and the lower parts of the basin, mainly associated with changes in river regulation, there was no reduction in the frequency of the extraordinary floods. Changes in water management practices in the basin have significantly impacted the frequency, duration, and severity of hydrological droughts downstream of the main dams, as a consequence of the intense water regulation to meet water demands for irrigation and livestock farms. Nonetheless, the hydrological response of the headwaters to these droughts differed markedly from that of the lower areas of the basin.

  13. Hydrological Response and Complex Impact Pathways of the 2015/2016 El Niño in Eastern and Southern Africa

    NARCIS (Netherlands)

    Siderius, C.; Gannon, K.E.; Ndiyoi, M.; Opere, A.; Batisani, N.; Olago, D.; Pardoe, J.; Conway, D.

    2018-01-01

    The 2015/2016 El Niño has been classified as one of the three most severe on record. El Niño teleconnections are commonly associated with droughts in southern Africa and high precipitation in eastern Africa. Despite their relatively frequent occurrence, evidence for their hydrological effects and

  14. Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    Directory of Open Access Journals (Sweden)

    D. Bocchiola

    2011-07-01

    Full Text Available In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in fact typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060 hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2, nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated.

    The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050–2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of

  15. Forest hydrology

    Science.gov (United States)

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  16. Quo vadis: Hydrologic inverse analyses using high-performance computing and a D-Wave quantum annealer

    Science.gov (United States)

    O'Malley, D.; Vesselinov, V. V.

    2017-12-01

    Classical microprocessors have had a dramatic impact on hydrology for decades, due largely to the exponential growth in computing power predicted by Moore's law. However, this growth is not expected to continue indefinitely and has already begun to slow. Quantum computing is an emerging alternative to classical microprocessors. Here, we demonstrated cutting edge inverse model analyses utilizing some of the best available resources in both worlds: high-performance classical computing and a D-Wave quantum annealer. The classical high-performance computing resources are utilized to build an advanced numerical model that assimilates data from O(10^5) observations, including water levels, drawdowns, and contaminant concentrations. The developed model accurately reproduces the hydrologic conditions at a Los Alamos National Laboratory contamination site, and can be leveraged to inform decision-making about site remediation. We demonstrate the use of a D-Wave 2X quantum annealer to solve hydrologic inverse problems. This work can be seen as an early step in quantum-computational hydrology. We compare and contrast our results with an early inverse approach in classical-computational hydrology that is comparable to the approach we use with quantum annealing. Our results show that quantum annealing can be useful for identifying regions of high and low permeability within an aquifer. While the problems we consider are small-scale compared to the problems that can be solved with modern classical computers, they are large compared to the problems that could be solved with early classical CPUs. Further, the binary nature of the high/low permeability problem makes it well-suited to quantum annealing, but challenging for classical computers.

  17. High resolution radar-rain gauge data merging for urban hydrology: current practice and beyond

    Science.gov (United States)

    Ochoa Rodriguez, Susana; Wang, Li-Pen; Bailey, Andy; Willems, Patrick; Onof, Christian

    2017-04-01

    and MFB providing the smallest improvements upon radar QPEs. However, as compared to BAY, KED performance is more sensitive to rain gauge density and to the ability of rain gauges to sample critical features of the rainfall field. By incorporating more information from radar than KED, BAY is less sensitive to rain gauge density and to poor rain gauge predictability and proved able to provide a good representation of convective cells even in cases in which gauges completely missed such structures. - Based on the findings of this study, it is recommended that KED be used when gauge densities are relatively high (of the order of 30 km2 per gauge or higher) and/or when the quality of radar QPEs is known to be very poor, in which case it is desirable to rely more upon rain gauge records. For low rain gauge density situations and QPEs of reasonable quality (as is the case in most of EU), BAY may be a more appropriate choice. MFB should be the last choice; however, it is better than no correction at all. - The two special treatments under consideration successfully improved overall merging performance at the spatial-temporal resolutions required for urban hydrology, with benefits being particularly evident at low rain gauge density conditions.

  18. Hydrological processes in glacierized high-altitude basins of the western Himalayas

    Science.gov (United States)

    Jeelani, Ghulam; Shah, Rouf A.; Fryar, Alan E.; Deshpande, Rajendrakumar D.; Mukherjee, Abhijit; Perrin, Jerome

    2018-03-01

    Western Himalaya is a strategically important region, where the water resources are shared by China, India and Pakistan. The economy of the region is largely dependent on the water resources delivered by snow and glacier melt. The presented study used stable isotopes of water to further understand the basin-scale hydro-meteorological, hydrological and recharge processes in three high-altitude mountainous basins of the western Himalayas. The study provided new insights in understanding the dominant factors affecting the isotopic composition of the precipitation, snowpack, glacier melt, streams and springs. It was observed that elevation-dependent post-depositional processes and snowpack evolution resulted in the higher isotopic altitude gradient in snowpacks. The similar temporal trends of isotopic signals in rivers and karst springs reflect the rapid flow transfer due to karstification of the carbonate aquifers. The attenuation of the extreme isotopic input signal in karst springs appears to be due to the mixing of source waters with the underground karst reservoirs. Basin-wise, the input-output response demonstrates the vital role of winter precipitation in maintaining the perennial flow in streams and karst springs in the region. Isotopic data were also used to estimate the mean recharge altitude of the springs.

  19. Advances in Understanding the Role of Frozen Precipitation in High Latitude Hydrology

    Science.gov (United States)

    L'Ecuyer, T. S.; Wood, N.; Smalley, M.; McIlhattan, E.; Kulie, M.

    2017-12-01

    Satellite-based millimeter wavelength radar observations provide a unique perspective on the global character of frozen precipitation that has been difficult to detect using conventional spaceborne precipitation sensors. This presentation will describe the methodology underpinning the ten-year CloudSat global snowfall product and discuss the results of a number of complementary approaches that have been adopted to quantify its uncertainties. These datasets are shedding new light on the distribution, character, and impacts of frozen precipitation on high latitude hydrology. Inferred regional snowfall accumulations, for example, provide valuable constraints on projected changes in precipitation and mass balance on the Antarctic ice sheet in climate models. When placed in the broader context of complementary observations from other A-Train sensors, instantaneous snowfall estimates also hint at the large-scale processes that influence snow formation including air-sea interactions associated with cold-air outbreaks, lake-effect snows, and orographic enhancement. Simultaneous CloudSat and CALIPSO observations further emphasize the important role snowfall plays in the lifetime of super-cooled liquid containing clouds in the Arctic and highlight a model deficiency with important implications for surface energy and mass balance on the Greenland ice sheet.

  20. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  1. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  2. Evaluating a Local Ensemble Transform Kalman Filter snow cover data assimilation method to estimate SWE within a high-resolution hydrologic modeling framework across Western US mountainous regions

    Science.gov (United States)

    Oaida, C. M.; Andreadis, K.; Reager, J. T., II; Famiglietti, J. S.; Levoe, S.

    2017-12-01

    Accurately estimating how much snow water equivalent (SWE) is stored in mountainous regions characterized by complex terrain and snowmelt-driven hydrologic cycles is not only greatly desirable, but also a big challenge. Mountain snowpack exhibits high spatial variability across a broad range of spatial and temporal scales due to a multitude of physical and climatic factors, making it difficult to observe or estimate in its entirety. Combing remotely sensed data and high resolution hydrologic modeling through data assimilation (DA) has the potential to provide a spatially and temporally continuous SWE dataset at horizontal scales that capture sub-grid snow spatial variability and are also relevant to stakeholders such as water resource managers. Here, we present the evaluation of a new snow DA approach that uses a Local Ensemble Transform Kalman Filter (LETKF) in tandem with the Variable Infiltration Capacity macro-scale hydrologic model across the Western United States, at a daily temporal resolution, and a horizontal resolution of 1.75 km x 1.75 km. The LETKF is chosen for its relative simplicity, ease of implementation, and computational efficiency and scalability. The modeling/DA system assimilates daily MODIS Snow Covered Area and Grain Size (MODSCAG) fractional snow cover over, and has been developed to efficiently calculate SWE estimates over extended periods of time and covering large regional-scale areas at relatively high spatial resolution, ultimately producing a snow reanalysis-type dataset. Here we focus on the assessment of SWE produced by the DA scheme over several basins in California's Sierra Nevada Mountain range where Airborne Snow Observatory data is available, during the last five water years (2013-2017), which include both one of the driest and one of the wettest years. Comparison against such a spatially distributed SWE observational product provides a greater understanding of the model's ability to estimate SWE and SWE spatial variability

  3. Hydrological peculiarities of high mountain basins: the case of the Spanish Pyrenees

    International Nuclear Information System (INIS)

    Ferrer Castillo, Cesar; Alonso-Muiioyerro, Justo Mora; Parra, Miguel Arenillas; Campos, Guillermo Cobos

    2004-01-01

    The exploitation of a reservoir is determined by the availability of information within which the information provided by hydrological information systems must be included. This should be complemented, especially in flood circumstances, by meteorological forecasts and the results obtained by from hydrological and hydraulic simulation and forecasting models. In mountain basins with marked influence of snow, specific hydrological modelling is necessary, permitting simulation of the phenomenon of snow runoff. In particular, the hydrology of the basin of the River Ebro (Spain) is clearly influenced by this phenomenon. This basin is affected by flood situations caused by rapid melt of the snow accumulated on its Pyrenean slopes. This has brought about the need for a specific study to be undertaken in order to facilitate greater understanding and control. Additionally, the volume of accumulated snow in the catchment areas determines the management and everyday exploitation of the reservoirs for the achievement of maximum yield from water resources. This interest in the understanding of snow phenomena has given rise to numerous studies in the Pyrenean area: field study campaigns to carry out point measurements of thickness and density, hydrological-statistical modelling for the forecasting of melts and course flows and the development and application of hydrological simulation models. In the Pyrenean slopes basin the ASTER model has been applied to the reservoir of Yesa during a period of more than five years, achieving quite satisfactory results with regard to watercourse flow forecasting and the volume of water stored in the form of snow. This has enabled appropriate management of the reservoir during flood circumstances - minimising possible damage as well as under everyday conditions. The results obtained from this period have led to the generalisation of the ASTER model to apply to all sources of the Pyrenean tributaries of the Ebro with clear snow influence and

  4. High-school software development project helps increasing students' awareness of geo-hydrological hazards and their risks

    Science.gov (United States)

    Marchesini, Ivan; Rossi, Mauro; Balducci, Vinicio; Salvati, Paola; Guzzetti, Fausto; Bianchini, Andrea; Grzeleswki, Emanuell; Canonico, Andrea; Coccia, Rita; Fiorucci, Gianni Mario; Gobbi, Francesca; Ciuchetti, Monica

    2015-04-01

    In Italy, inundation and landslides are widespread phenomena that impact the population and cause significant economic damage to private and public properties. The perception of the risk posed by these natural geo-hydrological hazards varies geographically and in time. The variation in the perception of the risks has negative consequences on risk management, and limits the adoption of effective risk reduction strategies. We maintain that targeted education can foster the understanding of geo-hydrological hazards, improving their perception and the awareness of the associated risk. Collaboration of a research center experienced in geo-hydrological hazards and risks (CNR IRPI, Perugia) and a high school (ITIS Alessandro Volta, Perugia) has resulted in the design and execution of a project aimed at improving the perception of geo-hydrological risks in high school students and teachers through software development. In the two-year project, students, high school teachers and research scientists have jointly developed software broadly related to landslide and flood hazards. User requirements and system specifications were decided to facilitate the distribution and use of the software among students and their peers. This allowed a wider distribution of the project results. We discuss two prototype software developed by the high school students, including an application of augmented reality for improved dissemination of information of landslides and floods with human consequences in Italy, and a crowd science application to allow students (and others, including their families and friends) to collect information on landslide and flood occurrence exploiting modern mobile devices. This information can prove important e.g., for the validation of landslide forecasting models.

  5. Identification of hydrologic and geochemical pathways using high frequency sampling, REE aqueous sampling and soil characterization at Koiliaris Critical Zone Observatory, Crete

    Energy Technology Data Exchange (ETDEWEB)

    Moraetis, Daniel, E-mail: moraetis@mred.tuc.gr [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece); Stamati, Fotini; Kotronakis, Manolis; Fragia, Tasoula; Paranychnianakis, Nikolaos; Nikolaidis, Nikolaos P. [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece)

    2011-06-15

    Highlights: > Identification of hydrological and geochemical pathways within a complex watershed. > Water increased N-NO{sub 3} concentration and E.C. values during flash flood events. > Soil degradation and impact on water infiltration within the Koiliaris watershed. > Analysis of Rare Earth Elements in water bodies for identification of karstic water. - Abstract: Koiliaris River watershed is a Critical Zone Observatory that represents severely degraded soils due to intensive agricultural activities and biophysical factors. It has typical Mediterranean soils under the imminent threat of desertification which is expected to intensify due to projected climate change. High frequency hydro-chemical monitoring with targeted sampling for Rare Earth Elements (REE) analysis of different water bodies and geochemical characterization of soils were used for the identification of hydrologic and geochemical pathways. The high frequency monitoring of water chemical data highlighted the chemical alterations of water in Koiliaris River during flash flood events. Soil physical and chemical characterization surveys were used to identify erodibility patterns within the watershed and the influence of soils on surface and ground water chemistry. The methodology presented can be used to identify the impacts of degraded soils to surface and ground water quality as well as in the design of methods to minimize the impacts of land use practices.

  6. Effect of a high-end CO2-emission scenario on hydrology

    DEFF Research Database (Denmark)

    Karlsson, Ida Bjørnholt; Sonnenborg, Torben Obel; Seaby, Lauren Paige

    2015-01-01

    and the less extreme RCP4.5 emission scenario are evaluated for the future period 2071−2099. The downscaled climate variables are applied to a fully distributed, physically based, coupled surface−subsurface hydrological model based on the MIKE SHE model code. The impacts on soil moisture dynamics...

  7. Combined use of stable isotopes and hydrologic modeling to better understand nutrient sources and cycling in highly altered systems (Invited)

    Science.gov (United States)

    Young, M. B.; Kendall, C.; Guerin, M.; Stringfellow, W. T.; Silva, S. R.; Harter, T.; Parker, A.

    2013-12-01

    The Sacramento and San Joaquin Rivers provide the majority of freshwater for the San Francisco Bay Delta. Both rivers are important sources of drinking and irrigation water for California, and play critical roles in the health of California fisheries. Understanding the factors controlling water quality and primary productivity in these rivers and the Delta is essential for making sound economic and environmental water management decisions. However, these highly altered surface water systems present many challenges for water quality monitoring studies due to factors such as multiple potential nutrient and contaminant inputs, dynamic source water inputs, and changing flow regimes controlled by both natural and engineered conditions. The watersheds for both rivers contain areas of intensive agriculture along with many other land uses, and the Sacramento River receives significant amounts of treated wastewater from the large population around the City of Sacramento. We have used a multi-isotope approach combined with mass balance and hydrodynamic modeling in order to better understand the dominant nutrient sources for each of these rivers, and to track nutrient sources and cycling within the complex Delta region around the confluence of the rivers. High nitrate concentrations within the San Joaquin River fuel summer algal blooms, contributing to low dissolved oxygen conditions. High δ15N-NO3 values combined with the high nitrate concentrations suggest that animal manure is a significant source of nitrate to the San Joaquin River. In contrast, the Sacramento River has lower nitrate concentrations but elevated ammonium concentrations from wastewater discharge. Downstream nitrification of the ammonium can be clearly traced using δ15N-NH4. Flow conditions for these rivers and the Delta have strong seasonal and inter-annual variations, resulting in significant changes in nutrient delivery and cycling. Isotopic measurements and estimates of source water contributions

  8. Hydrology Project

    International Nuclear Information System (INIS)

    Anon.

    Research carried out in the 'Hydrology Project' of the Centro de Energia Nuclear na Agricultura', Piracicaba, Sao Paulo State, Brazil, are described. Such research comprises: Amazon hydrology and Northeast hydrology. Techniques for the measurement of isotope ratios are used. (M.A.) [pt

  9. Conceptual modeling coupled thermal-hydrological-chemical processes in bentonite buffer for high-level nuclear waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Young; Park, Jin Young [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Ryu, Ji Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    In this study, thermal-hydrological-chemical modeling for the alteration of a bentonite buffer is carried out using a simulation code TOUGHREACT. The modeling results show that the water saturation of bentonite steadily increases and finally the bentonite is fully saturated after 10 years. In addition, the temperature rapidly increases and stabilizes after 0.5 year, exhibiting a constant thermal gradient as a function of distance from the copper tube. The change of thermal-hydrological conditions mainly results in the alteration of anhydrite and calcite. Anhydrite and calcite are dissolved along with the inflow of groundwater. They then tend to precipitate in the vicinity of the copper tube due to its high temperature. This behavior induces a slight decrease in porosity and permeability of bentonite near the copper tube. Furthermore, this study finds that the diffusion coefficient can significantly affect the alteration of anhydrite and calcite, which causes changes in the hydrological properties of bentonite such as porosity and permeability. This study may facilitate the safety assessment of high-level radioactive waste repositories.

  10. Intensive precipitation observation greatly improves hydrological modelling of the poorly gauged high mountain Mabengnong catchment in the Tibetan Plateau

    Science.gov (United States)

    Wang, Li; Zhang, Fan; Zhang, Hongbo; Scott, Christopher A.; Zeng, Chen; Shi, Xiaonan

    2018-01-01

    Precipitation is one of the most critical inputs for models used to improve understanding of hydrological processes. In high mountain areas, it is challenging to generate a reliable precipitation data set capturing the spatial and temporal heterogeneity due to the harsh climate, extreme terrain and the lack of observations. This study conducts intensive observation of precipitation in the Mabengnong catchment in the southeast of the Tibetan Plateau during July to August 2013. Because precipitation is greatly influenced by altitude, the observed data are used to characterize the precipitation gradient (PG) and hourly distribution (HD), showing that the average PG is 0.10, 0.28 and 0.26 mm/d/100 m and the average duration is around 0.1, 0.8 and 5.2 h for trace, light and moderate rain, respectively. A distributed biosphere hydrological model based on water and energy budgets with improved physical process for snow (WEB-DHM-S) is applied to simulate the hydrological processes with gridded precipitation data derived from a lower altitude meteorological station and the PG and HD characterized for the study area. The observed runoff, MODIS/Terra snow cover area (SCA) data, and MODIS/Terra land surface temperature (LST) data are used for model calibration and validation. Runoff, SCA and LST simulations all show reasonable results. Sensitivity analyses illustrate that runoff is largely underestimated without considering PG, indicating that short-term intensive precipitation observation has the potential to greatly improve hydrological modelling of poorly gauged high mountain catchments.

  11. Scale effect challenges in urban hydrology highlighted with a Fully Distributed Model and High-resolution rainfall data

    Science.gov (United States)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2017-04-01

    Nowadays, there is a growing interest on small-scale rainfall information, provided by weather radars, to be used in urban water management and decision-making. Therefore, an increasing interest is in parallel devoted to the development of fully distributed and grid-based models following the increase of computation capabilities, the availability of high-resolution GIS information needed for such models implementation. However, the choice of an appropriate implementation scale to integrate the catchment heterogeneity and the whole measured rainfall variability provided by High-resolution radar technologies still issues. This work proposes a two steps investigation of scale effects in urban hydrology and its effects on modeling works. In the first step fractal tools are used to highlight the scale dependency observed within distributed data used to describe the catchment heterogeneity, both the structure of the sewer network and the distribution of impervious areas are analyzed. Then an intensive multi-scale modeling work is carried out to understand scaling effects on hydrological model performance. Investigations were conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model was implemented at 17 spatial resolutions ranging from 100 m to 5 m and modeling investigations were performed using both rain gauge rainfall information as well as high resolution X band radar data in order to assess the sensitivity of the model to small scale rainfall variability. Results coming out from this work demonstrate scale effect challenges in urban hydrology modeling. In fact, fractal concept highlights the scale dependency observed within distributed data used to implement hydrological models. Patterns of geophysical data change when we change the observation pixel size. The multi-scale modeling investigation performed with Multi-Hydro model at 17 spatial resolutions confirms scaling effect on hydrological model

  12. Evaluating Coupled Human-Hydrologic Systems in High Altitude Regions: A Case Study of the Arun Watershed, Eastern Nepal

    Science.gov (United States)

    Voss, K.; Bookhagen, B.; Tague, C.; Lopez-Carr, D.

    2014-12-01

    The Himalaya exhibit dynamic ecological, hydrological, and climatic extremes that magnify the variability and extent of natural hazards, resulting in destruction to both physical and human landscapes. Coupled with poverty, these factors intensify local communities' vulnerability to climate change. This study highlights the Arun watershed in eastern Nepal as a case study to evaluate how local communities in high altitude regions are managing their water for domestic and agricultural needs while coping with extreme events, such as floods and landslides. Remotely-sensed precipitation, snowpack and glacial extent data from the past decade are combined with preliminary results from extensive field-based community surveys in the Arun watershed. The analysis of remotely-sensed data will describe seasonal trends in water availability, glacial lake growth, and the spatial variation of these trends within the basin. These hydrologic changes will be linked to the human survey analysis, which will provide an understanding of locals' perceptions of water challenges and the current water management strategies within the basin. Particular attention will be given to a comparison between the eastern and western tributaries of the Arun River, where the catchments are mainly rain-fed (eastern) versus glacial-fed (western). This contrast will highlight how different hydrologic scenarios evidenced from remote-sensing data motivate diverse human water management responses as defined in field surveys. A particular focus will be given to management decisions related to agriculture expansion and hydropower development. This synthesis of remote-sensing and social research methodologies provides a valuable perspective on coupled human-hydrologic systems.

  13. Natural hazard management high education: laboratory of hydrologic and hydraulic risk management and applied geomorphology

    Science.gov (United States)

    Giosa, L.; Margiotta, M. R.; Sdao, F.; Sole, A.; Albano, R.; Cappa, G.; Giammatteo, C.; Pagliuca, R.; Piccolo, G.; Statuto, D.

    2009-04-01

    The Environmental Engineering Faculty of University of Basilicata have higher-level course for students in the field of natural hazard. The curriculum provides expertise in the field of prediction, prevention and management of earthquake risk, hydrologic-hydraulic risk, and geomorphological risk. These skills will contribute to the training of specialists, as well as having a thorough knowledge of the genesis and the phenomenology of natural risks, know how to interpret, evaluate and monitor the dynamic of environment and of territory. In addition to basic training in the fields of mathematics and physics, the course of study provides specific lessons relating to seismic and structural dynamics of land, environmental and computational hydraulics, hydrology and applied hydrogeology. In particular in this course there are organized two connected examination arguments: Laboratory of hydrologic and hydraulic risk management and Applied geomorphology. These course foresee the development and resolution of natural hazard problems through the study of a real natural disaster. In the last year, the work project has regarded the collapse of two decantation basins of fluorspar, extracted from some mines in Stava Valley, 19 July 1985, northern Italy. During the development of the course, data and event information has been collected, a guided tour to the places of the disaster has been organized, and finally the application of mathematical models to simulate the disaster and analysis of the results has been carried out. The student work has been presented in a public workshop.

  14. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  15. Hydrologic functioning of the deep Critical Zone and contributions to streamflow in a high elevation catchment: testing of multiple conceptual models

    Science.gov (United States)

    Dwivedi, R.; Meixner, T.; McIntosh, J. C.; Ferre, T. P. A.; Eastoe, C. J.; Minor, R. L.; Barron-Gafford, G.; Chorover, J.

    2017-12-01

    The composition of natural mountainous waters maintains important control over the water quality available to downstream users. Furthermore, the geochemical constituents of stream water in the mountainous catchments represent the result of the spatial and temporal evolution of critical zone structure and processes. A key problem is that high elevation catchments involve rugged terrain and are subject to extreme climate and landscape gradients; therefore, high density or high spatial resolution hydro-geochemical observations are rare. Despite such difficulties, the Santa Catalina Mountains Critical Zone Observatory (SCM-CZO), Tucson, AZ, generates long-term hydrogeochemical data for understanding not only hydrological processes and their seasonal characters, but also the geochemical impacts of such processes on streamflow chemical composition. Using existing instrumentation and hydrogeochemical observations from the last 9+ years (2009 through 2016 and an initial part of 2017), we employed a multi-tracer approach along with principal component analysis to identify water sources and their seasonal character. We used our results to inform hydrological process understanding (flow paths, residence times, and water sources) for our study site. Our results indicate that soil water is the largest contributor to streamflow, which is ephemeral in nature. Although a 3-dimensional mixing space involving precipitation, soil water, interflow, and deep groundwater end-members could explain most of the streamflow chemistry, geochemical complexity was observed to grow with catchment storage. In terms of processes and their seasonal character, we found soil water and interflow were the primary end-member contributors to streamflow in all seasons. Deep groundwater only contributes to streamflow at high catchment storage conditions, but it provides major ions such as Na, Mg, and Ca that are lacking in other water types. In this way, our results indicate that any future efforts aimed

  16. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model

    Science.gov (United States)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2018-01-01

    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  17. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape

    Science.gov (United States)

    Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Vorobyev, S. N.; Manasypov, R. M.; Loiko, S.; Tetzlaff, D.

    2018-01-01

    Climate change is expected to alter hydrological and biogeochemical processes in high-latitude inland waters. A critical question for understanding contemporary and future responses to environmental change is how the spatio-temporal dynamics of runoff generation processes will be affected. We sampled stable water isotopes in soils, lakes and rivers on an unprecedented spatio-temporal scale along a 1700 km transect over three years in the Western Siberia Lowlands. Our findings suggest that snowmelt mixes with, and displaces, large volumes of water stored in the organic soils and lakes to generate runoff during the thaw season. Furthermore, we saw a persistent hydrological connection between water bodies and the landscape across permafrost regions. Our findings help to bridge the understanding between small and large scale hydrological studies in high-latitude systems. These isotope data provide a means to conceptualise hydrological connectivity in permafrost and wetland influenced regions, which is needed for an improved understanding of future biogeochemical changes.

  18. High resolution global flood hazard map from physically-based hydrologic and hydraulic models.

    Science.gov (United States)

    Begnudelli, L.; Kaheil, Y.; McCollum, J.

    2017-12-01

    The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak

  19. Hydrological, meteorological and geohydrological data for an unsaturated zone study near the Radioactive Waste Management Complex, Idaho National Engineering Laboratory, Idaho - 1987

    International Nuclear Information System (INIS)

    Davis, L.C.; Pittman, J.R.

    1990-01-01

    Since 1952, radioactive waste has been buried at the RWMC (Radioactive Waste Management Complex) at the Idaho National Engineering Laboratory in southeastern Idaho. In 1985, the US Geological Survey, in cooperation with the US Department of Energy, began a study of the geohydrology of the RWMC to provide a basis for estimating the extent of and the potential for migration of radionuclides in the unsaturated zone beneath the waste burial trenches and pits. This study is being conducted to provide hydrological, meteorological and geohydrological data for the test trench area adjacent to the northern boundary of the RWMC. During 1987, data were collected from the test trench area, where several types of instrumentation were installed in the surficial sediment in 1985. Hydrological data collected from both disturbed and undisturbed soil included measurements, from 28 thermocouple psychrometers placed at selected depths to about 6m. Soil moisture content measurements were collected bi-weekly in 9 neutron-probe access holes with a neutron moisture depth gage. Meteorological data summarized daily included: (1) incoming and emitted long-wave radiation; (2) incoming and reflected short-wave radiation; (3) air temperature; (4) relative humidity; (5) wind speed; (6) wind direction; and (7) precipitation. To describe grain-size distribution with depth, 17 samples were analyzed using sieve and pipette methods. Statistical parameters, carbonate content, color, particle roundness and sphericity, and mineralogic and clastic constituents were determined for each sample. Some samples were analyzed by x-ray diffraction techniques to determine bulk and clay mineralogy

  20. CubeSats in Hydrology: Ultra-High Resolution Insights into Vegetation Dynamics and Terrestrial Evaporation

    KAUST Repository

    McCabe, Matthew; Aragon, B.; Houborg, Rasmus; Mascaro, J.

    2017-01-01

    Satellite-based remote sensing has generally necessitated a trade-off between spatial resolution and temporal frequency, affecting the capacity to observe fast hydrological processes and rapidly changing land surface conditions. An avenue for overcoming these spatiotemporal restrictions is the concept of using constellations of satellites, as opposed to the mission focus exemplified by the more conventional space-agency approach to earth observation. Referred to as CubeSats, these platforms offer the potential to provide new insights into a range of earth system variables and processes. Their emergence heralds a paradigm shift from single-sensor launches to an operational approach that envisions tens to hundreds of small, lightweight and comparatively inexpensive satellites placed into a range of low earth orbits. Although current systems are largely limited to sensing in the optical portion of the electromagnetic spectrum, we demonstrate the opportunity and potential that CubeSats present the hydrological community via the retrieval of vegetation dynamics and terrestrial evaporation and foreshadow future sensing capabilities.

  1. CubeSats in Hydrology: Ultra-High Resolution Insights into Vegetation Dynamics and Terrestrial Evaporation

    KAUST Repository

    McCabe, Matthew

    2017-12-01

    Satellite-based remote sensing has generally necessitated a trade-off between spatial resolution and temporal frequency, affecting the capacity to observe fast hydrological processes and rapidly changing land surface conditions. An avenue for overcoming these spatiotemporal restrictions is the concept of using constellations of satellites, as opposed to the mission focus exemplified by the more conventional space-agency approach to earth observation. Referred to as CubeSats, these platforms offer the potential to provide new insights into a range of earth system variables and processes. Their emergence heralds a paradigm shift from single-sensor launches to an operational approach that envisions tens to hundreds of small, lightweight and comparatively inexpensive satellites placed into a range of low earth orbits. Although current systems are largely limited to sensing in the optical portion of the electromagnetic spectrum, we demonstrate the opportunity and potential that CubeSats present the hydrological community via the retrieval of vegetation dynamics and terrestrial evaporation and foreshadow future sensing capabilities.

  2. Complex Development Report: Moanalua High School.

    Science.gov (United States)

    Anbe, Aruga and Ishizu, Architects, Inc., Honolulu, HI.

    This report documents the planning process and the decisions involved in master planning a proposed Honolulu high school, and it provides guidance for the implementation of those increments remaining after phase one of the first increment had been completed in September 1972. Phase two of the first increment and the second increment are now under…

  3. Genetic Programming for Automatic Hydrological Modelling

    Science.gov (United States)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach

  4. A micro-hydrology computation ordering algorithm

    International Nuclear Information System (INIS)

    Croley, T.E. II

    1980-01-01

    Discrete-distributed-parameter models are essential for watershed modelling where practical consideration of spatial variations in watershed properties and inputs is desired. Such modelling is necessary for analysis of detailed hydrologic impacts from management strategies and land-use effects. Trade-offs between model validity and model complexity exist in resolution of the watershed. Once these are determined, the watershed is then broken into sub-areas which each have essentially spatially-uniform properties. Lumped-parameter (micro-hydrology) models are applied to these sub-areas and their outputs are combined through the use of a computation ordering technique, as illustrated by many discrete-distributed-parameter hydrology models. Manual ordering of these computations requires fore-thought, and is tedious, error prone, sometimes storage intensive and least adaptable to changes in watershed resolution. A programmable algorithm for ordering micro-hydrology computations is presented that enables automatic ordering of computations within the computer via an easily understood and easily implemented node definition, numbering and coding scheme. This scheme and the algorithm are detailed in logic flow-charts and an example application is presented. Extensions and modifications of the algorithm are easily made for complex geometries or differing micro-hydrology models. The algorithm is shown to be superior to manual ordering techniques and has potential use in high-resolution studies. (orig.)

  5. Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration

    Science.gov (United States)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-12-01

    The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution

  6. Coupling impervious surface rate derived from satellite remote sensing with distributed hydrological model for highly urbanized watershed flood forecasting

    Science.gov (United States)

    Dong, L.

    2017-12-01

    Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin

  7. Mapping and Characterization of Hydrological Dynamics in a Coastal Marsh Using High Temporal Resolution Sentinel-1A Images

    Directory of Open Access Journals (Sweden)

    Cécile Cazals

    2016-07-01

    Full Text Available In Europe, water levels in wetlands are widely controlled by environmental managers and farmers. However, the influence of these management practices on hydrodynamics and biodiversity remains poorly understood. This study assesses advantages of using radar data from the recently launched Sentinel-1A satellite to monitor hydrological dynamics of the Poitevin marshland in western France. We analyze a time series of 14 radar images acquired in VV and HV polarizations from December 2014 to May 2015 with a 12-day time step. Both polarizations are used with a hysteresis thresholding algorithm which uses both spatial and temporal information to distinguish open water, flooded vegetation and non-flooded grassland. Classification results are compared to in situ piezometric measurements combined with a Digital Terrain Model derived from LiDAR data. Results reveal that open water is successfully detected, whereas flooded grasslands with emergent vegetation and fine-grained patterns are detected with moderate accuracy. Five hydrological regimes are derived from the flood duration and mapped. Analysis of time steps in the time series shows that decreased temporal repetitivity induces significant differences in estimates of flood duration. These results illustrate the great potential to monitor variations in seasonal floods with the high temporal frequency of Sentinel-1A acquisitions.

  8. Drought on the North American High Plains: Modeling Effects of Vegetation, Temperature, and Rainfall Perturbations on Regional Hydrology

    Science.gov (United States)

    Hein, A. E.; Condon, L. E.; Maxwell, R. M.

    2017-12-01

    Large scale droughts can disrupt the water supply for agriculture, municipalities and industrial use worldwide. For example, the Dustbowl drought of the 1930s severely damaged agriculture on the North American High Plains. The Dustbowl is generally attributed to three major factors: increased temperature, decreased precipitation, and a change from native grasses that might have tolerated these climate perturbations to dryland wheat farming, which did not. This study explores the individual importance of each of these factors and the feedbacks between them. Previous modeling studies have explored how the High Plains system responds to changes in precipitation or temperature, but these models often depend on simplified or lumped parameter approaches. These approaches may not fully represent all the relevant physical processes, especially those related to energy balance changes due to increased temperature. For this study, we built a high-resolution model of the High Plains using ParFlow-CLM, an integrated hydrologic model that solves both energy and water balances from the subsurface to the top of vegetation. Model inputs including geology and climate forcing, together with representative precipitation and temperature changes for a major drought were assembled from public data. Numerical experiments were run to perturb vegetation, precipitation and temperature separately, as well as a baseline scenario with no changes and a worst-case scenario with all three simultaneously. The impact of each factor on High Plains hydrology and water resources was examined by comparing soil moisture, stream flow and water table levels between the runs. The one-factor experiments were used to show which of these outputs was the most sensitive and responded most quickly to each change. The worst-case scenario revealed interactions between the three factors.

  9. Data assimilation in integrated hydrological modelling

    DEFF Research Database (Denmark)

    Rasmussen, Jørn

    Integrated hydrological models are useful tools for water resource management and research, and advances in computational power and the advent of new observation types has resulted in the models generally becoming more complex and distributed. However, the models are often characterized by a high...... degree of parameterization which results in significant model uncertainty which cannot be reduced much due to observations often being scarce and often taking the form of point measurements. Data assimilation shows great promise for use in integrated hydrological models , as it allows for observations...... to be efficiently combined with models to improve model predictions, reduce uncertainty and estimate model parameters. In this thesis, a framework for assimilating multiple observation types and updating multiple components and parameters of a catchment scale integrated hydrological model is developed and tested...

  10. Simulating the complex output of rainfall and hydrological processes using the information contained in large data sets: the Direct Sampling approach.

    Science.gov (United States)

    Oriani, Fabio

    2017-04-01

    The unpredictable nature of rainfall makes its estimation as much difficult as it is essential to hydrological applications. Stochastic simulation is often considered a convenient approach to asses the uncertainty of rainfall processes, but preserving their irregular behavior and variability at multiple scales is a challenge even for the most advanced techniques. In this presentation, an overview on the Direct Sampling technique [1] and its recent application to rainfall and hydrological data simulation [2, 3] is given. The algorithm, having its roots in multiple-point statistics, makes use of a training data set to simulate the outcome of a process without inferring any explicit probability measure: the data are simulated in time or space by sampling the training data set where a sufficiently similar group of neighbor data exists. This approach allows preserving complex statistical dependencies at different scales with a good approximation, while reducing the parameterization to the minimum. The straights and weaknesses of the Direct Sampling approach are shown through a series of applications to rainfall and hydrological data: from time-series simulation to spatial rainfall fields conditioned by elevation or a climate scenario. In the era of vast databases, is this data-driven approach a valid alternative to parametric simulation techniques? [1] Mariethoz G., Renard P., and Straubhaar J. (2010), The Direct Sampling method to perform multiple-point geostatistical simulations, Water. Rerous. Res., 46(11), http://dx.doi.org/10.1029/2008WR007621 [2] Oriani F., Straubhaar J., Renard P., and Mariethoz G. (2014), Simulation of rainfall time series from different climatic regions using the direct sampling technique, Hydrol. Earth Syst. Sci., 18, 3015-3031, http://dx.doi.org/10.5194/hess-18-3015-2014 [3] Oriani F., Borghi A., Straubhaar J., Mariethoz G., Renard P. (2016), Missing data simulation inside flow rate time-series using multiple-point statistics, Environ. Model

  11. Hydrologic and Meteorological Data for an Unsaturated-Zone Study Area near the Radioactive Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho, 1990-96

    International Nuclear Information System (INIS)

    Perkins, K. S.; Nimmo, J. R.; Pittman, J. R.

    1998-01-01

    Trenches and pits at the Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (formerly known as the Idaho National Engineering Laboratory) have been used for burial of radioactive waste since 1952. In 1985, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, began a multi-phase study of the geohydrology of the RWMC to provide a basis for estimating the extent of and the potential for migration of radionuclides in the unsaturated zone beneath the waste trenches and pits. This phase of the study provides hydrologic and meteorological data collected at a designated test trench area adjacent to the northern boundary of the RWMC SDA from 1990 through 1996. The test trench area was constructed by the USGS in 1985. Hydrologic data presented in this report were collected during 1990-96 in the USGS test trench area. Soil-moisture content measurement from disturbed and undisturbed soil were collected approximately monthly during 1990-96 from 11 neutron-probe access holes with a neutron moisture gage. In 1994, three additional neutron access holes were completed for monitoring. A meteorological station inside the test trench area provided data for determination of evapotranspiration rates. The soil-moisture and meteorological data are contained in files on 3-1/2 inch diskettes (disks 1 and 2) included with this report. The data are presented in simple American Standard Code for Information Interchange (ASCII) format with tab-delimited fields. The files occupy a total of 1.5 megabytes of disk space

  12. Complex fragment emission at low and high excitation energy

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1986-08-01

    Complex fragment emission has been certified as a compound nucleus process at low energies. An extension of the measurements to heavy ion reactions up to 50 MeV/u shows that most complex fragments are emitted by highly excited compound nuclei formed in incomplete fusion reactions. 12 refs., 26 figs

  13. Incorporation of Complex Hydrological and Socio-economic Factors for Non-point Source Pollution Control: A Case Study at the Yincungang Canal, the Lake Tai Basin of China

    Science.gov (United States)

    Yang, X.; Luo, X.; Zheng, Z.

    2012-04-01

    It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to

  14. Hydrological Bulletin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical report (December 1937-April 1948) containing hydrologic information for the United States, divided into ten regions. While hourly precipitation tables...

  15. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.

    2011-01-01

    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities...... under specific circumstances. Initially a general water balance equation is defined for a typical landfill, and the different parts of the water balance are discussed. A separate section discusses water flow and the hydrogeology of landfilled wastes and considers the impact of water short...

  16. Combination of lumped hydrological and remote-sensing models to evaluate water resources in a semi-arid high altitude ungauged watershed of Sierra Nevada (Southern Spain).

    Science.gov (United States)

    Jódar, J; Carpintero, E; Martos-Rosillo, S; Ruiz-Constán, A; Marín-Lechado, C; Cabrera-Arrabal, J A; Navarrete-Mazariegos, E; González-Ramón, A; Lambán, L J; Herrera, C; González-Dugo, M P

    2018-06-01

    Assessing water resources in high mountain semi-arid zones is essential to be able to manage and plan the use of these resources downstream where they are used. However, it is not easy to manage an unknown resource, a situation that is common in the vast majority of high mountain hydrological basins. In the present work, the discharge flow in an ungauged basin is estimated using the hydrological parameters of an HBV (Hydrologiska Byråns Vattenbalansavdelning) model calibrated in a "neighboring gauged basin". The results of the hydrological simulation obtained in terms of average annual discharge are validated using the VI-ETo model. This model relates a simple hydrological balance to the discharge of the basin with the evaporation of the vegetal cover of the soil, and this to the SAVI index, which is obtained remotely by means of satellite images. The results of the modeling for both basins underscore the role of the underground discharge in the total discharge of the hydrological system. This is the result of the deglaciation process suffered by the high mountain areas of the Mediterranean arc. This process increases the infiltration capacity of the terrain, the recharge and therefore the discharge of the aquifers that make up the glacial and periglacial sediments that remain exposed on the surface as witnesses of what was the last glaciation. Copyright © 2017. Published by Elsevier B.V.

  17. High frequency longitudinal profiling reveals hydrologic controls on solute sourcing, transport and processing in a karst river

    Science.gov (United States)

    Hensley, R. T.; Cohen, M. J.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    The lower Santa Fe River is a large, karst river of north Florida, fed by numerous artesian springs and also containing multiple sink-rise systems. We performed repeated longitudinal profiles collecting very high frequency measurements of multiple stream parameters including temperature, dissolved oxygen, carbon dioxide, pH, dissolved organic matter, nitrate, ammonium, phosphate and turbidity. This high frequency dataset provided a spatially explicit understanding of solute sources and coupled biogeochemical processing rates along the 25 km study reach. We noted marked changes in river profiles as the river transitioned from low to high flow during the onset of the wet season. The role of lateral inflow from springs as the primary solute source was greatly reduced under high flow conditions. Effects of sink-rise systems, which under low flow conditions allow the majority of flow to bypass several kilometer long sections of the main channel, virtually disappeared under high flow conditions. Impeded light transmittance at high flow reduced primary production and by extension assimilatory nutrient uptake. This study demonstrates how high frequency longitudinal profiling can be used to observe how hydrologic conditions can alter groundwater-surface water interactions and modulate the sourcing, transport and biogeochemical processing of stream solutes.

