WorldWideScience

Sample records for high hemodynamic stress

  1. A Shape Memory Polymer Dialysis Needle Adapter for the Reduction of Hemodynamic Stress within Arteriovenous Grafts

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J M; Small, W; Wilson, T S; Benett, W; Loge, J; Maitland, D J

    2006-08-16

    A deployable, shape memory polymer adapter is investigated for reducing the hemodynamic stress caused by a dialysis needle flow within an arteriovenous graft. Computational fluid dynamics simulations of dialysis sessions with and without the adapter demonstrate that the adapter provides a significant decrease in the wall shear stress. In vitro flow visualization measurements are made within a graft model following delivery and actuation of a prototype shape memory polymer adapter. Vascular access complications resulting from arteriovenous (AV) graft failures account for over $1 billion per year in the health care costs of dialysis patients in the U.S.[1] The primary mode of failure of arteriovenous fistulas (AVF's) and polytetrafluoroethylene (PTFE) grafts is the development of intimal hyperplasia (IH) and the subsequent formation of stenotic lesions, resulting in a graft flow decline. The hemodynamic stresses arising within AVF's and PTFE grafts play an important role in the pathogenesis of IH. Studies have shown that vascular damage can occur in regions where there is flow separation, oscillation, or extreme values of wall shear stress (WSS).[2] Nevaril et al.[3] show that exposure of red blood cells to WSS's on the order of 1500 dynes/cm2 can result in hemolysis. Hemodynamic stress from dialysis needle flow has recently been investigated for the role it plays in graft failure. Using laser Doppler velocimetry measurements, Unnikrishnan et al.[4] show that turbulence intensities are 5-6 times greater in the AV flow when the needle flow is present and that increased levels of turbulence exist for approximately 7-8cm downstream of the needle. Since the AVF or PTFE graft is exposed to these high levels of hemodynamic stress several hours each week during dialysis sessions, it is quite possible that needle flow is an important contributor to vascular access occlusion.[4] We present a method for reducing the hemodynamic stress in an AV graft by tailoring

  2. Type D personality and hemodynamic reactivity to laboratory stress in women.

    Science.gov (United States)

    Howard, Siobhán; Hughes, Brian M; James, Jack E

    2011-05-01

    The Type D personality (identified by high levels of both negative affectivity and social inhibition) has been associated with negative health consequences in cardiac patients. However, few studies have explored whether the Type D personality is associated with particular patterns of cardiovascular responses to stress. In the present study, cardiovascular reactivity to psychological stress (CVR) was examined as a possible mediating mechanism by which Type D personality may affect cardiovascular health, with specific focus on hemodynamic profile. Eighty-nine female university students completed a mental arithmetic stressor while undergoing hemodynamic monitoring. Blood pressure, heart rate, cardiac output, and total peripheral resistance in response to the stressor were examined. Type D personality was assessed using the 16-item Type D scale. Results indicated that there were no between-group differences in magnitude of blood pressure increase, with both Type D and non-Type D individuals demonstrating myocardial response profiles. However, Type D individuals were less "myocardial" than non-Type D individuals. This indicates that a weak myocardial response to an active stressor in Type D individuals may be indicative of hemodynamic maladaptation to stress, implicating CVR as a possible mechanism involved in Type D-cardiovascular health associations.

  3. Use of lignocaine or nitroglycerine for blunting of hemodynamic stress response during electroconvulsive therapy

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Zahoor

    2014-01-01

    Conclusion: NTG provided more hemodynamic stability in post-ECT period as compared to lignocaine which only prevented a surge in HR without any effect on MAP. We conclude that NTG can safely be instituted for anaesthesia in ECT patients for prevention of hemodynamic stress response.

  4. Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction.

    Science.gov (United States)

    Brandner, C R; Kidgell, D J; Warmington, S A

    2015-12-01

    Light-load exercise training with blood flow restriction (BFR) increases muscle strength and size. However, the hemodynamics of BFR exercise appear elevated compared with non-BFR exercise. This questions the suitability of BFR in special/clinical populations. Nevertheless, hemodynamics of standard prescription protocols for BFR and traditional heavy-load exercise have not been compared. We investigated the hemodynamics of two common BFR exercise methods and two traditional resistance exercises. Twelve young males completed four unilateral elbow flexion exercise trials in a balanced, randomized crossover design: (a) heavy load [HL; 80% one-repetition maximum (1-RM)]; (b) light load (LL; 20% 1-RM); and two other light-load trials with BFR applied (c) continuously at 80% resting systolic blood pressure (BFR-C) or (d) intermittently at 130% resting systolic blood pressure (BFR-I). Hemodynamics were measured at baseline, during exercise, and for 60-min post-exercise. Exercising heart rate, blood pressure, cardiac output, and rate-pressure product were significantly greater for HL and BFR-I compared with LL. The magnitude of hemodynamic stress for BFR-C was between that of HL and LL. These data show reduced hemodynamics for continuous low-pressure BFR exercise compared with intermittent high-pressure BFR in young healthy populations. BFR remains a potentially viable method to improve muscle mass and strength in special/clinical populations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Biomarkers of Hemodynamic Stress and Aortic Stiffness after STEMI: A Cross-Sectional Analysis

    Directory of Open Access Journals (Sweden)

    Sebastian Johannes Reinstadler

    2015-01-01

    Full Text Available Aim. Increased aortic stiffness might adversely affect cardiac structure, function, and perfusion. Release of biomarkers of hemodynamic stress is thought to be enhanced by these alterations. We aimed to evaluate the association between biomarkers of hemodynamic stress and aortic stiffness assessed at a chronic stage after ST-segment elevation myocardial infarction (STEMI. Methods. Fifty-four patients four months after STEMI were enrolled in this cross-sectional, single-center study. N-terminal pro–B-type natriuretic peptide (NT-proBNP, mid-regional pro–A-type natriuretic peptide (MR-proANP, and mid-regional proadrenomedullin (MR-proADM levels were measured by established assays. Aortic stiffness was assessed by the measurement of pulse wave velocity using phase-contrast cardiovascular magnetic resonance. Results. NT-proBNP, MR-proANP, and MR-proADM concentrations were all correlated with aortic stiffness in univariate analysis (r=0.378, r=0.425, and r=0.532; all P<0.005, resp.. In multiple linear regression analysis, NT-proBNP (β=0.316, P=0.005 and MR-proADM (β=0.284, P<0.020 levels were associated with increased aortic stiffness independently of age, blood pressure, and renal function. NT-proBNP was the strongest predictor for high aortic stiffness (area under the curve: 0.82, 95% CI 0.67–0.96. Conclusion. At a chronic stage after STEMI, concentrations of biomarkers for hemodynamic stress, especially NT-proBNP, are positively correlated with aortic stiffness. These biomarkers might also be useful as predictors of high aortic stiffness after STEMI.

  6. Hemodynamic responses to mental stress during salt loading

    DEFF Research Database (Denmark)

    Goyal, Maria Gefke; Christensen, Niels Juel; Bech, Per

    2017-01-01

    PURPOSE: The purpose was to examine whether prolonged moderate stress associated with a student exam would increase the blood pressure response to a salt load in young healthy normotensive individuals. METHODS: Ten healthy young subjects were examined at two different occasions in random order (i...... in day-to-night systolic blood pressure during high-salt intake and moderate stress may indicate that stress affects blood pressure regulation.......PURPOSE: The purpose was to examine whether prolonged moderate stress associated with a student exam would increase the blood pressure response to a salt load in young healthy normotensive individuals. METHODS: Ten healthy young subjects were examined at two different occasions in random order (i......) during preparation for a medical exam (prolonged stress) and (ii) outside the exam period (low stress). All subjects consumed a controlled diet for 3 days with low- or high-salt content in randomized order. The subjective stress was measured by Spielberger's State-Trait Anxiety Inventory-Scale, SCL...

  7. Hemodynamic stress response during laparoscopic cholecystectomy: Effect of two different doses of intravenous clonidine premedication

    Directory of Open Access Journals (Sweden)

    Deepshikha C Tripathi

    2011-01-01

    Full Text Available Background : Clonidine has emerged as an attractive premedication desirable in laparoscopic surgery wherein significant hemodynamic stress response is seen. The minimum safe and effective dose of intravenous clonidine to attenuate the hemodynamic stress response during laparoscopic surgery has however not yet been determined. Materials and Methods : This prospective, randomized, double-blind controlled study was conducted on 90 adults of ASA physical status I and II, scheduled for laparoscopic cholecystectomy under general anesthesia. Patients were randomized to one of the three groups (n= 30. Group I received 100 ml of normal saline, while groups II and III received 1 μg/ kg and 2 μg/ kg of clonidine respectively, intravenous, in 100 ml of normal saline along. All patients received glycopyrrolate 0.004 mg/kg and tramadol 1.5 mg/kg intravenously, 30 min before induction. Hemodynamic variables (heart rate, systolic, diastolic, mean arterial pressure, SpO2, and sedation score were recorded at specific timings. MAP above 20% from baseline was considered significant and treated with nitroglycerine. Results : In group I, there was a significant increase in hemodynamic variables during intubation pneumoperitoneum and extubation (P<0.001. Clonidine given 1 μg/kg intravenous attenuated hemodynamic stress response to pneumoperitoneum (P<0.05, but not that associated with intubation and extubation. Clonidine 2 μg/kg intravenous prevented hemodynamic stress response to pneumoperitoneum and that associated with intubation and extubation (P<0.05. As against 14 and 2 patients in groups I and II respectively, no patient required nitroglycerine infusion in group III. Conclusions : Clonidine, 2 μg/ kg intravenously, 30 min before induction is safe and effective in preventing the hemodynamic stress response during laparoscopic cholecystectomy.

  8. Assessment of turbulent viscous stress using ICOSA 4D Flow MRI for prediction of hemodynamic blood damage

    Science.gov (United States)

    Ha, Hojin; Lantz, Jonas; Haraldsson, Henrik; Casas, Belen; Ziegler, Magnus; Karlsson, Matts; Saloner, David; Dyverfeldt, Petter; Ebbers, Tino

    2016-12-01

    Flow-induced blood damage plays an important role in determining the hemodynamic impact of abnormal blood flow, but quantifying of these effects, which are dominated by shear stresses in highly fluctuating turbulent flow, has not been feasible. This study evaluated the novel application of turbulence tensor measurements using simulated 4D Flow MRI data with six-directional velocity encoding for assessing hemodynamic stresses and corresponding blood damage index (BDI) in stenotic turbulent blood flow. The results showed that 4D Flow MRI underestimates the maximum principal shear stress of laminar viscous stress (PLVS), and overestimates the maximum principal shear stress of Reynolds stress (PRSS) with increasing voxel size. PLVS and PRSS were also overestimated by about 1.2 and 4.6 times at medium signal to noise ratio (SNR) = 20. In contrast, the square sum of the turbulent viscous shear stress (TVSS), which is used for blood damage index (BDI) estimation, was not severely affected by SNR and voxel size. The square sum of TVSS and the BDI at SNR >20 were underestimated by less than 1% and 10%, respectively. In conclusion, this study demonstrated the feasibility of 4D Flow MRI based quantification of TVSS and BDI which are closely linked to blood damage.

  9. Influence of high-porosity mesh stent on hemodynamics of intracranial aneu- rysm:A computational study

    Institute of Scientific and Technical Information of China (English)

    邱晓宁; 费智敏; 张珏; 曹兆敏

    2013-01-01

    This paper studies the influence of a High-Porosity Mesh (HPM) stent on the hemodynamic characteristics in the intracra- nial aneurysm based on the Computational Fluid Dynamics (CFD). An idealized basilar tip aneurysm model and a HPM stent model are built. The pulsating blood flow in a cardiac cycle is computationally simulated for non-stented and stented models, to provide a wealth of information of the spatio-temporally varying blood flow field. The influence of the stent placement on the hemodynamic characteristics is analyzed in terms of distributions of velocity, pressure, Wall Shear Stress (WSS) and Energy Loss (EL), which are believed to play an important role in the development and rupture of the aneurysm. The numerical results clearly show that the velo- city, pressure, WSS and EL of the blood flow in the aneurysm are reduced by 30%-40% when the HPM stent is implanted. These computational results may provide valuable hemodynamic information for clinical neurosurgeon.

  10. Echocardiography and invasive hemodynamics during stress testing for diagnosis of heart failure with preserved ejection fraction: an experimental study.

    Science.gov (United States)

    Leite, Sara; Oliveira-Pinto, José; Tavares-Silva, Marta; Abdellatif, Mahmoud; Fontoura, Dulce; Falcão-Pires, Inês; Leite-Moreira, Adelino F; Lourenço, André P

    2015-06-15

    Inclusion of exercise testing in diagnostic guidelines for heart failure with preserved ejection fraction (HFpEF) has been advocated, but the target population, technical challenges, and underlying pathophysiological complexity raise difficulties to implementation. Hemodynamic stress tests may be feasible alternatives. Our aim was to test Trendelenburg positioning, phenylephrine, and dobutamine in the ZSF1 obese rat model to find echocardiographic surrogates for end-diastolic pressure (EDP) elevation and HFpEF. Seventeen-week-old Wistar-Kyoto, ZSF1 lean, and obese rats (n = 7 each) randomly and sequentially underwent (crossover) Trendelenburg (30°), 5 μg·Kg(-1)·min(-1) dobutamine, and 7.5 μg·Kg(-1)·min(-1) phenylephrine with simultaneous left ventricular (LV) pressure-volume loop and echocardiography evaluation under halogenate anesthesia. Effort testing with maximum O2 consumption (V̇o 2 max) determination was performed 1 wk later. Obese ZSF1 showed lower effort tolerance and V̇o 2 max along with higher resting EDP. Both Trendelenburg and phenylephrine increased EDP, whereas dobutamine decreased it. Significant correlations were found between EDP and 1) peak early filling Doppler velocity of transmitral flow (E) to corresponding myocardial tissue Doppler velocity (E') ratio, 2) E to E-wave deceleration time (E/DT) ratio, and 3) left atrial area (LAA). Diagnostic efficiency of E/DT*LAA by receiver-operating characteristic curve analysis for elevation of EDP above a cut-off of 13 mmHg during hemodynamic stress was high (area under curve, AUC = 0.95) but not higher than that of E/E' (AUC = 0.77, P = 0.15). Results in ZSF1 obese rats suggest that noninvasive echocardiography after hemodynamic stress induced by phenylephrine or Trendelenburg can enhance diagnosis of stable HFpEF and constitute an alternative to effort testing.

  11. Comparison of Adenosine Stress Myocardial Perfusion Scintigraphy and Oral Dipyridamole Stress Myocardial Perfusion Scintigraphy for Hemodynamic Changes and Adverse Effects

    Directory of Open Access Journals (Sweden)

    Ahmet Yanarateş

    2016-08-01

    Full Text Available Objective: Similar effects can be achieved during stress myocardial perfusion scintigraphy (MPS using pharmacological agents to create cardiac stress for patients who are unable to exercise. In our study, we aimed to show the hemodynamic changes and adverse effects caused by adenosine and to compare the results with dipyridamole stress MPS. Materials and Methods: Sixty-five patients with suspected coronary artery disease were included in our study. Fifty patients in whom stress MPS with intravenous adenosine was performed (group A and 15 patients who underwent oral dipyridamole stress MPS (group B were retrospectively evaluated. During the test, blood pressure measurements and electrocardiographic follow-up were performed in all patients and side effects were noted. Results: At least one side effect occurred in 68% of the group A and in 46% of the group B patients. There was no statistically significant difference between the two groups in terms of side effects that occurred during the pharmacological stress. During the maximum stress, there was an increase of 15.80±11.60 beats/min in heart beats in group A and 5.53±4.54 beats/min in group B. There was a statistically significant difference between the groups in terms of heart rate increase per minute. When we compared reduction in systolic blood pressure and diastolic blood pressure, there was no statistically significant difference between the two groups. Conclusion: Although side effects are more often seen with adenosine, rapid decline in complaints was observed when adenosine infusion was terminated and there was no need for patient follow-up due to short half life of adenosine. We believe that these favourable advantages will increase the use of adenosine in clinical practice.

  12. [State of the sympathoadrenal system and hemodynamics in children during congenital heart defect surgery with high thoracic epidural anesthesia using lidocaine-clofelin].

    Science.gov (United States)

    Slin'ko, S K

    2000-01-01

    Effects of high thoracic epidural anesthesia (HTEA) on the hemodynamics and sympathoadrenal system were studied in patients during cardiopulmonary bypass surgery. In 55 patients aged 1-14 years, HTEA was used in combination with oxygen-air-halothane anesthesia. In one group lidocaine and fentanyl were used for HTEA and in another clonidine and lidocaine. In the control, standard intravenous fentanyl-diazepam anesthesia was combined with oxygen-air-halothane anesthesia. In the clonidine-lidocaine group the endocrine stress response was decreased in comparison with other groups even without narcotics; hemodynamics was stable even in patients with NYHA class III-IV.

  13. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.

    Science.gov (United States)

    Weddell, Jared C; Kwack, JaeHyuk; Imoukhuede, P I; Masud, Arif

    2015-01-01

    Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF) constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS) is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model.

  14. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.

    Directory of Open Access Journals (Sweden)

    Jared C Weddell

    Full Text Available Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model.

  15. Ruptured aneurysm at the cortical segment of the distal posterior inferior cerebellar artery associated with hemodynamic stress after basilar artery occlusion

    Directory of Open Access Journals (Sweden)

    Akiko Marutani

    2016-01-01

    Conclusion: This report describes a case of de novo development of a saccular distal PICA aneurysm after atherosclerotic basilar artery occlusion. We believe that increased hemodynamic stress at the PICA might have contributed to the occurrence and rupture of the aneurysm. STA-SCA bypass, introduced in the territory of the cerebellar hemisphere, reduces hemodynamic stress, which would prevent the occurrence of de novo aneurysm and recurrent bleeding.

  16. Correlating hemodynamic magnetic resonance imaging with high-field intracranial vessel wall imaging in stroke.

    Science.gov (United States)

    Langdon, Weston; Donahue, Manus J; van der Kolk, Anja G; Rane, Swati; Strother, Megan K

    2014-06-01

    Vessel wall magnetic resonance imaging at ultra-high field (7 Tesla) can be used to visualize vascular lesions noninvasively and holds potential for improving stroke-risk assessment in patients with ischemic cerebrovascular disease. We present the first multi-modal comparison of such high-field vessel wall imaging with more conventional (i) 3 Tesla hemodynamic magnetic resonance imaging and (ii) digital subtraction angiography in a 69-year-old male with a left temporal ischemic infarct.

  17. The efficacy of labetalol vs dexmedetomidine for attenuation of hemodynamic stress response to laryngoscopy and endotracheal intubation.

    Science.gov (United States)

    El-Shmaa, Nagat S; El-Baradey, Ghada F

    2016-06-01

    To assess the effectiveness of labetalol vs dexmedetomidine for attenuation of hemodynamic stress response to laryngoscopy and endotracheal intubation. Prospective, randomized, controlled, observer-blinded study. This study was carried out in Tanta University Hospital. Ninety patients of both sexes; American Society of Anesthesiologists physical status I and II; age range from 20 to 60 years; scheduled for elective surgery under general anesthesia. Patients were divided into 3 groups (30 each). Group A received 1 μg/kg of dexmedetomidine as intravenous (IV) infusion, group B received labetalol 0.25mg/kg IV, and group C received 10mL saline IV. The groups were compared for heart rate (HR), mean arterial pressure (MAP), and rate pressure product (RPP). Hemodynamic parameters were recorded during the preinduction; after induction; at intubation; and at 1, 3, 5, 10, and 15minutes. The primary outcomes were hemodynamic changes (HR, MBP, and RPP), and the secondary outcome was propofol dose requirement for induction of general anaesthesia. Significant decrease (P intubation, there was a significant decrease (P intubation more effectively compared with labetalol without any deleterious effects. Furthermore, dexmedetomidine decreases dose of propofol for induction of anesthesia as guided by bispectral index. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Genetic Influence on Blood Pressure and Underlying Hemodynamics Measured at Rest and During Stress

    NARCIS (Netherlands)

    Wu, Ting; Treiber, Frank A.; Snieder, Harold

    Objective: This study examined the genetic and environmental contributions to the individual differences in blood pressure (BP) levels and underlying hemodynamic characteristics at rest and during mental challenge tasks in a large twin cohort of youth. Including both European American and African

  19. Emotional, Neurohormonal, and Hemodynamic Responses to Mental Stress in Tako-Tsubo Cardiomyopathy

    NARCIS (Netherlands)

    Smeijers, Loes; Szabo, Balazs M.; van Dammen, Lotte; Wonnink, Wally; Jakobs, Bernadette S.; Bosch, Jos A.; Kop, Willem J.

    2015-01-01

    Tako-Tsubo cardiomyopathy (TTC) is characterized by apical ballooning of the left ventricle and symptoms and signs mimicking acute myocardial infarction. The high catecholamine levels int the acute phase of TTC and common emotional triggers suggest a dysregulated stress response system. This study

  20. Emotional, neurohormonal and hemodynamic responses to mental stress in Tako-Tsubo cardiomyopathy

    NARCIS (Netherlands)

    Smeijers, L.; Szabó, B.M.; van Dammen, L.; Wonnink, W.; Jakobs, B.S.; Bosch, J.A.; Kop, W.J.

    2015-01-01

    Tako-Tsubo cardiomyopathy (TTC) is characterized by apical ballooning of the left ventricle and symptoms and signs mimicking acute myocardial infarction. The high catecholamine levels in the acute phase of TTC and common emotional triggers suggest a dysregulated stress response system. This study

  1. Emotional, Neurohormonal and Hemodynamic Responses to Mental Stress in Tako-Tsubo Cardiomyopathy

    NARCIS (Netherlands)

    Smeijers, Loes; Szabó, Bálasz; van Dammen, Lotte; Wonnink, Wally; Jakobs, Bernadette; Bosch, Jos; Kop, Willem

    2015-01-01

    Tako-Tsubo cardiomyopathy (TTC) is characterized by apical ballooning of the left ventricle and symptoms and signs mimicking acute myocardial infarction. The high catecholamine levels int the acute phase of TTC and common emotional triggers suggest a dysregulated stress response system. This study e

  2. Emotional, neurohormonal and hemodynamic responses to mental stress in Tako-Tsubo cardiomyopathy

    NARCIS (Netherlands)

    Smeijers, L.; Szabó, B.M.; van Dammen, L.; Wonnink, W.; Jakobs, B.S.; Bosch, J.A.; Kop, W.J.

    2015-01-01

    Tako-Tsubo cardiomyopathy (TTC) is characterized by apical ballooning of the left ventricle and symptoms and signs mimicking acute myocardial infarction. The high catecholamine levels in the acute phase of TTC and common emotional triggers suggest a dysregulated stress response system. This study ex

  3. Emotional, Neurohormonal, and Hemodynamic Responses to Mental Stress in Tako-Tsubo Cardiomyopathy

    NARCIS (Netherlands)

    Smeijers, Loes; Szabo, Balazs M.; van Dammen, Lotte; Wonnink, Wally; Jakobs, Bernadette S.; Bosch, Jos A.; Kop, Willem J.

    2015-01-01

    Tako-Tsubo cardiomyopathy (TTC) is characterized by apical ballooning of the left ventricle and symptoms and signs mimicking acute myocardial infarction. The high catecholamine levels in the acute phase of TTC and common emotional triggers suggest a dysregulated stress response system. This study ex

  4. Asiatic Acid Alleviates Hemodynamic and Metabolic Alterations via Restoring eNOS/iNOS Expression, Oxidative Stress, and Inflammation in Diet-Induced Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Poungrat Pakdeechote

    2014-01-01

    Full Text Available Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS induced by a high-carbohydrate, high-fat (HCHF diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α levels (p < 0.05. Plasma nitrate and nitrite (NOx were markedly high with upregulation of inducible nitric oxide synthase (iNOS expression, but dowregulation of endothelial nitric oxide synthase (eNOS expression (p < 0.05. Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p < 0.05. In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  5. Comparison of hemodynamic and metabolic stress responses caused by endotracheal tube and Proseal laryngeal mask airway in laparoscopic cholecystectomy

    Directory of Open Access Journals (Sweden)

    Handan Güleç

    2012-01-01

    Full Text Available Background: We aimed to compare hemodynamic and endocrine alterations caused by stress response due to Proseal laryngeal mask airway and endotracheal tube usage in laparoscopic cholecystectomy. Materials and Methods: Sixty-three ASA I-II patients scheduled for elective laparoscopic cholecystectomy were included in the study. Patients were randomly allocated into two groups of endotracheal tube and Proseal laryngeal mask airway. Standard general anaesthesia was performed in both groups with the same drugs in induction and maintenance of anaesthesia. After anaesthesia induction and 20 minutes after CO 2 insufflations, venous blood samples were obtained for measuring adrenalin, noradrenalin, dopamine and cortisol levels. Hemodynamic and respiratory parameters were recorded at the 1 st , 5 th , 15 th , 30 th and 45 th minutes after the insertion of airway devices. Results: No statistically significant differences in age, body mass index, gender, ASA physical status, and operation time were found between the groups (p > 0.05. Changes in hemodynamic and respiratory parameters were not statistically significant when compared between and within groups (p > 0.05. Although no statistically significant differences were observed between and within groups when adrenalin, noradrenalin and dopamine values were compared, serum cortisol levels after CO 2 insufflation in PLMA group were significantly lower than the ETT group (p = 0.024. When serum cortisol levels were compared within groups, cortisol levels 20 minutes after CO 2 insufflation were significantly higher (46.1 (9.5-175.7 and 27.0 (8.3-119.4 in the ETT and PLMA groups, respectively than cortisol levels after anaesthesia induction (11.3 (2.8-92.5 and 16.6 (4.4-45.4 in the ETT and PLMA groups, respectively in both groups (p = 0.001. Conclusion: PLMA usage is a suitable, effective and safe alternative to ETT in laparoscopic cholecystectomy patients with lower metabolic stress.

  6. Hemodynamic stress echocardiography in patients supported with a continuous-flow left ventricular assist device

    DEFF Research Database (Denmark)

    Andersen, Mads; Gustafsson, Finn; Madsen, Per Lav

    2010-01-01

    Functional assessment of continuous-flow left ventricular assist devices (LVADs) is usually performed with the patient at rest. This study compared echocardiographic indices of contraction and filling pressure with invasive measures in 12 ambulatory LVAD patients undergoing symptom-limited bicycl...... parallel with cardiac output) and diastolic E/e' ratio decreased (correlating inversely with diastolic pulmonary artery pressure). These findings emphasize the potential role of exercise echocardiography in studying exercise hemodynamics in LVAD patients....

  7. Axillary block duration and related hemodynamic changes: high versus low dose Adrenaline addition to Lidocaine

    Directory of Open Access Journals (Sweden)

    Shariat Moharari R

    2009-03-01

    Full Text Available "nBackground: Axillary block is used for inducing anesthesia in outpatient hand and forearm surgeries. Few researches have studied hemodynamic and blockade effects of low doses of Epinephrine. The aim of the present study was to compare the duration of analgesia and hemodynamic changes following the injection of high/low epinephrine doses in such surgeries. "nMethods: The present randomized clinical trial study was conducted on healthy individuals (ASA I-II who were candidates for hand and forearm surgeries. The patients were randomly divided into three groups. The first two groups were allocated to receive lidocaine with low (0.6µg/cc and high (5µg/cc doses of epinephrine whereas lidocaine plus normal saline was injected in the third group. The hemodynamic changes (Mean arterial blood pressure and heart rate and the occurance of any side-effects along with the duration of analgesia and motor block were recorded. "nResults: From among the total of 75 patients, 15 cases were excluded due to incomplete blockade or failure needing general anesthesia. The duration of analgesia and the motor block were longer in the high dose epinephrine group, the difference, however, was not statistically significant. Heart rate changes within the groups was significant in the 4th-7th and 10th minutes. Mean arterial blood pressure changes was only significant in the 4th minute, within the groups. "nConclusions: Administering low doses of epinephrine plus lidocaine as a local anesthetic not only provides acceptable analgesia compared to higher doses of the medication, but also is associated with fewer side effects.

  8. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics.

    Directory of Open Access Journals (Sweden)

    Grzegorz Bilo

    Full Text Available Slow deep breathing improves blood oxygenation (Sp(O2 and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2-3 days (Study A; N = 39 or at 5400 m for 12-16 days (Study B; N = 28. Study variables, including Sp(O2 and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in Sp(O2 (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001 and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion.

  9. Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Muthalib, Makii; Besson, Pierre; Rothwell, John; Perrey, Stéphane

    2017-07-17

    High-definition transcranial direct current stimulation (HD-tDCS) using a 4 × 1 electrode montage has been previously shown using modeling and physiological studies to constrain the electric field within the spatial extent of the electrodes. The aim of this proof-of-concept study was to determine if functional near-infrared spectroscopy (fNIRS) neuroimaging can be used to determine a hemodynamic correlate of this 4 × 1 HD-tDCS electric field on the brain. In a three session cross-over study design, 13 healthy males received one sham (2 mA, 30 sec) and two real (HD-tDCS-1 and HD-tDCS-2, 2 mA, 10 min) anodal HD-tDCS targeting the left M1 via a 4 × 1 electrode montage (anode on C3 and 4 return electrodes 3.5 cm from anode). The two real HD-tDCS sessions afforded a within-subject replication of the findings. fNIRS was used to measure changes in brain hemodynamics (oxygenated hemoglobin integral-O2 Hbint ) during each 10 min session from two regions of interest (ROIs) in the stimulated left hemisphere that corresponded to "within" (Lin ) and "outside" (Lout ) the spatial extent of the 4 × 1 electrode montage, and two corresponding ROIs (Rin and Rout ) in the right hemisphere. The ANOVA showed that both real anodal HD-tDCS compared to sham induced a significantly greater O2 Hbint in the Lin than Lout ROIs of the stimulated left hemisphere; while there were no significant differences between the real and sham sessions for the right hemisphere ROIs. Intra-class correlation coefficients showed "fair-to-good" reproducibility for the left stimulated hemisphere ROIs. The greater O2 Hbint "within" than "outside" the spatial extent of the 4 × 1 electrode montage represents a hemodynamic correlate of the electrical field distribution, and thus provides a prospective reliable method to determine the dose of stimulation that is necessary to optimize HD-tDCS parameters in various applications. © 2017 International Neuromodulation Society.

  10. Hemodynamic Assessment of Compliance of Pre-Stressed Pulmonary Valve-Vasculature in Patient Specific Geometry Using an Inverse Algorithm

    Science.gov (United States)

    Hebbar, Ullhas; Paul, Anup; Banerjee, Rupak

    2016-11-01

    Image based modeling is finding increasing relevance in assisting diagnosis of Pulmonary Valve-Vasculature Dysfunction (PVD) in congenital heart disease patients. This research presents compliant artery - blood interaction in a patient specific Pulmonary Artery (PA) model. This is an improvement over our previous numerical studies which assumed rigid walled arteries. The impedance of the arteries and the energy transfer from the Right Ventricle (RV) to PA is governed by compliance, which in turn is influenced by the level of pre-stress in the arteries. In order to evaluate the pre-stress, an inverse algorithm was developed using an in-house script written in MATLAB and Python, and implemented using the Finite Element Method (FEM). This analysis used a patient specific material model developed by our group, in conjunction with measured pressure (invasive) and velocity (non-invasive) values. The analysis was performed on an FEM solver, and preliminary results indicated that the Main PA (MPA) exhibited higher compliance as well as increased hysteresis over the cardiac cycle when compared with the Left PA (LPA). The computed compliance values for the MPA and LPA were 14% and 34% lesser than the corresponding measured values. Further, the computed pressure drop and flow waveforms were in close agreement with the measured values. In conclusion, compliant artery - blood interaction models of patient specific geometries can play an important role in hemodynamics based diagnosis of PVD.

  11. Coronary hemodynamics and myocardial metabolism during and after pacing stress in normal humans.

    Science.gov (United States)

    Camici, P; Marraccini, P; Marzilli, M; Lorenzoni, R; Buzzigoli, G; Puntoni, R; Boni, C; Bellina, C R; Klassen, G A; L'Abbate, A

    1989-09-01

    We investigated coronary hemodynamics, myocardial utilization of circulating substrates (by coronary sinus catheterization), and overall use of oxidative fuels (by regional indirect calorimetry) in healthy adults during incremental atrial pacing (up to 159 +/- 9 beats/min), and during 25 min of recovery. Great cardiac vein flow (thermodilution) increased from 52 +/- 9 to 115 +/- 15 ml/min (P less than 0.001) with pacing; myocardial O2 uptake (301 +/- 53 to 593 +/- 71 mumol/min, P less than 0.001) and CO2 production (225 +/- 37 to 518 +/- 66 mumol/min, P less than 0.005) paralleled the pacing-induced rise in rate-pressure product (9.4 +/- 0.9 to 21.1 +/- 1.1 mmHg.beat. min-1.10(-3), P less than 0.001). During recovery, all the above variables returned to base line within 5 min, but myocardial O2 extraction remained depressed (67 +/- 2 vs. 71 +/- 3%, P less than 0.05). Circulating glucose uptake rose linearly with pacing (P less than 0.05) and remained above base line throughout recovery. By contrast, free fatty acid (FFA) uptake (10 mumol/min) did not increase with pacing and fell during recovery (P less than 0.01). Calorimetry, however, showed that net lipid oxidation exceeded FFA uptake throughout the study, whereas net carbohydrate oxidation was small at base line, rose significantly at maximal pacing (62% of myocardial energy output), and remained above base line during recovery (32% of energy output). In the basal state as well as during recovery, myocardial uptake of glucose equivalents (lactate plus glucose plus pyruvate) was in excess of carbohydrate oxidation, indicating nonoxidative disposal of these substrates.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Comparison of arbutamine stress and treadmill exercise thallium-201 SPECT: Hemodynamics, safety profile and diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kiat, H.; Berman, D.S. [Cedars-Sinai Medical Centre, Los Angeles, California, LA (United States)

    1998-02-01

    Full text: Arbutamine (ARB), a new pharmacologic stress agent with enhanced chronotropic property compared to dobutamine, was compared with treadmill (TM) exercise testing (Ex) in a multicenter study using thallium-201 (Tl) SPECT. Of the total of 184 patients who underwent ARB, 69 also had TM stress and quantitative coronary angiography. Fifty-eight patients with a low pretest likelihood of CAD also underwent ARB study for evaluation of test specificity (normalcy rate). Tl scans were scored by a central laboratory using a 20 segment (seg)/scan visual analysis (5 point system: 0=normal, 4-absent uptake). Maximum heart rate (HR) by ARB and Ex was 122 vs 141 bpm (p<0.05). Mean %HR change from baseline was similar (79% vs 82%, respectively, p=ns). Maximum systolic BP for ARB and Ex was 173 vs 175 mmHg, and mean % change from baseline was 24% vs 28% (p=ns). Sensitivity for detecting CAD (270% stenosis) by ARB Tl was 94% and 97% by Ex Tl (p=ns). Stress Tl SPECT segmental agreement for presence of defect between ARB and Ex was 92% (kappa=0.8, p<0.001). Exact segmental stress Tl score (0-4 grading) agreement was 83 % (kappa=0.7, p<0.001). Among 346 segs with stress defects by both ARB and Ex defect reversibility agreement was 86% (kappa=0.7, p<0.001). The normalcy rate for ARB TI-SPECT among patients with a low likelihood of CAD was 90%. Adverse events were mostly mild (tremor: 23%, flushing: 10%, headache: 10%, paraesthesia: 8%, dizziness: 8%, hot flushes: 4%). Arrhythimia of clinical concern occurred in 8% (10/122) of ARB patients who had cardiac catheterisation and in 1.4% (1/69) of patients who had stress Tl. Of all 184 patients with ARB stress, ARB was discontinued due to arrhythmia in 7(5%) and 1 patient had IV Metoprolol for frequent ventricular couplets. Sustained arrhythmias were not observed

  13. Plasma and tissue levels of neuropeptide y in experimental septic shock: relation to hemodynamics, inflammation, oxidative stress, and hemofiltration.

    Science.gov (United States)

    Kuncová, Jitka; Sýkora, Roman; Chvojka, Jiří; Svíglerová, Jitka; Stengl, Milan; Kroužecký, Aleš; Nalos, Lukáš; Matějovič, Martin

    2011-06-01

    Neuropeptide Y (NPY), a potent vasoconstrictor released from the sympathetic nerves, has been suggested to counterbalance sepsis-induced vasodilation. Thus, the changes in plasma and tissue NPY concentrations in relation to hemodynamic variables and inflammatory markers in a porcine model of moderate septic shock were investigated. Susceptibility of NPY to be removed by continuous hemofiltration in two settings has been also studied. Thirty-four domestic pigs were divided into five groups: (i) control group; (ii) control group with conventional hemofiltration; (iii) septic group; (iv) septic group with conventional hemofiltration; and (v) septic group with high-volume hemofiltration. Sepsis induced by fecal peritonitis continued for 22 h. Hemofiltration was applied for the last 10 h. Hemodynamic and inflammatory parameters (heart rate, mean arterial pressure, cardiac output, systemic vascular resistance, plasma concentrations of tumor necrosis factor-α, interleukin-6, and NPY) were measured before and at 12 and 22 h of peritonitis. NPY tissue levels were determined in the left ventricle and mesenteric and coronary arteries. Sepsis induced long-lasting increases in the systemic NPY levels without affecting its tissue concentrations. Continuous hemofiltration at any dose did not reduce sepsis-induced elevations in NPY plasma concentrations, nor did it affect the peptide tissue levels. The increases in NPY systemic levels were significantly correlated with changes in the systemic vascular resistance. The results support the hypothesis of NPY implication in the regulation of the vascular resistance under septic conditions and indicate that NPY clearance rate during hemofiltration does not exceed the capacity of perivascular nerves to release it.

  14. Numerical model of total artificial heart hemodynamics and the effect of its size on stress accumulation.

    Science.gov (United States)

    Marom, Gil; Chiu, Wei-Che; Slepian, Marvin J; Bluestein, Danny

    2014-01-01

    The total artificial heart (TAH) is a bi-ventricular mechanical circulatory support device that replaces the heart in patients with end-stage congestive heart failure. The device acts as blood pump via pneumatic activation of diaphragms altering the volume of the ventricular chambers. Flow in and out of the ventricles is controlled by mechanical heart valves. The aim of this study is to evaluate the flow regime in the TAH and to estimate the thrombogenic potential during systole. Toward that goal, three numerical models of TAHs of differing sizes, that include the deforming diaphragm and the blood flow from the left chamber to the aorta, are introduced. A multiphase model with injection of platelet particles is employed to calculate their trajectories. The shear stress accumulation in the three models are calculated along the platelets trajectories and their probability density functions, which represent the `thrombogenic footprint' of the device are compared. The calculated flow regime successfully captures the mitral regurgitation and the flows that open and close the aortic valve during systole. Physiological velocity magnitudes are found in all three models, with higher velocities and increased stress accumulation predicted for smaller devices.

  15. Hemodynamic mechanisms of the attenuated blood pressure response to mental stress after a single bout of maximal dynamic exercise in healthy subjects

    Directory of Open Access Journals (Sweden)

    F.J. Neves

    2012-07-01

    Full Text Available To determine the hemodynamic mechanisms responsible for the attenuated blood pressure response to mental stress after exercise, 26 healthy sedentary individuals (age 29 ± 8 years underwent the Stroop color-word test before and 60 min after a bout of maximal dynamic exercise on a treadmill. A subgroup (N = 11 underwent a time-control experiment without exercise. Blood pressure was continuously and noninvasively recorded by infrared finger photoplethysmography. Stroke volume was derived from pressure signals, and cardiac output and peripheral vascular resistance were calculated. Perceived mental stress scores were comparable between mental stress tests both in the exercise (P = 0.96 and control (P = 0.24 experiments. After exercise, the blood pressure response to mental stress was attenuated (pre: 10 ± 13 vs post: 6 ± 7 mmHg; P 0.05. In conclusion, a single bout of maximal dynamic exercise attenuates the blood pressure response to mental stress in healthy subjects, along with lower stroke volume and cardiac output, denoting an acute modulatory action of exercise on the central hemodynamic response to mental stress.

  16. Hemodynamic responses of eye movement desensitization and reprocessing in posttraumatic stress disorder.

    Science.gov (United States)

    Ohtani, Toshiyuki; Ohta ni, Toshiyuki; Matsuo, Koji; Kasai, Kiyoto; Kato, Tadafumi; Kato, Nobumasa

    2009-12-01

    Eye movement desensitization and reprocessing (EMDR) is an effective psychological intervention for posttraumatic stress disorder (PTSD). Trauma-related recall (Recall) with eye movements (EMs) is thought to reduce distress. However, the neural mechanisms underlying this process remain unknown. Thirteen patients with PTSD received EMDR treatment over the course of 2-10 weeks. We assessed the change in hemoglobin concentration in the lateral prefrontal cortex (PFC) during Recall with and without EM using multi-channel near-infrared spectroscopy (NIRS). Clinical diagnosis and improvement were evaluated using the Clinician-Administered PTSD Scale. Recall with EM was associated with a significant decrease in oxygenated hemoglobin concentration ([oxy-Hb]) in the lateral PFC as compared with Recall without EM. Longitudinally, [oxy-Hb] during Recall significantly decreased and the amount of decrease was significantly correlated with clinical improvement when the post-treatment data was compared with that of the pre-treatment. Our results suggest that performing EM during Recall reduces the over-activity of the lateral PFC, which may be part of the biological basis for the efficacy of EMDR in PTSD. NIRS may be a useful tool for objective assessment of psychological intervention in PTSD.

  17. Studies on monitoring hemodynamics and oxygen dynamics of adult respiratory distress syndrome secondary to high altitude pulmonary edema

    Institute of Scientific and Technical Information of China (English)

    Ma Siqing; Wu Tianyi; Cheng Qiang; Li Pei; Bian Huiping

    2013-01-01

    To study monitoring hemodynamics and oxygen dynamics of adult respiratory distress syndrome (ARDS)secondary to high altitude pulmonary edema (HAPE),we performed clinic and laboratory studies in 8 patients who preliminarily developed high altitude cerebral edema (HACE) and then ARDS occurred at an altitude of 4500 m.After an initial emergency treatment on high mountains,all the patients were rapidly transported to a hospital at a lower altitude of 2808 m.The right cardiac catheterizations were carried out within 5 h after hospitalized.The monitoring hemodynamics and oxygen dynamics were studied via a thermodilution Swan-Gaze catheter.The results showed that before treatments at the beginning of monitoring,there presented a significant pulmonary artery hypertension with a decreased cardiac function,and a lower oxygen metabolism in all the 8 patients.However,after some effective treatments,including mechanical ventilation and using dexamethasone,furosemide,etc,four days later the result of a repeated monitoring showed that their pulmonary artery pressure had been decreased with an improved cardiac function with all the oxygen metabolic indexes increased significantly.Our studies suggested that performing monitoring hemodynamics in patients with ARDS secondary to HAPE will define the clinical therapeutic measures which will benefit the outcome.

  18. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists.

    Science.gov (United States)

    Cannesson, Maxime; Pestel, Gunther; Ricks, Cameron; Hoeft, Andreas; Perel, Azriel

    2011-08-15

    Several studies have demonstrated that perioperative hemodynamic optimization has the ability to improve postoperative outcome in high-risk surgical patients. All of these studies aimed at optimizing cardiac output and/or oxygen delivery in the perioperative period. We conducted a survey with the American Society of Anesthesiologists (ASA) and the European Society of Anaesthesiology (ESA) to assess current hemodynamic management practices in patients undergoing high-risk surgery in Europe and in the United States. A survey including 33 specific questions was emailed to 2,500 randomly selected active members of the ASA and to active ESA members. Overall, 368 questionnaires were completed, 57.1% from ASA and 42.9% from ESA members. Cardiac output is monitored by only 34% of ASA and ESA respondents (P = 0.49) while central venous pressure is monitored by 73% of ASA respondents and 84% of ESA respondents (P < 0.01). Specifically, the pulmonary artery catheter is being used much more frequently in the US than in Europe in the setup of high-risk surgery (85.1% vs. 55.3% respectively, P < 0.001). Clinical experience, blood pressure, central venous pressure, and urine output are the most widely indicators of volume expansion. Finally, 86.5% of ASA respondents and 98.1% of ESA respondents believe that their current hemodynamic management could be improved. In conclusion, these results point to a considerable gap between the accumulating evidence about the benefits of perioperative hemodynamic optimization and the available technologies that may facilitate its clinical implementation, and clinical practices in both Europe and the United States.

  19. Constraining OCT with Knowledge of Device Design Enables High Accuracy Hemodynamic Assessment of Endovascular Implants.

    Directory of Open Access Journals (Sweden)

    Caroline C O'Brien

    Full Text Available Stacking cross-sectional intravascular images permits three-dimensional rendering of endovascular implants, yet introduces between-frame uncertainties that limit characterization of device placement and the hemodynamic microenvironment. In a porcine coronary stent model, we demonstrate enhanced OCT reconstruction with preservation of between-frame features through fusion with angiography and a priori knowledge of stent design.Strut positions were extracted from sequential OCT frames. Reconstruction with standard interpolation generated discontinuous stent structures. By computationally constraining interpolation to known stent skeletons fitted to 3D 'clouds' of OCT-Angio-derived struts, implant anatomy was resolved, accurately rendering features from implant diameter and curvature (n = 1 vessels, r2 = 0.91, 0.90, respectively to individual strut-wall configurations (average displacement error ~15 μm. This framework facilitated hemodynamic simulation (n = 1 vessel, showing the critical importance of accurate anatomic rendering in characterizing both quantitative and basic qualitative flow patterns. Discontinuities with standard approaches systematically introduced noise and bias, poorly capturing regional flow effects. In contrast, the enhanced method preserved multi-scale (local strut to regional stent flow interactions, demonstrating the impact of regional contexts in defining the hemodynamic consequence of local deployment errors.Fusion of planar angiography and knowledge of device design permits enhanced OCT image analysis of in situ tissue-device interactions. Given emerging interests in simulation-derived hemodynamic assessment as surrogate measures of biological risk, such fused modalities offer a new window into patient-specific implant environments.

  20. Effect of set configuration on hemodynamics and cardiac autonomic modulation after high-intensity squat exercise.

    Science.gov (United States)

    Iglesias-Soler, Eliseo; Boullosa, Daniel A; Carballeira, Eduardo; Sánchez-Otero, Tania; Mayo, Xian; Castro-Gacio, Xabier; Dopico, Xurxo

    2015-07-01

    The aim of this study was to compare the effect of two different high-intensity resistance exercise (RE) set configurations on the following: systolic blood pressure (SBP), rate pressure product (RPP), heart rate (HR) variability (HRV), and HR complexity (HRC). Ten well-trained males performed three parallel squat sets until failure (traditional training; TT) with the four repetitions maximum load (4RM), and a rest of 3 min between sets. Thereafter, participants performed a cluster training session (CT) of equated load but with resting time distributed between each repetition. Dependent variables were recorded before, during, and after RE. Mean SBP (25·7 versus 10·9% percentage increase; P = 0·016) and RPP (112·5 versus 69·9%; P = 0·01) were significantly higher in TT. The decrease in HRV after exercise and the drop of HRC during exercise were similar in CT and TT. Change of standard deviation of normal RR intervals after TT correlated with change in SBP (r = 0·803; P = 0·009) while the change of Sample Entropy during exercise correlated with the increment of RPP during CT (ρ = -0·667; P = 0·05). This study suggests that set configuration influences acute cardiovascular responses during RE. When intensity, volume and work-to-rest ratio are equated, CT is less demanding in terms of SBP and RPP. A greater hemodynamic response during exercise would be associated with a faster parasympathetic recovery. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  1. [The modulatory influence of moxonidine on the different link of sympatho-adrenal system and hemodynamic reactions in normo and hypertensive rats during emotional stress].

    Science.gov (United States)

    Bakuridze, K A; Gongadze, N V

    2006-04-01

    Effect of moxonidine on hemodynamic parameters, baroreflex sensitivity (BS) and sympatho-adrenal system was studied on the model of emotional stress in normotensive (N) and hypertensive (H) rats. Moxonidine was administered intravenously in daily dose 100 mcg/kg during one week prior to stress condition. It was shown that moxonidine reduced pressor reactions of arterial pressure, tachycardia and have increased BS especially in H animals, which was blunted during aversive stimulation. Moxonidine also revealed the effect of pharmacological correction of catecholamine - norepinephrine and epinephrine content in the myocardium and adrenals in stress and post stress period more markedly in H rats. The data obtained indicate the preventive antistress activity of the moxonidine.

  2. SvO(2)-guided resuscitation for experimental septic shock: effects of fluid infusion and dobutamine on hemodynamics, inflammatory response, and cardiovascular oxidative stress.

    Science.gov (United States)

    Rosário, André Loureiro; Park, Marcelo; Brunialti, Milena Karina; Mendes, Marialice; Rapozo, Marjorie; Fernandes, Denise; Salomão, Reinaldo; Laurindo, Francisco Rafael; Schettino, Guilherme Paula; Azevedo, Luciano Cesar P

    2011-12-01

    The pathogenetic mechanisms associated to the beneficial effects of mixed venous oxygen saturation (SvO(2))-guided resuscitation during sepsis are unclear. Our purpose was to evaluate the effects of an algorithm of SvO(2)-driven resuscitation including fluids, norepinephrine and dobutamine on hemodynamics, inflammatory response, and cardiovascular oxidative stress during a clinically resembling experimental model of septic shock. Eighteen anesthetized and catheterized pigs (35-45 kg) were submitted to peritonitis by fecal inoculation (0.75 g/kg). After hypotension, antibiotics were administered, and the animals were randomized to two groups: control (n = 9), with hemodynamic support aiming central venous pressure 8 to 12 mmHg, urinary output 0.5 mL/kg per hour, and mean arterial pressure greater than 65 mmHg; and SvO(2) (n = 9), with the goals above, plus SvO(2) greater than 65%. The interventions lasted 12 h, and lactated Ringer's and norepinephrine (both groups) and dobutamine (SvO(2) group) were administered. Inflammatory response was evaluated by plasma concentration of cytokines, neutrophil CD14 expression, oxidant generation, and apoptosis. Oxidative stress was evaluated by plasma and myocardial nitrate concentrations, myocardial and vascular NADP(H) oxidase activity, myocardial glutathione content, and nitrotyrosine expression. Mixed venous oxygen saturation-driven resuscitation was associated with improved systolic index, oxygen delivery, and diuresis. Sepsis induced in both groups a significant increase on IL-6 concentrations and plasma nitrate concentrations and a persistent decrease in neutrophil CD14 expression. Apoptosis rate and neutrophil oxidant generation were not different between groups. Treatment strategies did not significantly modify oxidative stress parameters. Thus, an approach aiming SvO(2) during sepsis improves hemodynamics, without any significant effect on inflammatory response and oxidative stress. The beneficial effects associated

  3. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  4. Sleep in High Stress Occupations

    Science.gov (United States)

    Flynn-Evans, Erin

    2014-01-01

    High stress occupations are associated with sleep restriction, circadian misalignment and demanding workload. This presentation will provide an overview of sleep duration, circadian misalignment and fatigue countermeasures and performance outcomes during spaceflight and commercial aviation.

  5. Constraining OCT with Knowledge of Device Design Enables High Accuracy Hemodynamic Assessment of Endovascular Implants

    Science.gov (United States)

    Brown, Jonathan; Lopes, Augusto C.; Kunio, Mie; Kolachalama, Vijaya B.; Edelman, Elazer R.

    2016-01-01

    Background Stacking cross-sectional intravascular images permits three-dimensional rendering of endovascular implants, yet introduces between-frame uncertainties that limit characterization of device placement and the hemodynamic microenvironment. In a porcine coronary stent model, we demonstrate enhanced OCT reconstruction with preservation of between-frame features through fusion with angiography and a priori knowledge of stent design. Methods and Results Strut positions were extracted from sequential OCT frames. Reconstruction with standard interpolation generated discontinuous stent structures. By computationally constraining interpolation to known stent skeletons fitted to 3D ‘clouds’ of OCT-Angio-derived struts, implant anatomy was resolved, accurately rendering features from implant diameter and curvature (n = 1 vessels, r2 = 0.91, 0.90, respectively) to individual strut-wall configurations (average displacement error ~15 μm). This framework facilitated hemodynamic simulation (n = 1 vessel), showing the critical importance of accurate anatomic rendering in characterizing both quantitative and basic qualitative flow patterns. Discontinuities with standard approaches systematically introduced noise and bias, poorly capturing regional flow effects. In contrast, the enhanced method preserved multi-scale (local strut to regional stent) flow interactions, demonstrating the impact of regional contexts in defining the hemodynamic consequence of local deployment errors. Conclusion Fusion of planar angiography and knowledge of device design permits enhanced OCT image analysis of in situ tissue-device interactions. Given emerging interests in simulation-derived hemodynamic assessment as surrogate measures of biological risk, such fused modalities offer a new window into patient-specific implant environments. PMID:26906566

  6. Rest and stress transluminal attenuation gradient and contrast opacification difference for detection of hemodynamically significant stenoses in patients with suspected coronary artery disease.

    Science.gov (United States)

    Ko, Brian S; Seneviratne, Sujith; Cameron, James D; Gutman, Sarah; Crossett, Marcus; Munnur, Kiran; Meredith, Ian T; Wong, Dennis T L

    2016-07-01

    This study evaluated the feasibility of stress 320 detector CT coronary angiography (CTA) derived transluminal attenuation gradient (TAG320) and contrast opacification (CO) difference to detect hemodynamically significant stenoses as determined by invasive fractional flow reserve (FFR ≤ 0.80). Twenty-seven patients, including 51 vessels on rest CTA were studied. 16 (31 %) vessels were not interpretable on stress CTA largely secondary to motion artefacts. Receiver operating characteristic curve analysis showed a comparable area under the curve (AUC) for rest and stress TAG320 (0.78 and 0.75) which was higher than CTA alone (0.68), and rest and stress CO difference (0.76 and 0.67). Compared with rest CTA, stress CTA demonstrated inferior image quality (Median Likert score 4 vs. 3, P < 0.0001) and required a higher mean radiation exposure (3.2 vs. 5.1 mSv, P < 0.0001). Stress TAG320 and CO difference is less feasible and was not superior in diagnostic performance when compared with rest TAG320 and CO difference.

  7. Portal hemodynamics as predictors of high risk esophageal varices in cirrhotic patients

    Institute of Scientific and Technical Information of China (English)

    Mohammad K Tarzamni; Mohammad H Somi; Sara Farhang; Morteza Jalilvand

    2008-01-01

    AIM: To evaluate portal hypertension parameters in liver cirrhosis patients with and without esophageal varices (EV).METHODS: A cohort of patients with biopsy confirmed liver cirrhosis was investigated endoscopically and with color Doppler ultrasonography as a possible non-invasive predictive tool. The relationship between portal hemodynamics and the presence and size of EV was evaluated using uni- and multivariate approaches.RESULTS: Eighty five consecutive cirrhotic patients (43 men and 42 women) were enrolled. Mean age (± SD) was 47.5 (± 15.9). Portal vein diameter (13.88 ± 2.42 vs 12.00 ± 1.69, P 2.08 and spleen size > 15.05 cm. These factors may help identifying patients with a low probability of LEV who may not need upper gastrointestinal endoscopy.