  18. Application of the MacCormack scheme to overland flow routing for high-spatial resolution distributed hydrological model

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Liang, Xu; Xu, Yi; Hernández, Felipe; Li, Lianxia

    2018-03-01

    Although process-based distributed hydrological models (PDHMs) are evolving rapidly over the last few decades, their extensive applications are still challenged by the computational expenses. This study attempted, for the first time, to apply the numerically efficient MacCormack algorithm to overland flow routing in a representative high-spatial resolution PDHM, i.e., the distributed hydrology-soil-vegetation model (DHSVM), in order to improve its computational efficiency. The analytical verification indicates that both the semi and full versions of the MacCormack schemes exhibit robust numerical stability and are more computationally efficient than the conventional explicit linear scheme. The full-version outperforms the semi-version in terms of simulation accuracy when a same time step is adopted. The semi-MacCormack scheme was implemented into DHSVM (version 3.1.2) to solve the kinematic wave equations for overland flow routing. The performance and practicality of the enhanced DHSVM-MacCormack model was assessed by performing two groups of modeling experiments in the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The experiments show that DHSVM-MacCormack can considerably improve the computational efficiency without compromising the simulation accuracy of the original DHSVM model. More specifically, with the same computational environment and model settings, the computational time required by DHSVM-MacCormack can be reduced to several dozen minutes for a simulation period of three months (in contrast with one day and a half by the original DHSVM model) without noticeable sacrifice of the accuracy. The MacCormack scheme proves to be applicable to overland flow routing in DHSVM, which implies that it can be coupled into other PHDMs for watershed routing to either significantly improve their computational efficiency or to make the kinematic wave routing for high resolution modeling computational feasible.

  19. Geologic and hydrologic considerations for various concepts of high-level radioactive waste disposal in conterminous United States

    International Nuclear Information System (INIS)

    Ekren, E.B.; Dinwiddie, G.A.; Mytton, J.W.; Thordarson, W.; Weir, J.E. Jr.; Hinrichs, E.N.; Schroder, L.J.

    1974-01-01

    The purpose of this investigation is to evaluate and identify which geohydrologic environments in conterminous United States are best suited for various concepts or methods of underground disposal of high-level radioactive wastes and to establish geologic and hydrologic criteria that are pertinent to high-level waste disposal. The unproven methods of disposal include (1) a very deep drill hole (30,000 to 50,000 ft or 9,140 to 15,240 m), (2) a matrix of (an array of multiple) drill holes (1,000 to 20,000 ft or 305 to 6,100 m), (3) a mined chamber (1,000 to 10,000 ft or 305 to 3,050 m), (4) a cavity with separate manmade structures (1,000 to 10,000 ft or 305 to 3,050 m), and (5) an exploded cavity (2,000 to 20,000 ft or 610 to 6,100 m). Areas considered to be unsuitable for waste disposal are those where seismic risk is high, where possible sea-level rise would inundate potential sites, where high topographic relief coincides with high frequency of faults, where there are unfavorable ground-water conditions, and where no suitable rocks are known to be present to depths of 20,000 feet (6,100 m) or more, and where these strata either contain large volumes of ground water or have high oil and gas potential

  20. On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes

    Science.gov (United States)

    Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.

    2012-11-01

    precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.

  1. On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes

    Directory of Open Access Journals (Sweden)

    S. Stisen

    2012-11-01

    . We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid fluctuate significantly, causing climatological mean correction factors to be inadequate.

  2. SWOT Oceanography and Hydrology Data Product Simulators

    Science.gov (United States)

    Peral, Eva; Rodriguez, Ernesto; Fernandez, Daniel Esteban; Johnson, Michael P.; Blumstein, Denis

    2013-01-01

    The proposed Surface Water and Ocean Topography (SWOT) mission would demonstrate a new measurement technique using radar interferometry to obtain wide-swath measurements of water elevation at high resolution over ocean and land, addressing the needs of both the hydrology and oceanography science communities. To accurately evaluate the performance of the proposed SWOT mission, we have developed several data product simulators at different levels of fidelity and complexity.

  3. A micro-hydrology computation ordering algorithm

    Science.gov (United States)

    Croley, Thomas E.

    1980-11-01

    Discrete-distributed-parameter models are essential for watershed modelling where practical consideration of spatial variations in watershed properties and inputs is desired. Such modelling is necessary for analysis of detailed hydrologic impacts from management strategies and land-use effects. Trade-offs between model validity and model complexity exist in resolution of the watershed. Once these are determined, the watershed is then broken into sub-areas which each have essentially spatially-uniform properties. Lumped-parameter (micro-hydrology) models are applied to these sub-areas and their outputs are combined through the use of a computation ordering technique, as illustrated by many discrete-distributed-parameter hydrology models. Manual ordering of these computations requires fore-thought, and is tedious, error prone, sometimes storage intensive and least adaptable to changes in watershed resolution. A programmable algorithm for ordering micro-hydrology computations is presented that enables automatic ordering of computations within the computer via an easily understood and easily implemented "node" definition, numbering and coding scheme. This scheme and the algorithm are detailed in logic flow-charts and an example application is presented. Extensions and modifications of the algorithm are easily made for complex geometries or differing microhydrology models. The algorithm is shown to be superior to manual ordering techniques and has potential use in high-resolution studies.

  4. Isotope hydrology

    International Nuclear Information System (INIS)

    Drost, W.

    1978-01-01

    The International Symposium on Isotope Hydrology was jointly organized by the IAEA and UNESCO, in co-operation with the National Committee of the Federal Republic of Germany for the International Hydrological Programme (IHP) and the Gesellschaft fuer Strahlen- und Umweltforschung mbH (GSF). Upon the invitation of the Federal Republic of Germany the Symposium was held from 19-23 June 1978 in Neuherberg on the GSF campus. The Symposium was officially opened by Mr. S. Eklund, Director General of the IAEA. The symposium - the fifth meeting held on isotope hydrology - was attended by over 160 participants from 44 countries and four international organizations and by about 30 observers from the Federal Republic of Germany. Due to the absence of scientists from the USSR five papers were cancelled and therefore only 46 papers of the original programme were presented in ten sessions

  5. Highly Luminescent Lanthanide Complexes of 1 Hydroxy-2-pyridinones

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lawrence National Laboratory; Raymond, Kenneth; Moore, Evan G.; Xu, Jide; Jocher, Christoph J.; Castro-Rodriguez, Ingrid; Raymond, Kenneth N.

    2007-11-01

    The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III) and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission ({Phi}{sub tot}{sup Eu} {approx} 21.5%) with high stability (pEu {approx} 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysical properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure, and were found to agree with corresponding TD-DFT calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure.

  6. High flows in the 21st Century: analysis with a simple conceptual hydrological models using the input of 3 GCMs (A2 scenario)

    NARCIS (Netherlands)

    Lanen, H.A.J.; Wanders, N.

    2011-01-01

    The study on high flows with a conceptual hydrological model leads to the following conclusions for about 1500 randomly selected land points across the world that have an intermediate soil water supply capacity and an intermediary responding groundwater system: · the probability distributions of

  7. Infrared spectra of hexamethylbenzene—tetracyanoethylene complexes at high pressures

    Science.gov (United States)

    Yamada, Haruka; Saheki, Masao

    Infrared spectra of hexamethylbenzene(HMB)—tetracyanoethylene(TCNE), 1:1 and 2:1, complexes were measured under high pressures, 11˜4,000 bar. It was found that the CC stretching (A g) band of TCNE became much stronger at high pressures than at 1 bar and that the intensity increase of this band was especially large for both of the complexes. Based on these facts the strong appearance of the CC band at 1 bar, which is inconsistent with the symmetry consideration derived from X-ray analysis, can be discussed.

  8. Three very high resolution optical images for land use mapping of a suburban catchment: input to distributed hydrological models

    Science.gov (United States)

    Jacqueminet, Christine; Kermadi, Saïda; Michel, Kristell; Jankowfsky, Sonja; Braud, Isabelle; Branger, Flora; Beal, David; Gagnage, Matthieu

    2010-05-01

    Keywords : land cover mapping, very high resolution, remote sensing processing techniques, object oriented approach, distributed hydrological model, peri-urban area Urbanization and other modifications of land use affect the hydrological cycle of suburban catchments. In order to quantify these impacts, the AVuPUR project (Assessing the Vulnerability of Peri-Urban Rivers) is currently developing a distributed hydrological model that includes anthropogenic features. The case study is the Yzeron catchment (150 km²), located close to Lyon city, France. This catchment experiences a growing of urbanization and a modification of traditional land use since the middle of the 20th century, resulting in an increase of flooding, water pollution and river banks erosion. This contribution discusses the potentials of automated data processing techniques on three different VHR images, in order to produce appropriate and detailed land cover data for the models. Of particular interest is the identification of impermeable surfaces (buildings, roads, and parking places) and permeable surfaces (forest areas, agricultural fields, gardens, trees…) within the catchment, because their infiltration capacity and their impact on runoff generation are different. Three aerial and spatial images were acquired: (1) BD Ortho IGN aerial images, 0.50 m resolution, visible bands, may 5th 2008; (2) QuickBird satellite image, 2.44 m resolution, visible and near-infrared bands, august 29th 2008; (3) Spot satellite image, 2.50 m resolution, visible and near-infrared bands, September 22nd 2008. From these images, we developed three image processing methods: (1) a pixel-based method associated to a segmentation using Matlab®, (2) a pixel-based method using ENVI®, (3) an object-based classification using Definiens®. We extracted six land cover types from the BD Ortho IGN (visible bands) and height classes from the satellite images (visible and near infrared bands). The three classified images are

  9. Using High-Resolution Data to Test Parameter Sensitivity of the Distributed Hydrological Model HydroGeoSphere

    Directory of Open Access Journals (Sweden)

    Thomas Cornelissen

    2016-05-01

    Full Text Available Parameterization of physically based and distributed hydrological models for mesoscale catchments remains challenging because the commonly available data base is insufficient for calibration. In this paper, we parameterize a mesoscale catchment for the distributed model HydroGeoSphere by transferring evapotranspiration parameters calibrated at a highly-equipped headwater catchment in addition to literature data. Based on this parameterization, the sensitivity of the mesoscale catchment to spatial variability in land use, potential evapotranspiration and precipitation and of the headwater catchment to mesoscale soil and land use data was conducted. Simulations of the mesoscale catchment with transferred parameters reproduced daily discharge dynamics and monthly evapotranspiration of grassland, deciduous and coniferous vegetation in a satisfactory manner. Precipitation was the most sensitive input data with respect to total runoff and peak flow rates, while simulated evapotranspiration components and patterns were most sensitive to spatially distributed land use parameterization. At the headwater catchment, coarse soil data resulted in a change in runoff generating processes based on the interplay between higher wetness prior to a rainfall event, enhanced groundwater level rise and accordingly, lower transpiration rates. Our results indicate that the direct transfer of parameters is a promising method to benefit highly equipped simulations of the headwater catchments.

  10. High frequency vibration analysis by the complex envelope vectorization.

    Science.gov (United States)

    Giannini, O; Carcaterra, A; Sestieri, A

    2007-06-01

    The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.

  11. High-resolution method for evolving complex interface networks

    Science.gov (United States)

    Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2018-04-01

    In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.

  12. Modeling Subsurface Hydrology in Floodplains

    Science.gov (United States)

    Evans, Cristina M.; Dritschel, David G.; Singer, Michael B.

    2018-03-01

    Soil-moisture patterns in floodplains are highly dynamic, owing to the complex relationships between soil properties, climatic conditions at the surface, and the position of the water table. Given this complexity, along with climate change scenarios in many regions, there is a need for a model to investigate the implications of different conditions on water availability to riparian vegetation. We present a model, HaughFlow, which is able to predict coupled water movement in the vadose and phreatic zones of hydraulically connected floodplains. Model output was calibrated and evaluated at six sites in Australia to identify key patterns in subsurface hydrology. This study identifies the importance of the capillary fringe in vadose zone hydrology due to its water storage capacity and creation of conductive pathways. Following peaks in water table elevation, water can be stored in the capillary fringe for up to months (depending on the soil properties). This water can provide a critical resource for vegetation that is unable to access the water table. When water table peaks coincide with heavy rainfall events, the capillary fringe can support saturation of the entire soil profile. HaughFlow is used to investigate the water availability to riparian vegetation, producing daily output of water content in the soil over decadal time periods within different depth ranges. These outputs can be summarized to support scientific investigations of plant-water relations, as well as in management applications.

  13. Modeling interactions of soil hydrological dynamics and soil thermal and permafrost dynamics and their effects on carbon cycling in northern high latitudes

    Science.gov (United States)

    Zhuang, Q.; Tang, J.

    2008-12-01

    Large areas of northern high latitude ecosystems are underlain with permafrost. The warming temperature and fires deteriorate the stability of those permafrost, altering hydrological cycle, and consequently soil temperature and active layer depth. These changes will determine the fate of large carbon pools in soils and permafrost over the region. We developed a modeling framework of hydrology, permafrost, and biogeochemical dynamics based on our existing modules of these components. The framework was incorporated with a new snow dynamics module and the effects of soil moisture on soil thermal properties. The framework was tested for tundra and boreal forest ecosystems at field sites with respect to soil thermal and hydrological regimes in Alaska and was then applied to the whole Alaskan ecosystems for the period of 1923-2000 at a daily time step. Our two sets of simulations with and without considering soil moisture effects indicated that the soil temperature profile and active layer depth between two simulations are significant different. The differences of soil thermal regime would expect to result in different carbon dynamics. Next, we will verify the framework with the observed data of soil moisture and soil temperature at poor-drain, moderate-drain, and well-drain boreal forest sites in Alaska. With the verified framework, we will evaluate the effects of interactions of soil thermal and hydrological dynamics on carbon dynamics for the whole northern high latitudes.

  14. High-frequency field-deployable isotope analyzer for hydrological applications

    Science.gov (United States)

    Elena S.F. Berman; Manish Gupta; Chris Gabrielli; Tina Garland; Jeffrey J. McDonnell

    2009-01-01

    A high-frequency, field-deployable liquid water isotope analyzer was developed. The instrument was deployed for 4 contiguous weeks in the H. J. Andrews Experimental Forest Long-term Ecological Research site in western Oregon, where it was used for real-time measurement of the isotope ratios of precipitation and stream water during three large storm events. We were able...

  15. Impact of climate change on the hydrology of High Mountain Asia

    NARCIS (Netherlands)

    Lutz, A.

    2016-01-01

    In Asia, water resources largely depend on water generated in the mountainous upstream parts of several large river basins and hundreds of millions of people depend on their waters downstream. The large-scale impacts of climate change for the water resources in High Mountain Asia are poorly

  16. Entropy: From Thermodynamics to Hydrology

    Directory of Open Access Journals (Sweden)

    Demetris Koutsoyiannis

    2014-02-01

    Full Text Available Some known results from statistical thermophysics as well as from hydrology are revisited from a different perspective trying: (a to unify the notion of entropy in thermodynamic and statistical/stochastic approaches of complex hydrological systems and (b to show the power of entropy and the principle of maximum entropy in inference, both deductive and inductive. The capability for deductive reasoning is illustrated by deriving the law of phase change transition of water (Clausius-Clapeyron from scratch by maximizing entropy in a formal probabilistic frame. However, such deductive reasoning cannot work in more complex hydrological systems with diverse elements, yet the entropy maximization framework can help in inductive inference, necessarily based on data. Several examples of this type are provided in an attempt to link statistical thermophysics with hydrology with a unifying view of entropy.

  17. Cybernetic methods for the optimal sustainable management of complex hydrologic and water supply systems. Strategies, models, applications; Kybernetische Methoden fuer die optimale nachhaltige Fuehrung komplexer wasserwirtschaftlicher Systeme. Strategien, Modelle, Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Rauschenbach, T.; Wernstedt, J. [Fraunhofer Anwendungszentrum Systemtechnik, Ilmenau (Germany)

    2006-11-15

    The sustainable development of community and environment can be understood as a multi criteria optimization problem. All sub criteria are not of the same importance all the time. In this contribution an approach is introduced, which makes the situation dependent determination of the weighting factors of the sub criteria possible. For two practice examples solutions for a sustainable management of complex hydrologic and water supply systems are presented. (orig.)

  18. Hydrological Modeling of the Upper Indus Basin: A Case Study from a High-Altitude Glacierized Catchment Hunza

    Directory of Open Access Journals (Sweden)

    Khan Garee

    2017-01-01

    Full Text Available The Soil andWater Assessment Tool (SWAT model combined with a temperature index and elevation band algorithm was applied to the Hunza watershed, where snow and glacier-melt are the major contributor to river flow. This study’s uniqueness is its use of a snow melt algorithm (temperature index with elevation bands combined with the SWAT, applied to evaluate the performance of the SWAT model in the highly snow and glacier covered watershed of the Upper Indus Basin in response to climate change on future streamflow volume at the outlet of the Hunza watershed, and its contribution to the Indus River System in both space and time, despite its limitation; it is not designed to cover the watershed of heterogeneous mountains. The model was calibrated for the years 1998–2004 and validated for the years 2008–2010. The model performance is evaluated using the four recommended statistical coefficients with uncertainty analysis (p-factor and r-factor. Simulations generated good calibration and validation results for the daily flow gauge. The model efficiency was evaluated, and a strong relationship was observed between the simulated and observed flows. The model results give a coefficient of determination (R2 of 0.82 and a Nash–Sutcliffe Efficiency index (NS of 0.80 for the daily flow with values of p-factor (79% and r-factor (76%. The SWAT model was also used to evaluate climate change impact on hydrological regimes, the target watershed with three GCMs (General Circulation Model of the IPCC fifth report for 2030–2059 and 2070–2099, using 1980–2010 as the control period. Overall, temperature (1.39 C to 6.58 C and precipitation (31% indicated increased variability at the end of the century with increasing river flow (5%–10%; in particular, the analysis showed smaller absolute changes in the hydrology of the study area towards the end of the century. The results revealed that the calibrated model was more sensitive towards temperature and

  19. Hydrologic Modeling and Flood Frequency Analysis for Ordinary High Water Mark Delineation

    Science.gov (United States)

    2016-02-01

    variable ); X, Y, and Z are watershed or climatic characteristics used as independent varia - bles; and a, b, c, and d are regression coefficients. The number...use to characterize the variability of streamflow, and recur- rence intervals provide context for understanding the OHWM. This docu- ment tests...1.01-year to 32-year recurrence-interval floods. The variability in bankfull discharge recurrence intervals highlights the highly variable

  20. Polarization holograms allow highly efficient generation of complex light beams.

    Science.gov (United States)

    Ruiz, U; Pagliusi, P; Provenzano, C; Volke-Sepúlveda, K; Cipparrone, Gabriella

    2013-03-25

    We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications. Theoretical analysis, based on the Jones formalism, and experimental results are shown.

  1. Grid based calibration of SWAT hydrological models

    Directory of Open Access Journals (Sweden)

    D. Gorgan

    2012-07-01

    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  2. Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data

    Science.gov (United States)

    Otto, M.; Scherer, D.; Richters, J.

    2011-05-01

    High Altitude Wetlands of the Andes (HAWA) belong to a unique type of wetland within the semi-arid high Andean region. Knowledge about HAWA has been derived mainly from studies at single sites within different parts of the Andes at only small time scales. On the one hand, HAWA depend on water provided by glacier streams, snow melt or precipitation. On the other hand, they are suspected to influence hydrology through water retention and vegetation growth altering stream flow velocity. We derived HAWA land cover from satellite data at regional scale and analysed changes in connection with precipitation over the last decade. Perennial and temporal HAWA subtypes can be distinguished by seasonal changes of photosynthetically active vegetation (PAV) indicating the perennial or temporal availability of water during the year. HAWA have been delineated within a region of 12 800 km2 situated in the Northwest of Lake Titicaca. The multi-temporal classification method used Normalized Differenced Vegetation Index (NDVI) and Normalized Differenced Infrared Index (NDII) data derived from two Landsat ETM+ scenes at the end of austral winter (September 2000) and at the end of austral summer (May 2001). The mapping result indicates an unexpected high abundance of HAWA covering about 800 km2 of the study region (6 %). Annual HAWA mapping was computed using NDVI 16-day composites of Moderate Resolution Imaging Spectroradiometer (MODIS). Analyses on the relation between HAWA and precipitation was based on monthly precipitation data of the Tropical Rain Measurement Mission (TRMM 3B43) and MODIS Eight Day Maximum Snow Extent data (MOD10A2) from 2000 to 2010. We found HAWA subtype specific dependencies on precipitation conditions. A strong relation exists between perennial HAWA and snow fall (r2: 0.82) in dry austral winter months (June to August) and between temporal HAWA and precipitation (r2: 0.75) during austral summer (March to May). Annual changes in spatial extend of perennial HAWA

  3. Experimental complex for high flux-materials interaction research

    International Nuclear Information System (INIS)

    Gagen-Torn, V.K.; Kirillov, I.R.; Komarov, V.L.; Litunovsky, V.N.; Mazul, I.V.; Ovchinnikov, I.B.; Prokofjev, Yu.G.; Saksagansky, G.L.; Titov, V.A.

    1995-01-01

    The experimental complex for high heat flux testing of divertor materials and bumper mock-ups under conditions close to both ITER stationary and plasma disruption PFC heat loads is described. High power plasma and electron beams are using as high heat flux sources. The former are applied to disruption simulation experiments. The values of pulsed plasma heat flux load up to 110 MJ/m 2 and stationary e-beam load up to 15 MW/m 2 can obtained on these facilities. (orig.)

  4. High resolution electrical resistivity tomography of golf course greens irrigated with reclaimed wastewater: Hydrological approach

    Science.gov (United States)

    Tapias, Josefina C.; Lovera, Raúl; Himi, Mahjoub; Gallardo, Helena; Sendrós, Alexandre; Marguí, Eva; Queralt, Ignasi; Casas, Albert

    2014-05-01

    Actually, there are over 300 golf courses and more than three thousand licensed players in Spain. For this reason golf cannot be considered simply a hobby or a sport, but a very significant economic activity. Considered as one of the most rapidly expanding land-use and water demanding business in the Mediterranean, golf course development generates controversy. In the recent years there has been a considerable demand for golf courses to adopt environmentally sustainable strategies and particularly water authorities are forcing by law golf managers to irrigate with alternative water resources, mainly reclaimed wastewater. Watering practices must be based on soil properties that are characterized by samples removed from the different zones of the golf course and submitted to an accredited physical soil testing laboratory. Watering schedules are critical on greens with poor drainage or on greens with excessively high infiltration rates. The geophysical survey was conducted over the greens of the Girona Golf Club. Eighteen electrical resistivity tomographies were acquired using a mixed Wenner-Schlumberger configuration with electrodes placed 0.5 meter apart. Small stainless-steel nails were used as electrodes to avoid any damage in the fine turfgrass of greens The resistivity meter was set for systematically and automatically selects current electrodes and measurement electrodes to sample apparent resistivity values. Particle size analysis (PSA) has been performed on soil materials of any putting green. The PSA analysis has been composed of two distinct phases. The first has been the textural analysis of the soils for determining the content of sand, silt, and clay fraction via the use of a stack of sieves with decreasing sized openings from the top sieve to the bottom. Subsequently, the hydraulic conductivity of the substrates has been evaluated by means of Bredding and Hazen empirical relationships. The results of this research show that the electrical resistivity

  5. GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA

    Science.gov (United States)

    Longuevergne, Laurent; Scanlon, Bridget R.; Wilson, Clark R.

    2010-11-01

    The Gravity Recovery and Climate Experiment (GRACE) satellites provide observations of water storage variation at regional scales. However, when focusing on a region of interest, limited spatial resolution and noise contamination can cause estimation bias and spatial leakage, problems that are exacerbated as the region of interest approaches the GRACE resolution limit of a few hundred km. Reliable estimates of water storage variations in small basins require compromises between competing needs for noise suppression and spatial resolution. The objective of this study was to quantitatively investigate processing methods and their impacts on bias, leakage, GRACE noise reduction, and estimated total error, allowing solution of the trade-offs. Among the methods tested is a recently developed concentration algorithm called spatiospectral localization, which optimizes the basin shape description, taking into account limited spatial resolution. This method is particularly suited to retrieval of basin-scale water storage variations and is effective for small basins. To increase confidence in derived methods, water storage variations were calculated for both CSR (Center for Space Research) and GRGS (Groupe de Recherche de Géodésie Spatiale) GRACE products, which employ different processing strategies. The processing techniques were tested on the intensively monitored High Plains Aquifer (450,000 km2 area), where application of the appropriate optimal processing method allowed retrieval of water storage variations over a portion of the aquifer as small as ˜200,000 km2.

  6. A parameter optimization tool for evaluating the physical consistency of the plot-scale water budget of the integrated eco-hydrological model GEOtop in complex terrain

    Science.gov (United States)

    Bertoldi, Giacomo; Cordano, Emanuele; Brenner, Johannes; Senoner, Samuel; Della Chiesa, Stefano; Niedrist, Georg

    2017-04-01

    In mountain regions, the plot- and catchment-scale water and energy budgets are controlled by a complex interplay of different abiotic (i.e. topography, geology, climate) and biotic (i.e. vegetation, land management) controlling factors. When integrated, physically-based eco-hydrological models are used in mountain areas, there are a large number of parameters, topographic and boundary conditions that need to be chosen. However, data on soil and land-cover properties are relatively scarce and do not reflect the strong variability at the local scale. For this reason, tools for uncertainty quantification and optimal parameters identification are essential not only to improve model performances, but also to identify most relevant parameters to be measured in the field and to evaluate the impact of different assumptions for topographic and boundary conditions (surface, lateral and subsurface water and energy fluxes), which are usually unknown. In this contribution, we present the results of a sensitivity analysis exercise for a set of 20 experimental stations located in the Italian Alps, representative of different conditions in terms of topography (elevation, slope, aspect), land use (pastures, meadows, and apple orchards), soil type and groundwater influence. Besides micrometeorological parameters, each station provides soil water content at different depths, and in three stations (one for each land cover) eddy covariance fluxes. The aims of this work are: (I) To present an approach for improving calibration of plot-scale soil moisture and evapotranspiration (ET). (II) To identify the most sensitive parameters and relevant factors controlling temporal and spatial differences among sites. (III) Identify possible model structural deficiencies or uncertainties in boundary conditions. Simulations have been performed with the GEOtop 2.0 model, which is a physically-based, fully distributed integrated eco-hydrological model that has been specifically designed for mountain

  7. Model Complexities of Shallow Networks Representing Highly Varying Functions

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra; Sanguineti, M.

    2016-01-01

    Roč. 171, 1 January (2016), s. 598-604 ISSN 0925-2312 R&D Projects: GA MŠk(CZ) LD13002 Grant - others:grant for Visiting Professors(IT) GNAMPA-INdAM Institutional support: RVO:67985807 Keywords : shallow networks * model complexity * highly varying functions * Chernoff bound * perceptrons * Gaussian kernel units Subject RIV: IN - Informatics, Computer Science Impact factor: 3.317, year: 2016

  8. Avenues for crowd science in Hydrology.

    Science.gov (United States)

    Koch, Julian; Stisen, Simon

    2016-04-01

    Crowd science describes research that is conducted with the participation of the general public (the crowd) and gives the opportunity to involve the crowd in research design, data collection and analysis. In various fields, scientists have already drawn on underused human resources to advance research at low cost, with high transparency and large acceptance of the public due to the bottom up structure and the participatory process. Within the hydrological sciences, crowd research has quite recently become more established in the form of crowd observatories to generate hydrological data on water quality, precipitation or river flow. These innovative observatories complement more traditional ways of monitoring hydrological data and strengthen a community-based environmental decision making. However, the full potential of crowd science lies in internet based participation of the crowd and it is not yet fully exploited in the field of Hydrology. New avenues that are not primarily based on the outsourcing of labor, but instead capitalize the full potential of human capabilities have to emerge. In multiple realms of solving complex problems, like image detection, optimization tasks, narrowing of possible solutions, humans still remain more effective than computer algorithms. The most successful online crowd science projects Foldit and Galaxy Zoo have proven that the collective of tens of thousands users could clearly outperform traditional computer based science approaches. Our study takes advantage of the well trained human perception to conduct a spatial sensitivity analysis of land-surface variables of a distributed hydrological model to identify the most sensitive spatial inputs. True spatial performance metrics, that quantitatively compare patterns, are not trivial to choose and their applicability is often not universal. On the other hand humans can quickly integrate spatial information at various scales and are therefore a trusted competence. We selected

  9. Hydrological Regimes of Small Catchments in the High Tatra Mountains Before and After Extraordinary Wind-Induced Deforestation

    Science.gov (United States)

    Holko, Ladislav; Hlavata, Helena; Kostka, Zdenek; Novak, Jan

    2009-01-01

    The paper presents the results of rainfall-runoff data analysis for small catchments of the upper Poprad River affected by wind-induced deforestation in November 2004. Before-event and afterevent measured data were compared in order to assess the impact of deforestation on hydrological regimes. Several characteristics were used including water balance, minimum and maximum runoff, runoff thresholds, number of runoff events, selected characteristics of events, runoff coefficients, and flashiness indices. Despite increased spring runoff minima, which in one catchment (Velick Creek) exceeded previously observed values after deforestation took place, it can be generally concluded that the impact of the deforestation was not clearly manifested in the analyzed hydrological data.

  10. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology.

    Science.gov (United States)

    Tompkins, Adrian M; Ermert, Volker

    2013-02-18

    The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.

  11. Convergent evolution of complex brains and high intelligence.

    Science.gov (United States)

    Roth, Gerhard

    2015-12-19

    Within the animal kingdom, complex brains and high intelligence have evolved several to many times independently, e.g. among ecdysozoans in some groups of insects (e.g. blattoid, dipteran, hymenopteran taxa), among lophotrochozoans in octopodid molluscs, among vertebrates in teleosts (e.g. cichlids), corvid and psittacid birds, and cetaceans, elephants and primates. High levels of intelligence are invariantly bound to multimodal centres such as the mushroom bodies in insects, the vertical lobe in octopodids, the pallium in birds and the cerebral cortex in primates, all of which contain highly ordered associative neuronal networks. The driving forces for high intelligence may vary among the mentioned taxa, e.g. needs for spatial learning and foraging strategies in insects and cephalopods, for social learning in cichlids, instrumental learning and spatial orientation in birds and social as well as instrumental learning in primates. © 2015 The Author(s).

  12. The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik

    2015-01-16

    We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many of the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.

  13. Technical note: Representing glacier geometry changes in a semi-distributed hydrological model

    Directory of Open Access Journals (Sweden)

    J. Seibert

    2018-04-01

    Full Text Available Glaciers play an important role in high-mountain hydrology. While changing glacier areas are considered of highest importance for the understanding of future changes in runoff, glaciers are often only poorly represented in hydrological models. Most importantly, the direct coupling between the simulated glacier mass balances and changing glacier areas needs feasible solutions. The use of a complex glacier model is often not possible due to data and computational limitations. The Δh parameterization is a simple approach to consider the spatial variation of glacier thickness and area changes. Here, we describe a conceptual implementation of the Δh parameterization in the semi-distributed hydrological model HBV-light, which also allows for the representation of glacier advance phases and for comparison between the different versions of the implementation. The coupled glacio-hydrological simulation approach, which could also be implemented in many other semi-distributed hydrological models, is illustrated based on an example application.

  14. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity

    Directory of Open Access Journals (Sweden)

    G. Baroni

    2010-02-01

    Full Text Available Data of soil hydraulic properties forms often a limiting factor in unsaturated zone modelling, especially at the larger scales. Investigations for the hydraulic characterization of soils are time-consuming and costly, and the accuracy of the results obtained by the different methodologies is still debated. However, we may wonder how the uncertainty in soil hydraulic parameters relates to the uncertainty of the selected modelling approach. We performed an intensive monitoring study during the cropping season of a 10 ha maize field in Northern Italy. The data were used to: i compare different methods for determining soil hydraulic parameters and ii evaluate the effect of the uncertainty in these parameters on different variables (i.e. evapotranspiration, average water content in the root zone, flux at the bottom boundary of the root zone simulated by two hydrological models of different complexity: SWAP, a widely used model of soil moisture dynamics in unsaturated soils based on Richards equation, and ALHyMUS, a conceptual model of the same dynamics based on a reservoir cascade scheme. We employed five direct and indirect methods to determine soil hydraulic parameters for each horizon of the experimental profile. Two methods were based on a parameter optimization of: a laboratory measured retention and hydraulic conductivity data and b field measured retention and hydraulic conductivity data. The remaining three methods were based on the application of widely used Pedo-Transfer Functions: c Rawls and Brakensiek, d HYPRES, and e ROSETTA. Simulations were performed using meteorological, irrigation and crop data measured at the experimental site during the period June – October 2006. Results showed a wide range of soil hydraulic parameter values generated with the different methods, especially for the saturated hydraulic conductivity Ksat and the shape parameter α of the van Genuchten curve. This is reflected in a variability of

  15. Uncertainty in hydrological change modelling

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige

    applied at the grid scale. Flux and state hydrological outputs which integrate responses over time and space showed more sensitivity to precipitation mean spatial biases and less so on extremes. In the investigated catchments, the projected change of groundwater levels and basin discharge between current......Hydrological change modelling methodologies generally use climate models outputs to force hydrological simulations under changed conditions. There are nested sources of uncertainty throughout this methodology, including choice of climate model and subsequent bias correction methods. This Ph.......D. study evaluates the uncertainty of the impact of climate change in hydrological simulations given multiple climate models and bias correction methods of varying complexity. Three distribution based scaling methods (DBS) were developed and benchmarked against a more simplistic and commonly used delta...

  16. Snow cover dynamics and water balance in complex high alpine terrain

    Science.gov (United States)

    Warscher, Michael; Kraller, Gabriele; Kunstmann, Harald; Strasser, Ulrich; Franz, Helmut

    2010-05-01

    The water balance in high alpine regions in its full complexity is so far insufficiently understood. High altitudinal gradients, a strong variability of meteorological variables in time and space, complex hydrogeological situations, unquantified lateral snow transport processes and heterogenous snow cover dynamics result in high uncertainties in the quantification of the water balance. To achieve interpretable modeling results we have complemented the deterministic hydrological model WaSiM-ETH with the high-alpine specific snow model AMUNDSEN. The integration of the new snow module was done to improve the modeling of water fluxes influenced by the dynamics of the snow cover, which greatly affect the water cycle in high alpine regions. To enhance the reproduction of snow deposition and ablation processes, the new approach calculates the energy balance of the snow cover considering the terrain-dependent radiation fluxes, the interaction between tree canopy and snow cover as well as lateral snow transport processes. The test site for our study is the Berchtesgaden National Park which is characterized by an extreme topography with mountain ranges covering an altitude from 607 to 2713 m.a.s.l. About one quarter of the investigated catchment area, which comprises 433 km² in total, is terrain steeper than 35°. Due to water soluble limestone being predominant in the region, a high number of subsurface water pathways (karst) exist. The results of several tracer experiments and extensive data of spring observations provide additional information to meet the challenge of modeling the unknown subsurface pathways and the complex groundwater system of the region. The validation of the new snow module is based on a dense network of meteorological stations which have been adapted to measure physical properties of the snow cover like snow water equivalent and liquid water content. We will present first results which show that the integration of the new snow module generates a

  17. Complex correlation approach for high frequency financial data

    Science.gov (United States)

    Wilinski, Mateusz; Ikeda, Yuichi; Aoyama, Hideaki

    2018-02-01

    We propose a novel approach that allows the calculation of a Hilbert transform based complex correlation for unevenly spaced data. This method is especially suitable for high frequency trading data, which are of a particular interest in finance. Its most important feature is the ability to take into account lead-lag relations on different scales, without knowing them in advance. We also present results obtained with this approach while working on Tokyo Stock Exchange intraday quotations. We show that individual sectors and subsectors tend to form important market components which may follow each other with small but significant delays. These components may be recognized by analysing eigenvectors of complex correlation matrix for Nikkei 225 stocks. Interestingly, sectorial components are also found in eigenvectors corresponding to the bulk eigenvalues, traditionally treated as noise.

  18. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila.

    Directory of Open Access Journals (Sweden)

    Praveen Balabaskaran Nina

    2010-07-01

    Full Text Available The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1 sector catalyzes ATP synthesis, whereas the F(o sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1 and F(o sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the F(o sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a

  19. High-level waste program integration within the DOE complex

    International Nuclear Information System (INIS)

    Valentine, J.H.; Malone, K.; Schaus, P.S.

    1998-03-01

    Eleven major Department of Energy (DOE) site contractors were chartered by the Assistant Secretary to use a systems engineering approach to develop and evaluate technically defensible cost savings opportunities across the complex. Known as the complex-wide Environmental Management Integration (EMI), this process evaluated all the major DOE waste streams including high level waste (HLW). Across the DOE complex, this waste stream has the highest life cycle cost and is scheduled to take until at least 2035 before all HLW is processed for disposal. Technical contract experts from the four DOE sites that manage high level waste participated in the integration analysis: Hanford, Savannah River Site (SRS), Idaho National Engineering and Environmental Laboratory (INEEL), and West Valley Demonstration Project (WVDP). In addition, subject matter experts from the Yucca Mountain Project and the Tanks Focus Area participated in the analysis. Also, departmental representatives from the US Department of Energy Headquarters (DOE-HQ) monitored the analysis and results. Workouts were held throughout the year to develop recommendations to achieve a complex-wide integrated program. From this effort, the HLW Environmental Management (EM) Team identified a set of programmatic and technical opportunities that could result in potential cost savings and avoidance in excess of $18 billion and an accelerated completion of the HLW mission by seven years. The cost savings, schedule improvements, and volume reduction are attributed to a multifaceted HLW treatment disposal strategy which involves waste pretreatment, standardized waste matrices, risk-based retrieval, early development and deployment of a shipping system for glass canisters, and reasonable, low cost tank closure

  20. Hydrological differentiation and spatial distribution of high altitude wetlands in a semi-arid Andean region derived from satellite data

    Directory of Open Access Journals (Sweden)

    M. Otto

    2011-05-01

    Full Text Available High Altitude Wetlands of the Andes (HAWA belong to a unique type of wetland within the semi-arid high Andean region. Knowledge about HAWA has been derived mainly from studies at single sites within different parts of the Andes at only small time scales. On the one hand, HAWA depend on water provided by glacier streams, snow melt or precipitation. On the other hand, they are suspected to influence hydrology through water retention and vegetation growth altering stream flow velocity. We derived HAWA land cover from satellite data at regional scale and analysed changes in connection with precipitation over the last decade. Perennial and temporal HAWA subtypes can be distinguished by seasonal changes of photosynthetically active vegetation (PAV indicating the perennial or temporal availability of water during the year. HAWA have been delineated within a region of 12 800 km2 situated in the Northwest of Lake Titicaca. The multi-temporal classification method used Normalized Differenced Vegetation Index (NDVI and Normalized Differenced Infrared Index (NDII data derived from two Landsat ETM+ scenes at the end of austral winter (September 2000 and at the end of austral summer (May 2001. The mapping result indicates an unexpected high abundance of HAWA covering about 800 km2 of the study region (6 %. Annual HAWA mapping was computed using NDVI 16-day composites of Moderate Resolution Imaging Spectroradiometer (MODIS. Analyses on the relation between HAWA and precipitation was based on monthly precipitation data of the Tropical Rain Measurement Mission (TRMM 3B43 and MODIS Eight Day Maximum Snow Extent data (MOD10A2 from 2000 to 2010. We found HAWA subtype specific dependencies on precipitation conditions. A strong relation exists between perennial HAWA and snow fall (r2: 0.82 in dry austral winter months (June to August and between temporal HAWA and precipitation (r2: 0.75 during austral summer

  1. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

    International Nuclear Information System (INIS)

    Bedinger, M.S.; Sargent, K.A.; Reed, J.E.

    1984-01-01

    The US Geological Survey's program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab

  2. Collective space of high-rise housing complex

    Directory of Open Access Journals (Sweden)

    Bakaeva Tatyana

    2018-01-01

    Full Text Available The article considers the problems of support of citizens a comfortable living environment in the conditions of the limited territory of the megalopolis, the typological principles of formation of space-planning structure high-rise residence complexes with public space. The collective space for residents of high-rise housing estates on the example of international experience of design and construction is in detail considered. The collective space and the area of the standard apartment are analysed on comfort classes: a social - complex Pinnacle @ Duxton, a business - Monde Condos and an elite - Hamilton Scotts. Interdependence the area of the standard flat and the total area of housing collective space, in addiction on the comfort level, is revealed. In the conditions of high-density urban development, the collective space allows to form the comfortable environment for accommodation. The recommendations for achievement of integrity and improvement of quality of the city environment are made. The convenient collective space makes a contribution to civil policy, it creates the socializing sense of interaction of residents, coagulates social effect.

  3. Collective space of high-rise housing complex

    Science.gov (United States)

    Bakaeva, Tatyana

    2018-03-01

    The article considers the problems of support of citizens a comfortable living environment in the conditions of the limited territory of the megalopolis, the typological principles of formation of space-planning structure high-rise residence complexes with public space. The collective space for residents of high-rise housing estates on the example of international experience of design and construction is in detail considered. The collective space and the area of the standard apartment are analysed on comfort classes: a social - complex Pinnacle @ Duxton, a business - Monde Condos and an elite - Hamilton Scotts. Interdependence the area of the standard flat and the total area of housing collective space, in addiction on the comfort level, is revealed. In the conditions of high-density urban development, the collective space allows to form the comfortable environment for accommodation. The recommendations for achievement of integrity and improvement of quality of the city environment are made. The convenient collective space makes a contribution to civil policy, it creates the socializing sense of interaction of residents, coagulates social effect.