  8. Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in response to high altitude

    Science.gov (United States)

    Liu, Jie; Liu, Yang; Ren, Li-Hua; Li, Li; Wang, Zhen; Liu, Shan-Shan; Li, Su-Zhi; Cao, Tie-Sheng

    2016-08-01

    To assess racial, sexual, and regional differences in cerebral hemodynamic response to high altitude (HA, 3658 m). We performed cross-sectional comparisons on total cerebral blood flow (TCBF = sum of bilateral internal carotid and vertebral arterial blood flows = QICA + QVA), total cerebrovascular resistance (TCVR), total cerebral oxygen delivery (TCOD) and QVA/TCBF (%), among six groups of young healthy subjects: Tibetans (2-year staying) and Han (Han Chinese) at sea level, Han (2-day, 1-year and 5-year) and Tibetans at HA. Bilateral ICA and VA diameters and flow velocities were derived from duplex ultrasonography; and simultaneous measurements of arterial pressure, oxygen saturation, and hemoglobin concentration were conducted. Neither acute (2-day) nor chronic (>1 year) responses showed sex differences in Han, except that women showed lower TCOD compared with men. Tibetans and Han exhibited different chronic responses (percentage alteration relative to the sea-level counterpart value) in TCBF (‑17% vs. 0%), TCVR (22% vs. 12%), TCOD (0% vs. 10%) and QVA/TCBF (0% vs. 2.4%, absolute increase), with lower resting TCOD found in SL- and HA-Tibetans. Our findings indicate racial but not sex differences in cerebral hemodynamic adaptations to HA, with Tibetans (but not Han) demonstrating an altitude-related change of CBF distribution.

  9. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 10,2017 The importance of stress ... content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  10. Hemodynamics in Idealized Stented Coronary Arteries: Important Stent Design Considerations.

    Science.gov (United States)

    Beier, Susann; Ormiston, John; Webster, Mark; Cater, John; Norris, Stuart; Medrano-Gracia, Pau; Young, Alistair; Cowan, Brett

    2016-02-01

    Stent induced hemodynamic changes in the coronary arteries are associated with higher risk of adverse clinical outcome. The purpose of this study was to evaluate the impact of stent design on wall shear stress (WSS), time average WSS, and WSS gradient (WSSG), in idealized stent geometries using computational fluid dynamics. Strut spacing, thickness, luminal protrusion, and malapposition were systematically investigated and a comparison made between two commercially available stents (Omega and Biomatrix). Narrower strut spacing led to larger areas of adverse low WSS and high WSSG but these effects were mitigated when strut size was reduced, particularly for WSSG. Local hemodynamics worsened with luminal protrusion of the stent and with stent malapposition, adverse high WSS and WSSG were identified around peak flow and throughout the cardiac cycle respectively. For the Biomatrix stent, the adverse effect of thicker struts was mitigated by greater strut spacing, radial cell offset and flow-aligned struts. In conclusion, adverse hemodynamic effects of specific design features (such as strut size and narrow spacing) can be mitigated when combined with other hemodynamically beneficial design features but increased luminal protrusion can worsen the stent's hemodynamic profile significantly.

  11. Non-invasive quantification of hemodynamics in human choriocapillaries

    Science.gov (United States)

    Yu, Huidan (Whitney); Chen, Rou; An, Senyou; McDonough, James; Gelfand, Bradley; Yao, Jun

    2016-11-01

    The development of retinal disease is inextricably linked to defects in the choroidal blood supply. However, to date a description of the hemodynamics in the human choroidal circulation is lacking. Through high resolution choroidal vascular network mapped from immunofluorescent labeling and confocal microscopy of human cadaver donor eyes. We noninvasively quantify hemodynamics including velocity, pressure, and wall-shear stress (WSS) in choriocapillaries through mesoscale modeling and GPU-accelerated fast computation. This is the first-ever map of hemodynamic parameters (WSS, pressure, and velocity) in anatomically accurate human choroidal vasculature in health and disease. The pore scale simulation results are used to evaluate porous media models with the same porosity and boundary conditions. School of Medicine, Indiana University.

  12. Hemodynamic wall shear stress profiles influence the magnitude and pattern of stenosis in a pig AV fistula.

    Science.gov (United States)

    Krishnamoorthy, Mahesh K; Banerjee, Rupak K; Wang, Yang; Zhang, Jianhua; Roy, Abhijit Sinha; Khoury, Saeb F; Arend, Lois J; Rudich, Steve; Roy-Chaudhury, Prabir

    2008-12-01

    Venous stenosis is a significant problem in arteriovenous fistulae, likely due to anatomical configuration and wall shear stress profiles. To identify linkages between wall shear stress and the magnitude and pattern of vascular stenosis, we produced curved and straight fistulae in a pig model. A complete wall stress profile was calculated for the curved configuration and correlated with luminal stenosis. Computer modeling techniques were then used to derive a wall shear stress profile for the straight arteriovenous fistula. Differences in the wall shear stress profile of the curved and straight fistula were then related to histological findings. There was a marked inverse correlation between the magnitude of wall shear stress within different regions of the curved arteriovenous fistula and luminal stenosis in these same regions. There were also significantly greater differences in wall shear stress between the outer and inner walls of the straight as compared to curved arteriovenous fistula, which translated into a more eccentric histological pattern of intima-media thickening. Our results suggest a clear linkage between anatomical configuration, wall shear stress profiles, and the pattern of luminal stenosis and intima-media thickening in a pig model of arteriovenous fistula stenosis. These results suggest that fistula failure could be reduced by using computer modeling prior to surgical placement to alter the anatomical and, consequently, the wall shear stress profiles in an arteriovenous fistula.

  13. Cold Stress at High Altitudes

    Directory of Open Access Journals (Sweden)

    N. C. Majumdar

    1983-04-01

    Full Text Available The problem of cold at high altitudes has been analysed from a purely physical standpoint. It has been shown that Siple's Wind-Chill Index is not reliable because (i it does not make use of the well established principles governing the physical processes of heat transfer by convection and radiation, and (ii it assumes that the mean radiant temperature of the surroundings is the same as the ambient dry bulb temperature. A Cold Stress Index has been proposed which is likely to be a more reliable guide for assessing the climatic hazards of high altitude environments. The Index can be quickly estimated with the help of two nomograms devised for the purpose.

  14. Computational Investigation of Hemodynamics in Fully Stenosed CABG

    Institute of Scientific and Technical Information of China (English)

    QIAOAi-ke; LIUYou-jun

    2004-01-01

    Coronary Artery Bypass Graft (CABG) is an important surgical treatment for critically stenosed arteries. Unfortunately restenosis always occurs after CABG surgery, which bring about surgery failure, lntimal thickening in the CABG distal anastomosis has been implicated as the major cause of restenosis and long-term graft failure. The nonuniform hemodynamics including disturbed flows, recirculation zones, oscillating wall shear stress, and long particle residence time were thought to be the possible etiologies. Numerical simulation was proved to be of great help and guidance meaning for the biofluid mechanics research and the CABG surgical plan. The present study was based on the hypothesis that the geometry configuration of CABG could greatly influence the hemodynamics in the vicinity of anastomosis. The hemodynamic features of two geometry models of end-to-side CABG were studied and compared. One simulated a conventional CABG with 1-way bypass graft, and the other simulated a modified CABG with symmetric 2-way bypass graft. The numerical investigations of hemodynamics in these two models with fully stenosed coronary arteries were accomplished using finite element method. The temporal and spatial distributions of hemodynamics were analyzed and compared. Results showed that the presence of symmetric 2-way bypass graft was of reasonable and favorable hemodynamics than 1-way bypass graft. The modified CABG model created a more hemodynamically efficient streamlined environment with higher mean and maximum axial velocities and lower radial velocities than the conventional 1-way model. Meanwhile, the symmetric 2-way bypass graft was featured with low pressure near the wall, high and uniform WSS in the host artery. All of these were favorable for inhibiting the development of intimal thickening, restenosis, and ultimate failure of the CABG, and it could considerably improve the flow conditions and decrease the probability of intimal hyperplasia and restenosis of CABG.

  15. Frontal hemodynamic responses to high frequency yoga breathing in schizophrenia: A functional near infrared spectroscopy (fNIRS study

    Directory of Open Access Journals (Sweden)

    Hemant eBhargav

    2014-03-01

    Full Text Available Frontal hemodynamic responses to high frequency yoga breathing technique - Kapalabhati (KB was compared between patients of schizophrenia (n =18; 14 males, 4 females and age-gender and education matched healthy subjects (n=18; 14 males, 4 females using functional near-infrared spectroscopy (fNIRS.The diagnosis was confirmed by a psychiatrist using DSM IV. All patients except one received atypical anti-psychotics (one was on typical. They had obtained a stabilized state as evidenced by a steady unchanged medication from their psychiatrist for past 3 months or longer. They learned KB, among other yoga procedures, in the yoga retreat. KB was practiced at the rate of 120 times per minute for 1minute (min. Healthy subjects who were freshly learning yoga too were taught KB. Both the groups had no previous exposure to KB practice and the training was achieved over 2 weeks. A chest pressure transducer was used to monitor the frequency and intensity of the practice objectively. The frontal hemodynamic response in terms of the oxygenated hemoglobin (oxyHb, deoxygenated hemoglobin (deoxyHb and total hemoglobin or blood volume (totalHb concentration was tapped for 5 min before, 1min during and for 5 min after KB.This was obtained in quiet room using a 16 channel functional near-infrared system (FNIR100-ACK-W, BIOPAC Systems, Inc, USA. Average of the eight channels for each side (right and left frontals was obtained for the three sessions. The changes in the levels of oxyHb, deoxyHb and blood volume for the three sessions were compared between the two groups using Independent samples t test.Within group comparison showed that increase in bilateral oxyHb and totalHb from the baseline was highly significant in healthy controls during KB (right oxyHb, p = 0.00; left oxyHb, p= 0.00 and right totalHb, p = 0.01; left totalHb, p = 0.00, whereas schizophrenia patients did not show any significant changes in the same on both the sides. On the other hand

  16. The effect of high-dose nifedipine on renal hemodynamics of cyclosporine-treated renal allograft recipients.

    Science.gov (United States)

    Chagnac, A; Zevin, D; Ori, Y; Korzets, A; Hirsh, J; Levi, J

    1992-04-01

    Cyclosporine has been shown to reduce renal perfusion and to decrease glomerular filtration rate. Experimental studies suggest that nifedipine might reverse this renal vasoconstrictive effect of cyclosporine. We studied renal hemodynamics of 5 cyclosporine-treated renal transplant recipients before and after 2 weeks of therapy with high-dose nifedipine (up to 120 mg/day). Pretreatment GFR and renal plasma flow (RPF) were decreased. Following administration of nifedipine, RPF increased by 18% (P less than 0.01), while GFR did not change. Filtration fraction decreased by 10.5% (P less than 0.01). Mean arterial pressure declined from 111 +/- 5 to 96 +/- 3 mmHg (P less than 0.01). Renal vascular resistance dropped by 25% (P less than 0.01). Calculated postglomerular plasma flow increased by 20.5% (P less than 0.01). Urinary albumin excretion rate was unaffected. Cyclosporine whole blood levels were unchanged. The increase in RPF and in postglomerular plasma flow suggests that high-dose nifedipine might lessen cyclosporine-induced glomerular and interstitial ischemia in renal allograft recipients.

  17. Assessment of Cerebral Hemodynamic Changes in Pediatric Patients with Moyamoya Disease Using Probabilistic Maps on Analysis of Basal/Acetazolamide Stress Brain Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Young; Lee, Jae Sung; Kim, Seung Ki; Wang, Kyu Chang; Cho, Byung Kyu; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2008-06-15

    To evaluate the hemodynamic changes and the predictive factors of the clinical outcome in pediatric patients with moyamoya disease, we analyzed pre/post basal/acetazolamide stress brain perfusion SPECT with automated volume of interest (VOIs) method. Total fifty six (M:F=33:24, age 6.7{+-}3.2 years) pediatric patients with moyamoya disease, who underwent basal/acetazolamide stress brain perfusion SPECT within 6 before and after revascularization surgery (encephalo-duro-arterio-synangiosis (EDAS) with frontal encephalo-galeo-synangiosis (EGS) and EDAS only followed on contralateral hemisphere), and followed-up more than 6 months after post-operative SPECT, were included. A mean follow-up period after post-operative SPECT was 33{+-}21 months. Each patient's SPECT image was spatially normalized to Korean template with the SPM2. For the regional count normalization, the count of pons was used as a reference region. The basal/acetazolamide-stressed cerebral blood flow (CBF), the cerebral vascular reserve index (CVRI), and the extent of area with significantly decreased basal/acetazolamide- stressed rCBF than age-matched normal control were evaluated on both medial frontal, frontal, parietal, occipital lobes, and whole brain in each patient's images. The post-operative clinical outcome was assigned as good, poor according to the presence of transient ischemic attacks and/or fixed neurological deficits by pediatric neurosurgeon. In a paired t-test, basal/acetazolamide-stressed rCBF and the CVRI were significantly improved after revascularization (p<0.05). The significant difference in the pre-operative basal/acetazolamide-stressed rCBF and the CVRI between the hemispheres where EDAS with frontal EGS was performed and their contralateral counterparts where EDAS only was done disappeared after operation (p<0.05). In an independent student t-test, the pre-operative basal rCBF in the medial frontal gyrus, the post-operative CVRI in the frontal lobe and the parietal

  18. Hemodynamic Changes After Static and Dynamic Exercises and Treadmill Stress Test; Different Patterns in Patients with Primary Benign Exertional Headache?

    Directory of Open Access Journals (Sweden)

    Mohsen Rostami

    2012-06-01

    Full Text Available The pathophysiology of primary benign exertional headache (EH is not still clearly defined. Some researchers have suggested an impaired vascular response as the etiology of this disorder. In this study we investigated whether there are any differences in blood pressure (BP and heart rate (HR of the subjects in course of the static and dynamic exercises and the treadmill stress test between those with and without EH. From university students, 22 patients with EH (mean age: 19.8 ± 2.10, Female to Male: 7:15 and 20 normal subjects (mean age: 19.3 ± 1.97, Female: Male: 8:12 were recruited. All the subjects performed the static and dynamic exercises at 30 and 20 percent of the maximal voluntary contraction (MVC and Bruce treadmill stress test according to the standard protocols. HR and BP of all the cases at the baseline and during and immediately after each test were measured. No significant difference was found between the mean rise of HR, systolic and diastolic BP of the subjects with and without EH in static and dynamic exercises and also treadmill stress test. It seems that between those with and without EH, there is no significant difference in rise of HR and BP response to static and dynamic exercises and treadmill stress test. Further studies are required to find the pathophysiology and risk factors of EH.

  19. Effects on peritoneal proteolysis and hemodynamics by high doses of methyl-prednisolone in experimental acute pancreatitis.

    Science.gov (United States)

    Ruud, T E; Aasen, A O; Røise, O; Lium, B; Pillgram-Larsen, J; Stadaas, J O

    1986-01-01

    Acute pancreatitis was induced in 15 anesthetized pigs by injection of Na-taurocholate into the pancreatic duct. Seven animals were pretreated with methyl-prednisolone sodium succinate 30 mg/kg intravenously. Using chromogenic peptide substrate assays, values of trypsin (TRY), plasma prekallikrein (PKK), plasma kallikrein (KK) and functional plasma kallikrein inhibition capacity (KKI) were studied in the peritoneal exudate. Cardiac output (CO) and arterial pressure (AP) were regularly monitored before and during a six hour observation period. In acute untreated pancreatitis a 40% reduction of PKK levels was found paralleled by an increased KK activity and a reduction of KKI capacity. High TRY levels were found in several animals. The mortality rate was 63%. The pretreated animals all survived. CO and AP were significantly less reduced than in the untreated animals. Components of the plasma kallikrein-kinin system and TRY in the exudate remained mainly unchanged. Methyl-prednisolone given as pretreatment significantly improves hemodynamic parameters and increases the survival rate. Methyl-prednisolone suppresses generation of trypsin activity and activation of the plasma kallikrein-kinin system in the peritoneal exudate which may be of significant importance to the outcome.

  20. Non-hemodynamic predictors of blood pressure in recreational sport ...

    African Journals Online (AJOL)

    Non-hemodynamic predictors of blood pressure in recreational sport practitioners in ... that regular physical activity is an efficient means to control high blood pressure. ... structures can be effective in managing hemodynamic health problems.

  1. Mining highly stressed areas, part 1.

    CSIR Research Space (South Africa)

    Johnson, R

    1995-12-01

    Full Text Available The aim of this long-term project has been to focus on the extreme high-stress end of the mining spectrum. Such high stress conditions will prevail in certain ultra-deep mining operation of the near future, and are already being experienced...

  2. ATTENUATION OF HEMODYNAMIC STRESS RESPONSE DURING EMERGENCE FROM GENERAL ANAESTHESIA: A PROSPECTIVE RANDOMIZED CONTROLLED STUDY COMPARING FENTANYL AND DEXMEDETOMIDINE

    Directory of Open Access Journals (Sweden)

    Liyakhath

    2014-11-01

    Full Text Available : BACKGROUND: Tracheal extubation and emergence is associated with significant haemodynamic alterations and is poorly tolerated by patients with co-morbid conditions. We compared the efficacy of fentanyl and dexmedetomidine in mitigating haemodynamic stress response and assessed extubation quality in study groups. MATERIALS AND METHODS: One fifty patients of either sex, ASA grade I & II normotensive patients, aged 18-55 years undergoing elective surgeries under general anaesthesia were randomized into 3 equal groups. Anaesthetic technique was standardized. 10 minutes prior to extubation, patients in Group N, F and D received intravenous bolus infusion of 0.9% normal Saline, Fentanyl 1μg /kg and Dexmedetomidine 1μg /kg respectively over 10 minutes period. Heart Rate (HR, Systolic BP (SBP, Diastolic BP (DBP and Mean Arterial Pressure (MAP were noted at extubation, 2, 4, 6, 8, 10 min and at regular interval thereafter for a period of two hours. Extubation quality was evaluated on 5-point extubation quality scale [ scale 1 = no coughing, 2 = smooth extubation, minimal coughing (1 or 2 times, 3 = moderate coughing (3 or 4 times, 4 = severe coughing (5-10 times and straining, 5 = poor extubation, very uncomfortable (laryngospasm and coughing >10 times]. Ramsay sedation score and Aldrete’s recovery score were recorded. Any adverse events, use of rescue drugs and postoperative analgesics were noted. RESULTS: All the measured haemodynamic parameters were significantly elevated at extubation and at various points of observation in normal saline group than fentanyl and dexmedetomidine group (p=0.000. Tachycardia response was seen in 84% patients in group N, compared to 36% and 8% in group F & D respectively (p=0.000. Statistically significant hypertensive response was noticed in 43(86% patients of group N, 9(18% of group F and 3(6% of group D (p=0.000. Duration of tachycardia and hypertensive response was significantly longer in control group. Three

  3. Comparison of influence of high thoracic epidural anesthesia and central analgesia on hemodynamic during on-bypass coronary artery bypass grafting

    Directory of Open Access Journals (Sweden)

    V. A. Sobokar

    2015-06-01

    Full Text Available Objective. Despite some advantages, the use of high thoracic epidural anesthesia (HTEA during cardiac operations may be discouraged by fear of adverse hemodynamic effects. Aim. To compare the hemodynamic effects of HTEA and central analgesia (CA during on-bypass CABG. Methods. 132 patients were assigned into two groups – study group (n = 85, where the surgery was carried out under HTEA and control group (n = 47 - where the surgery was carried out under CA. Data of the intraoperative monitoring and trans-oesophageal cardiac ultrasound - cardiac index (CI, stroke index (SI, ejection fraction (EF and index of systemic vascular resistance (ISVR were obtained. Results. After induction and sternotomy patients in the study group had higher EF - 57(53, 65% vs 54 ± 7% (p = 0,013 and 55 ± 8 vs 52 ± 9%, (p = 0,031. After sternotomy CI and SI in the study group were also higher, respectively 2,42 (2,0;3,1 vs 2,23±0,63 l · min-1 · m-2, (p = 0,041 and 43 (34;46 vs 37±10 ml · m-2 (p = 0.014. Conclusion. We concluded that HTEA has advantages over CA by its influence on hemodynamics.

  4. Initiation of resuscitation with high tidal volumes causes cerebral hemodynamic disturbance, brain inflammation and injury in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Graeme R Polglase

    Full Text Available AIMS: Preterm infants can be inadvertently exposed to high tidal volumes (V(T in the delivery room, causing lung inflammation and injury, but little is known about their effects on the brain. The aim of this study was to compare an initial 15 min of high V(T resuscitation strategy to a less injurious resuscitation strategy on cerebral haemodynamics, inflammation and injury. METHODS: Preterm lambs at 126 d gestation were surgically instrumented prior to receiving resuscitation with either: 1 High V(T targeting 10-12 mL/kg for the first 15 min (n = 6 or 2 a protective resuscitation strategy (Prot V(T, consisting of prophylactic surfactant, a 20 s sustained inflation and a lower initial V(T (7 mL/kg; n = 6. Both groups were subsequently ventilated with a V(T 7 mL/kg. Blood gases, arterial pressures and carotid blood flows were recorded. Cerebral blood volume and oxygenation were assessed using near infrared spectroscopy. The brain was collected for biochemical and histologic assessment of inflammation, injury, vascular extravasation, hemorrhage and oxidative injury. Unventilated controls (UVC; n = 6 were used for comparison. RESULTS: High V(T lambs had worse oxygenation and required greater ventilatory support than Prot V(T lambs. High V(T resulted in cerebral haemodynamic instability during the initial 15 min, adverse cerebral tissue oxygenation index and cerebral vasoparalysis. While both resuscitation strategies increased lung and brain inflammation and oxidative stress, High V(T resuscitation significantly amplified the effect (p = 0.014 and p<0.001. Vascular extravasation was evident in the brains of 60% of High V(T lambs, but not in UVC or Prot V(T lambs. CONCLUSION: High V(T resulted in greater cerebral haemodynamic instability, increased brain inflammation, oxidative stress and vascular extravasation than a Prot V(T strategy. The initiation of resuscitation targeting Prot V(T may reduce the severity of brain injury in preterm neonates.

  5. Assessment of subjective and hemodynamic tolerance of different high- and low-flux dialysis membranes in patients undergoing chronic intermittent hemodialysis: a randomized controlled trial.

    Science.gov (United States)

    Bianchi, Giorgia; Salvadé, Vanja; Lucchini, Barbara; Schätti-Stählin, Sibylle; Salvadé, Igor; Burnier, Michel; Gabutti, Luca

    2014-10-01

    Clinical experience and experimental data suggest that intradialytic hemodynamic profiles could be influenced by the characteristics of the dialysis membranes. Even within the worldwide used polysulfone family, intolerance to specific membranes was occasionally evoked. The aim of this study was to compare hemodynamically some of the commonly used polysulfone dialyzers in Switzerland. We performed an open-label, randomized, cross-over trial, including 25 hemodialysis patients. Four polysulfone dialyzers, A (Revaclear high-flux, Gambro, Stockholm, Sweden), B (Helixone high-flux, Fresenius), C (Xevonta high-flux, BBraun, Melsungen, Germany), and D (Helixone low-flux, Fresenius, Bad Homburg vor der Höhe, Germany), were compared. The hemodynamic profile was assessed and patients were asked to provide tolerance feedback. The mean score (±SD) subjectively assigned to dialysis quality on a 1-10 scale was A 8.4 ± 1.3, B 8.6 ± 1.3, C 8.5 ± 1.6, D 8.5 ± 1.5. Kt/V was A 1.58 ± 0.30, B 1.67 ± 0.33, C 1.62 ± 0.32, D 1.45 ± 0.31. The low- compared with the high-flux membranes, correlated to higher systolic (128.1 ± 13.1 vs. 125.6 ± 12.1 mmHg, P mmHg; P mmHg/mL; P 20 mmHg) were 70 with A, 87 with B, 73 with C, and 75 with D (P < 0.01 B vs. A, 0.05 B vs. C and 0.07 B vs. D). The low-flux membrane correlated to higher blood pressure levels compared with the high-flux ones. The Helixone high-flux membrane ensured the best efficiency. Unfortunately, the very same dialyzer correlated to a higher incidence of hypotensive episodes.

  6. Mining highly stressed areas, part 2.

    CSIR Research Space (South Africa)

    Johnson, R

    1995-12-01

    Full Text Available A questionnaire related to mining at great depth and in very high stress conditions has been completed with the assistance of mine rock mechanics personnel on over twenty mines in all mining districts, and covering all deep level mines...

  7. Effect of short-term high-protein compared with normal-protein diets on renal hemodynamics and associated variables in healthy young men.

    Science.gov (United States)

    Frank, Helga; Graf, Julia; Graf, Juliane; Amann-Gassner, Ulrike; Bratke, Renate; Daniel, Hannelore; Heemann, Uwe; Hauner, Hans

    2009-12-01

    High-protein diets are effective for weight reduction; however, little is known about the potential adverse renal effects of such diets. The aim of our study was to compare the effect of a high-protein (HP) with a normal-protein (NP) diet on renal hemodynamics and selected clinical-chemical factors. We prospectively studied the effect of an HP diet (2.4 g x kg(-1) x d(-1)) with that of an NP diet (1.2 g x kg(-1) x d(-1)) on the glomerular filtration rate (assessed on the basis of sinistrin-an inulin analog-clearance) and renal plasma flow (para-aminohippuric acid clearance) by using the constant infusion technique. Filtration fraction and renal vascular resistance were calculated. Twenty-four healthy young men followed the 2 diet protocols for 7 d each in a crossover design. They were individually advised by a dietitian to achieve the planned protein intake by selecting normal foods under isocaloric conditions. Serum and urinary variables and renal hemodynamics were measured on day 7 of both diets. The glomerular filtration rate (NP: 125 +/- 5 mL/min; HP: 141 +/- 8 mL/min; P < 0.001) and filtration fraction (NP: 23 +/- 5%; HP: 28 +/- 5%; P < 0.05) increased significantly with the HP diet. Renal plasma flow was not significantly different between the HP (496 +/- 25 mL/min) and NP (507 +/- 18 mL/min) phases. Renal vascular resistance was not significantly different between the NP (94 +/- 6 mm Hg x mL(-1) x min(-1)) and HP (99 +/- 8 mm Hg x mL(-1) x min(-1)) phases. Blood urea nitrogen, serum uric acid, glucagon, natriuresis, urinary albumin, and urea excretion increased significantly with the HP diet. A short-term HP diet alters renal hemodynamics and renal excretion of uric acid, sodium, and albumin. More attention should be paid to the potential adverse renal effects of HP diets.

  8. Sildenafil does not improve steady state cardiovascular hemodynamics, peak power, or 15-km time trial cycling performance at simulated moderate or high altitudes in men and women.

    Science.gov (United States)

    Kressler, Jochen; Stoutenberg, Mark; Roos, Bernard A; Friedlander, Anne L; Perry, Arlette C; Signorile, Joseph F; Jacobs, Kevin A

    2011-12-01

    Sildenafil improves oxygen delivery and maximal exercise capacity at very high altitudes (≥ 4,350 m), but it is unknown whether sildenafil improves these variables and longer-duration exercise performance at moderate and high altitudes where competitions are more common. The purpose of this study was to determine the effects of sildenafil on cardiovascular hemodynamics, arterial oxygen saturation (SaO(2)), peak exercise capacity (W (peak)), and 15-km time trial performance in endurance-trained subjects at simulated moderate (MA; ~2,100 m, 16.2% F(I)O(2)) and high (HA; ~3,900 m, 12.8% F(I)O(2)) altitudes. Eleven men and ten women completed two HA W (peak) trials after ingesting placebo or 50 mg sildenafil. Subjects then completed four exercise trials (30 min at 55% of altitude-specific W (peak) + 15-km time trial) at MA and HA after ingesting placebo or 50 mg sildenafil. All trials were performed in randomized, counterbalanced, and double-blind fashion. Sildenafil had little influence on cardiovascular hemodynamics at MA or HA, but did result in higher SaO(2) values (+3%, p < 0.05) compared to placebo during steady state and time trial exercise at HA. W (peak) at HA was 19% lower than SL (p < 0.001) and was not significantly affected by sildenafil. Similarly, the significantly slower time trial performance at MA (28.1 ± 0.5 min, p = 0.016) and HA (30.3 ± 0.6 min, p < 0.001) compared to SL (27.5 ± 0.6 min) was unaffected by sildenafil. We conclude that sildenafil is unlikely to exert beneficial effects at altitudes <4,000 m for a majority of the population.

  9. Stress effects in twisted highly birefringent fibers

    Science.gov (United States)

    Wolinski, Tomasz R.

    1994-03-01

    Hydrostatic pressure and uniaxial longitudinal strain effects in twisted highly birefringent optical fibers have been investigated from the point of the Marcuse mode-coupling theory. The problem is analyzed in terms of local normal modes of the ideal fiber and in the limit of weak twist, where large linear birefringence dominates over twist effect, and therefore twist coupling between local modes is not effective. The authors present the results of birefringence measurements in highly birefringent bow-tie fibers influenced simultaneously by hydrostatic pressure up to 100 MPa and twisting the result for highly birefringent elliptical-core fibers influenced by uniaxial longitudinal strain up to 4000 (mu) (epsilon) and twisting effect. The birefringence measurement method is based on twist-induced effects and has been successfully applied in a stress environment. The experiment was conducted with a specially designed stress generating device that makes it possible to simultaneously generate various mechanical perturbations such as hydrostatic and radial pressure, axial strain and twist, allowing study of their influence on mode propagation in optical fibers. A comparison with theoretical results as well as with pervious experimental data on stress influence on the beat length parameter in highly birefringent fibers is also provided.

  10. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  11. Stress and atherosclerotic cardiovascular disease.

    Science.gov (United States)

    Inoue, Nobutaka

    2014-01-01

    Recent major advances in medical science have introduced a wide variety of treatments against atherosclerosis-based cardiovascular diseases, which has led to a significant reduction in mortality associated with these diseases. However, atherosclerosis-based cardiovascular disease remains a leading cause of death. Furthermore, progress in medical science has demonstrated the pathogenesis of cardiovascular disease to be complicated, with a wide variety of underlying factors. Among these factors, stress is thought to be pivotal. Several types of stress are involved in the development of cardiovascular disease, including oxidative stress, mental stress, hemodynamic stress and social stress. Accumulating evidence indicates that traditional risk factors for atherosclerosis, including diabetes, hyperlipidemia, hypertension and smoking, induce oxidative stress in the vasculature. Oxidative stress is implicated in the pathogenesis of endothelial dysfunction, atherogenesis, hypertension and remodeling of blood vessels. Meanwhile, mental stress is a well-known major contributor to the development of cardiovascular disease. The cardiovascular system is constantly exposed to hemodynamic stress by the blood flow and/or pulsation, and hemodynamic stress exerts profound effects on the biology of vascular cells and cardiomyocytes. In addition, social stress, such as that due to a lack of social support, poverty or living alone, has a negative impact on the incidence of cardiovascular disease. Furthermore, there are interactions between mental, oxidative and hemodynamic stress. The production of reactive oxygen species is increased under high levels of mental stress in close association with oxidative stress. These stress responses and their interactions play central roles in the pathogenesis of atherosclerosis-based cardiovascular disease. Accordingly, the pathophysiological and clinical implications of stress are discussed in this article.

  12. High-flow bypass and wrap-clipping for ruptured blood blister-like aneurysm of the internal carotid artery using intraoperative monitoring of cerebral hemodynamics

    Directory of Open Access Journals (Sweden)

    Kubo Y

    2015-06-01

    Full Text Available Yoshitaka Kubo, Takahiro Koji, Kenji Yoshida, Hideo Saito, Akira Ogawa, Kuniaki Ogasawara Department of Neurosurgery, Iwate Medical University, Morioka, Japan Abstract: Aneurysms at non-branching sites in the supraclinoid internal carotid artery (ICA can be classified as “blood blister-like aneurysms” (BBAs, which have blood blister-like configurations and fragile walls. While surgical treatment for the BBA in the acute stage is recommended, the optimal surgical procedure remains controversial. In the study reported here, we describe the case of a 37-year-old woman with a ruptured BBA in the ophthalmic segment of the right ICA who underwent wrap-clipping with external carotid artery–internal carotid artery bypass by intraoperative estimation of the measurement of cortical cerebral blood flow (CoBF using a thermal diffusion flow probe. Trapping of the ICA in the acute stage of subarachnoid hemorrhage may result in ischemic complications secondary to hemodynamic hypoperfusion or occlusion of the perforating artery, and/or delayed vasospasm, even with concomitant bypass surgery. We believe that it is important to perform scheduled external carotid artery–internal carotid artery bypass before trapping of the ICA in patients with a ruptured BBA in the acute stage of subarachnoid hemorrhage and to perform wrap-clipping rather than trapping. This would provide much more CoBF if a reduction of CoBF occurs after trapping occlusion of the ICA including a ruptured BBA according to intraoperative CoBF monitoring. As far as we are aware, the case reported here is the first report on high-flow bypass and wrap-clipping for a ruptured BBA of the ICA using intraoperative monitoring of cerebral hemodynamics. Keywords: surgery, cortical blood flow, external carotid artery–internal carotid artery bypass, subarachnoid hemorrhage

  13. Availability of a remote online hemodynamic monitoring system during treatment in a private dental office for medically high-risk patients

    Directory of Open Access Journals (Sweden)

    Shinya Yamazaki

    2008-09-01

    Full Text Available Shinya Yamazaki, Hiroyoshi Kawaai, Shigeo Sasaki, Kazuhiro Shimamura, Hiroshi Segawa, Takahiro SaitoSpecial Care Department in Dentistry, Ohu University Dental Hospital, Koriyama city, Fukushima prefecture, JapanAbstract: The importance of systemic management to prevent accidents is increasing in dentistry because co-morbid illnesses in an aging society and invasive surgical procedures are increasing. In this prefecture, a new medical system called the remote online hemodynamic monitoring system (ROHMs was started in 2001. Eight private dental offices participated in this trial. When dental practitioners feel the risk of a dental procedure, they can contact via ROHMs to this hospital. Then, the hemodynamic data (blood pressure, heart rate, ECG, SpO2, and RPP of the patient in the clinic can be transmitted here via the internet, and the images and the voice can be transmitted as well. The availability of this system was assessed in 66 patients (98 cases. The most frequent complications were hypertension, heart disease, and diabetes mellitus. Systemic management included monitoring during the dental procedure (71.4%, checking vital signs after an interview (15.3%, and monitoring under sedation (13.3%. There were 35.7% of all cases where an unscheduled procedure was necessary for the systemic management. Based on a questionnaire, the majority of the patients felt relieved and safe. This system creates a situation where a specialist is almost present during the procedure. This system will provide significant assistance for future medical cooperation for risk management.Keywords: online, high-risk patient, dental treatment, medical cooperation, medical accident, risk management

  14. Hemodynamic Profiling in Complicated Pregnancies

    NARCIS (Netherlands)

    J.M.J. Cornette (Jérôme)

    2016-01-01

    textabstractIn order to permit a successful pregnancy outcome, the cardiovascular system must undergo substantial changes. This thesis addresses the hemodynamics in several pregnancy complications. A general overview of normal hemodynamic adaptation to pregnancy is provided . Several techniques of

  15. Residual stress in high modulus carbon fibers

    Science.gov (United States)

    Chen, K. J.; Diefendorf, R. J.

    1982-01-01

    The modulus and residual strain in carbon fibers are measured by successively electrochemically milling away the fiber surface. Electrochemical etching is found to remove the carbon fiber surface very uniformly, in contrast to air and wet oxidation. The precision of fiber diameter measurements is improved by using a laser diffraction technique instead of optical methods. More precise diameter measurements reveal that past correlations of diameter and fiber modulus are largely measurement artifact. The moduli of most carbon fibers decrease after the outer layers of the fibers are removed. Owing to experimental difficulties, the moduli and strengths of the fibers at their centers are not determined, and moduli are estimated on the basis of microstructure. The calculated residual stresses are found to be insensitive to these moduli estimates as well as the exact form of regression equation used to describe the moduli and residual strain distributions. Axial compressive residual stresses are found to be very high for some higher modulus carbon fibers. It is pointed out that the compressive stress makes the fibers insensitive to surface flaws when loaded in tension but it may initiate failure by buckling when loaded in compression.

  16. Obesity and renal hemodynamics

    NARCIS (Netherlands)

    Bosma, R. J.; Krikken, J. A.; van der Heide, J. J. Homan; de Jong, P. E.; Navis, G. J.

    2006-01-01

    Obesity is a risk factor for renal damage in native kidney disease and in renal transplant recipients. Obesity is associated with several renal risk factors such as hypertension and diabetes that may convey renal risk, but obesity is also associated with an unfavorable renal hemodynamic profile

  17. Obesity and renal hemodynamics

    NARCIS (Netherlands)

    Bosma, R. J.; Krikken, J. A.; van der Heide, J. J. Homan; de Jong, P. E.; Navis, G. J.

    2006-01-01

    Obesity is a risk factor for renal damage in native kidney disease and in renal transplant recipients. Obesity is associated with several renal risk factors such as hypertension and diabetes that may convey renal risk, but obesity is also associated with an unfavorable renal hemodynamic profile inde

  18. Cerebral hemodynamics in migraine

    DEFF Research Database (Denmark)

    Hachinski, V C; Olesen, Jes; Norris, J W

    1977-01-01

    Clinical and angiographic findings in migraine are briefly reviewed in relation to cerebral hemodynamic changes shown by regional cerebral blood flow (rCBF) studies. Three cases of migraine studied by the intracarotid xenon 133 method during attacks are reported. In classic migraine, with typical...

  19. Hemodynamic analysis of intracranial aneurysms using phase-contrast magnetic resonance imaging and computational fluid dynamics

    Science.gov (United States)

    Zhao, Xuemei; Li, Rui; Chen, Yu; Sia, Sheau Fung; Li, Donghai; Zhang, Yu; Liu, Aihua

    2017-03-01

    Additional hemodynamic parameters are highly desirable in the clinical management of intracranial aneurysm rupture as static medical images cannot demonstrate the blood flow within aneurysms. There are two ways of obtaining the hemodynamic information—by phase-contrast magnetic resonance imaging (PCMRI) and computational fluid dynamics (CFD). In this paper, we compared PCMRI and CFD in the analysis of a stable patient's specific aneurysm. The results showed that PCMRI and CFD are in good agreement with each other. An additional CFD study of two stable and two ruptured aneurysms revealed that ruptured aneurysms have a higher statistical average blood velocity, wall shear stress, and oscillatory shear index (OSI) within the aneurysm sac compared to those of stable aneurysms. Furthermore, for ruptured aneurysms, the OSI divides the positive and negative wall shear stress divergence at the aneurysm sac.

  20. Serial cerebral hemodynamic change after extracranial-intracranial (EC-IC) bypass surgery: evaluated by acetazolamide stress brain perfusion SPECT(acz-SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Il Ki; Kim, Jae Seung; Ahn, Jae Sung; Im, Ki Chun; Kim, Euy Nyong; Mun, Dae Hyeog [Asan Medical Center, Seoul (Korea, Republic of)

    2005-07-01

    We evaluated serial cerebral hemodynamic changes after EC-IC bypass surgery in symptomatic pts with atherosclerotic occlusion of internal carotid (lCA) or mid-cerebral artery (MCA) using Acz-SPECT. 25 symptomatic pts (M/F 19/6, 53{+-}10 y) with ICA and MCA occlusion (16 uni - and 9 bilateral) prospectively underwent Acz-SPECT using Tc-99m ECD before and 1 week after EC-IC bypass surgery. Of these, 16 underwent additional f/u Acz-SPECT 5 mo later. Cerebral perfusion and perfusion reserve of MCA territory were evaluated visually and SPECT findings were classified into 4 groups: N/N; R/N; N/R; and R/R (perfusion/perfusion reserve: N = normal, R = reduced). For semiquantitative analysis, all SPECT images were normalized to MNI template and mean counts of MCA territory and cerebellum were obtained by AAL. Cerebral perfusion index (PI =C{sub region}/C{sub cere}) and perfusion reserve index (RI = (PI{sub Acz} - PI{sub basal}) /Pl{sub basal}) were calculated. Preop SPECT findings of ipsilateral MCA in 25 pts were R/N (4%), N/R (12%), and R/R (84% ). Early postop SPECT showed improvement of perfusion (26%) and/or reserve (68%) in ipsilateral MCA. Of 16 pts with 5mo f/u SPECT, 6 (38%) showed further improvement of perfusion or reserve. However, 4 (25%) showed aggravation of perfusion and one of these underwent revision surgery. Preop PI (1.1{+-}0.1) and RI (0.11{+-}0.07) of ipsilateral MCA were significantly lower than those of contralateral hemispheres (p<0.05). After surgery, PIs of bilateral MCA did not change at early postop period but improved in ipsilateral MCA at 5mo. Rls of ipsilateral MCA increased significantly (68%) at early postop period (P<0.001) and then did not changed. Cerebral perfusion and perfusion reserve changed with different manner during 5 mo after bypass surgery and perfusion reserve changed more dramatically than perfusion. Acz-SPECT is a feasible method for evaluating cerebral hemodynamic change after EC-IC bypass surgery.

  1. Sugammadex at both high and low doses does not affect the depth of anesthesia or hemodynamics: a randomized double blind trial.

    Science.gov (United States)

    Fassoulaki, Argyro; Chondrogiannis, Konstantinos; Staikou, Chryssoula

    2017-04-01

    Previous studies have shown that sugammadex decreases the anesthetic depth when administered to reverse the neuromuscular blockade produced by rocuronium/vecuronium. The aim of the present study was to investigate the effect of sugammadex alone on anesthetic depth and hemodynamics. Sixty patients scheduled for abdominal surgery participated in the study. Anesthesia was induced with thiopental/fentanyl and maintained with N2O/oxygen and sevoflurane concentrations adjusted to maintain Entropy and Bispectral Index (BIS) values between 40 and 50. Cis-atracurium 0.2 mg/kg was administered for neuromuscular blockade which was monitored with a TOF-Watch(®) SX acceleromyograph. State entropy (SE), response entropy (RE), Bispectral Index (BIS), systolic (SAP) and diastolic blood pressure (DAP), heart rate (HR), SpO2, end-tidal CO2 and sevoflurane concentrations were recorded every 3 min intraoperatively. Sugammadex 2 mg/kg (Group-2), 4 mg/kg (Group-4) or 16 mg/kg (Group-16) was given intravenously when a count of two responses of the train-of-four (TOF) or a post-tetanic count (PTC) 1-3 appeared or when no response at all (PTC = 0) was observed, respectively. The overall SE values, thus the primary outcome of the study, were 44 ± 11, 43 ± 10 and 43 ± 11 for Group-2, Group-4 and Group-16, respectively (p = 0.812). Also, the secondary endpoints, namely RE, BIS, SAP and DAP, HR and SpO2 did not differ between the three groups. Comparisons between Group-2 versus Group-4, Group-2 versus Group-16 and Group-4 versus Group-16 showed no differences (p > 0.05) for all the studied variables. Sugammadex alone at low, medium or high clinical doses has no effect on anesthetic depth as assessed by Entropy and BIS or on hemodynamics.

  2. Ultrasonic Imaging of Hemodynamic Force in Carotid Blood Flow

    Science.gov (United States)

    Nitta, N.; Homma, K.

    Hemodynamic forces including blood pressure and shear stress affect vulnerable plaque rupture in arteriosclerosis and biochemical activation of endothelium such as NO production. In this study, a method for estimating and imaging shear stress and pressure gradient distributions in blood vessel as the hemodynamic force based on viscosity estimation is presented. Feasibility of this method was investigated by applying to human carotid blood flow. Estimated results of shear stress and pressure gradient distributions coincide with the ideal distributions obtained by numerical simulation and flow-phantom experiment.

  3. Heart function and hemodynamics

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930469 The effects of different ventricular pac-ing rates on cardiac hemodynamics and theirclinical significance.WEI Meng(魏盟),et al.Zhongshan Hosp,Shanghai Med Univ,Shanghai,200032.Shanghai Med J 1993;16(3):125—126.Changes of hemodynamics were investigated in26 patients at ventricular pacing rate of 60 to120,and 160 bpm.Effects of increasing ventricu-lar pacing rate on EF which were determined bygated blood pool scintigraphy were also studiedin another 11 patients.It is concluded that:1)inpatients with normal cardiac function as well asmost patients with cardiac insufficiency,the rela-tion of CO with increasing pacing rate can be il-

  4. Chronic kidney disease, hemodynamic instability, and endoscopic high-risk appearance are associated with 30-day rebleeding in patients with non-variceal upper gastrointestinal bleeding.

    Science.gov (United States)

    Lee, Yoo Jin; Kim, Eun Soo; Hah, Yu Jin; Park, Kyung Sik; Cho, Kwang Bum; Jang, Byoung Kuk; Chung, Woo Jin; Hwang, Jae Seok

    2013-10-01

    The results of studies that evaluated predictive factors for rebleeding in non-variceal upper gastrointestinal bleeding are inconsistent. The aim of this study was to investigate predictive factors for 30-day rebleeding in these patients. A consecutive 312 patients presenting symptoms and signs of gastrointestinal bleeding were enrolled in this prospective, observational study. Clinical and demographic characteristics and endoscopic findings were evaluated for potential factors associated with 30-day rebleeding using logistic regression analysis. Overall, 176 patients were included (male, 80.1%; mean age, 59.7±16.0 yr). Rebleeding within 7 and 30 days occurred in 21 (11.9%) and 27 (15.3%) patients, respectively. We found that chronic kidney disease (CKD) (OR, 10.29; 95% CI, 2.84-37.33; P100 beats/min) during the admission (OR, 3.79; 95% CI, 1.25-11.49; P=0.019), and Forrest classes I, IIa, and IIb (OR, 6.14; 95% CI, 1.36-27.66; P=0.018) were significant independent predictive factors for 30-day rebleeding. However, neither Rockall nor Blatchford scores showed statistically significant relationships with 30-day rebleeding in a multivariate analysis. CKD, hemodynamic instability during hospitalization, and an endoscopic high-risk appearance are significantly independent predictors of 30-day rebleeding in patients with non-variceal upper gastrointestinal bleeding. These factors may be useful for clinical management of such patients.

  5. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects.

    Science.gov (United States)

    Le, Myphuong T; Frye, Reginald F; Rivard, Christopher J; Cheng, Jing; McFann, Kim K; Segal, Mark S; Johnson, Richard J; Johnson, Julie A

    2012-05-01

    It is unclear whether high-fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared with sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- vs sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hours. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Fructose area under the curve and maximum concentration, dose-normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared with sucrose-sweetened beverages. Compared with sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Effects of high fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects

    Science.gov (United States)

    Le, MyPhuong T.; Frye, Reginald F.; Rivard, Christopher J.; Cheng, Jing; McFann, Kim K.; Segal, Mark S.; Johnson, Richard J.; Johnson, Julie A.

    2011-01-01

    Objective It is unclear whether high fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared to sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- versus sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Materials/Methods Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hr. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Results Fructose area under the curve and maximum concentration, dose normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared to sucrose-sweetened beverages. Conclusions Compared to sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects. PMID:22152650

  7. Comparison of tricuspid and bicuspid aortic valve hemodynamics under steady flow conditions

    Science.gov (United States)

    Seaman, Clara; Ward, James; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV), a congenital valvular defect consisting of two leaflets instead of three, is associated with a high prevalence of calcific aortic valve disease (CAVD). CAVD also develops in the normal tricuspid aortic valve (TAV) but its progression in the BAV is more severe and rapid. Although hemodynamic abnormalities are increasingly considered potential pathogenic contributor, the native BAV hemodynamics remain largely unknown. Therefore, this study aims at comparing experimentally the hemodynamic environments in TAV and BAV anatomies. Particle-image velocimetry was used to characterize the flow downstream of a native TAV and a model BAV mounted in a left-heart simulator and subjected to three steady flow rates characterizing different phases of the cardiac cycle. While the TAV developed a jet aligned along the valve axis, the BAV was shown to develop a skewed systolic jet with skewness decreasing with increasing flow rate. Measurement of the transvalvular pressure revealed a valvular resistance up to 50% larger in the BAV than in the TAV. The increase in velocity between the TAV and BAV leads to an increase in shear stress downstream of the valve. This study reveals strong hemodynamic abnormalities in the BAV, which may contribute to CAVD pathogenesis.

  8. Anatomical and hemodynamic evaluations of the heart and pulmonary arterial pressure in healthy children residing at high altitude in China

    Directory of Open Access Journals (Sweden)

    Hai-Ying Qi

    2015-06-01

    Conclusions: Children living at high altitude in China have significantly higher mPAP, dilated right heart and slower regression of right ventricular hypertrophy in the first 14 years of life. Systolic and diastolic functions of both ventricles were reduced with a paradoxically higher CI. There was no significant difference in these features between the Hans and the Tibetans. These values provide references for the care of healthy children and the sick ones with cardiopulmonary diseases at high altitude.

  9. Ultrasonic test of highly stressed gear shafts

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, T. [Siemens AG, Power Generation, KWU, Muelheim (Germany); Heinrich, W. [Siemens AG, Power Generation, KWU, Berlin (Germany); Achtzehn, J. [Siemens AG, Power Generation, ICVW, Erlangen (Germany); Hensley, H. [Siemens Power Generation (Germany)

    1998-12-31

    In the power plant industry, gears are used for increasingly higher turbine capacities. Efficiency enhancements, particularly for the combined gas and steam turbine process, lead to an increase in stresses, even for high-performance gears. Consequently, the requirements for non-destructive material testing are on the increase as well. At Siemens KWU, high-performance gears are used so far only for gas turbines with lower rating (65 MW) to adapt the gas turbine speed (5413 rpm) to the generator speed (3000 rpm/ 50 Hz or 3600 rpm/60 Hz). The gear train consists of a forged and case-hardened wheel shaft and pinion shaft made of material 17 CrNiMo 6, where the wheel shaft can be either a solid or a hollow shaft. Dimensions are typically 2.3 m length and 1 m diameter. As a rule, pinion shafts are solid. The gear design, calling for an additional torsion shaft turning inside the hollow wheel shaft, can absorb more torsional load surges and is more tolerant of deviations during gear train alignment. This design requires two additional forgings (torsion shaft and hub) and an additional bearing 2 refs.

  10. HIGH VISCOUS STRESS OF ORIENTED POLYOLEFINS UNDER UNIAXIAL TENSILE DEFORMATION

    Institute of Scientific and Technical Information of China (English)

    Bing Na; Qin Zhang; Hong Yang; Qiang Fu; Yong-feng Men

    2007-01-01

    In this communication, by means of stress relaxation experiments, the viscous stress at various strains during tensile deformation of oriented polyolefin samples including high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and isotactic polypropylene (iPP), has been determined. The viscous stress in the oriented samples takes up to 50%-70% of the total stress, which is unusually high compared with their isotropic counterparts. The unusual high viscous stress was discussed based on mainly the existence of shish structure in oriented polyolefins, which could enhance the inter-lamella coupling significantly.

  11. ZERODUR® glass ceramics for high stress applications

    Science.gov (United States)

    Hartmann, Peter; Nattermann, Kurt; Döhring, Thorsten; Jedamzik, Ralf; Kuhr, Markus; Thomas, Peter; Kling, Guenther; Lucarelli, Stefano

    2009-08-01

    Recently SCHOTT has shown in a series of investigations the suitability of the zero expansion glass ceramic material ZERODUR® for applications like mirrors and support structures of complicated design used at high mechanical loads. Examples are vibrations during rocket launches, bonded elements to support single mirrors or mirrors of a large array, or controlled deformations for optical image correction, i.e. adaptive mirrors. Additional measurements have been performed on the behavior of ZERODUR® with respect to the etching process, which is capable of increasing strength significantly. It has been determined, which minimum layer thickness has to be removed in order to achieve the strength increase reliably. New data for the strength of the material variant ZERODUR K20® prepared with a diamond grain tool D151 are available and compared with the data of ZERODUR® specimens prepared in the same way. Data for the stress corrosion coefficient n of ZERODUR® for dry and normal humid environment have been measured already in the 1980s. It has been remeasured with the alternative double cleavage drilled compression (DCDC) method.

  12. Genome-Wide Linkage Analysis of Hemodynamic Parameters Under Mental and Physical Stress in Extended Omani Arab Pedigrees : The Oman Family Study

    NARCIS (Netherlands)

    Hassan, Mohammed O.; Jaju, Deepali; Voruganti, V. Saroja; Bayoumi, Riad A.; Albarwani, Sulayma; Al-Yahyaee, Saeed; Aslani, Afshin; Snieder, Harold; Lopez-Alvarenga, Juan C.; Al-Anqoudi, Zahir M.; Alizadeh, Behrooz Z.; Comuzzie, Anthony G.

    2011-01-01

    Background: We performed a genome-wide scan in a homogeneous Arab population to identify genomic regions linked to blood pressure (BP) and its intermediate phenotypes during mental and physical stress tests. Methods: The Oman Family Study subjects (N = 1277) were recruited from five extended familie

  13. Genome-wide linkage analysis of hemodynamic parameters under mental and physical stress in extended Omani Arab pedigrees : the Oman Family Study

    NARCIS (Netherlands)

    Hassan, Mohammed O; Jaju, Deepali; Voruganti, V Saroja; Bayoumi, Riad A; Albarwani, Sulayma; Al-Yahyaee, Saeed; Aslani, Afshin; Snieder, Harold; Lopez-Alvarenga, Juan C; Al-Anqoudi, Zahir M; Alizadeh, Behrooz Z; Comuzzie, Anthony G

    2011-01-01

    BACKGROUND: We performed a genome-wide scan in a homogeneous Arab population to identify genomic regions linked to blood pressure (BP) and its intermediate phenotypes during mental and physical stress tests. METHODS: The Oman Family Study subjects (N = 1277) were recruited from five extended familie

  14. Randomized Controlled Trial of High-Volume Energy Drink Versus Caffeine Consumption on ECG and Hemodynamic Parameters.

    Science.gov (United States)

    Fletcher, Emily A; Lacey, Carolyn S; Aaron, Melenie; Kolasa, Mark; Occiano, Andrew; Shah, Sachin A

    2017-04-26

    Caffeine in doses energy drinks. We evaluated the ECG and blood pressure (BP) effects of high-volume energy drink consumption compared with caffeine alone. This was a randomized, double-blind, controlled, crossover study in 18 young, healthy volunteers. Participants consumed either 946 mL (32 ounces) of energy drink or caffeinated control drink, both of which contained 320 mg of caffeine, separated by a 6-day washout period. ECG, peripheral BP, and central BP measurements were obtained at baseline and 1, 2, 4, 6, and 24 hours post study drink consumption. The time-matched, baseline-adjusted changes were compared. The change in corrected QT interval from baseline in the energy drink arm was significantly higher than the caffeine arm at 2 hours (0.44±18.4 ms versus -10.4±14.8 ms, respectively; P=0.02). The QTc changes were not different at other time points. While both the energy drink and caffeine arms raised systolic BP in a similar fashion initially, the systolic BP was significantly higher at 6 hours when compared with the caffeine arm (4.72±4.67 mm Hg versus 0.83±6.09 mm Hg, respectively; P=0.01). Heart rate, diastolic BP, central systolic BP, and central diastolic BP showed no evidence of a difference between groups at any time point. Post energy drink, augmentation index was lower at 6 hours. The corrected QT interval and systolic BP were significantly higher post high-volume energy drink consumption when compared with caffeine alone. Larger clinical trials validating these findings and evaluation of noncaffeine ingredients within energy drinks are warranted. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02023723. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. Stress and the High School Senior: Implications for Instruction.

    Science.gov (United States)

    Amen, John; Reglin, Gary

    1992-01-01

    A recent survey found that 90 percent of high school seniors/respondents perceived the world as stressful and the majority of people as phony. These views may partly explain the high suicide, pregnancy, dropout, and drug usage rates among high school seniors. Teachers can help students overcome stress by modeling coping strategies and providing…

  16. Effects of high-sucrose feeding on insulin resistance and hemodynamic responses to insulin in spontaneously hypertensive rats.

    Science.gov (United States)

    Mélançon, Sébastien; Bachelard, Hélène; Badeau, Mylène; Bourgoin, Frédéric; Pitre, Maryse; Larivière, Richard; Nadeau, André

    2006-06-01

    This study was designed to investigate the effects of a sucrose diet on vascular and metabolic actions of insulin in spontaneously hypertensive rats (SHR). Male SHR were randomized to receive a sucrose or regular chow diet for 4 wk. Age-matched, chow-fed Wistar-Kyoto (WKY) rats were used as normotensive control. In a first series of experiments, the three groups of rats had pulsed Doppler flow probes and intravascular catheters implanted to determine blood pressure, heart rate, and blood flows. Insulin sensitivity was assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine glucose transport activity in isolated muscles and to determine endothelial nitric oxide synthase (eNOS) protein expression in muscles and endothelin content in vascular tissues. Sucrose feeding was shown to markedly enhance the pressor response to insulin and its hindquarter vasoconstrictor effect when compared with chow-fed SHR. A reduction in eNOS protein content in muscle, but no change in vascular endothelin-1 protein, was noted in sucrose-fed SHR when compared with WKY rats, but these changes were not different from those noted in chow-fed SHR. Similar reductions in insulin-stimulated glucose transport were observed in soleus muscles from both groups of SHR when compared with WKY rats. In extensor digitorum longus muscles, a significant reduction in insulin-stimulated glucose transport was only seen in sucrose-fed rats when compared with the other two groups. Environmental factors, that is, high intake of simple sugars, could possibly potentiate the genetic predisposition in SHR to endothelial dysfunction and insulin resistance.

  17. Hemodynamic simulations in coronary aneurysms of children with Kawasaki disease

    Science.gov (United States)

    Sengupta, Dibyendu; Burns, Jane; Marsden, Alison

    2009-11-01

    Kawasaki disease (KD) is a serious pediatric illness affecting the cardiovascular system. One of the most serious complications of KD, occurring in about 25% of untreated cases, is the formation of large aneurysms in the coronary arteries, which put patients at risk for myocardial infarction. In this project we performed patient specific computational simulations of blood flow in aneurysmal left and right coronary arteries of a KD patient to gain an understanding about their hemodynamics. Models were constructed from CT data using custom software. Typical pulsatile flow waveforms were applied at the model inlets, while resistance and RCR lumped models were applied and compared at the outlets. Simulated pressure waveforms compared well with typical physiologic data. High wall shear stress values are found in the narrow region at the base of the aneurysm and low shear values occur in regions of recirculation. A Lagrangian approach has been adopted to perform particle tracking and compute particle residence time in the recirculation. Our long-term goal will be to develop links between hemodynamics and the risk for thrombus formation in order to assist in clinical decision-making.

  18. Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I.

    Science.gov (United States)

    Tapia, E; Sánchez-Lozada, L G; García-Niño, W R; García, E; Cerecedo, A; García-Arroyo, F E; Osorio, H; Arellano, A; Cristóbal-García, M; Loredo, M L; Molina-Jijón, E; Hernández-Damián, J; Negrette-Guzmán, M; Zazueta, C; Huerta-Yepez, S; Reyes, J L; Madero, M; Pedraza-Chaverrí, J

    2014-11-01

    The potential protective effect of the dietary antioxidant curcumin (120 mg/Kg/day for 6 days) against the renal injury induced by maleate was evaluated. Tubular proteinuria and oxidative stress were induced by a single injection of maleate (400 mg/kg) in rats. Maleate-induced renal injury included increase in renal vascular resistance and in the urinary excretion of total protein, glucose, sodium, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl β-D-glucosaminidase (NAG), upregulation of kidney injury molecule (KIM)-1, decrease in renal blood flow and claudin-2 expression besides of necrosis and apoptosis of tubular cells on 24 h. Oxidative stress was determined by measuring the oxidation of lipids and proteins and diminution in renal Nrf2 levels. Studies were also conducted in renal epithelial LLC-PK1 cells and in mitochondria isolated from kidneys of all the experimental groups. Maleate induced cell damage and reactive oxygen species (ROS) production in LLC-PK1 cells in culture. In addition, maleate treatment reduced oxygen consumption in ADP-stimulated mitochondria and diminished respiratory control index when using malate/glutamate as substrate. The activities of both complex I and aconitase were also diminished. All the above-described alterations were prevented by curcumin. It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage. The in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I, and the in vitro protection was associated to the prevention of ROS production.

  19. Single Operation with Simplified Incisions to Build an Experimental Cerebral Aneurysm Model by Induced Hemodynamic Stress and Estrogen Deficiency in Rats.

    Science.gov (United States)

    Wu, Cong; Liu, Yi; He, Min; Zhu, Lei; You, Chao

    2016-01-01

    To implement a surgical technique consisting of simplified incisions that allows all required procedures to be performed in one single operation for the purpose of reducing surgical stress in experimental animals. Experimental animals (rats) were assigned to one of four groups: Group 0 was the (normal) control group, Group 1 consisted of rats that had an operation using multiple incisions, Group 2 consisted of rats who received a midline incision and were raised for 3 months, and Group 3 consisted of rats who also received a midline incision, but had been raised for 6 months. Rat blood pressure was measured by tail cuff method. The surgical characteristics and outcomes of the rats in Groups 1 and 2 were compared. Aneurysmal lesions of both branching and non-branching sites were compared amongst the 4 groups by observation of the cerebral vascular corrosion casts through a scanning electron microscope. Histological analyses of the induced aneurysms were performed. The simplified incision technique significantly reduced the length of surgery and need for anesthesia redose during the operation. No aneurysms formed in the normal control rats. The incidence of saccular aneurysm formation significantly increased in Group 3. Histological analyses confirmed the aneurysms induced in the rats shared the same characteristics as human aneurysms. Our modified surgical method reduced the surgical stress in rats. It also successfully induced both saccular and fusiform cerebral aneurysms. While longer incubation duration for aneurysm formation could be applied in future researches.

  20. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... risk factors like a poor diet and excessive alcohol consumption. How stress affects your health In addition to the emotional discomfort ... supportive and encouraging relationships. Invest yourself in developing relationships that ... alcohol , don’t overeat and don’t smoke . Relaxing ...

  1. Low-stress and high-stress singing have contrasting effects on glucocorticoid response

    Directory of Open Access Journals (Sweden)

    Daisy eFancourt

    2015-09-01

    Full Text Available Performing music in public is widely recognised as a potentially stress-inducing activity. However, despite the interest in music performance as an acute psychosocial stressor, there has been relatively little research on the effects of public performance on the endocrine system. This study examined the impact of singing in a low-stress performance situation and a high-stress live concert on levels of glucocorticoids (cortisol and cortisone in 15 professional singers. The results showed a significant decrease in both cortisol and cortisone across the low-stress condition, suggesting that singing in itself is a stress-reducing (and possibly health-promoting activity, but significant increases across the high-stress condition. This is the first study to demonstrate that singing affects glucocorticoid responses and that these responses are modulated by the conditions of performance.

  2. Experimental research on unloading properties of clay under high stress

    Institute of Scientific and Technical Information of China (English)

    MA Jin-rong; CUI Guang-xin; QIN Yong; ZHOU Guo-qing

    2008-01-01

    Mechanical properties of clay under high stress are quite different from those under low stress. It is necessary to investi-gate unloading properties of clay under high stress for the design and construction of deep underground engineering projects. A series of experiments were conducted to investigate the unloading properties of clay under high confining pressures by using a SKA-1 high pressure consolidation instrument designed by us. The stress versus strain relationship and the way that K0 values of clay change during the loading-unloading process were discovered. The results show that there are clear differences in the state of stress and deformation behavior of the clay along different unloading paths.

  3. Highly stressed carbon film coatings on silicon potential applications

    CERN Multimedia

    Sharda, T

    2002-01-01

    The fabrication of highly stressed and strongly adhered nanocrystalline diamond films on Si substrates is presented. A microwave plasma CVD method with controlled and continuous bias current density was used to grow the films. The stress/curvature of the films can be varied and controlled by altering the BCD. Potential applications for these films include particle physics and x-ray optics.

  4. Proteomics of Rice Grain under High Temperature Stress

    Directory of Open Access Journals (Sweden)

    Toshiaki eMitsui

    2013-03-01

    Full Text Available Recent proteomic analyses revealed dynamic changes of metabolisms during rice grain development. Interestingly, proteins involved in glycolysis, citric acid cycle, lipid metabolism, and proteolysis were accumulated at higher levels in mature grain than those of developing stages. High temperature stress in rice ripening period causes damaged (chalky grains which have loosely packed round shape starch granules. The high temperature stress response on protein expression is complicated, and the molecular mechanism of the chalking of grain is obscure yet. Here, the current state on the proteomics research of rice grain grown under high temperature stress is briefly overviewed.

  5. In vivo measurement of hemodynamic information in stenosed rat blood vessels using X-ray PIV

    Science.gov (United States)

    Park, Hanwook; Park, Jun Hong; Lee, Sang Joon

    2016-11-01

    Measurements of the hemodynamic information of blood flows, especially wall shear stress (WSS), in animal models with circulatory vascular diseases (CVDs) are important to understand the pathological mechanism of CVDs. In this study, X-ray particle image velocimetry (PIV) with high spatial resolution was applied to obtain velocity field information in stenosed blood vessels with high WSS. 3D clips fabricated with a 3D printer were applied to the abdominal aorta of a rat cadaver to induce artificial stenosis in the real blood vessel of an animal model. The velocity and WSS information of blood flows in the stenosed vessel were obtained and compared at various stenosis severities. In vivo measurement was also conducted by fastening a stenotic clip on a live rat model through surgical intervention to reduce the flow rate to match the limited temporal resolution of the present X-ray PIV system. Further improvement of the temporal resolution of the system might be able to provide in vivo measurements of hemodynamic information from animal disease models under physiological conditions. The present results would be helpful for understanding the relation between hemodynamic characteristics and the pathological mechanism in animal CVD models.

  6. Bone morphogenetic protein-4 and transforming growth factor-beta1 mechanisms in acute valvular response to supra-physiologic hemodynamic stresses

    Institute of Scientific and Technical Information of China (English)

    Ling; Sun; Philippe; Sucosky

    2015-01-01

    AIM:To explore ex vivo the role of bone morphogenetic protein-4(BMP-4) and transforming growth factorbeta1(TGF-β1) in acute valvular response to fluid shear stress(FSS) abnormalities.METHODS:Porcine valve leaflets were subjected ex vivo to physiologic FSS,supra-physiologic FSS magnitude at normal frequency and supra-physiologic FSS frequency at normal magnitude for 48 h in a double-sided cone-and-plate bioreactor filled with standard culture medium. The role of BMP-4 and TGF-β1 in the valvular response was investigated by promoting or inhibiting the downstream action of those cytokines via culture medium supplementation with BMP-4 or the BMP antagonist noggin,and TGF-β1 or the TGF-β1 inhibitor SB-431542,respectively. Fresh porcine leaflets were used as controls. Each experimental group consisted of six leaflet samples. Immunostaining and immunoblotting were performed to assess endothelial activation in terms of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expressions,paracrine signaling in terms of BMP-4 and TGF-β1 expressions and extracellular matrix(ECM) remodeling in terms of cathepsin L,cathepsin S,metalloproteinases(MMP)-2 and MMP-9 expressions. Immunostained images were quantified by normalizing the intensities of positively stained regions by the number of cells in each image while immunoblots were quantified by densitometry. R E S U LT S :Regardless of the culture medium,physiologic FSS maintained valvular homeostasis. Tissue exposure to supra-physiologic FSS magnitude in standard medium stimulated paracrine signaling(TGF-β1:467% ± 22% vs 100% ± 6% in freshcontrols,BMP-4:258% ± 22% vs 100% ± 4% in fresh controls; P < 0.05) and ECM degradation(MMP-2:941% ± 90% vs 100% ± 19% in fresh controls,MMP-9:1219% ± 190% vs 100% ± 16% in fresh controls,cathepsin L:1187% ± 175% vs 100% ± 12% in fresh controls,cathepsin S:603% ± 88% vs 100% ± 13% in fresh controls; P < 0.05),while BMP-4 supplementation also promoted fibrosa

  7. Exercise hemodynamics in patients with and without diastolic dysfunction and preserved ejection fraction after myocardial infarction

    DEFF Research Database (Denmark)

    Andersen, Mads J; Ersbøll, Mads; Bro-Jeppesen, John

    2012-01-01

    Left ventricular diastolic dysfunction (DD) is common after myocardial infarction (MI) despite preservation of left ventricular ejection fraction, yet it remains unclear how or whether DD affects cardiac hemodynamics with stress....

  8. Adaptation and survival of plants in high stress habitats via fungal endophyte conferred stress tolerance

    Science.gov (United States)

    Rodriguez, Rusty J.; Woodward, Claire; Redman, Regina S.

    2010-01-01

    From the Arctic to the Antarctic, plants thrive in diverse habitats that impose different levels of adaptive pressures depending on the type and degree of biotic and abiotic stresses inherent to each habitat (Stevens, 1989). At any particular location, the abundance and distribution of individual plant species vary tremendously and is theorized to be based on the ability to tolerate a wide range of edaphic conditions and habitat-specific stresses (Pianka, 1966). The ability of individual plant species to thrive in diverse habitats is commonly referred to as phenotypic plasticity and is thought to involve adaptations based on changes in the plant genome (Givnish, 2002; Pan et al., 2006; Robe and Griffiths, 2000; Schurr et al., 2006). Habitats that impose high levels of abiotic stress are typically colonized with fewer plant species compared to habitats imposing low levels of stress. Moreover, high stress habitats have decreased levels of plant abundance compared to low stress habitats even though these habitats may occur in close proximity to one another (Perelman et al., 2007). This is particularly interesting because all plants are known to perceive, transmit signals, and respond to abiotic stresses such as drought, heat, and salinity (Bartels and Sunkar, 2005; Bohnert et al., 1995). Although there has been extensive research performed to determine the genetic, molecular, and physiological bases of how plants respond to and tolerate stress, the nature of plant adaptation to high stress habitats remains unresolved (Leone et al., 2003; Maggio et al., 2003; Tuberosa et al., 2003). However, recent evidence indicates that a ubiquitous aspect of plant biology (fungal symbiosis) is involved in the adaptation and survival of at least some plants in high stress habitats (Rodriguez et al., 2008).

  9. Threshold Stress Intensity of Hydrogen-Induced Cracking and Stress Corrosion Cracking of High Strength Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The threshold stress intensity of stress corrosion cracking (SCC) for 40CrMo steel in 3.5 % NaCl solution decreased exponentially with the increase of yield strength. The threshold stress intensity of hydrogen-induced cracking during dynamical charging for 40CrMo steel decreased linearly with the logarithm of the concentration of diffusible hydrogen. This equation was also applicable to SCC of high strength steel in aqueous solution. The critical hydrogen enrichment concentration necessary for SCC of high strength steel in water decreased exponentially with the increase of yield strength. Based on the results, the relationship between KISCC and σys could be deduced.

  10. [Invasive and minimally invasive hemodynamic monitoring].

    Science.gov (United States)

    Hansen, Matthias

    2016-10-01

    Advanced hemodynamic monitoring is necessary for adequate management of high-risk patients or patients with derangement of circulation. Studies demonstrate a benefit of early goal directed therapy in unstable cardiopulmonary situations. In these days we have different possibilities of minimally invasive or invasive hemodynamic monitoring. Minimally invasive measurements like pulse conture analysis or pulse wave analysis being less accurate under some circumstances, however only an artery catheter is needed for cardiac output monitoring. Pulmonary artery, transpulmonary thermodilution and lithium dilution technology have acceptable accuracy in cardiac output measurement. For therapy of unstable circulation there are additionally parameters to obtain. The pulmonary artery catheter is the device with the largest rate of complications, used by a trained crew and with a correct indication, his use is unchained justified.

  11. Hemodynamic effects of combination therapy with inhaled nitric oxide and iloprost in patients with pulmonary hypertension and right ventricular dysfunction after high-risk cardiac surgery.

    Science.gov (United States)

    Antoniou, Theofani; Koletsis, Efstratios N; Prokakis, Christos; Rellia, Panagiota; Thanopoulos, Apostolos; Theodoraki, Kassiani; Zarkalis, Dimitrios; Sfyrakis, Petros

    2013-06-01

    The purpose of this study was to evaluate the hemodynamic effects of inhaled nitric oxide (NO) plus aerosolized iloprost in patients with pulmonary hypertension/right ventricular dysfunction after cardiac surgery. A retrospective study. A single center. Eight consecutive patients with valve disease and postextracorporeal circulation (ECC) pulmonary hypertension/right ventricular dysfunction. The continuous inhalation of nitric oxide (10 ppm) and iloprost, 10 μg, in repeated doses. The hemodynamic profile was obtained before inhalation, during the administration of inhaled NO alone (prior and after iloprost), and after the first 2 doses of iloprost. Tricuspid annular velocity and tricuspid annular plane systolic excursion were estimated at baseline and before and after adding iloprost. At the end of the protocol, there were significant decreases in pulmonary vascular resistance (p iloprost dose was associated with further decreases in pulmonary vascular resistances/pressure. By comparing data at the beginning of inhaled NO with those after the second dose of iloprost, the authors noticed decreases in pulmonary vascular resistances (p = 0.004) and the mean pulmonary artery pressure (p = 0.017) and rises in tricuspid annular velocity (p iloprost significantly reduced pulmonary hypertension and contributed to the improvement in right ventricular function. Inhaled NO and iloprost have additive effects on pulmonary vasculature. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Patient-specific structural effects on hemodynamics in the ischemic lower limb artery

    Science.gov (United States)

    Xu, Pengcheng; Liu, Xin; Song, Qi; Chen, Guishan; Wang, Defeng; Zhang, Heye; Yan, Li; Liu, Dan; Huang, Wenhua

    2016-12-01

    Lower limb peripheral artery disease is a prevalent chronic non-communicable disease without obvious symptoms. However, the effect of ischemic lower limb peripheral arteries on hemodynamics remains unclear. In this study, we investigated the variation of the hemodynamics caused by patient-specific structural artery characteristics. Computational fluid dynamic simulations were performed on seven lower limb (including superficial femoral, deep femoral and popliteal) artery models that were reconstructed from magnetic resonance imaging. We found that increased wall shear stress (WSS) was mainly caused by the increasing severity of stenosis, bending, and branching. Our results showed that the increase in the WSS value at a stenosis at the bifurcation was 2.7 Pa. In contrast, the isolated stenosis and branch caused a WSS increase of 0.7 Pa and 0.5 Pa, respectively. The WSS in the narrow popliteal artery was more sensitive to a reduction in radius. Our results also demonstrate that the distribution of the velocity and pressure gradient are highly structurally related. At last, Ultrasound Doppler velocimeter measured result was presented as a validation. In conclusion, the distribution of hemodynamics may serve as a supplement for clinical decision-making to prevent the occurrence of a morbid or mortal ischemic event.

  13. High occupational stress and low career satisfaction of Korean surgeons.

    Science.gov (United States)

    Kang, Sang Hee; Boo, Yoon Jung; Lee, Ji Sung; Han, Hyung Joon; Jung, Cheol Woong; Kim, Chong Suk

    2015-02-01

    Surgery is a demanding and stressful field in Korea. Occupational stress can adversely affect the quality of care, decrease job satisfaction, and potentially increase medical errors. The aim of this study was to investigate the occupational stress and career satisfaction of Korean surgeons. We have conducted an electronic survey of 621 Korean surgeons for the occupational stress. Sixty-five questions were used to assess practical and personal characteristics and occupational stress using the Korean occupational stress scale (KOSS). The mean KOSS score was 49.31, which was higher than the average of Korean occupational stress (45.86) or that of other specialized professions (46.03). Young age, female gender, long working hours, and frequent night duties were significantly related to the higher KOSS score. Having spouse, having hobby and regular exercise decreased the KOSS score. Multiple linear regression analysis showed that long working hours and regular exercise were the independent factors associated with the KOSS score. Less than 50% of surgeons answered that they would become a surgeon again. Most surgeons (82.5%) did not want to recommend their child follow their career. Korean Surgeons have high occupational stress and low level of career satisfaction.

  14. Hemodynamic simulations in coronary aneurysms of a patient with Kawasaki Disease

    Science.gov (United States)

    Sengupta, Dibyendu; Marsden, Alison; Burns, Jane

    2010-11-01

    Kawasaki Disease is the leading cause of acquired pediatric heart disease, and can cause large coronary artery aneurysms in untreated cases. A simulation case study has been performed for a 10-year-old male patient with coronary aneurysms. Specialized coronary boundary conditions along with a lumped parameter heart model mimic the interactions between the ventricles and the coronary arteries, achieving physiologic pressure and flow waveforms. Results show persistent low shear stress in the aneurismal regions, and abnormally high shear at the aneurysm neck. Correlation functions have been derived to compare wall shear stress and wall shear stress gradients with recirculation time with the idea of localizing zones of calcification and thrombosis. Results are compared with those of an artificially created normal coronary geometry for the same patient. The long-term goal of this work is to develop links between hemodynamics and thrombotic risk to assist in clinical decision-making.

  15. High precision stress measurements in semiconductor structures by Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, Benjamin

    2009-07-01

    Stress in silicon structures plays an essential role in modern semiconductor technology. This stress has to be measured and due to the ongoing miniaturization in today's semiconductor industry, the measuring method has to meet certain requirements. The present thesis deals with the question how Raman spectroscopy can be used to measure the state of stress in semiconductor structures. In the first chapter the relation between Raman peakshift and stress in the material is explained. It is shown that detailed stress maps with a spatial resolution close to the diffraction limit can be obtained in structured semiconductor samples. Furthermore a novel procedure, the so called Stokes-AntiStokes-Difference method is introduced. With this method, topography, tool or drift effects can be distinguished from stress related influences in the sample. In the next chapter Tip-enhanced Raman Scattering (TERS) and its application for an improvement in lateral resolution is discussed. For this, a study is presented, which shows the influence of metal particles on the intensity and localization of the Raman signal. A method to attach metal particles to scannable tips is successfully applied. First TERS scans are shown and their impact on and challenges for high resolution stress measurements on semiconductor structures is explained. (orig.)

  16. Anodizing of High Electrically Stressed Components

    Energy Technology Data Exchange (ETDEWEB)

    Flores, P. [NSTec; Henderson, D. J. [NSTec; Good, D. E. [NSTec; Hogge, K. [NSTec; Mitton, C. V. [NSTec; Molina, I. [NSTec; Naffziger, C. [NSTec; Codova, S. R. [SNL; Ormond, E. U. [SNL

    2013-06-01

    Anodizing creates an aluminum oxide coating that penetrates into the surface as well as builds above the surface of aluminum creating a very hard ceramic-type coating with good dielectric properties. Over time and use, the electrical carrying components (or spools in this case) experience electrical breakdown, yielding undesirable x-ray dosages or failure. The spool is located in the high vacuum region of a rod pinch diode section of an x-ray producing machine. Machine operators have recorded decreases in x-ray dosages over numerous shots using the reusable spool component, and re-anodizing the interior surface of the spool does not provide the expected improvement. A machine operation subject matter expert coated the anodized surface with diffusion pump oil to eliminate electrical breakdown as a temporary fix. It is known that an anodized surface is very porous, and it is because of this porosity that the surface may trap air that becomes a catalyst for electrical breakdown. In this paper we present a solution of mitigating electrical breakdown by oiling. We will also present results of surface anodizing improvements achieved by surface finish preparation and surface sealing. We conclude that oiling the anodized surface and using anodized hot dip sealing processes will have similar results.

  17. TENSILE STRESS RELAXATION OF TURBINE BOLT STEELS AT HIGH TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    G.Q. Jia; H.W. Shen; Y.M. Zhu

    2004-01-01

    Stress relaxation behavior of two turbine bolt steels was evaluated by the manualcontrolled tensile stress relaxation test (TSRT) at high temperature. First, feasibility and the procedure of the manual-controlled tensile stress relaxation test (TSRT) is discussed and carried out on a general creep testing machine. And then, the experimental results from such type of test were compared to the existing data provided by certain Laboratory U.K. Overall good agreement between the results of manualcontrolled TSRT method and the existing data provides confidence in the use of the proposed method in practice. Finally, the experimental results of turbine bolt steels from TSRT were compared with that of bending test. It is observed that great difference exists between the results from two different type stress relaxation tests. It is therefore suggested that the results from TSRT method be adopted in turbine bolt design in engineering.

  18. Hemodynamic Profiles of Functional and Dysfunctional Forms of Repetitive Thinking.

    Science.gov (United States)

    Ottaviani, Cristina; Brosschot, Jos F; Lonigro, Antonia; Medea, Barbara; Van Diest, Ilse; Thayer, Julian F

    2017-04-01

    The ability of the human brain to escape the here and now (mind wandering) can take functional (problem solving) and dysfunctional (perseverative cognition) routes. Although it has been proposed that only the latter may act as a mediator of the relationship between stress and cardiovascular disease, both functional and dysfunctional forms of repetitive thinking have been associated with blood pressure (BP) reactivity of the same magnitude. However, a similar BP reactivity may be caused by different physiological determinants, which may differ in their risk for cardiovascular pathology. To examine the way (hemodynamic profile) and the extent (compensation deficit) to which total peripheral resistance and cardiac output compensate for each other in determining BP reactivity during functional and dysfunctional types of repetitive thinking. Fifty-six healthy participants randomly underwent a perseverative cognition, a mind wandering, and a problem solving induction, each followed by a 5-min recovery period while their cardiovascular parameters were continuously monitored. Perseverative cognition and problem solving (but not mind wandering) elicited BP increases of similar magnitude. However, perseverative cognition was characterized by a more vascular (versus myocardial) profile compared to mind wandering and problem solving. As a consequence, BP recovery was impaired after perseverative cognition compared to the other two conditions. Given that high vascular resistance and delayed recovery are the hallmarks of hypertension the results suggest a potential mechanism through which perseverative cognition may act as a mediator in the relationship between stress and risk for developing precursors to cardiovascular disease.

  19. Childhood moyamoya disease: hemodynamic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tzika, A.A. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Robertson, R.L. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Barnes, P.D. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Vajapeyam, S. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Burrows, P.E. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Treves, S.T. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Scott, R.M. l [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States)

    1997-09-01

    Background. Childhood moyamoya disease is a rare progressive cerebrovascular disease. Objective. To evaluate cerebral hemodynamics using dynamic Gd-DTPA-enhanced imaging in children with moyamoya disease. Materials and methods. Eight children (2-11 years of age) with the clinical and angiographic findings typical of moyamoya disease, before and/or after surgical intervention (pial synangiosis), underwent conventional MR imaging (MRI) and hemodynamic MR imaging (HMRI). HMRI used a spoiled gradient-echo with low flip angle (10 deg) and long TE (TR/TE = 24/15 ms) to minimize T 1 effects and emphasize T 2{sup *} weighting. Raw and calculated hemodynamic images were reviewed. Three-dimensional time-of-flight MR angiography (MRA) and perfusion brain single photon emission computed tomography (SPECT) were also performed. Results. Abnormal hemodynamic maps resulting from vascular stenosis or occlusion and basal collaterals were observed in six patient studies. HMRI depicted perfusion dynamics of affected cerebrovascular territories, detected cortical perfusion deficits, and complemented conventional MRI and MRA. HMRI findings were consistent with those of catheter angiography and perfusion SPECT. Conclusion. Our preliminary experience suggests that HMRI may be of value in the preoperative and postoperative evaluation of surgical interventions in moyamoya disease. (orig.). With 4 figs., 3 tabs.

  20. Echocardiographic Evaluation of Hemodynamics in Neonates and Children

    Directory of Open Access Journals (Sweden)

    Yogen Singh

    2017-09-01

    other investigation, it has certain limitations and the most important limitation is its intermittent nature. Sometimes acquiring high quality images for precise functional assessment in a ventilated child can be challenging. Therefore, it should be used in conjunction with the existing tools (physical examination and clinical parameters for hemodynamic assessment while making clinical decisions.

  1. Survival function Of Realization process for Hemodynamic and hormonal effects of human GH in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Geetha.T

    2014-12-01

    Full Text Available Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. To investigate hemodynamic and hormonal effects of ghrelin, a novel growth hormone (GH-releasing peptide, we gave six healthy men an intravenous bolus of human ghrelin or placebo and vice versa 1–2 wk apart in a randomized fashion. Ghrelin elicited a marked increase in circulating GH. The elevation of GH lasted longer than 60 min after the bolus injection. Injection of ghrelin significantly decreased mean arterial pressure without a significant change in heart rate .In summary, human ghrelin elicited a potent, long lasting GH release and had beneficial hemodynamic effects via reducing cardiac after load and increasing cardiac output without an increase in heart rate. Thus, the purpose of this study was to investigate hemodynamic and hormonal effects of intravenous ghrelin in healthy volunteers. This paper discussed the constant stress level of healthy volunteers with times to damage of stress effect and recoveries

  2. High glucose augments stress-induced apoptosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Wenwen Zhong; Yang Liu; Hui Tian

    2009-01-01

    Hyperglycemia has been identified as one of the important factors involved in the microvascular complications of diabetes, and has been related to increased cardiovascular mortality. Endothelial damage and dysfunction result from diabetes; therefore, the aim of this study was to determine the response of endothelial cells to stressful stimuli, modelled in normal and high glucose concentrations in vitro. Eahy 926 endothelial cells were cultured in 5 mmol/L or 30 mmol/L glucose conditions for a 24 hour period and oxidative stress was induced by exposure to hydrogen peroxide (H2O2) or tumour necrosis factor- α (TNF- α ), following which the protective effect of the glucocorticoid dexamethasone was assessed. Apoptosis, necrosis and cell viability were determined using an ELISA for DNA fragmentation, an enzymatic lactate dehydrogenase assay and an MTT assay, respectively. High glucose significantly increased the susceptibility of Eahy 926 cells to apoptosis in the presence of 500 μmol/L H2O2, above that induced in normal glucose (P<0.02). A reduction of H2O2- and TNF- α -induced apoptosis occurred in both high and low glucose after treatment with dexametha-sone (P<0.05). Conclusion high glucose is effective in significantly augmenting stress caused by H2O2, but not in causing stress alone. These findings suggest a mechanism by which short term hyperglycemia may facilitate and augment endothelial damage.

  3. Increased oxidative stress following acute and chronic high altitude exposure.

    Science.gov (United States)

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude.

  4. Pharmacological Modulation of Hemodynamics in Adult Zebrafish In Vivo.

    Directory of Open Access Journals (Sweden)

    Daniel Brönnimann

    Full Text Available Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo.Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations.Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001. Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01 and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03.In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic alterations.

  5. Performance of a Nb(3)Sn Quadrupole Under High Stress

    CERN Document Server

    Felice, H; Ferracin, P; De Rijk, G; Bajko, M; Caspi, S; Bingham, B; Giloux, C; Bordini, B; Milanese, A; Bottura, L; Sabbi, G L; Hafalia, R; Godeke, A; Dietderich, D

    2011-01-01

    Future upgrades of the Large Hadron Collider (LHC) will require large aperture and high gradient quadrupoles. Nb(3)Sn is the most viable option for this application but is also known for its strain sensitivity. In high field magnets, with magnetic fields above 12 T, the Lorentz forces will generate mechanical stresses that may exceed 200 MPa in the windings. The existing measurements of critical current versus strain of Nb(3)Sn strands or cables are not easily applicable to magnets. In order to investigate the impact of high mechanical stress on the quench performance, a series of tests was carried out within a LBNL/CERN collaboration using the magnet TQS03 (a LHC Accelerator Research Program (LARP) 1-meter long, 90-mm aperture Nb(3)Sn quadrupole). The magnet was tested four times at CERN under various pre-stress conditions. The average mechanical compressive azimuthal pre-stress on the coil at 4.2 K ranged from 120 MPa to 200 MPa. This paper reports on the magnet performance during the four tests focusing on...

  6. Psychological stress in high level sailors during competition

    Directory of Open Access Journals (Sweden)

    Luciana Segato

    2010-09-01

    Full Text Available The purpose of this work was to investigate the psychological stress present in elite sailors in a competition. Based on a descriptive field research, 31 elite sailors volunteered to participate. They answered the Perceived Stress Scale (Cohen & Williamson, 1988 and also specific questions on self-control, sources and strategies of coping. Data were analyzed by using descriptive and inferential (Student t test and Pearson's correlation statistics. These athletes revealed low and moderate scores (M = 20.00, DP = 6.83 of stress originated from both intrinsic (ship troubles, team disorders and extrinsic (study, working and training, family and financial problems sources. The group reported good stress control during competition through the use of cognitive (avoidance and somatic (listening music, resting/sleeping, talk to friends strategies. It is important that sailors are able to control and cope with high levels of psychological stress and to understand how to proceed when under unstable and unexpected situations that arise during competition.

  7. Psychological stress in high level sailors during competition

    Directory of Open Access Journals (Sweden)

    L. Segato

    2010-01-01

    Full Text Available The purpose of this work was to investigate the psychological stress present in elite sailors in a competition. Based on a descriptive field research, 31 elite sailors volunteered to participate. They answered the Perceived Stress Scale (Cohen & Williamson, 1988 and also specific questions on self-control, sources and strategies of coping. Data were analyzed by using descriptive and inferential (Student t test and Pearson's correlation statistics. These athletes revealed low and moderate scores (M = 20.00, DP = 6.83 of stress originated from both intrinsic (ship troubles, team disorders and extrinsic (study, working and training, family and financial problems sources. The group reported good stress control during competition through the use of cognitive (avoidance and somatic (listening music, resting/sleeping, talk to friends strategies. It is important that sailors are able to control and cope with high levels of psychological stress and to understand how to proceed when under unstable and unexpected situations that arise during competition.

  8. Seasonal changes in stress indicators in high level football.

    Science.gov (United States)

    Faude, O; Kellmann, M; Ammann, T; Schnittker, R; Meyer, T

    2011-04-01

    This study aimed at describing changes in stress and performance indicators throughout a competitive season in high level football. 15 players (19.5±3.0 years, 181±5 cm, 75.7±9.0 kg) competing under professional circumstances were tested at baseline and 3 times during the season 2008/09 (in-season 1, 2, 3). Testing consisted of the Recovery-Stress Questionnaire for Athletes (Total Stress and Recovery score), vertical jump tests (counter movement and drop jump (DJ)), and a maximal ramp-like running test. Average match exposure was higher during a 3-weeks period prior to in-season 3 compared to in-season 1 and 2 (1.5 vs. 1 h/week, p=0.05). Total Stress score was elevated at in-season 1 and 2 compared to baseline (pcorrelated with the corresponding changes in Total Stress score (r=-0.55 and r=-0.61, pstress and a lack of recovery towards the end of a season might be indicated by psychometric deteriorations. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Integrative Medicine Patients Have High Stress, Pain, and Psychological Symptoms.

    Science.gov (United States)

    Wolever, Ruth Q; Goel, Nikita S; Roberts, Rhonda S; Caldwell, Karen; Kligler, Benjamin; Dusek, Jeffery A; Perlman, Adam; Dolor, Rowena; Abrams, Donald I

    2015-01-01

    Integrative medicine (IM) is a rapidly growing field whose providers report clinical success in treating significant stress, chronic pain, and depressive and anxiety symptoms. While IM therapies have demonstrated efficacy for numerous medical conditions, IM for psychological symptoms has been slower to gain recognition in the medical community. This large, cross-sectional study is the first of its kind to document the psychosocial profiles of 4182 patients at 9 IM clinics that form the BraveNet Practice-Based Research Network (PBRN). IM patients reported higher levels of perceived stress, pain, and depressive symptoms, and lower levels of quality of life compared with national norms. Per provider reports, 60% of patients had at least one of the following: stress (9.3%), fatigue (10.2%), anxiety (7.7%), depression (7.2%), and/or sleep disorders (4.8%). Pain, having both physiological and psychological components, was also included and is the most common condition treated at IM clinics. Those with high stress, psychological conditions, and pain were most frequently treated with acupuncture, IM physician consultation, exercise, chiropractic services, diet/nutrition counseling, and massage. With baseline information on clinical presentation and service utilization, future PBRN studies can examine promising interventions delivered at the clinic to treat stress and psychological conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J; Hartman, J; Rodriguez, J; Maitland, D

    2008-01-16

    Aneurysm re-growth and rupture can sometimes unexpectedly occur following treatment procedures that were initially considered to be successful at the time of treatment and post-operative angiography. In some cases, this can be attributed to surgical clip slippage or endovascular coil compaction. However, there are other cases in which the treatment devices function properly. In these instances, the subsequent complications are due to other factors, perhaps one of which is the post-treatment hemodynamic stress. To investigate whether or not a treatment procedure can subject the parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm and bifurcation before and after a virtual endovascular treatment. The simulations demonstrate that the treatment procedure produces a substantial increase in the wall shear stress. Analysis of the post-treatment flow field indicates that the increase in wall shear stress is due to the impingement of the basilar artery flow upon the aneurysm filling material and to the close proximity of a vortex tube to the artery wall. Calculation of the time-averaged wall shear stress shows that there is a region of the artery exposed to a level of wall shear stress that can cause severe damage to endothelial cells. The results of this study demonstrate that it is possible for a treatment procedure, which successfully excludes the aneurysm from the vascular system and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the immediately adjacent vessel wall.

  11. Hemodynamic gestational adaptation in bitches

    OpenAIRE

    Vívian Tavares de Almeida; Ricardo Andres Ramirez Uscategui; Priscila Del Aguila da Silva; Michele Lopes Avante; Ana Paula Rodrigues Simões; Wilter Ricardo Russiano Vicente

    2017-01-01

    ABSTRACT: Throughout pregnancy, maternal hemodynamic adaptation is needed to ensure proper uterine perfusion and fetal development. When the uteroplacental vascular system is formed, starting with reduced resistance to uterine arterial flow, this results in decreased total vascular resistance, an activation of neuroendocrine vasoactive peptides, an increase in circulating blood and changes in the cardiovascular system morphophysiology to respond to the increasing demands of uterine perfusion....

  12. Modelling Of Residual Stresses Induced By High Speed Milling Process

    Science.gov (United States)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction. Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge® software, is based on data taken from Outeiro & al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature. Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R&D to those given by numerical simulations is achieved.

  13. Hemodynamic gestational adaptation in bitches

    Directory of Open Access Journals (Sweden)

    Vívian Tavares de Almeida

    Full Text Available ABSTRACT: Throughout pregnancy, maternal hemodynamic adaptation is needed to ensure proper uterine perfusion and fetal development. When the uteroplacental vascular system is formed, starting with reduced resistance to uterine arterial flow, this results in decreased total vascular resistance, an activation of neuroendocrine vasoactive peptides, an increase in circulating blood and changes in the cardiovascular system morphophysiology to respond to the increasing demands of uterine perfusion. There has been considerable study of hemodynamic adaptation in pregnant women and this assessment has become a diagnostic tool for fatal obstetric disorders. However, in bitches the available information in this regard is limited; therefore a parallel was drawn between other species of animals and women, in order to subsidize the paucity of information about this process and facilitate the understanding of maternal-fetal hemodynamic adaptation in pregnant bitches. This review and literature analysis aimed\\ to discuss morphophysiological cardiovascular adaptations during pregnancy and the possible disorders that can affect this process in pregnant female dogs.

  14. Investigation of risks for cerebral embolism associated with the hemodynamics of cardiopulmonary bypass cannula: a numerical model.

    Science.gov (United States)

    Avrahami, Idit; Dilmoney, Benny; Azuri, Aliza; Brand, Moshe; Cohen, Oved; Shani, Liran; Nir, Rony-Reuven; Bolotin, Gil

    2013-10-01

    Cerebral emboli originating in the ascending aorta are a major cause of noncardiac complications following cardiac surgery. The hemodynamics of the aortic cannula has been proven to play a significant role in emboli generation and distribution. The aim of the current study was to perform a thorough numerical investigation in order to examine the effect of the design and orientation of the cannula used during cardiopulmonary bypass on the risk to develop cerebral embolism. Hemodynamic analyses compared numerical models of 27 cases consisting of six different cannula orientations, four aortic anatomies, and three cannula designs. The cannula designs included a straight-tip (ST) cannula, a moderately curved tip cannula (TIP1 ), and a sharp-angle curved cannula (TIP2 ). Outcome measures included hemodynamic parameters such as emanating jet velocity, jet velocity drop, maximal shear stress, aortic wall reaction, emboli pathlines and distribution between upper and lower vessels, and stagnation regions. Based on these parameters, the risks for hemolysis, atheroembolism, and cerebral embolism were evaluated and compared. On one hand, the jet emerging from the ST cannula generated large wall-shear stress at the aortic wall; this may have triggered the erosion and distribution of embolic atheromatous debris from the aortic arch. On the other hand, it diverted more emboli from the clamp region to the descending aorta and thus reduced the risk for cerebral embolism. The TIP1 cannula demonstrated less shear stress on the aortic wall and diverted more emboli from the clamp region toward the upper vessels. The TIP2 cannula exhibited a stronger emanating jet, higher shear stress inside the cannula, and highly disturbed flow, which was more stagnant near the clamp region. Current findings support the significant impact of the cannula design and orientation on emboli generation and distribution. Specifically, the straight tip cannula demonstrated a reduced risk of cerebral embolism

  15. Finite element stress analysis of polymers at high strains

    Science.gov (United States)

    Durand, M.; Jankovich, E.

    1973-01-01

    A numerical analysis is presented for the problem of a flat rectangular rubber membrane with a circular rigid inclusion undergoing high strains due to the action of an axial load. The neo-hookean constitutive equations are introduced into the general purpose TITUS program by means of equivalent hookean constants and initial strains. The convergence is achieved after a few iterations. The method is not limited to any specific program. The results are in good agreement with those of a company sponsored photoelastic stress analysis. The theoretical and experimental deformed shapes also agree very closely with one another. For high strains it is demonstrated that using the conventional HOOKE law the stress concentration factor obtained is unreliable in the case of rubberlike material.

  16. Hemodynamics Simulation of Stenosed Coronary Bypass Graft

    Institute of Scientific and Technical Information of China (English)

    LIU You-jun; QIAO Aike; DU Jian-jun

    2005-01-01

    By means of FEM, the physiological blood flow in coronary bypass graft is simulated. The stenosis in coronary artery is involved in the graft model,and the deformation of graft end to allow the surgical suture with a smaller diameter coronary is taken into consideration. The flow pattern, secondary flow and wall shear stress in the vicinity of anastomosis are analyzed. It is shown that a zone of low wall stress and high wall stress gradient exists downstream the toe. The floor opposed to the anastomosis is an area of high wall stress and high wall stress gradient. Both the toe downstream and the anastomosis bottom floor are prone to intimal hyperplasia.

  17. Hemodynamic Consequences of Changes in Microvascular Structure.

    Science.gov (United States)

    Rizzoni, Damiano; Agabiti-Rosei, Claudia; Agabiti-Rosei, Enrico

    2017-10-01

    In hypertension, an increased media-to-lumen ratio of small resistance arteries might play an important role in the increase of vascular resistance, and may also be an adaptive response to the increased hemodynamic load. The presence of morphological alteration in the microvasculature may be associated to an impaired tissue perfusion and/or to the development of target organ damage. Structural alterations in the microcirculation might represent a predictor of the onset of cardio-cerebrovascular events and hypertension complications. A cross-talk between the small and large artery may exaggerate arterial damage, following a vicious circle. Therefore, in the present review, possible hemodynamic consequences of the presence of microvascular structural alterations will be considered, in terms of their time of onset, role in the development and/or maintenance of high blood pressure values, and interrelationships with structural/mechanical alterations of large conductance arteries. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Phenome data - High-sugar stress - DGBY | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us DGBY Phenome data - High-sugar stress Data detail Data name Phenome data - High-sugar stress...gh concentrations of sucrose during sweet dough fermentation. Despite its importance, tolerance to high-sucrose stres...for tolerance to high-sucrose stress, genome-wide screening was undertaken using the complete deletion strai...high sucrose. The general stress response pathways via high-osmolarity glycerol and stress response element ... In the presence of high-sucrose stress, intracellular contents of ATP in ade mut

  19. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo

    2016-11-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  20. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo

    2017-08-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  1. Multiple High Voltage Pulse Stressing of Polymer Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    Busi Rambabu

    2014-01-01

    Full Text Available The purpose of this paper is to study high voltage interactions in polymer thick film resistors, namely, polyvinyl chloride- (PVC- graphite thick film resistors, and their applications in universal trimming of these resistors. High voltages in the form of impulses for various pulse durations and with different amplitudes have been applied to polymer thick film resistors and we observed the variation of resistance of these resistors with high voltages. It has been found that the resistance of polymer thick film resistors decreases in the case of higher resistivity materials and the resistance of polymer thick film resistor increases in the case of lower resistivity materials when high voltage impulses are applied to them. It has been also found that multiple high voltage pulse (MHVP stressing can be used to trim the polymer thick film resistors either upwards or downwards.

  2. Particle Image Velocimetry studies of bicuspid aortic valve hemodynamics

    Science.gov (United States)

    Saikrishnan, Neelakantan; Yap, Choon-Hwai; Yoganathan, Ajit P.

    2010-11-01

    Bicuspid aortic valves (BAVs) are a congenital anomaly of the aortic valve with two fused leaflets, affecting about 1-2% of the population. BAV patients have much higher incidence of valve calcification & aortic dilatation, which may be related to altered mechanical forces from BAV hemodynamics. This study aims to characterize BAV hemodynamics using Particle Image Velocimetry(PIV). BAV models are constructed from normal explanted porcine aortic valves by suturing two leaflets together. The valves are mounted in an acrylic chamber with two sinuses & tested in a pulsatile flow loop at physiological conditions. 2D PIV is performed to obtain flow fields in three planes downstream of the valve. The stenosed BAV causes an eccentric jet, resulting in a very strong vortex in the normal sinus. The bicuspid sinus vortex appears much weaker, but more unstable. Unsteady oscillatory shear stresses are also observed, which have been associated with adverse biological response; characterization of the hemodynamics of BAVs will provide the first step to understanding these processes better. Results from multiple BAV models of varying levels of stenosis will be presented & higher stenosis corresponded to stronger jets & increased aortic wall shear stresses.

  3. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo

    2012-05-01

    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  4. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    Science.gov (United States)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  5. Acute hemodynamic response to vasodilators in primary pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Kulkarni H

    1996-01-01

    Full Text Available Acute hemodynamic effects of high flow oxygen (O2 inhalation, sublingual isosorbide dinitrate (ISDN, intravenous aminophylline (AMN and sublingual nifedipine (NIF were studied in 32 patients with primary pulmonary hypertension (PPH. In 30 out of 32 patients the basal ratio of pulmonary to systemic vascular resistance (Rp/Rs was > 0.5 (mean = 0.77 +/- 0.20. Oxygen caused significant decrease in the mean resistance ratio to 0.68 +/- 0.20 (p = 0.005. ISDN, AMN and NIF caused increase in the resistance ratio to 0.79 +/- 0.26; 0.78 +/- 0.26; and 0.80 +/- 0.23 respectively. O2, ISDN, AMN and NIF caused a fall of Rp/Rs in 21 (65.6%, 10 (31.2%, 10(31.2% and 9(28.1% patients respectively. Thus, of the four drugs tested high flow O2 inhalation resulted in fall of Rp/Rs in two thirds of patients whereas ISDN, AMN and NIF caused a mean rise in Rp/Rs. One third of patients did respond acutely to the latter three drugs. Acute hemodynamic studies are useful before prescribing vasodilators in patients with PPH since more of the commonly used drugs like ISDN, AMN, NIF could have detrimental hemodynamic responses in some patients. However, great caution should be exercised before performing hemodynamic study as the procedure has definite mortality and morbidity.

  6. Monitoring changes in hemodynamics following optogenetic stimulation

    Science.gov (United States)

    Frye, Seth

    The brain is composed of billions of neurons, all of which connected through a vast network. After years of study and applications of different technologies and techniques, there are still more questions than answers when it comes to the fundamental functions of the brain. This project aims to provide a new tool which can be used to gain a better understanding of the fundamental mechanisms that govern neurological processes inside the brain. In order for neural networks to operate, blood has to be supplied through neighboring blood vessels. As such, the increase or decrease in the blood supply has been used as an indicator of neural activity. The neural activity and blood supply relationship is known as neural vasculature coupling. Monitoring the hemodynamics is used as an indicator of neurological activity, but the causal relationship is an area of current research. Gaining a better understanding of the coupling of neural activity and the surrounding vasculature provides a more accurate methodology to evaluate regional neural activity. The new optical technology applied in this project provides a set of tools to both stimulate and monitor this coupling relationship. Optogenetics provides the capability of stimulating neural activity using specific wavelengths of light. Essentially this tool allows for the direct stimulation of networks of neurons by simply shining one color of light onto the brain. Optical Coherence Tomography (OCT), another new optical technology applied in this project, can record volumetric images of blood vessels and flow using only infrared light. The combination of the two optical technologies is then capable of stimulating neural activity and monitoring the hemodynamic response inside the brain using only light. As a result of this project we have successfully demonstrated the capability of both stimulating and imaging the brain using new optical technologies. The optical stimulation of neural activity has evoked a direct hemodynamic effect

  7. A High shear stress segment along the San Andreas Fault: Inferences based on near-field stress direction and stress magnitude observations in the Carrizo Plain Area

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, D. A., [Department of Geology and Geophysics, University of Adelaide (Australia); Younker, L.W. [Lawrence Livermore National Lab., CA (United States)

    1997-01-30

    Nearly 200 new in-situ determinations of stress directions and stress magnitudes near the Carrizo plain segment of the San Andreas fault indicate a marked change in stress state occurring within 20 km of this principal transform plate boundary. A natural consequence of this stress transition is that if the observed near-field ``fault-oblique`` stress directions are representative of the fault stress state, the Mohr-Coulomb shear stresses resolved on San Andreas sub-parallel planes are substantially greater than previously inferred based on fault-normal compression. Although the directional stress data and near-hydrostatic pore pressures, which exist within 15 km of the fault, support a high shear stress environment near the fault, appealing to elevated pore pressures in the fault zone (Byerlee-Rice Model) merely enhances the likelihood of shear failure. These near-field stress observations raise important questions regarding what previous stress observations have actually been measuring. The ``fault-normal`` stress direction measured out to 70 km from the fault can be interpreted as representing a comparable depth average shear strength of the principal plate boundary. Stress measurements closer to the fault reflect a shallower depth-average representation of the fault zone shear strength. If this is true, only stress observations at fault distances comparable to the seismogenic depth will be representative of the fault zone shear strength. This is consistent with results from dislocation monitoring where there is pronounced shear stress accumulation out to 20 km of the fault as a result of aseismic slip within the lower crust loading the upper locked section. Beyond about 20 km, the shear stress resolved on San Andreas fault-parallel planes becomes negligible. 65 refs., 15 figs.

  8. Oxidative stress at high altitude: genotype–phenotype correlations

    Directory of Open Access Journals (Sweden)

    Pandey P

    2014-05-01

    Full Text Available Priyanka Pandey,1,2 MA Qadar Pasha1,2 1CSIR-Institute of Genomics and Integrative Biology, Delhi, India; 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, India Abstract: It has been well-documented that the hypobaric hypoxic environment at high altitude (HA causes stress to both the permanent residents of HA and the sojourners. This oxidative stress primarily disturbs the oxygen-sensing and vascular homeostasis pathways, thereby upsetting normal human physiology, especially in sojourners. These environmental challenges have caused dynamic evolutionary changes within natives of HA, allowing them to develop adaptive plasticity. This review focuses on the genomic and biochemical features of the molecules involved in the oxygen-sensing and vascular homeostasis pathways with respect to HA pulmonary edema (HAPE and adaptation. We review the role of genetic markers such as HIF-prolyl hydroxylase 2, endothelial PAS domain-containing protein 1, endothelial nitric oxide synthase, endothelin 1, cytochrome b-245 alpha polypeptide, and glutathione S-transferase pi 1, as well as three circulatory biomarkers (nitric oxide, endothelin 1, and 8-iso-prostaglandin F2α, by highlighting approaches such as candidate gene and genome-wide, adopted in deciphering the pathways. A disagreement between the two approaches has also been highlighted. In addition, we discuss that an overrepresentation of wild-type alleles in HA natives and mutant alleles of same polymorphisms in HAPE patients implies that the allelic variants at the same locus are involved in adaptation and HAPE, respectively. Moreover, healthy sojourners present a number of genomic features similar to HA natives, further strengthening the concept of genetic predisposition. A trend in correlation between protective and risk alleles and altered levels of circulatory markers clearly documents the phenomenon of genotype–phenotype correlations. We conclude that the genetic and biochemical

  9. Physiological Evaluation of a Student in E-learning Sessions by Hemodynamic Responses

    Science.gov (United States)

    Nomura, Shusaku; Irfan, C. M. Althaff; Yamagishi, Takao; Kurosawa, Yoshimasa; Yajima, Kuniaki; Nakahira, Katsuko T.; Ogawa, Nobuyuki; Handri, Santoso; Fukumura, Yoshimi

    In this study, a novel approach towards the evaluation of students in e-learning sessions is regarded; the physiological responses of the students who were engaged in e-learning materials were investigated. Among a full battery of physiological signals, we focused on human hemodynamic activity, which is represented by the blood pressure. The past hemodynamic studies on mental stress showed that the difference in subject's stress coping style, i.e., active and passive coping, induced different hemodynamic responses. Such a variety of stress coping styles is also anticipated to be prevailing in attendees of e-learning course. In the experiment, the hemodynamic responses of the students who were engaged in the e-learning session were investigated with two considerably contrasting e-learning materials, one is characterized by an interactive material and the other is by non-interactive material. As a developing result, a particular hemodynamic pattern, which is involved in the subject's active coping, was observed in the interactive condition, and that of passive coping was observed in the non-interactive condition, whereas there was no significant difference in the score of questionnaire on the materials. These results thus led to an idea of the objective evaluation of the attendees of e-learning courses.