  4. High Molecular Weight Forms of Mammalian Respiratory Chain Complex II

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Nikola; Mráček, Tomáš; Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Klučková, Katarína; Rohlena, Jakub; Neužil, Jiří; Houštěk, Josef

    2013-01-01

    Roč. 8, č. 8 (2013), e71869 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GPP303/10/P227; GA MŠk(CZ) LL1204; GA MZd(CZ) NT12370; GA ČR(CZ) GAP301/10/1937 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:67985823 Keywords : supercomplexes * high molecular weihgt forms of complex II * native electrophoretic systems Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  5. Patterning of high mobility electron gases at complex oxide interfaces

    DEFF Research Database (Denmark)

    Trier, Felix; Prawiroatmodjo, G. E. D. K.; von Soosten, Merlin

    2015-01-01

    Oxide interfaces provide an opportunity for electronics. However, patterning of electron gases at complex oxide interfaces is challenging. In particular, patterning of complex oxides while preserving a high electron mobility remains underexplored and inhibits the study of quantum mechanical effects...... of amorphous-LSM (a-LSM) thin films, which acts as a hard mask during subsequent depositions. Strikingly, the patterned modulation-doped interface shows electron mobilities up to ∼8 700 cm2/V s at 2 K, which is among the highest reported values for patterned conducting complex oxide interfaces that usually...... where extended electron mean free paths are paramount. This letter presents an effective patterning strategy of both the amorphous-LaAlO3/SrTiO3 (a-LAO/STO) and modulation-doped amorphous-LaAlO3/La7/8Sr1/8MnO3/SrTiO3 (a-LAO/LSM/STO) oxide interfaces. Our patterning is based on selective wet etching...

  6. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways.

    Directory of Open Access Journals (Sweden)

    Karin Voordeckers

    2015-11-01

    Full Text Available Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts.

  7. Teaching geographical hydrology in a non-stationary world

    Science.gov (United States)

    Hendriks, Martin R.; Karssenberg, Derek

    2010-05-01

    Understanding hydrological processes in a non-stationary world requires knowledge of hydrological processes and their interactions. Also, one needs to understand the (non-linear) relations between the hydrological system and other parts of our Earth system, such as the climate system, the socio-economic system, and the ecosystem. To provide this knowledge and understanding we think that three components are essential when teaching geographical hydrology. First of all, a student needs to acquire a thorough understanding of classical hydrology. For this, knowledge of the basic hydrological equations, such as the energy equation (Bernoulli), flow equation (Darcy), continuity (or water balance) equation is needed. This, however, is not sufficient to make a student fully understand the interactions between hydrological compartments, or between hydrological subsystems and other parts of the Earth system. Therefore, secondly, a student also needs to be knowledgeable of methods by which the different subsystems can be coupled; in general, numerical models are used for this. A major disadvantage of numerical models is their complexity. A solution may be to use simpler models, provided that a student really understands how hydrological processes function in our real, non-stationary world. The challenge for a student then lies in understanding the interactions between the subsystems, and to be able to answer questions such as: what is the effect of a change in vegetation or land use on runoff? Thirdly, knowledge of field hydrology is of utmost importance. For this a student needs to be trained in the field. Fieldwork is very important as a student is confronted in the field with spatial and temporal variability, as well as with real life uncertainties, rather than being lured into believing the world as presented in hydrological textbooks and models, e.g. the world under study is homogeneous, isotropic, or lumped (averaged). Also, students in the field learn to plan and

  8. Hydrology team

    Science.gov (United States)

    Ragan, R.

    1982-01-01

    General problems faced by hydrologists when using historical records, real time data, statistical analysis, and system simulation in providing quantitative information on the temporal and spatial distribution of water are related to the limitations of these data. Major problem areas requiring multispectral imaging-based research to improve hydrology models involve: evapotranspiration rates and soil moisture dynamics for large areas; the three dimensional characteristics of bodies of water; flooding in wetlands; snow water equivalents; runoff and sediment yield from ungaged watersheds; storm rainfall; fluorescence and polarization of water and its contained substances; discriminating between sediment and chlorophyll in water; role of barrier island dynamics in coastal zone processes; the relationship between remotely measured surface roughness and hydraulic roughness of land surfaces and stream networks; and modeling the runoff process.

  9. Global hydrology 2015: State, trends, and directions

    NARCIS (Netherlands)

    Bierkens, Marc F. P.

    Global hydrology has come a long way since the first introduction of the primitive land surface model of Manabe (1969) and the declaration of the “Emergence of Global Hydrology” by Eagleson (1986). Hydrological submodels of varying complexity are now part of global climate models, of models

  10. High-temperature carbonates in the Stillwater Complex, Montana, USA

    Science.gov (United States)

    Aird, H. M.; Boudreau, A. E.

    2012-12-01

    The processes involved in the petrogenesis of the sulphide-hosted platinum-group-element (PGE) deposits of the Stillwater Complex are controversial, with theories ranging from the purely magmatic to those involving an aqueous fluid. To further constrain these models, we have been examining the trace phase assemblages in rocks away from the ore zones. High-temperature carbonates have been observed in association with sulphide minerals below the platiniferous J-M Reef of the Stillwater Complex. The carbonate assemblage consists of dolomite with exsolved calcite and is found in contact with sulphide minerals: chalcopyrite and pyrrhotite in the Peridotite Zone; and pyrrhotite with pentlandite, pyrite and chalcopyrite in Gabbronorite I of the Lower Banded Series. The minimal silicate alteration and the lack of greenschist minerals in association with the mineral assemblage are consistent with a high-temperature origin for the carbonates. The calcite-dolomite geothermometer [1] yields a minimum formation temperature of ~900°C for the unmixed assemblages. A reaction rim surrounds the carbonate-sulphide assemblages, showing an alteration of the host orthopyroxene to a more Ca-enriched, Fe-depleted composition. This is consistent with diffusive exchange between carbonates and pyroxenes at high temperatures, mediated by an aqueous fluid. The highly variable molar MnO/FeO ratios in both the high-temperature carbonates and their associated altered pyroxene rims also imply their interaction with a fluid. The carbonate assemblages are consistent with Stillwater fluid inclusion studies [2], showing that fluids comprising coexisting Cl-rich brine and carbonic fluid were trapped in pegmatitic quartz at 700-715°C, some of which also contained "accidental" calcite inclusions. The high Cl-content of apatite [3] found below the platiniferous J-M Reef is further evidence that a Cl-rich fluid was migrating through the rocks beneath the Reef. Carbonates have been shown to be stabilized

  11. Hydrological response to climate change in a glaciated catchment in the Himalayas

    NARCIS (Netherlands)

    Immerzeel, W.W.; Beek, L.P.H. van; Konz, M.; Shresta, A.B.; Bierkens, M.F.P.

    2012-01-01

    The analysis of climate change impact on the hydrology of high altitude glacierized catchments in the Himalayas is complex due to the high variability in climate, lack of data, large uncertainties in climate change projection and uncertainty about the response of glaciers. Therefore a high

  12. Assessment of Evolving TRMM-Based Real-Time Precipitation Estimation Methods and Their Impacts on Hydrologic Prediction in a High-Latitude Basin

    Science.gov (United States)

    Yong, Bin; Hong, Yang; Ren, Li-Liang; Gourley, Jonathan; Huffman, George J.; Chen, Xi; Wang, Wen; Khan, Sadiq I.

    2013-01-01

    The real-time availability of satellite-derived precipitation estimates provides hydrologists an opportunity to improve current hydrologic prediction capability for medium to large river basins. Due to the availability of new satellite data and upgrades to the precipitation algorithms, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time estimates (TMPA-RT) have been undergoing several important revisions over the past ten years. In this study, the changes of the relative accuracy and hydrologic potential of TMPA-RT estimates over its three major evolving periods were evaluated and inter-compared at daily, monthly and seasonal scales in the high-latitude Laohahe basin in China. Assessment results show that the performance of TMPA-RT in terms of precipitation estimation and streamflow simulation was significantly improved after 3 February 2005. Overestimation during winter months was noteworthy and consistent, which is suggested to be a consequence from interference of snow cover to the passive microwave retrievals. Rainfall estimated by the new version 6 of TMPA-RT starting from 1 October 2008 to present has higher correlations with independent gauge observations and tends to perform better in detecting rain compared to the prior periods, although it suffers larger mean error and relative bias. After a simple bias correction, this latest dataset of TMPA-RT exhibited the best capability in capturing hydrologic response among the three tested periods. In summary, this study demonstrated that there is an increasing potential in the use of TMPA-RT in hydrologic streamflow simulations over its three algorithm upgrade periods, but still with significant challenges during the winter snowing events.

  13. HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS

    International Nuclear Information System (INIS)

    Guyon, Olivier; Martinache, Frantz; Belikov, Ruslan; Soummer, Remi

    2010-01-01

    We describe a coronagraph approach where the performance of a Phase-Induced Amplitude Apodization (PIAA) coronagraph is improved by using a partially transmissive phase-shifting focal plane mask and a Lyot stop. This approach combines the low inner working angle offered by phase mask coronagraphy, the full throughput and uncompromized angular resolution of the PIAA approach, and the design flexibility of Apodized Pupil Lyot Coronagraph. A PIAA complex mask coronagraph (PIAACMC) is fully described by the focal plane mask size, or, equivalently, its complex transmission which ranges from 0 (opaque) to -1 (phase shifting). For all values of the transmission, the PIAACMC theoretically offers full on-axis extinction and 100% throughput at large angular separations. With a pure phase focal plane mask (complex transmission = -1), the PIAACMC offers 50% throughput at 0.64 λ/D while providing total extinction of an on-axis point source. This performance is very close to the 'fundamental performance limit' of coronagraphy derived from first principles. For very high contrast level, imaging performance with PIAACMC is in practice limited by the angular size of the on-axis target (usually a star). We show that this fundamental limitation must be taken into account when choosing the optimal value of the focal plane mask size in the PIAACMC design. We show that the PIAACMC enables visible imaging of Jupiter-like planets at ∼1.2 λ/D from the host star, and can therefore offer almost three times more targets than a PIAA coronagraph optimized for this type of observation. We find that for visible imaging of Earth-like planets, the PIAACMC gain over a PIAA is probably much smaller, as coronagraphic performance is then strongly constrained by stellar angular size. For observations at 'low' contrast (below ∼ 10 8 ), the PIAACMC offers significant performance enhancement over PIAA. This is especially relevant for ground-based high contrast imaging systems in the near-IR, where

  14. Hydrological AnthropoScenes

    Science.gov (United States)

    Cudennec, Christophe

    2016-04-01

    The Anthropocene concept encapsulates the planetary-scale changes resulting from accelerating socio-ecological transformations, beyond the stratigraphic definition actually in debate. The emergence of multi-scale and proteiform complexity requires inter-discipline and system approaches. Yet, to reduce the cognitive challenge of tackling this complexity, the global Anthropocene syndrome must now be studied from various topical points of view, and grounded at regional and local levels. A system approach should allow to identify AnthropoScenes, i.e. settings where a socio-ecological transformation subsystem is clearly coherent within boundaries and displays explicit relationships with neighbouring/remote scenes and within a nesting architecture. Hydrology is a key topical point of view to be explored, as it is important in many aspects of the Anthropocene, either with water itself being a resource, hazard or transport force; or through the network, connectivity, interface, teleconnection, emergence and scaling issues it determines. We will schematically exemplify these aspects with three contrasted hydrological AnthropoScenes in Tunisia, France and Iceland; and reframe therein concepts of the hydrological change debate. Bai X., van der Leeuw S., O'Brien K., Berkhout F., Biermann F., Brondizio E., Cudennec C., Dearing J., Duraiappah A., Glaser M., Revkin A., Steffen W., Syvitski J., 2016. Plausible and desirable futures in the Anthropocene: A new research agenda. Global Environmental Change, in press, http://dx.doi.org/10.1016/j.gloenvcha.2015.09.017 Brondizio E., O'Brien K., Bai X., Biermann F., Steffen W., Berkhout F., Cudennec C., Lemos M.C., Wolfe A., Palma-Oliveira J., Chen A. C-T. Re-conceptualizing the Anthropocene: A call for collaboration. Global Environmental Change, in review. Montanari A., Young G., Savenije H., Hughes D., Wagener T., Ren L., Koutsoyiannis D., Cudennec C., Grimaldi S., Blöschl G., Sivapalan M., Beven K., Gupta H., Arheimer B., Huang Y

  15. Benchmarking observational uncertainties for hydrology (Invited)

    Science.gov (United States)

    McMillan, H. K.; Krueger, T.; Freer, J. E.; Westerberg, I.

    2013-12-01

    There is a pressing need for authoritative and concise information on the expected error distributions and magnitudes in hydrological data, to understand its information content. Many studies have discussed how to incorporate uncertainty information into model calibration and implementation, and shown how model results can be biased if uncertainty is not appropriately characterised. However, it is not always possible (for example due to financial or time constraints) to make detailed studies of uncertainty for every research study. Instead, we propose that the hydrological community could benefit greatly from sharing information on likely uncertainty characteristics and the main factors that control the resulting magnitude. In this presentation, we review the current knowledge of uncertainty for a number of key hydrological variables: rainfall, flow and water quality (suspended solids, nitrogen, phosphorus). We collated information on the specifics of the data measurement (data type, temporal and spatial resolution), error characteristics measured (e.g. standard error, confidence bounds) and error magnitude. Our results were primarily split by data type. Rainfall uncertainty was controlled most strongly by spatial scale, flow uncertainty was controlled by flow state (low, high) and gauging method. Water quality presented a more complex picture with many component errors. For all variables, it was easy to find examples where relative error magnitude exceeded 40%. We discuss some of the recent developments in hydrology which increase the need for guidance on typical error magnitudes, in particular when doing comparative/regionalisation and multi-objective analysis. Increased sharing of data, comparisons between multiple catchments, and storage in national/international databases can mean that data-users are far removed from data collection, but require good uncertainty information to reduce bias in comparisons or catchment regionalisation studies. Recently it has

  16. Hydrological and vegetational response to the Younger Dryas climatic oscillations: a high resolution case study from Quoyloo Meadow, Orkney, Scotland

    Science.gov (United States)

    Maas, David; Abrook, Ashley; Timms, Rhys; Matthews, Ian; Palmer, Adrian; Milner, Alice; Candy, Ian; Sachse, Dirk

    2016-04-01

    macrotephra study (Timms et al in prep). References: Bunting, M.J., 1994, Vegetation history of Orkney, Scotland: pollen records from two small basins in west Mainland, New Phytologist, Vol 128, p 771-792 Castañeda, I.S., Mulitza, S., Schefuß, E., Lopes dos Santos, R.A., Sinninghe Damsté, J.S. and Schouten, S. (2009) Wet phases in the Sahara/Sahel region and human migration patterns in North Africa, Proceedings of the National Academy of Sciences, Vol 106, p 20159 - 20163, Supporting Information: 10.1073/pnas.0905771106 Rach, O., Brauer, A., Wilkes, H. and Sachse, D. (2014) Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe, Nature Geoscience, Vol 7, p 109 - 112 Timms, R.G.O., Matthews, I.P., Palmer, A.P., and Candy, I (in prep), A high resolution tephrostratigraphy from Quoyloo Meadow, Orkney, Scotland: Implications for tephrostratigraphic refinement in the Last Glacial - Interglacial Transition (ca. 16-8 ka) [working title

  17. Wetland Hydrology | Science Inventory | US EPA

    Science.gov (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  18. Statistical mechanics of complex neural systems and high dimensional data

    International Nuclear Information System (INIS)

    Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya

    2013-01-01

    Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks. (paper)

  19. What can high frequency data tell us about hydrological and biogeochemical processes in a permafrost-underlain watershed that we do not already know?

    Science.gov (United States)

    Carey, S. K.; Shatilla, N. J.; Tang, W.

    2017-12-01

    Permafrost and frozen ground play a key role in the delivery of water and solutes from the landscape to the stream, and in biogeochemical cycling by acting as a cold season or semi-permanent aquitard. Conceptual models of permafrost hydrology have been well defined for over 40 years, yet renewed interest in the face of global climate change and rapid degradation of frozen ground has provided an opportunity to revisit previous paradigms. At the same time, new instruments and techniques to understand coupled hydrological and biogeochemical processes have emerged, providing a more nuanced view of northern systems. High-frequency sub-hourly measures of flows, water quality and biogeochemical parameters such as salinity and chromophoric dissolved organic matter (CDOM), along with eddy covariance systems provide considerable data, yet using this data to reveal new process information remains challenging. In this presentation, multi-year high frequency data sets of water, solute and carbon fluxes from Granger Creek, an instrumented alpine watershed with discontinuous permafrost within the Wolf Creek Research Basin, Yukon Territory, Canada, will be shown. While several decades of hydrometric and geochemical data exist for Granger Creek, inter-annual variability is considerable and makes evaluating long-term trends difficult. Insights derived from high-frequency sub-hourly salinity, CDOM and flow over recent years reveal that hysteresis loops among variables can be used to assess changing connectivity and flow paths as both magnitude and direction of loops can be used to infer landscape-scale linkages. These patterns highlight spatial connections among landscape units not previously observed, and identify periods when hydrological and biogeochemical cycles are coupled. Evaluation of these patterns at the headwater scale provides alternate hypotheses for how permafrost landscapes will respond to a changing climate.

  20. Towards a delimitation of southwestern Nigeria into hydrological regions

    Science.gov (United States)

    Ogunkoya, O. O.

    1988-05-01

    Fifteen third-order drainage basins (1:50,000) on the Basement Complex rocks of southwestern Nigeria are classified into hydrological regions using hydrologic response parameters of average daily mean specific discharge ( QA); daily mean specific discharges equalled or exceeded 90% ( Q90), 50% ( Q50) and 10% ( Q10) of the study period; variability index of flow ( VI); recession constant ( K) of flow from peak discharge at the end of the rainy season to minimum discharge in the dry season; total annual runoff ( RO); total runoff within the dry season ( DSRO); dry season runoff as a percentage of total annual runoff (% DSRO); runoff coefficient ( ROC); and, number of days during the study period when there was no flow ( NFD). An ordination technique and a classification algorithm derived from cluster analysis technique and incorporating the analysis of variance (ANOVA) tests to determine the level of significance of the homogeneity of derived classes, were used to classify the fifteen basins into five hydrologically homogeneous regions. The constituent basins of each region were observed to share common basin geology. It was observed that those drainage basins having at least 50% of their basin area underlain by quartzitic rocks form two groups and have the most desirable or optimal hydrologic response patterns, desirability or optimality being in terms of ability to potentially meet water resource development requirements (i.e. high perennial discharge, low variability and large groundwater contribution to stream flow). The basins predominantly underlain by granite-gneisses and amphibolitic rocks have much poorer hydrologic response patterns. Hydrological regionalization in southwestern Nigeria appears to be influenced by drainage basin geology while percentage area of the basin underlain by massive quartzites could be used as an index of occurrence of desirable hydrologic response pattern.

  1. Objective high Resolution Analysis over Complex Terrain with VERA

    Science.gov (United States)

    Mayer, D.; Steinacker, R.; Steiner, A.

    2012-04-01

    VERA (Vienna Enhanced Resolution Analysis) is a model independent, high resolution objective analysis of meteorological fields over complex terrain. This system consists of a special developed quality control procedure and a combination of an interpolation and a downscaling technique. Whereas the so called VERA-QC is presented at this conference in the contribution titled "VERA-QC, an approved Data Quality Control based on Self-Consistency" by Andrea Steiner, this presentation will focus on the method and the characteristics of the VERA interpolation scheme which enables one to compute grid point values of a meteorological field based on irregularly distributed observations and topography related aprior knowledge. Over a complex topography meteorological fields are not smooth in general. The roughness which is induced by the topography can be explained physically. The knowledge about this behavior is used to define the so called Fingerprints (e.g. a thermal Fingerprint reproducing heating or cooling over mountainous terrain or a dynamical Fingerprint reproducing positive pressure perturbation on the windward side of a ridge) under idealized conditions. If the VERA algorithm recognizes patterns of one or more Fingerprints at a few observation points, the corresponding patterns are used to downscale the meteorological information in a greater surrounding. This technique allows to achieve an analysis with a resolution much higher than the one of the observational network. The interpolation of irregularly distributed stations to a regular grid (in space and time) is based on a variational principle applied to first and second order spatial and temporal derivatives. Mathematically, this can be formulated as a cost function that is equivalent to the penalty function of a thin plate smoothing spline. After the analysis field has been divided into the Fingerprint components and the unexplained part respectively, the requirement of a smooth distribution is applied to the

  2. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  3. The effects of hydrological dynamics on benthic diatom community structure in a highly stratified estuary: The case of the Ebro Estuary (Catalonia, Spain)

    Science.gov (United States)

    Rovira, L.; Trobajo, R.; Leira, M.; Ibáñez, C.

    2012-04-01

    This study of the distribution of benthic diatom assemblages and their relationship with environmental factors in a highly stratified Mediterranean estuary, i.e. the Ebro Estuary, shows the importance of hydrological dynamics to explain the features of the diatom community in such an estuary, where river flow magnitude and fluctuations imply strong physicochemical variability especially in sites close to the sea. Eight sites along the estuary were sampled during 2007-2008 both at superficial and deep water layers, in order to gather both horizontal and vertical estuarine physicochemical and hydrological gradients. Canonical Variates Analysis and Hierarchical Cluster Analysis segregated diatom community in two assemblages depending on the dynamics of the salt-wedge. The diatom assemblages of riverine conditions (i.e. without salt-wedge influence) where characterised by high abundances of Cocconeis placentula var. euglypta and Amphora pediculus, meanwhile high abundances of Nizschia frustulum and Nitzschia inconspicua were characteristic of estuarine conditions (i.e. under salt-wedge influence). Redundancy Analysis showed that both diatom assemblages responded seasonally to Ebro River flows, especially in estuarine conditions, where fluctuating conditions affected diatom assemblages both at spatial and temporal scale.

  4. A New Boundary for the High Plains - Ogallala Aquifer Complex

    Science.gov (United States)

    Haacker, E. M.; Nozari, S.; Kendall, A. D.

    2017-12-01

    In the semi-arid Great Plains, water is the key ingredient for crop growth: the difference between meager yields for many crops and an agricultural bonanza. The High Plains-Ogallala Aquifer complex (HPA) underlies 452,000 square kilometers of the region, and over 95% of water withdrawn from the aquifer is used for irrigation. Much of the HPA is being pumped unsustainably, and since the region is heavily reliant on this resource for its social and economic health, the High Plains has been a leader in groundwater management planning. However, the geographic boundary of the High Plains region fails to reflect the hydrogeological realities of the aquifer. The current boundary, recognizable from countless textbooks and news articles, is only slightly modified from a version from the 1980's, and largely follows the physiographic borders of the High Plains - defined by surface features such as escarpments and rivers - rather than the edges of water-bearing sediment sufficient for high-volume pumping. This is supported by three lines of evidence: hydrogeological observations from the original aquifer boundary determination; the extent of irrigated land, as estimated by MODIS-MIrAD data; and statistical estimates of saturated thickness, incorporating improved maps of the aquifer base and an additional 35 years of water table measurements. In this project, new maps of saturated thickness are used to create an updated aquifer boundary, which conforms with the standard definition of an aquifer as a package of sediment that yields enough water to be economically pumped. This has major implications for social and physical models, as well as water planning and estimates of sustainability for the HPA. Much of the area of the HPA that has been labeled `sustainable' based upon estimates of recharge relative to pumping estimates falls outside the updated aquifer boundary. In reality, the sustainably-pumped area of this updated aquifer boundary is far smaller—a fact that if more

  5. INTEGRATING GEOPHYSICS, GEOLOGY, AND HYDROLOGY TO DETERMINE BEDROCK GEOMETRY CONTROLS ON THE ORIGIN OF ISOLATED MEADOW COMPLEXES WITHIN THE CENTRAL GREAT BASIN, NEVADA

    Science.gov (United States)

    Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...

  6. Compliance and High Reliability in a Complex Healthcare Organization.

    Science.gov (United States)

    Simon, Maxine dellaBadia

    2018-01-01

    When considering the impact of regulation on healthcare, visualize a spider's web. The spider weaves sections together to create the whole, with each fiber adding to the structure to support its success or lead to its failure. Each section is dependent on the others, and all must be aligned to maintain the structure. Outside forces can cause a shift in the web's fragile equilibrium.The interdependence of the sections of the spider's web is similar to the way hospital departments and services work together. An organization's structure must be shaped to support its mission and vision. At the same time, the business of healthcare requires the development and achievement of operational objectives and financial performance goals. Establishing a culture that is flexible enough to permit creativity, provide resiliency, and manage complexity as the organization grows is fundamental to success. An organization must address each of these factors while maintaining stability, carrying out its mission, and fostering improvement.Nature's order maintains the spider's web. Likewise, regulation can strengthen healthcare organizations by initiating disruptive changes that can support efforts to achieve and sustain high reliability in the delivery of care. To that end, leadership must be willing to provide the necessary vision and resources.

  7. Architecture of high reliable control systems using complex software

    International Nuclear Information System (INIS)

    Tallec, M.

    1990-01-01

    The problems involved by the use of complex softwares in control systems that must insure a very high level of safety are examined. The first part makes a brief description of the prototype of PROSPER system. PROSPER means protection system for nuclear reactor with high performances. It has been installed on a French nuclear power plant at the beginnning of 1987 and has been continually working since that time. This prototype is realized on a multi-processors system. The processors communicate between themselves using interruptions and protected shared memories. On each processor, one or more protection algorithms are implemented. Those algorithms use data coming directly from the plant and, eventually, data computed by the other protection algorithms. Each processor makes its own acquisitions from the process and sends warning messages if some operating anomaly is detected. All algorithms are activated concurrently on an asynchronous way. The results are presented and the safety related problems are detailed. - The second part is about measurements' validation. First, we describe how the sensors' measurements will be used in a protection system. Then, a proposal for a method based on the techniques of artificial intelligence (expert systems and neural networks) is presented. - The last part is about the problems of architectures of systems including hardware and software: the different types of redundancies used till now and a proposition of a multi-processors architecture which uses an operating system that is able to manage several tasks implemented on different processors, which verifies the good operating of each of those tasks and of the related processors and which allows to carry on the operation of the system, even in a degraded manner when a failure has been detected are detailed [fr

  8. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    NARCIS (Netherlands)

    Nina, Praveen Balabaskaran; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.; Eisen, Jonathan A.

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are

  9. Using a combination of radiogenic and stable isotopes coupled with hydrogeochemistry, limnometrics and meteorological data in hydrological research of complex underground mine-pit lake systems: The case of Cueva de la Mora

    Science.gov (United States)

    Sánchez-España, J.; Diez Ercilla, M.; Pérez Cerdán, F.; Yusta, I.

    2012-04-01

    This study presents a combination of radiogenic and stable isotopes (3H, 2H and 18O on pit lake water, and 34S on dissolved sulfate) coupled with bathymetric, meteorological and limnometric investigations, and detailed hydrogeochemical studies to decipher the flooding history and hydrological dynamics of a meromictic and deeply stratified pit lake in SW Spain. The application of these combined techniques has been specially succesful considering the complexity of the studied system, which includes a substantial number of horizontal galleries, shafts and large rooms physically connected to the pit lake. Specific conductance and temperature profiles have depicted a physical structure of the water body which includes four monimolimnetic layers of increasing density with depth. This internal configuration includes m-scale layers separated by sharp transional zones and is rarely observed in natural, fresh water bodies and most other pit lakes. The tritium abundance of the different layers indicate that the deepest water consists in strongly acidified and metal-laden meteoric water infiltrated in the mine system soon after the mine closure in 1971-72. Oxygen and hydrogen isotope ratios of the different layers reflect a sharp stratification with increasing evaporative influence towards the lake surface. The combination of tritium data with the oxygen and hydrogen isotope composition of the different layers suggests a model of pit lake formation with an initial stage of flooding (with entrance of highly metal- and sulfate-loaded mine drainage from the underlying mine galleries) that deeply determined the physical structure and meromictic nature of the lake. After reaching the present water level and morphology, the stagnant, anoxic part of pit lake seems to have remained chemically and isotopically unmodified during its 40 year-old history. Although the pit lake receives significant water input during autumn and winter (which in turn provoke significant volumetric increases

  10. Upscaling from research watersheds: an essential stage of trustworthy general-purpose hydrologic model building

    Science.gov (United States)

    McNamara, J. P.; Semenova, O.; Restrepo, P. J.

    2011-12-01

    Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in

  11. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste: Part I, Introduction and guidelines

    Science.gov (United States)

    Bedinger, M.S.; Sargent, Kenneth A.; Reed, J.E.

    1984-01-01

    The U.S. Geological Survey's program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight States in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the Federal Government in the evaluation process. Each Governor was requested to nominate an Earth scientist to represent the State in a province working group composed of State and U.S. Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration.Part II is a reconnaissance characterization of the geologic and hydrologic factors to be used in the initial screening of the Basin and Range Province. Part III will be the initial evaluation of the Province and will identify regions that appear suitable for further study.The plan for study of the Province includes a stepwise screening process by which successively smaller land units are considered in increasing detail. Each step involves characterization of the geology and hydrology and selection of subunits for more intensive characterization. Selection of subunits for further study is by evaluation of geologic and hydrologic conditions following a set of guidelines. By representation on the Province Working Group, the States participate in a consultation and review role in: (1) Establishing geologic and hydrologic guidelines, and (2) characterizing and evaluating the Province. The States also participate in compilation of geologic and hydrologic data

  12. High performance ultrasonic field simulation on complex geometries

    Science.gov (United States)

    Chouh, H.; Rougeron, G.; Chatillon, S.; Iehl, J. C.; Farrugia, J. P.; Ostromoukhov, V.

    2016-02-01

    Ultrasonic field simulation is a key ingredient for the design of new testing methods as well as a crucial step for NDT inspection simulation. As presented in a previous paper [1], CEA-LIST has worked on the acceleration of these simulations focusing on simple geometries (planar interfaces, isotropic materials). In this context, significant accelerations were achieved on multicore processors and GPUs (Graphics Processing Units), bringing the execution time of realistic computations in the 0.1 s range. In this paper, we present recent works that aim at similar performances on a wider range of configurations. We adapted the physical model used by the CIVA platform to design and implement a new algorithm providing a fast ultrasonic field simulation that yields nearly interactive results for complex cases. The improvements over the CIVA pencil-tracing method include adaptive strategies for pencil subdivisions to achieve a good refinement of the sensor geometry while keeping a reasonable number of ray-tracing operations. Also, interpolation of the times of flight was used to avoid time consuming computations in the impulse response reconstruction stage. To achieve the best performance, our algorithm runs on multi-core superscalar CPUs and uses high performance specialized libraries such as Intel Embree for ray-tracing, Intel MKL for signal processing and Intel TBB for parallelization. We validated the simulation results by comparing them to the ones produced by CIVA on identical test configurations including mono-element and multiple-element transducers, homogeneous, meshed 3D CAD specimens, isotropic and anisotropic materials and wave paths that can involve several interactions with interfaces. We show performance results on complete simulations that achieve computation times in the 1s range.

  13. Mitigating Uncertainty from Vegetation Spatial Complexity with Highly Portable Lidar

    Science.gov (United States)

    Paynter, I.; Schaaf, C.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.

    2015-12-01

    To fully utilize the excellent spatial coverage and temporal resolution offered by satellite resources for estimating ecological variables, fine-scale observations are required for comparison, calibration and validation. Lidar instruments have proved effective in estimating the properties of vegetation components of ecosystems, but they are often challenged by occlusion, especially in structurally complex and spatially fragmented ecosystems such as tropical forests. Increasing the range of view angles, both horizontally and vertically, by increasing the number of scans, can mitigate occlusion. However these scans must occur within the window of temporal stability for the ecosystem and vegetation property being measured. The Compact Biomass Lidar (CBL) is a TLS optimized for portability and scanning speed, developed and operated by University of Massachusetts Boston. This 905nm wavelength scanner achieves an angular resolution of 0.25 degrees at a rate of 33 seconds per scan. The ability to acquire many scans within narrow windows of temporal stability for ecological variables has facilitated the more complete investigation of ecosystem structural characteristics, and their expression as a function of view angle. The lightweight CBL has facilitated the use of alternative deployment platforms including towers, trams and masts, allowing analysis of the vertical structure of ecosystems, even in highly enclosed environments such as the sub-canopy of tropical forests where aerial vehicles cannot currently operate. We will present results from view angle analyses of lidar surveys of tropical rainforest in La Selva, Costa Rica where the CBL was deployed at heights up to 10m in Carbono long-term research plots utilizing a portable mast, and on a 25m stationary tower; and temperate forest at Harvard Forest, Massachusetts, USA, where the CBL has been deployed biannually at long-term research plots of hardwood and hemlock, as well as at heights of up to 25m utilizing a

  14. The impact of runoff and surface hydrology on Titan's climate

    Science.gov (United States)

    Faulk, Sean; Lora, Juan; Mitchell, Jonathan

    2017-10-01

    Titan’s surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane “wetlands” reservoirs realistically produce many observed features of Titan’s atmosphere, whereas “aquaplanet” simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan’s surface. The wetlands configuration is, in part, motivated by Titan’s large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. To isolate the singular impact of surface runoff on Titan’s climatology, we run simulations without parameterizations of subsurface flow and topography-atmosphere interactions. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan’s hydrology provides new insight into the complex interaction between Titan’s atmosphere and surface, demonstrates the influence of surface runoff on Titan’s global climate

  15. Circular chromatin complexes in human lymphocytes high-resolution autoradiography

    International Nuclear Information System (INIS)

    Becak, M.L.; Fukuda-Pizzocaro, K.; Santos, R. de C.S. dos; Brunner, O.

    1985-01-01

    Transcriptionally active chromatin fibers were observed in chromosomes presenting the loops/scaffold configuration. The active fibers showed altered nucleosomes and presented multiforked aspects which led to the formation of ring complexes. The ribonucleoprotein transcripts (RNP) appeared as networks of 0.1 μm or multiples tandemly disposed along the fiber. It is suggested that the ring complexes belong to the human genome. The possibility that these circular structures come from a prokaryote is also considered. (author) [pt

  16. Integration of Local Hydrology into Regional Hydrologic Simulation Model

    Science.gov (United States)

    Van Zee, R. J.; Lal, W. A.

    2002-05-01

    South Florida hydrology is dominated by the Central and South Florida (C&SF) Project that is managed to provide flood protection, water supply and environmental protection. A complex network of levees canals and structures provide these services to the individual drainage basins. The landscape varies widely across the C&SF system, with corresponding differences in the way water is managed within each basin. Agricultural areas are managed for optimal crop production. Urban areas maximize flood protection while maintaining minimum water levels to protect adjacent wetlands and local water supplies. "Natural" areas flood and dry out in response to the temporal distribution of rainfall. The evaluation of planning, regulation and operational issues require access to a simulation model that captures the effects of both regional and local hydrology. The Regional Simulation Model (RSM) uses a "pseudo-cell" approach to integrate local hydrology within the context of a regional hydrologic system. A 2-dimensional triangulated mesh is used to represent the regional surface and ground water systems and a 1-dimensional canal network is superimposed onto this mesh. The movement of water is simulated using a finite volume formulation with a diffusive wave approximation. Each cell in the triangulated mesh has a "pseudo-cell" counterpart, which represents the same area as the cell, but it is conceptualized such that it simulates the localized hydrologic conditions Protocols have been established to provide an interface between a cell and its pseudo-cell counterpart. . A number of pseudo-cell types have already been developed and tested in the simulation of Water Conservation Area 1 and several have been proposed to deal with specific local issues in the Southwest Florida Feasibility Study. This presentation will provide an overview of the overall RSM design, describe the relationship between cells and pseudo-cells, and illustrate how pseudo-cells are be used to simulate agriculture

  17. Debates—Hypothesis testing in hydrology: Introduction

    Science.gov (United States)

    Blöschl, Günter

    2017-03-01

    This paper introduces the papers in the "Debates—Hypothesis testing in hydrology" series. The four articles in the series discuss whether and how the process of testing hypotheses leads to progress in hydrology. Repeated experiments with controlled boundary conditions are rarely feasible in hydrology. Research is therefore not easily aligned with the classical scientific method of testing hypotheses. Hypotheses in hydrology are often enshrined in computer models which are tested against observed data. Testability may be limited due to model complexity and data uncertainty. All four articles suggest that hypothesis testing has contributed to progress in hydrology and is needed in the future. However, the procedure is usually not as systematic as the philosophy of science suggests. A greater emphasis on a creative reasoning process on the basis of clues and explorative analyses is therefore needed.

  18. HYDROLOGY, NESHOBA COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  19. HYDROLOGY, MONTGOMERY COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. HYDROLOGY, DOUGLAS COUNTY, MINNESOTA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. HYDROLOGY, OSCEOLA COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. HYDROLOGY, STEARNS COUNTY, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. HYDROLOGY, CALHOUN COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  4. HYDROLOGY, LEFLORE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  5. HYDROLOGY, WAYNE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. Hydrology, OCONEE COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDROLOGY, NEWTON COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. HYDROLOGY, TIPPAH COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGY, CALHOUN COUNTY, MICHIGAN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  10. HYDROLOGY, SUNFLOWER COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. HYDROLOGY, HOUSTON COUNTY, ALABAMA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating ALood discharges for a ALood Insurance...

  12. Weber County Hydrology Report

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  13. HYDROLOGY, LEAKE COUNTY, MISSISSIPPI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  14. HYDROLOGY, CHISAGO COUNTY, MN

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  15. HYDROLOGY, CLAIBORNE COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  16. HYDROLOGY, LAFAYETTE COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  17. HYDROLOGY, Yazoo COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. HYDROLOGY, Lawrence County, ARKANSAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  19. HYDROLOGY, Allegheny County, PA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  20. HYDROLOGY, SIMPSON COUNTY, MS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. HYDROLOGY, GILCHRIST COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. HYDROLOGY, GLADES COUNTY, FLORIDA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  3. HYDROLOGY, LEE COUNTY, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  4. HYDROLOGY, GREENE County, ARKANSAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  5. The progress of hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Chow, V T [University of Illinois, Urbana, IL (United States)

    1967-05-15

    This paper discusses mainly the challenge of hydrology, recent activities, events, and major problems in hydrology, and advances in hydrological techniques. New scientific knowledge and techniques developed in many modern scientific disciplines, and the recognition of the importance of hydrology in water-resources development enable and encourage the hydrologist to advance scientific hydrology. Many programmes to promote hydrology and to expand its attendant activities have been developed in recent years. Therefore, the activities in the United States of America, such as the Universities Council on Water Resources and the President's Water for Peace Programme, and the programmes in the International Hydrological Decade are mentioned. The most important advance in theoretical hydrology is the development of a new concept of dynamic sequential systems for the hydrological cycle, thus creating new fields of systems, parametric, and stochastic hydrology. Modern scientific instrumentation provide the hydrologist with better tools for solving his problems. The most important of these, such as electronic computers, remote sensing, and nuclear techniques are discussed. Today various major problems, both theoretical and practical, face the hydrologist. Theoretical problems concern the basic understanding of hydrological systems and the mathematical simulation and physical interpretation of hydrological phenomena. Major practical problems are numerous and diversified, but they are mostly related to the multiple-purpose development of water resources. Four central problematical subjects are discussed; namely, the effects of man on his environment, the dynamics of aqueous flow systems, hydrological transport mechanism, and groundwater hydrology. Also, the use of nuclear techniques in solving various hydrological problems is discussed. It is believed that the application of nuclear techniques would prove extremely valuable in helping solve problems, but their ultimate use in

  6. The progress of hydrology

    International Nuclear Information System (INIS)

    Chow, V.T.

    1967-01-01

    This paper discusses mainly the challenge of hydrology, recent activities, events, and major problems in hydrology, and advances in hydrological techniques. New scientific knowledge and techniques developed in many modern scientific disciplines, and the recognition of the importance of hydrology in water-resources development enable and encourage the hydrologist to advance scientific hydrology. Many programmes to promote hydrology and to expand its attendant activities have been developed in recent years. Therefore, the activities in the United States of America, such as the Universities Council on Water Resources and the President's Water for Peace Programme, and the programmes in the International Hydrological Decade are mentioned. The most important advance in theoretical hydrology is the development of a new concept of dynamic sequential systems for the hydrological cycle, thus creating new fields of systems, parametric, and stochastic hydrology. Modern scientific instrumentation provide the hydrologist with better tools for solving his problems. The most important of these, such as electronic computers, remote sensing, and nuclear techniques are discussed. Today various major problems, both theoretical and practical, face the hydrologist. Theoretical problems concern the basic understanding of hydrological systems and the mathematical simulation and physical interpretation of hydrological phenomena. Major practical problems are numerous and diversified, but they are mostly related to the multiple-purpose development of water resources. Four central problematical subjects are discussed; namely, the effects of man on his environment, the dynamics of aqueous flow systems, hydrological transport mechanism, and groundwater hydrology. Also, the use of nuclear techniques in solving various hydrological problems is discussed. It is believed that the application of nuclear techniques would prove extremely valuable in helping solve problems, but their ultimate use in

  7. Hydrologic applications of weather radar

    Science.gov (United States)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:

  8. Statistical emission of complex fragments from highly excited compound nucleus

    International Nuclear Information System (INIS)

    Matsuse, T.

    1991-01-01

    A full statistical analysis has been given in terms of the Extended Hauser-Feshbach method. The charge and kinetic energy distributions of 35 Cl+ 12 C reaction at E lab = 180, 200 MeV and 23 Na+ 24 Mg reaction at E lab = 89 MeV which form the 47 V compound nucleus are investigated as a prototype of the light mass system. The measured kinetic energy distributions of the complex fragments are shown to be well reproduced by the Extended Hauser-Feshbach method, so the observed complex fragment production is understood as the statistical binary decay from the compound nucleus induced by heavy-ion reaction. Next, this method is applied to the study of the complex production from the 111 In compound nucleus which is formed by the 84 Kr+ 27 Al reaction at E lab = 890 MeV. (K.A.) 18 refs., 10 figs

  9. Electron Temperatures in W51 Complex from High Resolution, Low ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We have made continuum radio observations of these HII regions of the W51 complex at 240, 610, 1060 and 1400 MHz using GMRT with lower resolution (20'' × 15'') at the lowest frequency. The observed spectra of the prominent thermal subcomponents of W51 have been fitted to a free-free emission ...

  10. Decision making under conditions of high complexity and uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Sherwell, J.

    1999-07-01

    There is a trend to move environmental policy away from a command and control position to a more market based approach. Decision making under this new approach is made more difficult for both the regulators and the regulated due in part to the constant conflict arising from the divergent expectations that participants may have for the outcome of policy deliberations and from the complexity and uncertainty inherent in the systems that are to be regulated. This change in policy reflects the maturing of environment issues from a must do towards maintenance and reasonable progress and a condition of Sustainable Development. The emerging science of Complexity Theory and the established methods of Game Theory can provide theoretical tools that can act as an aid to decision-makers as they negotiate the perplexing landscape of conflicting needs and wants. The role of these methods in the development and implementation of policy on issues associated with Sustainable Development is of considerable importance. This paper presents a review of approaches to decision making under uncertainty, from Game Theory and Complexity Theory. Data from simulations, such as the Iterated Prisoner's Dilemma, and Controlled Chaos are discussed as they relate the complexity of the underlying economic and ecological systems to natural resource use and exploitation, pollution control and carrying capacity. The important role for rules and their regular review and implementation is highlighted.