  10. Fluid-Structure Interaction Modeling of Intracranial Aneurysm Hemodynamics: Effects of Different Assumptions

    Science.gov (United States)

    Rajabzadeh Oghaz, Hamidreza; Damiano, Robert; Meng, Hui

    2015-11-01

    Intracranial aneurysms (IAs) are pathological outpouchings of cerebral vessels, the progression of which are mediated by complex interactions between the blood flow and vasculature. Image-based computational fluid dynamics (CFD) has been used for decades to investigate IA hemodynamics. However, the commonly adopted simplifying assumptions in CFD (e.g. rigid wall) compromise the simulation accuracy and mask the complex physics involved in IA progression and eventual rupture. Several groups have considered the wall compliance by using fluid-structure interaction (FSI) modeling. However, FSI simulation is highly sensitive to numerical assumptions (e.g. linear-elastic wall material, Newtonian fluid, initial vessel configuration, and constant pressure outlet), the effects of which are poorly understood. In this study, a comprehensive investigation of the sensitivity of FSI simulations in patient-specific IAs is investigated using a multi-stage approach with a varying level of complexity. We start with simulations incorporating several common simplifications: rigid wall, Newtonian fluid, and constant pressure at the outlets, and then we stepwise remove these simplifications until the most comprehensive FSI simulations. Hemodynamic parameters such as wall shear stress and oscillatory shear index are assessed and compared at each stage to better understand the sensitivity of in FSI simulations for IA to model assumptions. Supported by the National Institutes of Health (1R01 NS 091075-01).

  11. Transmediastinal and Transcardiac Gunshot Wound with Hemodynamic Stability

    Directory of Open Access Journals (Sweden)

    Leire Zarain Obrador

    2014-01-01

    Full Text Available Cardiac injuries caused by knives and firearms are slightly increasing in our environment. We report the case of a 43-year-old male patient with a transmediastinal gunshot wound (TGSW and a through-and-through cardiac wound who was hemodynamically stable upon his admission. He had an entrance wound below the left clavicle, with no exit wound, and decreased breath sounds in the right hemithorax. Chest X-ray showed the bullet in the right hemithorax and large right hemothorax. The ultrasound revealed pericardial effusion, and a chest tube produced 1500 cc. of blood, but he remained hemodynamically stable. Considering these findings, a median sternotomy was carried out, the through-and-through cardiac wounds were suture-repaired, lung laceration was sutured, and a pacemaker was placed in the right ventricle. The patient had uneventful recovery and was discharged home on the twelfth postoperative day. The management and prognosis of these patients are determined by the hemodynamic situation upon arrival to the Emergency Department (ED, as well as a prompt surgical repair if needed. Patients with a TGSW have been divided into three groups according to the SBP: group I, with SBP >100 mmHg; group II, with SBP 60–100 mmHg; and group III, with SBP <60 mmHg. The diagnostic workup and management should be tailored accordingly, and several series have confirmed high chances of success with conservative management when these patients are hemodynamically stable.

  12. Large eddy simulation of powered Fontan hemodynamics.

    Science.gov (United States)

    Delorme, Y; Anupindi, K; Kerlo, A E; Shetty, D; Rodefeld, M; Chen, J; Frankel, S

    2013-01-18

    Children born with univentricular heart disease typically must undergo three open heart surgeries within the first 2-3 years of life to eventually establish the Fontan circulation. In that case the single working ventricle pumps oxygenated blood to the body and blood returns to the lungs flowing passively through the Total Cavopulmonary Connection (TCPC) rather than being actively pumped by a subpulmonary ventricle. The TCPC is a direct surgical connection between the superior and inferior vena cava and the left and right pulmonary arteries. We have postulated that a mechanical pump inserted into this circulation providing a 3-5 mmHg pressure augmentation will reestablish bi-ventricular physiology serving as a bridge-to-recovery, bridge-to-transplant or destination therapy as a "biventricular Fontan" circulation. The Viscous Impeller Pump (VIP) has been proposed by our group as such an assist device. It is situated in the center of the 4-way TCPC intersection and spins pulling blood from the vena cavae and pushing it into the pulmonary arteries. We hypothesized that Large Eddy Simulation (LES) using high-order numerical methods are needed to capture unsteady powered and unpowered Fontan hemodynamics. Inclusion of a mechanical pump into the CFD further complicates matters due to the need to account for rotating machinery. In this study, we focus on predictions from an in-house high-order LES code (WenoHemo(TM)) for unpowered and VIP-powered idealized TCPC hemodynamics with quantitative comparisons to Stereoscopic Particle Imaging Velocimetry (SPIV) measurements. Results are presented for both instantaneous flow structures and statistical data. Simulations show good qualitative and quantitative agreement with measured data.

  13. High lung volume increases stress failure in pulmonary capillaries

    Science.gov (United States)

    Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.

    1992-01-01

    We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological

  14. Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas.

    Science.gov (United States)

    Zhu, Qihui; Zhang, Linlin; Li, Li; Que, Huayong; Zhang, Guofan

    2016-04-01

    As a characteristic sessile inhabitant of the intertidal zone, the Pacific oyster Crassostrea gigas occupies one of the most physically stressful environments on earth. With high exposure to terrestrial conditions, oysters must tolerate broad fluctuations in temperature range. However, oysters' cellular and molecular responses to temperature stresses have not been fully characterized. Here, we analyzed oyster transcriptome data under high and low temperatures. We also identified over 30 key temperature stress-responsive candidate genes, which encoded stress proteins such as heat shock proteins and apoptosis-associated proteins. The expression characterization of these genes under short-term cold and hot environments (5 and 35 °C) and long-term cold environments (5 °C) was detected by quantitative real-time PCR. Most of these genes reached expression peaks during the recovery stage after 24 h of heat stress, and these genes were greatly induced around day 3 in long-term cold stress while responded little to short-term cold stress. In addition, in the second heat stress after 2 days of recovery, oysters showed milder expression in these genes and a lower mortality rate, which indicated the existence of plasticity in the oyster's response to heat stress. We confirmed that homeostatic flexibility and anti-apoptosis might be crucial centers of temperature stress responses in oysters. Furthermore, we analyzed stress gene families in 11 different species and found that the linage-specific expansion of stress genes might be implicated in adaptive evolution. These results indicated that both plasticity and evolution played an important role in the stress response adaptation of oysters.

  15. A Study of Relaxation Techniques and Coping Skills with Moderately to Highly Stressed Middle and High School Students.

    Science.gov (United States)

    Credit, Alison; Garcia, Mary

    This report describes a program for heightening awareness of stress and reducing stress levels while improving learning. The targeted population comprised seventh and ninth grade students in middle schools and high schools located in affluent suburban communities of a large Midwest city. The problem of moderate to high levels of stress was…

  16. In vivo isolation of the effects of melanin from underlying hemodynamics across skin types using spatial frequency domain spectroscopy

    Science.gov (United States)

    Saager, Rolf B.; Sharif, Ata; Kelly, Kristen M.; Durkin, Anthony J.

    2016-05-01

    Skin is a highly structured tissue, raising concerns as to whether skin pigmentation due to epidermal melanin may confound accurate measurements of underlying hemodynamics. Using both venous and arterial cuff occlusions as a means of inducing differential hemodynamic perturbations, we present analyses of spectra limited to the visible or near-infrared regime, in addition to a layered model approach. The influence of melanin, spanning Fitzpatrick skin types I to V, on underlying estimations of hemodynamics in skin as interpreted by these spectral regions are assessed. The layered model provides minimal cross-talk between melanin and hemodynamics and enables removal of problematic correlations between measured tissue oxygenation estimates and skin phototype.

  17. Evaluation of hemodynamic significance of coronary fistulae. Diagnostic integration between coronary angiography and stress/rest myocardial scintigraphy; Valutazione del significato emodinamico di fistole coronariche artero-venose. Integrazione diagnostica tra angiografia coronarica e scintigrafia miocardica a riposo e sotto sforzo

    Energy Technology Data Exchange (ETDEWEB)

    Rubini, G.; Sebastiani, M. [Bari Univ., Bari (Italy). Cattedra di Medicina Nucleare; Ettorre, G. C. [Foggia Univ., Foggia (Italy). Cattedra di Radiologia; Bovenzi, F. [Ospedale Policlinico, Unita' Operativa di Cardiologia, Bari (Italy)

    2000-12-01

    It is here reported on the importance of the integration of data obtained from digital coronary angiography and stress/rest {sup 99m}Tc sestamibi myocardial perfusion single photon emission tomography in evaluationing the hemodynamic significance of coronary arteriovenous fistulae. Coronary fistulae were detected with coronary angiography in 9 patients. All patients underwent clinical examination, trans thoracic echocardiography, stress electrocardiogram and stress/rest {sup 99m}Tc sestamibi myocardial perfusion single photon emission tomography. Stress/rest {sup 99m}Tc sestamibi myocardial perfusion single photon tomography and stress electrocardiogram showed stress-induced myocardial ischemia in 2 patients. The first patient with familial predisposition and risk factors for ischemic heart disease presented a mesocardic heart murmur on clinical examination. At stress ECG (125 Watt, 153 b/m max frequency 93%, arterial pressure 230 mmHg, max frequency pressure product 35200) ischemic alterations were recorded at the first minute of the second stage of the Bruce protocol. Coronary angiography detected a circumflex artery fistula in the coronary sinus. Stress/rest {sup 99m}Tc sestamibi myocardial perfusion single photon emission tomography for the evaluation of stress/rest perfusion detected a reversible perfusion defect of the proximal portion of the posterolateral and lateral walls, thus confirming the hemodynamic importance of the flow through the fistula during stress cycloergometric testing. In the second patient familial predisposition to ischemic heart disease and previous inferior wall myocardial infarction and non-significant stress ECG, coronary angiography identified a suocclusive stenosis of the right coronary artery and anomaly between the anterior interventricular artery and the left pulmonary artery. The presence of the contrast medium in the left pulmonary artery identified a flow from the left ventricle to the left pulmonary artery. Good angiographic

  18. Wireless Monitoring of Liver Hemodynamics In Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Akl, Tony [Texas A& M University; Wilson, Mark A. [University of Pittsburgh School of Medicine, Pittsburgh PA; Ericson, Milton Nance [ORNL; Farquhar, Ethan [ORNL; Cote, Gerard L. [Texas A& M University

    2014-01-01

    Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics.

  19. Antioxidation of Anthocyanins in Photosynthesis Under High Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    Ling Shao; Zhan Shu; Shu-Lan Sun; Chang-Lian Peng; Xiao-Jing Wang; Zhi-Fang Lin

    2007-01-01

    Chlorophyll fluorescence and antioxidative capability in detached leaves of the wild type Arabidopsis thaliana L. ecotype Landsberg erecta (Ler) and three mutants deficient in anthocyanins biosynthesis (tt3, tt4, and tt3tt4) were investigated during treatment with temperatures ranging 25-45 ℃. In comparison with the wild type, chlorophyll fluorescence parameters Fv/Fm, ΦPSⅡ, electron transport rate (ETR), Fv/Fo and qP in three anthocyanin-deficient mutants showed a more rapidly decreasing rate when the temperature was over 35 ℃. Non-photochemical quenching (NPQ) in these mutants was almost completely lost at 44 ℃, whereas the content of heat stable protein dropped and the rate of the membrane leakage increased.Fo-temperature curves were obtained by monitoring Fo levels with gradually elevated temperatures from 22 ℃ to 72 ℃ at 0.5℃/min. The inflexion temperatures of Fo were 45.8 ℃ in Ler, 45.1 ℃ in tt3, 44.1 ℃ in tt4 and 42.3 ℃ in tt3tt4, respectively.The temperatures of maximal Fo in three mutants were 1.9-3.8 ℃ lower than the wild type plants. Meanwhile, three mutants had lower activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) and an inferior scavenging capability to DPPH (1.1-diphenyl-2-picrylhy.drazyl) radical under heat stress, and in particular tt3tt4 had the lowest antioxidative potential. The results of the diaminobenzidine-H2O2 histochemical staining showed that H2O2 was accumulated in the leaf vein and mesophyll cells of mutants under treatment at 40 ℃, and it was significantly presented in leaf cells of tt3tt4.The sensitivity of Arabidopsis anthocyanins-deficient mutants to high temperatures has revealed that anthocyanins in normal plants might provide protection from high temperature injury, by enhancing its antioxidative capability under high temperature stress.

  20. THE STUDIES OF THE STRESS WAVE THEORY ON ROCKBURST UNDER HIGH STRATA STRESS

    Institute of Scientific and Technical Information of China (English)

    高全臣; 安保全; 靳毅斌

    1998-01-01

    Through the analysis of the occurring and developing process of the rockburst under thehigh strata stress, it points out that the action of stress wave is the key factor to affect therockburst process. The characteristics of stress wave as well as its relation with the strata stressand the mechanism of its causing rockburst are explained. Finally, the preventing measures of therockburst caused by the stress wave are put forward.

  1. Combined Visualization of Vessel Deformation and Hemodynamics in Cerebral Aneurysms.

    Science.gov (United States)

    Meuschke, Monique; Voss, Samuel; Beuing, Oliver; Preim, Bernhard; Lawonn, Kai

    2017-01-01

    We present the first visualization tool that combines patient-specific hemodynamics with information about the vessel wall deformation and wall thickness in cerebral aneurysms. Such aneurysms bear the risk of rupture, whereas their treatment also carries considerable risks for the patient. For the patient-specific rupture risk evaluation and treatment analysis, both morphological and hemodynamic data have to be investigated. Medical researchers emphasize the importance of analyzing correlations between wall properties such as the wall deformation and thickness, and hemodynamic attributes like the Wall Shear Stress and near-wall flow. Our method uses a linked 2.5D and 3D depiction of the aneurysm together with blood flow information that enables the simultaneous exploration of wall characteristics and hemodynamic attributes during the cardiac cycle. We thus offer medical researchers an effective visual exploration tool for aneurysm treatment risk assessment. The 2.5D view serves as an overview that comprises a projection of the vessel surface to a 2D map, providing an occlusion-free surface visualization combined with a glyph-based depiction of the local wall thickness. The 3D view represents the focus upon which the data exploration takes place. To support the time-dependent parameter exploration and expert collaboration, a camera path is calculated automatically, where the user can place landmarks for further exploration of the properties. We developed a GPU-based implementation of our visualizations with a flexible interactive data exploration mechanism. We designed our techniques in collaboration with domain experts, and provide details about the evaluation.

  2. Morphological and hemodynamic analysis of mirror posterior communicating artery aneurysms.

    Directory of Open Access Journals (Sweden)

    Jinyu Xu

    Full Text Available BACKGROUND AND PURPOSE: Hemodynamic factors are commonly believed to play an important role in the pathogenesis, progression, and rupture of cerebral aneurysms. In this study, we aimed to identify significant hemodynamic and morphological parameters that discriminate intracranial aneurysm rupture status using 3-dimensional-angiography and computational fluid dynamics technology. MATERIALS AND METHODS: 3D-DSA was performed in 8 patients with mirror posterior communicating artery aneurysms (Pcom-MANs. Each pair was divided into ruptured and unruptured groups. Five morphological and three hemodynamic parameters were evaluated for significance with respect to rupture. RESULTS: The normalized mean wall shear stress (WSS of the aneurysm sac in the ruptured group was significantly lower than that in the unruptured group (0.52±0.20 versus 0.81±0.21, P = .012. The percentage of the low WSS area in the ruptured group was higher than that in the unruptured group (4.11±4.66% versus 0.02±0.06%, P = .018. The AR was 1.04±0.21 in the ruptured group, which was significantly higher than 0.70±0.17 in the unruptured group (P = .012. By contrast, parameters that had no significant differences between the two groups were OSI (P = .674, aneurysm size (P = .327, size ratio (P = .779, vessel angle (P = 1.000 and aneurysm inclination angle (P = 1.000. CONCLUSIONS: Pcom-MANs may be a useful disease model to investigate possible causes of aneurysm rupture. The ruptured aneurysms manifested lower WSS, higher percentage of low WSS area, and higher AR, compared with the unruptured one. And hemodynamics is as important as morphology in discriminating aneurysm rupture status.

  3. Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress.

    Science.gov (United States)

    Han, Yanping; Zhou, Dongsheng; Pang, Xin; Zhang, Ling; Song, Yajun; Tong, Zongzhong; Bao, Jingyue; Dai, Erhei; Wang, Jin; Guo, Zhaobiao; Zhai, Junhui; Du, Zongmin; Wang, Xiaoyi; Wang, Jian; Huang, Peitang; Yang, Ruifu

    2005-04-01

    DNA microarray was used as a tool to investigate genome-wide transcriptional responses of Yersinia pestis to hyperosmotic and high-salinity stress. Hyperosmotic stress specifically upregulated genes responsible for ABC-type transport and the cytoplasmic accumulation of certain polysaccharides, while high-salinity stress induced the transcription of genes encoding partition proteins and several global transcriptional regulators. Genes whose transcription was enhanced by both kinds of stress comprised those encoding osmoprotectant transport systems and a set of virulence determinants. The number of genes downregulated by the two kinds of stress was much lower than that of upregulated genes, suggesting that neither kind of stress severely depresses cellular processes in general. Many differentially regulated genes still exist whose functions remain unknown. Y. pestis recognized high-salinity and hyperosmotic stress as different kinds of environmental stimuli, and different mechanisms enabled acclimation to these two kinds of stress, although Y. pestis still executed common mechanisms to accommodate both types of stress.

  4. [CLINICAL-HEMODYNAMIC PECULIARITIES OF THE COURSE OF HEMODYNAMIC ISCHEMIC STROKE IN ACUTE PERIOD].

    Science.gov (United States)

    Shkrobot, S; Sokhor, N; Milevska-Vovchuk, L; Yasniy, O; Shkrobot, L

    2017-02-01

    The aim of the research is to study the peculiarities of cardiac morphometric parameters, the parameters of central hemodynamics and their impact on the course of hemodynamic ischemic stroke in acute period. 116 patients were performed Echo-Doppler-cardiography in acute period of hemodynamic ischemic stroke in order to evaluate cardiac morphometric parameters. These patients were also performed transcranial duplex scanning. The results established that among significant clinical factors that influence the course of the acute period of hemodynamic ischemic stroke the most important are: the size of the focus, the level of consciousness on the 1st day, primary systolic arterial pressure, age of the patient. Hemodynamic ischemic stroke occurs on the background of changes of cardiac morphometric parameters and the disorders of the central hemodynamics. There is a close connection between the severity of hemodynamic ischemic stroke on the 7th and 14th day with the ejection fraction, the size of left atrium, the thickness of posterior wall of left ventricle, final diastolic size of left ventricle. The interrelation between the parameters of cerebral hemodynamics and cardiac morphometric parameters was established. cardiac morphometric parameters and parameters of central hemodynamics can be predictors of the course of hemodynamic ischemic stroke in acute period.

  5. Usefulness of Hemodynamic Sensors for Physiologic Cardiac Pacing in Heart Failure Patients

    Directory of Open Access Journals (Sweden)

    Eraldo Occhetta

    2011-01-01

    Full Text Available The rate adaptive sensors applied to cardiac pacing should respond as promptly as the normal sinus node with an highly specific and sensitive detection of the need of increasing heart rate. Sensors operating alone may not provide optimal heart responsiveness: central venous pH sensing, variations in the oxygen content of mixed venous blood, QT interval, breathing rate and pulmonary minute ventilation monitored by thoracic impedance variations, activity sensors. Using sensors that have different attributes but that work in a complementary manners offers distinct advantages. However, complicated sensors interactions may occur. Hemodynamic sensors detect changes in the hemodynamic performances of the heart, which partially depends on the autonomic nervous system-induced inotropic regulation of myocardial fibers. Specific hemodynamic sensors have been designed to measure different expression of the cardiac contraction strength: Peak Endocardial Acceleration (PEA, Closed Loop Stimulation (CLS and TransValvular Impedance (TVI, guided by intraventricular impedance variations. Rate-responsive pacing is just one of the potential applications of hemodynamic sensors in implantable pacemakers. Other issues discussed in the paper include: hemodynamic monitoring for the optimal programmation and follow up of patients with cardiac resynchronization therapy; hemodynamic deterioration impact of tachyarrhythmias; hemodynamic upper rate limit control; monitoring and prevention of vasovagal malignant syncopes.

  6. Effects of three-way laryngeal mask airway ventilation on hemodynamics and stress responses during bronchoscopy%三通喉罩通气在纤维支气管镜检查术中对血流动力学和应激激素水平的影响

    Institute of Scientific and Technical Information of China (English)

    邵丽; 杨鲜妮; 陆卫忠; 全超坤

    2014-01-01

    Objective To evaluate the effects of three-way laryngeal mask airway (TLMA ) mechanical ventilation on the hemodynamics and stress responses of patients during bronchoscopy.Methods Sixty patients with ASA class Ⅰ or Ⅱ and undergoing bronchoscopy were divided into three groups according to the stratified sampling principle (n =20 each):topical anesthesia (group A),intravenous anesthesia with endoscopic mask ventilation (group B)and intravenous anesthesia with TLMA ventilation (group C).Topical anesthesia with 20 ml 2% lidocaine was applied for the patients in all the three groups.Patients in group B and group C also received intravenous injection with fentanyl (1.0 μg/kg ) and propofol (1.5 mg/kg ),followed by sustaining anesthesia with micropump actuated continuous injection of propofol (6.0 mg/kg · h).Heart rate (HR),systolic blood pressure (SBP),diastolic blood pressure(DBP)and arterial oxygen saturation(SaO 2 )were continuously monitored during anesthesia and measured at 5 min after entering the surgery room(T0 ),just before the bronchoscope entering the glottis(T1 ),immediately after the bronchoscope entering the glottis(T2 ),3 min after the bronchoscope entering the glottis(T3 ),the time of biopsy(T4 ) and immediately after the bronchoscope extubated from the glottis(T5 ).Blood samples collected at T0 ,T1 ,T2 ,T3 ,T4 and T5 were used for the determination of plasma epinephrine(E),norepinephrine(NE)and dopamine(DA)using high performance liquid chromatography.Results SBP,DBP and HR in group A increased significantly at T2 ,T3 ,T4 and T5 as compared with those at baseline (P <0.01).They were also significantly higher than those in groups B and C at the corresponding time points (P <0.01).The levels of E,NE and DA in group A were significantly higher than those in groups B and C at T2 ,T3 ,T4 and T5 (P < 0.01 ).Conclusion TLMA is more effective in maintaining stable ventilation and stable hemodynamics and causing less stress responses during bronchoscopy.%

  7. Tempol improves renal hemodynamics and pressure natriuresis in hyperthyroid rats.

    Science.gov (United States)

    Moreno, Juan Manuel; Rodríguez Gómez, Isabel; Wangensteen, Rosemary; Alvarez-Guerra, Miriam; de Dios Luna, Juan; García-Estañ, Joaquín; Vargas, Félix

    2008-03-01

    Hyperthyroidism in rats is associated with increased oxidative stress. These animals also show abnormal renal hemodynamics and an attenuated pressure-diuresis-natriuresis (PDN) response. We analyzed the role of oxidative stress as a mediator of these alterations by examining acute effects of tempol, a superoxide dismutase mimetic. The effects of increasing bolus doses of tempol (25-150 micromol/kg) on mean arterial pressure (MAP), renal vascular resistance (RVR), and cortical (CBF) and medullary (MBF) blood flow were studied in control and thyroxine (T4)-treated rats. In another experiment, tempol was infused at 150 micromol.kg(-1).h(-1) to analyze its effects on the glomerular filtration rate (GFR) and on PDN response in these animals. Tempol dose dependently decreased MAP and RVR and increased CBF and MBF in control and T4-treated rats, but the T4 group showed a greater responsiveness to tempol in all of these variables. The highest dose of tempol decreased RVR by 13.5 +/- 2.1 and 5.5 +/- 1.2 mmHg.ml(-1).min(-1) in hyperthyroid (P natriuresis (T4+tempol: 0.17 +/- 0.05; T4: 0.09 +/- 0.03 microeq.min(-1).g(-1).mmHg(-1); P < 0.05) and reduced 8-isoprostane excretion in hyperthyroid rats. These results show that antioxidant treatment with tempol improves renal hemodynamic variables and PDN response in hyperthyroid rats, indicating the participation of an increased oxidative stress in these mechanisms.

  8. Bicuspid aortic valve hemodynamics: a fluid-structure interaction study

    Science.gov (United States)

    Chandra, Santanu; Seaman, Clara; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV) is a congenital defect in which the aortic valve forms with two leaflets instead of three. While calcific aortic valve disease (CAVD) also develops in the normal tricuspid aortic valve (TAV), its progression in the BAV is more rapid. Although studies have suggested a mechano-potential root for the disease, the native BAV hemodynamics remains largely unknown. This study aimed at characterizing BAV hemodynamics and quantifying the degree of wall-shear stress (WSS) abnormality on BAV leaflets. Fluid-structure interaction models validated with particle-image velocimetry were designed to predict the flow and leaflet dynamics in idealized TAV and BAV anatomies. Valvular function was quantified in terms of the effective orifice area. The regional leaflet WSS was characterized in terms of oscillatory shear index, temporal shear magnitude and temporal shear gradient. The predictions indicate the intrinsic degree of stenosis of the BAV anatomy, reveal drastic differences in shear stress magnitude and pulsatility on BAV and TAV leaflets and confirm the side- and site-specificity of the leaflet WSS. Given the ability of abnormal fluid shear stress to trigger valvular inflammation, these results support the existence of a mechano-etiology of CAVD in the BAV.

  9. Transcriptome Analysis of High-Temperature Stress in Developing Barley Caryopses :Early Stress Responses and Effects on Storage Compound Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Elke Mangelsen; Joachim Kilian; Klaus Harter; Christer Jansson; Dierk Wanke; Eva Sundberg

    2011-01-01

    High-temperature stress,like any abiotic stress,impairs the physiology and development of plants,including the stages of seed setting and ripening.We used the Aflymetrix 22K Barley1 GeneChip microarray to investigate the response of developing barley(Hordeum vulgare)seeds,termed caryopses,after 0.5,3,and 6 h of heat stress exposure;958 induced and 1122 repressed genes exhibited spatial and temporal expression patterns that provide a detailed insight into the caryopses'early heat stress responses.Down-regulation of genes related to storage compound biosynthesis and cell growth provides evidence for a rapid impairment of the caryopsis' development.Increased levels of sugars and amino acids were indicative for both production of compatible solutes and feedback-induced accumulation of substrates for storage compound biosynthesis.Metadata analysis identified embryo and endosperm as primary locations of heat stress responses,indicating a strong impact of short-term heat stress on central developmental functions of the caryopsis.A comparison with heat stress responses in Arabidopsis shoots and drought stress responses in barley caryopses identified both conserved and presumably heat-and caryopsis-specific stress-responsive genes.Summarized,our data provide an important basis for further investigation of gene functions in order to aid an improved heat tolerance and reduced losses of yield in barley as a model for cereal crops.

  10. Indexes of hemodynamics in a dosage of physical activity in girls against the background of low systolic blood pressure

    OpenAIRE

    Levchenko V. A.

    2015-01-01

    Purpose: to examine the state of hemodynamics, blood oxygenation levels in girls with hypotensive type neurodystonia in a dosed physical load. Material : The study involved 59 women with hypotensive type neurodystonia aged 18-19 years and 14 healthy women the same age. Results : It was found that the girls on the background of low systolic blood pressure observed early hemodynamic response from the very first steps (25-50 W) bicycle stress test in the form of increased heart rate, stroke volu...

  11. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Hojin [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Guk Bae [Asan Institute of Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kweon, Jihoon [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Young-Hak [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Deok Hee; Yang, Dong Hyun [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kim, Namkug [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  12. Hemodynamic measurement using four-dimensional phase-contrast MRI: Quantification of hemodynamic parameters and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ho Jin; Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Guk Bae; Kweon, Ji Hoon; Kim, Young Hak; Lee, Deok Hee; Yang, Dong Hyun; KIm, Nam Kug [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  13. EFFECTS OF EXERCISE AND ISOPROTERENOL ON HEMODYNAMICS AND MYOCARDIAL VO2 IN LAMBS WITH AORTOPULMONARY SHUNTS

    NARCIS (Netherlands)

    GRATAMA, JWC; MEUZELAAR, JJ; DALINGHAUS, M; KOERS, JH; GERDING, AM; ZIJLSTRA, WG; KUIPERS, JRG

    To compare hemodynamic changes induced by isoproterenol and exercise stress tests in individuals with and without left, ventricular volume load, we studied 10 lambs with an aortopulmonary shunt [58 +/- 4% (SE) of left ventricular output] 2 wk after the shunt was created. Two studies, isoproterenol

  14. High geo-stress distribution and high geo-stress concentration area models for eastern margin of Qinghai-Tibet plateau

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    High geo-stress and its engineering problems have severely affected the development of civil infrastructures in western China. The problems include high rock slope instabilities,rock burst,gas explosion and large-scale soft rock deformation in deep tunnels.This paper investigates the distribution of the high geo-stresses and the models of the stress concentration areas in the eastern margin of Qinghai-Tibet plateau so that a solid foundation can be formed to address the problems.The investigation is based on a comprehensive analysis of the previous research data of the eastern margin and uses remote sensing techniques,geophysics,geochemistry,and large scale geological surveying methods.The investigation has found that some special tectonic zones have high geo-stresses.The high geo-stresses are located at(1) the convergent boundary areas between two fault blocks with large strength differences,(2) the tectonic necks in front of active fault blocks,and(3) the intersection and/or termination areas of faults within the fault blocks.An example for(1) is the north Qilian high geo-stress area.Another example for(2) is the Minshan high geo-stress area in the northwest Sichuan.Furthermore,the investigation has summarized six basic models to characterize the high geo-stress concentration areas.The first one is the convergent stress concentration model at the boundary of two fault blocks.The other five stress concentration modes are oblique fissures or intersecting areas,areas without lower velocity layer in the crust,areas of compression induced tensile cracking,tectonic wedge areas,and tectonic neck areas,respectively.

  15. High glucose-mediated oxidative stress impairs cell migration.

    Directory of Open Access Journals (Sweden)

    Marcelo L Lamers

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG, 25 mM D-glucose (high glucose, HG or 25 mM L-glucose medium (osmotic control--OC, we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC. We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.

  16. The hemodynamic basis of exercise intolerance in tricuspid regurgitation

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Nishimura, Rick a; Borlaug, Barry A

    2014-01-01

    ≥3 TR underwent high-fidelity invasive hemodynamic exercise testing with simultaneous expired gas analysis and were compared with 13 age- and sex-matched controls. At rest, TR subjects had lower pulmonary blood flow (3.6±0.4 versus 5.1±1.9 L/min; P=0.01), increased right atrial pressure (12±5 versus...

  17. Physiological responses to repeated stress in individuals with high and low trait resilience.

    Science.gov (United States)

    Lü, Wei; Wang, Zhenhong; You, Xuqun

    2016-10-01

    This study examined individual differences in trait resilience in physiological recovery from, and physiological habituation to, repeated stress (i.e. public speaking). Eighty-two college students were categorized as either high (n=40) or low (n=42) on trait resilience, based on the scores of the Connor-Davidson Resilience Scale (CD-RISC). Subjective and physiological data were collected from participants across seven laboratory stages: baseline, stress anticipation 1, stress 1, post-stress 1, stress anticipation 2, stress 2, and post-stress 2. Results indicated that high-trait-resilient participants exhibited more complete heart rate (HR), systolic and diastolic blood pressure (SBP, DBP) recovery from the first and second stress anticipation exposures as compared to low-trait-resilient participants. High-trait-resilient participants demonstrated higher resting respiratory sinus arrhythmia (RSA) coupled with more complete RSA recovery from the first and second stress anticipation exposures as compared to their low-trait-resilient counterparts. Moreover, high-trait-resilient participants exhibited pronounced SBP and DBP habituation across two successive stress anticipation exposures, with greater decreases in SBP and DBP reactivity to recurrent stress anticipation as compared to the low-trait-resilient participants. These findings suggest an adaptive physiological response pattern to recurrent stress in high-trait-resilient individuals. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Low vigorous physical activity is associated with increased adrenocortical reactivity to psychosocial stress in students with high stress perceptions.

    Science.gov (United States)

    Gerber, Markus; Ludyga, Sebastian; Mücke, Manuel; Colledge, Flora; Brand, Serge; Pühse, Uwe

    2017-06-01

    The pathways by which physical activity impacts on participants' health are still not fully understood. The purpose of the present study was to go beyond existing research by combining methods from survey-based and experimental stress research, and by examining whether the potential of vigorous physical activity (VPA) to attenuate physiological and psychological stress responses is moderated by participants' subjective stress perception. The sample consisted of 42 undergraduate students (M=21.2±2.2 years, 52% women). Participants self-reported their stress and wore an accelerometer device for seven consecutive days. To examine differences in the adrenocortical, autonomic and psychological stress reactivity, salivary free cortisol, heart rate, state anxiety, mood and calmness were assessed prior to, during and after the Trier Social Stress Test (TSST). The cut-offs of the American College of Sports Medicine (ACSM) were used to distinguish between students below/above current VPA recommendations. High levels of perceived stress combined with VPA levels below the ACSM's standards (strategy to increase physiological and psychological stress resilience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Immunologic, hemodynamic, and adrenal incompetence in cirrhosis

    DEFF Research Database (Denmark)

    Risør, Louise Madeleine; Bendtsen, Flemming; Møller, Søren

    2015-01-01

    dysfunction, but is not responsive to volume expansion. Recent research indicates that development of hepatic nephropathy represents a continuous spectrum of functional and structural dysfunction and may be precipitated by the inherent immunologic, adrenal, and hemodynamic incompetence in cirrhosis. New...... research explores several new markers of renal dysfunction that may replace serum creatinine in the future and give new insight on the hepatic nephropathy. Our understanding of the pathophysiological mechanisms causing the immunologic, adrenal, and hemodynamic incompetence, and the impact on renal...

  20. Effect of iptakalim hydrochloride on hemodynamics

    Institute of Scientific and Technical Information of China (English)

    Qing-leiZHU; HaiWANG; Wen-binXIAO

    2004-01-01

    AIM: To study the effect of iptakalim hydrochloride (Ipt) on hemodynamics. METHODS: Effect of Ipt on hemodynamics were studied in anesthetized nomotensive dogs, conscious nomotensive rats (NTR), and stroke prone spontaneously hypertensive rats (SHRsp), respectively. RESULTS: In pentobarbital anesthetized nomotensive dogs, Ipt at doses of 0.125, 0.25, 0.5,1.0, and 2.0 mg/kg iv could dose-dependently decrease blood pressure (BP), with the decrease of systolic BP equivalent

  1. Central Hemodynamics and Microcirculation in Critical Conditions

    Directory of Open Access Journals (Sweden)

    A. A. Kosovskikh

    2013-01-01

    Full Text Available Objective: to compare central hemodynamic and microcirculatory changes in critical conditions caused by different factors and to reveal their possible differences for a further differentiated approach to intensive therapy. Subjects and methods. The study covered 16 subjects with severe concomitant injury (mean age 41.96±2.83 years and 19 patients with general purulent peritonitis (mean age 45.34±2.16 years. Their follow-up was 7 days. The central hemodynamics was estimated by transpulmonary thermodilution using a Pulsion PiCCO Plus system (Pulsion Medical Systems, Germany. The microcirculatory bed was evaluated by cutaneous laser Doppler flowmetry using a LAKK-02 capillary blood flow laser analyzer (LAZMA Research-and-Production Association, Russian Federation. Results. The pattern of central hemodynamic and microcirculatory disorders varies with the trigger that has led to a critical condition. Central hemodynamics should be stabilized to ensure the average level of tissue perfusion in victims with severe concomitant injury. In general purulent peritonitis, microcirculatory disorders may persist even if the macrohemodynamic parameters are normal. Conclusion. The macrohemodynamic and microcirculatory differences obtained during the study suggest that a complex of intensive therapy should be differentiated and, if the latter is used, it is necessary not only to be based on the central hemodynamics, but also to take into consideration functional changes in microcirculation. Key words: severe concomitant injury, general purulent peritonitis, micro-circulation, central hemodynamics, type of circulation.

  2. Hemodynamic changes in depressive patients

    Institute of Scientific and Technical Information of China (English)

    MA Ying; LI Hui-chun; ZHENG Lei-lei; YU Hua-liang

    2006-01-01

    Objective: This study is aimed at exploring the relationship between hemodynamic changes and depressive and anxious symptom in depression patients. Methods: The cardiac function indices including the left stroke index (LSI), ejection fraction (EF), heart rate (HR), diastolic pressure mean (DPM), systolic pressure mean (SPM), left ventricle end-diastolic volume (LVDV), effective circulating volume (ECV), resistance total mean (RTM) and blood flow smooth degree (BFSD) were determined in 65 patients with major depressive disorders and 31 healthy normal controls. The clinical symptoms were assessed with Hamilton depression scale (HAMD) and Hamilton anxiety scale (HAMA). Results: In patients with depression without anxiety,LSI, EF, LVDV, DPM, SPM, ECV, BFSD were significantly lower than those in controls, while RTM was higher than that in controls. Patients with comorbidity of depression and anxiety showed decreased LVDV, ECV, BFSD, and increased HR in comparison with the controls. The anxiety/somatization factor score positively correlated with LSI, EF, LVDV, but negatively correlated with RTM. There was negative correlation between retardation factor score and DPM, SPM, LVDV. Conclusion: The study indicated that there are noticeable changes in left ventricle preload and afterload, blood pressure, peripheral resistance, and microcirculation in depressive patients, and that the accompanying anxiety makes the changes more complicated.

  3. EFFECT OF PREOPERATIVE INTRAVENOUS CLONIDINE ON HEMODYNAMIC RESPONSE DURING LAPAROSCOPIC SURGERIES

    Directory of Open Access Journals (Sweden)

    Sreeraghu

    2014-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: Laparoscopy is a minimally invasive procedure used as a diagnostic and therapeutic tool for abdominal and pelvic pathologies. Laparoscopy offers many benefits compared to open surgeries, but it leads to increase in stress hormon es, increased peripheral vascular resistance and decreased cardiac output causing hemodynamic fluctuation. In addition, ventilatory changes and increases in partial pressure of carbon dioxide also occur during laparoscopic surgeries due to pneumoperitoneum . To overcome these hemodynamic effects of insufflation various methods have been used like combined epidural with general anesthesia , propofol infusion, high dose of opioids, beta blockers, nicardipine, oral clonidine etc. In this study, we used intraveno us clonidine as premedication to suppress these changes. METHODS: After obtaining ethical committee clearance and informed consent from patient, we enrolled 60 adult patients, aged between 20 - 60 years, of ASA grade 1 and 2 posted for laparoscopic intra - abd ominal surgeries. The patients were divided into 2 groups of 30 each randomly, viz: Group C Study group : Injection clonidine, 2mcg/kg, as premedication was given intravenously, 15 min prior to induction of anesthesia . Group N Control group : received injec tion normal saline, 5cc, intravenously. For both the groups same type of anesthesia and analgesia was given. Heart rate, blood pressure, mean arterial pressure were recorded in both groups. Sedation, incidence of post - operative nausea vomiting after extubation were also observed. Statistical analysis was done using student T test and P value obtained. RESULTS: In the present study, decreases in heart rate, systolic, diastolic and mean arterial blood pressures were noticed in the clonidine group. Inspi te of maintaining normocapnia and keeping intra - abdominal pressure below 14mmm of Hg significant rises in heart rate, systolic, diastolic and mean arterial blood pressures were

  4. Stress

    Science.gov (United States)

    ... diabetes. Shopdiabetes.org: Your Stress-Free System for Family Dinners! - 2017-03-book-oclock-scramble.html Shopdiabetes.org Your Stress-Free System for Family Dinners! A year of delicious meals to help prevent ...

  5. Stress

    Science.gov (United States)

    ... sudden negative change, such as losing a job, divorce, or illness Traumatic stress, which happens when you ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  6. High-Stakes Testing and Its Relationship to Stress Levels of Coastal Secondary Teachers

    Science.gov (United States)

    McDaniel, Sheneatha Lashelle Alexander

    2012-01-01

    The purpose of this research was to examine the relationship between high-stakes tests and stress with secondary teachers. Furthermore, this study investigated whether veteran teachers experience more stress than novice teachers and whether or not self-efficacy, gender, accountability status, and years of experience influence teacher stress as it…

  7. High-Stakes Testing and Its Relationship to Stress Levels of Coastal Secondary Teachers

    Science.gov (United States)

    McDaniel, Sheneatha Lashelle Alexander

    2012-01-01

    The purpose of this research was to examine the relationship between high-stakes tests and stress with secondary teachers. Furthermore, this study investigated whether veteran teachers experience more stress than novice teachers and whether or not self-efficacy, gender, accountability status, and years of experience influence teacher stress as it…

  8. Classification of microseismic events in high stress zone

    Institute of Scientific and Technical Information of China (English)

    CAO An-ye; DOU Lin-ming; YAN Ru-ling; JIANG Heng; LU Cai-ping; DU Tao-tao; LU Zhen-yu

    2009-01-01

    For the purpose of having a better understanding of failure mechanisms of rock fracturing in mines, the equivalent point source models of tensile, shear and explosive seismic events were established, and the relationship between far-field seismic dis-placements of the waves and the corresponding equivalent forces were analyzed as well. Based on the results of a microseismic monitoring carried out in the mining progress of 9202 working face under the upper remnant coal pillar in Sanhejian Mine, the waveform features of the seismic events associated with different failure modes were further analyzed. The results show that the signals corresponding to different failure mechanisms have different radiation patterns of the seismic displacements, and different characteristics in waveform features, such as dominant frequency, energy released, the ratio of S- to P-wave energy, and so on. In addition, the rock burst happened in the high stress zone is mainly the result of the strong shear fracturing in the mining process. The results of this study have significantly improved the understanding of the characteristics of the failures associated with under-ground mining, and will greatly benefit the prevention and control of rock burst hazards in burst-prone mines.

  9. Hemodynamic changes during robotic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Vanlal Darlong

    2012-01-01

    Full Text Available Background: Effect on hemodynamic changes and experience of robot-assisted laparoscopic radical prostatectomy (RALRP in steep Trendelenburg position (45° with high-pressure CO 2 pneumoperitoneum is very limited. Therefore, we planned this prospective clinical trial to study the effect of steep Tredelenburg position with high-pressure CO 2 pneumoperitoneum on hemodynamic parameters in a patient undergoing RALRP using FloTrac/Vigileo™1.10. Methods: After ethical approval and informed consent, 15 patients scheduled for RALRP were included in the study. In the operation room, after attaching standard monitors, the radial artery was cannulated. Anesthesia was induced with fentanyl (2 μg/kg and thiopentone (4-7 mg/kg, and tracheal intubation was facilitated by vecuronium bromide (0.1 mg/kg. The patient′s right internal jugular vein was cannulated and the Pre Sep™ central venous oximetry catheter was connected to it. Anesthesia was maintained with isoflurane in oxygen and nitrous oxide and intermittent boluses of vecuronium. Intermittent positive-pressure ventilation was provided to maintain normocapnea. After CO 2 pneumoperitoneum, position of the patient was gradually changed to 45° Trendelenburg over 5 min. The robot was then docked and the robot-assisted surgery started. Intraoperative monitoring included central venous pressure (CVP, stroke volume (SV, stroke volume variation (SVV, cardiac output (CO, cardiac index (CI and central venous oxygen saturation (ScvO 2 . Results: After induction of anesthesia, heart rate (HR, SV, CO and CI were decreased significantly from the baseline value (P>0.05. SV, CO and CI further decreased significantly after creating pneumoperitoneum (P>0.05. At the 45° Trendelenburg position, HR, SV, CO and CI were significantly decreased compared with baseline. Thereafter, CO and CI were persistently low throughout the 45° Trendelenburg position (P=0.001. HR at 20 min and 1 h, SV and mean arterial blood pressure

  10. Wireless monitoring of liver hemodynamics in vivo.

    Directory of Open Access Journals (Sweden)

    Tony J Akl

    Full Text Available Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics.

  11. ENHANCED PLATELET AGGREGABILITY UNDER HIGH SHEAR STRESS IN CORONARY CIRCULATION OF PATIENTS WITH UNSTABLE ANGINA

    OpenAIRE

    Doi, Naofumi

    2000-01-01

    Mechanical forces, including high shear stress, have been found to cause platelet aggregation. Although increased platelet aggregation is also associated with the pathophysiology of unstable angina, it is not known whether platelet aggregation induced by high shear stress occurs in the coronary circulation of patients with unstable angina. We assayed high shear stress induced platelet aggregation (h-SIPA) in each of 25 patients with unstable angina and a severe stenotic lesion of the left cor...

  12. Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures.

    Science.gov (United States)

    Wong, Kelvin K L; Wang, Defeng; Ko, Jacky K L; Mazumdar, Jagannath; Le, Thu-Thao; Ghista, Dhanjoo

    2017-03-21

    Cardiac dysfunction constitutes common cardiovascular health issues in the society, and has been an investigation topic of strong focus by researchers in the medical imaging community. Diagnostic modalities based on echocardiography, magnetic resonance imaging, chest radiography and computed tomography are common techniques that provide cardiovascular structural information to diagnose heart defects. However, functional information of cardiovascular flow, which can in fact be used to support the diagnosis of many cardiovascular diseases with a myriad of hemodynamics performance indicators, remains unexplored to its full potential. Some of these indicators constitute important cardiac functional parameters affecting the cardiovascular abnormalities. With the advancement of computer technology that facilitates high speed computational fluid dynamics, the realization of a support diagnostic platform of hemodynamics quantification and analysis can be achieved. This article reviews the state-of-the-art medical imaging and high fidelity multi-physics computational analyses that together enable reconstruction of cardiovascular structures and hemodynamic flow patterns within them, such as of the left ventricle (LV) and carotid bifurcations. The combined medical imaging and hemodynamic analysis enables us to study the mechanisms of cardiovascular disease-causing dysfunctions, such as how (1) cardiomyopathy causes left ventricular remodeling and loss of contractility leading to heart failure, and (2) modeling of LV construction and simulation of intra-LV hemodynamics can enable us to determine the optimum procedure of surgical ventriculation to restore its contractility and health This combined medical imaging and hemodynamics framework can potentially extend medical knowledge of cardiovascular defects and associated hemodynamic behavior and their surgical restoration, by means of an integrated medical image diagnostics and hemodynamic performance analysis framework.

  13. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    Science.gov (United States)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  14. Diagnostic Accuracy of Stress Myocardial Perfusion Imaging Compared to Invasive Coronary Angiography With Fractional Flow Reserve Meta-Analysis

    NARCIS (Netherlands)

    Takx, Richard A. P.; Blomberg, Bjorn A.; El Aidi, Hamza; Habets, Jesse; de Jong, Pim A.; Nagel, Eike; Hoffmann, Udo; Leiner, Tim

    2015-01-01

    Background-Hemodynamically significant coronary artery disease is an important indication for revascularization. Stress myocardial perfusion imaging is a noninvasive alternative to invasive fractional flow reserve for evaluating hemodynamically significant coronary artery disease. The aim was to det

  15. The Chinese High School Student's Stress in the School and Academic Achievement

    Science.gov (United States)

    Liu, Yangyang; Lu, Zuhong

    2011-01-01

    In a sample of 466 Chinese high school students, we examined the relationships between Chinese high school students' stress in the school and their academic achievements. Regression mixture modelling identified two different classes of the effects of Chinese high school students' stress on their academic achievements. One class contained 87% of…

  16. The Chinese High School Student's Stress in the School and Academic Achievement

    Science.gov (United States)

    Liu, Yangyang; Lu, Zuhong

    2011-01-01

    In a sample of 466 Chinese high school students, we examined the relationships between Chinese high school students' stress in the school and their academic achievements. Regression mixture modelling identified two different classes of the effects of Chinese high school students' stress on their academic achievements. One class contained 87% of…

  17. Hemodynamics of Stent Implantation Procedures in Coronary Bifurcations: an in vitro study

    CERN Document Server

    Brindise, Melissa C; Burzotta, Francesco; Migliavacca, Francesco; Vlachos, Pavlos P

    2016-01-01

    Stent implantation in coronary bifurcations presents unique challenges and currently there is no universally accepted stent deployment approach. Despite clinical and computational studies, to date, the effect of each stent implantation method on the coronary artery hemodynamics is not well understood. In this study the hemodynamics of stented coronary bifurcations under pulsatile flow conditions were investigated experimentally. Three implantation methods, provisional side branch (PSB), culotte (CUL), and crush (CRU), were investigated using time-resolved particle image velocimetry (PIV) to measure the velocity fields. Subsequently, hemodynamic parameters including wall shear stress (WSS), oscillatory shear index (OSI), and relative residence time (RRT) were calculated and the pressure field through the vessel was non-invasively quantified. The effects of each stented case were evaluated and compared against an un-stented case. CRU provided the lowest compliance mismatch, but demonstrated detrimental stent in...

  18. The influence of stenosis degrees and graft suture position on local hemodynamics of coronary bypass

    Science.gov (United States)

    Totorean, A. F.; Bernad, S. I.; Susan-Resiga, R. F.

    2016-06-01

    Bypass graft failure is mainly caused by intimal hyperplasia (IH) that occurs at the graft anastomosis after coronary artery bypass grafting (CABG) surgery. It has been shown that local hemodynamics influences the process of IH initiation and progression. A main concern at this type of surgery is to increase the graft patency, respectively to improve the local hemodynamics. This paper analyzes the influence of different degree of stenosis severity and graft suture position on graft patency, taking into consideration the local hemodynamics. Bypass configurations with anastomosis angle of 45° were numerically investigated, with respect to wall shear stress and pressure variation. We can assume that in the conditions of our study, different stenosis degrees and position of the graft suture influence the local blood flow conditions, and, nevertheless, the graft patency.

  19. Hemodynamics of physiological blood flow in the aorta with nonlinear anisotropic heart valve

    Science.gov (United States)

    Sotiropoulos, Fotis; Gilmanov, Anvar; Stolarski, Henryk

    2016-11-01

    The hemodynamic blood flow in cardiovascular system is one of the most important factor, which causing several vascular diseases. We developed a new Curvilinear Immersed Boundary - Finite Element - Fluid Structure Interaction (CURVIB-FE-FSI) method to analyze hemodynamic of pulsatile blood flow in a real aorta with nonlinear anisotropic aortic valve at physiological conditions. Hyperelastic material model, which is more realistic for describing heart valve have been incorporated in the CURVIB-FE-FSI code to simulate interaction of aortic heart valve with pulsatile blood flow. Comparative studies of hemodynamics for linear and nonlinear models of heart valve show drastic differences in blood flow patterns and hence differences of stresses causing impact at leaflets and aortic wall. This work is supported by the Lillehei Heart Institute at the University of Minnesota.

  20. Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Fadel Elie

    2011-09-01

    Full Text Available Abstract Background Involvement of inflammation in pulmonary hypertension (PH has previously been demonstrated and recently, immune-modulating dendritic cells (DCs infiltrating arterial lesions in patients suffering from idiopathic pulmonary arterial hypertension (IPAH and in experimental monocrotaline-induced PH have been reported. Occurrence of perivascular inflammatory cells could be linked to local increase of oxidative stress (OS, as it has been shown for systemic atherosclerosis. The impact of OS on vascular remodeling in PH is still to be determined. We hypothesized, that augmented blood-flow could increase OS and might thereby contribute to DC/inflammatory cell-recruitment and smooth-muscle-cell-proliferation. Methods We applied a monocrotaline-induced PH-model and combined it with permanent flow-challenge. Thirty Sprague-Dawley rats were assigned to following groups: control, monocrotaline-exposure (MCT, monocrotaline-exposure/pneumonectomy (MCT/PE. Results Hemodynamic exploration demonstrated most severe effects in MCT/PE, corresponding in histology to exuberant medial and adventitial remodeling of pulmonary muscular arteries, and intimal remodeling of smaller arterioles; lung-tissue PCR evidenced increased expression of DCs-specific fascin, CD68, proinflammatory cytokines (IL-6, RANTES, fractalkine in MCT/PE and to a lesser extent in MCT. Major OS enzyme NOX-4 was maximal in MCT/PE. Antioxidative stress enzymes Mn-SOD and glutathion-peroxidase-1 were significantly elevated, while HO-1 showed maximal expression in MCT with significant decrease in MCT/PE. Catalase was decreased in MCT and MCT/PE. Expression of NOX-4, but also of MN-SOD in MCT/PE was mainly attributed to a highly increased number of interstitial and perivascular CXCR4/SDF1 pathway-recruited mast-cells. Stress markers malonedialdehyde and nitrotyrosine were produced in endothelial cells, medial smooth muscle and perivascular leucocytes of hypertensive vasculature

  1. Association Between High-Sensitivity Cardiac Troponin Levels and Myocardial Ischemia During Mental Stress and Conventional Stress.