  11. High-Speed, High-Performance DQPSK Optical Links with Reduced Complexity VDFE Equalizers

    Directory of Open Access Journals (Sweden)

    Maki Nanou

    2017-02-01

    Full Text Available Optical transmission technologies optimized for optical network segments sensitive to power consumption and cost, comprise modulation formats with direct detection technologies. Specifically, non-return to zero differential quaternary phase shift keying (NRZ-DQPSK in deployed fiber plants, combined with high-performance, low-complexity electronic equalizers to compensate residual impairments at the receiver end, can be proved as a viable solution for high-performance, high-capacity optical links. Joint processing of the constructive and the destructive signals at the single-ended DQPSK receiver provides improved performance compared to the balanced configuration, however, at the expense of higher hardware requirements, a fact that may not be neglected especially in the case of high-speed optical links. To overcome this bottleneck, the use of partially joint constructive/destructive DQPSK equalization is investigated in this paper. Symbol-by-symbol equalization is performed by means of Volterra decision feedback-type equalizers, driven by a reduced subset of signals selected from the constructive and the destructive ports of the optical detectors. The proposed approach offers a low-complexity alternative for electronic equalization, without sacrificing much of the performance compared to the fully-deployed counterpart. The efficiency of the proposed equalizers is demonstrated by means of computer simulation in a typical optical transmission scenario.

  12. Self-dissimilarity as a High Dimensional Complexity Measure

    Science.gov (United States)

    Wolpert, David H.; Macready, William

    2005-01-01

    For many systems characterized as "complex" the patterns exhibited on different scales differ markedly from one another. For example the biomass distribution in a human body "looks very different" depending on the scale at which one examines it. Conversely, the patterns at different scales in "simple" systems (e.g., gases, mountains, crystals) vary little from one scale to another. Accordingly, the degrees of self-dissimilarity between the patterns of a system at various scales constitute a complexity "signature" of that system. Here we present a novel quantification of self-dissimilarity. This signature can, if desired, incorporate a novel information-theoretic measure of the distance between probability distributions that we derive here. Whatever distance measure is chosen, our quantification of self-dissimilarity can be measured for many kinds of real-world data. This allows comparisons of the complexity signatures of wholly different kinds of systems (e.g., systems involving information density in a digital computer vs. species densities in a rain-forest vs. capital density in an economy, etc.). Moreover, in contrast to many other suggested complexity measures, evaluating the self-dissimilarity of a system does not require one to already have a model of the system. These facts may allow self-dissimilarity signatures to be used a s the underlying observational variables of an eventual overarching theory relating all complex systems. To illustrate self-dissimilarity we present several numerical experiments. In particular, we show that underlying structure of the logistic map is picked out by the self-dissimilarity signature of time series produced by that map

  13. High-performance mussel-inspired adhesives of reduced complexity.

    Science.gov (United States)

    Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert

    2015-10-19

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  14. PI-PI scattering at high complex energies

    International Nuclear Information System (INIS)

    Ciulli, S.; Verzegnassi, C.

    1976-12-01

    We estrapolate the PI-PI amplitudes with isospin one and two in the t-channel onto the imaginary ν approximately equal to (s - u)/4msub(π) axis in the complex ν-plane by means of ''optimal'' Poisson weighted dispersion relations. The values obtained are compared with expected theoretical asymptotic behaviours and found not to be inconsistent with the possibility of a ''precocious asymptotism'' setting for imaginary ν-values

  15. Purification of Ovine Respiratory Complex I Results in a Highly Active and Stable Preparation*

    Science.gov (United States)

    Letts, James A.; Degliesposti, Gianluca; Fiedorczuk, Karol; Skehel, Mark; Sazanov, Leonid A.

    2016-01-01

    NADH-ubiquinone oxidoreductase (complex I) is the largest (∼1 MDa) and the least characterized complex of the mitochondrial electron transport chain. Because of the ease of sample availability, previous work has focused almost exclusively on bovine complex I. However, only medium resolution structural analyses of this complex have been reported. Working with other mammalian complex I homologues is a potential approach for overcoming these limitations. Due to the inherent difficulty of expressing large membrane protein complexes, screening of complex I homologues is limited to large mammals reared for human consumption. The high sequence identity among these available sources may preclude the benefits of screening. Here, we report the characterization of complex I purified from Ovis aries (ovine) heart mitochondria. All 44 unique subunits of the intact complex were identified by mass spectrometry. We identified differences in the subunit composition of subcomplexes of ovine complex I as compared with bovine, suggesting differential stability of inter-subunit interactions within the complex. Furthermore, the 42-kDa subunit, which is easily lost from the bovine enzyme, remains tightly bound to ovine complex I. Additionally, we developed a novel purification protocol for highly active and stable mitochondrial complex I using the branched-chain detergent lauryl maltose neopentyl glycol. Our data demonstrate that, although closely related, significant differences exist between the biochemical properties of complex I prepared from ovine and bovine mitochondria and that ovine complex I represents a suitable alternative target for further structural studies. PMID:27672209

  16. Hydrology, microbiology and carbon cycling at a high Arctic polythermal glacier, (John Evans Glacier, Ellesmere Island, Canada)

    Science.gov (United States)

    Skidmore, Mark Leslie

    Analysis of the hydrology, hydrochemistry and microbiology at polythermal John Evans Glacier and geochemical and isotopic data from Haut Glacier d'Arolla demonstrates that certain subglacial chemical weathering processes are microbially mediated. Subglacial drainage is likely an annual occurrence beneath John Evans Glacier and solute rich subglacial waters indicate over winter storage at the glacier bed. Subglacial microbial populations are also present, and are viable under simulated near in situ conditions at 0.3°C. This suggests that temperate subglacial environments at a polythermal glacier, which are isolated by cold ice above and around them, provide a viable habitat for life where basal water and organic carbon are present throughout the year. Thus, a subglacial microbial ecosystem based upon legacy carbon, (from old soils or surface inputs) rather than primary production may exist, where redox processes are a key component, and seasonal anoxia may occur. The existence of anoxic environments is supported by the presence of strictly anaerobic bacteria (sulphate reducing bacteria and methanogens) in the basal sediments---which are viable in culture at 4°C---and also argues that these bacteria are not washed in with oxygenated surface meltwaters, but are present in the subglacial environment. During the summer meltseason there is a large input of surficial waters to the subglacial system and water residence times are drastically reduced. Hence, kinetic weathering processes dominate, resulting in light delta 13C-DIC (dissolved inorganic carbon) in glacial runoff, as verified by experimental work on CaCO3 and John Evans Glacier sediments. The experiments demonstrate kinetic bedrock fractionation (KBF) during carbonate hydrolysis and that kinetic fractionation of CO2 (KFC) is proportional to the rate of CO2 draw down during the carbonation of carbonates. This results in significantly depleted delta13C-DIC values (≤-16 ‰) relative to the bedrock carbonate

  17. Uncertainty in hydrological signatures

    Science.gov (United States)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  18. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model

    Science.gov (United States)

    Abbaspour, K. C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B.

    2015-05-01

    A combination of driving forces are increasing pressure on local, national, and regional water supplies needed for irrigation, energy production, industrial uses, domestic purposes, and the environment. In many parts of Europe groundwater quantity, and in particular quality, have come under sever degradation and water levels have decreased resulting in negative environmental impacts. Rapid improvements in the economy of the eastern European block of countries and uncertainties with regard to freshwater availability create challenges for water managers. At the same time, climate change adds a new level of uncertainty with regard to freshwater supplies. In this research we build and calibrate an integrated hydrological model of Europe using the Soil and Water Assessment Tool (SWAT) program. Different components of water resources are simulated and crop yield and water quality are considered at the Hydrological Response Unit (HRU) level. The water resources are quantified at subbasin level with monthly time intervals. Leaching of nitrate into groundwater is also simulated at a finer spatial level (HRU). The use of large-scale, high-resolution water resources models enables consistent and comprehensive examination of integrated system behavior through physically-based, data-driven simulation. In this article we discuss issues with data availability, calibration of large-scale distributed models, and outline procedures for model calibration and uncertainty analysis. The calibrated model and results provide information support to the European Water Framework Directive and lay the basis for further assessment of the impact of climate change on water availability and quality. The approach and methods developed are general and can be applied to any large region around the world.

  19. The Importance of Hydrological Signature and Its Recurring Dynamics

    Science.gov (United States)

    Wendi, D.; Marwan, N.; Merz, B.

    2017-12-01

    Temporal changes in hydrology are known to be challenging to detect and attribute due to multiple drivers that include complex processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defense, river training, and land use change, could impact variably on space-time scales and influence or mask each other. Besides, data depicting these drivers are often not available. One conventional approach of analyzing the change is based on discrete points of magnitude (e.g. the frequency of recurring extreme discharge) and often linearly quantified and hence do not reveal the potential change in the hydrological process. Moreover, discharge series are often subject to measurement errors, such as rating curve error especially in the case of flood peaks where observation are derived through extrapolation. In this study, the system dynamics inferred from the hydrological signature (i.e. the shape of hydrograph) is being emphasized. One example is to see if certain flood dynamics (instead of flood peak) in the recent years, had also occurred in the past (or rather extraordinary), and if so what is its recurring rate and if there had been a shift in its occurrence in time or seasonality (e.g. earlier snow melt dominant flood). The utilization of hydrological signature here is extended beyond those of classical hydrology such as base flow index, recession and rising limb slope, and time to peak. It is in fact all these characteristics combined i.e. from the start until the end of the hydrograph. Recurrence plot is used as a method to quantify and visualize the recurring hydrological signature through its phase space trajectories, and usually in the order of dimension above 2. Such phase space trajectories are constructed by embedding the time series into a series of variables (i.e. number of dimension) corresponding to the time delay. Since the method is rather novel in

  20. Five Guidelines for Selecting Hydrological Signatures

    Science.gov (United States)

    McMillan, H. K.; Westerberg, I.; Branger, F.

    2017-12-01

    Hydrological signatures are index values derived from observed or modeled series of hydrological data such as rainfall, flow or soil moisture. They are designed to extract relevant information about hydrological behavior, such as to identify dominant processes, and to determine the strength, speed and spatiotemporal variability of the rainfall-runoff response. Hydrological signatures play an important role in model evaluation. They allow us to test whether particular model structures or parameter sets accurately reproduce the runoff generation processes within the watershed of interest. Most modeling studies use a selection of different signatures to capture different aspects of the catchment response, for example evaluating overall flow distribution as well as high and low flow extremes and flow timing. Such studies often choose their own set of signatures, or may borrow subsets of signatures used in multiple other works. The link between signature values and hydrological processes is not always straightforward, leading to uncertainty and variability in hydrologists' signature choices. In this presentation, we aim to encourage a more rigorous approach to hydrological signature selection, which considers the ability of signatures to represent hydrological behavior and underlying processes for the catchment and application in question. To this end, we propose a set of guidelines for selecting hydrological signatures. We describe five criteria that any hydrological signature should conform to: Identifiability, Robustness, Consistency, Representativeness, and Discriminatory Power. We describe an example of the design process for a signature, assessing possible signature designs against the guidelines above. Due to their ubiquity, we chose a signature related to the Flow Duration Curve, selecting the FDC mid-section slope as a proposed signature to quantify catchment overall behavior and flashiness. We demonstrate how assessment against each guideline could be used to

  1. CERN Proton Synchrotron Complex High-Level Controls Renovation

    CERN Document Server

    Deghaye, S; Garcia Quintas, D; Gourber-Pace, M; Kruk, G; Kulikova, O; Lezhebokov, V; Pasinelli, S; Peryt, M; Roderick, C; Roux, E; Sobczak, M; Steerenberg, R; Wozniak, J; Zaharieva, Z

    2009-01-01

    After a detailed study of the Proton Synchrotron (PS) complex requirements by experts of CERN controls & operation groups, a proposal to develop a new system, called Injector Controls Architecture (InCA), was presented to and accepted by the management late 2007. Aiming at the homogenisation of the control systems across CERN accelerators, InCA is based on components developed for the Large Hadron Collider (LHC) but also new components required to fulfil operation needs. In 2008, the project was in its elaboration phase and we successfully validated its architecture and critical use-cases during several machine development sessions. After description of the architecture put in place and the components used, this paper describes the planning approach taken combining iterative development phases with deployment in operation for validation sessions.

  2. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2017-01-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible

  3. Identification of highly susceptible individuals in complex networks

    Science.gov (United States)

    Tang, Shaoting; Teng, Xian; Pei, Sen; Yan, Shu; Zheng, Zhiming

    2015-08-01

    Identifying highly susceptible individuals in spreading processes is of great significance in controlling outbreaks. In this paper, we explore the susceptibility of people in susceptible-infectious-recovered (SIR) and rumor spreading dynamics. We first study the impact of community structure on people's susceptibility. Although the community structure can reduce the number of infected people for same infection rate, it will not significantly affect nodes' susceptibility. We find the susceptibility of individuals is sensitive to the choice of spreading dynamics. For SIR spreading, since the susceptibility is highly correlated to nodes' influence, the topological indicator k-shell can better identify highly susceptible individuals, outperforming degree, betweenness centrality and PageRank. In contrast, in rumor spreading model, where nodes' susceptibility and influence have no clear correlation, degree performs the best among considered topological measures. Our finding highlights the significance of both topological features and spreading mechanisms in identifying highly susceptible population.

  4. Hydrology: The interdisciplinary science of water

    Science.gov (United States)

    Vogel, Richard M.; Lall, Upmanu; Cai, Ximing; Rajagopalan, Balaji; Weiskel, Peter K.; Hooper, Richard P.; Matalas, Nicholas C.

    2015-01-01

    We live in a world where biophysical and social processes are tightly coupled. Hydrologic systems change in response to a variety of natural and human forces such as climate variability and change, water use and water infrastructure, and land cover change. In turn, changes in hydrologic systems impact socioeconomic, ecological, and climate systems at a number of scales, leading to a coevolution of these interlinked systems. The Harvard Water Program, Hydrosociology, Integrated Water Resources Management, Ecohydrology, Hydromorphology, and Sociohydrology were all introduced to provide distinct, interdisciplinary perspectives on water problems to address the contemporary dynamics of human interaction with the hydrosphere and the evolution of the Earth’s hydrologic systems. Each of them addresses scientific, social, and engineering challenges related to how humans influence water systems and vice versa. There are now numerous examples in the literature of how holistic approaches can provide a structure and vision of the future of hydrology. We review selected examples, which taken together, describe the type of theoretical and applied integrated hydrologic analyses and associated curricular content required to address the societal issue of water resources sustainability. We describe a modern interdisciplinary science of hydrology needed to develop an in-depth understanding of the dynamics of the connectedness between human and natural systems and to determine effective solutions to resolve the complex water problems that the world faces today. Nearly, every theoretical hydrologic model introduced previously is in need of revision to accommodate how climate, land, vegetation, and socioeconomic factors interact, change, and evolve over time.

  5. MYCOBACTERIUM COMPLEX IDENTIFICATION BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    S.A HAWAII

    2001-12-01

    Full Text Available Introduction: There are different ways for identification of Mycobacteria. One of the most sensitive method is HPLC of phenacyl esters of mycolic acids of Mycobacteria for rapid identification of them after their primary cultures. This study uses HPLC for rapid identification and dissociation of Mycobacterium tuberculosis complex. Methods: In this study we use HPLC patterns of mycolic acids for identification three important species of mycobacteria (M. tuberculosis, M. bovis, M. bovis BCG from other mycobacterial species. All the strains were obtained from Tuberculosis and Pulmonary Diseases Research Center. HPLC conditions was as follows: HPLC: Model 1200 Cecil, Column: URP C-18 25X4.6 mm, Detector: U.V variable wave length at 254 nm, Elution: Gradient of methanol/chloroform. Flow rate: 2.5 ml/min. Results: HPLC leads to obtaining chromatograms which on its X-axis retention times (of different peaks which exist in the sample and on its Y-axis U.V absorbance (of these peaks were drown. These chromatograms in M. bovis and M. tuberculosis samples are similar with each other but differs from BCG ones. Discussion: On the basis of different retention times and numbers of the peaks which present in each chromatogram, we can differentiate between M. bovis, M. tuberculosis and BCG from other Mycobacteria. Also, with this method we can identify BCG from M. bovis and M. tuberculosis (because BCG has 9 and M. bovis and M. tuberculosis has 7 characteristic peaks in their chromatograms.

  6. Sampling Transition Pathways in Highly Correlated Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David

    2004-10-20

    This research grant supported my group's efforts to apply and extend the method of transition path sampling that we invented during the late 1990s. This methodology is based upon a statistical mechanics of trajectory space. Traditional statistical mechanics focuses on state space, and with it, one can use Monte Carlo methods to facilitate importance sampling of states. With our formulation of a statistical mechanics of trajectory space, we have succeeded at creating algorithms by which importance sampling can be done for dynamical processes. In particular, we are able to study rare but important events without prior knowledge of transition states or mechanisms. In perhaps the most impressive application of transition path sampling, my group combined forces with Michele Parrinello and his coworkers to unravel the dynamics of auto ionization of water [5]. This dynamics is the fundamental kinetic step of pH. Other applications concern nature of dynamics far from equilibrium [1, 7], nucleation processes [2], cluster isomerization, melting and dissociation [3, 6], and molecular motors [10]. Research groups throughout the world are adopting transition path sampling. In part this has been the result of our efforts to provide pedagogical presentations of the technique [4, 8, 9], as well as providing new procedures for interpreting trajectories of complex systems [11].

  7. Supercomputers and the mathematical modeling of high complexity problems

    International Nuclear Information System (INIS)

    Belotserkovskii, Oleg M

    2010-01-01

    This paper is a review of many works carried out by members of our scientific school in past years. The general principles of constructing numerical algorithms for high-performance computers are described. Several techniques are highlighted and these are based on the method of splitting with respect to physical processes and are widely used in computing nonlinear multidimensional processes in fluid dynamics, in studies of turbulence and hydrodynamic instabilities and in medicine and other natural sciences. The advances and developments related to the new generation of high-performance supercomputing in Russia are presented.

  8. Studies of geology and hydrology in the Basin and Range Province, Southwestern United States, for isolation of high-level radioactive waste - Basis of characterization and evaluation

    Science.gov (United States)

    Bedinger, M.S.; Sargent, K.A.; Langer, William H.; Sherman, Frank B.; Reed, J.E.; Brady, B.T.

    1989-01-01

    The geologic and hydrologic factors in selected regions of the Basin and Range province were examined to identify prospective areas for further study that may provide isolation of high-level radioactive waste from the accessible environment. The six regions selected for study were characterized with respect to the following guidelines: (1) Potential repository media; (2) Quaternary tectonic conditions; (3) climatic change and geomorphic processes; (4) ground-water conditions; (5) ground-water quality; and (6) mineral and energy resources.The repository medium will function as the first natural barrier to radionuclide travel by virtue of associated slow ground-water velocity. The principal rock types considered as host media include granitic, intermediate, and mafic intrusive rocks; argillaceous rocks; salt and anhydrite; volcanic mudflow (laharic) breccias; some intrusive rhyolitic plugs and stocks; partially zeolitized tuff; and metamorphic rocks. In the unsaturated zone, the permeability and hydrologic properties of the rocks and the hydrologic setting are more important than the rock type. Media ideally should be permeable to provide drainage and should have a minimal water fluxThe ground-water flow path from a repository to the accessible environment needs to present major barriers to the transport of radionuclides. Factors considered in evaluating the ground-water conditions include ground-water traveltimes and quality, confining beds, and earth materials favorable for retardation of radionuclides. Ground-water velocities in the regions were calculated from estimated hydraulic properties of the rocks and gradients. Because site-specific data on hydraulic properties are not available, data from the literature were assembled and synthesized to obtain values for use in estimating ground-water velocities. Hydraulic conductivities for many rock types having granular and fracture permeability follow a log-normal distribution. Porosity for granular and very weathered

  9. High-speed instrumentation complex for car crash testing

    Science.gov (United States)

    Baranov, S. V.; Gorin, I. M.; Drozhbin, Yu. A.; Kuznetsov, A. A.; Ponomaryov, A. M.; Semyonov, V. B.; Udalov, V. V.

    1993-01-01

    One of the most important car checking problems consists in safety testing which includes trials for different types of collision, e.g., frontal and lateral. This allows us to study deformations of the automobile and its parts during the impact. To obtain reliable data on overloading, acceleration, deformation, force load on the car's body as well as on the anthropomorphic dummies inside it, use is made of rather a great number of different techniques. Highly informative among them is high-speed cine recording which allows us to register variations that occur during a fraction of a second, and then to reproduce with variable rate the frame images obtained. This makes it possible to study the impact parameters variations much more accurately.

  10. 42 CFR 493.1453 - Condition: Laboratories performing high complexity testing; clinical consultant.

    Science.gov (United States)

    2010-10-01

    ... Condition: Laboratories performing high complexity testing; clinical consultant. The laboratory must have a... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity testing; clinical consultant. 493.1453 Section 493.1453 Public Health CENTERS FOR MEDICARE & MEDICAID...

  11. Estimating real-time predictive hydrological uncertainty

    NARCIS (Netherlands)

    Verkade, J.S.

    2015-01-01

    Flood early warning systems provide a potentially highly effective flood risk reduction measure. The effectiveness of early warning, however, is affected by forecasting uncertainty: the impossibility of knowing, in advance, the exact future state of hydrological systems. Early warning systems

  12. Sampling from complex networks with high community structures.

    Science.gov (United States)

    Salehi, Mostafa; Rabiee, Hamid R; Rajabi, Arezo

    2012-06-01

    In this paper, we propose a novel link-tracing sampling algorithm, based on the concepts from PageRank vectors, to sample from networks with high community structures. Our method has two phases; (1) Sampling the closest nodes to the initial nodes by approximating personalized PageRank vectors and (2) Jumping to a new community by using PageRank vectors and unknown neighbors. Empirical studies on several synthetic and real-world networks show that the proposed method improves the performance of network sampling compared to the popular link-based sampling methods in terms of accuracy and visited communities.

  13. High intensity proton operation at the Brookhaven AGS accelerator complex

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-01-01

    With the completion of the AGS rf upgrade, and the implementation of a transition open-quotes jumpclose quotes, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle

  14. Complex pulsing schemes for high frame rate imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Fink, Mathias; Jensen, Jørgen Arendt

    2002-01-01

    up to a pulse train. The acoustically generated high time-bandwidth (TB) product waveforms can be compressed by using a filter bank of matched filters one for every beam direction. Matched filtering compresses the pulse train to a single pulse at the scatterer position plus a number of spike axial...... with linear frequency modulation along the transducer elements, that cover the 70% fractional bandwidth of the 7 MHz transducer. The resulted images (after beamforming and matched filtering) show an axial resolution at the same order as in conventional pulse excitation and axial sidelobes down to -45 d...

  15. airGRteaching: an R-package designed for teaching hydrology with lumped hydrological models

    Science.gov (United States)

    Thirel, Guillaume; Delaigue, Olivier; Coron, Laurent; Andréassian, Vazken; Brigode, Pierre

    2017-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2016), called airGR (Coron et al., 2016, 2017), to make these models widely available. Although its initial target public was hydrological modellers, the package is already used for educational purposes. Indeed, simple models allow for rapidly visualising the effects of parameterizations and model components on flows hydrographs. In order to avoid the difficulties that students may have when manipulating R and datasets, we developed (Delaigue and Coron, 2016): - Three simplified functions to prepare data, calibrate a model and run a simulation - Simplified and dynamic plot functions - A shiny (Chang et al., 2016) interface that connects this R-package to a browser-based visualisation tool. On this interface, the students can use different hydrological models (including the possibility to use a snow-accounting model), manually modify their parameters and automatically calibrate their parameters with diverse objective functions. One of the visualisation tabs of the interface includes observed precipitation and temperature, simulated snowpack (if any), observed and simulated

  16. Fundamentals of watershed hydrology

    Science.gov (United States)

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover

    2015-01-01

    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  17. Hands-On Hydrology

    Science.gov (United States)

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  18. Hydrologic Services Course.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    A course to develop an understanding of the scope of water resource activities, of the need for forecasting, of the National Weather Service's role in hydrology, and of the proper procedures to follow in fulfilling this role is presented. The course is one of self-help, guided by correspondence. Nine lessons are included: (1) Hydrology in the…

  19. Arid Zone Hydrology

    Science.gov (United States)

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  20. What are the main research challenges in hydrology?

    Science.gov (United States)

    Savenije, H. H. G.

    2012-04-01

    water flows is unknown. This medium is highly heterogeneous at all scales and largely unobservable. Knowing just the basic laws of conservation of mass and momentum is not sufficient because we lack geometrical relationships that define the medium through which the water flows. We often call these equations the closure relations, because they are the equations that we lack to make the system predictable. As hydrologists we know we can measure the characteristics of this medium indirectly by setting up an experiment or by calibration, but these characteristics are scale dependent and hence need to be (re-)calibrated if we move to a different scale. This makes hydrology highly empirical and dependent on calibration. Other scientists often fail to see this fundamental aspect of hydrology and may blame hydrologists for not being able to forecast the system's behaviour without calibration. They also have closure problems, but having observable system boundaries they have been able to develop scaling laws that allow them to use closure relations for new situations. For instance they developed the Manning equation for the interaction with the river bed, with tabulated coefficients for use in a wide range of hypothetical cases. A similarly simple hydrological equation such as the Darcy equation, however, always requires calibration because we cannot observe or predict subsurface characteristics. And if it is difficult for an aquifer, then we can imagine how difficult it is for a catchment. By now we know that the reductionist approach, that aims to solve this problem by starting from the smallest element and to upscale to the catchment scale, does not work. Not only because it would require lots of data, but more importantly because it is a flawed concept. It neglects the fact that the hydrological system is organised and that in upscaling there are scaling laws that we need to obey. But what are these scaling laws? That is the fundamental question. We do know that in hydrology

  1. Purification of Ovine Respiratory Complex I Results in a Highly Active and Stable Preparation.

    Science.gov (United States)

    Letts, James A; Degliesposti, Gianluca; Fiedorczuk, Karol; Skehel, Mark; Sazanov, Leonid A

    2016-11-18

    NADH-ubiquinone oxidoreductase (complex I) is the largest (∼1 MDa) and the least characterized complex of the mitochondrial electron transport chain. Because of the ease of sample availability, previous work has focused almost exclusively on bovine complex I. However, only medium resolution structural analyses of this complex have been reported. Working with other mammalian complex I homologues is a potential approach for overcoming these limitations. Due to the inherent difficulty of expressing large membrane protein complexes, screening of complex I homologues is limited to large mammals reared for human consumption. The high sequence identity among these available sources may preclude the benefits of screening. Here, we report the characterization of complex I purified from Ovis aries (ovine) heart mitochondria. All 44 unique subunits of the intact complex were identified by mass spectrometry. We identified differences in the subunit composition of subcomplexes of ovine complex I as compared with bovine, suggesting differential stability of inter-subunit interactions within the complex. Furthermore, the 42-kDa subunit, which is easily lost from the bovine enzyme, remains tightly bound to ovine complex I. Additionally, we developed a novel purification protocol for highly active and stable mitochondrial complex I using the branched-chain detergent lauryl maltose neopentyl glycol. Our data demonstrate that, although closely related, significant differences exist between the biochemical properties of complex I prepared from ovine and bovine mitochondria and that ovine complex I represents a suitable alternative target for further structural studies. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-05-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution

  3. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H.

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit''. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes

  4. 2004 annual progress report: Stratton Sagebrush Hydrology Study Area: Establishment of a long-term research site in a high-elevation sagebrush steppe

    Science.gov (United States)

    Schoenecker, Kate; Lange, Bob; Calton, Mike

    2005-01-01

    In 2004 the U.S. Geological Survey, Fort Collins Science Center (FORT) and the Bureau of Land Management (BLM), Rawlins Field Office (RFO), began a cooperative effort to reestablish the Stratton Sagebrush Hydrology Study Area (Stratton) as a research location, with the goal of making it a site for long-term research on sagebrush (Artemisia spp.) ecology. No other long-term research sites in high-elevation sagebrush habitat currently exist, and the Stratton area, with its 30+ year history of research and baseline data, was a logical location to restart investigations aimed at answering pertinent and timely questions about sagebrush ecology and sagebrush-obligate species. During the first year of the study, USGS scientists conducted an in-depth literature search to locate publications from research conducted at Stratton. We contacted previous researchers to acquire literature and unpublished reports of work conducted at Stratton. Collated papers and published manuscripts were presented in an annotated bibliography (Burgess and Schoenecker, 2004).

  5. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

  6. Long-Term Hydrologic Impact Assessment of Non-point Source Pollution Measured Through Land Use/Land Cover (LULC) Changes in a Tropical Complex Catchment

    Science.gov (United States)

    Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah

    2018-03-01

    The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant

  7. Application of a MODIS Soil Moisture-Evapotranspiration (MOD-SMET) Model to Evaluate Landscape and Hydrologic Recovery after the High Park Fire in Colorado, USA

    Science.gov (United States)

    Blount, W. K.; Hogue, T. S.; Franz, K.; Knipper, K. R.

    2017-12-01

    Accurate estimation of evapotranspiration (ET) is critical for the management of water resources, especially in water-stressed regions. ET accounts for approximately 60% of terrestrial precipitation globally and approaches 100% of annual rainfall in arid ecosystems, where transpiration becomes the dominant term. ET is difficult to measure due to its spatiotemporal variation, which requires adequate data coverage. While new remote sensing-based ET products are available at a 1 km spatial resolution, including the Operational Simplified Surface Energy Balance model (SSEBop) and the MODIS Global Evapotranspiration Project (MOD16), these products are available at monthly and 8-day temporal resolutions, respectively. To better understand the changing dynamics of hydrologic fluxes and the partitioning of water after land cover disturbances and to identify statically significant trends, more frequent observations are necessary. Utilizing the recently developed MODIS Soil Moisture-Evapotranspiration (MOD-SMET) model, daily temporal resolution is achieved. This presentation outlines the methodology of the MOD-SMET model and compares SSEBop, MOD16, and MOD-SMET ET estimates over the High Park Fire burn scar in Colorado, USA. MOD-SMET estimates are used to identify changes in fluxes and partitioning of the water cycle after a wildfire and during recovery in the High Park Fire near Fort Collins, Colorado. Initial results indicate greenness and ET from all three models decrease post-fire, with higher statistical confidence in high burn areas and spatial patterns that closely align with burn severity. MOD-SMET improves the ability to resolve statistically significant changes in ET following wildfires and better understand changes in the post-fire water budget. Utilizing this knowledge, water resource managers can better plan for, and mitigate, the short- and long-term impacts of wildfire on regional water supplies.

  8. CHARIS (Contribution to High Asia Runoff from Ice and Snow) Lessons Learned in Capacity-Building for Hydrological Sciences with Asian Partner Communities

    Science.gov (United States)

    Brodzik, M. J.; Armstrong, R. L.; Armstrong, B. R.; Barrett, A. P.; Fetterer, F. M.; Hill, A. F.; Hughes, H.; Khalsa, S. J. S.; Racoviteanu, A.; Raup, B. H.; Rittger, K.; Williams, M. W.; Wilson, A. M.

    2016-12-01

    Funded by USAID and based at the University of Colorado, the Contribution to High Asia Runoff from Ice & Snow (CHARIS) project has among its objectives both scientific and capacity-building goals. We are systematically assessing the role of glaciers and seasonal snow in the freshwater resources of High Asia to better forecast future availability and vulnerability of water resources in the region. We are collaborating with Asian partner institutions in eight nations across High Asia (Bhutan, Nepal, India, Pakistan, Afghanistan, Kazakhstan, Kyrgyzstan and Tajikistan). Our capacity-building activities include data-sharing, training, supporting field work and education and infrastructure development, which includes creating the only water-chemistry laboratory of its kind in Bhutan. We have also derived reciprocal benefits from our partners, learning from their specialized local knowledge and obtaining access to otherwise unavailable in situ data. Our presentation will share lessons learned in our annual training workshops with our Asian collaborators, at which we have interspersed remote sensing and hydrological modelling lectures with GIS and python programming, and hands-on applications using remote sensing data. Our challenges have included technological issues such as: power incompatibilities, reliable shipping methods to remote locations, bandwidth limitations to transferring large remote sensing data sets, cost of proprietary software, choosing among free software alternatives, and negotiating the formats and jargon of remote sensing data to get to the science as quickly as possible. We will describe successes and failures in training methods we have used, what we look for in training venue facilities, and how our approach has changed in response to student evaluations and partner feedback.

  9. Hydrology Domain Cyberinfrastructures: Successes, Challenges, and Opportunities

    Science.gov (United States)

    Horsburgh, J. S.

    2015-12-01

    Anticipated changes to climate, human population, land use, and urban form will alter the hydrology and availability of water within the water systems on which the world's population relies. Understanding the effects of these changes will be paramount in sustainably managing water resources, as well as maintaining associated capacity to provide ecosystem services (e.g., regulating flooding, maintaining instream flow during dry periods, cycling nutrients, and maintaining water quality). It will require better information characterizing both natural and human mediated hydrologic systems and enhanced ability to generate, manage, store, analyze, and share growing volumes of observational data. Over the past several years, a number of hydrology domain cyberinfrastructures have emerged or are currently under development that are focused on providing integrated access to and analysis of data for cross-domain synthesis studies. These include the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS), the Critical Zone Observatory Information System (CZOData), HyroShare, the BiG CZ software system, and others. These systems have focused on sharing, integrating, and analyzing hydrologic observations data. This presentation will describe commonalities and differences in the cyberinfrastructure approaches used by these projects and will highlight successes and lessons learned in addressing the challenges of big and complex data. It will also identify new challenges and opportunities for next generation cyberinfrastructure and a next generation of cyber-savvy scientists and engineers as developers and users.

  10. SWAT Modeling for Depression-Dominated Areas: How Do Depressions Manipulate Hydrologic Modeling?

    Directory of Open Access Journals (Sweden)

    Mohsen Tahmasebi Nasab

    2017-01-01

    Full Text Available Modeling hydrologic processes for depression-dominated areas such as the North American Prairie Pothole Region is complex and reliant on a clear understanding of dynamic filling-spilling-merging-splitting processes of numerous depressions over the surface. Puddles are spatially distributed over a watershed and their sizes, storages, and interactions vary over time. However, most hydrologic models fail to account for these dynamic processes. Like other traditional methods, depressions are filled as a required preprocessing step in the Soil and Water Assessment Tool (SWAT. The objective of this study was to facilitate hydrologic modeling for depression-dominated areas by coupling SWAT with a Puddle Delineation (PD algorithm. In the coupled PD-SWAT model, the PD algorithm was utilized to quantify topographic details, including the characteristics, distribution, and hierarchical relationships of depressions, which were incorporated into SWAT at the hydrologic response unit (HRU scale. The new PD-SWAT model was tested for a large watershed in North Dakota under real precipitation events. In addition, hydrologic modeling of a small watershed was conducted under two extreme high and low synthetic precipitation conditions. In particular, the PD-SWAT was compared against the regular SWAT based on depressionless DEMs. The impact of depressions on the hydrologic modeling of the large and small watersheds was evaluated. The simulation results for the large watershed indicated that SWAT systematically overestimated the outlet discharge, which can be attributed to the failure to account for the hydrologic effects of depressions. It was found from the PD-SWAT modeling results that at the HRU scale surface runoff initiation was significantly delayed due to the threshold control of depressions. Under the high precipitation scenario, depressions increased the surface runoff peak. However, the low precipitation scenario could not fully fill depressions to reach

  11. Asilomar conference on managing complexity in high energy physics: A summary and renaming of the conference

    International Nuclear Information System (INIS)

    Nash, T.

    1987-02-01

    The complex aspects of high energy physics work are briefly described, and approaches to managing them are discussed. Management of software and data are covered. For managing complexity in experimental physics, the choice of building or buying processor systems is addressed and the issues of compatibility and standardization are discussed

  12. The Effects of Visual Complexity for Japanese Kanji Processing with High and Low Frequencies

    Science.gov (United States)

    Tamaoka, Katsuo; Kiyama, Sachiko

    2013-01-01

    The present study investigated the effects of visual complexity for kanji processing by selecting target kanji from different stroke ranges of visually simple (2-6 strokes), medium (8-12 strokes), and complex (14-20 strokes) kanji with high and low frequencies. A kanji lexical decision task in Experiment 1 and a kanji naming task in Experiment 2…

  13. Coupled hydrological-mechanical effects due to excavation of underground openings in unsaturated fractured rocks

    International Nuclear Information System (INIS)

    Montazer, P.

    1985-01-01

    One of the effects of excavating an underground opening in fractured rocks is a modification of the state of the stress in the rock mass in the vicinity of the opening. This effect causes changes in the geometry of the cross sections of the fracture planes, which in turn results in modification of the hydrologic properties of the fractures of the rock mass. The significance of the orientation of the fractures and their stiffness on the extent of the modification of the hydrologic properties as a result of excavation of underground openings is demonstrated. A conceptual model is presented to illustrate the complexity of the coupled hydrological-mechanical phenomena in the unsaturated zone. This conceptual model is used to develop an investigative program to assess the extent of the effect at a proposed repository site for storing high-level nuclear wastes

  14. Nuclear techniques in hydrology

    International Nuclear Information System (INIS)

    Moser, H.

    1976-01-01

    The nuclear techniques used in hydrology are usually tracer techniques based on the use of nuclides either intentionally introduced into, or naturally present in the water. The low concentrations of these nuclides, which must be detected in groundwater and surface water, require special measurement techniques for the concentrations of radioactive or of stable nuclides. The nuclear techniques can be used most fruitfully in conjunction with conventional methods for the solution of problems in the areas of hydrology, hydrogeology and glacier hydrology. Nuclear techniques are used in practice in the areas of prospecting for water, environment protection and engineering hydrogeology. (orig.) [de

  15. Palladium(0) NHC complexes: a new avenue to highly efficient phosphorescence.

    Science.gov (United States)

    Henwood, Adam F; Lesieur, Mathieu; Bansal, Ashu K; Lemaur, Vincent; Beljonne, David; Thompson, David G; Graham, Duncan; Slawin, Alexandra M Z; Samuel, Ifor D W; Cazin, Catherine S J; Zysman-Colman, Eli

    2015-05-01

    We report the first examples of highly luminescent di-coordinated Pd(0) complexes. Five complexes of the form [Pd(L)(L')] were synthesized, where L = IPr, SIPr or IPr* NHC ligands and L' = PCy 3 , or IPr and SIPr NHC ligands. The photophysical properties of these complexes were determined in degassed toluene solution and in the solid state and contrasted to the poorly luminescent reference complex [Pd(IPr)(PPh 3 )]. Organic light-emitting diodes were successfully fabricated but attained external quantum efficiencies of between 0.3 and 0.7%.

  16. Enhancement of Hydrodynamic Processes in Oil Pipelines Considering Rheologically Complex High-Viscosity Oils

    Science.gov (United States)

    Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.

    2016-06-01

    This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.

  17. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    Adler Charles

    2009-07-01

    Full Text Available Abstract Correction to Nural H, He P, Beach T, Sue L, Xia W, Shen Y. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients Molecular Neurodegeneration 2009, 4:23.

  18. Urban Hydrology and Water Quality Modeling - Resolution Modeling Comparison for Water Quantity and Quality

    Science.gov (United States)

    Fry, T. J.; Maxwell, R. M.

    2014-12-01

    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows. These hydrologic changes can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater represents a complex and dynamic component of the urban water cycle that requires careful mitigation. With the implementation of Phase II rules under the CWA, stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Large-scale patterns of stormwater runoff from urban environments are complex and it is unclear what the large-scale impacts of green infrastructure are on the water cycle. High resolution physically based hydrologic models can be used to more accurately simulate the urban hydrologic cycle. These types of models tend to be more dynamic and allow for greater flexibility in evaluating and accounting for various hydrologic processes in the urban environment that may be lost with lower resolution conceptual models. We propose to evaluate the effectiveness of high resolution models to accurately represent and determine the urban hydrologic cycle with the overall goal of being able to accurately assess the impacts of LID BMPs in urban environments. We propose to complete a rigorous model intercomparison between ParFlow and FLO-2D. Both of these models can be scaled to higher resolutions, allow for rainfall to be spatially and temporally input, and solve the shallow water equations. Each model is different in the way it accounts for infiltration, initial abstraction losses

  19. Low complexity iterative MLSE equalization in highly spread underwater acoustic channels

    CSIR Research Space (South Africa)

    Myburgh, HC

    2009-05-01

    Full Text Available methods. The superior computational complexity of the proposed equalizer is due to the high parallelism and high level of neuron interconnection of its foundational neural network structure. I. INTRODUCTION In recent years, much attention has been... are practically infeasible, as their computational complexities are exponentially related to the number of interfering symbols, rendering them computationally infeasible for UAC equaliza- tion. Attention has therefore been drawn to developing compu- tationally...

  20. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Science.gov (United States)

    Velázquez, J. A.; Schmid, J.; Ricard, S.; Muerth, M. J.; Gauvin St-Denis, B.; Minville, M.; Chaumont, D.; Caya, D.; Ludwig, R.; Turcotte, R.

    2012-06-01

    Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971-2000) and a future (2041-2070) periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual) give a significant level of trust for high and overall mean flows.

  1. Complexity control algorithm based on adaptive mode selection for interframe coding in high efficiency video coding

    Science.gov (United States)

    Chen, Gang; Yang, Bing; Zhang, Xiaoyun; Gao, Zhiyong

    2017-07-01

    The latest high efficiency video coding (HEVC) standard significantly increases the encoding complexity for improving its coding efficiency. Due to the limited computational capability of handheld devices, complexity constrained video coding has drawn great attention in recent years. A complexity control algorithm based on adaptive mode selection is proposed for interframe coding in HEVC. Considering the direct proportionality between encoding time and computational complexity, the computational complexity is measured in terms of encoding time. First, complexity is mapped to a target in terms of prediction modes. Then, an adaptive mode selection algorithm is proposed for the mode decision process. Specifically, the optimal mode combination scheme that is chosen through offline statistics is developed at low complexity. If the complexity budget has not been used up, an adaptive mode sorting method is employed to further improve coding efficiency. The experimental results show that the proposed algorithm achieves a very large complexity control range (as low as 10%) for the HEVC encoder while maintaining good rate-distortion performance. For the lowdelayP condition, compared with the direct resource allocation method and the state-of-the-art method, an average gain of 0.63 and 0.17 dB in BDPSNR is observed for 18 sequences when the target complexity is around 40%.

  2. Allegheny County Hydrology Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  3. PNW Hydrologic Landscape Class

    Data.gov (United States)

    U.S. Environmental Protection Agency — Work has been done to expand the hydrologic landscapes (HLs) concept and to develop an approach for using it to address streamflow vulnerability from climate change....

  4. Hydrologic Engineering Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Hydrologic Engineering Center (HEC), an organization within the Institute for Water Resources, is the designated Center of Expertise for the U.S. Army Corps of...

  5. Allegheny County Hydrology Lines

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  6. Hydrologic Areas of Concern

    Data.gov (United States)

    University of New Hampshire — A Hydrologic Area of Concern (HAC) is a land area surrounding a water source, which is intended to include the portion of the watershed in which land uses are likely...

  7. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics.

    Science.gov (United States)

    Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa

    2017-04-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-02-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems.

  9. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-04-01

    Full Text Available Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrological process simulation in an inland river basin in China, Heihe River basin. It is divided into the upper, middle, and lower reaches based on the distinctive hydrological characteristics in the Heihe River basin, and three hydrological models are selected, applied, and tested to simulate the hydrological cycling processes for each reach. The upper reach is the contributing area with the complex runoff generation processes, therefore, the hydrological informatic modeling system (HIMS is utilized due to its combined runoff generation mechanisms. The middle reach has strong impacts of intensive human activities on the interactions of surface and subsurface flows, so a conceptual water balance model is applied to simulate the water balance process. For the lower reach, as the dissipative area with groundwater dominating the hydrological process, a groundwater modeling system with the embedment of MODFLOW model is applied to simulate the groundwater dynamics. Statistical parameters and water balance analysis prove that the three models have excellent performances in simulating the hydrological process of the three reaches. Therefore, it is an effective way to simulate the hydrological process of inland river basin with multiple hydrological models according to the characteristics of each subbasin.

  10. Development of a Historical Hydrological online research and application platform for Switzerland - Historical Hydrological Atlas of Switzerland (HHAS)

    Science.gov (United States)

    Wetter, Oliver

    2017-04-01

    It is planned to develop and maintain a historical hydrological online platform for Switzerland, which shall be specially designed for the needs of research and federal, cantonal or private institutions being interested in hydrological risk assessment and protection measures. The aim is on the one hand to facilitate the access to raw data which generally is needed for further historical hydrological reconstruction and quantification, so that future research will be achieved in significantly shorter time. On the other hand, new historical hydrological research results shall be continuously included in order to establish this platform as a useful tool for the assessment of hydrological risk by including the long term experience of reconstructed pre-instrumental hydrological extreme events like floods and droughts. Meteorological parameters that may trigger extreme hydrological events, like monthly or seasonally resolved reconstructions of temperature and precipitation shall be made accessible in this platform as well. The ultimate goal will be to homogenise the reconstructed hydrological extreme events which usually appeared in the pre anthropogenic influence period under different climatological as well as different hydrological regimes and topographical conditions with the present day state. Long term changes of reconstructed small- to extreme flood seasonality, based on municipal accounting records, will be included in the platform as well. This helps - in combination with the before mentioned meteorological parameters - to provide an increased understanding of the major changes in the generally complex overall system that finally causes hydrological extreme events. The goal of my presentation at the Historical Climatology session is to give an overview about the applied historical climatological and historical hydrological methodologies that are applied on the historical raw data (evidence) to reconstruct pre instrumental hydrological events and meteorological

  11. Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes

    Science.gov (United States)

    Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.

    2016-01-01

    Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.

  12. Triangle network motifs predict complexes by complementing high-error interactomes with structural information.

    Science.gov (United States)

    Andreopoulos, Bill; Winter, Christof; Labudde, Dirk; Schroeder, Michael

    2009-06-27

    A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient

  13. Triangle network motifs predict complexes by complementing high-error interactomes with structural information

    Directory of Open Access Journals (Sweden)

    Labudde Dirk

    2009-06-01

    Full Text Available Abstract Background A lot of high-throughput studies produce protein-protein interaction networks (PPINs with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. Results We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS. PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Conclusion Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that

  14. Examination of High Resolution Channel Topography to Determine Suitable Metrics to Characterize Morphological Complexity

    Science.gov (United States)

    Stewart, R. L.; Gaeuman, D.

    2015-12-01

    Complex bed morphology is deemed necessary to restore salmonid habitats, yet quantifiable metrics that capture channel complexity have remained elusive. This work utilizes high resolution topographic data from the 40 miles of the Trinity River of northern California to determine a suitable metric for characterizing morphological complexity at the reach scale. The study area is segregated into reaches defined by individual riffle pool units or aggregates of several consecutive units. Potential measures of complexity include rugosity and depth statistics such as standard deviation and interquartile range, yet previous research has shown these metrics are scale dependent and subject to sampling density-based bias. The effect of sampling density on the present analysis has been reduced by underrepresenting the high resolution topographic data as a 3'x 3' raster so that all areas are equally sampled. Standard rugosity, defined as the three-dimensional surface area divided by projected area, has been shown to be dependent on average depth. We therefore define R*, a empirically depth-corrected rugosity metric in which rugosity is corrected using an empirical relationship based on linear regression between the standard rugosity metric and average depth. By removing the dependence on depth using a regression based on the study reach, R* provides a measure reach scale complexity relative to the entire study area. The interquartile range of depths is also depth-dependent, so we defined a non-dimensional metric (IQR*) as the interquartile range dividing by median depth. These are calculated to develop rankings of channel complexity which, are found to closely agree with perceived channel complexity observed in the field. Current efforts combine these measures of morphological complexity with salmonid habitat suitability to evaluate the effects of channel complexity on the various life stages of salmonids. Future work will investigate the downstream sequencing of channel

  15. Properties of lotus seed starch-glycerin monostearin complexes formed by high pressure homogenization.

    Science.gov (United States)

    Chen, Bingyan; Zeng, Shaoxiao; Zeng, Hongliang; Guo, Zebin; Zhang, Yi; Zheng, Baodong

    2017-07-01

    Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high pressure homogenization (HPH) process, and the effect of HPH on the physicochemical properties of LS-GMS complexes was investigated. The results of Fourier transform infrared spectroscopy and complex index analysis showed that LS-GMS complexes were formed at 40MPa by HPH and the complex index increased with the increase of homogenization pressure. Scanning electron microscopy displayed LS-GMS complexes present more nest-shape structure with increasing homogenization pressure. X-ray diffraction and differential scanning calorimetry results revealed that V-type crystalline polymorph was formed between LS and GMS, with higher homogenization pressure producing an increasingly stable complex. LS-GMS complex inhibited starch granules swelling, solubility and pasting development, which further reduced peak and breakdown viscosity. During storage, LS-GMS complexes prepared by 70-100MPa had higher Avrami exponent values and lower recrystallization rates compared with native starch, which suggested a lower retrogradation trendency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty (discussion paper)

    NARCIS (Netherlands)

    Pande, S.; Arkesteijn, L.; Savenije, H.H.G.; Bastidas, L.A.

    2015-01-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is

  17. Data Access System for Hydrology

    Science.gov (United States)

    Whitenack, T.; Zaslavsky, I.; Valentine, D.; Djokic, D.

    2007-12-01

    As part of the CUAHSI HIS (Consortium of Universities for the Advancement of Hydrologic Science, Inc., Hydrologic Information System), the CUAHSI HIS team has developed Data Access System for Hydrology or DASH. DASH is based on commercial off the shelf technology, which has been developed in conjunction with a commercial partner, ESRI. DASH is a web-based user interface, developed in ASP.NET developed using ESRI ArcGIS Server 9.2 that represents a mapping, querying and data retrieval interface over observation and GIS databases, and web services. This is the front end application for the CUAHSI Hydrologic Information System Server. The HIS Server is a software stack that organizes observation databases, geographic data layers, data importing and management tools, and online user interfaces such as the DASH application, into a flexible multi- tier application for serving both national-level and locally-maintained observation data. The user interface of the DASH web application allows online users to query observation networks by location and attributes, selecting stations in a user-specified area where a particular variable was measured during a given time interval. Once one or more stations and variables are selected, the user can retrieve and download the observation data for further off-line analysis. The DASH application is highly configurable. The mapping interface can be configured to display map services from multiple sources in multiple formats, including ArcGIS Server, ArcIMS, and WMS. The observation network data is configured in an XML file where you specify the network's web service location and its corresponding map layer. Upon initial deployment, two national level observation networks (USGS NWIS daily values and USGS NWIS Instantaneous values) are already pre-configured. There is also an optional login page which can be used to restrict access as well as providing a alternative to immediate downloads. For large request, users would be notified via

  18. Hydrological connectivity in the karst critical zone: an integrated approach

    Science.gov (United States)

    Chen, X.; Zhang, Z.; Soulsby, C.; Cheng, Q.; Binley, A. M.; Tao, M.

    2017-12-01

    Spatial heterogeneity in the subsurface is high, evidenced by specific landform features (sinkholes, caves etc.) and resulting in high variability of hydrological processes in space and time. This includes complex exchange of various flow sources (e.g. hillslope springs and depression aquifers) and fast conduit flow and slow fracture flow. In this paper we integrate various "state-of-the-art" methods to understand the structure and function of this understudied critical zone environment. Geophysical, hydrometric and hydrogeochemical tools are used to characterize the hydrological connectivity of the cockpit karst critical zone in a small catchment of Chenqi, Guizhou province, China. Geophysical surveys, using electrical resistivity tomography (ERT), identified the complex conduit networks that link flows between hillslopes and depressions. Statistical time series analysis of water tables and discharge responses at hillslope springs and in depression wells and underground channels showed different threshold responses of hillslope and depression flows. This reflected the differing relative contribution of fast and slow flow paths during rainfall events of varying magnitude in the hillslope epikarst and depression aquifer in dry and wet periods. This showed that the hillslope epikarst receives a high proportion of rainfall recharge and is thus a main water resource in the catchment during the drought period. In contrast, the depression aquifer receives fast, concentrated hillslope flows during large rainfall events during the wet period, resulting in the filling of depression conduits and frequent flooding. Hydrological tracer studies using water temperatures and stable water isotopes (δD and δ18O) corroborated this and provided quantitative information of the mixing proportions of various flow sources and insights into water travel times. This revealed how higher contributions of event "new" water (from hillslope springs and depression conduits displaces "old" pre

  19. Photolabile ruthenium complexes to cage and release a highly cytotoxic anticancer agent.

    Science.gov (United States)

    Wei, Jianhua; Renfrew, Anna K

    2018-02-01

    CHS-828 (N-(6-(4-chlorophenoxy)hexyl)-N'-cyano-N″-4-pyridyl guanidine) is an anticancer agent with low bioavailability and high systemic toxicity. Here we present an approach to improve the therapeutic profile of the drug using photolabile ruthenium complexes to generate light-activated prodrugs of CHS-828. Both prodrug complexes are stable in the dark but release CHS-828 when irradiated with visible light. The complexes are water-soluble and accumulate in tumour cells in very high concentrations, predominantly in the mitochondria. Both prodrug complexes are significantly less cyototoxic than free CHS-828 in the dark but their toxicity increases up to 10-fold in combination with visible light. The cellular responses to light treatment are consistent with release of the cytotoxic CHS-828 ligand. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking.

    Science.gov (United States)

    Kenar, James A; Compton, David L; Little, Jeanette A; Peterson, Steve C

    2016-04-20

    Amylose-ligand inclusion complexes represent an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose from high amylose maize starch. To overcome this problem a lipophilic ferulic acid ester, octadecyl ferulate, was prepared and complexed with amylose via excess steam jet cooking. Jet-cooking octadecyl ferulate and high amylose starch gave an amylose-octadecyl ferulate inclusion complex in 51.0% isolated yield. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) confirmed that a 61 V-type inclusion complex was formed. Amylose and extraction assays showed the complex to be enriched in amylose (91.9±4.3%) and contain 70.6±5.6mgg(-1) octadecyl ferulate, although, minor hydrolysis (∼4%) of the octadecyl ferulate was observed under the excess steam jet-cooking conditions utilized. This study demonstrates that steam jet cooking is a rapid and scalable process in which to prepare amylose-octadecyl ferulate inclusion complexes. Published by Elsevier Ltd.

  1. Hydrologic refugia, plants, and climate change.

    Science.gov (United States)

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  2. Validation of Product Properties Considering a High Variety of Complex Products

    OpenAIRE

    Kortler, S.;Kohn, A.;Lindemann, U.

    2017-01-01

    Validation processes are becoming more and more complex. Due to rising technical capabilities and a wide variety of customer requirements, OEMs are increasing their product variety in order to increase profits. According to the various characteristics of subcontracted components involved in complex products, the product variety can be very high. The impacts of the involved subcontracted components on the composed product variety during the product’s application are difficult to predict. This ...

  3. Isotope methods in hydrology

    International Nuclear Information System (INIS)

    Moser, H.; Rauert, W.

    1980-01-01

    Of the investigation methods used in hydrology, tracer methods hold a special place as they are the only ones which give direct insight into the movement and distribution processes taking place in surface and ground waters. Besides the labelling of water with salts and dyes, as in the past, in recent years the use of isotopes in hydrology, in water research and use, in ground-water protection and in hydraulic engineering has increased. This by no means replaces proven methods of hydrological investigation but tends rather to complement and expand them through inter-disciplinary cooperation. The book offers a general introduction to the application of various isotope methods to specific hydrogeological and hydrological problems. The idea is to place the hydrogeologist and the hydrologist in the position to recognize which isotope method will help him solve his particular problem or indeed, make a solution possible at all. He should also be able to recognize what the prerequisites are and what work and expenditure the use of such methods involves. May the book contribute to promoting cooperation between hydrogeologists, hydrologists, hydraulic engineers and isotope specialists, and thus supplement proven methods of investigation in hydrological research and water utilization and protection wherever the use of isotope methods proves to be of advantage. (orig./HP) [de

  4. Hydrological Monitoring System Design and Implementation Based on IOT

    Science.gov (United States)

    Han, Kun; Zhang, Dacheng; Bo, Jingyi; Zhang, Zhiguang

    In this article, an embedded system development platform based on GSM communication is proposed. Through its application in hydrology monitoring management, the author makes discussion about communication reliability and lightning protection, suggests detail solutions, and also analyzes design and realization of upper computer software. Finally, communication program is given. Hydrology monitoring system from wireless communication network is a typical practical application of embedded system, which has realized intelligence, modernization, high-efficiency and networking of hydrology monitoring management.

  5. Norwegian Hydrological Reference Dataset for Climate Change Studies

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, Inger Helene; Killingland, Magnus; Spilde, Dag

    2012-07-01

    Based on the Norwegian hydrological measurement network, NVE has selected a Hydrological Reference Dataset for studies of hydrological change. The dataset meets international standards with high data quality. It is suitable for monitoring and studying the effects of climate change on the hydrosphere and cryosphere in Norway. The dataset includes streamflow, groundwater, snow, glacier mass balance and length change, lake ice and water temperature in rivers and lakes.(Author)

  6. Hillslope hydrology and stability

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan

    2012-01-01

    Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.

  7. Inter-comparison of energy balance and hydrological models for land surface energy flux estimation over a whole river catchment

    DEFF Research Database (Denmark)

    Guzinski, R.; Nieto, H.; Stisen, S.

    2015-01-01

    Evapotranspiration (ET) is the main link between the natural water cycle and the land surface energy budget. Therefore water-balance and energy-balance approaches are two of the main methodologies for modelling this process. The water-balance approach is usually implemented as a complex....... The temporal patterns produced by the remote sensing and hydrological models are quite highly correlated (r ≈ 0.8). This indicates potential benefits to the hydrological modelling community of integrating spatial information derived through remote sensing methodology (contained in the ET maps...

  8. High-Frequency and Low-Frequency Variability in Stochastic Daily Weather Generator and Its Effect on Agricultural and Hydrologic Modelling

    Czech Academy of Sciences Publication Activity Database

    Dubrovský, Martin; Buchtele, Josef; Žalud, Z.

    2004-01-01

    Roč. 63, 1-2 (2004), s. 145-179 ISSN 0165-0009 R&D Projects: GA ČR GA205/99/1561; GA AV ČR IAA3060002 Institutional research plan: CEZ:AV0Z3042911 Keywords : Weather Generator * Agricultural Modelling * Hydrologic Modelling Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.035, year: 2004

  9. Synthesis of high-complexity rhythmic signals for closed-loop electrical neuromodulation.

    Science.gov (United States)

    Zalay, Osbert C; Bardakjian, Berj L

    2013-06-01

    We propose an approach to synthesizing high-complexity rhythmic signals for closed-loop electrical neuromodulation using cognitive rhythm generator (CRG) networks, wherein the CRG is a hybrid oscillator comprised of (1) a bank of neuronal modes, (2) a ring device (clock), and (3) a static output nonlinearity (mapper). Networks of coupled CRGs have been previously implemented to simulate the electrical activity of biological neural networks, including in silico models of epilepsy, producing outputs of similar waveform and complexity to the biological system. This has enabled CRG network models to be used as platforms for testing seizure control strategies. Presently, we take the application one step further, envisioning therapeutic CRG networks as rhythmic signal generators creating neuromimetic signals for stimulation purposes, motivated by recent research indicating that stimulus complexity and waveform characteristics influence neuromodulation efficacy. To demonstrate this concept, an epileptiform CRG network generating spontaneous seizure-like events (SLEs) was coupled to a therapeutic CRG network, forming a closed-loop neuromodulation system. SLEs are associated with low-complexity dynamics and high phase coherence in the network. The tuned therapeutic network generated a high-complexity, multi-banded rhythmic stimulation signal with prominent theta and gamma-frequency power that suppressed SLEs and increased dynamic complexity in the epileptiform network, as measured by a relative increase in the maximum Lyapunov exponent and decrease in phase coherence. CRG-based neuromodulation outperformed both low and high-frequency periodic pulse stimulation, suggesting that neuromodulation using complex, biomimetic signals may provide an improvement over conventional electrical stimulation techniques for treating neurological disorders such as epilepsy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Using high resolution aridity and drainage position data to better predict rainfall-runoff relationships in complex upland topography

    Science.gov (United States)

    Metzen, D.; Sheridan, G. J.; Benyon, R. G.; Lane, P. N. J.

    2015-12-01

    In topographically complex terrain, the interaction of aspect-dependent solar exposure and drainage-position-dependent flow accumulation results in energy and water partitioning that is highly spatially variable. Catchment scale rainfall-runoff relationships are dependent on these smaller scale spatial patterns. However, there remains considerable uncertainty as to how to represent this smaller scale variability within lumped parameter, catchment scale rainfall-runoff models. In this study we aim to measure and represent the key interactions between aridity and drainage position in complex terrain to inform the development of simple catchment-scale hydrologic model parameters. Six measurement plots were setup on opposing slopes in an east-west facing eucalypt forest headwater catchment. The field sites are spanning three drainage positions with two contrasting aridity indices each, while minimizing variations in other factors, e.g. geology and weather patterns. Sapflow, soil water content (SWC) and throughfall were continuously monitored on two convergent hillslopes with similar size (1.3 and 1.6ha) but contrasting aspects (north and south). Soil depth varied from 0.6m at the topslope to >2m at the bottomslope positions. Maximum tree heights ranged from 16.2m to 36.9m on the equator-facing slope and from 30.1m to 45.5m on the pole-facing slope, with height decreasing upslope on both aspects. Two evapotranspiration (ET) patterns emerged in relation to aridity and drainage position. On the equator-facing slope (AI~ 2.1), seasonal understorey and overstorey ET patterns were in sync, whereas on the pole-facing slope (AI~1.5) understorey ET showed larger seasonal fluctuations than overstorey ET. Seasonal ET patterns and competition between soil evaporation and root water uptake lead to distinct differences in profile SWC across the sites, likely caused by depletion from different depths. Topsoil water content on equator-facing slopes was generally lower and responded

  11. Game-Theoretic Rate-Distortion-Complexity Optimization of High Efficiency Video Coding

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Milani, Simone; Forchhammer, Søren

    2013-01-01

    profiles in order to tailor the computational load to the different hardware and power-supply resources of devices. In this work, we focus on optimizing the quantization parameter and partition depth in HEVC via a game-theoretic approach. The proposed rate control strategy alone provides 0.2 dB improvement......This paper presents an algorithm for rate-distortioncomplexity optimization for the emerging High Efficiency Video Coding (HEVC) standard, whose high computational requirements urge the need for low-complexity optimization algorithms. Optimization approaches need to specify different complexity...

  12. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate

    Science.gov (United States)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.

    2017-12-01

    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan

  13. Multi-criteria evaluation of hydrological models

    Science.gov (United States)

    Rakovec, Oldrich; Clark, Martyn; Weerts, Albrecht; Hill, Mary; Teuling, Ryan; Uijlenhoet, Remko

    2013-04-01

    Over the last years, there is a tendency in the hydrological community to move from the simple conceptual models towards more complex, physically/process-based hydrological models. This is because conceptual models often fail to simulate the dynamics of the observations. However, there is little agreement on how much complexity needs to be considered within the complex process-based models. One way to proceed to is to improve understanding of what is important and unimportant in the models considered. The aim of this ongoing study is to evaluate structural model adequacy using alternative conceptual and process-based models of hydrological systems, with an emphasis on understanding how model complexity relates to observed hydrological processes. Some of the models require considerable execution time and the computationally frugal sensitivity analysis, model calibration and uncertainty quantification methods are well-suited to providing important insights for models with lengthy execution times. The current experiment evaluates two version of the Framework for Understanding Structural Errors (FUSE), which both enable running model inter-comparison experiments. One supports computationally efficient conceptual models, and the second supports more-process-based models that tend to have longer execution times. The conceptual FUSE combines components of 4 existing conceptual hydrological models. The process-based framework consists of different forms of Richard's equations, numerical solutions, groundwater parameterizations and hydraulic conductivity distribution. The hydrological analysis of the model processes has evolved from focusing only on simulated runoff (final model output), to also including other criteria such as soil moisture and groundwater levels. Parameter importance and associated structural importance are evaluated using different types of sensitivity analyses techniques, making use of both robust global methods (e.g. Sobol') as well as several

  14. Some challenges in eco-hydrology

    Science.gov (United States)

    Porporato, A.

    2007-12-01

    The importance of the mutual interactions between biosphere in hydrosphere has become increasingly apparent in both the ecological and hydrological sciences. In hydrology, while the role of plants in controlling soil water balance has been recognized from some time, more subtle controls have also been realized, such as the impact of soil organic matter on soil water dynamics and soil properties, the plant control on infiltration, erosion, and geomorphology. Ecosystem dynamics and land-use changes have also been recognized to impact water availability and quality. On the other hand, biologists and ecologists have increased their attention towards the dynamics of the terrestrial water balance and its impact on plants (photosynthesis, plant growth and reproduction) as well as microbial life (and thus decomposition and the entire cycling of nutrients and carbon fluxes). In this eco-hydrological context, we discuss: (i) the need to distinguish complex from complicated eco- hydrologic behaviors, which are both expected to be present in systems with many degrees of freedom, spatial heterogeneity, nonlinearities and feedbacks (and with biological components). (ii) The use of ideas and tools from complex systems science and non-equilibrium statistical mechanics to explore possible emerging behaviors and patterns. (iii) The importance of intermittency and of the entire spectrum of eco-hydrologic fluctuations conferred by the system nonlinearities, and their connection to a possible theory of biologically- meaningful hydroclimatic extremes. (iv) The need for further research of basic questions yet unanswered (e.g., role of organic matter/roots on soil water balance and soil properties; vegetation control on infiltration; competition for water by plants; role of plant control on uptake (e.g., hydraulic lift)). (v) Ways to merge observations, minimalist models and complex numerical simulations as well as to increase communication of hydrologists with physicists, statisticians

  15. HYDROLOGY, JEFFERSON COUNTY, WI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  16. HYDROLOGY, DODGE COUNTY, WI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  17. HYDROLOGY, WASHINGTON COUNTY, WI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. HYDROLOGY, DUNN COUNTY, WI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  19. HYDROLOGY, yakima County, WA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. HYDROLOGY, GEORGETOWN COUNTY, SC, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. HYDROLOGY, LAUREL COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. HYDROLOGY, LAMAR COUNTY, GEORGIA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. HYDROLOGY, IONIA COUNTY, MI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  4. HYDROLOGY, Bourbon COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  5. HYDROLOGY, MADISON COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  6. HYDROLOGY, MONITEAU COUNTY, MISSOURI USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDROLOGY, IRON COUNTY, UTAH, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. HYDROLOGY, WHITLEY COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGY, TUSCOLA COUNTY, MI, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  10. HYDROLOGIC ANALYSIS, HONOLULU COUNTY, HI

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. HYDROLOGY, Richland County, ND, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  12. HYDROLOGY, Grant County, SD, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  13. HYDROLOGY, LEVY COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  14. HYDROLOGY, WASHINGTON COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  15. HYDROLOGY, HAMILTON COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  16. HYDROLOGY, LIBERTY COUNTY, FL, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  17. HYDROLOGY, RICE COUNTY, MN, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. HYDROLOGY, MADISON COUNTY, ALABAMA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  19. HYDROLOGY, BALLARD COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. HYDROLOGY, STORY COUNTY, IOWA USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. HYDROLOGIC ANALYSIS, MONO COUNTY, CA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. HYDROLOGIC ANALYSIS, EDGEFIELD COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. HYDROLOGY, SIMPSON COUNTY, KENTUCKY USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  4. High Grade Glioma Mimicking Voltage Gated Potassium Channel Complex Associated Antibody Limbic Encephalitis

    Directory of Open Access Journals (Sweden)

    Dilan Athauda

    2014-01-01

    Full Text Available Though raised titres of voltage gated potassium channel (VGKC complex antibodies have been occasionally associated with extracranial tumours, mainly presenting as Morvan's Syndrome or neuromyotonia, they have not yet been reported to be associated with an intracranial malignancy. This is especially important as misdiagnosis of these conditions and delay of the appropriate treatment can have important prognostic implications. We describe a patient with a high grade glioma presenting with clinical, radiological, and serological features consistent with the diagnosis of VGKC antibody associated limbic encephalitis (LE. This is the first association between a primary brain tumour and high titre of VGKC complex antibodies. Clinicoradiological progression despite effective immunosuppressive treatment should prompt clinicians to look for alternative diagnoses. Further studies to elucidate a possible association between VGKC complex and other surface antigen antibodies with primary brain tumours should be carried out.

  5. High grade glioma mimicking voltage gated potassium channel complex associated antibody limbic encephalitis.

    Science.gov (United States)

    Athauda, Dilan; Delamont, R S; Pablo-Fernandez, E De

    2014-01-01

    Though raised titres of voltage gated potassium channel (VGKC) complex antibodies have been occasionally associated with extracranial tumours, mainly presenting as Morvan's Syndrome or neuromyotonia, they have not yet been reported to be associated with an intracranial malignancy. This is especially important as misdiagnosis of these conditions and delay of the appropriate treatment can have important prognostic implications. We describe a patient with a high grade glioma presenting with clinical, radiological, and serological features consistent with the diagnosis of VGKC antibody associated limbic encephalitis (LE). This is the first association between a primary brain tumour and high titre of VGKC complex antibodies. Clinicoradiological progression despite effective immunosuppressive treatment should prompt clinicians to look for alternative diagnoses. Further studies to elucidate a possible association between VGKC complex and other surface antigen antibodies with primary brain tumours should be carried out.

  6. Complex C: A Low-Metallicity, High-Velocity Cloud Plunging into the Milky Way

    Science.gov (United States)

    Tripp, Todd M.; Wakker, Bart P.; Jenkins, Edward B.; Bowers, C. W.; Danks, A. C.; Green, R. F.; Heap, S. R.; Joseph, C. L.; Kaiser, M. E.; Linsky, J. L.; Woodgate, B. E.

    2003-06-01

    We present evidence that high-velocity cloud (HVC) complex C is a low-metallicity gas cloud that is plunging toward the disk and beginning to interact with the ambient gas that surrounds the Milky Way. This evidence begins with a new high-resolution (7 km s-1 FWHM) echelle spectrum of 3C 351 obtained with the Space Telescope Imaging Spectrograph (STIS). 3C 351 lies behind the low-latitude edge of complex C, and the new spectrum provides accurate measurements of O I, Si II, Al II, Fe II, and Si III absorption lines at the velocity of complex C; N I, S II, Si IV, and C IV are not detected at 3 σ significance in complex C proper. However, Si IV and C IV as well as O I, Al II, Si II and Si III absorption lines are clearly present at somewhat higher velocities associated with a ``high-velocity ridge'' (HVR) of 21 cm emission. This high-velocity ridge has a similar morphology to and is roughly centered on complex C proper. The similarities of the absorption-line ratios in the HVR and complex C suggest that these structures are intimately related. In complex C proper we find [O/H]=-0.76+0.23-0.21. For other species the measured column densities indicate that ionization corrections are important. We use collisional and photoionization models to derive ionization corrections; in both models we find that the overall metallicity Z=0.1-0.3 Zsolar in complex C proper, but nitrogen must be underabundant. The iron abundance indicates that the complex C contains very little dust. The size and density implied by the ionization models indicate that the absorbing gas is not gravitationally confined. The gas could be pressure confined by an external medium, but alternatively we may be viewing the leading edge of the HVC, which is ablating and dissipating as it plunges into the Milky Way. O VI column densities observed with the Far Ultraviolet Spectroscopic Explorer (FUSE) toward nine QSOs/AGNs behind complex C support this conclusion: N(O VI) is highest near 3C 351, and the O VI/H I

  7. Spatially explicit scenario analysis for hydrologic services in an urbanizing agricultural watershed

    Science.gov (United States)

    Qiu, J.; Booth, E.; Carpenter, S. R.; Turner, M.

    2013-12-01

    The sustainability of hydrologic services (benefits to people generated by terrestrial ecosystem effects on freshwater) is challenged by changes in climate and land use. Despite the importance of hydrologic services, few studies have investigated how the provision of ecosystem services related to freshwater quantity and quality may vary in magnitude and spatial pattern for alternative future trajectories. Such analyses may provide useful information for sustaining freshwater resources in the face of a complex and uncertain future. We analyzed the supply of multiple hydrologic services from 2010 to 2070 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) What are the potential trajectories for the supply of hydrologic services under contrasting but plausible future scenarios? (ii) Where on the landscape is the delivery of hydrologic services most vulnerable to future changes? The Nested Watershed scenario represents extreme climate change (warmer temperatures and more frequent extreme events) and a concerted response from institutions, whereas in the Investment in Innovation scenario, climate change is less severe and technological innovations play a major role. Despite more extreme climate in the Nested Watershed scenario, all hydrologic services (i.e., freshwater supply, surface water quality, flood regulation) were maintained or enhanced (~30%) compared to the 2010 baseline, by strict government interventions that prioritized freshwater resources. Despite less extreme climate in the Investment in Innovation scenario and advances in green technology, only surface water quality and flood regulation were maintained or increased (~80%); freshwater supply declined by 25%, indicating a potential future tradeoff between water quality and quantity. Spatially, the locations of greatest vulnerability (i.e., decline) differed by service and among scenarios. In the Nested Watershed scenario, although

  8. Hydrology and soil erosion

    Science.gov (United States)

    Leonard J. Lane; Mary R. Kidwell

    2003-01-01

    We review research on surface water hydrology and soil erosion at the Santa Rita Experimental Range (SRER). Almost all of the research was associated with eight small experimental watersheds established from 1974 to 1975 and operated until the present. Analysis of climatic features of the SRER supports extending research findings from the SRER to broad areas of the...

  9. Hydrology and flow forecasting

    NARCIS (Netherlands)

    Vrijling, J.K.; Kwadijk, J.; Van Duivendijk, J.; Van Gelder, P.; Pang, H.; Rao, S.Q.; Wang, G.Q.; Huang, X.Q.

    2002-01-01

    We have studied and applied the statistic model (i.e. MMC) and hydrological models to Upper Yellow River. This report introduces the results and some conclusions from the model. The three models, MMC, MWBM and NAM, have be applied in the research area. The forecasted discharge by the three models

  10. Environmental isotope hydrology

    International Nuclear Information System (INIS)

    1973-01-01

    Environmental isotope hydrology is a relatively new field of investigation based on isotopic variations observed in natural waters. These isotopic characteristics have been established over a broad space and time scale. They cannot be controlled by man, but can be observed and interpreted to gain valuable regional information on the origin, turnover and transit time of water in the system which often cannot be obtained by other techniques. The cost of such investigations is usually relatively small in comparison with the cost of classical hydrological studies. The main environmental isotopes of hydrological interest are the stable isotopes deuterium (hydrogen-2), carbon-13, oxygen-18, and the radioactive isotopes tritium (hydrogen-3) and carbon-14. Isotopes of hydrogen and oxygen are ideal geochemical tracers of water because their concentrations are usually not subject to change by interaction with the aquifer material. On the other hand, carbon compounds in groundwater may interact with the aquifer material, complicating the interpretation of carbon-14 data. A few other environmental isotopes such as 32 Si and 238 U/ 234 U have been proposed recently for hydrological purposes but their use has been quite limited until now and they will not be discussed here. (author)

  11. Watershed hydrology. Chapter 7.

    Science.gov (United States)

    Elons S. Verry; Kenneth N. Brooks; Dale S. Nichols; Dawn R. Ferris; Stephen D. Sebestyen

    2011-01-01

    Watershed hydrology is determined by the local climate, land use, and pathways of water flow. At the Marcell Experimental Forest (MEF), streamflow is dominated by spring runoff events driven by snowmelt and spring rains common to the strongly continental climate of northern Minnesota. Snowmelt and rainfall in early spring saturate both mineral and organic soils and...

  12. netherland hydrological modeling instrument

    Science.gov (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  13. Inverse Processing of Undefined Complex Shape Parts from Structural High Alloyed Tool Steel

    Czech Academy of Sciences Publication Activity Database

    Monková, K.; Monka, P.; Hloch, Sergej

    -, č. 1 (2014), s. 1-11 ISSN 1687-8132 Institutional support: RVO:68145535 Keywords : 3D digitization * complex shape parts * high alloyed tool steel Subject RIV: JQ - Machines ; Tools Impact factor: 0.575, year: 2014 http://www.hindawi.com/journals/ame/aip/478748/

  14. How Stimulus and Task Complexity Affect Monitoring in High-Functioning Adults with Autism Spectrum Disorder

    NARCIS (Netherlands)

    Koolen, S.; Vissers, C.T.W.M.; Egger, J.I.M.; Verhoeven, L.T.W.

    2014-01-01

    The present study examined whether individuals with autism spectrum disorder (ASD) are able to update and monitor working memory representations of visual input, and whether performance is influenced by stimulus and task complexity. 15 high-functioning adults with ASD and 15 controls were asked to

  15. 42 CFR 493.1467 - Condition: Laboratories performing high complexity testing; cytology general supervisor.

    Science.gov (United States)

    2010-10-01

    ... testing; cytology general supervisor. 493.1467 Section 493.1467 Public Health CENTERS FOR MEDICARE....1467 Condition: Laboratories performing high complexity testing; cytology general supervisor. For the subspecialty of cytology, the laboratory must have a general supervisor who meets the qualification...

  16. DISTRIBUTION AND ORIGIN OF HIGH-VELOCITY CLOUDS .3. CLOUDS, COMPLEXES AND POPULATIONS

    NARCIS (Netherlands)

    WAKKER, BP; VANWOERDEN, H

    1991-01-01

    We present the first complete catalogue of high-velocity clouds (HVCs), followed by a classification of these clouds into complexes and populations. The catalogue will form the basis for comparisons with theoretical models. The study described here yields the following conclusions: (1) Differential

  17. A design control structure for architectural firms in a highly complex and uncertain situation

    NARCIS (Netherlands)

    Schijlen, J.T.H.A.M.; Otter, den A.F.H.J.; Pels, H.J.

    2011-01-01

    A large architectural firm in a highly complex and uncertain production situation asked to improve its existing ?production control? system for design projects. To that account a research and design project of nine months at the spot was defined. The production control in the organization was based

  18. Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities

    CERN Document Server

    Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

    2006-01-01

    This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

  19. The Complex and Unequal Impact of High Stakes Accountability on Untested Social Studies

    Science.gov (United States)

    Pace, Judith L.

    2011-01-01

    This article contributes to research on the impact of high stakes accountability on social studies teaching where it is "not" tested by the state, and addresses the question of what is happening in middle and higher performing versus struggling schools (Wills, 2007). The author presents complex findings from a qualitative study in five…

  20. J.F. Schouten revisited : pitch of complex tones having many high-order harmonics

    NARCIS (Netherlands)

    Smurzynski, J.; Houtsma, A.J.M.

    1988-01-01

    Four experiments are reported which deal with pitch perception of harmonic complex tones containing many high-order, aurally unresolvable partials. Melodic-interval identilication performance ill the case of sounds with increasing harmonic order remains significantly above chalice level, even if the

  1. Acting, predicting and intervening in a socio-hydrological world

    Science.gov (United States)

    Lane, S. N.

    2014-03-01

    those predictions contain assumptions, the predictions are only correct in so far as those assumptions hold, and for those assumptions to hold, the socio-hydrological system (i.e. the world) has to be shaped so as to include them. Here, I add to the "normal" view that ideally our models should represent the world around us, to argue that for our models (and hence our predictions) to be valid, we have to make the world look like our models. Decisions over how the world is modelled may transform the world as much as they represent the world. Thus, socio-hydrological modelling has to become a socially accountable process such that the world is transformed, through the implications of modelling, in a fair and just manner. This leads into the final section of the paper where I consider how socio-hydrological research may be made more socially accountable, in a way that is both sensitive to the constructivist critique (Sect. 1), but which retains the contribution that hydrologists might make to socio-hydrological studies. This includes (1) working with conflict and controversy in hydrological science, rather than trying to eliminate them; (2) using hydrological events to avoid becoming locked into our own frames of explanation and prediction; (3) being empirical and experimental but in a socio-hydrological sense; and (4) co-producing socio-hydrological predictions. I will show how this might be done through a project that specifically developed predictive models for making interventions in river catchments to increase high river flow attenuation. Therein, I found myself becoming detached from my normal disciplinary networks and attached to the co-production of a predictive hydrological model with communities normally excluded from the practice of hydrological science.

  2. Curricula and Syllabi in Hydrology.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This collection of papers is intended to provide a means for the exchange of information on hydrological techniques and for the coordination of research and data collection. The objectives and trends in hydrological education are presented. The International Hydrological Decade (IHD) Working Group on Education recommends a series of topics that…

  3. Synthesis and spectroscopic behavior of highly luminescent Eu 3+-dibenzoylmethanate (DBM) complexes with sulfoxide ligands

    Science.gov (United States)

    Niyama, E.; Brito, H. F.; Cremona, M.; Teotonio, E. E. S.; Reyes, R.; Brito, G. E. S.; Felinto, M. C. F. C.

    2005-09-01

    In this paper the synthesis, characterization and photoluminescent behavior of the [RE(DBM) 3L 2] complexes (RE = Gd and Eu) with a variety of sulfoxide ligands; L = benzyl sulfoxide (DBSO), methyl sulfoxide (DMSO), phenyl sulfoxide (DPSO) and p-tolyl sulfoxide (PTSO) have been investigated in solid state. The emission spectra of the Eu 3+-β-diketonate complexes show characteristics narrow bands arising from the 5D 0 → 7F J ( J = 0-4) transitions, which are split according to the selection rule for C n, C nv or C s site symmetries. The experimental Judd-Ofelt intensity parameters ( Ω2 and Ω4), radiative ( Arad) and non-radiative ( Anrad) decay rates, and R02 for the europium complexes have been determined and compared. The highest value of Ω2 (61.9 × 10 -20 cm 2) was obtained to the complex with PTSO ligand, indicating that Eu 3+ ion is in the highly polarizable chemical environment. The higher values of the experimental quantum yield ( q) and emission quantum efficiency of the emitter 5D 0 level ( η) for the Eu-complexes with DMSO, DBSO and PTSO sulfoxides suggest that these complexes are promising Light Conversion Molecular Devices (LCMDs). The lower value of quantum yield ( q = 1%), for the hydrated complex [Eu(DBM) 3(H 2O)], indicates that the luminescence quenching occurs via multiphonon relaxation by coupling with the OH-oscillators from water molecule coordinated to rare earth ion. The pure red emission of the Eu-complexes has been confirmed by ( x, y) color coordinates.

  4. Synthesis and spectroscopic behavior of highly luminescent trinuclear europium complexes with tris-β-diketone ligand

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dunjia, E-mail: dunjiawang@163.com; Pi, Yan; Liu, Hua; Wei, Xianhong; Hu, Yanjun; Zheng, Jing

    2014-11-15

    Highlights: • Synthesis of the tris-β-diketone ligand and its trinuclear europium complexes. • Photoluminescence behavior of trinuclear europium complexes. • Analysis of the Judd–Ofelt intensity parameters (Ω{sub t}), lifetime (τ) and quantum yield (η). - Abstract: A new tris-β-diketone ligand, 2-[4,6-bis-(1-benzoyl-2-oxo-2-phenyl-ethyl)-[1,3,5]triazin-2-yl] -1,3-diphenyl-propane-1,3-dione (H{sub 3}L), and its trinuclear europium complexes, Eu{sub 3}(DBM){sub 6}L (C1), Eu{sub 3}(DBM){sub 6}(Bipy){sub 3}L (C2) and Eu{sub 3}(DBM){sub 6}(Phen){sub 3}L (C3) were synthesized and their spectroscopic behaviors were studied by FT-IR, {sup 1}H NMR, UV–vis and photoluminescence spectroscopic techniques. These europium complexes exhibited the characteristic emission bands that arise from the {sup 5}D{sub 0} → {sup 7}F{sub J} (J = 0–4) transitions of the europium ion in solid state. The Ω{sub 2} and Ω{sub 4} intensity parameters, lifetime (τ) and luminescence quantum yield (η) were calculated according to the emission spectra and luminescence decay curves in solid state. The results indicated that these trinuclear europium complexes displayed a longer lifetime (τ) and higher luminescence quantum efficiency (η), especially complexes C2 (τ = 0.820 ms, η = 46.5%) and C3 (τ = 0.804 ms, η = 47.4%), which due to the effect of two additional europium ion lumophors and the introduction of the third ligands, Bipy or Phen in trinuclear complexes. Their Ω{sub 2} values demonstrated that the europium ion in these complexes is in a highly polarizable chemical environment.