    Science.gov (United States)

    Hammadah, Muhammad; Al Mheid, Ibhar; Wilmot, Kobina; Ramadan, Ronnie; Alkhoder, Ayman; Obideen, Malik; Abdelhadi, Naser; Fang, Shuyang; Ibeanu, Ijeoma; Pimple, Pratik; Mohamed Kelli, Heval; Shah, Amit J; Pearce, Brad; Sun, Yan; Garcia, Ernest V; Kutner, Michael; Long, Qi; Ward, Laura; Bremner, J Douglas; Esteves, Fabio; Raggi, Paolo; Sheps, David; Vaccarino, Viola; Quyyumi, Arshed A

    2017-03-10

    This study sought to investigate whether patients with mental stress-induced myocardial ischemia will have high resting and post-mental stress high-sensitivity cardiac troponin I (hs-cTnI). Hs-cTnI is a marker of myocardial necrosis, and its elevated levels are associated with adverse outcomes. Hs-cTnI levels may increase with exercise in patients with coronary artery disease. Mental stress-induced myocardial ischemia is also linked to adverse outcomes. In this study, 587 patients with stable coronary artery disease underwent technetium Tc 99m sestamibi-single-photon emission tomography myocardial perfusion imaging during mental stress testing using a public speaking task and during conventional (pharmacologic/exercise) stress testing as a control condition. Ischemia was defined as new/worsening impairment in myocardial perfusion using a 17-segment model. The median hs-cTnI resting level was 4.3 (interquartile range [IQR]: 2.9 to 7.3) pg/ml. Overall, 16% and 34.8% of patients developed myocardial ischemia during mental and conventional stress, respectively. Compared with those without ischemia, median resting hs-cTnI levels were higher in patients who developed ischemia either during mental stress (5.9 [IQR: 3.9 to 8.3] vs. 4.1 [IQR: 2.7 to 7.0] pg/ml; p stress (5.4 [IQR: 3.9 to 9.3] vs. 3.9 [IQR: 2.5 to 6.5] pg/ml; p stress-induced ischemia. Although there was a significant increase in 45-min post-treadmill exercise hs-cTnI levels in those who developed ischemia, there was no significant increase after mental or pharmacological stress test. In patients with coronary artery disease, myocardial ischemia during either mental stress or conventional stress is associated with higher resting levels of hs-cTnI. This suggests that hs-cTnI elevation is an indicator of chronic ischemic burden experienced during everyday life. Whether elevated hs-cTnI levels are an indicator of adverse prognosis beyond inducible ischemia or whether it is amenable to intervention requires

  2. High wall shear stress and high-risk plaque: an emerging concept.

    Science.gov (United States)

    Eshtehardi, Parham; Brown, Adam J; Bhargava, Ankit; Costopoulos, Charis; Hung, Olivia Y; Corban, Michel T; Hosseini, Hossein; Gogas, Bill D; Giddens, Don P; Samady, Habib

    2017-01-10

    In recent years, there has been a significant effort to identify high-risk plaques in vivo prior to acute events. While number of imaging modalities have been developed to identify morphologic characteristics of high-risk plaques, prospective natural-history observational studies suggest that vulnerability is not solely dependent on plaque morphology and likely involves additional contributing mechanisms. High wall shear stress (WSS) has recently been proposed as one possible causative factor, promoting the development of high-risk plaques. High WSS has been shown to induce specific changes in endothelial cell behavior, exacerbating inflammation and stimulating progression of the atherosclerotic lipid core. In line with experimental and autopsy studies, several human studies have shown associations between high WSS and known morphological features of high-risk plaques. However, despite increasing evidence, there is still no longitudinal data linking high WSS to clinical events. As the interplay between atherosclerotic plaque, artery, and WSS is highly dynamic, large natural history studies of atherosclerosis that include WSS measurements are now warranted. This review will summarize the available clinical evidence on high WSS as a possible etiological mechanism underlying high-risk plaque development.

  3. Instantaneous strain measurements during high-temperature stress cycling of a dispersion-strengthened niobium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D.M.; Mishra, R.S.; Mukherjee, A.K. [Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

    1995-06-01

    Experimental results obtained from stress cycling tests performed during high-temperature creep of a dispersion strengthened niobium alloy indicate that the instantaneous strain following the stress change decreases with accumulated strain. The true work-hardening rate was shown to be a small fraction of the elastic modulus which remained fairly constant throughout the strain history. The instantaneous strain change from a stress addition was typically greater than the strain from the corresponding stress reduction. This effect is quite pronounced for small stress changes and diminishes as the magnitude of the stress change increases. This implies that the mobility of dislocations is impeded in the reverse direction unless the magnitude of stress reduction exceeds the value of the internal stress.

  4. Hemodynamic stroke: A rare pitfall in cranio cervical junction surgery

    Directory of Open Access Journals (Sweden)

    Jan Frederick Cornelius

    2014-01-01

    Full Text Available Surgical C1C2-stabilization may be complicated by arterial-arterial embolism or arterial injury. Another potential complication is hemodynamic stroke. The latter might be induced in patients with poor posterior fossa collateralization (risk factor 1 when the vertebral artery (VA is compressed during reduction (risk factor 2. We report a clinical case where this rare situation occurred: A 72-year old patient was undergoing C1C2-stabilization for subluxation due to rheumatoid arthritis. Preoperative computed tomography angiography (CTA had shown poor collaterals in the posterior fossa. Furthermore, intraoperative Doppler ultrasound (US detected unilateral VA occlusion during reduction. It appeared to be a high-risk situation for hemodynamic stroke. Surgical inspection of the VA found osteofibrous compressing elements. Arterial decompression was performed resulting in the normal flow as detected by US. Subsequently, C1C2-stabilization could be realized. The clinical and radiological outcome was very favorable. In C1C2-stabilization precise analysis of preoperative CTA and intraoperative US are important to detect risk factors of hemodynamic stroke. Using these data may prevent this rare, but potentially life-threatening complication.

  5. Invasive hemodynamic monitoring in the postoperative period of cardiac surgery

    Directory of Open Access Journals (Sweden)

    Desanka Dragosavac

    1999-08-01

    Full Text Available OBJETIVE: To assess the hemodynamic profile of cardiac surgery patients with circulatory instability in the early postoperative period (POP. METHODS: Over a two-year period, 306 patients underwent cardiac surgery. Thirty had hemodynamic instability in the early POP and were monitored with the Swan-Ganz catheter. The following parameters were evaluated: cardiac index (CI, systemic and pulmonary vascular resistance, pulmonary shunt, central venous pressure (CVP, pulmonary capillary wedge pressure (PCWP, oxygen delivery and consumption, use of vasoactive drugs and of circulatory support. RESULTS: Twenty patients had low cardiac index (CI, and 10 had normal or high CI. Systemic vascular resistance was decreased in 11 patients. There was no correlation between oxygen delivery (DO2 and consumption (VO2, p=0.42, and no correlation between CVP and PCWP, p=0.065. Pulmonary vascular resistance was decreased in 15 patients and the pulmonary shunt was increased in 19. Two patients with CI < 2L/min/m² received circulatory support. CONCLUSION: Patients in the POP of cardiac surgery frequently have a mixed shock due to the systemic inflammatory response syndrome (SIRS. Therefore, invasive hemodynamic monitoring is useful in handling blood volume, choice of vasoactive drugs, and indication for circulatory support.

  6. Chinese high school students' academic stress and depressive symptoms: gender and school climate as moderators.

    Science.gov (United States)

    Liu, Yangyang; Lu, Zuhong

    2012-10-01

    In a sample of 368 Chinese high school students, the present study examined the different effects of Chinese high school students' academic stress on their depressive symptoms and the moderating effects of gender and students' perceptions of school climate on the relationships between their academic stress and depressive symptoms. Regression mixture model identified two different kinds of subgroups in the effects of students' academic stress on their depressive symptoms. One subgroup contained 90% of the students. In this subgroup, the students' perceptions of academic stress from lack of achievement positively predicted their depressive symptoms. For the other 10% of the students, academic stress did not significantly predict their depressive symptoms. Next, multinomial regression analysis revealed that girls or students who had high levels of achievement orientation were more likely to be in the first subgroup. The findings suggested that gender and students' perceptions of school climate could moderate the relationships between Chinese high school students' academic stress and their depressive symptoms.

  7. Effect of high fluoride and high fat on serum lipid levels and oxidative stress in rabbits.

    Science.gov (United States)

    Sun, Liyan; Gao, Yanhui; Zhang, Wei; Liu, Hui; Sun, Dianjun

    2014-11-01

    The purpose of this study was to explore the effects of high fluoride and high fat on triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total antioxidant capacity (T-AOC), lipid peroxide (LPO) and malondialdehyde (MDA) in rabbits. A factorial experimental design was used, with two factors (fluoride and fat) and three levels. Seventy-two male rabbits were randomly assigned into nine groups according to initial weight and serum lipid levels. The rabbits were fed with basic feed, moderate fat feed or high fat feed and drank tap water, fluoridated water at levels of 50 and 100mgfluorion/L freely. Biological materials were collected after 5 months, and serum lipid, T-AOC, LPO, and MDA levels were then measured. Using these data, the separate and interactive effects of high fluoride and high fat were analyzed. High fluoride and high fat both increased serum levels of TC, HDL-C and LDL-C significantly (Pfluoride and high fat (Pfluoride and high fat had different effects on TG levels: high fat significantly increased TG levels (Pfluoride had nothing to do with TG levels (P>0.05). High fat significantly elevated LPO and MDA levels and lowered T-AOC levels in serum (Pfluoride significantly increased LPO and MDA levels in serum (Pfluoride on these indexes. In summary, high fluoride and high fat increased serum TC and LDL-C levels individually and synergistically, and this would cause and aggravate hypercholesterolemia in rabbits. At the same time, high fluoride and high fat both made the accumulation of product of oxidative stress in experimental animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Hemodynamic Disorders in Severe Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu. A. Churlyaev

    2006-01-01

    Full Text Available This study was undertaken to determine the general regularities of hemodynamic disorders in relation to the severity of brain damage for the subsequent development of pathogenetically warranted methods for their correction in the complex of intensive care for severe brain injury. Studies were made in 67 victims, by using neurophysiological studies (electroencephalography, studies of acoustical stem-evoked potentials and somatosensory stem-evoked potentials, computed tomography and magnetic resonance imaging. Central hemodynamics was studied by a Sirecust 1260 monitoring system using Swan-Ganz catheters and thermodilution. The overall condition of the victims was regarded as very bad. Loss of consciousness was 8-4 scores by the Glasgow coma scale. The studies have indicated that the victims in whose clinical picture the signs of compression of the cerebral hemispheres dominate over those of the latter’s contusion develop a hemodynamic reaction by the normodynamic type. The hyperdynamic type of hemodynamic disorder develops in cerebral hemispheric and diencephalic lesions with a parallel increase in oxygen transport and uptake; and in severe brain injury, lower brain stem damages are accompanied by hemodynamic disorder by the hypodynamic type with a reduction in oxygen transport and uptake.

  9. Research on Mechanism of Rock Burst Generation and Development for High Stress Rock Tunnels

    Institute of Scientific and Technical Information of China (English)

    高全臣; 赫建明; 王代华

    2001-01-01

    Through the investigation and analysis of high stress distribution in surrounding rock during the excavation of rock tunnels,the key factors to cause rock burst and the mechanism of rock burst generation and development are researched. The result shows that the scale and range of rock burst are related with elastic deformation energy storied in rock mass and the characteristics of unloading stress waves. The measures of preventing from rock burst for high stress rock tunnels are put forward.

  10. Stress corrosion cracking of several high strength ferrous and nickel alloys

    Science.gov (United States)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  11. High-protein diet induces oxidative stress in rat brain: protective action of high-intensity exercise against lipid peroxidation

    OpenAIRE

    Camiletti-Moir??n, Daniel; Aparicio Garc??a-Molina, Virginia A.; Nebot Valenzuela, Elena; Medina, Gerardo; Mart??nez, Rosario; Kapravelou, Garyfallia; Andrade, Ana; Porres-Foulquie, Jes??s; L??pez-Jurado, Mar??a; Aranda Ram??rez, Pilar

    2015-01-01

    diets as well as aerobic exercise could promote antioxidant capacity and consequently reduce free radicals overproduction on brain. However, little is know regarding to the high-protein diets and high intensity exercise on oxidative stress production. The aim of this study was to analyse the effects of high-protein diets and high-intensity exercise (HIE) on brain oxidative stress markers. Materials and Methods: A total of 40 male Wistar rats were randomly distributed i...

  12. High-resolution endovaginal MR imaging in stress urinary incontinence

    Energy Technology Data Exchange (ETDEWEB)

    Stoker, Jaap; Lameris, Johan S. [Department of Radiology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE, Amsterdam (Netherlands); Rociu, Elena [Department of Radiology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE, Amsterdam (Netherlands); Department of Radiology, Erasmus Medical Center, 3015 GD, Rotterdam (Netherlands); Bosch, J.L.H. Ruud [Department of Urology, Erasmus Medical Center, 3015 GD, Rotterdam (Netherlands); Messelink, Embert J. [Department of Urology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE, Amsterdam (Netherlands); Department of Urology, Onze Lieve Vrouwe Gasthuis, 1091 HA, Amsterdam (Netherlands); Hulst, Victor P.M. van der [Department of Radiology, Onze Lieve Vrouwe Gasthuis, 1091 HA, Amsterdam (Netherlands); Groenendijk, Annette G. [Department of Gynecology, Onze Lieve Vrouwe Gasthuis, 1091 HA, Amsterdam (Netherlands); Eijkemans, Marinus J.C. [Department of Public Health, Erasmus Medical Center, 3015 GD, Rotterdam (Netherlands)

    2003-08-01

    The causes of stress urinary incontinence are not completely known. Recent papers have stressed the importance of more anatomical information, which may help to elucidate the mechanism of stress urinary incontinence. The purpose of this study was to evaluate the prevalence of lesions of the urethral support mechanism and lesions (defects and scars, thinning) of levator ani muscle with endovaginal MRI in a case-control study. Forty women (median age 52 years, age range 40-65 years) - 20 patients with stress urinary incontinence (cases) and 20 age-matched healthy volunteers (controls) - underwent endovaginal MRI: axial, coronal, and sagittal T2-weighted turbo spin echo. The examinations were evaluated for the presence of lesions of urethral supporting structures and levator ani and scar tissue of the levator ani. The thickness of the levator ani muscle was measured. Lesions of the urethral support system and levator ani were significantly more prevalent in cases than in controls (p<0.01). Median levator ani thickness in patients was significantly lower than in healthy controls [2.5 mm (range 0.9-4.1 mm) vs 3.9 mm (range 1.4-7 mm)] (p<0.01). This study indicates a relationship between stress urine incontinence and the presence of lesions of the urethral support and levator ani and levator ani thinning. (orig.)

  13. Parenting stress and parent support among mothers with high and low education.

    Science.gov (United States)

    Parkes, Alison; Sweeting, Helen; Wight, Daniel

    2015-12-01

    Current theorizing and evidence suggest that parenting stress might be greater among parents from both low and high socioeconomic positions (SEP) compared with those from intermediate levels because of material hardship among parents of low SEP and employment demands among parents of high SEP. However, little is known about how this socioeconomic variation in stress relates to the support that parents receive. This study explored whether variation in maternal parenting stress in a population sample was associated with support deficits. To obtain a clearer understanding of support deficits among mothers of high and low education, we distinguished subgroups according to mothers' migrant and single-parent status. Participants were 5,865 mothers from the Growing Up in Scotland Study, who were interviewed when their children were 10 months old. Parenting stress was greater among mothers with either high or low education than among mothers with intermediate education, although it was highest for those with low education. Support deficits accounted for around 50% of higher stress among high- and low-educated groups. Less frequent grandparent contact mediated parenting stress among both high- and low-educated mothers, particularly migrants. Aside from this common feature, different aspects of support were relevant for high- compared with low-educated mothers. For high-educated mothers, reliance on formal childcare and less frequent support from friends mediated higher stress. Among low-educated mothers, smaller grandparent and friend networks and barriers to professional parent support mediated higher stress. Implications of differing support deficits are discussed.

  14. Ky-2, a Histone Deacetylase Inhibitor, Enhances High-Salinity Stress Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sako, Kaori; Kim, Jong-Myong; Matsui, Akihiro; Nakamura, Kotaro; Tanaka, Maho; Kobayashi, Makoto; Saito, Kazuki; Nishino, Norikazu; Kusano, Miyako; Taji, Teruaki; Yoshida, Minoru; Seki, Motoaki

    2016-04-01

    Adaptation to environmental stress requires genome-wide changes in gene expression. Histone modifications are involved in gene regulation, but the role of histone modifications under environmental stress is not well understood. To reveal the relationship between histone modification and environmental stress, we assessed the effects of inhibitors of histone modification enzymes during salinity stress. Treatment with Ky-2, a histone deacetylase inhibitor, enhanced high-salinity stress tolerance in Arabidopsis. We confirmed that Ky-2 possessed inhibition activity towards histone deacetylases by immunoblot analysis. To investigate how Ky-2 improved salt stress tolerance, we performed transcriptome and metabolome analysis. These data showed that the expression of salt-responsive genes and salt stress-related metabolites were increased by Ky-2 treatment under salinity stress. A mutant deficient in AtSOS1(Arabidopis thaliana SALT OVERLY SENSITIVE 1), which encodes an Na(+)/H(+)antiporter and was among the up-regulated genes, lost the salinity stress tolerance conferred by Ky-2. We confirmed that acetylation of histone H4 at AtSOS1 was increased by Ky-2 treatment. Moreover, Ky-2 treatment decreased the intracellular Na(+)accumulation under salinity stress, suggesting that enhancement of SOS1-dependent Na(+)efflux contributes to increased high-salinity stress tolerance caused by Ky-2 treatment.

  15. Wind-Induced Fatigue Analysis of High-Rise Steel Structures Using Equivalent Structural Stress Method

    Directory of Open Access Journals (Sweden)

    Zhao Fang

    2017-01-01

    Full Text Available Welded beam-to-column connections of high-rise steel structures are susceptive to fatigue damage under wind loading. However, most fatigue assessments in the field of civil engineering are mainly based on nominal stress or hot spot stress theories, which has the disadvantage of dependence on the meshing styles and massive curves selected. To address this problem, in this paper, the equivalent structural stress method with advantages of mesh-insensitive quality and capability of unifying different stress-life curves (S-N curves into one is introduced to the wind-induced fatigue assessment of a large-scale complicated high-rise steel structure. The multi-scale finite element model is established and the corresponding wind loading is simulated. Fatigue life assessments using equivalent structural stress method, hot spot stress method and nominal stress method are performed, and the results are verified and comparisons are made. The mesh-insensitive quality is also verified. The results show that the lateral weld toe of the butt weld connecting the beam flange plate and the column is the location where fatigue damage most likely happens. Nominal stress method considers fatigue assessment of welds in a more global way by averaging all the stress on the weld section while in equivalent structural stress method and hot spot method local stress concentration can be taken into account more precisely.

  16. Cerebral hemodynamics: concepts of clinical importance

    Directory of Open Access Journals (Sweden)

    Edson Bor-Seng-Shu

    2012-05-01

    Full Text Available Cerebral hemodynamics and metabolism are frequently impaired in a wide range of neurological diseases, including traumatic brain injury and stroke, with several pathophysiological mechanisms of injury. The resultant uncoupling of cerebral blood flow and metabolism can trigger secondary brain lesions, particularly in early phases, consequently worsening the patient's outcome. Cerebral blood flow regulation is influenced by blood gas content, blood viscosity, body temperature, cardiac output, altitude, cerebrovascular autoregulation, and neurovascular coupling, mediated by chemical agents such as nitric oxide (NO, carbon monoxide (CO, eicosanoid products, oxygen-derived free radicals, endothelins, K+, H+, and adenosine. A better understanding of these factors is valuable for the management of neurocritical care patients. The assessment of both cerebral hemodynamics and metabolism in the acute phase of neurocritical care conditions may contribute to a more effective planning of therapeutic strategies for reducing secondary brain lesions. In this review, the authors have discussed concepts of cerebral hemodynamics, considering aspects of clinical importance.

  17. Wall shear stress distributions on stented patent ductus arteriosus

    Science.gov (United States)

    Kori, Mohamad Ikhwan; Jamalruhanordin, Fara Lyana; Taib, Ishkrizat; Mohammed, Akmal Nizam; Abdullah, Mohammad Kamil; Ariffin, Ahmad Mubarak Tajul; Osman, Kahar

    2017-04-01

    A formation of thrombosis due to hemodynamic conditions after the implantation of stent in patent ductus arteriosus (PDA) will derived the development of re-stenosis. The phenomenon of thrombosis formation is significantly related to the distribution of wall shear stress (WSS) on the arterial wall. Thus, the aims of this study is to investigate the distribution of WSS on the arterial wall after the insertion of stent. Three dimensional model of patent ductus arteriosus inserted with different types of commercial stent are modelled. Computational modelling is used to calculate the distributions of WSS on the arterial stented PDA. The hemodynamic parameters such as high WSS and WSSlow are considered in this study. The result shows that the stented PDA with Type III stent has better hemodynamic performance as compared to others stent. This model has the lowest distributions of WSSlow and also the WSS value more than 20 dyne/cm2. From the observed, the stented PDA with stent Type II showed the highest distributions area of WSS more than 20 dyne/cm2. This situation revealed that the high possibility of atherosclerosis to be developed. However, the highest distribution of WSSlow for stented PDA with stent Type II indicated that high possibility of thrombosis to be formed. In conclusion, the stented PDA model calculated with the lowest distributions of WSSlow and WSS value more than 20dyne/cm2 are considered to be performed well in stent hemodynamic performance as compared to other stents.

  18. Factors Associated With High Levels of Perceived Prenatal Stress Among Inner-City Women.

    Science.gov (United States)

    Rieger, Kendra L; Heaman, Maureen I

    2016-01-01

    To explore the factors associated with high rates of perceived prenatal stress among inner-city women. Observational cross-sectional study. We conducted a secondary analysis of data from 603 inner-city women. In our study, 330 participants (54.7%) self-identified as First Nations, Metis, or First Nations/Metis. Prenatal stress was measured with Cohen's Perceived Stress Scale. A social ecological model provided the theoretical framework for the study, and variables representing all levels of the model were selected for study. Data analyses included t tests to compare women with high stress and low/moderate stress, univariable logistic regression analysis to determine the association of selected factors with maternal stress, and multivariable logistic regression analysis to provide adjusted odds ratios and 95% confidence intervals for the factors. Of the 603 participants, 17.2% (104) reported high levels of perceived stress, and 82.8% (499) reported low/moderate levels. The high-stress group included a significantly greater proportion of First Nations, Metis, or First Nations/Metis women (76.0%) than the low/moderate-stress group (50.3%). Low rates of self-esteem and social support, residential mobility, abuse before/during pregnancy, and experiencing discrimination were significantly associated with high levels of perceived prenatal stress. Our findings demonstrated that factors that influence prenatal stress occur at all levels of the social ecological model. The identified factors are amenable to change, and implications for practice include the need for psychosocial risk assessment, alternative forms of prenatal care, relational care, and advocacy initiatives. A greater understanding of the complex factors associated with high rates of perceived prenatal stress can inform the development of effective interventions for inner-city women. Copyright © 2016 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights

  19. Teachers Stress in Public High Schools in Kuwait

    Science.gov (United States)

    Tayeh, Raja

    2013-01-01

    The purpose of this study was to identify the factors that may influence stress levels of secondary teachers in Kuwait. This study was important for two reasons; first, no previous investigation on this topic among Kuwaiti secondary educators had taken place, and second, the findings of this study could serve to develop and implement secondary…

  20. [Hemodynamic evaluation of the patient with microvarices].

    Science.gov (United States)

    Alvarez Sánchez, J A; Vega Gómez, M E; Rodríguez Lacaba, B; Martínez Griñán, M A

    1992-01-01

    The present study included 21 lower limbs with micro varicosities, 56 lower limbs with retrograde flow-varicosities (positive Rivlin) and 35 health lower limbs. Technics used for diagnosis were: Doppler ultrasonography and strain gauge plethysmography. We found a higher incidence of valvular failure on the varicose patients with retrograde flow (showing changes on their viscoelastic features of their venous walls). On the contrary, patient with microvaricosities showed an hemodynamics similar to the healty patient: we did not found any difference on the variables analyzed between the two groups. We conclude that the presence of microvaricosities has no influence on the analyzed hemodynamic parametres.

  1. Hemodynamic characteristics of the vertebrobasilar system analyzed using MRI-based models.

    Directory of Open Access Journals (Sweden)

    Amanda K Wake-Buck

    Full Text Available The vertebrobasilar system (VBS is unique in human anatomy in that two arteries merge into a single vessel, and it is especially important because it supplies the posterior circulation of the brain. Atherosclerosis develops in this region, and atherosclerotic plaques in the vertebrobasilar confluence can progress with catastrophic consequences, including artery occlusion. Quantitative assessments of the flow characteristics in the VBS could elucidate the factors that influence flow patterns in this confluence, and deviations from normal patterns might then be used to predict locations to monitor for potential pathological changes, to detect early signs of disease, and to evaluate treatment options and efficacy. In this study, high-field MRI was used in conjunction with computational fluid dynamics (CFD modeling to investigate the hemodynamics of subject-specific confluence models (n = 5 and to identify different geometrical classes of vertebrobasilar systems (n = 12 of healthy adult subjects. The curvature of the vessels and their mutual orientation significantly affected flow parameters in the VBS. The basilar artery geometry strongly influenced both skewing of the velocity profiles and the wall shear stress distributions in the VBS. All five subjects modeled possessed varying degrees of vertebral asymmetry, and helical flow was observed in four cases, suggesting that factors other than vertebral asymmetry influence mixing of the vertebral artery flow contributions. These preliminary studies verify that quantitative, MR imaging techniques in conjunction with subject-specific CFD models of healthy adult subjects may be used to characterize VBS hemodynamics and to predict flow features that have been related to the initiation and development of atherosclerosis in large arteries. This work represents an important first step towards applying this approach to study disease initiation and progression in the VBS.

  2. Bioimpedance Measurement of Segmental Fluid Volumes and Hemodynamics

    Science.gov (United States)

    Montgomery, Leslie D.; Wu, Yi-Chang; Ku, Yu-Tsuan E.; Gerth, Wayne A.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    Bioimpedance has become a useful tool to measure changes in body fluid compartment volumes. An Electrical Impedance Spectroscopic (EIS) system is described that extends the capabilities of conventional fixed frequency impedance plethysmographic (IPG) methods to allow examination of the redistribution of fluids between the intracellular and extracellular compartments of body segments. The combination of EIS and IPG techniques was evaluated in the human calf, thigh, and torso segments of eight healthy men during 90 minutes of six degree head-down tilt (HDT). After 90 minutes HDT the calf and thigh segments significantly (P < 0.05) lost conductive volume (eight and four percent, respectively) while the torso significantly (P < 0.05) gained volume (approximately three percent). Hemodynamic responses calculated from pulsatile IPG data also showed a segmental pattern consistent with vascular fluid loss from the lower extremities and vascular engorgement in the torso. Lumped-parameter equivalent circuit analyses of EIS data for the calf and thigh indicated that the overall volume decreases in these segments arose from reduced extracellular volume that was not completely balanced by increased intracellular volume. The combined use of IPG and EIS techniques enables noninvasive tracking of multi-segment volumetric and hemodynamic responses to environmental and physiological stresses.

  3. Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics

    Directory of Open Access Journals (Sweden)

    Venkat Keshav Chivukula

    2015-12-01

    Full Text Available We analyzed heart wall motion and blood flow dynamics in chicken embryos using in vivo optical coherence tomography (OCT imaging and computational fluid dynamics (CFD embryo-specific modeling. We focused on the heart outflow tract (OFT region of day 3 embryos, and compared normal (control conditions to conditions after performing an OFT banding intervention, which alters hemodynamics in the embryonic heart and vasculature. We found that hemodynamics and cardiac wall motion in the OFT are affected by banding in ways that might not be intuitive a priori. In addition to the expected increase in ventricular blood pressure, and increase blood flow velocity and, thus, wall shear stress (WSS at the band site, the characteristic peristaltic-like motion of the OFT was altered, further affecting flow and WSS. Myocardial contractility, however, was affected only close to the band site due to the physical restriction on wall motion imposed by the band. WSS were heterogeneously distributed in both normal and banded OFTs. Our results show how banding affects cardiac mechanics and can lead, in the future, to a better understanding of mechanisms by which altered blood flow conditions affect cardiac development leading to congenital heart disease.

  4. Hemodynamic effects of stenting on wide-necked intracranial aneurysms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi-sen; LUO Bin; LI Chuan-hui; YANG Xin-jian; WANG Sheng-zhang; QIAO Ai-ke; CHEN Jia-liang; ZHANG Kun-ya; LIU Zhi-cheng; ZHAO Yu-jing; ZHANG Ying

    2010-01-01

    Background Stent placement has been widely used to assist coiling in cerebral aneurysm treatments. The present study aimed to investigate the hemodynamic effects of stenting on wide-necked intracranial aneurysms.Methods Three idealized plexiglass aneudsmal models with different geometries before and after stenting were created, and their three-dimensional computational models were constructed. Flow dynamics in stented and unstented aneurismal models were studied using in vitro flow visualization and computational fluid dynamics (CFD) simulations. In addition, effects of stenting on flow dynamics in a patient-specific aneurysm model were also analyzed by CFD.Results The results of flow visualization were consistent with those obtained with CFD simulations. Stent deployment reduced vortex inside the aneurysm and its impact on the aneurysm sac, and decreased wall shear stress on the sac.Different aneurysm geometries dictated fundamentally different hemodynamic patterns and outcomes of stenting.Conclusions Stenting across the neck of aneurysms improves local blood flow profiles. This may facilitate thrombus formation in aneurysms and decrease the chance of recanalization.

  5. From hemodynamic towards cardiomechanic sensors in implantable devices

    Science.gov (United States)

    Ferek-Petric, Bozidar

    2013-06-01

    Sensor could significantly improve the cardiac electrotherapy. It has to provide long-term stabile signal not impeding the device longevity and lead reliability. It may not introduce special implantation and adjustment procedures. Hemodynamic sensors based on the blood flow velocity and cardiomechanic sensors based on the lead bending measurement are disclosed. These sensors have a broad clinical utility. Triboelectric and high-frequency lead bending sensors yield accurate and stable signals whereby functioning with every cardiac lead. Moreover, high frequency measurement avoids use of any kind of special hardware mounted on the cardiac lead.

  6. Acute stress differentially affects spatial configuration learning in high and low cortisol-responding healthy adults

    Directory of Open Access Journals (Sweden)

    Thomas Meyer

    2013-05-01

    Full Text Available Background: Stress and stress hormones modulate memory formation in various ways that are relevant to our understanding of stress-related psychopathology, such as posttraumatic stress disorder (PTSD. Particular relevance is attributed to efficient memory formation sustained by the hippocampus and parahippocampus. This process is thought to reduce the occurrence of intrusions and flashbacks following trauma, but may be negatively affected by acute stress. Moreover, recent evidence suggests that the efficiency of visuo-spatial processing and learning based on the hippocampal area is related to PTSD symptoms. Objective: The current study investigated the effect of acute stress on spatial configuration learning using a spatial contextual cueing task (SCCT known to heavily rely on structures in the parahippocampus. Method: Acute stress was induced by subjecting participants (N = 34 to the Maastricht Acute Stress Test (MAST. Following a counterbalanced within-subject approach, the effects of stress and the ensuing hormonal (i.e., cortisol activity on subsequent SCCT performance were compared to SCCT performance following a no-stress control condition. Results: Acute stress did not impact SCCT learning overall, but opposing effects emerged for high versus low cortisol responders to the MAST. Learning scores following stress were reduced in low cortisol responders, while high cortisol-responding participants showed improved learning. Conclusions: The effects of stress on spatial configuration learning were moderated by the magnitude of endogenous cortisol secretion. These findings suggest a possible mechanism by which cortisol responses serve an adaptive function during stress and trauma, and this may prove to be a promising route for future research in this area.

  7. Achieving reversibility of ultra-high mechanical stress by hydrogen loading of thin films

    Science.gov (United States)

    Hamm, M.; Burlaka, V.; Wagner, S.; Pundt, A.

    2015-06-01

    Nano-materials are commonly stabilized by supports to maintain their desired shape and size. When these nano-materials take up interstitial atoms, this attachment to the support induces mechanical stresses. These stresses can be high when the support is rigid. High stress in the nano-material is typically released by delamination from the support or by the generation of defects, e.g., dislocations. As high mechanical stress can be beneficial for tuning the nano-materials properties, it is of general interest to deduce how real high mechanical stress can be gained. Here, we show that below a threshold nano-material size, dislocation formation can be completely suppressed and, when delamination is inhibited, even the ultrahigh stress values of the linear elastic limit can be reached. Specifically, for hydrogen solved in epitaxial niobium films on sapphire substrate supports a threshold film thickness of 6 nm was found and mechanical stress of up to (-10 ± 1) GPa was reached. This finding is of basic interest for hydrogen energy applications, as the hydride stability in metals itself is affected by mechanical stress. Thus, tuning of the mechanical stress-state in nano-materials may lead to improved storage properties of nano-sized materials.

  8. Role of Stress Voltage on Structural Degradation of GaN High-Electron-Mobility Transistors

    Science.gov (United States)

    2010-01-01

    GaN high-electron-mobility transistors ( HEMTs ) under high- voltage electrical stress degradation in the drain and gate current is electric field... GaN HEMTs after long-term DC and RF life tests at high voltage [12–16]. Crystallographic defects such as pits and cracks have been observed at the...created by high-voltage stress in GaN HEMTs . A complementary study of the evolution of these de- fects in the cross section as a function of stress

  9. Resilience in highly stressed urban children: concepts and findings.

    OpenAIRE

    Cowen, E. L.; Wyman, P. A.; Work, W. C.

    1996-01-01

    The Rochester Child Resilience Project is a coordinated set of studies of the correlates and antecedents of outcomes relating to resilience among profoundly stressed urban children. The studies have been conducted over the course of the past decade. Based on child test data, parent, teacher, and self ratings of child adjustment, and in-depth individual interviews with parents and children, a cohesive picture has developed of child and family milieu variables that consistently differentiate ch...

  10. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  11. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  12. High novelty-seeking rats are resilient to negative physiological effects of the early life stress.

    Science.gov (United States)

    Clinton, Sarah M; Watson, Stanley J; Akil, Huda

    2014-01-01

    Exposure to early life stress dramatically impacts adult behavior, physiology, and neuroendocrine function. Using rats bred for novelty-seeking differences and known to display divergent anxiety, depression, and stress vulnerability, we examined the interaction between early life adversity and genetic predisposition for high- versus low-emotional reactivity. Thus, bred Low Novelty Responder (bLR) rats, which naturally exhibit high anxiety- and depression-like behavior, and bred High Novelty Responder (bHR) rats, which show low anxiety/depression together with elevated aggression, impulsivity, and addictive behavior, were subjected to daily 3 h maternal separation (MS) stress postnatal days 1-14. We hypothesized that MS stress would differentially impact adult bHR/bLR behavior, physiology (stress-induced defecation), and neuroendocrine reactivity. While MS stress did not impact bHR and bLR anxiety-like behavior in the open field test and elevated plus maze, it exacerbated bLRs' already high physiological response to stress - stress-induced defecation. In both tests, MS bLR adult offspring showed exaggerated stress-induced defecation compared to bLR controls while bHR offspring were unaffected. MS also selectively impacted bLRs' (but not bHRs') neuroendocrine stress reactivity, producing an exaggerated corticosterone acute stress response in MS bLR versus control bLR rats. These findings highlight how genetic predisposition shapes individuals' response to early life stress. Future work will explore neural mechanisms underlying the distinct behavioral and neuroendocrine consequences of MS in bHR/bLR animals.

  13. The role of fungal symbiosis in the adaptation of plants to high stress environments

    Science.gov (United States)

    Rodriguez, Russell J.; Redman, Regina S.; Henson, Joan M.

    2004-01-01

    All plants studied in natural ecosystemsare symbiotic with fungi that either resideentirely (endophytes) or partially(mycorrhizae) within plants. Thesesymbioses appear to adapt to biotic andabiotic stresses and may be responsible forthe survival of both plant hosts and fungalsymbionts in high stress habitats. Here wedescribe the role of symbiotic fungi inplant stress tolerance and present astrategy based on adaptive symbiosis topotentially mitigate the impacts of globalchange on plant communities.

  14. The hemodynamics in intracranial aneurysm ruptured region with active contrast leakage during computed tomography angiography

    Science.gov (United States)

    Li, Ming-Lung; Wang, Yi-Chou; Liou, Tong-Miin; Lin, Chao-An

    2014-10-01

    Precise locations of rupture region under contrast agent leakage of five ruptured cerebral artery aneurysms during computed tomography angiography, which is to our knowledge for the first time, were successfully identified among 101 patients. These, together with numerical simulations based on the reconstructed aneurysmal models, were used to analyze hemodynamic parameters of aneurysms under different cardiac cyclic flow rates. For side wall type aneurysms, different inlet flow rates have mild influences on the shear stresses distributions. On the other hand, for branch type aneurysms, the predicted wall shear stress (WSS) correlates strongly with the increase of inlet vessel velocity. The mean and time averaged WSSes at rupture regions are found to be lower than those over the surface of the aneurysms. Also, the levels of the oscillatory shear index (OSI) are higher than the reported threshold value, supporting the assertion that high OSI correlates with rupture of the aneurysm. However, the present results also indicate that OSI level at the rupture region is relatively lower.

  15. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure

    DEFF Research Database (Denmark)

    Damgaard, Morten; Norsk, Peter; Gustafsson, Finn

    2005-01-01

    Patients with untreated heart failure (HF) exhibit a blunted hemodynamic and neuroendocrine response to a high sodium intake, leading to excessive sodium and water retention. However, it is not known whether this is the case for patients with compensated HF receiving angiotensin-converting enzyme...... not support the advice for HF patients to restrict dietary sodium.......Patients with untreated heart failure (HF) exhibit a blunted hemodynamic and neuroendocrine response to a high sodium intake, leading to excessive sodium and water retention. However, it is not known whether this is the case for patients with compensated HF receiving angiotensin-converting enzyme...... inhibitors and beta-adrenoreceptor blockers. Therefore, we determined the hemodynamic and neuroendocrine responses to 1 wk of a low-sodium diet (70 mmol/day) and 1 wk of a high-sodium diet (250 mmol/day) in 12 HF patients and 12 age-matched controls in a randomized, balanced fashion. During steady...

  16. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure

    DEFF Research Database (Denmark)

    Damgaard, Morten; Norsk, Peter; Gustafsson, Finn

    2006-01-01

    Patients with untreated heart failure (HF) exhibit a blunted hemodynamic and neuroendocrine response to a high sodium intake, leading to excessive sodium and water retention. However, it is not known whether this is the case for patients with compensated HF receiving angiotensin-converting enzyme...... not support the advice for HF patients to restrict dietary sodium.......Patients with untreated heart failure (HF) exhibit a blunted hemodynamic and neuroendocrine response to a high sodium intake, leading to excessive sodium and water retention. However, it is not known whether this is the case for patients with compensated HF receiving angiotensin-converting enzyme...... inhibitors and beta-adrenoreceptor blockers. Therefore, we determined the hemodynamic and neuroendocrine responses to 1 wk of a low-sodium diet (70 mmol/day) and 1 wk of a high-sodium diet (250 mmol/day) in 12 HF patients and 12 age-matched controls in a randomized, balanced fashion. During steady...

  17. Effect of dexmedetomidine on stress hormone and hemodynamic in delayed extubation patients after craniotomy%右美托咪定对开颅术后延迟拔管患者应激性激素和血流动力学的影响

    Institute of Scientific and Technical Information of China (English)

    赵立红; 尹宁宁; 李倩; 陈晗; 史中华; 徐明; 石广志; 周建新

    2015-01-01

    目的:探讨右美托咪定预防性用于开颅术后延迟拔管患者镇静时对应激性激素和血流动力学的影响。方法将入住重症监护病房( intensive care unit,ICU)的择期开颅术后延迟拔管患者采用数字表法随机分配到右美托咪定组或0.9%(质量分数)氯化钠注射液组。分别给予右美托咪定0.6μg· kg-1· h-1(10 mg/L)或0.9%(质量分数)氯化钠注射液持续泵入至拔管后30 min。测定用药前、用药后2、4、8 h和研究结束时的血中肾上腺素、去甲肾上腺素、多巴胺、皮质醇的浓度,记录心率、收缩压和舒张压。结果右美托咪定组较0.9%(质量分数)氯化钠注射液组血中去甲肾上腺素、多巴胺和皮质醇的浓度降低(P<0.05),心率、收缩压和舒张压均明显降低(P<0.01)。结论右美托咪定作为一种新型、强效、高选择性的α2受体激动剂,以0.6μg· kg-1· h-1的速度持续泵入应用于开颅术后延迟拔管患者,可以降低血中应激性激素的水平,稳定血流动力学。%Objective To evaluate the effect of dexmedetomidine on stress hormone and hemodynamic in the delayed extubation patients after craniotomy.Methods Forty patients after intracranial surgery with delayed extubation were randomly divided to two treatment study groups, labeled“Dex group” or“Saline group”.Dexmedetomidine group patients received a continuous infusion of 0.6μg· kg-1· h-1(10 mg/L).Placebo group patients received a maintenance infusion of 0.9% sodium chloride for injection at a volume and rate equal to that of dexmedetomidine.Plasma levels of epinephrine, norepinephrine, dopamine, cortisol, HR, SBP and DBP were detected at before infusion(T1), 2 hours(T2), 4 hours(T3) and 8 hours(T4) after infusion, end of infusion(T5).Results Plasma levels of norepinephrine, dopamine, cortisol of dexmedetomidine group were lower than those of saline group

  18. Stress relaxation behavior of dental porcelains at high temperatures.

    Science.gov (United States)

    DeHoff, P H; Vontivillu, S B; Wang, Z; Anusavice, K J

    1994-05-01

    The purpose of this study was to measure the stress relaxation behavior at elevated temperatures of three experimental opaque porcelains and three experimental body porcelains. Feldspathic porcelain formulations covering a range of thermal contraction coefficients were supplied by a dental ceramics manufacturer. Six specimens, 11 mm in diameter by 22 mm long, were fabricated for each porcelain. The specimens were tested in compression at five temperatures controlled to +/- 1 degree C in a hot stage furnace attached to a screw-type uni-axial testing machine. Mean values of relaxation time, tau u, and the b function were determined by a regression fit to the relation: psi (t) = exp [-(t/tau u)b]. Values of b ranged from 0.23 to 0.53 for opaque porcelain and 0.47 to 0.64 for body porcelain. Relaxation times ranged from 2.6 s to 4 x 10(4) s for the opaque porcelains and 1.5 s to 5.5 x 10(2) s for the body porcelains. A statistically significant variation of b with temperature for three of the experimental porcelains is an indication that these porcelains do not satisfy the theoretical requirements for the porcelains to be classified as thermorheologically simple. A knowledge of the relaxation behavior of dental porcelains is necessary so that dental researchers can identify metal/porcelain combinations that will result in low stress values and, therefore, reduce the potential for failure from thermally induced stresses. These properties can be used in the optimization of prosthesis design to reduce the destruction of healthy tissue to accommodate the placement of the dental prosthesis.

  19. Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise

    Directory of Open Access Journals (Sweden)

    Hee-Tae Roh

    2017-06-01

    Conclusion: Our study suggests that episodic vigorous exercise can increase oxidative stress and blood neurotrophic factor levels and induce disruption of the BBB. Moreover, high levels of neurotrophic factor in the blood after exercise in the obese group may be due to BBB disruption, and it is assumed that oxidative stress was the main cause of this BBB disruption.

  20. Interaction of fatigue and creep of GH33 under multi-axial stress at high temperature

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Low-cycle fatigue experiments of tension-compression, torsion and tension-torsion with holding time were performed.The interaction law of creep and fatigue under multiaxial stress at high temperature was investigated, and the micro-mechanism ofequilibrium diagrams was analyzed. A united equation of fatigue life under multiaxial stress was proposed.

  1. Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress

    NARCIS (Netherlands)

    Handtke, S.; Schroeter, R.; Jurgen, B.; Methling, K.; Schluter, R.; Albrecht, D.; Hijum, S.A.F.T. van; Bongaerts, J.; Maurer, K.H.; Lalk, M.; Schweder, T.; Hecker, M.; Voigt, B.

    2014-01-01

    Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen

  2. STRESS FRACTURE OF THE FIRST RIB IN A HIGH SCHOOL WEIGHT LIFTER

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujioka

    2009-06-01

    Full Text Available A 17-year-old boy, who played a weight lifting in high school, sustained stress fracture of the first rib without any causes. We successfully treated first rib stress fracture with limitation of using the upper extremity and with using low-intensity pulsed ultrasound

  3. Idea on patent ; It is high time to stress quality

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-15

    This book deals with patent stressing on the quality, which includes from idea to technical business, It's simple to register the computer program, why do patent lawyer appoint the patent attorney's office? construction of patent right range, a good patent and a bad patent, strong patent and weak patent. It doesn't allow for Dus to use as we like, each patent has different value, Let's write technical specifications, advice on talking for invention with a patent attorney's office and what kind of task do intellectual property division do?.

  4. A tensile stage for high-stress low-strain fibre studies

    DEFF Research Database (Denmark)

    Pauw, Brian Richard; Vigild, Martin Etchells; Mortensen, Kell;

    2011-01-01

    Determining the effects of stress on the internal structure of high-performance fibres may provide insight into their structure-property relationships. The deformation of voids inside a poly(p-phenylene terephthalamide) (PPTA) fibre upon application of stress is one such effect which may...... that the effects of the application of heat during tensile load can also be determined. Initial results show a slight but significant effect of stress and heating on the internal void structure of PPTA fibres. The effects on the void structure of heating and stress appear to be markedly different....

  5. Study of Residual Stresses and Distortion in Structural Weldments in High-Strength Steels.

    Science.gov (United States)

    1981-11-30

    and Cracking due to Stress Relieving Heat Treatment of HY80 Steel ", Welding in the World, 10 (1/2), 1972. -114- elastic-plastic and creep analysis...900°F (500C) is adequate. In these steels stress relief treatments are beneficial for the prevention of stress corrosion and reheat cracking . For...of * Contract NOO014-75-C-0469 (M.I.T. OSP #82558) STUDY OF RESIDUAL STRESSES AND DISTORTION IN - . -- ISTRUCTURAL WELT*IENTS IN HIGH-STRENGTH STEELS

  6. High-Performance Laser Peening for Effective Mitigation of Stress Corrosion Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Hackel, L; Hao-Lin, C; Wong, F; Hill, M

    2002-10-02

    Stress corrosion cracking (SCC) in the Yucca Mountain waste package closure welds is believed to be the greatest threat to long-term containment. Use of stress mitigation to eliminate tensile stresses resulting from welding can prevent SCC. A laser technology with sufficient average power to achieve high throughput has been developed and commercially deployed with high peak power and sufficiently high average power to be an effective laser peening system. An appropriately applied version of this process could be applied to eliminate SCC in the waste package closure welds.

  7. Nonlinear Creep Model for Deep Rock under High Stress and High Pore Water Pressure Condition

    Directory of Open Access Journals (Sweden)

    Xie Yuanguang

    2016-05-01

    Full Text Available Conventional triaxial compression creep experiments for deep sandstone under high confining pressure and high pore water pressure were carried out, in order to predict the creep response of deep rock under these conditions. A nonlinear viscoelastic-plastic creep constitutive model was proposed based on the experimental results. The theory of component model was used as a basis for the formulation of this model. First, by using mathematical fitting and analogy, a new nonlinear viscous component was introduced based on the properties of the creep curves during the tertiary stage. Second, a timer component to judge whether the creep can get into the tertiary stage was presented. Finally, a nonlinear creep model was proposed. Results showed good agreement between theory curves from the nonlinear creep model and experimental data. This model can be applied to predict deep rock creep responses under high stress and high pore water pressure conditions. Hence, the obtained conclusions in this study are beneficial to deep rock engineering.

  8. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial knowledge of the so-called balloon model describing the hemodynamic behavior of the brain. To overcome this difficulty, a High Order Sliding Mode observer is applied to the balloon system, where the unknown coupling is considered as an internal perturbation. The effectiveness of the proposed method is illustrated through a set of synthetic data that mimic fMRI experiments.

  9. Is the effect of alcohol on risk of stroke confined to highly stressed persons?

    DEFF Research Database (Denmark)

    Nielsen, N R; Truelsen, T; Barefoot, J C

    2005-01-01

    BACKGROUND: Psychological stress and alcohol are both suggested as risk factors for stroke. Further, there appears to be a close relation between stress and alcohol consumption. Several experimental studies have found alcohol consumption to reduce the immediate effects of stress in a laboratory...... about their self-reported level of stress and their weekly alcohol consumption. The participants were followed-up until 31st of December 1997 during which 880 first ever stroke events occurred. Data were analysed by means of Cox regression modelling. RESULTS: At a high stress level, weekly total...... intake and ischaemic stroke events. Regarding specific types of alcoholic beverages, self-reported stress only modified the associations for intake of beer and wine. CONCLUSIONS: This study indicates that the apparent lower risk of stroke associated with moderate alcohol consumption is confined...

  10. The effect of multiple bending of wire on the residual stresses of high carbon steel wires

    Directory of Open Access Journals (Sweden)

    R. Kruzel

    2013-01-01

    Full Text Available Steel tire cord, springs and rope wires belong to the group of metal products from which the low residual stresses are required. In this paper the effect of multiple bending of wire on residual stresses of high carbon steel wires has been assessed. It was found that the application of the multi-roller straightening machine in the banding wire process enables to reduce the residual stresses in the drawn wires. It should be also noted that the value of the residual stresses depends on the type of straightener construction. The residual stresses on the basis of stress-strain curve has been determined. It has been stated that the application of seven-rolls straightener gives the best effect of straightening.

  11. Landslide Monitoring Based on High-Resolution Distributed Fiber Optic Stress Sensor

    Institute of Scientific and Technical Information of China (English)

    Zhi-Yong Dai; Yong Liu; Li-Xun Zhang; Zhong-Hua Ou; Ce Zhou; Yong-Zhi Liu

    2008-01-01

    A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 Mpa, spatial resolution 10 em and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.

  12. High-risk diagnosis, social stress, and parent-child relationships: A moderation model.

    Science.gov (United States)

    Bentley, Eryn; Millman, Zachary B; Thompson, Elizabeth; Demro, Caroline; Kline, Emily; Pitts, Steven C; DeVylder, Jordan E; Smith, Melissa Edmondson; Reeves, Gloria; Schiffman, Jason

    2016-07-01

    Stress is related to symptom severity among youth at clinical high-risk (CHR) for psychosis, although this relation may be influenced by protective factors. We explored whether the association of CHR diagnosis with social stress is moderated by the quality of parent-child relationships in a sample of 96 (36 CHR; 60 help-seeking controls) adolescents and young adults receiving mental health services. We examined self-reported social stress and parent-child relationships as measured by the Behavior Assessment System for Children, Second Edition (BASC-2), and determined CHR status from the clinician-administered Structured Interview for Psychosis-Risk Syndrome (SIPS). The social stress subscale, part of the clinical domain of the BASC-2, assesses feelings of stress and tension in personal relationships and the relations with parents subscale, part of the adaptive domain of the BASC-2, assesses perceptions of importance in family and quality of parent-child relationship. There was a modest direct relation between risk diagnosis and social stress. Among those at CHR, however, there was a significant relation between parent-child relationships and social stress (b=-0.73, t[92]=-3.77, psocial stress for those at risk for psychosis. Findings provide additional evidence to suggest that interventions that simultaneously target both social stress and parent-child relationships might be relevant for adolescents and young adults at clinical high-risk for psychosis.

  13. Neutron diffraction analysis of residual strain/stress distribution in the vicinity of high strength welds

    Directory of Open Access Journals (Sweden)

    Hamák I.

    2010-06-01

    Full Text Available Residual stresses resulting from non homogeneous heat distribution during welding process belong to most significant factor influencing behavior of welded structures. These stresses are responsible for defect occurrence during welding and they are also responsible for crack initiation and propagation at the either static or dynamic load. The significant effect of weld metal chemical composition as well as the effect of fatigue load and local plastic deformation on residual stress distribution and fatigue life have been recognized for high strength steels welds. The changes in residual stress distribution have then positive effect on cold cracking behavior and also on fatigue properties of the welds [1-3]. Several experimental methods, both destructive and non-destructive, such as hole drilling method, X-ray diffraction, neutron diffraction and others, have been used to examine residual stress distribution in all three significant orientations in the vicinity of the welds. The present contribution summarizes the results of neutron diffraction measurements of residual stress distribution in the vicinity of single-pass high-strength-steel welds having different chemical composition as well as the influence of fatigue load and local plastic deformation. It has been observed that the chemical composition of the weld metal has a significant influence on the stress distribution around the weld. Similarly, by aplying both cyclic load or pre-stress load on the specimens, stress relaxation was observed even in the region of approximately 40 mm far from the weld toe.

  14. Boechera species exhibit species-specific responses to combined heat and high light stress.

    Science.gov (United States)

    Gallas, Genna; Waters, Elizabeth R

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species.

  15. Stress selectively and lastingly promotes learning of context-related high arousing information.

    Science.gov (United States)

    Smeets, Tom; Wolf, Oliver T; Giesbrecht, Timo; Sijstermans, Kevin; Telgen, Sebastian; Joëls, Marian

    2009-09-01

    The secretion of adrenal stress hormones in response to acute stress is known to affect learning and memory, particularly for emotionally arousing memory material. Here, we investigated whether stress-induced modulation of learning and memory performance depends on (i) the conceptual relatedness between the material to be learned/remembered and the stressor and (ii) the timing of stress exposure versus learning phase. Participants learned stressor-related and stressor-unrelated words of varying arousal 1h prior to, immediately following, or 2h after exposure to the Trier Social Stress Test (all groups n=16). Twenty-four hours later, delayed free recall was assessed. Cortisol and alpha-amylase were sampled to evaluate if concurrent stress-induced raised glucocorticoid levels and high adrenergic activity are implicated in modulating learning performance. Our results demonstrate that immediate and delayed post-stress learning selectively enhanced the learning and delayed recall of stressor-related high arousing words. This enhancing effect was strongly associated with concurrent stress-induced cortisol and sympathetic activity. Our data suggest that when to-be-learned information is conceptually related to a stressor and considered important (i.e., arousing) by the individual, learning under stressful circumstances results in improved memorability afterwards.

  16. Prediction of Stress Concentration effect under Thermal and Dynamic loads on a High Pressure Turbine Rotor

    Directory of Open Access Journals (Sweden)

    R.Nagendra Babu

    2010-08-01

    Full Text Available Geometric discontinuities cause a large variation of stress and produce a significant increase in stress. The high stress due to the variation of geometry is called as ‘stress concentration’. This will increase when the loads are further applied. There are many investigators who have studied the stress distribution around the notches, grooves, and other irregularities of various machine components. This paper analyses the effects of thermal and fatigue load on a steam turbine rotor under the operating conditions. Stresses due to thermal and dynamic loads of High Pressure Steam Turbine Rotor of 210MW power station are found in two stages. A source code is developed for calculating the nominal stress at each section of HPT rotor. Maximum stress is obtained using FEA at the corresponding section. Thermal and Fatigue Stress Concentration Factors at each section are calculated. It is observed that the SCFdue to the combined effect of thermal and dynamic loads at the temperatures beyond 5400C is exceeding the safe limits.

  17. Stress

    OpenAIRE

    Jensen, Line Skov; Lova, Lotte; Hansen, Zandra Kulikovsky; Schønemann, Emilie; Larsen, Line Lyngby; Colberg Olsen, Maria Sophia; Juhl, Nadja; Magnussen, Bogi Roin

    2012-01-01

    Stress er en tilstand som er meget omdiskuteret i samfundet, og dette besværliggør i en vis grad konkretiseringen af mulige løsningsforslag i bestræbelsen på at forebygge den såkaldte folkesygdom. Hovedkonklusionen er, at selv om der bliver gjort meget for at forebygge, er der ikke meget der aktivt kan sættes i værk for at reducere antallet af stressramte, før en fælles forståelse af stressårsager og effektiv stresshåndtering er fremlagt. Problemformuleringen er besvaret gennem en undersø...

  18. Combat high or traumatic stress: violent offending is associated with appetitive aggression but not with symptoms of traumatic stress

    Directory of Open Access Journals (Sweden)

    Anke eKöbach

    2015-01-01

    Full Text Available Former members of armed groups in eastern DRCongo had typically witnessed, experienced and perpetrated extreme forms of violence. Enhanced trauma-related symptoms had been shown in prior research. But also lashing out in self-defense is a familiar response to threat defined as reactive aggression. Another potential response is appetitive aggression, in which the perpetration of excessive violence is perceived as pleasurable (combat high. What roles do these forms of aggressive behavior play in modern warfare and how are they related to posttraumatic stress symptoms? To answer the question, we sought to determine predictors for appetitive aggressive and trauma-related mental illness, and investigated the frequency of psychopathological symptoms for high- and low-intensity conflict demobilization settings. To this end, we interviewed 213 former members of (paramilitary groups in the eastern Democratic Republic of Congo in regard to their combat exposure, posttraumatic stress, appetitive aggression, depression, suicidality, and drug dependence. Random forest regression embedded in a conditional inference framework revealed that perpetrated violent acts are not necessarily stressful. In fact, the experience of violent acts that typically implicated salient cues of hunting (e.g., blood, suffering of the victim, etc. had the strongest association with an appetite for aggression. Furthermore, the number of lifetime perpetrated violent acts was the most important predictor of appetitive aggression. However, the number of perpetrated violent acts did not significantly affect the posttraumatic stress. Greater intensity of conflict was associated with more severe posttraumatic stress symptoms and depression. Psychotherapeutic interventions that address appetitive aggression in addition to trauma-related mental illness, including drug dependence, therefore seem indispensible for a successful reintegration of those who fought in the current civil wars.

  19. Combat high or traumatic stress: violent offending is associated with appetitive aggression but not with symptoms of traumatic stress

    Science.gov (United States)

    Köbach, Anke; Schaal, Susanne; Elbert, Thomas

    2015-01-01

    Former members of armed groups in eastern DR Congo had typically witnessed, experienced, and perpetrated extreme forms of violence. Enhanced trauma-related symptoms had been shown in prior research. But also lashing out in self-defense is a familiar response to threat defined as reactive aggression. Another potential response is appetitive aggression, in which the perpetration of excessive violence is perceived as pleasurable (combat high). What roles do these forms of aggressive behavior play in modern warfare and how are they related to posttraumatic stress symptoms? To answer the question, we sought to determine predictors for appetitive aggressive and trauma-related mental illness, and investigated the frequency of psychopathological symptoms for high- and low-intensity conflict demobilization settings. To this end, we interviewed 213 former members of (para)military groups in the eastern Democratic Republic of Congo in regard to their combat exposure, posttraumatic stress, appetitive aggression, depression, suicidality, and drug dependence. Random forest regression embedded in a conditional inference framework revealed that perpetrated violent acts are not necessarily stressful. In fact, the experience of violent acts that typically implicated salient cues of hunting (e.g., blood, suffering of the victim, etc.) had the strongest association with an appetite for aggression. Furthermore, the number of lifetime perpetrated violent acts was the most important predictor of appetitive aggression. However, the number of perpetrated violent acts did not significantly affect the posttraumatic stress. Greater intensity of conflict was associated with more severe posttraumatic stress symptoms and depression. Psychotherapeutic interventions that address appetitive aggression in addition to trauma-related mental illness, including drug dependence, therefore seem indispensible for a successful reintegration of those who fought in the current civil wars. PMID:25709586

  20. Invasive hemodynamic characterization of heart failure with preserved ejection fraction

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Borlaug, Barry A

    2014-01-01

    Recent hemodynamic studies have advanced our understanding of heart failure with preserved ejection fraction (HFpEF). Despite improved pathophysiologic insight, clinical trials have failed to identify an effective treatment for HFpEF. Invasive hemodynamic assessment can diagnose or exclude HFpEF......, making it invaluable in understanding the basis of the disease. This article reviews the hemodynamic mechanisms underlying HFpEF and how they manifest clinically, discusses invasive hemodynamic assessment as a diagnostic tool, and explores how invasive hemodynamic profiling may allow understanding...

  1. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression.

    Science.gov (United States)

    Amaya, Ronny; Pierides, Alexis; Tarbell, John M

    2015-01-01

    Endothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS) and circumferential stress (CS) that can be characterized by the temporal phase angle between WSS and CS (stress phase angle - SPA). Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180°) such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0°) are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 °) and synchronous hemodynamics (SPA=0 °). This study used a novel bioreactor to investigate the cellular response of bovine aortic endothelial cells (BAECS) exposed to a combination of pulsatile WSS and CS at SPA=0 or SPA=-180. Using a PCR array of 42 genes, we determined that BAECS exposed to non-reversing sinusoidal WSS (10±10 dyne/cm2) and CS (4 ± 4%) over a 7 hour testing period displayed 17 genes that were up regulated by SPA = -180 °, most of them pro-atherogenic, including NFκB and other NFκB target genes. The up regulation of NFκB p50/p105 and p65 by SPA =-180° was confirmed by Western blots and immunofluorescence staining demonstrating the nuclear translocation of NFκB p50/p105 and p65. These data suggest that asynchronous hemodynamics (SPA=-180 °) can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA may be an important parameter characterizing arterial susceptibility to disease.

  2. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression.

    Directory of Open Access Journals (Sweden)

    Ronny Amaya

    Full Text Available Endothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS and circumferential stress (CS that can be characterized by the temporal phase angle between WSS and CS (stress phase angle - SPA. Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180° such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0° are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 ° and synchronous hemodynamics (SPA=0 °. This study used a novel bioreactor to investigate the cellular response of bovine aortic endothelial cells (BAECS exposed to a combination of pulsatile WSS and CS at SPA=0 or SPA=-180. Using a PCR array of 42 genes, we determined that BAECS exposed to non-reversing sinusoidal WSS (10±10 dyne/cm2 and CS (4 ± 4% over a 7 hour testing period displayed 17 genes that were up regulated by SPA = -180 °, most of them pro-atherogenic, including NFκB and other NFκB target genes. The up regulation of NFκB p50/p105 and p65 by SPA =-180° was confirmed by Western blots and immunofluorescence staining demonstrating the nuclear translocation of NFκB p50/p105 and p65. These data suggest that asynchronous hemodynamics (SPA=-180 ° can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA may be an important parameter characterizing arterial susceptibility to disease.

  3. Finite element analysis of residual stress in the welded zone of a high strength steel

    Indian Academy of Sciences (India)

    Li Yajiang; Wang Juan; Chen Maoai; Shen Xiaoqin

    2004-04-01

    The distribution of the residual stress in the weld joint of HQ130 grade high strength steel was investigated by means of finite element method (FEM) using ANSYS software. Welding was carried out using gas shielded arc welding with a heat input of 16 kJ/cm. The FEM analysis on the weld joint reveals that there is a stress gradient around the fusion zone of weld joint. The instantaneous residual stress on the weld surface goes up to 800 ∼ 1000 MPa and it is 500 ∼ 600 MPa, below the weld. The stress gradient near the fusion zone is higher than any other location in the surrounding area. This is attributed as one of the significant reasons for the development of cold cracks at the fusion zone in the high strength steel. In order to avoid such welding cracks, the thermal stress in the weld joint has to be minimized by controlling the weld heat input.

  4. Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis.

    Science.gov (United States)

    Berry, Joel L; Manoach, Emil; Mekkaoui, Choukri; Rolland, Pierre H; Moore, J E; Rachev, Alexander

    2002-01-01

    Evidence is emerging that the abrupt compliance mismatch that exists at the junction between the stent ends and the host arterial wall disturbs both the vascular hemodynamics and the natural wall stress distribution. These stent-induced alterations are greatly reduced by smoothing the compliance mismatch between the stent and host vessel. A stent that provides this smooth transition in compliance, the compliance matching stent (CMS), has been developed. This study attempts to evaluate the hemodynamics and wall mechanical consequences of the CMS both in vitro and in vivo. Finite element analysis was used to assess the solid mechanical behavior (compliance and stress) of the CMS in a stent/artery hybrid structure. A similar analysis was performed with a Palmaz stent. In vivo hemodynamics and wall mechanical changes induced by the CMS were investigated in a swine model from direct measurements of flow, pressure, diameter, and histology in the stented segment of superficial femoral arteries after 7 days. Finite element analysis showed that the abrupt compliance mismatch was substantially smoothed between the vessel portions with and without the stent with CMS segments. Circumferential stress was also markedly reduced with the CMS compared to other stent. The in vivo results showed that the CMS was efficient in compliance matching and did not dampen flow or pressure waves downstream the stent. Concurrent histology showed limited thrombus and inflammatory cell accumulation around the stent struts. These results indicate that the stent/artery hybrid structure can be compliance matched with proper stent design and that this structure limits solid mechanical stress and hemodynamic disturbances. It remains to be seen whether compliance-matched vascular stents reduce in-stent restenosis.

  5. Solar flare prediction using highly stressed longitudinal magnetic field parameters

    Institute of Scientific and Technical Information of China (English)

    Xin Huang; Hua-Ning Wang

    2013-01-01

    Three new longitudinal magnetic field parameters are extracted from SOHO/MDI magnetograms to characterize properties of the stressed magnetic field in active regions,and their flare productivities are calculated for 1055 active regions.We find that the proposed parameters can be used to distinguish flaring samples from non-flaring samples.Using the long-term accumulated MDI data,we build the solar flare prediction model by using a data mining method.Furthermore,the decision boundary,which is used to divide flaring from non-flaring samples,is determined by the decision tree algorithm.Finally,the performance of the prediction model is evaluated by 10-fold cross validation technology.We conclude that an efficient solar flare prediction model can be built by the proposed longitudinal magnetic field parameters with the data mining method.

  6. Venous hemodynamic changes in lower limb venous disease

    DEFF Research Database (Denmark)

    Lee, Byung Boong; Nicolaides, Andrew N; Myers, Kenneth

    2016-01-01

    ). Their aim was to confirm or dispel long-held hemodynamic principles and to provide a comprehensive review of venous hemodynamic concepts underlying the pathophysiology of lower limb venous disorders, their usefulness for investigating patients and the relevant hemodynamic changes associated with various......There are excellent guidelines for clinicians to manage venous diseases but few reviews to assess their hemodynamic background. Hemodynamic concepts that evolved in the past have largely remained unchallenged in recent decades, perhaps due to their often complicated nature and in part due...... not provide the physiological basis for understanding the hemodynamics of flow, pressure, compliance and resistance. Hemodynamic investigations appear to provide a better correlation with post-treatment clinical outcome and quality of life than ultrasound findings. There is a far better prospect...

  7. Effects of Interior Plantscapes on Indoor Environments and Stress Level of High School Students

    National Research Council Canada - National Science Library

    So-Young Park; Jin-Su Song; Hyoung-Deug Kim; Kenji Yamane; Ki-Cheol Son

    2008-01-01

      Case studies were performed in two high schools (designated K and J) in Seoul, Korea in order to examine how in-class plantscapes consisting of ornamental plants affected the indoor environment and the stress level of students...

  8. Correlates of high perceived stress among pregnant Hispanic women in Western Massachusetts.

    Science.gov (United States)

    Silveira, Marushka Leanne; Pekow, Penelope S; Dole, Nancy; Markenson, Glenn; Chasan-Taber, Lisa

    2013-08-01

    Prenatal psychosocial stress has been associated with adverse pregnancy outcomes, even after controlling for known risk factors. This paper aims to evaluate correlates of high perceived stress among Hispanic women, a group with elevated rates of stress during pregnancy. We conducted this analysis among 1,426 pregnant Hispanic women using data from Proyecto Buena Salud, a prospective cohort study conducted in Western Massachusetts. Cohen's Perceived Stress Scale (PSS-14) validated in English and Spanish was administered in early (mean = 12.4 weeks gestation), mid (mean = 21.3 weeks gestation) and late (mean = 30.8 weeks gestation) pregnancy at which time bilingual interviewers collected data on socio-demographic, acculturation, behavioral, and psychosocial factors. High perceived stress was defined as a PSS score >30. Young maternal age (odds ratio (OR) = 0.6; 95 % confidence interval (CI) 0.4-0.9 for 12 drinks/month vs. none) and smoking (OR = 2.2; 95 % CI 1.3-3.7 for >10 cigarettes/day vs. none) were associated with high perceived stress during early pregnancy. Furthermore, higher annual household income (OR = 0.4; 95 % CI 0.1-0.9 for >$30,000 vs. <$15,000), greater number of adults in the household (OR = 1.8; 95 % CI 1.1-3.0 for ≥3 vs. 1) and language preference (OR = 0.6; 95 % CI 0.4-0.9 for Spanish vs. English) were associated with high stress during mid-pregnancy. Likewise, annual household income was inversely associated with high stress during late pregnancy. Our results have important implications for incorporation of routine screening for psychosocial stress during prenatal visits and implementation of psychosocial counseling services for women at high risk.

  9. Analysis of the Residual Stresses in Helical Cylindrical Springs at High Temperature

    Directory of Open Access Journals (Sweden)

    H. Sun

    2015-01-01

    Full Text Available Creep is one of the basic properties of materials, its speed significantly depends on the temperature. Helical cylindrical springs are widely used in the elements of heating systems. This results in necessity of taking into account the effect of temperature on the stress-strain state of the spring. The object of research is a helical cylindrical spring used at high temperatures. Under this condition the spring state stability should be ensured.The paper studies relaxation of stress state and generation of residual stresses. Calculations are carried out in ABAQUS environment. The purpose of this work is to discuss the law of relaxation and residual stress in the spring.This paper describes the basic creep theories of helical cylindrical spring material. The calculation formulas of shear stress relaxation for a fixed compression ratio are obtained. Distribution and character of stress contour lines in the cross section of spring are presented. The stress relaxation – time relationships are discussed. The approximate formula for calculating relaxation shear stresses in the cross section of helical springs is obtained.The paper investigates creep ratio and law of residual stress variation in the cross-section of spring at 650℃. Computer simulation in ABAQUS environment was used. Research presents a finite element model of the spring creep in the cross-section.The paper conducts analysis of the stress changes for the creep under constant load. Under constant load stresses are quickly decreased in the around area of cross-section and are increased in the centre, i.e. the maximum and minimum stresses come close with time. Research work shows the possibility for using the approximate formula to calculate the relaxation shear stress in the cross section of spring and can provide a theoretical basis for predicting the service life of spring at high temperatures.In research relaxation processes of stress state are studied. Finite element model is cre

  10. Temporal coupling between stimulus-evoked neural activity and hemodynamic responses from individual cortical columns

    Energy Technology Data Exchange (ETDEWEB)

    Bruyns-Haylett, Michael; Zheng Ying; Berwick, Jason; Jones, Myles [The Centre for Signal Processing in Neuroimaging and Systems Neuroscience (SPINSN), Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP (United Kingdom)], E-mail: m.jones@sheffield.ac.uk

    2010-04-21

    Using previously published data from the whisker barrel cortex of anesthetized rodents (Berwick et al 2008 J. Neurophysiol. 99 787-98) we investigated whether highly spatially localized stimulus-evoked cortical hemodynamics responses displayed a linear time-invariant (LTI) relationship with neural activity. Presentation of stimuli to individual whiskers of 2 s and 16 s durations produced hemodynamics and neural activity spatially localized to individual cortical columns. Two-dimensional optical imaging spectroscopy (2D-OIS) measured hemoglobin responses, while multi-laminar electrophysiology recorded neural activity. Hemoglobin responses to 2 s stimuli were deconvolved with underlying evoked neural activity to estimate impulse response functions which were then convolved with neural activity evoked by 16 s stimuli to generate predictions of hemodynamic responses. An LTI system more adequately described the temporal neuro-hemodynamics coupling relationship for these spatially localized sensory stimuli than in previous studies that activated the entire whisker cortex. An inability to predict the magnitude of an initial 'peak' in the total and oxy- hemoglobin responses was alleviated when excluding responses influenced by overlying arterial components. However, this did not improve estimation of the hemodynamic responses return to baseline post-stimulus cessation.

  11. Prediction of Hemodynamic Reactivity during Sevoflurane Remifentanyl Anesthesia for Laparoscopic Cholecystectomy Using Analgesia Nociception Index

    Directory of Open Access Journals (Sweden)

    Ali Şefik Köprülü

    2016-12-01

    Full Text Available Aim: Pneumoperitoneum may cause serious side effects in high-risk patients during laparoscopic cholecystectomy. Perioperative analgesic sufficiency has been measured by the Analgesia Nociception index (ANI in recent years. We examine the possibility of predicting hemodynamic reactivity by observing sudden changes in ANI during operation. Methods: In this retrospective study, recorded hemodynamic parameters (including heart rate, systolic/ diastolic blood pressure values and ANI values, before and after intubation, nasogastric tube application, intraperitoneal gas insufflation, and surgical incision in 31 patients who were applied laparoscopic cholecystectomy were compared by paired t-test. Additionally, an increment or decrement of 20% in ANI and 15% in hemodynamic parameters with respect to basal observation values were called “sudden changes”. Correlation of these parameters with sudden changes in ANI values was examined either. Results: There was a statistically significant difference in parameters after premedication and intubation. After induction, a statistically significant decrement was detected only in heart rate and systolic/diastolic blood pressure values. There was no significant change after nasogastric tube insertion. During pneumoperitoneum and surgical incision, there was no change in heart rate and systolic/diastolic blood pressure values, but a statistically significant decrement was observed in ANI. No correlation was detected between sudden changes in ANI values and hemodynamic parameters. Conclusion: We assume that use of ANI in analgesia evaluation under general anesthesia at perioperative period is suitable, however, it is not reliable in predicting hemodynamic interaction.

  12. Into the pressure cooker: Student stress in college preparatory high schools.

    Science.gov (United States)

    Feld, Lauren D; Shusterman, Anna

    2015-06-01

    The goals of this study were to (1) measure psychological, physiological, and behavioral indicators of stress, (2) assess the relationship between stress and student attitudes, and (3) explore coping behaviors in response to stress, among a sample of students in two academically high-achieving environments. Three hundred thirty-three students in grades 9 through 12 from two college-preparatory high schools completed a cross-sectional online survey that included the Students' Life Satisfaction Scale, School Attitude Assessment Questionnaire-Revised, and assessments for stress-related indicators, including eating, sleeping and exercise, and strategies they utilized for coping with stress. Students reported a high prevalence of physical and psychological correlates of stress, and related unhealthy behaviors such as widespread and chronic sleep deprivation and rushed meals. The results suggest areas to focus attention for identifying and addressing maladaptive responses to stress among high-achieving student populations. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  13. Physiology of school burnout in medical students: Hemodynamic and autonomic functioning

    Directory of Open Access Journals (Sweden)

    Ross W. May

    2016-09-01

    Full Text Available This study investigated the relationship between burnout and hemodynamic and autonomic functioning in both medical students (N = 55 and premedical undergraduate students (N = 77. Questionnaires screened for health related issues and assessed school burnout and negative affect symptomatology (anxiety and depression. Continuous beat-to-beat blood pressure (BP through finger plethysmography and electrocardiogram (ECG monitoring was conducted during conditions of baseline and cardiac stress induced via the cold pressor task to produce hemodynamic, heart rate variability, and blood pressure variability indices. Independent sample t-tests demonstrated that medical students had significantly higher school burnout scores compared to their undergraduate counterparts. Controlling for age, BMI, anxiety and depressive symptoms, multiple regression analyses indicated that school burnout was a stronger predictor of elevated hemodynamics (blood pressure, decreased heart rate variability, decreased markers of vagal activity and increased markers of sympathetic tone at baseline for medical students than for undergraduates. Analyses of physiological values collected during the cold pressor task indicated greater cardiac hyperactivity for medical students than for undergraduates. The present study supports previous research linking medical school burnout to hemodynamic and autonomic functioning, suggests biomarkers for medical school burnout, and provides evidence that burnout may be implicated as a physiological risk factor in medical students. Study limitations and potential intervention avenues are discussed.

  14. Experimental Comparison of the Hemodynamic Effects of Bifurcating Coronary Stent Implantation Techniques

    Science.gov (United States)

    Brindise, Melissa; Vlachos, Pavlos; AETheR Lab Team

    2015-11-01

    Stent implantation in coronary bifurcations imposes unique effects to the blood flow patterns and currently there is no universally accepted stent deployment approach. Despite the fact that stent-induced changes can greatly alter clinical outcomes, no concrete understanding exists regarding the hemodynamic effects of each implantation method. This work presents an experimental evaluation of the hemodynamic differences between implantation techniques. We used four common stent implantation methods including the currently preferred one-stent provisional side branch (PSB) technique and the crush (CRU), Culotte (CUL), and T-stenting (T-PR) two-stent techniques, all deployed by a cardiologist in coronary models. Particle image velocimetry was used to obtain velocity and pressure fields. Wall shear stress (WSS), oscillatory shear index, residence times, and drag and compliance metrics were evaluated and compared against an un-stented case. The results of this study demonstrate that while PSB is preferred, both it and T-PR yielded detrimental hemodynamic effects such as low WSS values. CRU provided polarizing and unbalanced results. CUL demonstrated a symmetric flow field, balanced WSS distribution, and ultimately the most favorable hemodynamic environment.

  15. The Hemodynamic Effects of Blood Flow-Arterial Wall Interaction on Cerebral Aneurysms

    Science.gov (United States)

    Oshima, Marie

    2005-11-01

    Mechanical stresses such as wall shear induced by blood flow play an important role on cardiovascular diseases and cerebral disorders like arterioscleroses and cerebral aneurysm. In order to obtain a better understanding of mechanism of formation, growth, and rupture of cerebral aneurysm, this paper focuses on investigation of cerebral hemodynamics and its effects on aneurismal wall. The paper mainly consists of three parts. Since it is important to obtain the detailed information on the hemodynamic properties in the cerebral circulatory system, the first part discusses a large-scale hemodynamic simulation of the Cerebral Arterial Circle of Willis. The second part presents the simulation and in-vitro experiment of cerebral aneurysm with the consideration of blood flow-arterial wall interaction. Both simulations in the first and the second parts are conducted in a patient specific manner using medical images and also include modeling of boundary conditions to emulate realistic hemodynamic conditions. The present mathematical model, however, includes only macroscopic mechanical functions. Therefore, in the third part, the paper touches upon on future prospects in modeling of microscopic functions such as the effects of endothelial cells and multi physics functions such as physiological effects.

  16. Study on mechanism and practice of surrounding rock control of high stress coal roadway

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-jun; YANG Lei; OUYANG Guang-bin

    2006-01-01

    The mechanical principle and surrounding rock deformation feature of high stress coal roadway was analyzed. The condition of stress balance of the kind of the roadway was put forward. The surrounding rock control principle and supporting technique of high stress coal roadway were discussed. It was very important to control early days deformation of coal sides. The supporting strength is should increased, so the strength loss of coal sides is decreased. The range of plastic fluid zone is reduced. The above mention-ned principle is applied in industrial test, and the new supporting technique is applied successfully.

  17. Caffeine prevents cognitive impairment induced by chronic psychosocial stress and/or high fat-high carbohydrate diet.

    Science.gov (United States)

    Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A

    2013-01-15

    Caffeine alleviates cognitive impairment associated with a variety of health conditions. In this study, we examined the effect of caffeine treatment on chronic stress- and/or high fat-high carbohydrate Western diet (WD)-induced impairment of learning and memory in rats. Chronic psychosocial stress, WD and caffeine (0.3 g/L in drinking water) were simultaneously administered for 3 months to adult male Wistar rats. At the conclusion of the 3 months, and while the previous treatments continued, rats were tested in the radial arm water maze (RAWM) for learning, short-term and long-term memory. This procedure was applied on a daily basis to all animals for 5 consecutive days or until the animal reaches days to criterion (DTC) in the 12th learning trial and memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Chronic stress and/or WD groups caused impaired learning, which was prevented by chronic caffeine administration. In the memory tests, chronic caffeine administration also prevented memory impairment during chronic stress conditions and/or WD. Furthermore, DTC value for caffeine treated stress, WD, and stress/WD groups indicated that caffeine normalizes memory impairment in these groups. These results showed that chronic caffeine administration prevented stress and/or WD-induced impairment of spatial learning and memory.

  18. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment.

    Science.gov (United States)

    Xiang, J; Tutino, V M; Snyder, K V; Meng, H

    2014-10-01

    Image-based computational fluid dynamics holds a prominent position in the evaluation of intracranial aneurysms, especially as a promising tool to stratify rupture risk. Current computational fluid dynamics findings correlating both high and low wall shear stress with intracranial aneurysm growth and rupture puzzle researchers and clinicians alike. These conflicting findings may stem from inconsistent parameter definitions, small datasets, and intrinsic complexities in intracranial aneurysm growth and rupture. In Part 1 of this 2-part review, we proposed a unifying hypothesis: both high and low wall shear stress drive intracranial aneurysm growth and rupture through mural cell-mediated and inflammatory cell-mediated destructive remodeling pathways, respectively. In the present report, Part 2, we delineate different wall shear stress parameter definitions and survey recent computational fluid dynamics studies, in light of this mechanistic heterogeneity. In the future, we expect that larger datasets, better analyses, and increased understanding of hemodynamic-biologic mechanisms will lead to more accurate predictive models for intracranial aneurysm risk assessment from computational fluid dynamics.

  19. Dealing Collectively with Critical Incident Stress Reactions in High Risk Work Environments

    DEFF Research Database (Denmark)

    Müller-Leonhardt, Alice; Strøbæk, Pernille Solveig; Vogt, joachim

    2015-01-01

    aim of this paper is to shift the representation of coping patterns within high risk occupations to an existential part of cultural pattern and social structure, which characterises high reliability organisations. Drawing upon the specific peer model of critical incident stress management (CISM......), in which qualified operational peers support colleagues who experienced critical incident stress, the paper discusses critical incident stress management in air traffic control. Our study revealed coping patterns that co-vary with the culture that the CISM programme fostered within this specific high...... organisations. Indeed, we found that the CISM programme once integrated within the socio-cultural patterns of this specific working environment enhanced not only individual feelings of being supported but also organisational safety culture. Keywords: coping; safety culture; critical incident stress management...

  20. Crop physiological responses to high temperature stress. II. Tolerance and agronomic treatment.

    Directory of Open Access Journals (Sweden)

    Néstor Felipe Chaves-Barrantes

    2016-12-01

    Full Text Available The objective of this review was to describe plant responses and tolerance mechanisms to thermal stress, as well as the use of agronomic practices to mitigate the effects of high temperature stress on crops. The energy balance of leaves and canopies is presented as a link between plant and air temperature. The effects of high temperatures on water relations, photosynthesis and assimilate partitioning, and the morphological and phenological responses of some crops are described. Response agronomy is presented as a means for the prevention and remediation of thermal stress, which is approached form the perspective of plant breeding, agronomic management, and several pharmaceutical and horticultural practices. Some agronomic practices utilized to reduce the negative effects of high temperature stress on crops are described, such as the use of ground covers, natural or arti cial shade, and the application of growth regulators, plant protectants and other products of the modern pharmaceutical industry.

  1. Emergency management of hemodynamically unstable pelvic fractures

    Directory of Open Access Journals (Sweden)

    ZHAO Xiao-gang

    2012-02-01

    Full Text Available 【Abstract】Pelvic fractures are serious injuries. Death within 24 hours is most often a result of acute blood loss. The emergency management of these patients is challenging and controversial. The key issues in its management are identifying the site(s of hemorrhage and then controlling the bleeding. Management of hemodynamically unstable patients with pelvic fracture requires a multidisci- plinary team. The issues addressed in this management algorithm are diagnostic evaluation, damage control resuscitation, indications for noninvasive pelvic stabilization, preperitoneal pelvic packing and the critical decisions concerning surgical options and angiography. This review article focuses on the recent body of know- ledge on those determinations. Key words: Pelvis; Hemodynamic; Emergencies; Practice management

  2. Biology and hemodynamics of aneurismal vasculopathies

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Vitor Mendes, E-mail: vitormpbr@hotmail.com [Interventional Neuroradiology Unit, Service of Neuroradiology, University Hospital of Geneva (Switzerland); Brina, Olivier, E-mail: olivier.brina@hcuge.ch [Interventional Neuroradiology Unit, Service of Neuroradiology, University Hospital of Geneva (Switzerland); Gonzalez, Ana Marcos, E-mail: ana.marcosgonzalez@hcuge.ch [Interventional Neuroradiology Unit, Service of Neuroradiology, University Hospital of Geneva (Switzerland); Narata, Ana Paula, E-mail: ana.p.narata@hcuge.ch [Interventional Neuroradiology Unit, Service of Neuroradiology, University Hospital of Geneva (Switzerland); Ouared, Rafik, E-mail: rafik.ouared@unige.ch [Interventional Neuroradiology Unit, Service of Neuroradiology, University Hospital of Geneva (Switzerland); Karl-Olof, Lovblad, E-mail: Karl-olof.lovblad@hcuge.ch [Interventional Neuroradiology Unit, Service of Neuroradiology, University Hospital of Geneva (Switzerland)

    2013-10-01

    Aneurysm vasculopathies represents a group of vascular disorders that share a common morphological diagnosis: a vascular dilation, the aneurysm. They can have a same etiology and a different clinical presentation or morphology, or have different etiology and very similar anatomical geometry. The biology of the aneurysm formation is a complex process that will be a result of an endogenous predisposition and epigenetic factors later on including the intracranial hemodynamics. We describe the biology of saccular aneurysms, its growth and rupture, as well as, current concepts of hemodynamics derived from application of computational flow dynamics on patient specific vascular models. Furthermore, we describe different aneurysm phenotypes and its extremely variability on morphological and etiological presentation.

  3. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Sigdel, A.K. [Department of Physics and Astronomy, University of Denver, Denver, CO 80208 (United States); National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Gennett, T.; Berry, J.J.; Perkins, J.D.; Ginley, D.S. [National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Packard, C.E., E-mail: cpackard@mines.edu [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States); National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States)

    2013-10-15

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter–material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity–growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  4. [Patients with hemodynamic unstable pelvic fractures in extremis: pelvic packing or angiography?].

    Science.gov (United States)

    Liñán-Padilla, A; Giráldez-Sánchez, M Á; Serrano-Toledano, D; Lázaro-Gonzálvez, A; Cano-Luís, P

    2013-01-01

    The multidisciplinary management of patients with pelvic trauma has improved prognosis, but mortality is still very high. The appropriate treatment strategy remains controversial, especially regarding the control of bleeding in patients whose clinical situation is extreme by using angiography or pelvic packing. We propose using a tool of evidence-based medicine (CAT) the benefit of the completion of pelvic packing in relation to a specific clinical question from a specific situation. What is best for the management of bleeding, extraperitoneal pelvic packing or angiography, in patients with hemodynamically unstable pelvic fracture in extremis? From this study we can conclude that angiography may improve control of bleeding in patients with arterial bleeding and hemodynamically stable but the packing has priority in patients with pelvic fractures and hemodynamic instability.

  5. Metabolic and hemodynamic evaluation of brain metastases from small cell lung cancer with positron emission tomography

    DEFF Research Database (Denmark)

    Lassen, U; Andersen, P; Daugaard, G

    1998-01-01

    for studies of metabolic and hemodynamic features. This study was performed to determine regional cerebral metabolic rate of glucose (rCMRglu), regional cerebral blood flow (rCBF), and regional cerebral blood volume (rCBV) in brain metastases from small cell lung cancer and the surrounding brain. Tumor r......CMRglu, rCBF, and rCBV exerted a broad variability, but were higher than the corresponding values in white matter and higher than or similar to those of gray matter. Tumor rCMRglu and rCBF were highly correlated (P metabolic or hemodynamic parameters...... was not observed. Other methods for noninvasive in vivo analysis of tumor hemodynamics are needed, especially for discrimination between tumor necrosis and hypoxia....

  6. Improvement in Hemodynamics After Methylene Blue Administration in Drug-Induced Vasodilatory Shock: A Case Report.

    Science.gov (United States)

    Laes, JoAn R; Williams, David M; Cole, Jon B

    2015-12-01

    The purpose of this study is to describe a case where methylene blue improved hemodynamics in a poisoned patient. This is a single case report where a poisoned patient developed vasodilatory shock following ingestion of atenolol, amlodipine, and valsartan. Shock persisted after multiple therapies including vasopressors, high-dose insulin, hemodialysis, and 20% intravenous fat emulsion. Methylene blue (2 mg/kg IV over 30 min) was administered in the ICU with temporal improvement as measured by pulmonary artery catheter hemodynamic data pre- and post-methylene blue administration. Within 1 h of methylene blue administration, systemic vascular resistance improved (240 dyn s/cm5 increased to 1204 dyn s/cm5), and vasopressor requirements decreased with maintenance of mean arterial pressure 60 mmHg. Methylene blue may improve hemodynamics in drug-induced vasodilatory shock and should be considered in critically ill patients poisoned with vasodilatory medications refractory to standard therapies.

  7. The impact of deformation of an aneurysm model under pulsatile flow on hemodynamic analysis.

    Science.gov (United States)

    Kawakami, T; Takao, H; Ichikawa, C; Kamiya, K; Murayama, Y; Motosuke, M

    2016-08-01

    Hemodynamic analysis of cerebral aneurysms has been widely carried out to clarify the mechanisms of their growth and rupture. In several cases, patient-specific aneurysm models made of transparent polymers have been used. Even though periodic changes in aneurysms due to the pulsation of blood flow could be important, the deformation of the model geometry and its effect on hemodynamic evaluation has not been fully investigated. In addition, the fabrication accuracy of aneurysm models has not been evaluated even though it may affect the hemodynamic parameters to be analyzed. In this study, the fabrication accuracy of a silicone aneurysm model was investigated. Additionally, the deformation of the model under pulsatile flow as well as its correlation with flow behavior was evaluated. Consequently, a fabrication method for an aneurysm model with high accuracy was established and the importance of the wall thickness of the model was also specified.

  8. Relaxation of residual stresses in 20%SiCw/6061Al composite as-extruded at high temperature

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The residual stress in a 20%SiCw/6061Al composite as-extruded was investigated by using X-ray stress measurement method. It was found that, high residual stress existed in the composite and residual stress distribution in each direction are not uniform. Relaxation process of residual stress in the composite was dynamically measured during annealing at high temperature. It is verified that the relaxation of residual stress obeys the power law at high temperature. With the creep mechanism, the relaxation behavior of residual stresses at high temperature was analyzed. The results show that, the stress exponent and activation energy for stress relaxation of the composite are obviously higher than those of the matrix alloy.

  9. Effective stress analysis method of seismic response for high tailings dam

    Institute of Scientific and Technical Information of China (English)

    LIU Hou-xiang; LI Ning; LIAO Xue; WU Cong-shi; PAN Xu-dong

    2007-01-01

    Based on the analysis method for tailings dam in upstream raising method presently used in metallurgy and nonferrous metals tailings depository in the world, an effective stress analysis method of seismic response for high tailings dam was developed according to the results of engineering geological exploration, static and dynamic test and stability analysis on Baizhishan tailing dam 113.5 m high. The law of generation, diflusion and dissipation of seismic pore water pressure during and after earthquake was investigated, and the results of tailings dam's acceleration, seismic dynamic stress and pore water pressure were obtained.The results show that the seismic stability and liquefaction resistance of high tailings dam are strengthened remarkably, and the scope and depth of liquefaction area at the top of dam are reduced greatly.The interior stress is compressive stress.the stress level of every element is less than 1.0 and the safety coefficient of every element is greater than 1.O. The safety coefficient against liquefaction of every element of tailing dam is greater than 1.5 according to the effective stress analysis of seismic response by finite element method.The calculated results prove that liquefaction is the main reason of seismic failure of high tailing dams, and the effect of seismic inertia forces on high tailing dams'stability during earthquake is secondary reason.

  10. The effect of water stress on super-high- density 'Koroneiki' olive oil quality.

    Science.gov (United States)

    Dag, Arnon; Naor, Amos; Ben-Gal, Alon; Harlev, Guy; Zipori, Isaac; Schneider, Doron; Birger, Reuven; Peres, Moti; Gal, Yoni; Kerem, Zohar

    2015-08-15

    Over the last two decades, the area of cultivated super-high-density olive orchards has increased rapidly. Water stress is an important tool in super-high-density orchards to reduce tree growth and promote suitability for overhead mechanical harvesters. Little is known regarding the effect of water stress in super-high-density orchards on oil quality parameters. In this study the effect of irrigation rate on oil quality parameters was evaluated in a six-year-old super-high-density 'Koreneiki' olive orchard for five consecutive seasons. Five water status levels, determined by irrigating in order to maintain various midday stem water potential threshold values (-1.5, -2, -2.5, -3 and -4 MPa), were applied during the oil accumulation stage. The MUFA/PUFA ratio and free fatty acid content generally decreased as a function of increasing tree water stress. In most seasons a reduction in polyphenols was found with decreasing irrigation level. Peroxide value was not affected by the water stress level. The present study demonstrates that limiting irrigation and exposure of olive trees to water stress in a super-high-density orchard lowers free fatty acid content and therefore benefits oil quality. However, the decreased MUFA/PUFA ratio and the reduction in polyphenol content that were also found under increased water stress negatively influence oil quality. © 2014 Society of Chemical Industry.

  11. Aftershocks are well aligned with the background stress field, contradicting the hypothesis of highly-heterogeneous crustal stress

    Science.gov (United States)

    Hardebeck, Jeanne L.

    2010-01-01

    It has been proposed that the crustal stress field contains small-length-scale heterogeneity of much larger amplitude than the uniform background stress. This model predicts that earthquake focal mechanisms should reflect the loading stress rather than the uniform background stress. So, if the heterogeneous stress hypothesis is correct, focal mechanisms before and after a large earthquake should align with the tectonic loading and the earthquake-induced static stress perturbation, respectively. However, I show that the off-fault triggered aftershocks of the 1992 M7.3 Landers, California, earthquake align with the same stress field as the pre-Landers mechanisms. The aftershocks occurred on faults that were well oriented for failure in the pre-Landers stress field and then loaded by the Landers-induced static stress change. Aftershocks in regions experiencing a 0.05 to 5 MPa coseismic differential stress change align with the modeled Landers-induced static stress change, implying that they were triggered by the stress perturbation. Contrary to the heterogeneous stress hypothesis, these triggered aftershocks are also well aligned with the pre-Landers stress field obtained from inverting the pre-Landers focal mechanisms. Therefore, the inverted pre-Landers stress must represent the persistent background stress field. Earthquake focal mechanisms provide an unbiased sample of the spatially coherent background stress field, which is large relative to any small-scale stress heterogeneity. The counterexample provided by the Landers earthquake is strong evidence that the heterogeneous stress model is not widely applicable.

  12. The jointing stress analysis of one-shot seal-off high-voltage vacuum interrupters

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhizhong; Zou Jiyan; Cong Jiyuan; Wen Huabin; Sun Hui

    2006-01-01

    The free shrinkage of ceramic or metal is restricted due to solidification of the solder. Hence the shrinkage stress arises and the jointing strength is reduced during the brazing of high-voltage vacuum interrupters ( HVVIs ) . The solder bound contour was gained by solved energy bound equation. The finite element model of weld beads was established with Surface Evolver software. Then the stress in two different cooling techniques ( natural cooling and force cooling) was calculated with ANSYS. Comparing the stress, a better cooling technique was selected for HVVIs. Its cooling time is shortened by 3 hours while the jointing stress doesn' t increase and the tensile strength of ceramic to metal seal is not decreased. The stress-rupture tests have validated the calculated results. More important, a method is found, by which the brazing technique could be improved in advance instead of blind experiments.

  13. Time-varying modeling of cerebral hemodynamics.

    Science.gov (United States)

    Marmarelis, Vasilis Z; Shin, Dae C; Orme, Melissa; Rong Zhang

    2014-03-01

    The scientific and clinical importance of cerebral hemodynamics has generated considerable interest in their quantitative understanding via computational modeling. In particular, two aspects of cerebral hemodynamics, cerebral flow autoregulation (CFA) and CO2 vasomotor reactivity (CVR), have attracted much attention because they are implicated in many important clinical conditions and pathologies (orthostatic intolerance, syncope, hypertension, stroke, vascular dementia, mild cognitive impairment, Alzheimer's disease, and other neurodegenerative diseases with cerebrovascular components). Both CFA and CVR are dynamic physiological processes by which cerebral blood flow is regulated in response to fluctuations in cerebral perfusion pressure and blood CO2 tension. Several modeling studies to date have analyzed beat-to-beat hemodynamic data in order to advance our quantitative understanding of CFA-CVR dynamics. A confounding factor in these studies is the fact that the dynamics of the CFA-CVR processes appear to vary with time (i.e., changes in cerebrovascular characteristics) due to neural, endocrine, and metabolic effects. This paper seeks to address this issue by tracking the changes in linear time-invariant models obtained from short successive segments of data from ten healthy human subjects. The results suggest that systemic variations exist but have stationary statistics and, therefore, the use of time-invariant modeling yields "time-averaged models" of physiological and clinical utility.

  14. Pacing stress echocardiography

    Directory of Open Access Journals (Sweden)

    Agrusta Marco

    2005-12-01

    Full Text Available Abstract Background High-rate pacing is a valid stress test to be used in conjunction with echocardiography; it is independent of physical exercise and does not require drug administration. There are two main applications of pacing stress in the echo lab: the noninvasive detection of coronary artery disease through induction of a regional transient dysfunction; and the assessment of contractile reserve through peak systolic pressure/ end-systolic volume relationship at increasing heart rates to assess global left ventricular contractility. Methods The pathophysiologic rationale of pacing stress for noninvasive detection of coronary artery disease is obvious, with the stress determined by a controlled increase in heart rate, which is a major determinant of myocardial oxygen demand, and thereby tachycardia may exceed a fixed coronary flow reserve in the presence of hemodynamically significant coronary artery disease. The use of pacing stress echo to assess left ventricular contractile reserve is less established, but promising. Positive inotropic interventions are mirrored by smaller end-systolic volumes and higher end-systolic pressures. An increased heart rate progressively increases the force of ventricular contraction (Bowditch treppe or staircase phenomenon. To build the force-frequency relationship, the force is determined at different heart rate steps as the ratio of the systolic pressure (cuff sphygmomanometer/end-systolic volume index (biplane Simpson rule. The heart rate is determined from ECG. Conclusion Two-dimensional echocardiography during pacing is a useful tool in the detection of coronary artery disease. Because of its safety and ease of repeatability noninvasive pacing stress echo can be the first-line stress test in patients with permanent pacemaker. The force-frequency can be defined as up- sloping (normal when the peak stress pacing systolic pressure/end-systolic volume index is higher than baseline and intermediate stress

  15. Stress management as an enabling technology for high-field superconducting dipole magnets

    Science.gov (United States)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole

  16. Researches on the characteristics of engineering geology of the high stress soft rockmasses in Tonger coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Peng Tao; He Manchao [China University of Mining and Technology (China). China Graduate School

    1996-12-31

    High stress soft rock refers to a kind of engineering rock mass which has remarkable plastic deformation under the condition of high stress. The characteristics of engineering geology of the high stress soft rock mass in the Tonger coal mine are discussed in terms of the clay mineral components, water absorption, mechanical properties, stability, stress strength and other properties of the soft rock mass. 2 refs., 6 figs., 6 tabs.

  17. Flow patterns and shear stress waveforms in intracranial aneurysms: The effect of pulsatility

    Science.gov (United States)

    Sotiropoulos, Fotis; Le, Trung; Borazjani, Iman

    2009-11-01

    The wall shear stress on the dome of intracranial aneurysms has been hypothesized to be an important factor in aneurysm pathology and depends strongly on the hemodynamics inside the dome. The importance of patient-specific geometry on the hemodynamics of aneurysms has long been established but the significance of patient-specific inflow waveform is largely unexplored. In this work we seek to systematically investigate and quantify the effects of inflow waveform on aneurysm hemodynamics. We carry out high resolution numerical simulations for an anatomic intracranial aneurysm obtained from 3D rotational angiography (3DRA) data for various inflow waveforms. We show that both the vortex formation process and wall-shear stress dynamics on the aneurysm dome depend strongly on the characteristics of the inflow waveform. We also present preliminary evidence suggesting that a simple non-dimensional number (named the Aneurysm number), incorporating both geometry and inflow waveform effects, could be a good qualitative predictor of the general hemodynamic patterns that will arise in a given aneurysm geometry for a particular waveform.

  18. Field investigations of high stress soft surrounding rocks and deformation control

    Directory of Open Access Journals (Sweden)

    Weijian Yu

    2015-08-01

    Full Text Available Field investigations of high stress soft rock deformations show that the high stress soft rock roadway can slide with large deformation. Severe extrusion and floor heave can also be subsequently observed. The supported roadway can be locally damaged or completely fail, where the floor has a large deformation and/or is seriously damaged. The factors inducing large deformation of surrounding rocks in deep roadway are rock strengths, structure face cutting types, stress states, stress release, support patterns, and construction methods. Based on the deformation characteristics of high stress soft rock roadway, a comprehensive support scheme is proposed. The overall support technology of “step-by-step and joint, hierarchical reinforcement” for roadway is presented, and the anchor cable and bolt parameters to check the design methods are also given. Finally, the proposed comprehensive support method “bolt + metal mesh + U-steel arch + shortcrete + grouting and cable” is used in the extension section of east main haulage roadway at −850 m level of Qujiang coal mine. The 173-day monitoring results show that the average convergence of sidewalls reaches 208 mm, and the average relative convergence of roof and floor reaches 448 mm, suggesting that this kind of support technology for controlling large deformation of high stress soft surrounding rock roadway is effective.

  19. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  20. Physical modeling and visualization of soil liquefaction under high confining stress

    Institute of Scientific and Technical Information of China (English)

    Lenart González; Tarek Abdoun; Mourad Zeghal; Vivian Kallou; Michael K. Sharp

    2005-01-01

    The mechanisms of seismically-induced liquefaction of granular soils under high confining stresses are still not fully understood. Evaluation of these mechanisms is generally based on extrapolation of observed behavior at shallow depths.Three centrifuge model tests were conducted at RPI's experimental facility to investigate the effects of confining stresses on the dynamic response ora deep horizontal deposit of saturated sand. Liquefaction was observed at high confining stresses in each of the tests. A system identification procedure was used to estimate the associated shear strain and stress time histories.These histories revealed a response marked by shear strength degradation and dilative patterns. The recorded accelerations and pore pressures were employed to generate visual animations of the models. These visualizations revealed a liquefaction front traveling downward and leading to large shear strains and isolation of upper soil layers.

  1. Effects of dexmedetomidine on hemodynamics and stress reaction in pediatric patients with congenital heart disease undergoing open heart surgery with cardiopulmonary bypass%右美托咪定对心肺转流心内直视手术患儿血流动力学及应激反应的影响

    Institute of Scientific and Technical Information of China (English)

    李晓松; 刘海涛; 任建军; 董振明

    2012-01-01

    Objective To evaluate the effects of dexmedetomidine infusion on hemodynamic and stress reaction in pediatric patients with congenital heart disease undergoing open heart surgery with cardiopulmonary bypass. Methods Thirty pediatric patients undergoing open heart surgery with cardiopulmonary bypass, ASA class D or 01, were randomly assigned to two groups: the group DEX (group D, n=15) and the group control (group C, n = 15). Patients In group D received an initial bolus dose of dexmedetomidine Cl. 0 礸/kg) over 10 minutes, immediately followed by a continuous infusion of 0. 5-1. 0 礸+kg -1穐-1 until the end of the operation. The same volume of normal saline was given in the control group. Hemodynamic parameters and concentrations of blood glucose, rartisol, norepinephrine and epinephrine were measured before injection(T0), 10 min and 15 min after administration Ti and T2), after incision (T3), after sternum saw (T4). after CPB(T6) and immediately after surgey(Ts). Results The values of HR, SBP. DBP and MAP decreased significantly at Ti-Ts in group D, and were significantly lower than those in group C, especially at T; (P<0. 05). In both groups, blood glucose,plasma cortisol, norepinephrine and epinephrine increased significantly at T4-T6. However, the values were lower in group D compared with those in group C(P <0.05). Conclusion Intraoperative dexmedetomidine infusion attenuated the hemodynamic and neuroendocrinal response to surgical trauma and cardiopulmonary bypass in pediatric patients undergoing corrective surgery for congenital heart disease%目的 观察右美托咪定连续输注对小儿先天性心脏病CPB心内直视手术期间的血流动力学及应激反应的影响.方法 CPB心内直视矫治手术患儿30例,ASAⅡ或Ⅲ级,随机均分为右美托咪定组(D组)和对照组(C组).D组接受初始剂量为1.0 μg/kg的右美托咪定(给药时间大于10 min),随后以0.5~1.0μg·kg-1·h-1的速度维持直至手术结束,C组则给予相

  2. Comparative study of intravenously administered clonidine and magnesium sulfate on hemodynamic responses during laparoscopic cholecystectomy

    Directory of Open Access Journals (Sweden)

    Nand Kishore Kalra

    2011-01-01

    Full Text Available Background: Both magnesium and clonidine are known to inhibit catecholamine and vasopressin release and attenuate hemodynamic response to pneumoperitoneum. This randomized, double blinded, placebo controlled study has been designed to assess which agent attenuates hemodynamic stress response to pneumoperitoneum better. Materials and Methods: 120 patients undergoing elective laparoscopic cholecystectomy were randomized into 4 groups of 30 each. Group K patients received 50 ml normal saline over a period of 15 min after induction and before pneumoperitoneum, group M patients received 50 mg/kg of magnesium sulfate in normal saline (total volume 50 ml over same time duration. Similarly group C1 patients received 1 μg/kg clonidine and group C2 1.5 μg/kg clonidine respectively in normal saline (total volume 50 ml. Blood pressure and heart rate were recorded before induction (baseline value, at the end of infusions and every 5 min after pneumoperitoneum. Statistical Analysis: Paired t test was used for intra-group comparison and ANOVA for inter-group comparison. Results: Systolic blood pressure was significantly higher in control group as compared to all other groups during pneumoperitoneum. On comparing patients in group M and group C1, no significant difference in systolic BP was found at any time interval. Patients in group C2 showed best control of systolic BP. As compared to group M and group C1, BP was significantly lower at 10, 30 and 40 min post pneumoperitoneum. No significant episodes of hypotension were found in any of the groups. Extubation time and time to response to verbal command like eye opening was significantly longer in group M as compared to other groups. Conclusion: Administration of magnesium sulfate or clonidine attenuates hemodynamic response to pneumoperitoneum. Although magnesium sulfate 50 mg/kg produces hemodynamic stability comparable to clonidine 1 μg/kg, clonidine in doses of 1.5μg/kg blunts the hemodynamic response

  3. Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability

    Directory of Open Access Journals (Sweden)

    Yoshie Nakajima

    2016-01-01

    Full Text Available Sounds can induce autonomic responses in listeners. However, the modulatory effect of specific frequency components of music is not fully understood. Here, we examined the role of the frequency component of music on autonomic responses. Specifically, we presented music that had been amplified in the high- or low-frequency domains. Twelve healthy women listened to white noise, a stress-inducing noise, and then one of three versions of a piece of music: original, low-, or high-frequency amplified. To measure autonomic response, we calculated the high-frequency normalized unit (HFnu, low-frequency normalized unit, and the LF/HF ratio from the heart rate using electrocardiography. We defined the stress recovery ratio as the value obtained after participants listened to music following scratching noise, normalized by the value obtained after participants listened to white noise after the stress noise, in terms of the HFnu, low-frequency normalized unit, LF/HF ratio, and heart rate. Results indicated that high-frequency amplified music had the highest HFnu of the three versions. The stress recovery ratio of HFnu under the high-frequency amplified stimulus was significantly larger than that under the low-frequency stimulus. Our results suggest that the high-frequency component of music plays a greater role in stress relief than low-frequency components.

  4. Thermal characteristics investigation of high voltage grounded gate-LDMOS under ESD stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weifeng; Qian Qinsong; Wang Wen; Yi Yangbo, E-mail: swffrog@seu.edu.c [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)

    2009-10-15

    The thermal characteristics of high voltage gg-LDMOS under ESD stress conditions are investigated in detail based on the Sentaurus process and device simulators. The total heat and lattice temperature distributions along the Si-SiO{sub 2} interface under different stress conditions are presented and the physical mechanisms are discussed in detail. The influence of structure parameters on peak lattice temperature is also discussed, which is useful for designers to optimize the parameters of LDMSO for better ESD performance.

  5. Thermal characteristics investigation of high voltage grounded gate-LDMOS under ESD stress conditions

    Institute of Scientific and Technical Information of China (English)

    Sun Weifeng; Qian Qinsong; Wang Wen; Yi Yangbo

    2009-01-01

    The thermal characteristics of high voltage gg-LDMOS under ESD stress conditions are investigated in detail based on the Sentaurus process and device simulators. The total heat and lattice temperature distributions along the Si-SiO_2 interface under different stress conditions are presented and the physical mechanisms are discussed in detail. The influence of structure parameters on peak lattice temperature is also discussed, which is useful for designers to optimize the parameters of LDMSO for better ESD performance.

  6. Stress corrosion cracking and hydrogen embrittlement of thick section high strength low alloy steel.

    OpenAIRE

    Needham, William Donald

    1986-01-01

    An experimental study was conducted to evaluate the corrosion performance of weldments of a high strength low alloy(HSLA) steel in a simulated seawater environment. This steel, designated HSLA80, was developed by the United States Navy for use in ship structural applications. Stress corrosion CRACKING(SCC) and hydrogen embrittlement(HEM) were investigated by conducting 42 Wedge-Opening load(WOL) tests as a function of stress intensity and corrosion potential and 33 Slow Strain Rate(SSR) tests...

  7. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure

    DEFF Research Database (Denmark)

    Damgaard, Morten; Norsk, Peter; Gustafsson, Finn

    2006-01-01

    inhibitors and beta-adrenoreceptor blockers. Therefore, we determined the hemodynamic and neuroendocrine responses to 1 wk of a low-sodium diet (70 mmol/day) and 1 wk of a high-sodium diet (250 mmol/day) in 12 HF patients and 12 age-matched controls in a randomized, balanced fashion. During steady...