  5. High Pressure Optical Studies of the Thallous Halides and of Charge-Transfer Complexes

    Science.gov (United States)

    Jurgensen, Charles Willard

    High pressure was used to study the insulator -to-metal transition in sulfur and the thallous halides and to study the intermolecular interactions in charge -transfer complexes. The approach to the band overlap insulator -to-metal transition was studied in three thallous halides and sulfur by optical absorption measurements of the band gap as a function of pressure. The band gap of sulfur continuously decreases with pressure up to the insulator -to-metal transition which occurs between 450 and 485 kbars. The results on the thallous halides indicate that the indirect gap decreases more rapidly than the direct gap; the closing of the indirect gap is responsible for the observed insulator -to-metal transitions. High pressure electronic and vibrational spectroscopic measurements on the solid-state complexes of HMB-TCNE were used to study the intermolecular interactions of charge -transfer complexes. The vibrational frequency shifts indicate that the degree of charge transfer increases with pressure which is independently confirmed by an increase in the molar absorptivity of the electronic charge-transfer peak. Induction and dispersion forces contribute towards a red shift of the charge-transfer peak; however, charge-transfer resonance contributes toward a blue shift and this effect is dominant for the HMB-TCNE complexes. High pressure electronic spectra were used to study the effect of intermolecular interactions on the electronic states of TCNQ and its complexes. The red shifts with pressure of the electronic spectra of TCNQ and (TCNQ)(' -) in polymer media and of crystalline TCNQ can be understood in terms of Van der Waals interactions. None of the calculations which considered intradimer distance obtained the proper behavior for either the charge-transfer of the locally excited states of the complexes. The qualitative behavior of both states can be interpreted as the effect of increased mixing of the locally excited and charge transfer states.

  6. Highly refractory Archaean peridotite cumulates: Petrology and geochemistry of the Seqi Ultramafic Complex, SW Greenland

    Directory of Open Access Journals (Sweden)

    Kristoffer Szilas

    2018-05-01

    Full Text Available This paper investigates the petrogenesis of the Seqi Ultramafic Complex, which covers a total area of approximately 0.5 km2. The ultramafic rocks are hosted by tonalitic orthogneiss of the ca. 3000 Ma Akia terrane with crosscutting granitoid sheets providing an absolute minimum age of 2978 ± 8 Ma for the Seqi Ultramafic Complex. The Seqi rocks represent a broad range of olivine-dominated plutonic rocks with varying modal amounts of chromite, orthopyroxene and amphibole, i.e. various types of dunite (s.s., peridotite (s.l., as well as chromitite. The Seqi Ultramafic Complex is characterised primarily by refractory dunite, with highly forsteritic olivine with core compositions having Mg# ranging from about 91 to 93. The overall high modal contents, as well as the specific compositions, of chromite rule out that these rocks represent a fragment of Earth's mantle. The occurrence of stratiform chromitite bands in peridotite, thin chromite layers in dunite and poikilitic orthopyroxene in peridotite instead supports the interpretation that the Seqi Ultramafic Complex represents the remnant of a fragmented layered complex or a magma conduit, which was subsequently broken up and entrained during the formation of the regional continental crust.Integrating all of the characteristics of the Seqi Ultramafic Complex points to formation of these highly refractory peridotites from an extremely magnesian (Mg# ∼ 80, near-anhydrous magma, as olivine-dominated cumulates with high modal contents of chromite. It is noted that the Seqi cumulates were derived from a mantle source by extreme degrees of partial melting (>40%. This mantle source could potentially represent the precursor for the sub-continental lithospheric mantle (SCLM in this region, which has previously been shown to be ultra-depleted. The Seqi Ultramafic Complex, as well as similar peridotite bodies in the Fiskefjord region, may thus constitute the earliest cumulates that formed during the

  7. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask

    Science.gov (United States)

    Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.

    2014-07-01

    The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.

  8. Palladium(0) NHC complexes : a new avenue to highly efficient phosphorescence

    OpenAIRE

    Henwood, Adam Francis; Lesieur, Mathieu; Bansal, Ashu Kumar; Lemaur, Vincent; Beljonne, David; Thompson, David G.; Graham, Duncan; Slawin, Alexandra Martha Zoya; Samuel, Ifor David William; Cazin, Catherine S.J.; Zysman-Colman, Eli

    2015-01-01

    The authors are grateful to the Royal Society (University Research Fellowship to CSJC and Wolfson Research Merit Award for IDWS) and to EPSRC (grant: EP1J01771X) for financial support. EZ-C thanks the University of St Andrews for funding. We report the first examples of highly luminescent di-coordinated Pd(0) complexes. Five complexes of the form [Pd(L)(L’)] were synthesized, where L = IPr, SIPr or IPr* NHC ligands and L’ = PCy3, or IPr and SIPr NHC ligands. The photophysical properties of...

  9. Avian infectious bronchitis virus in Brazil: a highly complex virus meets a highly susceptible host population

    Directory of Open Access Journals (Sweden)

    PE Brandão

    2010-06-01

    Full Text Available Infectious bronchitis (IB is a highly aggressive disease for poultry in terms of symptoms and economic losses, and the control of this disease is difficult if flocks are not protected against type-specific challenges by the Avian infectious bronchitis virus (IBV. This article summarizes data presented by the author at the Workshop on Infectious Bronchitis 2009 on IB and IBV, including future developments on the field.

  10. An efficient hybrid technique in RCS predictions of complex targets at high frequencies

    Science.gov (United States)

    Algar, María-Jesús; Lozano, Lorena; Moreno, Javier; González, Iván; Cátedra, Felipe

    2017-09-01

    Most computer codes in Radar Cross Section (RCS) prediction use Physical Optics (PO) and Physical theory of Diffraction (PTD) combined with Geometrical Optics (GO) and Geometrical Theory of Diffraction (GTD). The latter approaches are computationally cheaper and much more accurate for curved surfaces, but not applicable for the computation of the RCS of all surfaces of a complex object due to the presence of caustic problems in the analysis of concave surfaces or flat surfaces in the far field. The main contribution of this paper is the development of a hybrid method based on a new combination of two asymptotic techniques: GTD and PO, considering the advantages and avoiding the disadvantages of each of them. A very efficient and accurate method to analyze the RCS of complex structures at high frequencies is obtained with the new combination. The proposed new method has been validated comparing RCS results obtained for some simple cases using the proposed approach and RCS using the rigorous technique of Method of Moments (MoM). Some complex cases have been examined at high frequencies contrasting the results with PO. This study shows the accuracy and the efficiency of the hybrid method and its suitability for the computation of the RCS at really large and complex targets at high frequencies.

  11. Synthesis, spectroscopy, and hydrogen/deuterium exchange in high-spin iron(II) hydride complexes.

    Science.gov (United States)

    Dugan, Thomas R; Bill, Eckhard; MacLeod, K Cory; Brennessel, William W; Holland, Patrick L

    2014-03-03

    Very few hydride complexes are known in which the metals have a high-spin electronic configuration. We describe the characterization of several high-spin iron(II) hydride/deuteride isotopologues and their exchange reactions with one another and with H2/D2. Though the hydride/deuteride signal is not observable in NMR spectra, the choice of isotope has an influence on the chemical shifts of distant protons in the dimers through the paramagnetic isotope effect on chemical shift. This provides the first way to monitor the exchange of H and D in the bridging positions of these hydride complexes. The rate of exchange depends on the size of the supporting ligand, and this is consistent with the idea that H2/D2 exchange into the hydrides occurs through the dimeric complexes rather than through a transient monomer. The understanding of H/D exchange mechanisms in these high-spin iron hydride complexes may be relevant to postulated nitrogenase mechanisms.

  12. Using streamflow and hydrochemical tracers to conceptualise hydrological function of underground channel system in a karst catchment of southwest China

    Science.gov (United States)

    Zhang, Zhicai; Chen, Xi; Wang, Jinli

    2016-04-01

    Karst hydrodynamic behaviour is complex because of special karst geology and geomorphology. The permeable multi-media consisting of soil, epikarst fractures and conduits has a key influence on karst hydrological processes. Spatial heterogeneity is high due to special landforms of vertical shafts, caves and sinkholes, which leads to a high dynamic variability of hydrological processes in space and time, and frequent exchange of surface water and groundwater. Underground water in different reach were sampled over the 1996-2001 in a karst catchment of Houzhai, with 81km2, located in Guizhou province of southwest China. Samples were analysed for water temperature, pH, conductivity and four solute concentrations. The monitoring sought to assess the combined utility of flow discharge and natural geochemical tracers in upscaling flow structure understanding in karst area. Based on previous researches and field investigation, the catchment characteristics were explored with the use of a GIS. Both flow discharge and solute concentrations exhibited clear seasonal patterns at every groundwater sampling sites. The variations of flow and chemistry are more dramatic in upstream site with less soil cover and more sinkholes development, which affect the hydrological pathways significantly. There was clear evidence that the differences in geology and soil were the main controls on hydrology and flow chemistry, which was spatially variable in different sites of underground channel. Conceptual flow structures in main hydrological response units for different area in the catchment were developed according to the variation of discharge and flow chemistry.

  13. Slowly digestible properties of lotus seed starch-glycerine monostearin complexes formed by high pressure homogenization.

    Science.gov (United States)

    Chen, Bingyan; Jia, Xiangze; Miao, Song; Zeng, Shaoxiao; Guo, Zebin; Zhang, Yi; Zheng, Baodong

    2018-06-30

    Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high-pressure homogenization process, and the effect of high pressure homogenization (HPH) on the slow digestion properties of LS-GMS was investigated. The digestion profiles showed HPH treatment reduced the digestive rate of LS-GMS, and the extent of this change was dependent on homogenized pressure. Scanning electron microscopy displayed HPH treatment change the morphology of LS-GMS, with high pressure producing more compact block-shape structure to resist enzyme digestion. The results of Gel-permeation chromatography and Small-angle X-ray scattering revealed high homogenization pressure impacted molecular weight distribution and semi-crystalline region of complexes, resulting in the formation of new semi-crystalline with repeat unit distance of 16-18 nm and molecular weight distribution of 2.50-2.80 × 10 5  Da, which displayed strong enzymatic resistance. Differential scanning calorimeter results revealed new semi-crystalline lamellar may originate from type-II complexes that exhibited a high transition temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    Science.gov (United States)

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Northern hydrology and water resources in a changing environment

    International Nuclear Information System (INIS)

    Kane, D.L.

    1993-01-01

    The role that climatic change may play in altering various components of the hydrologic cycle in Arctic regions is discussed. The hydrologic setting of these regions is first described, noting the importance of subsurface freezing and thawing on hydrologic pathways and the lack of incorporation of soil freezing and thawing into climate models. Major processes of interest in the relation between climate change and hydrology are the timing and magnitude of fluxes entering and leaving a basin: precipitation, evaporation and transpiration, and runoff. The active layer of the soil could be drastically increased by only a few degrees of surface warming. The natural hydrologic cycle has considerable yearly variation, tending to mask any hydrologic changes caused by climatic change. There are too many unknowns at present for an adequate prediction of the impact of climate change on the hydrologic cycle. The biggest uncertainty is how the timing and quantity of precipitation is going to change. This quantity could be altered by any major changes in vegetation, which would be closely related to the amount of warming. In hydrologic scenarios where air temperature rises 4 degree C over 50 y, under stable, high, and low precipitation conditions, there are no significant changes in hydrologic response. 24 refs., 6 figs

  16. Hydrology and Conservation Ecology

    Science.gov (United States)

    Narayanan, M.

    2006-12-01

    Responses to change in the behavior of ecological systems are largely governed by interactions at different levels. Research is essential and is to be necessarily designed to gain insights into various interactions at the community level. Sustainable resource management is only possible if conservation of biodiversity can be accomplished by properly using the knowledge discovered. It is well known that the United States Department of Agriculture provides technical information, resources, and data necessary to assist the researchers in addressing their conservation needs. Conservation aims to protect, preserve and conserve the earth's natural resources. These include, but not limited to the conservation of soil, water, minerals, air, plants and all living beings. The United States Department of Agriculture also encourages farmers and ranchers to voluntarily address threats to soil and water. Protection of wetlands and wildlife habitat has been on the radar screen of conservation experts for a very long time. The main objective has always been to help farmers and landowners conform and comply with federal and state environmental laws. During the implementation phase, farmers should be encouraged to make beneficial, cost-effective changes to methods of irrigation systems. In some cases, the hydrologic regime of the project area can be thought of as principally an issue of river flow regimes for floodplain forests. In this presentation, the author tries to focus on the impact of hydrology and conservation ecology on global warming. He also discusses the impact of hydrology and conservation ecology global air concerns such as greenhouse gas concentrations in the atmosphere. References: Chow, V. T, D. R. Maidment, and L. W. Mays. 1988. Applied Hydrology. McGraw-Hill, Inc. U.S. Soil Conservation Service. Technical Release 55: Urban Hydrology for Small Watersheds. USDA (U.S. Department of Agriculture). June 1986. Lehner, B. and P. Döll (2004). Development and validation

  17. High-performance liquid chromatography of metal complexes of pheophytins a and b

    International Nuclear Information System (INIS)

    Brykina, G.D.; Lazareva, E.E.; Uvarova, M.I.; Shpigun, O.A.

    1997-01-01

    Cu(2), Zn(2), Pb(2), Hg(2), and Ce(4) complexes of phenophytins a and b were synthesized. The chromatographic retention parameters of pheophytins a and b, chlorophylls a and b, and the above complexes were determined under conditions of normal-phase and reversed-phase high-performance liquid chromatography (HPLC). The adsorption of metal pheophytinates in the hexane-n-butanol (96:4)-Silasorb 600 and acetonitrile-ethanol-acetic acid (40:40:16)-Nucleosil C 18 systems was studied by HPLC. Factors that affect the chromatographic and adsorption characteristics of compounds (structural differences between pheophytinates of the a and b series, the nature of the central metal atom, and the nature of the mobile and stationary phases) are discussed. It is demonstrated that pheophytins a and b their metal complexes can be identified and quantiatively determined by HPLC in the concentration range (0.6-44.0)[10 -6 M

  18. DYNECHARM++: a toolkit to simulate coherent interactions of high-energy charged particles in complex structures

    Science.gov (United States)

    Bagli, Enrico; Guidi, Vincenzo

    2013-08-01

    A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.

  19. [Socio-hydrology: A review].

    Science.gov (United States)

    Ding, Jing-yi; Zhao, Wen-wu; Fang, Xue-ning

    2015-04-01

    Socio-hydrology is an interdiscipline of hydrology, nature, society and humanity. It mainly explores the two-way feedbacks of coupled human-water system and its dynamic mechanism of co-evolution, and makes efforts to solve the issues that human faces today such as sustainable utilization of water resources. Starting from the background, formation process, and fundamental concept of socio-hydrology, this paper summarized the features of socio-hydrology. The main research content of socio-hydrology was reduced to three aspects: The tradeoff in coupled human-water system, interests in water resources management and virtual water research in coupled human-water system. And its differences as well as relations with traditional hydrology, eco-hydrology and hydro-sociology were dwelled on. Finally, with hope to promote the development of socio-hydrology researches in China, the paper made prospects for the development of the subject from following aspects: Completing academic content and deepening quantitative research, focusing on scale studies of socio-hydrology, fusing socio-hydrology and eco-hydrology.

  20. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    Science.gov (United States)

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  1. High capacity hydrogen absorption in transition-metal ethylene complexes: consequences of nanoclustering

    International Nuclear Information System (INIS)

    Phillips, A B; Shivaram, B S

    2009-01-01

    We have recently shown that organo-metallic complexes formed by laser ablating transition metals in ethylene are high hydrogen absorbers at room temperature (Phillips and Shivaram 2008 Phys. Rev. Lett. 100 105505). Here we show that the absorption percentage depends strongly on the ethylene pressure. High ethylene pressures (>100 mTorr) result in a lowered hydrogen uptake. Transmission electron microscopy measurements reveal that while low pressure ablations result in metal atoms dispersed uniformly on a near atomic scale, high pressure ones yield distinct nanoparticles with electron energy-loss spectroscopy demonstrating that the metal atoms are confined solely to the nanoparticles.

  2. Water Conservation and Hydrological Transitions in Cities

    Science.gov (United States)

    Hornberger, G. M.; Gilligan, J. M.; Hess, D. J.

    2014-12-01

    A 2012 report by the National Research Council, Challenges and Opportunities in the Hydrologic Sciences, called for the development of "translational hydrologic science." Translational research in this context requires knowledge about the communication of science to decision makers and to the public but also improved understanding of the public by the scientists. This kind of knowledge is inherently interdisciplinary because it requires understanding of the complex sociotechnical dimensions of water, policy, and user relations. It is axiomatic that good governance of water resources and water infrastructure requires information about water resources themselves and about the institutions that govern water use. This "socio-hydrologic" or "hydrosociological" knowledge is often characterized by complex dynamics between and among human and natural systems. Water Resources Research has provided a forum for presentation of interdisciplinary research in coupled natural-human systems since its inception 50 years ago. The evolution of ideas presented in the journal provides a basis for framing new work, an example of which is water conservation in cities. In particular, we explore the complex interactions of political, sociodemographic, economic, and hydroclimatological factors in affecting decisions that either advance or retard the development of water conservation policies.

  3. AB INITIO molecular orbital studies of some high temperature metal halide complexes

    International Nuclear Information System (INIS)

    Curtiss, L.A.

    1978-01-01

    The use of ab initio molecular orbital calculations to aid in the characterization, i.e., structures and energies, of metal halide complexes present in high temperature salt vapors has been investigated. Standard LCAO-SCF methods were used and calculations were carried out using the minimal STO-3G basis set. The complexes included in this study were Al 2 F 6 , Al 2 Cl 6 , AlF 3 NH 3 , AlCl 3 NH 3 , and AlF 3 N 2 . The Al 2 X 6 complexes are found to have D/sub 2h/ symmetry in agreement with most experimental results. A planar form was found to be considerably higher in energy. The AlX 3 NH 3 complexes are found to have C/sub 3v/ symmetry with a small barrier to rotation about the Al-N axis. The AlF 3 N 2 complex is found to be weakly bound together with a binding energy of -8.2 kcal/mole at the STO-3G level

  4. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszkiewicz, Marek, E-mail: mpietraszkiewicz@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Dutkiewicz, Grzegorz; Borowiak, Teresa [Adam Mickiewicz University, Faculty of Chemistry, Department of Crystallography, Grunwaldzka 6, 60-780 Poznań (Poland); Kaczmarek, Anna M. [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium); Van Deun, Rik, E-mail: rik.vandeun@ugent.be [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium)

    2016-02-15

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu{sup 3+} to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip){sub 3}. The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  5. THE FIRST DISTANCE CONSTRAINT ON THE RENEGADE HIGH-VELOCITY CLOUD COMPLEX WD

    Energy Technology Data Exchange (ETDEWEB)

    Peek, J. E. G.; Roman-Duval, Julia; Tumlinson, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bordoloi, Rongmon [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sana, Hugues [Institute of Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Zheng, Yong [Department of Astronomy, Columbia University, New York, NY 10027 (United States)

    2016-09-10

    We present medium-resolution, near-ultraviolet Very Large Telescope/FLAMES observations of the star USNO-A0600-15865535. We adapt a standard method of stellar typing to our measurement of the shape of the Balmer ϵ absorption line to demonstrate that USNO-A0600-15865535 is a blue horizontal branch star, residing in the lower stellar halo at a distance of 4.4 kpc from the Sun. We measure the H and K lines of singly ionized calcium and find two isolated velocity components, one originating in the disk, and one associated with the high-velocity cloud complex WD. This detection demonstrated that complex WD is closer than ∼4.4 kpc and is the first distance constraint on the +100 km s{sup −1} Galactic complex of clouds. We find that complex WD is not in corotation with the Galactic disk, which has been assumed for decades. We examine a number of scenarios and find that the most likely scenario is that complex WD was ejected from the solar neighborhood and is only a few kiloparsecs from the Sun.

  6. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    International Nuclear Information System (INIS)

    Pietraszkiewicz, Marek; Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina; Dutkiewicz, Grzegorz; Borowiak, Teresa; Kaczmarek, Anna M.; Van Deun, Rik

    2016-01-01

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu 3+ to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip) 3 . The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  7. Mixed-ligand Al complex-a new approach for more high efficient OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, Petia K., E-mail: petia@clf.bas.bg [Institute of Optical Materials and Technologies ' Acad. J. Malinowski' , Bulgarian Academy of Sciences, Acad. G Bonchev st., bl. 109, 1113 Sofia (Bulgaria); Tomova, Reni L.; Stoycheva-Topalova, Rumiana T. [Institute of Optical Materials and Technologies ' Acad. J. Malinowski' , Bulgarian Academy of Sciences, Acad. G Bonchev st., bl. 109, 1113 Sofia (Bulgaria); Kaloyanova, Stefka S.; Deligeorgiev, Todor G. [Applied Organic Chemistry, Faculty of Chemistry, University of Sofia, Sofia 1164 (Bulgaria)

    2012-02-15

    The mixed-ligand Aluminum bis(8-hydroxyquinoline) acetylacetonate (Alq{sub 2}Acac) complex was presented and its performance as electroluminescent and electron transporting layer for OLED was studied. The photophysical properties of the novel complex were investigated and compared with the properties of the parent Alq{sub 3}. Highly efficient OLED based on the mixed-ligand Al complex was developed with two times higher luminescence and efficiency compared to the identical OLED based on the conventional Alq{sub 3} The better performance of the devices make the novel Al complex a very promising material for OLEDs. - Highlights: Black-Right-Pointing-Pointer A novel electroluminescent Alq{sub 2}Acac complex is presented as material for OLED. Black-Right-Pointing-Pointer Electroluminescent emission of Alq{sub 2}Acac is very similar to that of commercial Alq{sub 3}. Black-Right-Pointing-Pointer Devices with Alq{sub 2}Acac show better characteristics compared to those with Alq{sub 3}.

  8. The first steps of isotope hydrology

    International Nuclear Information System (INIS)

    Moser, H.

    1995-01-01

    The author narrated on his personal experience of the past forty years of the development of isotope hydrology as an independent scientific branch. He started with the basic research work of for example Dansgaard and Libby and went on to the recent world-wide recording and interpreting isotopic data network. The IAEA organisation has accompanied the scientific development in an exemplary manner and, thus brought forward the isotope hydrological research activities to the high standard reached presently. This is documented by the great number of publications promoted by the IAEA throughout this time. 4 figs, 24 refs

  9. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...

  10. AGU hydrology publication outlets

    Science.gov (United States)

    Freeze, R. Allan

    In recent months I have been approached on several occasions by members of the hydrology community who asked me which of the various AGU journals and publishing outlets would be most suitable for a particular paper or article that they have prepared.Water Resources Research (WRR) is the primary AGU outlet for research papers in hydrology. It is an interdisciplinary journal that integrates research in the social and natural sciences of water. The editors of WRR invite original contributions in the physical, chemical and biological sciences and also in the social and policy sciences, including economics, systems analysis, sociology, and law. The editor for the physical sciences side of the journal is Donald R. Nielson, LAWR Veihmeyer Hall, University of California Davis, Davis, CA 95616. The editor for the policy sciences side of the journal is Ronald G. Cummings, Department of Economics, University of New Mexico, Albuquerque, NM 87131

  11. Deforestation Hydrological Effects

    International Nuclear Information System (INIS)

    Poveda J, G.; Mesa S, O.J.

    1995-01-01

    Deforestation causes strong disturbances in ecosystems and in hydrological cycle, increasing or reducing wealths. Particularly in this work, effects of feed back between interface processes land - atmosphere are discussed and is demonstrated that losses of water by evaporation-transpiration are thoroughly indispensable to maintain the balance of hydrological regime. It's concluded that as a rule the effect of deforestation is to reduce wealth middle and to increase extreme wealth with consequent stronger and more frequent droughts or flood effects. Other deforestation effects as increase in superficial temperature, increase in atmospherical pressure, decrease in soil moisture, decrease in evaporation-transpiration, decrease of soil ruggedness, decrease of thickness of atmospherical cap limit, decrease of clouds, decrease of rain in both medium and long term and the consequent decrease of rivers wealth middle are explained. Of other side, the basins with greater deforestation affectation in Colombia are indicated. Finally, it's demonstrated the need of implementing reforestation programs

  12. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    Science.gov (United States)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  13. An Automated Approach to Very High Order Aeroacoustic Computations in Complex Geometries

    Science.gov (United States)

    Dyson, Rodger W.; Goodrich, John W.

    2000-01-01

    Computational aeroacoustics requires efficient, high-resolution simulation tools. And for smooth problems, this is best accomplished with very high order in space and time methods on small stencils. But the complexity of highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian grids, and a Cauchy-Kowalewslci recursion procedure for time advancement. In addition, a stencil constraint tree reduces the complexity of interpolating grid points that are located near wall boundaries. These procedures are used to automatically develop and implement very high order methods (>15) for solving the linearized Euler equations that can achieve less than one grid point per wavelength resolution away from boundaries by including spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is currently limited to 11th order for grid aligned boundaries and to 2nd order for irregular boundaries.

  14. Thermal-hydrological models

    Energy Technology Data Exchange (ETDEWEB)

    Buscheck, T., LLNL

    1998-04-29

    This chapter describes the physical processes and natural and engineered system conditions that affect thermal-hydrological (T-H) behavior in the unsaturated zone (UZ) at Yucca Mountain and how these effects are represented in mathematical and numerical models that are used to predict T-H conditions in the near field, altered zone, and engineered barrier system (EBS), and on waste package (WP) surfaces.

  15. Nuclear techniques in hydrology

    International Nuclear Information System (INIS)

    Bahadur, J.; Saxena, R.K.

    1974-01-01

    Several types of sealed radioactive sources, stable isotopes and water soluble radioactive tracers, used by different investigators, have been listed for studying the dynamic behaviour of water in nature. In general, all the facets of hydrological cycle, are amenable to these isotopic techniques. It is recommended that environmental isotopes data collection should be started for studying the water balance and also the interrelationships between surface and subsurface water in various rivers catchments with changing physical, geological and climatic parameters. (author)

  16. Quench-in of different high T complexities of glassformers for leisurely study at lower temperatures

    DEFF Research Database (Denmark)

    Angell, C. A.; Yue, Yuanzheng; Wang, L. M.

    Quenching-in of different high T complexities of glassformers for leisurely study at lower temperatures We describe a series of experiments on glass-forming liquids that are motivated by a common idea. The idea is that of trapping in a high enthalpy, high entropy, and state of the system by quenc......Quenching-in of different high T complexities of glassformers for leisurely study at lower temperatures We describe a series of experiments on glass-forming liquids that are motivated by a common idea. The idea is that of trapping in a high enthalpy, high entropy, and state of the system...... by quenching to the glassy state at extreme rates, and then observing the way the system evolves at low temperatures during a controlled annealing procedure. In this manner, events that normally occur during change of temperature may be observed occurring during passage of time, at much lower temperatures....... At these low temperatures, the smearing effects of vibrationally excited modes may be greatly reduced. We study both relaxational properties and vibrational properties and find that the high fictive temperature states are characterized by short relaxation times (already known) and considerably more intense...

  17. Possible Utilization of Nitronitrosylruthenium Complexes as Tracers in Hydrology; Note sur l'utilisation eventuelle des complexes de nitronitrosylruthenium comme traceurs en hydrologie; O vozmozhnom ispol'zovanii kompleksa nitronitrozilruteniya v kachestve indikatorov v gidrologii; Nota sobre el posible empleo de los complejos de nitronitrosilrutenio como indicadores en hidrologia

    Energy Technology Data Exchange (ETDEWEB)

    Gailledreau, C. [Commissariat a l' Energie Atomique (France)

    1963-08-15

    Ru{sup 106} might be a useful tracer in hydrology. Its half-life of about one year is in a range in which there are few radioisotopes which can be used as tracers. There are a great variety of complexes of Ru{sup 106}, the nitro-complexes of nitrosylruthenium being amongst the most stable. Percolation tests have been made with nitronitrosylruthenium diluted in water from the mains, on columns of aquilerous sand and a very argillaceous soil. (author) [French] Le {sup 106}Ru pourrait etre un traceur interessant en hydrologie. Sa vie moyenne, environ un an, se situe dans une gamme ou il existe peu d'autres radioisotopes susceptibles d'etre utilises comme traceurs. Il existe une grande variete de complexes du les complexes nitro de nitrosylruthenium etant parmi les plus stables. Des essais de percolation ont ete effectues avec du nitronitrosylruthenium dilue dans de l'eau de ville, sur des colonnes de sable aquifere et d'un sol tres argileux. (author) [Spanish] El ''1''0''6Ru podria emplearse en calidad de indicador en hidrologia. Tiene un periodo del orden de un ano que le situa en una gama en la que existen muy pocos radioisotopos utilisable: como indicadores. El {sup 106}Ru puede formar una gran variedad de complejos, siendo los mas estables los nitrocomplejos de nitrosilrutenio. El autor ha realizado ensayos de percolacion con nitronitrosilrutenio diluido en agua de grifo, en columnas de arena acuifera y de suelo muy arcilloso. (author) [Russian] Ru{sup 106} mozhet byt' ispol'zovan v kachestve indikatora, predstavlyayushchego opredelennyj interes dlya gidrologii. Ego period poluraspada (priblizitel'n o 1'god) raspolagaetsj v gamme, gde sushchestvuet malo drugikh radioizotopov, kotorye mogut byt' ispol'zovany v kachestve indikatorov. Sushchestvuet bol'shoe mnogoobrazie kompleksov Ru{sup 106}, prichem kompleksy nitronitrozilruteniya otnosyatsya k naibolee stabil'nym. Provodilis ' opyty po perkolyatsii s nitronitrozilruteniem, rastvorennym v vodoprovodnoj vode, na

  18. Inferring catchment precipitation by doing hydrology backward : A test in 24 small and mesoscale catchments in Luxembourg

    NARCIS (Netherlands)

    Krier, R.; Matgen, P.; Goergen, K.; Pfister, L.; Hoffmann, L.; Kirchner, J.W.; Uhlenbrook, S.; Savenije, H.H.G.

    2012-01-01

    The complexity of hydrological systems and the necessary simplification of models describing these systems remain major challenges in hydrological modeling. Kirchner's (2009) approach of inferring rainfall and evaporation from discharge fluctuations by “doing hydrology backward” is based on the

  19. Long-term hydrologic effects on marsh plant community structure in the southern Everglades

    Science.gov (United States)

    Busch, David E.; Loftus, W.F.; Bass, O.L.

    1998-01-01

    Although large-scale transformation of Everglades landscapes has occurred during the past century, the patterns of association among hydrologic factors and southern Everglades freshwater marsh vegetation have not been well-defined. We used a 10-year data base on the aquatic biota of Shark Slough to classify vegetation and describe plant community change in intermediate- to long-hydroperiod Everglades marshes. Study area marsh vegetation was quantitatively grouped into associations dominated by 1) Cladium jamaicense, 2) a group of emergents including Eleocharis cellulosa, Sagittaria lancifolia, and Rhyncospora tracyi, 3) taxa associated with algal mats (Utricularia spp. and Bacopa caroliniana), and 4) the grasses Panicum hemitomon and Paspalidium geminatum. During the decade evaluated, the range of water depths that characterized our study sites approached both extremes depicted in the 40-year hydrologic record for the region. Water depths were near the long-term average during the mid-1980s, declined sharply during a late 1980s drought, and underwent a prolonged increase from 1991 through 1995. Overall macrophyte cover varied inversely with water depth, while the response of periphyton was more complex. An ordination analysis, based on plant species abundance, revealed that study area vegetation structure was associated with hydrologic patterns. Marsh plant community structure showed evidence of cyclic interannual variation corresponding to hydrologic change over the decade evaluated. Lower water depths, the occurrence of marl substrates, and high periphyton cover were correlated. These factors contributed to reduced macrophyte cover in portions of the study area from which water had been diverted.

  20. Multiple effects of hydrological connectivity on floodplain processes in human modified river systems

    Science.gov (United States)

    Hein, Thomas; Bondar-Kunze, Elisabeth; Preiner, Stefan; Reckendorfer, Walter; Tritthart, Michael; Weigelhofer, Gabriele; Welti, Nina

    2014-05-01

    Floodplain and riparian ecosystems provide multiple functions and services of importance for human well-being and are of strategic importance for different sectors at catchment scale. Especially floodplains in the vicinity of urban areas can be areas of conflicting interests ranging from different land use types, flood water retention, drinking water production and recreation to conservation of last remnants of former riverine landscape, as it is the case in floodplains in the Danube Nationalpark downstream Vienna. Many of these ecosystem functions and services are controlled by the exchange conditions between river main channel and floodplain systems, the hydrological connectivity. At the same time these systems have been highly altered and especially the connectivity has been severely impaired. Thus, far ranging effects of changes in hydrological connectivity at various levels can be expected in altered floodplain systems. The aim of this presentation is to explore the complex control of different ecosystem functions and associated services by different parameters of hydrological connectivity, ranging from nutrient, sediment and matter dynamics and biodiversity aspects. Increasing connectivity will be shown to impact microbial dynamics, sediment-water interactions, carbon dynamics and trophic conditions, thus affecting the fundamental functions of particular floodplain systems at various spatial and temporal scales. Based on these changes also the provision of ecosystem services of floodplains is affected. The results clearly show that hydrological connectivity needs to be considered in a sustainable management approach.

  1. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  2. A high throughput architecture for a low complexity soft-output demapping algorithm

    Science.gov (United States)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2015-11-01

    Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.

  3. Broad supernatural punishment but not moralizing high gods precede the evolution of political complexity in Austronesia

    OpenAIRE

    Watts, Joseph; Greenhill, Simon J.; Atkinson, Quentin D.; Currie, Thomas E.; Bulbulia, Joseph; Gray, Russell D.

    2015-01-01

    Supernatural belief presents an explanatory challenge to evolutionary theorists—it is both costly and prevalent. One influential functional explanation claims that the imagined threat of supernatural punishment can suppress selfishness and enhance cooperation. Specifically, morally concerned supreme deities or ‘moralizing high gods' have been argued to reduce free-riding in large social groups, enabling believers to build the kind of complex societies that define modern humanity. Previous cro...

  4. A dynamic simulation model of the Savannah River Site high level waste complex

    International Nuclear Information System (INIS)

    Gregory, M.V.; Aull, J.E.; Dimenna, R.A.

    1994-01-01

    A detailed, dynamic simulation entire high level radioactive waste complex at the Savannah River Site has been developed using SPEEDUP(tm) software. The model represents mass transfer, evaporation, precipitation, sludge washing, effluent treatment, and vitrification unit operation processes through the solution of 7800 coupled differential and algebraic equations. Twenty-seven discrete chemical constituents are tracked through the unit operations. The simultaneous simultaneous simulation of concurrent batch and continuous processes is achieved by several novel, customized SPEEDUP(tm) algorithms. Due to the model's computational burden, a high-end work station is required: simulation of a years operation of the complex requires approximately three CPU hours on an IBM RS/6000 Model 590 processor. The model will be used to develop optimal high level waste (HLW) processing strategies over a thirty year time horizon. It will be employed to better understand the dynamic inter-relationships between different HLW unit operations, and to suggest strategies that will maximize available working tank space during the early years of operation and minimize overall waste processing cost over the long-term history of the complex. Model validation runs are currently underway with comparisons against actual plant operating data providing an excellent match

  5. High performance parallel computing of flows in complex geometries: II. Applications

    International Nuclear Information System (INIS)

    Gourdain, N; Gicquel, L; Staffelbach, G; Vermorel, O; Duchaine, F; Boussuge, J-F; Poinsot, T

    2009-01-01

    Present regulations in terms of pollutant emissions, noise and economical constraints, require new approaches and designs in the fields of energy supply and transportation. It is now well established that the next breakthrough will come from a better understanding of unsteady flow effects and by considering the entire system and not only isolated components. However, these aspects are still not well taken into account by the numerical approaches or understood whatever the design stage considered. The main challenge is essentially due to the computational requirements inferred by such complex systems if it is to be simulated by use of supercomputers. This paper shows how new challenges can be addressed by using parallel computing platforms for distinct elements of a more complex systems as encountered in aeronautical applications. Based on numerical simulations performed with modern aerodynamic and reactive flow solvers, this work underlines the interest of high-performance computing for solving flow in complex industrial configurations such as aircrafts, combustion chambers and turbomachines. Performance indicators related to parallel computing efficiency are presented, showing that establishing fair criterions is a difficult task for complex industrial applications. Examples of numerical simulations performed in industrial systems are also described with a particular interest for the computational time and the potential design improvements obtained with high-fidelity and multi-physics computing methods. These simulations use either unsteady Reynolds-averaged Navier-Stokes methods or large eddy simulation and deal with turbulent unsteady flows, such as coupled flow phenomena (thermo-acoustic instabilities, buffet, etc). Some examples of the difficulties with grid generation and data analysis are also presented when dealing with these complex industrial applications.

  6. An index of floodplain surface complexity

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2016-01-01

    Floodplain surface topography is an important component of floodplain ecosystems. It is the primary physical template upon which ecosystem processes are acted out, and complexity in this template can contribute to the high biodiversity and productivity of floodplain ecosystems. There has been a limited appreciation of floodplain surface complexity because of the traditional focus on temporal variability in floodplains as well as limitations to quantifying spatial complexity. An index of floodplain surface complexity (FSC) is developed in this paper and applied to eight floodplains from different geographic settings. The index is based on two key indicators of complexity, variability in surface geometry (VSG) and the spatial organisation of surface conditions (SPO), and was determined at three sampling scales. FSC, VSG, and SPO varied between the eight floodplains and these differences depended upon sampling scale. Relationships between these measures of spatial complexity and seven geomorphological and hydrological drivers were investigated. There was a significant decline in all complexity measures with increasing floodplain width, which was explained by either a power, logarithmic, or exponential function. There was an initial rapid decline in surface complexity as floodplain width increased from 1.5 to 5 km, followed by little change in floodplains wider than 10 km. VSG also increased significantly with increasing sediment yield. No significant relationships were determined between any of the four hydrological variables and floodplain surface complexity.

  7. Semiempirical confrontations between theory and experiment in highly ionised complex atoms

    International Nuclear Information System (INIS)

    Curtis, L.J.

    1989-01-01

    Highly ionised complex atoms, which have many electrons stripped away but many electrons still remaining, are presently a subject of vigorous experimental study. The high precision experimentally attainable for these systems suggests their use in the investigation of higher order theoretical processes, and the specification of these interactions is essential to the development of reliable predictive methods. It is shown that parametric reductions which combine ab initio theoretical calculations with experimental observations can yield predictions of much higher precision than could be obtained from either source separately. These formulations also reveal subtle regularities in the measured data that are not exhibited by the corresponding computations, which suggest possible calculational improvements. (orig.)

  8. Watershed Modeling Applications with the Open-Access Modular Distributed Watershed Educational Toolbox (MOD-WET) and Introductory Hydrology Textbook

    Science.gov (United States)

    Huning, L. S.; Margulis, S. A.

    2014-12-01

    Traditionally, introductory hydrology courses focus on hydrologic processes as independent or semi-independent concepts that are ultimately integrated into a watershed model near the end of the term. When an "off-the-shelf" watershed model is introduced in the curriculum, this approach can result in a potential disconnect between process-based hydrology and the inherent interconnectivity of processes within the water cycle. In order to curb this and reduce the learning curve associated with applying hydrologic concepts to complex real-world problems, we developed the open-access Modular Distributed Watershed Educational Toolbox (MOD-WET). The user-friendly, MATLAB-based toolbox contains the same physical equations for hydrological processes (i.e. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) that are presented in the companion e-textbook (http://aqua.seas.ucla.edu/margulis_intro_to_hydro_textbook.html) and taught in the classroom. The modular toolbox functions can be used by students to study individual hydrologic processes. These functions are integrated together to form a simple spatially-distributed watershed model, which reinforces a holistic understanding of how hydrologic processes are interconnected and modeled. Therefore when watershed modeling is introduced, students are already familiar with the fundamental building blocks that have been unified in the MOD-WET model. Extensive effort has been placed on the development of a highly modular and well-documented code that can be run on a personal computer within the commonly-used MATLAB environment. MOD-WET was designed to: 1) increase the qualitative and quantitative understanding of hydrological processes at the basin-scale and demonstrate how they vary with watershed properties, 2) emphasize applications of hydrologic concepts rather than computer programming, 3) elucidate the underlying physical processes that can often be obscured with a complicated

  9. TEXT COMPLEXITY IN SENIOR HIGH SCHOOL ENGLISH TEXTBOOKS: A SYSTEMIC FUNCTIONAL PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Dhani Aldila Putra

    2017-09-01

    Full Text Available Textbooks have been considered to play a key role in the processes of education by researchers and educators, and the need to explore the language of textbooks has become increasingly recognized. However, although textbooks are an important learning tool, textbook language and composition have not been widely explored especially from textual perspectives. The purpose of the present study is to investigate text complexity progression in the reading texts of English textbooks published for senior high school students in Indonesia. The nature and rate of that progression are addressed within the framework of Systemic Functional Linguistics. Being largely qualitative, this study examines three consecutive textbooks issued by the Ministry of Education, which are available online for classroom use. Data were collected and sampled from the reading texts found in the textbooks and were analyzed with regard to lexical density, lexical variation and grammatical intricacy in order to find the complexity of the texts. The results of the analyses show that regardless of the inconsistent progression of text complexity within each textbook, there is a consistent pattern of text complexity progression across grade levels. In other words, the lexical density, lexical variation and grammatical intricacy across the textbooks were found to have consistent progression from one grade level to another of which the direction is positive. It could be concluded that in general the language used in the texts becomes increasingly sophisticated, especially at lexical level, in accordance with grade level progression to cater for students’ intellectual development.