  8. High extensibility of stress fibers revealed by in vitro micromanipulation with fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Tsubasa S. [Department of Biomolecular Sciences, Tohoku University (Japan); Sato, Masaaki [Department of Biomedical Engineering, Tohoku University (Japan); Department of Bioengineering and Robotics, Tohoku University (Japan); Deguchi, Shinji, E-mail: deguchi@nitech.ac.jp [Department of Bioengineering and Robotics, Tohoku University (Japan)

    2013-05-10

    Highlights: •We isolate contractile stress fibers from vascular smooth muscle cells. •We measure the extensibility of individual stress fibers. •We present the first direct evidence that individual stress fibers are highly extensible. •We quantitatively determine the local strain along the length of stress fibers. •The high extensibility we found is beyond that explained by a conventional model. -- Abstract: Stress fibers (SFs), subcellular bundles of actin and myosin filaments, are physically connected at their ends to cell adhesions. The intracellular force transmitted via SFs plays an essential role in cell adhesion regulation and downstream signaling. However, biophysical properties intrinsic to individual SFs remain poorly understood partly because SFs are surrounded by other cytoplasmic components that restrict the deformation of the embedded materials. To characterize their inherent properties independent of other structural components, we isolated SFs from vascular smooth muscle cells and mechanically stretched them by in vitro manipulation while visualizing strain with fluorescent quantum dots attached along their length. SFs were elongated along their entire length, with the length being approximately 4-fold of the stress-free length. This surprisingly high extensibility was beyond that explained by the tandem connection of actin filaments and myosin II bipolar filaments present in SFs, thus suggesting the involvement of other structural components in their passive biophysical properties.

  9. A highly sensitive assay for monitoring the secretory pathway and ER stress.

    Directory of Open Access Journals (Sweden)

    Christian E Badr

    Full Text Available BACKGROUND: The secretory pathway is a critical index of the capacity of cells to incorporate proteins into cellular membranes and secrete proteins into the extracellular space. Importantly it is disrupted in response to stress to the endoplasmic reticulum that can be induced by a variety of factors, including expression of mutant proteins and physiologic stress. Activation of the ER stress response is critical in the etiology of a number of diseases, such as diabetes and neurodegeneration, as well as cancer. We have developed a highly sensitive assay to monitor processing of proteins through the secretory pathway and endoplasmic reticulum (ER stress in real-time based on the naturally secreted Gaussia luciferase (Gluc. METHODOLOGY/PRINCIPLE FINDINGS: An expression cassette for Gluc was delivered to cells, and its secretion was monitored by measuring luciferase activity in the conditioned medium. Gluc secretion was decreased down to 90% when these cells were treated with drugs that interfere with the secretory pathway at different steps. Fusing Gluc to a fluorescent protein allowed quantitation and visualization of the secretory pathway in real-time. Expression of this reporter protein did not itself elicit an ER stress response in cells; however, Gluc proved very sensitive at sensing this type of stress, which is associated with a temporary decrease in processing of proteins through the secretory pathway. The Gluc secretion assay was over 20,000-fold more sensitive as compared to the secreted alkaline phosphatase (SEAP, a well established assay for monitoring of protein processing and ER stress in mammalian cells. CONCLUSIONS/SIGNIFICANCE: The Gluc assay provides a fast, quantitative and sensitive technique to monitor the secretory pathway and ER stress and its compatibility with high throughput screening will allow discovery of drugs for treatment of conditions in which the ER stress is generally induced.

  10. High-dose pyridoxine as an 'anti-stress' strategy.

    Science.gov (United States)

    McCarty, M F

    2000-05-01

    Pyridoxine nutritional status has a significant and selective modulatory impact on central production of both serotonin and GABA - neurotransmitters which control depression, pain perception, and anxiety - owing to the fact that the decarboxylases which produce these neurotransmitters have a relatively low affinity for pyridoxal phosphate (PLP). Pyridoxine deficiency leads to increased sympathetic outflow and hypertension in rodents, possibly reflecting decreased central production of these neurotransmitters; conversely, supplemental pyridoxine lowers blood pressure in many animal models of hypertension, and there is preliminary evidence for antihypertensive activity in humans as well. Additionally, physiological levels of PLP interact with glucocorticoid receptors to down-regulate their activity. Thus, high-dose pyridoxine, by amplifying tissue levels of PLP, may be expected to have a favorable impact on certain dysphoric mental states, while diminishing sympathetic output and acting peripherally to blunt the physiological impact of corticosteroids. In light of growing evidence that chronic dysphoria, particularly when accompanied by hopelessness or cynicism, has a major negative impact on morbidity and mortality from a wide range of disorders, high intakes of pyridoxine may have the potential to improve prognosis in many individuals. With respect to cardiovascular health, reduction of homocysteine levels should contribute to this benefit. These predictions are consistent with recent epidemiology correlating plasma PLP levels with risk for vascular events and overall survival.

  11. Heat priming induces trans-generational tolerance to high temperature stress in wheat

    Directory of Open Access Journals (Sweden)

    Xiao eWang

    2016-04-01

    Full Text Available Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH, the progeny of heat-primed plants (PH possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1 which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production.

  12. Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat

    Science.gov (United States)

    Wang, Xiao; Xin, Caiyun; Cai, Jian; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2016-01-01

    Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1) which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production. PMID:27148324

  13. Polyamine Accumulation in Transgenic Tomato Enhances the Tolerance to High Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    Lin Cheng; Yijing Zou; Shuli Ding; Jiajing Zhang; Xiaolin Yu; Jiashu Cao; Gang Lu

    2009-01-01

    Polyamines play an important role in plant response to abiotic stress. S-adenosyl-I-methionine decarboxylase (SAMDC) is one of the key regulatory enzymes in the biosynthesis of polyamines. In order to better understand the effect of regulation of polyamine biosynthesis on the tolerance of high-temperature stress in tomato, SAMDC Cdna isolated from Saccharomyces cerevisiae was introduced into tomato genome by means of Agrobacterium tumefaciens through leaf disc transformation. Transgene and expression was confirmed by Southern and Northern blot analyses, respectively. Transgenic plants expressing yeast SAMDC produced 1.7- to 2.4-fold higher levels of spermidine and spermine than wild-type plants under high temperature stress, and enhanced antioxidant enzyme activity and the protection of membrane lipid peroxidation was also observed. This subsequently improved the efficiency of CO2 assimilation and protected the plants from high temperature stress, which indicated that the transgenic tomato presented an enhanced tolerance to high temperature stress (38℃) compared with wild-type plants, Our results demonstrated clearly that increasing polyamine biosynthesis in plants may be a means of creating high temperature-tolerant germplasm.

  14. Morphological and Hemodynamic Discriminators for Rupture Status in Posterior Communicating Artery Aneurysms.

    Directory of Open Access Journals (Sweden)

    Nan Lv

    Full Text Available The conflicting findings of previous morphological and hemodynamic studies on intracranial aneurysm rupture may be caused by the relatively small sample sizes and the variation in location of the patient-specific aneurysm models. We aimed to determine the discriminators for aneurysm rupture status by focusing on only posterior communicating artery (PCoA aneurysms.In 129 PCoA aneurysms (85 ruptured, 44 unruptured, clinical, morphological and hemodynamic characteristics were compared between the ruptured and unruptured cases. Multivariate logistic regression analysis was performed to determine the discriminators for rupture status of PCoA aneurysms.While univariate analyses showed that the size of aneurysm dome, aspect ratio (AR, size ratio (SR, dome-to-neck ratio (DN, inflow angle (IA, normalized wall shear stress (NWSS and percentage of low wall shear stress area (LSA were significantly associated with PCoA aneurysm rupture status. With multivariate analyses, significance was only retained for higher IA (OR = 1.539, p < 0.001 and LSA (OR = 1.393, p = 0.041.Hemodynamics and morphology were related to rupture status of intracranial aneurysms. Higher IA and LSA were identified as discriminators for rupture status of PCoA aneurysms.

  15. [Analysis and computational fluid dynamics simulation of hemodynamic influences caused by splenic vein thrombosis].

    Science.gov (United States)

    Zhou, Hongyu; Gong, Peiyun; Du, Xuesen; Wang, Meng

    2015-02-01

    This paper aims to analyze the impact of splenic vein thrombosis (SVT) on the hemodynamic parameters in hepatic portal vein system. Based on computed tomography (CT) images of a patient with portal hypertension and commercial software MIMICS, the patient's portal venous system model was reconstructed. Color Doppler ultrasound method was used to measure the blood flow velocity in portal vein system and then the blood flow velocities were used as the inlet boundary conditions of simulation. By using the computational fluid dynamics (CFD) method, we simulated the changes of hemodynamic parameters in portal venous system with and without splenic vein thrombosis and analyzed the influence of physiological processes. The simulation results reproduced the blood flow process in portal venous system and the results showed that the splenic vein thrombosis caused serious impacts on hemodynamics. When blood flowed through the thrombosis, blood pressure reduced, flow velocity and wall shear stress increased. Flow resistance increased, blood flow velocity slowed down, the pressure gradient and wall shear stress distribution were more uniform in portal vein. The blood supply to liver decreased. Splenic vein thrombosis led to the possibility of forming new thrombosis in portal vein and surroundings.

  16. The importance of hemodynamic monitoring in mitrocuspid surgery

    OpenAIRE

    Dobrić Biljana J.; Petrović Jasna S.; Radovanović Ninoslav D.

    2006-01-01

    Introduction. Untreated mitral valve disease is associated with marked hemodynamic disorders, low ejection fraction (EF) and poor perfusion. The study aimed to explore the importance of hemodynamic monitoring in intraoperative evaluation and treatment of these patients. Material and methods. This prospective study included 85 patients: group I: 41 patients, EF<40%; group II: 44 patients, EF>40%. Hemodynamic parameters were recorded after initation of anesthesia (1), after sternotomy (2)...

  17. Occupational exposure in hemodynamic; Exposicao ocupacional em hemodinamica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amanda J.; Fernandes, Ivani M.; Silva, Paula P. Nou; Sordi, Gian Maria A.A.; Carneiro, Janete C.G.G., E-mail: ajsilva@ipen.b, E-mail: imfernandes@ipen.b, E-mail: ppsilva@ipen.b, E-mail: gmsordi@ipen.b, E-mail: janetegc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    This paper has an objective to perform a radiometric survey at a hemodynamic service. Besides, it was intended to evaluate the effective dose of health professionals and to provide data which can contribute with minimization of exposures during the realization of hemodynamic procedure. The radiometric survey was realized in the real environment of work simulating the conditions of a hemodynamic study with a ionization chamber

  18. Biochemical basis of the high resistance to oxidative stress in Dictyostelium discoideum

    Indian Academy of Sciences (India)

    Bandhana Katoch; Rasheedunnisa Begum

    2003-09-01

    Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments. Programmed cell death or apoptosis is a physiological mechanism of cell death, that probably evolved with multicellularity, and is indispensable for normal growth and development. Dictyostelium discoideum, an eukaryotic developmental model, shows both unicellular and multicellular forms in its life cycle and exhibits apparent caspase-independent programmed cell death, and also shows high resistance to oxidative stress. An attempt has been made to investigate the biochemical basis for high resistance of D. discoideum cell death induced by different oxidants. Dose-dependent induction of cell death by exogenous addition of hydrogen peroxide (H2O2), in situ generation of H2O2 by hydroxylamine, and nitric oxide (NO) generation by sodium nitroprusside treatment in D. discoideum were studied. The AD50 doses (concentration of the oxidants cusing 50% of the cells to die) after 24 h of treatment were found to be 0.45 mM, 4 mM and 1 mM, respectively. Studies on enzymatic antioxidant status of D. discoideum when subjected to oxidative stress, NO and nutrient stress reveal that superoxide dismutase and catalase were unchanged; a significant induction of glutathione peroxidase was observed. Interestingly, oxidative stress-induced lipid membrane peroxidative damage could not be detected. The results shed light on the biochemical basis for the observed high resistance to oxidative stress in D. discoideum.

  19. CFD Modelling of Abdominal Aortic Aneurysm on Hemodynamic Loads Using a Realistic Geometry with CT

    Directory of Open Access Journals (Sweden)

    Eduardo Soudah

    2013-01-01

    Full Text Available The objective of this study is to find a correlation between the abdominal aortic aneurysm (AAA geometric parameters, wall stress shear (WSS, abdominal flow patterns, intraluminal thrombus (ILT, and AAA arterial wall rupture using computational fluid dynamics (CFD. Real AAA 3D models were created by three-dimensional (3D reconstruction of in vivo acquired computed tomography (CT images from 5 patients. Based on 3D AAA models, high quality volume meshes were created using an optimal tetrahedral aspect ratio for the whole domain. In order to quantify the WSS and the recirculation inside the AAA, a 3D CFD using finite elements analysis was used. The CFD computation was performed assuming that the arterial wall is rigid and the blood is considered a homogeneous Newtonian fluid with a density of 1050 kg/m3 and a kinematic viscosity of 4×10-3 Pa·s. Parallelization procedures were used in order to increase the performance of the CFD calculations. A relation between AAA geometric parameters (asymmetry index (β, saccular index (γ, deformation diameter ratio (χ, and tortuosity index (ε and hemodynamic loads was observed, and it could be used as a potential predictor of AAA arterial wall rupture and potential ILT formation.

  20. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  1. A Window into South Korean Culture: Stress and Coping in Female High School Students

    Science.gov (United States)

    VanderGast, Tim S.; Foxx, Sejal Parikh; Flowers, Claudia; Rouse, Andrew Thomas; Decker, Karen M.

    2015-01-01

    In an effort to increase multicultural competence, professional counselors in the United States analyzed archival data from high school students from Seoul, South Korea. A sample of all female (N = 577) high school students responded to survey questions related to stress and coping. Results demonstrated statistical significance in levels of stress…

  2. Residual stresses in high-velocity oxy-fuel metallic coatings

    Science.gov (United States)

    Totemeier, T. C.; Wright, R. N.; Swank, W. D.

    2004-06-01

    X-ray based residual stress measurements were made on type 316 stainless steel and Fe3Al coatings that were high-velocity oxy-fuel (HVOF) sprayed onto low-carbon and stainless steel substrates. Nominal coating thicknesses varied from 250 to 1500 µm. The effect of HVOF spray particle velocity on residual stress and deposition efficiency was assessed by preparing coatings at three different torch chamber pressures. The effect of substrate thickness on residual stress was determined by spraying coatings onto thick (6.4 mm) and thin (1.4 mm) substrates. Residual stresses were compressive for both coating materials and increased in magnitude with spray velocity. For coatings applied to thick substrates, near-surface residual stresses were essentially constant with increasing coating thickness. Differences in thermal expansion coefficient between low-carbon and stainless steels led to a 180 MPa difference in residual stress for Fe3Al coatings. Deposition efficiency for both materials is maximized at an intermediate (˜600 m/s) velocity. Considerations for X-ray measurement of residual stresses in HVOF coatings are also presented.

  3. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  4. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.

    Science.gov (United States)

    Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q

    2013-07-21

    To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection

  5. Bicuspid aortic valve hemodynamics does not promote remodeling in porcine aortic wall concavity

    Institute of Scientific and Technical Information of China (English)

    Samantha K Atkins; Alison N Moore; Philippe Sucosky

    2016-01-01

    AIM: To investigate the role of type-I left-right bicuspid aortic valve(LR-BAV) hemodynamic stresses in the remodeling of the thoracic ascending aorta(AA) concavity, in the absence of underlying genetic or structural defects.METHODS: Transient wall shear stress(WSS) profiles in the concavity of tricuspid aortic valve(TAV) and LR-BAV AAs were obtained computationally. Tissue specimens excised from the concavity of normal(nondilated) porcine AAs were subjected for 48 h to those stress environments using a shear stress bioreactor. Tissue remodeling was characterized in terms of matrix metalloproteinase(MMP) expression and activity via immunostaining and gelatin zymography.RESULTS: Immunostaining semi-quantification results indicated no significant difference in MMP-2 and MMP-9 expression between the tissue groups exposed to TAV and LR-BAV AA WSS(P = 0.80 and P = 0.19, respectively). Zymography densitometry revealed no difference in MMP-2 activity(total activity, active form and latent form) between the groups subjected to TAV AA and LR-BAV AA WSS(P = 0.08, P = 0.15 and P = 0.59, respectively).CONCLUSION: The hemodynamic stress environment present in the concavity of type-I LR-BAV AA does not cause any significant change in proteolytic enzyme expression and activity as compared to that present in the TAV AA.

  6. The Effects of a Multiflavonoid Supplement on Vascular and Hemodynamic Parameters following Acute Exercise

    Directory of Open Access Journals (Sweden)

    Rebecca M. Kappus

    2011-01-01

    Full Text Available Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Methods. Twenty young subjects were randomized to placebo (=10 or antioxidant supplementation (=10 for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Results. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP decrease during postexercise hypotension (PEH and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.. Also ferric-reducing ability of plasma (FRAP increased significantly (interaction P = 0.024 after supplementation. Conclusion. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index.

  7. A Perspective Review on Numerical Simulations of Hemodynamics in Aortic Dissection

    Science.gov (United States)

    Wan Ab Naim, Wan Naimah; Ganesan, Poo Balan; Hashim, Shahrul Amry

    2014-01-01

    Aortic dissection, characterized by separation of the layers of the aortic wall, poses a significant challenge for clinicians. While type A aortic dissection patients are normally managed using surgical treatment, optimal treatment strategy for type B aortic dissection remains controversial and requires further evaluation. Although aortic diameter measured by CT angiography has been clinically used as a guideline to predict dilation in aortic dissection, hemodynamic parameters (e.g., pressure and wall shear stress), geometrical factors, and composition of the aorta wall are known to substantially affect disease progression. Due to the limitations of cardiac imaging modalities, numerical simulations have been widely used for the prediction of disease progression and therapeutic outcomes, by providing detailed insights into the hemodynamics. This paper presents a comprehensive review of the existing numerical models developed to investigate reasons behind tear initiation and progression, as well as the effectiveness of various treatment strategies, particularly the stent graft treatment. PMID:24672348

  8. Differential hemodynamic effects of exercise and volume expansion in people with and without heart failure

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Olson, Thomas P; Melenovsky, Vojtech

    2015-01-01

    output and pressures in the right atrium, pulmonary artery, and pulmonary capillary wedge positions. Changes in heart rate, blood pressure, rate-pressure product, and cardiac output were greater with exercise compared with saline. In controls subjects, right atrial pressure, pulmonary arterial pressure......BACKGROUND:Invasive hemodynamic exercise testing is commonly used in the evaluation of patients with suspected heart failure with preserved ejection fraction (HFpEF) or pulmonary hypertension. Saline loading has been suggested as an alternative provocative maneuver, but the hemodynamic changes...... induced by the 2 stresses have not been compared. METHODS AND RESULTS:Twenty-six subjects (aged, 67±10 years; n=14 HFpEF; n=12 control) underwent right heart catheterization at rest, during supine exercise, and with acute saline loading in a prospective study. Exercise and saline each increased cardiac...

  9. A Comprehensive and High-Resolution Genome-wide Response of p53 to Stress

    Directory of Open Access Journals (Sweden)

    Gue Su Chang

    2014-07-01

    Full Text Available Tumor suppressor p53 regulates transcription of stress-response genes. Many p53 targets remain undiscovered because of uncertainty as to where p53 binds in the genome and the fact that few genes reside near p53-bound recognition elements (REs. Using chromatin immunoprecipitation followed by exonuclease treatment (ChIP-exo, we associated p53 with 2,183 unsplit REs. REs were positionally constrained with other REs and other regulatory elements, which may reflect structurally organized p53 interactions. Surprisingly, stress resulted in increased occupancy of transcription factor IIB (TFIIB and RNA polymerase (Pol II near REs, which was reduced when p53 was present. A subset associated with antisense RNA near stress-response genes. The combination of high-confidence locations for p53/REs, TFIIB/Pol II, and their changes in response to stress allowed us to identify 151 high-confidence p53-regulated genes, substantially increasing the number of p53 targets. These genes composed a large portion of a predefined DNA-damage stress-response network. Thus, p53 plays a comprehensive role in regulating the stress-response network, including regulating noncoding transcription.

  10. Quantitative high content imaging of cellular adaptive stress response pathways in toxicity for chemical safety assessment.

    Science.gov (United States)

    Wink, Steven; Hiemstra, Steven; Huppelschoten, Suzanna; Danen, Erik; Niemeijer, Marije; Hendriks, Giel; Vrieling, Harry; Herpers, Bram; van de Water, Bob

    2014-03-17

    Over the past decade, major leaps forward have been made on the mechanistic understanding and identification of adaptive stress response landscapes underlying toxic insult using transcriptomics approaches. However, for predictive purposes of adverse outcome several major limitations in these approaches exist. First, the limited number of samples that can be analyzed reduces the in depth analysis of concentration-time course relationships for toxic stress responses. Second these transcriptomics analysis have been based on the whole cell population, thereby inevitably preventing single cell analysis. Third, transcriptomics is based on the transcript level, totally ignoring (post)translational regulation. We believe these limitations are circumvented with the application of high content analysis of relevant toxicant-induced adaptive stress signaling pathways using bacterial artificial chromosome (BAC) green fluorescent protein (GFP) reporter cell-based assays. The goal is to establish a platform that incorporates all adaptive stress pathways that are relevant for toxicity, with a focus on drug-induced liver injury. In addition, cellular stress responses typically follow cell perturbations at the subcellular organelle level. Therefore, we complement our reporter line panel with reporters for specific organelle morphometry and function. Here, we review the approaches of high content imaging of cellular adaptive stress responses to chemicals and the application in the mechanistic understanding and prediction of chemical toxicity at a systems toxicology level.

  11. [Analysis of Electric Stress in Human Head in High-frequency Low-power Electromagnetic Environment].

    Science.gov (United States)

    Zhou, Yongjun; Zhang, Hui; Niu, Zhongqi

    2015-04-01

    Action of electromagnetic radiation exerting on human body has been a concerned issue for people. Because electromagnetic waves could generate an electric stress in a discontinuous medium, we used the finite difference time domain (FDTD) as calculation methods to calculate the electric stress and its distribution in human head caused by high-frequency low-power electromagnetic environment, which was generated by dual-band (900 MHz and 1 800 MHz) PIFA antennas with radiated power 1 W, and we then performed the safety evaluation of cell phone radiation from the angle whether the electric stress further reached the human hearing threshold. The result showed that there existed the electric stress at the interface of different permittivity organization caused by the two kinds of high-frequency low-power electromagnetic environment and the maximum electric stress was located at the interface between skin and air of the phone side, and the electric stress peak at skull did not reach the threshold of auditory caused by bone tissue conduction so that it can not produce auditory effects.

  12. Residual stress in a M3:2 PM high speed steel; effect of mechanical loading

    DEFF Research Database (Denmark)

    Højerslev, Christian; Odén, Magnus; Carstensen, Jesper V.

    2001-01-01

    X-ray lattice strains were investigated in an AISI M3:2 PM high-speed steel in the as heat treated condition and after exposure to alternating mechanical load. The volume changes during heat treatment were monitored with dilatometry. Hardened and tempered AISI M3:2 steel consists of tempered lath...... martensite and the carbides M6C,V8C7 and M23C6. In the as heat treated condition the stress state is triaxial. The primary carbides M6C and V8C7 experience a compressive state of stress. Exposure to an alternating mechanical load, changes the states of stress of V8C7 and tempered martensite, but does...... not appear to change the state of stress in M6C....

  13. Identification of Abiotic Stress Responsive Genes from Indian High Altitude Lepidium latifolium L. (Short Communication

    Directory of Open Access Journals (Sweden)

    Sanjay Mohan Gupta

    2012-09-01

    Full Text Available Abiotic stresses are major environmental factors that periodically account for significant loss in crop productivity. In order to improve the abiotic stress tolerance in vegetable crops through transgenic approaches, authors isolated and cloned six up-regulated, LlaDREB1b (JN214345, LlaGPAT (JN398166, LlaNAC (FJ423495, LlaCIPK (FJ423496, LlaPR5 (GQ853409 and LlaIPK (FJ487575 and two down-regulated LlaRan (JN214347 and LlaDRT (JN214346 abiotic stress responsive genes from Indian high altitude Lepidium latifolium L. plant that that may be used for abiotic stress-tolerance engineering upon functional validation.Defence Science Journal, 2012, 62(5, pp.315-318, DOI:http://dx.doi.org/10.14429/dsj.62.1495

  14. Financial stress, parent functioning and adolescent problem behavior: an actor-partner interdependence approach to family stress processes in low-, middle-, and high-income families.

    Science.gov (United States)

    Ponnet, Koen

    2014-10-01

    The family stress model proposes that financial stress experienced by parents is associated with problem behavior in adolescents. The present study applied an actor-partner interdependence approach to the family stress model and focused on low-, middle-, and high-income families to broaden our understanding of the pathways by which the financial stress of mothers and fathers are related to adolescent outcomes. The study uses dyadic data (N = 798 heterosexual couples) from the Relationship between Mothers, Fathers and Children study in which two-parent families with an adolescent between 11 and 17 years of age participated. Path-analytic results indicated that in each of the families the association between parents' financial stress and problem behavior in adolescents is mediated through parents' depressive symptoms, interparental conflict, and positive parenting. Family stress processes also appear to operate in different ways for low-, middle-, and high-income families. In addition to a higher absolute level of financial stress in low-income families, financial stress experienced by mothers and fathers in these families had significant direct and indirect effects on problem behavior in adolescents, while in middle- and high-income families only significant indirect effects were found. The financial stress of a low-income mother also had a more detrimental impact on her level of depressive feelings than it had on mothers in middle-income families. Furthermore, the study revealed gender differences in the pathways of mothers and fathers. Implications for research, clinical practice, and policy are also discussed.

  15. High fat diet aggravates arsenic induced oxidative stress in rat heart and liver.

    Science.gov (United States)

    Dutta, Mousumi; Ghosh, Debosree; Ghosh, Arnab Kumar; Bose, Gargi; Chattopadhyay, Aindrila; Rudra, Smita; Dey, Monalisa; Bandyopadhyay, Arkita; Pattari, Sanjib K; Mallick, Sanjaya; Bandyopadhyay, Debasish

    2014-04-01

    Arsenic is a well known global groundwater contaminant. Exposure of human body to arsenic causes various hazardous effects via oxidative stress. Nutrition is an important susceptible factor which can affect arsenic toxicity by several plausible mechanisms. Development of modern civilization led to alteration in the lifestyle as well as food habits of the people both in urban and rural areas which led to increased use of junk food containing high level of fat. The present study was aimed at investigating the effect of high fat diet on heart and liver tissues of rats when they were co-treated with arsenic. This study was established by elucidating heart weight to body weight ratio as well as analysis of the various functional markers, oxidative stress biomarkers and also the activity of the antioxidant enzymes. Histological analysis confirmed the biochemical investigations. From this study it can be concluded that high fat diet increased arsenic induced oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Pre-stressed anchoring beam technique applicable in the reinforcement of high-steep slopes

    Institute of Scientific and Technical Information of China (English)

    Zhifa YANG; Luqing ZHANG; Jiewang ZHU

    2006-01-01

    During the construction of some large-scale rock engineering, high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered. For the reinforcement of these slopes, some techniques (including conventional pre-stressed anchoring cable and unconventional anchoring hole) are usually utilized, however, having several obvious defects. Thus, it is very difficult for a designer to design an efficient reinforcement scheme for the high-steep slopes. For this reason, the authors develop the pre-stressed anchoring beam technique, in which tensile capacity of pre-stressed structures are fully utilized. It is analyzed that the new technique is characterized by multi-functions, including engineering investigation, efficient reinforcement, drainage, monitoring and urgent strength supplement, and hoped to be extensively applicable in the reinforcement of high-steep slopes.

  17. Differential hemodynamic effects of exercise and volume expansion in people with and without heart failure.

    Science.gov (United States)

    Andersen, Mads J; Olson, Thomas P; Melenovsky, Vojtech; Kane, Garvan C; Borlaug, Barry A

    2015-01-01

    Invasive hemodynamic exercise testing is commonly used in the evaluation of patients with suspected heart failure with preserved ejection fraction (HFpEF) or pulmonary hypertension. Saline loading has been suggested as an alternative provocative maneuver, but the hemodynamic changes induced by the 2 stresses have not been compared. Twenty-six subjects (aged, 67±10 years; n=14 HFpEF; n=12 control) underwent right heart catheterization at rest, during supine exercise, and with acute saline loading in a prospective study. Exercise and saline each increased cardiac output and pressures in the right atrium, pulmonary artery, and pulmonary capillary wedge positions. Changes in heart rate, blood pressure, rate-pressure product, and cardiac output were greater with exercise compared with saline. In controls subjects, right atrial pressure, pulmonary arterial pressure, and pulmonary capillary wedge pressure increased similarly with saline and exercise, whereas in HFpEF subjects, exercise led to ≈2-fold greater increases in right atrial pressure (10±4 versus 6±3 mm Hg; P=0.02), pulmonary arterial pressure (22±8 versus 11±4 mm Hg; P=0.0001), and pulmonary capillary wedge pressure (18±5 versus 10±4 mm Hg; Pexercise and saline. Systemic and pulmonary arterial compliances were enhanced with saline but reduced with exercise. Exercise elicits greater pulmonary capillary wedge pressure elevation compared with saline in HFpEF but not controls, suggesting that hemodynamic stresses beyond passive stiffness and increased venous return explain the development of pulmonary venous hypertension in HFpEF. Exercise testing is more sensitive than saline loading to detect hemodynamic derangements indicative of HFpEF. http://www.clinicaltrials.gov. Unique identifier: NCT01418248. © 2014 American Heart Association, Inc.

  18. Hemodynamic significance of internal carotid artery disease

    DEFF Research Database (Denmark)

    Schroeder, T

    1988-01-01

    . Examination of periorbital flow direction or oculoplethysmography could be used as a screening procedure. Negative tests most certainly rule out any severe pressure gradient across the stenosis, irrespective of the luminal reduction. A positive result, on the other hand, should be further quantified since...... cerebral hemodynamics in terms of increased flow through the reconstructed vessel and elimination of pressure gradients. The cerebral blood flow, though remains unchanged in the majority of patients, at least when measured at baseline. Only in those patients with a reduction in perfusion pressure can...

  19. Hemodynamic response to the upright posture.

    Science.gov (United States)

    Smith, J J; Porth, C M; Erickson, M

    1994-05-01

    The authors' objective was to review previous studies of immediate (first 30 seconds) and stabilized (30 seconds to 20 minutes) hemodynamic responses of healthy adults to the head-up posture, with particular reference to alteration of such responses in the elderly and the usefulness of such data in the diagnosis of orthostatic hypotension. The immediate response in healthy young adults is characterized by a prompt rise in heart rate, which peaks at about 8 to 15 seconds and then tapers; the arterial pressure and total vascular resistance decrease sharply at 5 to 10 seconds, followed by a rapid rebound and overshoot. Over the first 30 seconds there is a steady parallel decline of thoracic blood volume and stroke volume; there is also an initial surge of cardiac output followed by a steady decrease. During the stabilized response (30 seconds to 20 minutes), the hemodynamic variables are relatively steady, showing average increases in heart rate of about 15 to 30%, in diastolic pressure of 10 to 15%, and in total vascular resistance of 30 to 40%; during the 5th to 20th minutes there are also decreases in thoracic blood volume averaging about 25 to 30%, in cardiac output 15 to 30%, and in pulse pressure about 5 to 10%. It is evident that in normal human subjects, assumption of the upright posture results in profound hemodynamic changes, most of them occurring during the first 30 seconds. In elderly subjects (aged 60-69 years), there are, in the upright posture, lesser increments of heart rate and diastolic pressure, but no significant differences from younger age groups in the response of thoracic blood volume, cardiac output or total vascular resistance. However, beginning at about age 75, there is an increasing incidence of orthostatic hypotension, which averages about 14 to 20% at age 75 and older. The tendency toward orthostatic hypotension in the elderly is due (1) to the structural and functional changes in the circulation itself, (2) to a decline in autonomic

  20. Emergency management of hemodynamically unstable pelvic fractures

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-gang

    2011-01-01

    Pelvic fractures are serious injuries.Death within 24 hours is most often a result of acute blood loss.The emergency management of these patients is challenging and controversial.The key issues in its management are identifying the site(s) of hemorrhage and then controlling the bleeding.Management of hemodynamically unstable patients with pelvic fracture requires a multidisciplinary team.The issues addressed in this management algorithm are diagnostic evaluation,damage control resuscitation,indications for noninvasive pelvic stabilization,preperitoneal pelvic packing and the critical decisions concerning surgical options and angiography.This review article focuses on the recent body of knowledge on those determinations.

  1. Plant protein kinase genes induced by drought, high salt and cold stresses

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Drought, high salt and cold are three different kinds of environment stresses that severely influence the growth, development and productivity of crops. They all decrease the water state of plant cells, and consequently result in the harm of plant from water deficit. Several genes encoding protein kinases and induced by drought, high salt and low temperature have been isolated from Arabidopsis. These protein kinases include receptor protein kinase (RPK), MAP kinases, ribosomal-protein kinases and transcription-regulation protein kinase. The expression features of these genes and the regulatory roles of these protein kinases in stress response and signal transduction are discussed.

  2. The cardiovascular perfusionist as a model for the successful technologist in high stress situations.

    Science.gov (United States)

    Friday, P J; Mook, W J

    1991-01-01

    This study investigates the psychological profiles of highly stressed medical technologists. One hundred and four individuals representing a cross-section of the United States who function as operators of heart-lung machines during open heart surgery (perfusionists) were studied using both internal and external models based on the works of Eric Berne and Karen Horney. Daily exposure to life and death responsibilities combined with the constant pressures of maintaining current technical skills can make the profession selected for this study representative of high technology professions that require a great deal of coping. Results of this study indicate that there is a balanced psychological profile in successful technologists functioning in long-term, high-stressed occupations. Female perfusionists appear to be more aggressive and critical than their male counterparts. This is seen as an attempt by female perfusionists to compensate for what has historically been a male dominanted, highly technical and high-stressed occupation. Generalizations for candidate selections to high stressed occupations could be made as well as projections of foundations for possible progressive disillusionment (burn out).

  3. The Influence of Non-Uniform High Heat Flux on Thermal Stress of Thermoelectric Power Generator

    Directory of Open Access Journals (Sweden)

    Tingzhen Ming

    2015-11-01

    Full Text Available A thermoelectric generator (TEG device which uses solar energy as heat source would achieve higher efficiency if there is a higher temperature difference between the hot-cold ends. However, higher temperature or higher heat flux being imposed upon the hot end will cause strong thermal stress, which will have a negative influence on the life cycle of the thermoelectric module. Meanwhile, in order to get high heat flux, a Fresnel lens is required to concentrate solar energy, which will cause non-uniformity of heat flux on the hot end of the TEG and further influence the thermal stress of the device. This phenomenon is very common in solar TEG devices but seldom research work has been reported. In this paper, numerical analysis on the heat transfer and thermal stress performance of a TEG module has been performed considering the variation on the power of the heat flux being imposed upon the hot-end; the influence of non-uniform high heat flux on thermal stress has also been analyzed. It is found that non-uniformity of high heat flux being imposed upon the hot end has a significant effect on the thermal stress of TEG and life expectation of the device. Taking the uniformity of 100% as standard, when the heating uniformity is 70%, 50%, 30%, and 10%, respectively, the maximum thermal stress of TEG module increased by 3%, 6%, 12%, and 22% respectively. If we increase the heat flux on the hot end, the influence of non-uniformity on the thermal stress will be more remarkable.

  4. Kink effect in AlGaN/GaN high electron mobility transistors by electrical stress

    Institute of Scientific and Technical Information of China (English)

    Ma Xiao-Hua; Ma Ji-Gang; Yang Li-Yuan; He Qiang; Jiao Ying; Ma Ping; Hao Yue

    2011-01-01

    The kink effect is studied in an AlGaN/GaN high electron mobility transistor by measuring DC performance during fresh, short-term stress and recovery cycle with negligible degradation. Vdg plays an assistant role in detrapping electrons and short-term stress results in no creation of new category traps but an increase in number of active traps.A possible mechanism is proposed that electrical stress supplies traps with the electric field for activation and when device is under test field-assisted hot-electrons result in electrons detrapping from traps, thus deteriorating the kink effect. In addition, experiments show that the impact ionization is at a relatively low level, which is not the dominant mechanism compared with trapping effect. We analyse the complicated link between the kink effect and stress bias through groups of electrical stress states: Vds = 0-state, off-state, on-state (on-state with low voltage, high-power state,high field state). Finlly, a conclusion is drawn that electric field brings about more severe kink effect than hot electrons.With the assistance of electric field, hot electrons tend to be possible to modulate the charges in deep-level trap.

  5. Puerarin prevents high glucose-induced apoptosis of Schwann cells by inhibiting oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Yingying Wu; Bing Xue; Xiaojin Li; Hongchen Liu

    2012-01-01

    Oxidative stress may be the unifying factor for the injury caused by hyperglycemia in diabeticperipheral neuropathy.Puerarin is the major isoflavonoid derived from Radix puerariae and has been shown to be effective in increasing superoxide dismutase activity.This study sought to investigate the neuroprotective effect of puerarin on high glucose-induced oxidative stress and Schwann cell apoptosis in vitro.Intracellular reactive oxygen radicals and mitochondrial transmembrane potential were detected by flow cytometry analysis.Apoptosis was confirmed by TUNEL and oxidative stress was monitored using an enzyme-linked immunosorbent assay for the DNA marker 8-hydroxy-2-deoxyguanosine.The expression levels of bax and bcl-2 were analyzed by quantitative real-time reverse transcriptase-PCR,while protein expression of cleaved caspase-3 and-9 were analyzed by means of western blotting.Results suggested that puerarin treatment inhibited high glucose-induced oxidative stress,mitochondrial depolarization and apoptosis in a dose-dependent manner.Furthermore,puerarin treatment downregulated Bax expression,upregulated bcl-2 expression and attenuated the activation of caspase-3 and-9.Overall,our results indicated that puerarin antagonized high glucose-induced oxidative stress and apoptosis in Schwann cells.

  6. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice.

    Science.gov (United States)

    Zhou, Yanhong; Lam, Hon Ming; Zhang, Jianhua

    2007-01-01

    Photoprotection mechanisms of rice plants were studied when its seedlings were subjected to the combined stress of water and high light. The imposition of water stress, induced by PEG 6000 which was applied to roots, resulted in substantial inhibition of stomatal conductance and net photosynthesis under all irradiance treatments. Under high light stress, the rapid decline of photosynthesis with the development of water stress was accompanied by decreases in the maximum velocity of RuBP carboxylation by Rubisco (V(cmax)), the capacity for ribulose-1,5-bisphosphate regeneration (J(max)), Rubisco and stromal FBPase activities, and the quantum efficiency of photosystem II, in the absence of any stomatal limitation of CO(2) supply. Water stress significantly reduced the energy flux via linear electron transport (J(PSII)), but increased light-dependent and DeltapH- and xanthophyll-mediated thermal dissipation (J(NPQ)). It is concluded that the drought-induced inhibition of photosynthesis under different irradiances in the rice was due to both diffusive and metabolic limitations. Metabolic limitation of photosynthesis may be related to the adverse effects of some metabolic processes and the oxidative damage to the chloroplast. Meanwhile, an enhanced thermal dissipation is an important process to minimize the adverse effects of drought and high irradiance when CO(2) assimilation is suppressed.

  7. The relationship between high gravity brewing, key performance indicators and yeast osmotic stress response

    OpenAIRE

    S. Zhuang

    2014-01-01

    High Gravity (HG) and Very High Gravity (VHG) fermentations are increasingly attractive within the brewing industry as a means of energy-saving and to optimise process efficiency. However, the use of highly concentrated worts is concomitant with a number of biological stress factors and in particular elevated osmotic pressure, which can impact on yeast quality and fermentation performance. In order to eliminate or reduce such negative effects, yeast cells often respond to their environment by...

  8. [Quantitative Analysis of Wall Shear Stress for Human Carotid Bifurcation at Cardiac Phases by the Use of Phase Contrast Cine Magnetic Resonance Imaging: Computational Fluid Dynamics Study].

    Science.gov (United States)

    Saho, Tatsunori; Onishi, Hideo

    2015-12-01

    Detailed strategy for regional hemodynamics is significant for knowledge of plaque development on vascular diseases such as atherosclerosis. The aim of this study was to derive relation between atherosclerosis and hemodynamics at human carotid bifurcation by the use of computational fluid dynamics (CFD), and to provide more accurate hemodynamic information. Blood velocity datasets at common carotid artery were obtained by phase-contrast cine magnetic resonance imaging (PC cine MRI). Carotid bifurcation model was computed for systolic, mid-diastolic, and end-diastolic phase. Comparison of wall shear stress (WSS) was performed for each cardiac phase. PC cine MRI provided velocity measurement for common carotid artery with various cardiac phases. The blood velocity had acute variation from 0.21 m/s to 1.07 m/s at systolic phase. The variation of WSS during cardiac phase was presented at carotid bifurcation model. High shear stress area was observed at dividing wall for all cardiac phases. The systole-diastole WSS ratio was 10.15 at internal carotid side of bifurcation. And low shear stress (cine MRI was allowed to determine an accurate analysis condition. This led to the representation of hemodynamics in vivo.

  9. Residual stress analysis of aluminium welds with high energy synchrotron radiation at the HARWI II beamline

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Torben; Martins, Rene V.; Schreyer, Andreas [GKSS Research Centre, Geesthacht (Germany)

    2008-07-01

    In civil aircraft production advanced welding techniques, like laser beam welding or friction stir welding, are used to reduce weight and production costs. By the welding process residual stresses are introduced in the weld zone and the surrounding area. These stresses may depend on diverse factors and can have disadvantageous influence on the service performance of the weld. For strain scanning GKSS research centre built up the high energy materials science beamline HARWI II at HASYLAB. The use of high energetic photons from about 80 keV-120 keV enables diffraction experiments in transmission geometry, which provides the information about the macroscopic stresses. A large sample-detector-distance ensures a high angular resolution for the peak position determination. The heavy load diffractometer allows making use of massive sample environments. For example laser beam welded t- and butt-joints were investigated with high spatial resolution. The large grain size of the specimen makes the measurements with high spatial resolution more difficult due to the poor grain statistics. The influences of the gauge volume size and grain statistics on the strain measurements were systematically investigated. For the t-joint configuration two dimensional stress maps were calculated from the data. For the near future an in-situ FSW experiment is planed to investigate the metallophysical processes during the welding.

  10. Stress waves propagation in solids under high-speed liquid impact

    Institute of Scientific and Technical Information of China (English)

    SHI Honghui; J. E. Field

    2004-01-01

    An experiment of impact between 450 m/s water jets and polymethylme- thacrylate (PMMA) materials with complex surface geometry was conducted. The testing surfaces were a corner, step change, surface-breaking notch, inclined surface, etc. Stress waves propagation in the solid such as reflection, interference and diffraction was observed using polarized optics and an Imacon high speed camera (operating at both of 106 and 5×105 framing rates per second, fps). A damage test by the impact of the side jetting of an 850 m/s water jet was also carried out. It was found that stress waves propagation in solids depends not only on the surface geometry but also on the contact situation between liquid and solid. It was shown that the side jetting has sufficient damage potential although its head may consist of finer droplets. The results of this paper are useful to further analyze the dynamic stress state of solids under high-speed liquid impact.

  11. Cerebral hemodynamic dysfunction in parkinsonian patients

    Directory of Open Access Journals (Sweden)

    Mirjana Vladetić

    2009-02-01

    Full Text Available Aim The purpose of this investigation was to determine the cerebral hemodynamics in patients withparkinsonism and the influence of hemodynamic dysfunction in developing the lacunar infarcts.Methods Fifty patients with the signs of parkinsonism were included in this study. The patients weredevided into two subgroups depending on whether they had vascular parkinsonism (VP (N-22 or idiopathicParkinson disease (N-28. The control group consisted of 30 patients who had ischemic stroke.The conventional transcranial dopler sonography was performed to evaluate the cerebral blood flow.To evaluate the cognitive impairment we performed the mini mental state examination to patients withparkinsonism.Results Patients with vascular parkinsonism have greater cognitive disturbances than patients withParkinson disease. In most of the parkinsonian patients the cerebral blood flow was decreased and themicroangiopathy was present.Conclusion In most patients with parkinsonism, the cerebral blood flow was decreased as a consequenceof microangiopathy. In our opinion, this led to lacunar infarction in VP patients, but can also bea risk factor for developing the same changes in patients with idiopathic Parkinson disease.

  12. Cerebrovascular hemodynamics in patients with cerebral arteriosclerosis

    Institute of Scientific and Technical Information of China (English)

    Jianbo Yang; Changcong Cui; Chengbin Wu

    2011-01-01

    The present study observed hemodynamic changes in 26 patients with cerebral arteriosclerosis using a cerebral circulation dynamics detector and transcranial Doppler.In patients with cerebral arteriosclerosis the blood supply and flow rate in the bilateral carotid arteries and the blood flow rate in the anterior cerebral and middle cerebral arteries were similar to normal controls, but the cerebral vascular resistance, critical pressure and pulsatility index were increased, and cerebral arterial elasticity and cerebral blood flow autoregulation were decreased.Compared with the lesioned hemisphere of patients with cerebral infarction, the total blood supply and blood flow rate of patients with cerebral arteriosclerosis were higher.Compared with normal subjects, patients with cerebral arteriosclerosis exhibited cognitive disturbances, mainly in short-term memory, attention, abstract capability, and spatial and executive dysfunction.Results showed that cerebral arteriosclerosis does not directly affect the blood supply of a cerebral hemisphere, but affects cognitive function.The increased cerebral vascular resistance and reduced autoregulation of cerebral blood vessels may be important hemodynamic mechanisms of arteriosclerosis-induced cerebral infarction.

  13. Cerebral hemodynamics and functional prognosis in hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Osamu; Nishikawa, Michio; Watanabe, Shu; Yamakawa, Hiroyasu; Kinoshita, Yoshimasa; Uno, Akira; Handa, Hajime (Hamamatsu Rosai Hospital, Shizuoka (Japan))

    1989-11-01

    The functional outcome of cerebral hemodynamics in the chronic stage of juvenile hydrocephalus was determined using single photon emission computed tomography (SPECT). Five patients including three with aqueductal stenosis, one with post-meningitic hydrocephalus, and one case with hydrocephalus having developed after repair of a huge occipital encephalocele. Early images of cerebral blood flow (CBF) were obtained 25 minutes after intravenous injection of 123-I-iodoamphetamine (IMP), and late images were scanned 3 hours later. Cerebral blood volume (CBV) was also measured using {sup 99m}Tc in three patients. Twenty cases with adult communicating hydrocephalus were also investigated from the point of view of shunt effectiveness. Although there was no remarkable change in the cerebrovascular bed in the juvenile cases, CBF of the remnant brain parenchyma was good irrespective of the degree of ventricular dilatation. There was a periventricular-related IMP uptake in each case; however, it somehow matched the ventricular span. Functional outcome one to 23 years after the initial shunt operation was good in every case, despite multiple shunt revisions. Redistribution on late images had no bearing on clinical states. In adult cases, 8 patients with effective shunting demonstrated a relatively localized periventricular low perfusion, with preoperative increased cerebrospinal fluid (CSF) pressure. On the contrary, 12 patients with no improvement with or without ventricular-reduced IMP uptake, despite low CSF pressure. The present study indicates that periventricular hemodynamics may play an important role in cerebral function compromised by hydrocephalus. (J.P.N.).

  14. Hemodynamic forces in a model left ventricle

    Science.gov (United States)

    Domenichini, Federico; Pedrizzetti, Gianni

    2016-12-01

    Intraventricular pressure gradients were clinically demonstrated to represent one useful indicator of the left ventricle (LV) function during the development of heart failure. We analyze the fluid dynamics inside a model LV to improve the understanding of the development of hemodynamic forces (i.e., mean pressure gradient) in normal conditions and their modification in the presence of alterations of LV tissue motion. To this aim, the problem is solved numerically and the global force exchanged between blood flow and LV boundaries is computed by volume integration. We also introduce a simplified analytical model, based on global conservation laws, to estimate hemodynamic forces from the knowledge of LV tissue information commonly available in cardiac imaging. Numerical results show that the normal intraventricular gradients feature a deep brief suction at early diastolic filling and a persistent thrust during systolic ejection. In presence of abnormalities of the wall motion, the loss of time synchrony is more relevant than the loss of spatial uniformity in modifying the normal pressure gradient spatiotemporal pattern. The main findings are reproduced in the integral model, which represents a possible easy approach for integrating fluid dynamics evaluations in the clinical examination.

  15. Effect of dexmedetomidine on hemodynamics and stress reaction in patients undergoing off-pump coronary artery bypass grafting%右美托咪定对非体外循环冠状动脉旁路移植术患者血流动力学及应激反应的影响

    Institute of Scientific and Technical Information of China (English)

    张子斌; 高成杰; 王瑞雯; 王惠霞; 徐鲁峰

    2015-01-01

    Objective To evaluate the effect of dexmedetomidine on hemodynamic and stress reaction in patients undergoing off-pump coronary artery bypass grafting (OPCABG).Methods Sixty patients,ASA Ⅱ or Ⅲ,aged 45 y-65 y,weighting 55 kg-86 kg,scheduled for OPCABG,were randomly assigned to two groups:the group dexmedetomidine (group D,n=30) and the group control (group C,n=30).Patients in group D received an initial bolus dose of dexmedetomidine (0.5 μg/kg) over 10 min before anesthesia induction followed by a continuous infusion of 0.5 μg ·kg-1 ·h-1 until the end of the operation.Group C received equal volume of normal saline.Hemodynamic parameters were recorded before injection (T0),after initial bolus dose infusion (T1),when tracheal intubation (T2),sternotomy (T3),at anastomosis of left anterior descending (T4),at anastomosis of right coronary artery or posterior descending artery (T5),at anastomosis of left circumflex cornary artery or diagonal artery (T6),at anastomosis of aortic (T7),at 10 min after reestablishment of coronary blood flow (T8),end of operation (T9) and after tracheal extubation (T10).The stability of circulation was evaluated and consumption of fentany in both groups was recorded.Concentrations of blood glucose,cortisol,norepinephrine and epinephrine were measured at T0,T3,T8-T10.Results There was significant difference between group D and group C in heart rate (HR) at T1-T10,mean arterial pressure (MAP) at T1-T3,T9,T10,mean pulmonary artery pressure (MPAP) at T1-T3,T9,T10,system vascular resistance index (SVRI) at T1-T10,pulmonary vascular resistance index (PVRI) at T1-T10,cardiac index (CI) at T7-T8,left ventricular stroke work index (LVSWI) and right ventricular stroke work index (RVSWI)at T7-T8 (P<0.05).The incidences of sinus tachycardia and hypertension in group D were significantly reduced than in group C (P<0.05).In both groups,glucose (Glu),cortisol (Cor),noradrenaline (NE) and epinephrine (E) increased significantly at T3,T8-T10 (P

  16. [Recovery growth of Microcystis aeruginosa after the sub-high temperature stress].

    Science.gov (United States)

    Li, Ting; Jing, Yuan-Shu; Han, Wei; Zhang, Xiao-Yi

    2014-11-01

    Recovery growth of Microcystis aeruginosa after sub-high temperature stress was investiga- ted in this paper. The treated groups under 35 °C were cultured for 3, 6, and 12 days before being transferred to normal conditions, and the algae under 25 °C all the time was set as the control. Cell density, chlorophyll a, carotenoid, malondialdehyde and antioxidant enzymes activities were measured. The results showed that the growth of M. aeruginosa was inhibited significantly under the sub-high temperature stress. The cell density and chlorophyll a content were 14.5% and 22.3% lower than the control respectively on the 12th day, but carotenoid synthesis was not inhibited obviously. The longer the stress was, the higher the malondialdehyde content and SOD, CAT activities became. After the relief of stress, algal cells got recovered with the decreasing malondialdehyde content and antioxidase activities. The 3-, 6- and 12-day stress treatments at 35 °C showed under-compensation, over-compensation and exact-compensation, respectively, indicating that the com- pensatory degree was decided by the time under stress. As the recovery time proceeded, the differ- ence between treated groups and the control reduced gradually. The growth parameters tended to be stable. Regression equations of cell density and chlorophyll a changing with the stress time and recovery time were revealed. The compensation effect of M. aeruginosa was similar to the process of algal bloom. According to this endogenous biological characteristic, this study provided a theoretical support for prediction system of algal bloom.

  17. Optimization of Residual Stress of High Temperature Treatment Using Genetic Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    M. Susmikanti

    2015-12-01

    Full Text Available In a nuclear industry area, high temperature treatment of materials is a factor which requires special attention. Assessment needs to be conducted on the properties of the materials used, including the strength of the materials. The measurement of material properties under thermal processes may reflect residual stresses. The use of Genetic Algorithm (GA to determine the optimal residual stress is one way to determine the strength of a material. In residual stress modeling with several parameters, it is sometimes difficult to solve for the optimal value through analytical or numerical calculations. Here, GA is an efficient algorithm which can generate the optimal values, both minima and maxima. The purposes of this research are to obtain the optimization of variable in residual stress models using GA and to predict the center of residual stress distribution, using fuzzy neural network (FNN while the artificial neural network (ANN used for modeling. In this work a single-material 316/316L stainless steel bar is modeled. The minimal residual stresses of the material at high temperatures were obtained with GA and analytical calculations. At a temperature of 6500C, the GA optimal residual stress estimation converged at –711.3689 MPa at adistance of 0.002934 mm from center point, whereas the analytical calculation result at that temperature and position is -975.556 MPa . At a temperature of 8500C, the GA result was -969.868 MPa at 0.002757 mm from the center point, while with analytical result was -1061.13 MPa. The difference in residual stress between GA and analytical results at a temperatureof6500C is about 27 %, while at 8500C it is 8.67 %. The distribution of residual stress showed a grouping concentrated around a coordinate of (-76; 76 MPa. The residuals stress model is a degree-two polynomial with coefficients of 50.33, -76.54, and -55.2, respectively, with a standard deviation of 7.874.

  18. Stress-strain characteristics of materials at high strain rates. Part II. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Ripperger, E. A. [Texas. Univ., Austin, TX (US). Structural Mechanics Research Lab.

    1958-08-29

    These two reports were issued separately, but are cataloged as a unit. A photoelectric method for measuring displacements during high-velocity impacts is described. The theory of the system is discussed in detail, and a prototype system which was built and tested is described. The performance of the prototype system is evaluated by comparing the results which it gives with results obtained by other methods of measurement. The system was found capable of a resolution of at least 0.01 inches. static and dynamic stress-strain characteristics of seven high polymers, polyethylene, teflon, nylon, tenite M, tenite H, polystyrene, and saran, plus three metals, lead, copper, and aluminum, are described and compared by means of stress-strain curves and photographs. Data are also presented which show qualitatively the effects produced on stress-strain characteristics by specimen configuration, temperature, and impact velocity. It is shown that there is a definite strain-rate effect for all these materials except polystyrene. The effect is one of an apparent stiffening of the material with increasing strain rate, which is similar to the effect produced by lowering the temperature. The stress-strain measurements are examined critically, inconsistencies are pointed out, and possible sources of error suggested. Values of yield stress, modulus of elasticity and energy absorption for all materials (except copper and aluminum), specimen configurations, temperatures, and impact velocities included in the investigation are tabulated.