  10. High-Throughput and Rapid Screening of Low-Mass Hazardous Compounds in Complex Samples.

    Science.gov (United States)

    Wang, Jing; Liu, Qian; Gao, Yan; Wang, Yawei; Guo, Liangqia; Jiang, Guibin

    2015-07-07

    Rapid screening and identification of hazardous chemicals in complex samples is of extreme importance for public safety and environmental health studies. In this work, we report a new method for high-throughput, sensitive, and rapid screening of low-mass hazardous compounds in complex media without complicated sample preparation procedures. This method is achieved based on size-selective enrichment on ordered mesoporous carbon followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis with graphene as a matrix. The ordered mesoporous carbon CMK-8 can exclude interferences from large molecules in complex samples (e.g., human serum, urine, and environmental water samples) and efficiently enrich a wide variety of low-mass hazardous compounds. The method can work at very low concentrations down to part per trillion (ppt) levels, and it is much faster and more facile than conventional methods. It was successfully applied to rapidly screen and identify unknown toxic substances such as perfluorochemicals in human serum samples from athletes and workers. Therefore, this method not only can sensitively detect target compounds but also can identify unknown hazardous compounds in complex media.

  11. Antiferromagnetic coupling in a six-coordinate high spin cobalt(II)-semiquinonato complex.

    Science.gov (United States)

    Caneschi, Andrea; Dei, Andrea; Gatteschi, Dante; Tangoulis, Vassilis

    2002-07-01

    The 3,5-di-tert-butyl-catecholato and 9,10-phenanthrenecatecholato adducts of the cobalt-tetraazamacrocycle complex Co(Me(4)cyclam)(2+) (Me(4)cyclam = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) were synthesized and oxidized. The oxidation reaction products were isolated in the solid state as hexafluorophosphate derivatives. Both these complexes can be formulated as 1:1 cobalt(II)-semiquinonato complexes, that is, Co(Me(4)cyclam)(DBSQ)PF(6) (1) and Co(Me(4)cyclam)(PhSQ)PF(6) (2), in the temperature range 4-300 K, in striking contrast with the charge distribution found in similar adducts formed by related tetraazamacrocycles. The synthesis strategy and the structural, spectroscopic, and magnetic properties are reported and discussed. The crystallographic data for 2 are as follows: monoclinic, space group P2(1)/a, nomicron. 14, a = 14.087(4) A, b = 15.873(4) A, c = 14.263 (7) A, alpha = 89.91(3) degrees, beta = 107.34(2) degrees, gamma = 90.08(2) degrees, Z = 4. Both these complexes are characterized by triplet electronic ground states arising from the antiferromagnetic coupling between the high-spin d(7) metal ion and the radical ligand.

  12. Broad supernatural punishment but not moralizing high gods precede the evolution of political complexity in Austronesia.

    Science.gov (United States)

    Watts, Joseph; Greenhill, Simon J; Atkinson, Quentin D; Currie, Thomas E; Bulbulia, Joseph; Gray, Russell D

    2015-04-07

    Supernatural belief presents an explanatory challenge to evolutionary theorists-it is both costly and prevalent. One influential functional explanation claims that the imagined threat of supernatural punishment can suppress selfishness and enhance cooperation. Specifically, morally concerned supreme deities or 'moralizing high gods' have been argued to reduce free-riding in large social groups, enabling believers to build the kind of complex societies that define modern humanity. Previous cross-cultural studies claiming to support the MHG hypothesis rely on correlational analyses only and do not correct for the statistical non-independence of sampled cultures. Here we use a Bayesian phylogenetic approach with a sample of 96 Austronesian cultures to test the MHG hypothesis as well as an alternative supernatural punishment hypothesis that allows punishment by a broad range of moralizing agents. We find evidence that broad supernatural punishment drives political complexity, whereas MHGs follow political complexity. We suggest that the concept of MHGs diffused as part of a suite of traits arising from cultural exchange between complex societies. Our results show the power of phylogenetic methods to address long-standing debates about the origins and functions of religion in human society. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Bright electroluminescence from a chelate phosphine oxide Eu{sup III} complex with high thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Xu Hui [School of Chemistry and Materials, Heilongjiang University, 74 Xuefu Road, Nangang District, Harbin 150080, Heilongjiang Province (China); Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 66 Xinmofan Road, Nanjing 21003, Jiangsu Province (China); Yin Kun; Wang Lianhui [Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 66 Xinmofan Road, Nanjing 21003, Jiangsu Province (China); Huang Wei [Institute of Advanced Materials (IAM), Fudan University, 220 Handan Road, Shanghai 200433 (China)], E-mail: wei-huang@njupt.edu.cn

    2008-10-01

    The chelate phosphine oxide ligand 1,8-bis(diphenylphosphino)naphthalene oxide (NaPO) was used to prepare complex 1 tris(2-thenoyltrifluoroacetonate)(1,8-bis(diphenylphosphino)naphthalene oxide)europium(III). The rigid structure of NaPO makes 1 have more compact structure resulting in a temperature of glass transition as high as 147 deg. C, which is the highest in luminescent Eu{sup III} complexes, and a higher decomposition temperature of 349 deg. C. The improvement of carrier transfer ability of NaPO was proved by Gaussian simulation. The multi-layered electroluminescent device based on 1 had a low turn-on voltage of 6.0 V, the maximum brightness of 601 cd m{sup -2} at 21.5 V and 481.4 mA cm{sup -2}, and the excellent voltage-independent spectral stability. These properties demonstrated NaPO cannot only be favorable to form the rigid and compact complex structure, and increase the thermal and morphological stability of the complex, but also reduce the formation of the exciplex.

  14. High-Resolution 3T MR Imaging of the Triangular Fibrocartilage Complex.

    Science.gov (United States)

    von Borstel, Donald; Wang, Michael; Small, Kirstin; Nozaki, Taiki; Yoshioka, Hiroshi

    2017-01-10

    This study is intended as a review of 3Tesla (T) magnetic resonance (MR) imaging of the triangular fibrocartilage complex (TFCC). The recent advances in MR imaging, which includes high field strength magnets, multi-channel coils, and isotropic 3-dimensional (3D) sequences have enabled the visualization of precise TFCC anatomy with high spatial and contrast resolution. In addition to the routine wrist protocol, there are specific techniques used to optimize 3T imaging of the wrist; including driven equilibrium sequence (DRIVE), parallel imaging, and 3D imaging. The coil choice for 3T imaging of the wrist depends on a number of variables, and the proper coil design selection is critical for high-resolution wrist imaging with high signal and contrast-to-noise ratio. The TFCC is a complex structure and is composed of the articular disc (disc proper), the triangular ligament, the dorsal and volar radioulnar ligaments, the meniscus homologue, the ulnar collateral ligament (UCL), the extensor carpi ulnaris (ECU) tendon sheath, and the ulnolunate and ulnotriquetral ligaments. The Palmer classification categorizes TFCC lesions as traumatic (type 1) or degenerative (type 2). In this review article, we present clinical high-resolution MR images of normal TFCC anatomy and TFCC injuries with this classification system.

  15. Study of application technology of ultra-high speed computer to the elucidation of complex phenomena

    International Nuclear Information System (INIS)

    Sekiguchi, Tomotsugu

    1996-01-01

    The basic design of numerical information library in the decentralized computer network was explained at the first step of constructing the application technology of ultra-high speed computer to the elucidation of complex phenomena. Establishment of the system makes possible to construct the efficient application environment of ultra-high speed computer system to be scalable with the different computing systems. We named the system Ninf (Network Information Library for High Performance Computing). The summary of application technology of library was described as follows: the application technology of library under the distributed environment, numeric constants, retrieval of value, library of special functions, computing library, Ninf library interface, Ninf remote library and registration. By the system, user is able to use the program concentrating the analyzing technology of numerical value with high precision, reliability and speed. (S.Y.)

  16. Darwinian hydrology: can the methodology Charles Darwin pioneered help hydrologic science?

    Science.gov (United States)

    Harman, C.; Troch, P. A.

    2013-05-01

    There have been repeated calls for a Darwinian approach to hydrologic science or for a synthesis of Darwinian and Newtonian approaches, to deepen understanding the hydrologic system in the larger landscape context, and so develop a better basis for predictions now and in an uncertain future. But what exactly makes a Darwinian approach to hydrology "Darwinian"? While there have now been a number of discussions of Darwinian approaches, many referencing Harte (2002), the term is potentially a source of confusion while its connections to Darwin remain allusive rather than explicit. Here we discuss the methods that Charles Darwin pioneered to understand a variety of complex systems in terms of their historical processes of change. We suggest that the Darwinian approach to hydrology follows his lead by focusing attention on the patterns of variation in populations, seeking hypotheses that explain these patterns in terms of the mechanisms and conditions that determine their historical development, using deduction and modeling to derive consequent hypotheses that follow from a proposed explanation, and critically testing these hypotheses against new observations. It is not sufficient to catalogue the patterns or predict them statistically. Nor is it sufficient for the explanations to amount to a "just-so" story not subject to critical analysis. Darwin's theories linked present-day variation to mechanisms that operated over history, and could be independently test and falsified by comparing new observations to the predictions of corollary hypotheses they generated. With a Darwinian framework in mind it is easy to see that a great deal of hydrologic research has already been done that contributes to a Darwinian hydrology - whether deliberately or not. The various heuristic methods that Darwin used to develop explanatory theories - extrapolating mechanisms, space for time substitution, and looking for signatures of history - have direct application in hydrologic science. Some

  17. A Highly Expressed High-Molecular-Weight S-Layer Complex of Pelosinus sp. Strain UFO1 Binds Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Thorgersen, Michael P. [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemistry and Molecular Biology; Lancaster, W. Andrew [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemistry and Molecular Biology; Rajeev, Lara [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Ge, Xiaoxuan [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemistry and Molecular Biology; Vaccaro, Brian J. [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemistry and Molecular Biology; Poole, Farris L. [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemistry and Molecular Biology; Arkin, Adam P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Mukhopadhyay, Aindrila [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Adams, Michael W. W. [Univ. of Georgia, Athens, GA (United States). Dept. of Biochemistry and Molecular Biology

    2016-12-02

    Cell suspensions of Pelosinus sp. strain UFO1 were previously shown, using spectroscopic analysis, to sequester uranium as U(IV) complexed with carboxyl and phosphoryl group ligands on proteins. The goal of our present study was to characterize the proteins involved in uranium binding. Virtually all of the uranium in UFO1 cells was associated with a heterodimeric protein, which was termed the uranium-binding complex (UBC). The UBC was composed of two S-layer domain proteins encoded by UFO1_4202 and UFO1_4203. Samples of UBC purified from the membrane fraction contained 3.3 U atoms/heterodimer, but significant amounts of phosphate were not detected. The UBC had an estimated molecular mass by gel filtration chromatography of 15 MDa, and it was proposed to contain 150 heterodimers (UFO1_4203 and UFO1_4202) and about 500 uranium atoms. The UBC was also the dominant extracellular protein, but when purified from the growth medium, it contained only 0.3 U atoms/heterodimer. The two genes encoding the UBC were among the most highly expressed genes within the UFO1 genome, and their expressions were unchanged by the presence or absence of uranium. Therefore, the UBC appears to be constitutively expressed and is the first line of defense against uranium, including by secretion into the extracellular medium. Although S-layer proteins were previously shown to bind U(VI), here we showed that U(IV) binds to S-layer proteins, we identified the proteins involved, and we quantitated the amount of uranium bound. Widespread uranium contamination from industrial sources poses hazards to human health and to the environment. Here in this paper, we identified a highly abundant uranium-binding complex (UBC) from Pelosinus sp. strain UFO1. The complex makes up the primary protein component of the S-layer of strain UFO1 and binds 3.3 atoms of U(IV) per heterodimer. Finally, while other bacteria have been shown to bind U(VI) on their S-layer, we demonstrate here an example of U(IV) bound by

  18. A spatiotemporal analysis of hydrological patterns based on a wireless sensor network system

    Science.gov (United States)

    Plaza, F.; Slater, T. A.; Zhong, X.; Li, Y.; Liang, Y.; Liang, X.

    2017-12-01

    Understanding complicated spatiotemporal patterns of eco-hydrological variables at a small scale plays a profound role in improving predictability of high resolution distributed hydrological models. However, accurate and continuous monitoring of these complex patterns has become one of the main challenges in the environmental sciences. Wireless sensor networks (WSNs) have emerged as one of the most widespread potential solutions to achieve this. This study presents a spatiotemporal analysis of hydrological patterns (e.g., soil moisture, soil water potential, soil temperature and transpiration) based on observational data collected from a dense multi-hop wireless sensor network (WSN) in a steep-forested testbed located in Southwestern Pennsylvania, USA. At this WSN testbed with an approximate area of 3000 m2, environmental variables are collected from over 240 sensors that are connected to more than 100 heterogeneous motes. The sensors include the soil moisture of EC-5, soil temperature and soil water potential of MPS-1 and MPS-2, and sap flow sensors constructed in house. The motes consist of MICAz, IRIS and TelosB. In addition, several data loggers have been installed along the site to provide a comparative reference to the WSN measurements for the purpose of checking the WSN data quality. The edaphic properties monitored by the WSN sensors show strong agreement with the data logger measurements. Moreover, sap flow measurements, scaled to tree stand transpiration, are found to be reasonable. This study also investigates the feasibility and roles that these sensor measurements play in improving the performance of high-resolution distributed hydrological models. In particular, we explore this using a modified version of the Distributed Hydrological Soil Vegetation Model (DHSVM).

  19. Hydrological Response Unit Analysis Using AVSWAT 2000 for Keuliling Reservoir Watershed, Aceh Province, Indonesia

    Directory of Open Access Journals (Sweden)

    . Azmeri

    2015-04-01

    Full Text Available Sediments deposition derived from the erosion in upstream areas can lead to river siltation or canals downstream irrigation. According to the complexity of erosion problem at Keuliling reservoir, it is essential that topography, hydrology, soil type and land use to be analyzed comprehensively. Software used to analyze is AVSWAT 2000 (Arc View Soil and Water Assessment Tools-2000, one of the additional tool of ArcView program. The results obtained are the watershed delineation map, soil type map to produce soil erodibility factor (K which indicates the resistance of soil particles toward exfoliation, land use map to produce crop management factor (C and soil conservation and its management factors (P. Hydrology analysis includes soil type, land use and utility for the erosion rate analysis through Hydrologic Response Unit (HRU. The biggest HRU value of sub-basin is on area 5 and the lowest one is on area 10. All four HRU in sub-basin area 5 are potentially donating high value for HRU. In short, this area has the longest slope length so that it has a large LS factor. About 50% of the land was covered by bushes which gain higher C factor rather than forest. Moreover, it has contour crop conservation technique with 9-20 % declivity resulting in having dominant factor of P. Soil type is dominated by Meucampli Formation which has soil erodibility factor with high level of vulnerable toward the rainfall kinetic energy. All in all, the vast majority of HRU parameters in this sub-basin area obtain the highest HRU value. Hydrology analysis, soil type, and use-land are useful for land area analysis that is susceptible to erosion which was identified through Hydrologic Response Unit (HRU using GIS. As the matter of fact, spatially studies constructed with GIS can facilitate the agency to determine critical areas which are needed to be aware or fully rehabilitated.

  20. Impact of electrostatics on the chemodynamics of highly charged metal-polymer nanoparticle complexes.

    Science.gov (United States)

    Duval, Jérôme F L; Farinha, José Paulo S; Pinheiro, José P

    2013-11-12

    In this work, the impact of electrostatics on the stability constant, the rate of association/dissociation, and the lability of complexes formed between Cd(II), Pb(II), and carboxyl-modified polymer nanoparticles (also known as latex particles) of radius ∼ 50 nm is systematically investigated via electroanalytical measurements over a wide range of pHs and NaNO3 electrolyte concentrations. The corresponding interfacial structure and key electrostatic properties of the particles are independently derived from their electrokinetic response, successfully interpreted using soft particle electrohydrodynamic formalism, and complemented by Förster resonance energy transfer (FRET) analysis. The results underpin the presence of an ∼0.7-1 nm thick permeable and highly charged shell layer at the surface of the polymer nanoparticles. Their electrophoretic mobility further exhibits a minimum versus NaNO3 concentration due to strong polarization of the electric double layer. Integrating these structural and electrostatic particle features with recent theory on chemodynamics of particulate metal complexes yields a remarkable recovery of the measured increase in complex stability with increasing pH and/or decreasing solution salinity. In the case of the strongly binding Pb(II), the discrepancy at pH > 5.5 is unambiguously assigned to the formation of multidendate complexes with carboxylate groups located in the particle shell. With increasing pH and/or decreasing electrolyte concentration, the theory further predicts a kinetically controlled formation of metal complexes and a dramatic loss of their lability (especially for lead) on the time-scale of diffusion toward a macroscopic reactive electrode surface. These theoretical findings are again shown to be in agreement with experimental evidence.

  1. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Kohane Isaac

    2005-11-01

    Full Text Available Abstract Background Recent advances in genome sequencing suggest a remarkable conservation in gene content of mammalian organisms. The similarity in gene repertoire present in different organisms has increased interest in studying regulatory mechanisms of gene expression aimed at elucidating the differences in phenotypes. In particular, a proximal promoter region contains a large number of regulatory elements that control the expression of its downstream gene. Although many studies have focused on identification of these elements, a broader picture on the complexity of transcriptional regulation of different biological processes has not been addressed in mammals. The regulatory complexity may strongly correlate with gene function, as different evolutionary forces must act on the regulatory systems under different biological conditions. We investigate this hypothesis by comparing the conservation of promoters upstream of genes classified in different functional categories. Results By conducting a rank correlation analysis between functional annotation and upstream sequence alignment scores obtained by human-mouse and human-dog comparison, we found a significantly greater conservation of the upstream sequence of genes involved in development, cell communication, neural functions and signaling processes than those involved in more basic processes shared with unicellular organisms such as metabolism and ribosomal function. This observation persists after controlling for G+C content. Considering conservation as a functional signature, we hypothesize a higher density of cis-regulatory elements upstream of genes participating in complex and adaptive processes. Conclusion We identified a class of functions that are associated with either high or low promoter conservation in mammals. We detected a significant tendency that points to complex and adaptive processes were associated with higher promoter conservation, despite the fact that they have emerged

  2. Avian community responses to variability in river hydrology.

    Science.gov (United States)

    Royan, Alexander; Hannah, David M; Reynolds, S James; Noble, David G; Sadler, Jonathan P

    2013-01-01

    River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species' responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species' distributions highlights the need to include river flow data in climate change impact models of species' distributions.

  3. Solution structure of the Grb2 SH2 domain complexed with a high-affinity inhibitor

    International Nuclear Information System (INIS)

    Ogura, Kenji; Shiga, Takanori; Yokochi, Masashi; Yuzawa, Satoru; Burke, Terrence R.; Inagaki, Fuyuhiko

    2008-01-01

    The solution structure of the growth factor receptor-bound protein 2 (Grb2) SH2 domain complexed with a high-affinity inhibitor containing a non-phosphorus phosphate mimetic within a macrocyclic platform was determined by nuclear magnetic resonance (NMR) spectroscopy. Unambiguous assignments of the bound inhibitor and intermolecular NOEs between the Grb2 SH2 domain and the inhibitor was accomplished using perdeuterated Grb2 SH2 protein. The well-defined solution structure of the complex was obtained and compared to those by X-ray crystallography. Since the crystal structure of the Grb2 SH2 domain formed a domain-swapped dimer and several inhibitors were bound to a hinge region, there were appreciable differences between the solution and crystal structures. Based on the binding interactions between the inhibitor and the Grb2 SH2 domain in solution, we proposed a design of second-generation inhibitors that could be expected to have higher affinity

  4. Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation

    DEFF Research Database (Denmark)

    Czaban, Adrian; Sharma, Sapna; Byrne, Stephen

    2015-01-01

    species from the Lolium-Festuca complex, ranging from 52,166 to 72,133 transcripts per assembly. We have also predicted a set of proteins and validated it with a high-confidence protein database from three closely related species (H. vulgare, B. distachyon and O. sativa). We have obtained gene family...... clusters for the four species using OrthoMCL and analyzed their inferred phylogenetic relationships. Our results indicate that VRN2 is a candidate gene for differentiating vernalization and non-vernalization types in the Lolium-Festuca complex. Grouping of the gene families based on their BLAST identity...... enabled us to divide ortholog groups into those that are very conserved and those that are more evolutionarily relaxed. The ratio of the non-synonumous to synonymous substitutions enabled us to pinpoint protein sequences evolving in response to positive selection. These proteins may explain some...

  5. Enabling Requirements-Based Programming for Highly-Dependable Complex Parallel and Distributed Systems

    Science.gov (United States)

    Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.

    2005-01-01

    The manual application of formal methods in system specification has produced successes, but in the end, despite any claims and assertions by practitioners, there is no provable relationship between a manually derived system specification or formal model and the customer's original requirements. Complex parallel and distributed system present the worst case implications for today s dearth of viable approaches for achieving system dependability. No avenue other than formal methods constitutes a serious contender for resolving the problem, and so recognition of requirements-based programming has come at a critical juncture. We describe a new, NASA-developed automated requirement-based programming method that can be applied to certain classes of systems, including complex parallel and distributed systems, to achieve a high degree of dependability.

  6. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  7. High-Frequency Promoter Firing Links THO Complex Function to Heavy Chromatin Formation

    DEFF Research Database (Denmark)

    Mouaikel, John; Causse, Sébastien Z; Rougemaille, Mathieu

    2013-01-01

    The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes...... (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single......-molecule fluorescence insitu hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase...

  8. A Framework for the Interactive Handling of High-Dimensional Simulation Data in Complex Geometries

    KAUST Repository

    Benzina, Amal; Buse, Gerrit; Butnaru, Daniel; Murarasu, Alin; Treib, Marc; Varduhn, Vasco; Mundani, Ralf-Peter

    2013-01-01

    Flow simulations around building infrastructure models involve large scale complex geometries, which when discretized in adequate detail entail high computational cost. Moreover, tasks such as simulation insight by steering or optimization require many such costly simulations. In this paper, we illustrate the whole pipeline of an integrated solution for interactive computational steering, developed for complex flow simulation scenarios that depend on a moderate number of both geometric and physical parameters. A mesh generator takes building information model input data and outputs a valid cartesian discretization. A sparse-grids-based surrogate model—a less costly substitute for the parameterized simulation—uses precomputed data to deliver approximated simulation results at interactive rates. Furthermore, a distributed multi-display visualization environment shows building infrastructure together with flow data. The focus is set on scalability and intuitive user interaction.

  9. Treatment of high-latency microcapsules containing an aluminium complex with an epoxy-functionalised trialkoxysilane.

    Science.gov (United States)

    Kamiya, Kazunobu; Suzuki, Noboru

    2016-12-01

    Some aluminium complexes are excellent catalysts of cationic polymerisation and are used for low-temperature and fast-curing adhesive, used in electronic part mounting. Microencapsulation is a suitable technique for getting high latency of the catalysts and long shelf life of the adhesives. For the higher latency in a cycloaliphatic epoxy compound, the microcapsule surface which retained small amount of aluminium complex was coated with epoxy polymer and the effect was examined. From the X-ray photoelectron spectroscopic results, the surface was recognised to be sufficiently coated and the differential scanning calorimetric analyses showed that the coating did not significantly affect the low-temperature and fast-curing properties of adhesive. After storing the mixture of cycloaliphatic epoxy compound, coated microcapsules, triphenylsilanol and silane coupling agent for 48 h at room temperature, the increase in viscosity was only 0.01 Pa s, resulting in the excellent shelf life.

  10. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Liquid-gas interactions observed from a large-scale experiment.

    Science.gov (United States)

    Zhan, Liang-Tong; Xu, Hui; Chen, Yun-Min; Lan, Ji-Wu; Lin, Wei-An; Xu, Xiao-Bing; He, Pin-Jing

    2017-10-01

    The high food waste content (HFWC) MSW at a landfill has the characteristics of rapid hydrolysis process, large leachate production rate and fast gas generation. The liquid-gas interactions at HFWC-MSW landfills are prominent and complex, and still remain significant challenges. This paper focuses on the liquid-gas interactions of HFWC-MSW observed from a large-scale bioreactor landfill experiment (5m×5m×7.5m). Based on the connected and quantitative analyses on the experimental observations, the following findings were obtained: (1) The high leachate level observed at Chinese landfills was attributed to the combined contribution from the great quantity of self-released leachate, waste compression and gas entrapped underwater. The contribution from gas entrapped underwater was estimated to be 21-28% of the total leachate level. (2) The gas entrapped underwater resulted in a reduction of hydraulic conductivity, decreasing by one order with an increase in gas content from 13% to 21%. (3) The "breakthrough value" in the gas accumulation zone was up to 11kPa greater than the pore liquid pressure. The increase of the breakthrough value was associated with the decrease of void porosity induced by surcharge loading. (4) The self-released leachate from HFWC-MSW was estimated to contribute to over 30% of the leachate production at landfills in Southern China. The drainage of leachate with a high organic loading in the rapid hydrolysis stage would lead to a loss of landfill gas (LFG) potential of 13%. Based on the above findings, an improved method considering the quantity of self-released leachate was proposed for the prediction of leachate production at HFWC-MSW landfills. In addition, a three-dimensional drainage system was proposed to drawdown the high leachate level and hence to improve the slope stability of a landfill, reduce the hydraulic head on a bottom liner and increase the collection efficiency for LFG. Copyright © 2017. Published by Elsevier Ltd.

  11. Nuclear hydrology and sedimentology

    International Nuclear Information System (INIS)

    Airey, P.L.

    1982-01-01

    The applications of isotope techniques to groundwater hydrology, sedimentation and surface water and heavy metal transport are discussed. Reference is made to several Australian studies. These include: a tritium study of the Burdekin Delta, North Queensland; a carbon-14 study of the Mereenie Sandstone aquifer, Alice Springs; groundwater studies in the Great Artesion Basin; uranium daughter product disequilibrium studies; the use of environmental cesium-137 to investigate sediment transport; and a study on the dispersion of water and zinc through the Magela system in the uranium mining areas of the Northern Territory

  12. Lukasiewicz-Moisil Many-Valued Logic Algebra of Highly-Complex Systems

    Directory of Open Access Journals (Sweden)

    James F. Glazebrook

    2010-06-01

    Full Text Available The fundamentals of Lukasiewicz-Moisil logic algebras and their applications to complex genetic network dynamics and highly complex systems are presented in the context of a categorical ontology theory of levels, Medical Bioinformatics and self-organizing, highly complex systems. Quantum Automata were defined in refs.[2] and [3] as generalized, probabilistic automata with quantum state spaces [1]. Their next-state functions operate through transitions between quantum states defined by the quantum equations of motions in the SchrÄodinger representation, with both initial and boundary conditions in space-time. A new theorem is proven which states that the category of quantum automata and automata-homomorphisms has both limits and colimits. Therefore, both categories of quantum automata and classical automata (sequential machines are bicomplete. A second new theorem establishes that the standard automata category is a subcategory of the quantum automata category. The quantum automata category has a faithful representation in the category of Generalized (M,R-Systems which are open, dynamic biosystem networks [4] with de¯ned biological relations that represent physiological functions of primordial(s, single cells and the simpler organisms. A new category of quantum computers is also defined in terms of reversible quantum automata with quantum state spaces represented by topological groupoids that admit a local characterization through unique, quantum Lie algebroids. On the other hand, the category of n-Lukasiewicz algebras has a subcategory of centered n-Lukasiewicz algebras (as proven in ref. [2] which can be employed to design and construct subcategories of quantum automata based on n-Lukasiewicz diagrams of existing VLSI. Furthermore, as shown in ref. [2] the category of centered n-Lukasiewicz algebras and the category of Boolean algebras are naturally equivalent. A `no-go' conjecture is also proposed which states that Generalized (M

  13. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression.

    Science.gov (United States)

    Mamos, Tomasz; Wattier, Remi; Burzyński, Artur; Grabowski, Michał

    2016-02-01

    The formation of continental Europe in the Neogene was due to the regression of the Tethys Ocean and of the Paratethys Sea. The dynamic geology of the area and repetitious transitions between marine and freshwater conditions presented opportunities for the colonization of newly emerging hydrological networks and diversification of aquatic biota. Implementing mitochondrial and nuclear markers in conjunction with a large-scale sampling strategy, we investigated the impact of this spatiotemporal framework on the evolutionary history of a freshwater crustacean morphospecies. The Gammarus balcanicus species complex is widely distributed in the area previously occupied by the Paratethys Sea. Our results revealed its high diversification and polyphyly in relation to a number of other morphospecies. The distribution of the studied amphipod is generally characterized by very high local endemism and divergence. The Bayesian time-calibrated reconstruction of phylogeny and geographical distribution of ancestral nodes indicates that this species complex started to diversify in the Early Miocene in the central Balkans, partially in the shallow epicontinental sea. It is possible that there were several episodes of inland water colonization by local brackish water lineages. Subsequent diversification within clades and spread to new areas could have been induced by Alpine orogeny in the Miocene/Pliocene and, finally, by Pleistocene glaciations. The present distribution of clades, in many cases, still reflects Miocene palaeogeography of the area. Our results point out that investigations of the historical aspect of cryptic diversity in other taxa may help in a general understanding of the origins of freshwater invertebrate fauna of Europe. © 2015 John Wiley & Sons Ltd.

  14. Hydrological models for environmental management

    National Research Council Canada - National Science Library

    Bolgov, Mikhail V

    2002-01-01

    .... Stochastic modelling and forecasting cannot at present adequately represent the characteristics of hydrological regimes, nor analyze the influence of water on processes that arise in biological...

  15. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    Science.gov (United States)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff

  16. Capturing and modelling high-complex alluvial topography with UAS-borne laser scanning

    Science.gov (United States)

    Mandlburger, Gottfried; Wieser, Martin; Pfennigbauer, Martin

    2015-04-01

    Due to fluvial activity alluvial forests are zones of highest complexity and relief energy. Alluvial forests are dominated by new and pristine channels in consequence of current and historic flood events. Apart from topographic features, the vegetation structure is typically very complex featuring, both, dense under story as well as high trees. Furthermore, deadwood and debris carried from upstream during periods of high discharge within the river channel are deposited in these areas. Therefore, precise modelling of the micro relief of alluvial forests using standard tools like Airborne Laser Scanning (ALS) is hardly feasible. Terrestrial Laser Scanning (TLS), in turn, is very time consuming for capturing larger areas as many scan positions are necessary for obtaining complete coverage due to view occlusions in the forest. In the recent past, the technological development of Unmanned Arial Systems (UAS) has reached a level that light-weight survey-grade laser scanners can be operated from these platforms. For capturing alluvial topography this could bridge the gap between ALS and TLS in terms of providing a very detailed description of the topography and the vegetation structure due to the achievable very high point density of >100 points per m2. In our contribution we demonstrate the feasibility to apply UAS-borne laser scanning for capturing and modelling the complex topography of the study area Neubacher Au, an alluvial forest at the pre-alpine River Pielach (Lower Austria). The area was captured with Riegl's VUX-1 compact time-of-flight laser scanner mounted on a RiCopter (X-8 array octocopter). The scanner features an effective scan rate of 500 kHz and was flown in 50-100 m above ground. At this flying height the laser footprint is 25-50 mm allowing mapping of very small surface details. Furthermore, online waveform processing of the backscattered laser energy enables the retrieval of multiple targets for single laser shots resulting in a dense point cloud of

  17. Testing the structure of a hydrological model using Genetic Programming

    Science.gov (United States)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  18. Testing the Structure of Hydrological Models using Genetic Programming

    Science.gov (United States)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  19. Systems approach to tracer data in groundwater hydrology

    International Nuclear Information System (INIS)

    Saxena, R.K.

    1977-01-01

    A brief review of current mathematical methods for the analysis of tracer data in groundwater hydrology has been given. The description of the hydrological cycle as a whole or in part, by a system (compartment) or sub-system under linear and stationary conditions is discussed. Basic concepts of transit time, residence time, their distributions in time and response characteristics of a system are outlined. From the knowledge of tracer input, output and systems response function for a generalised system, reservoir capacity and storage for given period can be estimated. Use of a time series model for environmental tracer data in discreet time scale aimed at the solution of hydrological problems e.g. mean transit time and reservoir capacity is also explored. It is concluded that the combination of tracer data with systems approach can go a long way in the study of some complex hydrological problems. (author)

  20. Isotope hydrology in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Payne, B R [International Atomic Energy Agency, Division of Research and Laboratories, Isotope Hydrology Section, Vienna (Austria)

    1972-07-01

    A wide variety of problems in hydrology have proved susceptible to the use of nuclear techniques. Conclusions may be drawn from the relative abundances of certain 'environmental isotopes', such as heavy stable isotopes of hydrogen and oxygen in water molecules, tritium, carbon-14 and silicon-32, in atmospheric, surface or ground water; origin and rate of flow, for example, may be deduced. Artificial radioisotopes may be used similarly as a logical extension to well-known tracer techniques using dyes and salts. Inherent in the use of such radiotracers are the advantages of very high detection sensitivity (and thus very low required concentrations and the elimination of density effects), and a choice of a variety of nuclides alien to the geohydrological system (and hence unique identification and low background). (author)

  1. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats.

    Science.gov (United States)

    Zhou, Jizhong; He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G; Alvarez-Cohen, Lisa

    2015-01-27

    Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied "open-format" and "closed-format" detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions. Copyright © 2015 Zhou et al.

  2. Linear stability theory as an early warning sign for transitions in high dimensional complex systems

    International Nuclear Information System (INIS)

    Piovani, Duccio; Grujić, Jelena; Jensen, Henrik Jeldtoft

    2016-01-01

    We analyse in detail a new approach to the monitoring and forecasting of the onset of transitions in high dimensional complex systems by application to the Tangled Nature model of evolutionary ecology and high dimensional replicator systems with a stochastic element. A high dimensional stability matrix is derived in the mean field approximation to the stochastic dynamics. This allows us to determine the stability spectrum about the observed quasi-stable configurations. From overlap of the instantaneous configuration vector of the full stochastic system with the eigenvectors of the unstable directions of the deterministic mean field approximation, we are able to construct a good early-warning indicator of the transitions occurring intermittently. (paper)

  3. Socio-hydrology: conceptualising human-flood interactions

    Directory of Open Access Journals (Sweden)

    G. Di Baldassarre

    2013-08-01

    Full Text Available Over history, humankind has tended to settle near streams because of the role of rivers as transportation corridors and the fertility of riparian areas. However, human settlements in floodplains have been threatened by the risk of flooding. Possible responses have been to resettle away and/or modify the river system by building flood control structures. This has led to a complex web of interactions and feedback mechanisms between hydrological and social processes in settled floodplains. This paper is an attempt to conceptualise these interplays for hypothetical human-flood systems. We develop a simple, dynamic model to represent the interactions and feedback loops between hydrological and social processes. The model is then used to explore the dynamics of the human-flood system and the effect of changing individual characteristics, including external forcing such as technological development. The results show that the conceptual model is able to reproduce reciprocal effects between floods and people as well as the emergence of typical patterns. For instance, when levees are built or raised to protect floodplain areas, their presence not only reduces the frequency of flooding, but also exacerbates high water levels. Then, because of this exacerbation, higher flood protection levels are required by society. As a result, more and more flooding events are avoided, but rare and catastrophic events take place.

  4. Hydrologic Landscape Classification to Estimate Bristol Bay Watershed Hydrology

    Science.gov (United States)

    The use of hydrologic landscapes has proven to be a useful tool for broad scale assessment and classification of landscapes across the United States. These classification systems help organize larger geographical areas into areas of similar hydrologic characteristics based on cl...

  5. [Conceptualization of knowledge management in medium and high complexity health institutions].

    Science.gov (United States)

    Arboleda-Posada, Gladys I

    2016-06-01

    Objective To identify the familiarization, conceptualization and incorporation of employees of medium and high complexity health institutions in the Valle de Aburrá, Colombia into the strategic knowledge management platform in 2011. Methodology Cross sectional study. The study was carried out by applying surveys to 224 employees to assess knowledge management. The population included staff who working in the Health Providing Institutions (IPS) of high (52) and medium complexity (322) in the Valle de Aburrá in 2011. In both the public and private institutions surveyed, 38.8 % of the respondents said they were not familiar with knowledge management. Among those who had administrative training, the ignorance was less than among care workers. It was also noted that as the level of education increased, knowledge of the concept was greater. A high proportion (65.2 % ) of respondents placed the concept in line with the creation, organization, storage, retrieval, transfer and application of knowledge systematically. 78.7 % of respondents from public institutions said that knowledge management was part of the strategic platform of the institution. 58.3 % from private institutions said the same. Conclusions In general terms the concept of knowledge management is not well conceived or familiar to the staff working in these institutions. The study confirmed a lack of empowerment in the field to promote the development of new ideas and to ensure that they become service innovations or processes that contribute to the development of institutional knowledge.

  6. Is there a temperature? conceptual challenges at high energy, acceleration and complexity

    CERN Document Server

    Sándor Biró, Tamás

    2011-01-01

    Physical bodies can be hot or cold, moving or standing,simple or complex. In all such cases one assumes that their respective temperature is a well defined attribute.  What if, however, the ordinary measurement of temperature by direct body contact is not possible?  One conjectures its value, and yes, its very existence, by reasoning based on basic principles of thermodynamics. Is There a Temperature?  Conceptual Challenges at High Energy, Acceleration and Complexity, by Dr. Tamás Sándor Bíró, begins by asking the questions “Do we understand and can we explain in a unified framework the temperature of distant radiation sources, including event horizons, and that of the quark matter produced in high energy accelerator experiments? Or the astounding fluctuations on financial markets?” The book reviews the concept of temperature from its beginnings through the evolution of classical thermodynamics and atomic statistical physics through contemporary models of high energy particle matter.  Based on the...

  7. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  8. Isotope techniques for hydrology

    International Nuclear Information System (INIS)

    1964-01-01

    In the body of the Panel's report specific conclusions and recommendations are presented in the context of each subject. The general consensus of the Panel is as follows: by the study of this report, the 1961 Panel report, the Proceedings of the March 1963 Tokyo Symposium and other reports of research and technological advances, isotope-technique applications to hydrologic problems have provided some useful avenues for understanding the nature of the hydrologic cycle and in the solution of specific engineering problems. Some techniques are developed thoroughly enough for fairly routine application as tools for use in the solution of practical problems, but further research and development is needed on other concepts to determined whether or not they can be beneficially applied to either research or engineering problems. A concerted effort is required on the part of both hydrologists and isotope specialists working as teams to assure that proper synthesis of scientific advances in the respective fields and translation of these advances into practical technology is achieved

  9. Isotope techniques for hydrology

    Energy Technology Data Exchange (ETDEWEB)

    1964-01-01

    In the body of the Panel's report specific conclusions and recommendations are presented in the context of each subject. The general consensus of the Panel is as follows: by the study of this report, the 1961 Panel report, the Proceedings of the March 1963 Tokyo Symposium and other reports of research and technological advances, isotope-technique applications to hydrologic problems have provided some useful avenues for understanding the nature of the hydrologic cycle and in the solution of specific engineering problems. Some techniques are developed thoroughly enough for fairly routine application as tools for use in the solution of practical problems, but further research and development is needed on other concepts to determined whether or not they can be beneficially applied to either research or engineering problems. A concerted effort is required on the part of both hydrologists and isotope specialists working as teams to assure that proper synthesis of scientific advances in the respective fields and translation of these advances into practical technology is achieved.

  10. The human factor in operation and maintenance of complex high-reliability systems

    International Nuclear Information System (INIS)

    Ryan, T.G.

    1989-01-01

    Human factors issues in probabilistic risk assessment (PRAs) of complex high-reliability systems are addressed. These PRAs influence system operation and technical support programs such as maintainability, test, and surveillance. Using the U.S. commercial nuclear power industry as the setting, the paper addresses the manner in which PRAs currently treat human performance, the state of quantification methods and source data for analyzing human performance, and the role of human factors specialist in the analysis. The paper concludes with a presentation of TALENT, an emerging concept for fully integrating broad-based human factors expertise into the PRA process, is presented. 47 refs

  11. Shielding considerations for an electron linear accelerator complex for high energy physics and photonics research

    International Nuclear Information System (INIS)

    Holmes, J.A.; Huntzinger, C.J.

    1987-01-01

    Radiation shielding considerations for a major high-energy physics and photonics research complex which comprise a 50 MeV electron linear accelerator injector, a 1.0 GeV electron linear accelerator and a 1.3 GeV storage ring are discussed. The facilities will be unique because of the close proximity of personnel to the accelerator beam lines, the need to adapt existing facilities and shielding materials and the application of strict ALARA dose guidelines while providing maximum access and flexibility during a phased construction program

  12. High-resolution AFM topographs of Rubrivivax gelatinosus light-harvesting complex LH2

    Science.gov (United States)

    Scheuring, Simon; Reiss-Husson, Francoise; Engel, Andreas; Rigaud, Jean-Louis; Ranck, Jean-Luc

    2001-01-01

    Light-harvesting complexes 2 (LH2) are the accessory antenna proteins in the bacterial photosynthetic apparatus and are built up of αβ-heterodimers containing three bacteriochlorophylls and one carotenoid each. We have used atomic force microscopy (AFM) to investigate reconstituted LH2 from Rubrivivax gelatinosus, which has a C-terminal hydrophobic extension of 21 amino acids on the α-subunit. High-resolution topographs revealed a nonameric organization of the regularly packed cylindrical complexes incorporated into the membrane in both orientations. Native LH2 showed one surface which protruded by ∼6 Å and one that protruded by ∼14 Å from the membrane. Topographs of samples reconstituted with thermolysin-digested LH2 revealed a height reduction of the strongly protruding surface to ∼9 Å, and a change of its surface appearance. These results suggested that the α-subunit of R.gelatinosus comprises a single transmembrane helix and an extrinsic C-terminus, and allowed the periplasmic surface to be assigned. Occasionally, large rings (∼120 Å diameter) surrounded by LH2 rings were observed. Their diameter and appearance suggest the large rings to be LH1 complexes. PMID:11406579

  13. Local likelihood estimation of complex tail dependence structures in high dimensions, applied to US precipitation extremes

    KAUST Repository

    Camilo, Daniela Castro

    2017-10-02

    In order to model the complex non-stationary dependence structure of precipitation extremes over the entire contiguous U.S., we propose a flexible local approach based on factor copula models. Our sub-asymptotic spatial modeling framework yields non-trivial tail dependence structures, with a weakening dependence strength as events become more extreme, a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity. This allows us to gain in flexibility, while making inference for such a large and complex dataset feasible. Adopting a local censored likelihood approach, inference is made on a fine spatial grid, and local estimation is performed taking advantage of distributed computing resources and of the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. An extensive simulation study shows that our approach is able to adequately capture complex, non-stationary dependencies, while our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events. A comparison between past and current data suggests that extremes in certain areas might be slightly wider in extent nowadays than during the first half of the twentieth century.

  14. Highly Fluorescent Group 13 Metal Complexes with Cyclic, Aromatic Hydroxamic Acid Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Moore, Evan G.; Raymond, Kenneth N.

    2008-02-11

    The neutral complexes of two ligands based on the 1-oxo-2-hydroxy-isoquinoline (1,2-HOIQO) motif with group 13 metals (Al, Ga, In) show bright blue-violet luminescence in organic solvents. The corresponding transition can be attributed to ligand-centered singlet emission, characterized by a small Stokes shifts of only a few nm combined with lifetimes in the range between 1-3 ns. The fluorescence efficiency is high, with quantum yields of up to 37% in benzene solution. The crystal structure of one of the indium(III) complexes (trigonal space group R-3, a = b = 13.0384(15) {angstrom}, c = 32.870(8) {angstrom}, ? = {beta} = 90{sup o}, {gamma} = 120{sup o}, V = 4839.3(14) {angstrom}{sup 3}, Z = 6) shows a six-coordinate geometry around the indium center which is close to trigonal-prismatic, with a twist angle between the two trigonal faces of 20.7{sup o}. Time-dependent density functional theory (TD-DFT) calculations (Al and Ga: B3LYP/6-31G(d)); In: B3LYP/LANL2DZ of the fac and mer isomers with one of the two ligands indicate that there is no clear preference for either one of the isomeric forms of the metal complexes. In addition, the metal centers do not have a significant influence on the electronic structure, and as a consequence, on the predominant intraligand optical transitions.

  15. Efficient Simulation Modeling of an Integrated High-Level-Waste Processing Complex

    International Nuclear Information System (INIS)

    Gregory, Michael V.; Paul, Pran K.

    2000-01-01

    An integrated computational tool named the Production Planning Model (ProdMod) has been developed to simulate the operation of the entire high-level-waste complex (HLW) at the Savannah River Site (SRS) over its full life cycle. ProdMod is used to guide SRS management in operating the waste complex in an economically efficient and environmentally sound manner. SRS HLW operations are modeled using coupled algebraic equations. The dynamic nature of plant processes is modeled in the form of a linear construct in which the time dependence is implicit. Batch processes are modeled in discrete event-space, while continuous processes are modeled in time-space. The ProdMod methodology maps between event-space and time-space such that the inherent mathematical discontinuities in batch process simulation are avoided without sacrificing any of the necessary detail in the batch recipe steps. Modeling the processes separately in event- and time-space using linear constructs, and then coupling the two spaces, has accelerated the speed of simulation compared to a typical dynamic simulation. The ProdMod simulator models have been validated against operating data and other computer codes. Case studies have demonstrated the usefulness of the ProdMod simulator in developing strategies that demonstrate significant cost savings in operating the SRS HLW complex and in verifying the feasibility of newly proposed processes

  16. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    International Nuclear Information System (INIS)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-01-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  17. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Science.gov (United States)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-10-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4-5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  18. High pressure study of viscosity effects on the luminescence of tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-03-01

    High pressure fluorescence studies fron 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used, 2,2,4,4,6,8,8 heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14 tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 poise was covered at constant temperature. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB as well as one mesitylene complex yielded the two radiative rates (kEQ and kFC) as well as the rate of internal conversion from FC to the EQ excited state to (kIC). The results are discussed in terms of the rate of relaxation of the solvent compared with the rate kFC. It was found that kIC correlated very well with the solvent viscosity.

  19. Local likelihood estimation of complex tail dependence structures in high dimensions, applied to US precipitation extremes

    KAUST Repository

    Camilo, Daniela Castro; Huser, Raphaë l

    2017-01-01

    In order to model the complex non-stationary dependence structure of precipitation extremes over the entire contiguous U.S., we propose a flexible local approach based on factor copula models. Our sub-asymptotic spatial modeling framework yields non-trivial tail dependence structures, with a weakening dependence strength as events become more extreme, a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity. This allows us to gain in flexibility, while making inference for such a large and complex dataset feasible. Adopting a local censored likelihood approach, inference is made on a fine spatial grid, and local estimation is performed taking advantage of distributed computing resources and of the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. An extensive simulation study shows that our approach is able to adequately capture complex, non-stationary dependencies, while our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events. A comparison between past and current data suggests that extremes in certain areas might be slightly wider in extent nowadays than during the first half of the twentieth century.

  20. Quantitative and qualitative synthesis of socio-hydrological research

    Science.gov (United States)

    Xu, L.; Gober, P.; Wheater, H. S.; Kajikawa, Y.

    2017-12-01

    The challenge of climate change adaptation has raised awareness of the feedbacks and interconnections in complex human-natural coupled water systems. This has reinforced the call for a socio-hydrological approach to better understand, and represent in models, the associated system dynamics. Such models can potentially provide the tools to link knowledge about complex water systems to decision-making and policy frameworks. Socio-hydrology, as the subfield of human-natural coupled systems analysis, has been dramatically developed in the past few years. The purpose of this study is to empirically examine work that has been framed under the umbrella of socio-hydrology, to provide insights into the participants and their disciplinary perspectives, and to draw conclusions about where the field is headed. In doing so, we used a combined quantitative and qualitative approach to synthesise current knowledge of socio-hydrology and to propose some promising future directions in this subfield of water sciences. The general statistics of the existing literature showed that socio-hydrological research has become an emerging topic and is drawing more concern and engagement of hydrologists. However, the participation of social scientists is inadequate and greater cross-disciplinary integration is desirable. Current concerns in this subfield of water research centre on two basic challenges: (1) the need to embrace the social dimensions of water-related risks, and (2) the importance of interactions and feedbacks in dynamic socio-hydrological systems. A third challenge identified here relates to the large-scale implications of 1) and 2) above, i.e. virtual water flows as a mechanism to track the human use of water at the global scale. Accordingly, we propose five potential directions with regard to socio-hydrological models, interdisciplinary collaboration and transdisciplinary studies, the science-policy interface, resilience in socio-hydrological systems, and data sharing for human

  1. The Role of Anthropogenic Modifications in Landscape and Hydrological Organization of Mayma River Basin

    Directory of Open Access Journals (Sweden)

    Lubenets Liliya Fedorovna

    2015-04-01

    Full Text Available The landscape and hydrological organization of the territory is a mosaic of landscapes with different modes of water yield and water balance structure. The landscape and hydrological approach becomes very important under the lack of hydrometeorological information. The factors determining the landscape and hydrological organization of the Mayma river basin, located in the Russian Altai, are considered in the present article. The classification of the landscape and hydrological complexes based on the static and dynamic indicators is performed. The set of interpretive landscape and hydrological maps has been developed. The climatic and hydrological conditions provide the excess moisture over a larger part of the basin. The lithological and hydrological background is characterized by the predominance of rocks and thin weathering products. A peculiarity of the studied area is the prevalence of transit locations that creates risks of dangerous hydrological processes in case of excessive humidity. Using the remote sensing data, the main classes of ground cover are described. A significant anthropogenic impact on the basin landscapes is observed. The analysis of soil structure shows that anthropogenically modified (mostly situated on slopes soils make up approximately 30 %. It is assumed that it leads to the deterioration of the landscape and hydrological situation in the catchment. It is concluded that the landscape and hydrological approach allows solving the problems on minimizing the hydrological objects damage and optimizing the nature management in the catchment in the context of the lack of hydrometeorological information.

  2. Summary of northern Atlantic coastal plain hydrology and its relation to disposal of high-level radioactive waste in buried crystalline rock; a preliminary appraisal

    Science.gov (United States)

    Lloyd, O.B.; Larson, J.D.; Davis, R.W.

    1985-01-01

    Interpretation of available hydrologic data suggests that some areas beneath the Coastal Plain in the States of Delaware, Maryland, New Jersey, North Carolina, and Virginia might have some potential for the disposal of nuclear waste in crystalline rock that is buried beneath the Coastal Plain sediments. The areas of major interest occur where the top of the basement rock lies between 1,000 and 4,000 feet below sea level, the aquifer(s) immediately above the basement rock are saturated with saline water, confining material overlies the saline water bearing aquifer(s), and groundwater flow in the saline water aquifer(s) can be established. Preliminary data on (1) the distribution and thickness of the lowermost aquifers and confining beds, (2) the distribution of hydraulic conductivity in the lowermost aquifers, (3) estimated hydraulic heads and inferred direction of lateral groundwater flow for 1980, and (4) the distribution of saline water and brine, indicate eastern parts of the study area relatively best meet most of the criteria proposed for sediments that would overlie any potential buried crystalline-rock disposal site.

  3. OLAP Cube Visualization of Hydrologic Data Catalogs

    Science.gov (United States)

    Zaslavsky, I.; Rodriguez, M.; Beran, B.; Valentine, D.; van Ingen, C.; Wallis, J. C.

    2007-12-01

    As part of the CUAHSI Hydrologic Information System project, we assemble comprehensive observations data catalogs that support CUAHSI data discovery services (WaterOneFlow services) and online mapping interfaces (e.g. the Data Access System for Hydrology, DASH). These catalogs describe several nation-wide data repositories that are important for hydrologists, including USGS NWIS and EPA STORET data collections. The catalogs contain a wealth of information reflecting the entire history and geography of hydrologic observations in the US. Managing such catalogs requires high performance analysis and visualization technologies. OLAP (Online Analytical Processing) cube, often called data cubes, is an approach to organizing and querying large multi-dimensional data collections. We have applied the OLAP techniques, as implemented in Microsoft SQL Server 2005, to the analysis of the catalogs from several agencies. In this initial report, we focus on the OLAP technology as applied to catalogs, and preliminary results of the analysis. Specifically, we describe the challenges of generating OLAP cube dimensions, and defining aggregations and views for data catalogs as opposed to observations data themselves. The initial results are related to hydrologic data availability from the observations data catalogs. The results reflect geography and history of available data totals from USGS NWIS and EPA STORET repositories, and spatial and temporal dynamics of available measurements for several key nutrient-related parameters.

  4. Hydrological analysis in R: Topmodel and beyond

    Science.gov (United States)

    Buytaert, W.; Reusser, D.

    2011-12-01

    R is quickly gaining popularity in the hydrological sciences community. The wide range of statistical and mathematical functionality makes it an excellent tool for data analysis, modelling and uncertainty analysis. Topmodel was one of the first hydrological models being implemented as an R package and distributed through R's own distribution network CRAN. This facilitated pre- and postprocessing of data such as parameter sampling, calculation of prediction bounds, and advanced visualisation. However, apart from these basic functionalities, the package did not use many of the more advanced features of the R environment, especially from R's object oriented functionality. With R's increasing expansion in arenas such as high performance computing, big data analysis, and cloud services, we revisit the topmodel package, and use it as an example of how to build and deploy the next generation of hydrological models. R provides a convenient environment and attractive features to build and couple hydrological - and in extension other environmental - models, to develop flexible and effective data assimilation strategies, and to take the model beyond the individual computer by linking into cloud services for both data provision and computing. However, in order to maximise the benefit of these approaches, it will be necessary to adopt standards and ontologies for model interaction and information exchange. Some of those are currently being developed, such as the OGC web processing standards, while other will need to be developed.

  5. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    Science.gov (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  6. Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism

    Science.gov (United States)

    Wegener, Pam; Covino, Tim; Wohl, Ellen

    2017-06-01

    River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.

  7. Results and Lessons Learned from a Coupled Social and Physical Hydrology Model: Testing Alternative Water Management Policies and Institutional Structures Using Agent-Based Modeling and Regional Hydrology

    Science.gov (United States)

    Murphy, J.; Lammers, R. B.; Prousevitch, A.; Ozik, J.; Altaweel, M.; Collier, N. T.; Kliskey, A. D.; Alessa, L.

    2015-12-01

    Water Management in the U.S. Southwest is under increasing scrutiny as many areas endure persistent drought. The impact of these prolonged dry conditions is a product of regional climate and hydrological conditions, but also of a highly engineered water management infrastructure and a complex web of social arrangements whereby water is allocated, shared, exchanged, used, re-used, and finally consumed. We coupled an agent-based model with a regional hydrological model to understand the dynamics in one richly studied and highly populous area: southern Arizona, U.S.A., including metropolitan Phoenix and Tucson. There, multiple management entities representing an array of municipalities and other water providers and customers, including private companies and Native American tribes are enmeshed in a complex legal and economic context in which water is bought, leased, banked, and exchanged in a variety of ways and on multiple temporal and physical scales. A recurrent question in the literature of adaptive management is the impact of management structure on overall system performance. To explore this, we constructed an agent-based model to capture this social complexity, and coupled this with a physical hydrological model that we used to drive the system under a variety of water stress scenarios and to assess the regional impact of the social system's performance. We report the outcomes of ensembles of runs in which varieties of alternative policy constraints and management strategies are considered. We hope to contribute to policy discussions in this area and connected and legislatively similar areas (such as California) as current conditions change and existing legal and policy structures are revised. Additionally, we comment on the challenges of integrating models that ostensibly are in different domains (physical and social) but that independently represent a system in which physical processes and human actions are closely intertwined and difficult to disentangle.

  8. Evaporation in hydrology and meteorology

    NARCIS (Netherlands)

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the

  9. High resolution simulations of orographic flow over a complex terrain on the Southeast coast of Brazil

    Science.gov (United States)

    Chou, S. C.; Zolino, M. M.; Gomes, J. L.; Bustamante, J. F.; Lima-e-Silva, P. P.

    2012-04-01

    The Eta Model is used operationally by CPTEC to produce weather forecasts over South America since 1997. The model has gone through upgrades. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The Eta Model was configured, with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain and coastline. Mountains can rise up to about 700m. The region suffers frequent events of floods and landslides. The objective of this work is to evaluate high resolution simulations of wind and temperature in this complex area. Verification of model runs uses observations taken from the nuclear power plant. Accurate near-surface wind direction and magnitude are needed for the plant emergency plan and winds are highly sensitive to model spatial resolution and atmospheric stability. Verification of two cases during summer shows that model has clear diurnal cycle signal for wind in that region. The area is characterized by weak winds which makes the simulation more difficult. The simulated wind magnitude is about 1.5m/s, which is close to observations of about 2m/s; however, the observed change of wind direction of the sea breeze is fast whereas it is slow in the simulations. Nighttime katabatic flow is captured by the simulations. Comparison against Eta-5km runs show that the valley circulation is better described in the 2-km resolution run. Simulated temperatures follow closely the observed diurnal cycle. Experiments improving some surface conditions such as the surface temperature and land cover show simulation error reduction and improved diurnal cycle.

  10. Enhanced Enzymatic Production of Cephalexin at High Substrate Concentration with in situ Product Removal by Complexation

    Directory of Open Access Journals (Sweden)

    Dengchao Li

    2008-01-01

    Full Text Available Cephalexin (CEX was synthesized with 7-amino-3-deacetoxycephalosporanic acid (7-ADCA and D(–-phenylglycine methyl ester (PGME using immobilized penicillin G acylase from Escherichia coli. It was found that substrate concentration and in situ product could remarkably influence the ratio of synthesis to hydrolysis (S/H and the efficiency of CEX synthesis. The optimal ratio of enzyme to substrate was 65 IU/mM 7-ADCA. High substrate concentration improved the 7-ADCA conversion from 61 to 81 % in the process without in situ product removal (ISPR, while in the synthetic process with ISPR, high substrate concentration increased the 7-ADCA conversion from 88 to 98 %. CEX was easily separated from CEX/β-naphthol complex and its purity and overall yield were 99 and 70 %, respectively.

  11. High spin-filter efficiency and Seebeck effect through spin-crossover iron–benzene complex

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2016-04-21

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.

  12. Li4FeH6: Iron-containing complex hydride with high gravimetric hydrogen density

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saitoh

    2014-07-01

    Full Text Available Li4FeH6, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900 °C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li4FeH6 is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li4FeH6 at moderate pressures. Li4FeH6 can be recovered at ambient conditions where Li4FeH6 is metastable.

  13. High-resolution metagenomics targets major functional types in complex microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, Marina G.; Lapidus, Alla; Ivanova, Natalia; Copeland, Alex C.; McHardy, Alice C.; Szeto, Ernest; Salamov, Asaf; Grigoriev, Igor V.; Suciu, Dominic; Levine, Samuel R.; Markowitz, Victor M.; Rigoutsos, Isidore; Tringe, Susannah G.; Bruce, David C.; Richardson, Paul M.; Lidstrom, Mary E.; Chistoserdova, Ludmila

    2009-08-01

    Most microbes in the biosphere remain uncultured and unknown. Whole genome shotgun (WGS) sequencing of environmental DNA (metagenomics) allows glimpses into genetic and metabolic potentials of natural microbial communities. However, in communities of high complexity metagenomics fail to link specific microbes to specific ecological functions. To overcome this limitation, we selectively targeted populations involved in oxidizing single-carbon (C{sub 1}) compounds in Lake Washington (Seattle, USA) by labeling their DNA via stable isotope probing (SIP), followed by WGS sequencing. Metagenome analysis demonstrated specific sequence enrichments in response to different C{sub 1} substrates, highlighting ecological roles of individual phylotypes. We further demonstrated the utility of our approach by extracting a nearly complete genome of a novel methylotroph Methylotenera mobilis, reconstructing its metabolism and conducting genome-wide analyses. This approach allowing high-resolution genomic analysis of ecologically relevant species has the potential to be applied to a wide variety of ecosystems.

  14. Thermophilic anaerobes in arctic marine sediments induced to mineralize complex organic matter at high temperature

    DEFF Research Database (Denmark)

    Hubert, Casey; Arnosti, Carol; Brüchert, Volker

    2010-01-01

    Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords......, as well as with the addition of freeze-dried Spirulina or individual high-molecular-weight polysaccharides. During 50°C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high...... reactivity determined the extent of the thermophilic response. Fjord sediments with higher in situ SRR also supported higher SRR at 50°C. Amendment with Spirulina significantly increased volatile fatty acids production and SRR relative to unamended sediment in 50°C incubations. Spirulina amendment also...

  15. High-contrast imager for Complex Aperture Telescopes (HiCAT): testbed design and coronagraph developments

    Science.gov (United States)

    N'Diaye, Mamadou; Choquet, E.; Pueyo, L.; Elliot, E.; Perrin, M. D.; Wallace, J.; Anderson, R. E.; Carlotti, A.; Groff, T. D.; Hartig, G. F.; Kasdin, J.; Lajoie, C.; Levecq, O.; Long, C.; Macintosh, B.; Mawet, D.; Norman, C. A.; Shaklan, S.; Sheckells, M.; Sivaramakrishnan, A.; Soummer, R.

    2014-01-01

    We present a new high-contrast imaging testbed designed to provide complete solutions for wavefront sensing and control and starlight suppression with complex aperture telescopes (NASA APRA; Soummer PI). This includes geometries with central obstruction, support structures, and/or primary mirror segmentation. Complex aperture telescopes are often associated with large telescope designs, which are considered for future space missions. However, these designs makes high-contrast imaging challenging because of additional diffraction features in the point spread function. We present a novel optimization approach for the testbed optical and opto-mechanical design that minimizes the impact of both phase and amplitude errors from the wave propagation of testbed optics surface errors. This design approach allows us to define the specification for the bench optics, which we then compare to the manufactured parts. We discuss the testbed alignment and first results. We also present our coronagraph design for different testbed pupil shapes (AFTA or ATLAST), which involves a new method for the optimization of Apodized Pupil Lyot Coronagraphs (APLC).

  16. Computational Strategies for Dissecting the High-Dimensional Complexity of Adaptive Immune Repertoires

    Directory of Open Access Journals (Sweden)

    Enkelejda Miho

    2018-02-01

    Full Text Available The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV. Adaptive immune receptor repertoire sequencing (AIRR-seq has driven the quantitative and molecular-level profiling of immune repertoires, thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity and to understand the dynamics of adaptive immunity. Here, we review the current research on (i diversity, (ii clustering and network, (iii phylogenetic, and (iv machine learning methods applied to dissect, quantify, and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology toward coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.

  17. Mining Very High Resolution INSAR Data Based On Complex-GMRF Cues And Relevance Feedback

    Science.gov (United States)

    Singh, Jagmal; Popescu, Anca; Soccorsi, Matteo; Datcu, Mihai

    2012-01-01

    With the increase in number of remote sensing satellites, the number of image-data scenes in our repositories is also increasing and a large quantity of these scenes are never received and used. Thus automatic retrieval of de- sired image-data using query by image content to fully utilize the huge repository volume is becoming of great interest. Generally different users are interested in scenes containing different kind of objects and structures. So its important to analyze all the image information mining (IIM) methods so that its easier for user to select a method depending upon his/her requirement. We concentrate our study only on high-resolution SAR images and we propose to use InSAR observations instead of only one single look complex (SLC) images for mining scenes containing coherent objects such as high-rise buildings. However in case of objects with less coherence like areas with vegetation cover, SLC images exhibits better performance. We demonstrate IIM performance comparison using complex-Gauss Markov Random Fields as texture descriptor for image patches and SVM relevance- feedback.

  18. Wall modeled large eddy simulations of complex high Reynolds number flows with synthetic inlet turbulence

    International Nuclear Information System (INIS)

    Patil, Sunil; Tafti, Danesh

    2012-01-01

    Highlights: ► Large eddy simulation. ► Wall layer modeling. ► Synthetic inlet turbulence. ► Swirl flows. - Abstract: Large eddy simulations of complex high Reynolds number flows are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system is presented and applied in the near wall zonal treatment. This formulation reduces the computational time in the inner layer significantly compared to the conventional two layer formulations present in the literature and is most suitable for complex geometries involving body fitted structured and unstructured meshes. The cost effectiveness and accuracy of the proposed wall model, used with the synthetic eddy method (SEM) to generate inlet turbulence, is investigated in turbulent channel flow, flow over a backward facing step, and confined swirling flows at moderately high Reynolds numbers. Predictions are compared with available DNS, experimental LDV data, as well as wall resolved LES. In all cases, there is at least an order of magnitude reduction in computational cost with no significant loss in prediction accuracy.

  19. [Predicting individual risk of high healthcare cost to identify complex chronic patients].

    Science.gov (United States)

    Coderch, Jordi; Sánchez-Pérez, Inma; Ibern, Pere; Carreras, Marc; Pérez-Berruezo, Xavier; Inoriza, José M

    2014-01-01

    To develop a predictive model for the risk of high consumption of healthcare resources, and assess the ability of the model to identify complex chronic patients. A cross-sectional study was performed within a healthcare management organization by using individual data from 2 consecutive years (88,795 people). The dependent variable consisted of healthcare costs above the 95th percentile (P95), including all services provided by the organization and pharmaceutical consumption outside of the institution. The predictive variables were age, sex, morbidity-based on clinical risk groups (CRG)-and selected data from previous utilization (use of hospitalization, use of high-cost drugs in ambulatory care, pharmaceutical expenditure). A univariate descriptive analysis was performed. We constructed a logistic regression model with a 95% confidence level and analyzed sensitivity, specificity, positive predictive values (PPV), and the area under the ROC curve (AUC). Individuals incurring costs >P95 accumulated 44% of total healthcare costs and were concentrated in ACRG3 (aggregated CRG level 3) categories related to multiple chronic diseases. All variables were statistically significant except for sex. The model had a sensitivity of 48.4% (CI: 46.9%-49.8%), specificity of 97.2% (CI: 97.0%-97.3%), PPV of 46.5% (CI: 45.0%-47.9%), and an AUC of 0.897 (CI: 0.892 to 0.902). High consumption of healthcare resources is associated with complex chronic morbidity. A model based on age, morbidity, and prior utilization is able to predict high-cost risk and identify a target population requiring proactive care. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.

  20. Climate Change and Hydrological Extreme Events - Risks and Perspectives for Water Management in Bavaria and Québec

    Science.gov (United States)

    Ludwig, R.

    2017-12-01

    There is as yet no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for `virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the

  1. Hybrid Complexes of High and Low Molecular Weight Hyaluronans Highly Enhance HASCs Differentiation: Implication for Facial Bioremodelling

    Directory of Open Access Journals (Sweden)

    Antonietta Stellavato

    2017-11-01

    Full Text Available Background/Aims: Adipose-derived Stem Cells (ASCs are used in Regenerative Medicine, including fat grafting, recovery from local tissue ischemia and scar remodeling. The aim of this study was to evaluate hyaluronan based gel effects on ASCs differentiation and proliferation. Methods: Comparative analyses using high (H and low (L molecular weight hyaluronans (HA, hyaluronan hybrid cooperative complexes (HCCs, and high and medium cross-linked hyaluronan based dermal fillers were performed. Human ASCs were characterized by flow cytometry using CD90, CD34, CD105, CD29, CD31, CD45 and CD14 markers. Then, cells were treated for 7, 14 and 21 days with hyaluronans. Adipogenic differentiation was evaluated using Oil red-O staining and expression of leptin, PPAR-γ, LPL and adiponectin using qRT-PCR. Adiponectin was analyzed by immunofluorescence, PPAR-γ and adiponectin were analyzed using western blotting. ELISA assays for adiponectin and leptin were performed. Results: HCCs highly affected ASCs differentiation by up-regulating adipogenic genes and related proteins, that were also secreted in the culture medium. H-HA and L-HA induced a lower level of ASCs differentiation. Conclusion: HCCs-based formulations clearly enhance adipogenic differentiation and proliferation, when compared with linear HA and cross-linked hyaluronans. Injection of HCCs in subdermal fat compartment may recruit and differentiate stem cells in adipocytes, and considerably improving fat tissue renewal.

  2. Effects of hydrology on red mangrove recruits

    Science.gov (United States)

    Doyle, Thomas W.

    2003-01-01

    Coastal wetlands along the Gulf of Mexico have been experiencing significant shifts in hydrology and salinity levels over the past century as a result of changes in sea level and freshwater drainage patterns. Local land management in coastal zones has also impacted the hydrologic regimes of salt marshes and mangrove areas. Parks and refuges in south Florida that contain mangrove forests have, in some cases, been ditched or impounded to control mosquito outbreaks and to foster wildlife use. And while mangroves dominate the subtropical coastlines of Florida and thrive in saltwater environments, little is known about how they respond to changes in hydrology under managed or variable tidal conditions. USGS researchers designed a study to evaluate the basic hydrological requirements of mangroves so that their health and survival may be more effectively managed in controlled impoundments and restored wetlands. Mangroves are commonly found in the intertidal zone (between low and high tides) in a rather broad spectrum of hydrologic settings. Because they thrive at the interface of land and sea, mangroves are subject to changes in freshwater flow (flow rate, nutrients, pollutants) and to marine influences (sea-level rise, salinity). Salinity has long been recognized as a controlling factor that determines the health and distribution of mangrove forests. Field and experimental observations indicate that most mangrove species achieve their highest growth potential under brackish conditions (modest salinity) between 10 and 20 parts per thousand (ppt). Yet, if provided with available propagules, successful regeneration, and limited competition from other plants, then mangroves can survive and thrive in freshwater systems as well. Because little is known about the growthand survival patterns of mangrove species relative to changing hydrology, USGS scientists conducted greenhouse and field experiments to determine how flooded or drained patterns of hydrology would influence

  3. Modelling floods in the Ammer catchment: limitations and challenges with a coupled meteo-hydrological model approach

    Directory of Open Access Journals (Sweden)

    R. Ludwig

    2003-01-01

    Full Text Available Numerous applications of hydrological models have shown their capability to simulate hydrological processes with a reasonable degree of certainty. For flood modelling, the quality of precipitation data — the key input parameter — is very important but often remains questionable. This paper presents a critical review of experience in the EU-funded RAPHAEL project. Different meteorological data sources were evaluated to assess their applicability for flood modelling and forecasting in the Bavarian pre-alpine catchment of the Ammer river (709 km2, for which the hydrological aspects of runoff production are described as well as the complex nature of floods. Apart from conventional rain gauge data, forecasts from several Numerical Weather Prediction Models (NWP as well as rain radar data are examined, scaled and applied within the framework of a GIS-structured and physically based hydrological model. Multi-scenario results are compared and analysed. The synergetic approach leads to promising results under certain meteorological conditions but emphasises various drawbacks. At present, NWPs are the only source of rainfall forecasts (up to 96 hours with large spatial coverage and high temporal resolution. On the other hand, the coarse spatial resolution of NWP grids cannot yet address, adequately, the heterogeneous structures of orographic rainfields in complex convective situations; hence, a major downscaling problem for mountain catchment applications is introduced. As shown for two selected Ammer flood events, a high variability in prediction accuracy has still to be accepted at present. Sensitivity analysis of both meteo-data input and hydrological model performance in terms of process description are discussed and positive conclusions have been drawn for future applications of an advanced meteo-hydro model synergy. Keywords: RAPHAEL, modelling, forecasting, model coupling, PROMET-D, TOPMODEL

  4. High-Resolution Patterns of Meiotic Recombination across the Human Major Histocompatibility Complex

    Science.gov (United States)

    Cullen, Michael; Perfetto, Stephen P.; Klitz, William; Nelson, George; Carrington, Mary

    2002-01-01

    Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall. PMID:12297984

  5. High pressure study of viscosity and temperature effects on tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-12-01

    High pressure fluorescence studies from 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used: 2,2,4,4,6,8,8-heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14-tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 P was covered at two temperatures: 0 and 25 °C. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB yielded the two radiative rates (kEQ and kFC) as well as the rate of relaxation from FC to the EQ excited state (kRE). kRE was found to correlate well with viscosity and to be independent of temperature at constant viscosity, indicating that the relaxation process is diffusion controlled.

  6. Constraining the JULES land-surface model for different land-use types using citizen-science generated hydrological data

    Science.gov (United States)

    Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.

    2017-12-01

    Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.

  7. A Four-Stage Hybrid Model for Hydrological Time Series Forecasting

    Science.gov (United States)

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. PMID:25111782

  8. A four-stage hybrid model for hydrological time series forecasting.

    Science.gov (United States)

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models.

  9. Macroscale hydrologic modeling of ecologically relevant flow metrics

    Science.gov (United States)

    Wenger, Seth J.; Luce, Charles H.; Hamlet, Alan F.; Isaak, Daniel J.; Neville, Helen M.

    2010-09-01

    Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe and forecast hydrologic changes but has been calibrated and applied mainly to large rivers. An important question is how well VIC runoff simulations serve to answer questions about hydrologic changes in smaller streams, which are important habitat for many fish species. To answer this question, we aggregated gridded VIC outputs within the drainage basins of 55 streamflow gages in the Pacific Northwest United States and compared modeled hydrographs and summary metrics to observations. For most streams, several ecologically relevant aspects of the hydrologic regime were accurately modeled, including center of flow timing, mean annual and summer flows and frequency of winter floods. Frequencies of high and low flows in the summer were not well predicted, however. Predictions were worse for sites with strong groundwater influence, and some sites showed errors that may result from limitations in the forcing climate data. Higher resolution (1/16th degree) modeling provided small improvements over lower resolution (1/8th degree). Despite some limitations, the VIC model appears capable of representing several ecologically relevant hydrologic characteristics in streams, making it a useful tool for understanding the effects of hydrology in delimiting species distributions and predicting the potential effects of climate shifts on aquatic organisms.

  10. Molecular nanomagnets: Syntheses and characterization of high nuclearity transition metal complexes

    Science.gov (United States)

    Foguet-Albiol, Maria D.

    2006-12-01

    High nuclearity transition metal complexes have attracted a lot of attention because of their aesthetically pleasant structures and/or their potential applications. The fusion of the world of magnetism with the exciting research in physics and chemistry led to the realization of interesting types of materials that can function as nanoscale magnetic particles. The study of the magnetism of inorganic complexes and especially the study of these molecular nanomagnets (or single-molecule magnets, SMMs) is a field that has generated intense interest in the scientific community. Interest in these molecular nanomagnets arises as part of a broader investigation of nanomagnetism (and nanotechnology), as these represent the ultimate step in device miniaturization. The primary purpose of this dissertation is the development of new synthetic methods intended for the preparation of novel single-molecule magnets (SMMs). The definition of the "bottom-up approach" is to increase the size of molecules by adding new magnetic centers; this is attractive but does not actually reflect how the chemistry takes place. Various strategies have been employed in developing the aforementioned synthetic methods which include the use of mononuclear as well as preformed clusters as starting materials; and the introduction of new alcohol based ligands as N-methyldiethanolamine (mdaH2) and triethanolamine (teaH3), since currently only a few alcohol based ligands have been used by different research groups. Many of these efforts have led to the isolation of new polynuclear Mn clusters with nuclearities ranging all the way from four to thirty-one. Additionally, a family of related Fe7 complexes has been synthesized. The transition metal cluster chemistry has also been extended to nickel-containing species. Many of these polynulear transition metal complexes function as single-molecule magnets. An additional research direction discussed herein is the study of the exchange-coupled dimer of single

  11. Chaotic dynamics with high complexity in a simplified new nonautonomous nonlinear electronic circuit

    International Nuclear Information System (INIS)

    Arulgnanam, A.; Thamilmaran, K.; Daniel, M.

    2009-01-01

    A two dimensional nonautonomous dissipative forced series LCR circuit with a simple nonlinear element exhibiting an immense variety of dynamical features is proposed for the first time. Unlike the usual cases of nonlinear element, the nonlinear element used here possesses three segment piecewise linear character with one positive and one negative slope. This nonlinearity is verified to be sufficient to produce chaos with high complexity in many established nonautonomous nonlinear circuits, such as MLC, MLCV, driven Chua, etc., thus indicating an universal behavior similar to the familiar Chua's diode. The dynamics of the proposed circuit is studied experimentally, confirmed numerically, simulated through PSPICE and proved mathematically. An important feature of the circuit is its ability to show dual chaotic behavior.

  12. Low Complexity Encoder of High Rate Irregular QC-LDPC Codes for Partial Response Channels

    Directory of Open Access Journals (Sweden)

    IMTAWIL, V.

    2011-11-01

    Full Text Available High rate irregular QC-LDPC codes based on circulant permutation matrices, for efficient encoder implementation, are proposed in this article. The structure of the code is an approximate lower triangular matrix. In addition, we present two novel efficient encoding techniques for generating redundant bits. The complexity of the encoder implementation depends on the number of parity bits of the code for the one-stage encoding and the length of the code for the two-stage encoding. The advantage of both encoding techniques is that few XOR-gates are used in the encoder implementation. Simulation results on partial response channels also show that the BER performance of the proposed code has gain over other QC-LDPC codes.

  13. Task Phase Recognition for Highly Mobile Workers in Large Building Complexes

    DEFF Research Database (Denmark)

    Stisen, Allan; Mathisen, Andreas; Krogh, Søren

    2016-01-01

    requirements on the accuracy of the indoor positioning, and thus come with low deployment and maintenance effort in real-world settings. We evaluated the proposed methods in a large hospital complex, where the highly mobile workers were recruited among the non-clinical workforce. The evaluation is based......-scale indoor work environments, namely from a WiFi infrastructure providing coarse grained indoor positioning, from inertial sensors in the workers’ mobile phones, and from a task management system yielding information about the scheduled tasks’ start and end locations. The methods presented have low...... on manually labelled real-world data collected over 4 days of regular work life of the mobile workforce. The collected data yields 83 tasks in total involving 8 different orderlies from a major university hospital with a building area of 160, 000 m2. The results show that the proposed methods can distinguish...

  14. DEVELOPMENT OF COMPLEXITY, ACCURACY, AND FLUENCY IN HIGH SCHOOL STUDENTS’ WRITTEN FOREIGN LANGUAGE PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bouchaib Benzehaf

    2016-11-01

    Full Text Available The present study aims to longitudinally depict the dynamic and interactive development of Complexity, Accuracy, and Fluency (CAF in multilingual learners’ L2 and L3 writing. The data sources include free writing tasks written in L2 French and L3 English by 45 high school participants over a period of four semesters. CAF dimensions are measured using a variation of Hunt’s T-units (1964. Analysis of the quantitative data obtained suggests that CAF measures develop differently for learners’ L2 French and L3 English. They increase more persistently in L3 English, and they display the characteristics of a dynamic, non-linear system characterized by ups and downs particularly in L2 French. In light of the results, we suggest more and denser longitudinal data to explore the nature of interactions between these dimensions in foreign language development, particularly at the individual level.

  15. On the reduced-complexity of LDPC decoders for ultra-high-speed optical transmission.

    Science.gov (United States)

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2010-10-25

    We propose two reduced-complexity (RC) LDPC decoders, which can be used in combination with large-girth LDPC codes to enable ultra-high-speed serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.46 dB (at BER of 10(-9)) worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We further study the use of RC LDPC decoding algorithms in multilevel coded modulation with coherent detection and show that with RC decoding algorithms we can achieve the net coding gain larger than 11 dB at BERs below 10(-9).

  16. Protection of hydrological heritage sites of Serbia: Problems and perspectives

    Directory of Open Access Journals (Sweden)

    Simić Sava

    2012-01-01

    Full Text Available Protection of hydrological heritage sites, water protection segment, is an integral part of nature conservation. Today it is the basic theme of the hydrological heritage, the new field of hydrology and geo-heritage, which, by exploring and evaluating hydrological diversity of a particular area and identifying representative water phenomena, sets their preservation and protection as one of the utmost objectives. Two main problems in the protection of water phenomena in Serbia are: inadequate attitude of the individual and society, as a result of poor knowledge of the characteristics and values of waters, and the ever-present need for men to use them (as resources. Lack of understanding, in the professional sphere, the value and importance of water phenomena in the natural system - as a result of a firmly based biocentrism in nature conservation, lack of hydrologic group within the geo-heritage and a small number of interested professionals are some of the associated problems that limit the activities in this field. Specific problems - from the lack of organized and synchronized scientific research to the lack of a database on the hydrological heritage sites, are somewhat common to other segments of the nature conservation of Serbia. There are three possible directions of the future actions on the protection of hydrological heritage sites of Serbia: complete protection, protection with utilization for the needs of tourism and protection with utilization for the needs of water management. The most complex task of hydrological heritage will just be to combine the preservation and protection with tourism and water management, because it is diverse and often conflicting industries about. A possible solution to this problem is illustrated through the idea of water reserves.

  17. Complex demodulation in VLBI estimation of high frequency Earth rotation components

    Science.gov (United States)

    Böhm, S.; Brzeziński, A.; Schuh, H.

    2012-12-01

    The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of

  18. Structural insights into a high affinity nanobody:antigen complex by homology modelling.

    Science.gov (United States)

    Skottrup, Peter Durand

    2017-09-01

    Porphyromonas gingivalis is a major periodontitis-causing pathogens. P. gingivalis secrete a cysteine protease termed RgpB, which is specific for Arg-Xaa bonds in substrates. Recently, a nanobody-based assay was used to demonstrate that RgpB could represent a novel diagnostic target, thereby simplifying. P. gingivalis detection. The nanobody, VHH7, had a high binding affinity and was specific for RgpB, when tested towards the highly identical RgpA. In this study a homology model of VHH7 was build. The complementarity determining regions (CDR) comprising the paratope residues responsible for RgpB binding were identified and used as input to the docking. Furthermore, residues likely involved in the RgpB epitope was identified based upon RgpB:RgpA alignment and analysis of residue surface accessibility. CDR residues and putitative RgpB epitope residues were used as input to an information-driven flexible docking approach using the HADDOCK server. Analysis of the VHH7:RgpB model demonstrated that the epitope was found in the immunoglobulin-like domain and residue pairs located at the molecular paratope:epitope interface important for complex stability was identified. Collectively, the VHH7 homology model and VHH7:RgpB docking supplies knowledge of the residues involved in the high affinity interaction. This information could prove valuable in the design of an antibody-drug conjugate for specific RgpB targeting. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Reducing the Complexity of Genetic Fuzzy Classifiers in Highly-Dimensional Classification Problems

    Directory of Open Access Journals (Sweden)

    DimitrisG. Stavrakoudis

    2012-04-01

    Full Text Available This paper introduces the Fast Iterative Rule-based Linguistic Classifier (FaIRLiC, a Genetic Fuzzy Rule-Based Classification System (GFRBCS which targets at reducing the structural complexity of the resulting rule base, as well as its learning algorithm's computational requirements, especially when dealing with high-dimensional feature spaces. The proposed methodology follows the principles of the iterative rule learning (IRL approach, whereby a rule extraction algorithm (REA is invoked in an iterative fashion, producing one fuzzy rule at a time. The REA is performed in two successive steps: the first one selects the relevant features of the currently extracted rule, whereas the second one decides the antecedent part of the fuzzy rule, using the previously selected subset of features. The performance of the classifier is finally optimized through a genetic tuning post-processing stage. Comparative results in a hyperspectral remote sensing classification as well as in 12 real-world classification datasets indicate the effectiveness of the proposed methodology in generating high-performing and compact fuzzy rule-based classifiers, even for very high-dimensional feature spaces.

  20. High affinity, ligand specific uptake of complexed copper-67 by brain tissue incubated in vitro

    International Nuclear Information System (INIS)

    Barnea, A.; Hartter, D.E.

    1987-01-01

    Copper is an essential metal that is highly concentrated in the brain. The blood, the sole source of tissue Cu, contains 16-20 μM Cu, of which >95% is complexed to proteins and 2 was 10 times greater than that of CuAlbumin or Cu(II). Within the range of 0.2-150μM Cu, multiple uptake sites for CuHis were apparent. Increasing the molar ratio of His:Cu had a differential effect on Cu uptake: enhancing uptake at [Cu] 1 μM. Thus, using a His:Cu ratio of 1000, they observed a high affinity process exhibiting saturating and half saturating values of 5 μM and 1.5 μM Cu, respectively; using a His:Cu ratio of 2, they observed a low affinity process exhibiting saturating and half-saturating values of 100 μM and 40 μM Cu, respectively. Both processes required thermic but not metabolic energy, suggestive of facilitated diffusion. Considering the blood brain barrier for proteins, CuHis appears to be the major substrate for Cu uptake by neuronal tissue. They demonstrate the existence of a ligand specific, high affinity (apparent Km about 1.5 μM Cu) uptake process for CuHis in the brain, operative at the physiological concentration range of CuHis and histidine