  19. Are adolescents with high mental toughness levels more resilient against stress?

    Science.gov (United States)

    Gerber, Markus; Kalak, Nadeem; Lemola, Sakari; Clough, Peter J; Perry, John L; Pühse, Uwe; Elliot, Catherine; Holsboer-Trachsler, Edith; Brand, Serge

    2013-04-01

    Mental toughness has been explored predominantly within sport contexts. Nevertheless, it is difficult to conceive mental toughness as only applicable to athletes. This study examines whether mentally tough participants exhibit resilience against stress. This is a cross-sectional study based on two different samples: Sample 1 consisted of 284 high school students (99 males, 185 females, M = 18.3 years). Sample 2 consisted of 140 first through fifth semester undergraduate students (53 males, 87 females, M = 20.0 years). Participants provided information about their level of perceived stress (10-item Perceived Stress Scale), mental toughness (48-item Mental Toughness Questionnaire) and depressive symptoms (Beck Depression Inventory). Consistent across the two samples, mental toughness mitigated the relationship between high stress and depressive symptoms. The interaction between stress and mental toughness explained 2% of variance in the adolescent sample and 10% of variance among young adults. The promotion of protective factors that foster resilient adaptation is a relevant issue. Mental toughness may appeal to individuals that are typically difficult to be reached with health interventions. Because mental toughness is part of young people's daily speech, it may serve as a less academic resource than other health psychology concepts. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

    Directory of Open Access Journals (Sweden)

    A. Almubarak

    2013-01-01

    Full Text Available The purpose of this paper is to study the effect of high nitrogen content on corrosion behavior of austenitic stainless steels in seawater under severe conditions such as tensile stresses and existence of sensitization in the structure. A constant tensile stress has been applied to sensitized specimens types 304, 316L, 304LN, 304NH, and 316NH stainless steels. Microstructure investigation revealed various degrees of stress corrosion cracking. SCC was severe in type 304, moderate in types 316L and 304LN, and very slight in types 304NH and 316NH. The electrochemical polarization curves showed an obvious second current peak for the sensitized alloys which indicated the existence of second phase in the structure and the presence of intergranular stress corrosion cracking. EPR test provided a rapid and efficient nondestructive testing method for showing passivity, degree of sensitization and determining IGSCC for stainless steels in seawater. A significant conclusion was obtained that austenitic stainless steels of high nitrogen content corrode at a much slower rate increase pitting resistance and offer an excellent resistance to stress corrosion cracking in seawater.

  1. The Effect of Neuraxial Anesthesia on Maternal Cerebral Hemodynamics

    NARCIS (Netherlands)

    Postma, Ineke R.; van Veen, Teelkien R.; Mears, Scott L.; Zeeman, Gerda G.; Haeri, Sina; Belfort, Michael A.

    2014-01-01

    Objective Neuraxial anesthesia is known to reduce sympathetic tone and mean arterial pressure. Effects on cerebral hemodynamics in pregnancy are not well known. We hypothesize that cerebral hemodynamic parameters will change with respect to baseline following regional analgesia/anesthesia. Study

  2. Advanced Hemodynamic Management in Patients with Septic Shock

    Science.gov (United States)

    Huber, Wolfgang; Nierhaus, Axel; Kluge, Stefan; Reuter, Daniel A.; Wagner, Julia Y.

    2016-01-01

    In patients with sepsis and septic shock, the hemodynamic management in both early and later phases of these “organ dysfunction syndromes” is a key therapeutic component. It needs, however, to be differentiated between “early goal-directed therapy” (EGDT) as proposed for the first 6 hours of emergency department treatment by Rivers et al. in 2001 and “hemodynamic management” using advanced hemodynamic monitoring in the intensive care unit (ICU). Recent large trials demonstrated that nowadays protocolized EGDT does not seem to be superior to “usual care” in terms of a reduction in mortality in emergency department patients with early identified septic shock who promptly receive antibiotic therapy and fluid resuscitation. “Hemodynamic management” comprises (a) making the diagnosis of septic shock as one differential diagnosis of circulatory shock, (b) assessing the hemodynamic status including the identification of therapeutic conflicts, and (c) guiding therapeutic interventions. We propose two algorithms for hemodynamic management using transpulmonary thermodilution-derived variables aiming to optimize the cardiocirculatory and pulmonary status in adult ICU patients with septic shock. The complexity and heterogeneity of patients with septic shock implies that individualized approaches for hemodynamic management are mandatory. Defining individual hemodynamic target values for patients with septic shock in different phases of the disease must be the focus of future studies. PMID:27703980

  3. The Effect of Neuraxial Anesthesia on Maternal Cerebral Hemodynamics

    NARCIS (Netherlands)

    Postma, Ineke R.; van Veen, Teelkien R.; Mears, Scott L.; Zeeman, Gerda G.; Haeri, Sina; Belfort, Michael A.

    2014-01-01

    Objective Neuraxial anesthesia is known to reduce sympathetic tone and mean arterial pressure. Effects on cerebral hemodynamics in pregnancy are not well known. We hypothesize that cerebral hemodynamic parameters will change with respect to baseline following regional analgesia/anesthesia. Study Des

  4. Hemodynamic Disorders in Explosive Mine Injury: Experimental Study

    OpenAIRE

    V. N Yelsky; G. K. Krivobok; A. N. Talalayenko; A. A. Redko; A. Yu. Kryuk

    2005-01-01

    The authors have studied hemodynamic features in explosive mine injury in the presence or absence of a preliminary exposure to premorbid mining factors. A combined influence of premorbid mining factors following an explosive mine injury has been ascertained to induce more severe systemic and cerebral hemodynamic disorders than an isolated explosive mine injury.

  5. Non-invasive assessment of maternal hemodynamics in early pregnancy

    NARCIS (Netherlands)

    van der Graaf, Anne Marijn; Zeeman, Gerda G.; Groen, Henk; Roberts, Claire; Dekker, Gus A.

    2013-01-01

    Objectives: Non-invasive assessment of maternal hemodynamics in early pregnancy may be promising in evaluating maternal hemodynamic (mal)adaptation to pregnancy. We explored usage of applanation tonometry and Doppler ultrasound for assessment of cardiac output (CO), systemic vascular resistance (SVR

  6. Vascular development and hemodynamic force in the mouse yolk sac

    Directory of Open Access Journals (Sweden)

    Monica D Garcia

    2014-08-01

    Full Text Available Vascular remodeling of the mouse embryonic yolk sac is a highly dynamic process dependent on multiple genetic signaling pathways as well as biomechanical factors regulating proliferation, differentiation, migration, cell-cell and cell-matrix interactions. During this early developmental window, the initial primitive vascular network of the yolk sac undergoes a dynamic remodeling process concurrent with the onset of blood flow, in which endothelial cells establish a branched, hierarchical structure of large vessels and smaller capillary beds. In this review, we will describe the molecular and biomechanical regulators which guide vascular remodeling in the mouse embryonic yolk sac, as well as live imaging methods for characterizing endothelial cell and hemodynamic function in cultured embryos.

  7. Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation.

    Science.gov (United States)

    Williams, Andrew R; Koo, Bon-Kwon; Gundert, Timothy J; Fitzgerald, Peter J; LaDisa, John F

    2010-08-01

    Abnormal blood flow patterns promoting inflammation, cellular proliferation, and thrombosis may be established by local changes in vessel geometry after stent implantation in bifurcation lesions. Our objective was to quantify altered hemodynamics due to main vessel (MV) stenting and subsequent virtual side branch (SB) angioplasty in a coronary bifurcation by using computational fluid dynamics (CFD) analysis. CFD models were generated from representative vascular dimensions and intravascular ultrasound images. Time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and fractional flow reserve (FFR) were quantified. None of the luminal surface was exposed to low TAWSS (stenting introduced eccentric areas of low TAWSS along the lateral wall of the MV. Virtual SB angioplasty resulted in a more concentric region of low TAWSS in the MV distal to the carina and along the lateral wall of the SB. The luminal surface exposed to low TAWSS was similar before and after virtual SB angioplasty (rest: 43% vs. 41%; hyperemia: 18% vs. 21%) and primarily due to stent-induced flow alterations. Sites of elevated OSI (>0.1) were minimal but more impacted by general vessel geometry established after MV stenting. FFR measured at a jailed SB was within the normal range despite angiographic stenosis of 54%. These findings indicate that the most commonly used percutaneous interventional strategy for a bifurcation lesion causes abnormal local hemodynamic conditions. These results may partially explain the high clinical event rates in bifurcation lesions.

  8. Evaluation of hemodynamics changes during interventional stent placement using Doppler optical coherence tomography

    Science.gov (United States)

    Vuong, Barry; Genis, Helen; Wong, Ronnie; Ramjist, Joel; Jivraj, Jamil; Farooq, Hamza; Sun, Cuiru; Yang, Victor X. D.

    2015-03-01

    Carotid atherosclerosis is a critical medical concern that can lead to ischemic stroke. Local hemodynamic patterns have also been associated with the development of atherosclerosis, particularly in regions with disturbed flow patterns such as bifurcations. Traditionally, this disease was treated using carotid endarterectomy, however recently there is an increasing trend of carotid artery stenting due to its minimally invasive nature. It is well known that this interventional technique creates changes in vasculature geometry and hemodynamic patterns due to the interaction of stent struts with arterial lumen, and is associated with complications such as distal emboli and restenosis. Currently, there is no standard imaging technique to evaluate regional hemodynamic patterns found in stented vessels. Doppler optical coherence tomography (DOCT) provides an opportunity to identify in vivo hemodynamic changes in vasculature using high-resolution imaging. In this study, blood flow profiles were examined at the bifurcation junction in the internal carotid artery (ICA) in a porcine model following stent deployment. Doppler imaging was further conducted using pulsatile flow in a phantom model, and then compared to computational fluid dynamics (CFD) simulation of a virtual bifurcation to assist with the interpretation of emphin vivo results.

  9. Diffuse optical measurements of head and neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes

    Science.gov (United States)

    Dong, Lixin; Kudrimoti, Mahesh; Irwin, Daniel; Chen, Li; Kumar, Sameera; Shang, Yu; Huang, Chong; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2016-08-01

    This study used a hybrid near-infrared diffuse optical instrument to monitor tumor hemodynamic responses to chemoradiation therapy for early prediction of treatment outcomes in patients with head and neck cancer. Forty-seven patients were measured once per week to evaluate the hemodynamic status of clinically involved cervical lymph nodes as surrogates for the primary tumor response. Patients were classified into two groups: complete response (CR) (n=29) and incomplete response (IR) (n=18). Tumor hemodynamic responses were found to be associated with clinical outcomes (CR/IR), wherein the associations differed depending on human papillomavirus (HPV-16) status. In HPV-16 positive patients, significantly lower levels in tumor oxygenated hemoglobin concentration ([HbO2]) at weeks 1 to 3, total hemoglobin concentration at week 3, and blood oxygen saturation (StO2) at week 3 were found in the IR group. In HPV-16 negative patients, significantly higher levels in tumor blood flow index and reduced scattering coefficient (μs‧) at week 3 were observed in the IR group. These hemodynamic parameters exhibited significantly high accuracy for early prediction of clinical outcomes, within the first three weeks of therapy, with the areas under the receiver operating characteristic curves (AUCs) ranging from 0.83 to 0.96.

  10. The Efficacy of a Three-Week Stress Management Unit for High School Students.

    Science.gov (United States)

    Richardson, Glenn E.; And Others

    1983-01-01

    A study used psychometric information to determine the efficacy of a stress management unit in a high school health class. Students who took the unit showed improvement in knowledge, attitudes, and the ability to relax, as demonstrated on tests of heart rate and muscular tension. (PP)

  11. High glucose-induced oxidative stress increases transient receptor potential channel expression in human monocytes

    DEFF Research Database (Denmark)

    Wuensch, Tilo; Thilo, Florian; Krueger, Katharina;

    2010-01-01

    Transient receptor potential (TRP) channel-induced cation influx activates human monocytes, which play an important role in the pathogenesis of atherosclerosis. In the present study, we investigated the effects of high glucose-induced oxidative stress on TRP channel expression in human monocytes....

  12. Gender Role Discrepancy Stress, High-Risk Sexual Behavior, and Sexually Transmitted Disease.

    Science.gov (United States)

    Reidy, Dennis E; Brookmeyer, Kathryn A; Gentile, Brittany; Berke, Danielle S; Zeichner, Amos

    2016-02-01

    Nearly 20 million new sexually transmitted infections occur every year in the United States. Traditionally, men have demonstrated much greater risk for contraction of and mortality from STDs perhaps because they tend to engage in a number of risky sexual activities. Research on masculinity suggests that gender roles influence males' sexual health by encouraging risk-taking behavior, discouraging access to health services, and narrowly defining their roles as partners. However, despite the propensity of highly masculine men to engage in high-risk sexual behavior, there is reason to suspect that men at the other end of the continuum may still be driven to engage in similar high-risk behaviors as a consequence of gender socialization. Discrepancy stress is a form of gender role stress that occurs when men fail to live up to the ideal manhood derived from societal prescriptions (i.e., Gender Role Discrepancy). In the present study, we surveyed a national sample of 600 men via Amazon Mechanical Turk to assess perceived gender role discrepancy, experience of discrepancy stress, and the associations with risky sexual behavior and potential contraction of STDs. Results indicated that men who believe they are less masculine than the typical man (i.e., gender role discrepancy) and experience distress stemming from this discrepancy (i.e., discrepancy stress) engage in high-risk sexual behavior and are subsequently diagnosed with more STDs. Findings are discussed in relation to implications for primary prevention strategies.

  13. High-Stakes Testing and Its Relationship to Stress Levels of Secondary Teachers

    Science.gov (United States)

    Christian, Sonya Colman

    2010-01-01

    This study investigated the relationship between high-stakes testing and the stress levels of secondary teachers in Jackson's Jackson Public School District. The independent variables of age, gender, subject taught, teaching experience, degree and school level were used to determine the differences of the various groups. A survey was piloted and…

  14. Recognition of Facial Emotions among Maltreated Children with High Rates of Post-Traumatic Stress Disorder

    Science.gov (United States)

    Masten, Carrie L.; Guyer, Amanda E.; Hodgdon, Hilary B.; McClure, Erin B.; Charney, Dennis S.; Ernst, Monique; Kaufman, Joan; Pine, Daniel S.; Monk, Christopher S.

    2008-01-01

    Objective: The purpose of this study is to examine processing of facial emotions in a sample of maltreated children showing high rates of post-traumatic stress disorder (PTSD). Maltreatment during childhood has been associated independently with both atypical processing of emotion and the development of PTSD. However, research has provided little…

  15. Modeling of Stress Corrosion Cracking for High Level Radioactive-Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S C; Gordon, G M; Andresen, P L; Herrera, M L

    2003-06-20

    A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain radioactive-waste repository. SCC is one form of environmentally assisted cracking due to three factors, which must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is Alloy 22, a highly corrosion resistant alloy, the environment is represented by the water film present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the stress is principally the weld induced residual stress. SCC has historically been separated into ''initiation'' and ''propagation'' phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding). To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulas for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, the time to through-wall penetration for the waste package can be calculated. The SDFR model relates the advance (or propagation) of cracks, subsequent to the crack initiation from bare metal surface, to the metal oxidation transients that occur when the protective film at the crack tip is continually ruptured and repassivated. A crack, however, may reach the ''arrest'' state before it enters the ''propagation'' phase. There exists a threshold stress intensity factor, which provides a criterion for determining if an initiated crack or pre

  16. Fast Computation of Hemodynamic Sensitivity to Lumen Segmentation Uncertainty.

    Science.gov (United States)

    Sankaran, Sethuraman; Grady, Leo; Taylor, Charles A

    2015-12-01

    Patient-specific blood flow modeling combining imaging data and computational fluid dynamics can aid in the assessment of coronary artery disease. Accurate coronary segmentation and realistic physiologic modeling of boundary conditions are important steps to ensure a high diagnostic performance. Segmentation of the coronary arteries can be constructed by a combination of automated algorithms with human review and editing. However, blood pressure and flow are not impacted equally by different local sections of the coronary artery tree. Focusing human review and editing towards regions that will most affect the subsequent simulations can significantly accelerate the review process. We define geometric sensitivity as the standard deviation in hemodynamics-derived metrics due to uncertainty in lumen segmentation. We develop a machine learning framework for estimating the geometric sensitivity in real time. Features used include geometric and clinical variables, and reduced-order models. We develop an anisotropic kernel regression method for assessment of lumen narrowing score, which is used as a feature in the machine learning algorithm. A multi-resolution sensitivity algorithm is introduced to hierarchically refine regions of high sensitivity so that we can quantify sensitivities to a desired spatial resolution. We show that the mean absolute error of the machine learning algorithm compared to 3D simulations is less than 0.01. We further demonstrate that sensitivity is not predicted simply by anatomic reduction but also encodes information about hemodynamics which in turn depends on downstream boundary conditions. This sensitivity approach can be extended to other systems such as cerebral flow, electro-mechanical simulations, etc.

  17. The effect of complementary therapy for hospital nurses with high stress

    Directory of Open Access Journals (Sweden)

    Kazuko Onishi

    2016-01-01

    Full Text Available Objective: This study was to examine the effect of complementary therapy (CT for nurses with high stress levels. It was taken before we employ this technique for cancer survivors because cancer patients are a heterogeneous group that requires substantial resources to investigate. Methods: A quasi-experimental design with five groups was employed for this study. The groups were examined whether there were effects for reducing the stress and the differences in effectiveness among four intervention groups and a nonintervention group. Stress relief was measured using pulse rate and blood pressure measurements and the short form of the profile of mood states (POMS-SF. The participants practiced the therapy for 20 min twice per week for 3 weeks. A two-way factorial analysis of variance was used to analyze the data. Results: The study enrolled 98 nurses (92 female and 6 male with a mean age of 37.3 ± 10.5 years (range: 22–60 years. Fifty-nine nurses had 10 or more years of nursing experience. There were significant differences in pulse rate and the POMS-SF scores. All groups were effective for reducing the stress level of high-stress nurses, whereas four intervention CT groups were not more effective than nonintervention group. Conclusions: The complementary therapies were useful for nurses with high stress levels. Thus, they can be used as a self-management tool for such nurses. Afterward, we will use the CT for cancer survivors to determine whether it can improve the quality of life of cancer patients.

  18. Protective Roles of Brassinolide on Rice Seedlings under High Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    CAO Yun-ying; ZHAO Hua

    2008-01-01

    Two indica rice(Oryza sativa L.)materials,Xieqingzao B(sensitive to heat stress)and 082(tolerant to heat stress),were used to study the role of brassinolide(BR)in protection of rice seedlings from heat stress.Young seedlings were subjected to high temperature(38℃/30℃)and sprayed with 0.005 mg/L of BR.Analysis was conducted on the contents of chlorophyll,protein and malondialdehyde(MDA),the leakage of electrolyte,the activities of peroxidase(POD)and superoxide dismutase(SOD)and their isozymes expression levels in leaves.Under the high temperature treatment,application of BR significantly increased the contents of chlorophyll and protein,and the activities of POD and SOD,and reduced the content of MDA and the leakage of electrolyte in the leaves of the heat-sensitive material Xieqingzao B,whereas BR had less effect on those of the heal-tolerant material 082 relatively.The BR treatment enhanced the expression of POD isozymes in the Ieaves of both materials.Under the high temperature stress and BR treatment.the expression of four SOD isozymes reduced in 082,but the expression of two SOD isozymes increased in Xieqingzao B.This suggests that BR plays an important role in protection of rice seedlings from heat stress by enhancing the activities or expression level of protective enzymes in the leaves.The materials with various heat-tolerance might differ in the mechanism of response to heat stress with BR application.

  19. Disorders of cardiac hemodynamic in attack period of bronchial asthma in children

    Directory of Open Access Journals (Sweden)

    Kondratiev V.А.

    2016-05-01

    Full Text Available By dopplerechocardiography method there was studied functional state of cardiac ventricles and character of hemodynamic disorders in 48 patients aged 5-17 years in attack period of moderately-severe and severe bronchial asthma. Group of comparison included 40 healthy peers. Disorders of central and peripheral hemodynamic in attack period of bronchial asthma in children were accompanied both by systolic and diastolic dysfunction of the left and right heart ventricles, herewith right ventricle was functioning in the mode of hyperdynamic, and left one – in the mode of hypodynamic. Combined systolic-diastolic variant of dysfunction both of right and left ventricles was developing in 58,3% of patients with moderately-severe and in 91,6% of patients with severe bronchial asthma. In the attack period of bronchial asthma in children equal directionality of systolic and diastolic dysfunction of heart ventricles was developing; this was characterized by synchronization of their function. Assessment of functional interaction of the ventricles under conditions of severe asthma attack showed direct and high (r=0,67 correlative interaction between finding of Tei index of the left and right ventricles, which characterize their systolic function; this, under conditions of increased hemodynamic pre-loading testified to compensatory increase of systolic interaction of ventricles. Direct and high (r=0,69 correlative interaction between time indices of isovolumic relaxation of the left and right ventricles, characterizing their diastolic function, testified to compensatory increase of diastolic interaction of ventricles under conditions of increase of hemodynamic post-loading. Imbalance of central and peripheral link of hemodynamic in attack period of bronchial asthma in children testified to development of cardiac insufficiency, which was compensated predominantly at the expense of increase of heart contractions rate.

  20. Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji; Yoon, Kun-Ho; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho, E-mail: kihos@catholic.ac.kr

    2013-09-20

    Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated and cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.

  1. Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability

    OpenAIRE

    2016-01-01

    Sounds can induce autonomic responses in listeners. However, the modulatory effect of specific frequency components of music is not fully understood. Here, we examined the role of the frequency component of music on autonomic responses. Specifically, we presented music that had been amplified in the high- or low-frequency domains. Twelve healthy women listened to white noise, a stress-inducing noise, and then one of three versions of a piece of music: original, low-, or high-frequency amplifi...

  2. A Comparative Study of the Academic Stress and Depression among High School Girl and Boy Students

    Science.gov (United States)

    Khanehkeshi, Ali; Basavarajappa

    2012-01-01

    This paper compares the difference between boy and girl high school students of 1st grade to 3rd grade in academic stress and depression. Using a random stratified sampling 120 girl and boy students (60 girls and 60 boys) were selected from 1st grade (n = 40), 2nd grade (n = 40) and 3rd grade (n = 40) high school students. In this study gender and…

  3. Analysis of stress and natural frequencies of high-speed spatial parallel mechanism

    Institute of Scientific and Technical Information of China (English)

    陈修龙; 李文彬; 邓昱; 李云峰

    2013-01-01

    In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dynamics theory, the dynamics model of 4-UPS-UPU high-speed spatial parallel mechanism without considering geometric nonlinearity was derived. The stress of driving limbs and natural frequencies of 4-UPS-UPU parallel mechanism with specific parameters were analyzed. The relationship between the basic parameters of parallel mechanism and its dynamic behaviors, such as stress of driving limbs and natural frequencies of parallel mechanism, were discussed. The numerical simulation results show that the stress and natural frequencies are relatively sensitive to the section parameters of driving limbs, the characteristic parameters of material on driving limbs, and the mass of moving platform. The researches can provide important theoretical base of the analysis of dynamic behaviors and optimal design for high-speed spatial parallel mechanism.

  4. Estimation of the Axial Stress in High-Tension Bolt by Acoustoelastic Method

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Hae Hwa; Lee, Tae Hoon; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of); Kim, Noh Yu [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2006-10-15

    The evaluation of clamping condition has been regarded as the main issue in the safety-maintenance of the clamped high-tension bolts. For this, this paper proposes a method to estimate the axial stress by measuring the Tofu (Time-Of-Flight) of ultrasonic wave, which is based on the acetylsalicylate or the dependency of sound speed on the stress. In this method, however, the variation of sound speed within the range of stress induced under the field condition is very small, and thus the accuracy of the Tofu measurement is important. We adopted the phase detection method using tone-burst ultrasonic wave to measure the precise Tofu. In order to verify the usefulness of the proposed method experiments are carried out and the results were compared with the stress measured by the strain gage. The results show good agreement with each other, and from these we can conclude that the proposed method is highly useful fnr the evaluation of clamping condition in the clamped high-tension bolts

  5. Residual stress in hydroxyapatite coating: nonlinear analysis and high-energy synchrotron measurements.

    Science.gov (United States)

    Fogarassy, Paul; Cofino, Bruno; Millet, Pierre; Lodini, Alain

    2005-07-01

    The thermal deposition of hydroxyapatite (HA) on titanium alloy substrate (Ti-6A1-4V) leads to a structure that has very good osseointegration properties. However, clinical failures have been occasionally reported at the interface between substrate and coating. Lifetime is the main parameter in such prostheses; therefore, in order to improve their quality, it is necessary to evaluate the level of stresses near the interface. The high-energy synchrotron radiation combines the advantages of a bulk analysis and reduced volume of the gauge. The objective of our study was to calculate the residual stress using a nonlinear finite-element model and to measure residual stress level near the interface, in the hydroxyapatite coating and in titanium alloy substrate with a nondestructive and high-resolution experiment. The high-energy synchrotron radiation of the BM16 beam-line at ESRF (Grenoble-France) was used with a resolution of down to 10 micrometers. The experimental measurements validate the results found by means of nonlinear finite-element analysis of the plasma spraying induced stress.

  6. Scaling of stress drop and high-frequency fall-off of source spectra

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    It has been observed for a long time that the high-frequency fall-off constant of source spectra is about 2 for "large" earthquakes and about 3 for "small" earthquakes. For earthquakes between "large" and "small", the highfrequency fall-off constant is not an integer and varies with the size of the earthquake. In this article such a variation is explained in the perspective of the scaling of stress drop, which proposes a new approach to the study of the scaling of stress drop using seismic data with lower quality of completeness and high-frequency characteristics. The study on the source spectra of the aftershocks of the 1988 Lancang-Gengma, Yunnan, China earthquake shows that the high-frequency fall-off of source spectra and its variation with the size of earthquake can be well explained by the model that for "large" earthquakes the stress drop is a constant while for "small" earthquakes the stress drop increases with the size of the earthquake.

  7. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming.

    Science.gov (United States)

    Hastings, Nicole E; Simmers, Michael B; McDonald, Oliver G; Wamhoff, Brian R; Blackman, Brett R

    2007-12-01

    Atherosclerosis is an inflammatory disease that preferentially forms at hemodynamically compromised regions of altered shear stress patterns. Endothelial cells (EC) and smooth muscle cells (SMC) undergo phenotypic modulation during atherosclerosis. An in vitro coculture model was developed to determine the role of hemodynamic regulation of EC and SMC phenotypes in coculture. Human ECs and SMCs were plated on a synthetic elastic lamina and human-derived atheroprone, and atheroprotective shear stresses were imposed on ECs. Atheroprone flow decreased genes associated with differentiated ECs (endothelial nitric oxide synthase, Tie2, and Kruppel-like factor 2) and SMCs (smooth muscle alpha-actin and myocardin) and induced a proinflammatory phenotype in ECs and SMCs (VCAM-1, IL-8, and monocyte chemoattractant protein-1). Atheroprone flow-induced changes in SMC differentiation markers were regulated at the chromatin level, as indicated by decreased serum response factor (SRF) binding to the smooth muscle alpha-actin-CC(a/T)(6)GG (CArG) promoter region and decreased histone H(4) acetylation. Conversely, SRF and histone H(4) acetylation were enriched at the c-fos promoter in SMCs. In the presence of atheroprotective shear stresses, ECs aligned with the direction of flow and SMCs aligned more perpendicular to flow, similar to in vivo vessel organization. These results provide a novel mechanism whereby modulation of the EC phenotype by hemodynamic shear stresses, atheroprone or atheroprotective, play a critical role in mechanical-transcriptional coupling and regulation of the SMC phenotype.

  8. A 12-week resistance training program elicits positive changes in hemodynamic responses in the elderly

    Directory of Open Access Journals (Sweden)

    Cinthya Campos Salazar

    2009-03-01

    Full Text Available The aim of the study was to determine the effect of a resistance training program in hemodynamic responses and adaptations in 60 yr. old elderly. Volunteers were 60 healthy-elderly who underwent a training program 3 times/wk. for 12 wk. Participants were randomly assigned to either a control group, an exercise group who trained at 30% intensity of 5 maximal repetitions (5RM (30% of 5RM or an exercise group at an intensity of 70% (70% of 5RM. Hemodynamic variables measured were mean arterial pressure (MAP, calculated before and immediately after the training session, and rate pressure product (RPP, estimated once a month and before and after finishing the program. Results indicated that resistance exercise training at 30% and 70% of 5RM, with a total exercise work of 872.7 and 890.9 kg did not elicited cardiovascular risks for the elderly. A 12-wk resistance exercise training reduced the cardiovascular strain as shown by the RPP (~16% and the MAP (~9%, with no adverse effects throughout the program. Unfortunately, all the hemodynamic benefits were reverted 6 days following completion of the program. In conclusion, a healthy elderly population must perform resistance training exercises to significantly reduce the cardiovascular stress. We suggest to conduct further research that looks into different exercise intensities in longer program duration and to determine the mechanisms responsible for the deleterious effects of the detraining by using physiological, biochemical and biomechanical variables.

  9. Simulation of Stress-Strain behavior for one-dimensional aluminum samples subjected to high temperature

    DEFF Research Database (Denmark)

    Bellini, Anna; Thorborg, Jesper; Hattel, Jesper

    2004-01-01

    In order to satisfy the growing need in high quality aluminum cast parts of the automobile industries, in the last decades the foundries have been showing an increasing interest in the implementation of numerical simulations as part of their process design. As a consequence, it is possible to find...... the residual stresses are negligible. Nevertheless, in order to account for eventually "forgotten" thermal stresses, the automobile parts are usually over-designed. It is the objective of this work, that is part of the IDEAL (Integrated Development Routes for Optimized Cast Aluminium Components) project......, financed by the EU in frame work 6 and born in collaboration with the automobile and foundry industries, to fill the mentioned gap. Through a systematic analysis of experimental tests, this study aims to develop a powerful predicting tool capable of capturing stress relaxation effects through an adequate...

  10. High intensity and reduced volume training attenuates stress and recovery levels in elite swimmers

    DEFF Research Database (Denmark)

    Elbe, Anne-Marie; Rasmussen, Camilla P; Nielsen, Glen

    2016-01-01

    for baseline values. No significant effects could be observed in sports-specific stress or sports-specific recovery. The results indicate that increasing training intensity and reducing training volume for 12 weeks can reduce general stress and increase general recovery levels in competitive swimmers.......This study investigated the effect of increased high-intensity interval training (HIT) at the expense of total training volume on the stress and recovery levels of elite swimmers. Forty-one elite swimmers participated in the study and were randomly assigned to either a HIT or a control group (CON......). Eleven swimmers did not complete the questionnaires. For 12 weeks both groups trained ~12 h per week. The amount of HIT was ~5 h vs. 1 h, and total distance was ~17 km vs. ~35 km per week for HIT and CON, respectively. HIT was performed as 6-10 × 10-30 s maximal effort interspersed by 2-4 min of rest...

  11. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review

    Directory of Open Access Journals (Sweden)

    Erdi Sozen

    2017-08-01

    Full Text Available Endoplasmic reticulum (ER is the major site of protein folding and calcium storage. Beside the role of ER in protein homeostasis, it controls the cholesterol production and lipid-membrane biosynthesis as well as surviving and cell death signaling mechanisms in the cell. It is well-documented that elevated plasma cholesterol induces adverse effects in cardiovascular diseases (CVDs, liver disorders, such as non-alcoholic fatty liver disease (NAFLD, non-alcoholic steatosis hepatitis (NASH, and metabolic diseases which are associated with oxidative and ER stress. Recent animal model and human studies have showed high cholesterol and ER stress as an emerging factors involved in the development of many metabolic diseases. In this review, we will summarize the crucial effects of hypercholesterolemia and ER stress response in the pathogenesis of CVDs, NAFLD/NASH, diabetes and obesity which are major health problems in western countries.

  12. Periodical zonal character of damage near the openings in highly-stressed rock mass conditions

    Directory of Open Access Journals (Sweden)

    Vladimir V. Makarov

    2016-04-01

    Full Text Available Rock mass damage at great depths near underground openings is often of a zonal character. However, the classical elastoplastic theory fails to explain sufficiently all properties of zonal failure structures. A new non-Euclidean mathematical model for highly-stressed rock mass was developed based on the principles of mechanics of defected material and non-equilibrium thermodynamics. Methods were developed to determine model parameters that provide satisfactory correspondence between the experimental findings concerning faulted zonal structures near openings at great depths and mathematical calculations. The mechanism of this phenomenon was discovered which consisted in a periodical character of stresses in the surrounding rock mass and development of tensile macrocracks at zones of maximal tangential stresses. Main relationships between the cracking zone width and rock mass strength were established.

  13. Mining data from hemodynamic simulations via Bayesian emulation

    Directory of Open Access Journals (Sweden)

    Nair Prasanth B

    2007-12-01

    Full Text Available Abstract Background: Arterial geometry variability is inevitable both within and across individuals. To ensure realistic prediction of cardiovascular flows, there is a need for efficient numerical methods that can systematically account for geometric uncertainty. Methods and results: A statistical framework based on Bayesian Gaussian process modeling was proposed for mining data generated from computer simulations. The proposed approach was applied to analyze the influence of geometric parameters on hemodynamics in the human carotid artery bifurcation. A parametric model in conjunction with a design of computer experiments strategy was used for generating a set of observational data that contains the maximum wall shear stress values for a range of probable arterial geometries. The dataset was mined via a Bayesian Gaussian process emulator to estimate: (a the influence of key parameters on the output via sensitivity analysis, (b uncertainty in output as a function of uncertainty in input, and (c which settings of the input parameters result in maximum and minimum values of the output. Finally, potential diagnostic indicators were proposed that can be used to aid the assessment of stroke risk for a given patient's geometry.

  14. Dietary melatonin alters uterine artery hemodynamics in pregnant Holstein heifers.

    Science.gov (United States)

    Brockus, K E; Hart, C G; Gilfeather, C L; Fleming, B O; Lemley, C O

    2016-04-01

    The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor-mediated responses in steroid metabolism were examined using a bovine endometrial epithelial culture system. Twenty singleton pregnant Holstein heifers were supplemented with 20 mg of melatonin (n = 10) or no melatonin supplementation (control; n = 10) from days 190 to 262 of gestation. Maternal measurements were recorded on days 180 (baseline), 210, 240, and 262 of gestation. Total uterine blood flow was increased by 25% in the MEL-treated heifers compared with the CON. Concentrations of progesterone were decreased in MEL vs CON heifers. Total serum antioxidant capacity was increased by 43% in MEL-treated heifers when compared with CON. Activity of cytochrome P450 1A, 2C, and superoxide dismutase was increased in bovine endometrial epithelial cells treated with melatonin, whereas the melatonin receptor antagonist, luzindole, negated the increase in cytochrome P450 2C activity. Moreover, estradiol or progesterone treatment altered bovine uterine melatonin receptor expression, which could potentiate the melatonin-mediated responses during late gestation. The observed increase in total uterine blood flow during melatonin supplementation could be related to its antioxidant properties. Compromised pregnancies are typically accompanied by increased oxidative stress; therefore, melatonin could serve as a therapeutic supplementation strategy. This could lead to further fetal programming implications in conjunction with offspring growth and development postnatally.

  15. Approximating hemodynamics of cerebral aneurysms with steady flow simulations.

    Science.gov (United States)

    Geers, A J; Larrabide, I; Morales, H G; Frangi, A F

    2014-01-03

    Computational fluid dynamics (CFD) simulations can be employed to gain a better understanding of hemodynamics in cerebral aneurysms and improve diagnosis and treatment. However, introduction of CFD techniques into clinical practice would require faster simulation times. The aim of this study was to evaluate the use of computationally inexpensive steady flow simulations to approximate the aneurysm's wall shear stress (WSS) field. Two experiments were conducted. Experiment 1 compared for two cases the time-averaged (TA), peak systole (PS) and end diastole (ED) WSS field between steady and pulsatile flow simulations. The flow rate waveform imposed at the inlet was varied to account for variations in heart rate, pulsatility index, and TA flow rate. Consistently across all flow rate waveforms, steady flow simulations accurately approximated the TA, but not the PS and ED, WSS field. Following up on experiment 1, experiment 2 tested the result for the TA WSS field in a larger population of 20 cases covering a wide range of aneurysm volumes and shapes. Steady flow simulations approximated the space-averaged WSS with a mean error of 4.3%. WSS fields were locally compared by calculating the absolute error per node of the surface mesh. The coefficient of variation of the root-mean-square error over these nodes was on average 7.1%. In conclusion, steady flow simulations can accurately approximate the TA WSS field of an aneurysm. The fast computation time of 6 min per simulation (on 64 processors) could help facilitate the introduction of CFD into clinical practice.

  16. Numerical predictions of hemodynamics following surgeries in cerebral aneurysms

    Science.gov (United States)

    Rayz, Vitaliy; Lawton, Michael; Boussel, Loic; Leach, Joseph; Acevedo, Gabriel; Halbach, Van; Saloner, David

    2014-11-01

    Large cerebral aneurysms present a danger of rupture or brain compression. In some cases, clinicians may attempt to change the pathological hemodynamics in order to inhibit disease progression. This can be achieved by changing the vascular geometry with an open surgery or by deploying a stent-like flow diverter device. Patient-specific CFD models can help evaluate treatment options by predicting flow regions that are likely to become occupied by thrombus (clot) following the procedure. In this study, alternative flow scenarios were modeled for several patients who underwent surgical treatment. Patient-specific geometries and flow boundary conditions were obtained from magnetic resonance angiography and velocimetry data. The Navier-Stokes equations were solved with a finite volume solver Fluent. A porous media approach was used to model flow-diverter devices. The advection-diffusion equation was solved in order to simulate contrast agent transport and the results were used to evaluate flow residence time changes. Thrombus layering was predicted in regions characterized by reduced velocities and shear stresses as well as increased flow residence time. The simulations indicated surgical options that could result in occlusion of vital arteries with thrombus. Numerical results were compared to experimental and clinical MRI data. The results demonstrate that image-based CFD models may help improve the outcome of surgeries in cerebral aneurysms. acknowledge R01HL115267.

  17. Temporal and voltage stress stability of high performance indium-zinc-oxide thin film transistors

    Science.gov (United States)

    Song, Yang; Katsman, Alexander; Butcher, Amy L.; Paine, David C.; Zaslavsky, Alexander

    2017-10-01

    Thin film transistors (TFTs) based on transparent oxide semiconductors, such as indium zinc oxide (IZO), are of interest due to their improved characteristics compared to traditional a-Si TFTs. Previously, we reported on top-gated IZO TFTs with an in-situ formed HfO2 gate insulator and IZO active channel, showing high performance: on/off ratio of ∼107, threshold voltage VT near zero, extracted low-field mobility μ0 = 95 cm2/V·s, and near-perfect subthreshold slope at 62 mV/decade. Since device stability is essential for technological applications, in this paper we report on the temporal and voltage stress stability of IZO TFTs. Our devices exhibit a small negative VT shift as they age, consistent with an increasing carrier density resulting from an increasing oxygen vacancy concentration in the channel. Under gate bias stress, freshly annealed TFTs show a negative VT shift during negative VG gate bias stress, while aged (>1 week) TFTs show a positive VT shift during negative VG stress. This indicates two competing mechanisms, which we identify as the field-enhanced generation of oxygen vacancies and the field-assisted migration of oxygen vacancies, respectively. A simplified kinetic model of the vacancy concentration evolution in the IZO channel under electrical stress is provided.

  18. Overcoring in highly stressed granite: Comparison of USBM and modified CSIR devices

    Science.gov (United States)

    Martin, C. D.; Christiansson, R. C.

    1991-10-01

    An overcoring program in three nearly orthogonal boreholes, intersecting the same rock volume, was carried out in highly stressed Lac du Bonnet granite at the 240-m level of the Underground Research Laboratory (URL). The program was designed to determine if the more commonly used United States Bureau of Mines borehole deformation gauge (USBM gauge) gave similar in situ stress results as a modified Council of Scientific and Industrial Research (CSIR) triaxial strain cell. A total of 15 successful USBM tests and 17 successful CSIR tests were carried out. The measured mean stress tensor for the USBM results fell within the 90% confidence limits for the CSIR results. The measured CSIR stress tensors were slightly influenced by the orientation of the boreholes, although this phenomenon may be site specific as it is probably related to the amount of stress-induced microcracking that occurs during the overcoring process. The results of the program provided sufficient confidence in the modified CSIR cell to warrant using it as the main overcoring device for future URL overcoring programs.

  19. The implicit affiliation motive moderates cortisol responses to acute psychosocial stress in high school students.

    Science.gov (United States)

    Wegner, Mirko; Schüler, Julia; Budde, Henning

    2014-10-01

    It has been previously shown that the implicit affiliation motive - the need to establish and maintain friendly relationships with others - leads to chronic health benefits. The underlying assumption for the present research was that the implicit affiliation motive also moderates the salivary cortisol response to acute psychological stress when some aspects of social evaluation and uncontrollability are involved. By contrast we did not expect similar effects in response to exercise as a physical stressor. Fifty-nine high school students aged M=14.8 years were randomly assigned to a psychosocial stress (publishing the results of an intelligence test performed), a physical stress (exercise intensity of 65-75% of HRmax), and a control condition (normal school lesson) each lasting 15min. Participants' affiliation motives were assessed using the Operant Motive Test and salivary cortisol samples were taken pre and post stressor. We found that the strength of the affiliation motive negatively predicted cortisol reactions to acute psychosocial but not to physical stress when compared to a control group. The results suggest that the affiliation motive buffers the effect of acute psychosocial stress on the HPA axis.

  20. Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The stress corrosion cracking resistance was studied for high strength alloy steels 4130, 4340, for H-11 at selected strength levels, and for D6AC and HY140 at a single strength. Round tensile and C-ring type specimens were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, salt spray, the atmosphere at Marshall Space Flight Center, and the seacoast at Kennedy Space Center. Under the test conditions, 4130 and 4340 steels heat treated to a tensile strength of 1240 MPa (180 ksi), H-11 and D6AC heat treated to a tensile strength of 1450 MPa (210 ksi), and HY140 (1020 MPa, 148 ksi) are resistant to stress corrosion cracking because failures were not encountered at stress levels up to 75 percent of their yield strengths. A maximum exposure period of one month for alternate immersion in salt water or salt spray and three months for seacoast is indicated for alloy steel to avoid false indications of stress corrosion cracking because of failure resulting from severe pitting.

  1. Effect of stress and temperature on the micromechanics of creep in highly irradiated bone and dentin

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, Anjali, E-mail: anjalisinghal2007@u.northwestern.edu [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Deymier-Black, Alix C., E-mail: alixdeymier2010@u.northwestern.edu [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States); Almer, Jonathan D., E-mail: almer@aps.anl.gov [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Dunand, David C., E-mail: dunand@northwestern.edu [Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 (United States)

    2013-04-01

    Synchrotron X-ray diffraction is used to study in situ the evolution of phase strains during compressive creep deformation in bovine bone and dentin for a range of compressive stresses and irradiation rates, at ambient and body temperatures. In all cases, compressive strains in the collagen phase increase with increasing creep time (and concomitant irradiation), reflecting macroscopic deformation of the sample. By contrast, compressive elastic strains in the hydroxyapatite (HAP) phase, created upon initial application of compressive load on the sample, decrease with increasing time (and irradiation) for all conditions; this load shedding behavior is consistent with damage at the HAP–collagen interface due to the high irradiation doses (from ∼ 100 to ∼ 9,000 kGy). Both the HAP and fibril strain rates increase with applied compressive stress, temperature and irradiation rate, which is indicative of greater collagen molecular sliding at the HAP–collagen interface and greater intermolecular sliding (i.e., plastic deformation) within the collagen network. The temperature sensitivity confirms that testing at body temperature, rather than ambient temperature, is necessary to assess the in vivo behavior of bone and teeth. The characteristic pattern of HAP strain evolution with time differs quantitatively between bone and dentin, and may reflect their different structural organization. Highlights: ► First systematic study of varying creep stresses on bone and dentin at nanoscale. ► HAP in highly irradiated bone and dentin sheds load during creep at all stresses. ► This suggests HAP–collagen interfacial damage due to irradiation and applied stress. ► HAP and fibril strain rates increase with stress, temperature and irradiation. ► Temporal evolution of strains different in bone and dentin.

  2. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Ravindranadh BOBBILI; B. RAMAKRISHNA; V. MADHU; A.K. GOGIA

    2015-01-01

    An artificial neural network (ANN) constitutive model and JohnsoneCook (JeC) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tem-peratures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures (25?e300 ?C), strains (0.05e0.3) and strain rates (1500e4500 s?1) were employed to formulate JeC model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.

  3. Static and dynamic stress analyses of the prototype high head Francis runner based on site measurement

    Science.gov (United States)

    Huang, X.; Oram, C.; Sick, M.

    2014-03-01

    More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.

  4. Reynolds shear stress for textile prosthetic heart valves in relation to fabric design.

    Science.gov (United States)

    Bark, David L; Yousefi, Atieh; Forleo, Marcio; Vaesken, Antoine; Heim, Frederic; Dasi, Lakshmi P

    2016-07-01

    The most widely implanted prosthetic heart valves are either mechanical or bioprosthetic. While the former suffers from thrombotic risks, the latter suffers from a lack of durability. Textile valves, alternatively, can be designed with durability and to exhibit hemodynamics similar to the native valve, lowering the risk for thrombosis. Deviations from native valve hemodynamics can result in an increased Reynolds Shear Stress (RSS), which has the potential to instigate hemolysis or shear-induced thrombosis. This study is aimed at characterizing flow in multiple textile valve designs with an aim of developing a low profile valve. Valves were created using a shaping process based on heating a textile membrane and placed within a left heart simulator. Turbulence and bulk hemodynamics were assessed through particle imaging velocimetry, along with flow and pressure measurements. Overall, RSS was reduced for low profile valves relative to high profile valves, but was otherwise similar among low profile valves involving different fabric designs. However, leakage was found in 3 of the 4 low profile valve designs driving the fabric design for low profile valves. Through textile design, low profile valves can be created with favorable hemodynamics.

  5. Central and peripheral hemodynamics in exercising humans

    DEFF Research Database (Denmark)

    Calbet, J A L; González-Alonso, J; Helge, J W

    2015-01-01

    In humans, arm exercise is known to elicit larger increases in arterial blood pressure (BP) than leg exercise. However, the precise regulation of regional vascular conductances (VC) for the distribution of cardiac output with exercise intensity remains unknown. Hemodynamic responses were assessed...... during incremental upright arm cranking (AC) and leg pedalling (LP) to exhaustion (Wmax ) in nine males. Systemic VC, peak cardiac output (Qpeak ) (indocyanine green) and stroke volume (SV) were 18%, 23%, and 20% lower during AC than LP. The mean BP, the rate-pressure product and the associated...... perfusion pressure to increase O2 delivery, allowing a similar peak VO2 per kg of muscle mass in both extremities. In summary, despite a lower Qpeak during arm cranking the cardiovascular strain is much higher than during leg pedalling. The adjustments of regional conductances during incremental exercise...

  6. [Myocardial contractility and hemodynamics in hypothyroidism].

    Science.gov (United States)

    Selivonenko, V G

    1977-01-01

    The author determined the phasic structure of the systole of the left ventricle by the method of polycardiography and hemodynamics in 20 patients suffering from hypothyrodism. Blood plasma and erythrocyte electrolytes were examined at the same time. Patients with hypothyroidism displayed a phasic syndrome of hypodynamia and a marked correlation between the phase of the synchronous contraction, the period of ejection, the strength of contraction of the left ventricle and the electrolyte content. Sodium and magnesium produced the greatest influence on the phasic structure of the systole; potassium and calcium had a lesser effect. The heart stroke volume diminished; as to the cardiac index, expenditure of the energy of cardiac contractions directed to the maintenance of movement of 1 litre of the minute blood volume; the external work, and the peripheral vascular resistance displayed no significant change.

  7. Red wine, arterial stiffness and central hemodynamics.

    Science.gov (United States)

    Karatzi, Kalliopi; Papaioannou, Theodore G; Papamichael, Christos; Lekakis, John; Stefanadis, Christodoulos; Zampelas, Antonis

    2009-01-01

    Red wine is considered to reduce cardiovascular risk and decrease peripheral systolic and diastolic blood pressure. Central aortic pressures are often more sensitive clinical and prognostic factors than peripheral pressures, while arterial stiffness is an independent prognostic factor for cardiovascular events. Great efforts are being made to find natural sources of improving health. In order to clarify the mechanisms under which a widely used drink, like red wine, is affecting heart and vessels, we aimed to review the available data regarding the effects of red wine on arterial stiffness, wave reflections and central blood pressures. The effect of red wine on central hemodynamics has been poorly explored with divergent results. Possible consequences of acute and long-term intake on arterial stiffness, wave reflections and central pressures are not clear. This might make someone skeptical when suggesting the consumption of a glass of red wine, although its cardioprotective actions (when moderately consumed) are already shown from epidemiological studies.

  8. 10.1.Heart function and hemodynamics

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930252 Pathophysiological effects oftranscoronary chemical ablation in dogs.QI Xi-angqian (齐向前),et al.Cardiovasc Instit &Fuwai Hosp,CAMS,Beijing.Chin Cir J 1992;7(6):567—569.This study was designed to evaluate thepathophysiologic changes induced by intracoro-nary ethanol (ICE) in normal dogs.CK—MBactivity,ECG,hemodynamics,myocardialnecrosis size and histologic changes resultingfrom ICE were observed.In anesthetized dogs,0.4~0.6 ml (group A,n=9) and 1.0~1.2 ml(group B,n=9) of 95% ethanol were injectedinto the diagonal branch of the lelt anterior de-

  9. Live imaging and modeling for shear stress quantification in the embryonic zebrafish heart.

    Science.gov (United States)

    Boselli, Francesco; Vermot, Julien

    2016-02-01

    Hemodynamic shear stress is sensed by the endocardial cells composing the inner cell layer of the heart, and plays a major role in cardiac morphogenesis. Yet, the underlying hemodynamics and the associated mechanical stimuli experienced by endocardial cells remains poorly understood. Progress in the field has been hampered by the need for high temporal resolution imaging allowing the flow profiles generated in the beating heart to be resolved. To fill this gap, we propose a method to analyze the wall dynamics, the flow field, and the wall shear stress of the developing zebrafish heart. This method combines live confocal imaging and computational fluid dynamics to overcome difficulties related to live imaging of blood flow in the developing heart. To provide an example of the applicability of the method, we discuss the hemodynamic frequency content sensed by endocardial cells at the onset of valve formation, and how the fundamental frequency of the wall shear stress represents a unique mechanical cue to endocardial, heart-valve precursors.

  10. Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition

    Science.gov (United States)

    Midgett, Madeline; López, Claudia S.; David, Larry; Maloyan, Alina; Rugonyi, Sandra

    2017-01-01

    Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease. However, the progressive detrimental remodeling processes that relate altered blood flow to cardiac defects remain unclear. Endothelial–mesenchymal cell transition is one of the many complex developmental events involved in transforming the early embryonic outflow tract into the aorta, pulmonary trunk, interventricular septum, and semilunar valves. This study elucidated the effects of increased hemodynamic load on endothelial–mesenchymal transition remodeling of the outflow tract cushions in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24. Increased hemodynamic load induced increased cell density in outflow tract cushions, fewer cells along the endocardial lining, endocardium junction disruption, and altered periostin expression as measured by confocal microscopy analysis. In addition, 3D focused ion beam scanning electron microscopy analysis determined that a portion of endocardial cells adopted a migratory shape after outflow tract banding that is more irregular, elongated, and with extensive cellular projections compared to normal cells. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with a more active stage of endothelial–mesenchymal transition. Outflow tract banding enhances the endothelial–mesenchymal transition phenotype during formation of the outflow tract cushions, suggesting that endothelial–mesenchymal transition is a critical developmental process that when disturbed by altered blood flow gives rise to cardiac malformation and defects. PMID:28228731

  11. Stress management with adolescents at the junior high transition: an outcome evaluation of coping skills intervention.

    Science.gov (United States)

    Schinke, S P; Schilling, R F; Snow, W H

    1987-01-01

    This paper reports an outcome study of coping skills intervention to help adolescents manage stress associated with the transition from elementary school to junior high. In a randomized design, sixth grade students from four elementary schools were pretested, then two schools each were assigned to an intervention condition and to a control condition. Intervention condition subjects received eight sessions of instruction and practice in coping skills intervention. Following intervention, all subjects were posttested. At posttest and relative to control condition subjects, intervention condition subjects scored more positively on measures of problem solving, assertive direct refusals, adequacy of information about junior high school, ability to handle stress, ability to deal with peer pressure, and general readiness for junior high school.

  12. Research of stress corrosion cracking of T225NG titanium alloy in loop water of high temperature and high pressure

    Institute of Scientific and Technical Information of China (English)

    Xu Jijin; Yan Keng; Chen Ligong; Jiang Chengyu

    2006-01-01

    Double cantilever beam (DCB) specimens were used to research the stress corrosion cracking of T225NG titanium alloy in loop water of high temperature and high pressure. DCB specimens were forced pre-stress, put into high pressure autoclave, and the stress corrosion and crack expansion of specimens were observed and measured in 500 h, 1 000 h and 2 000h respectively. The results show that small expansion occurred along the direction of pre-cracking. According to calculation,the speed of cracking expansion is lower than 10 -9 m/s in 500 h and the value of KIscc/KI is higher than 0. 75, which proves that T225NG has an excellent corrosion resistance in loop water. The main reason is that there is an oxide film on the surface of specimens. According to the analysis of energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), the oxide film consists of TiO2. Therefore, the oxide film at the crack tip impedes the hydrogen separating out from the cathode to penetrate into titanium alloy and resists hydrogen embrittlement.

  13. EFFECTS OF PARENT ARTERY SEGMENTATION AND ANEURISMALWALL ELASTICITY ON PATIENT-SPECIFIC HEMODYNAMIC SIMULATIONS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-liang; DING Guang-hong; YANG Xin-jian; LI Hai-yun

    2011-01-01

    It is well known that hemodynamics and wall tension play an important role in the formation,growth and rupture of aneurysms.In the present study,the authors investigated the influence of parent artery segmentation and aneurismal-wall elasticity on patient-specific hemodynamic simulations with two patient-specific eases of cerebral aneurysms.Realistic models of the aneurysms were constructed from 3-D angiography images and blood flow dynamics was studied under physiologically representative waveform of inflow.For each aneurysm three computational models were constructed:Model 1 with more extensive upstream parent artery with the rigid arterial and aneurismal wall,Model 2 with the partial upstream parent artery with the elastic arterial and aneurismal wall,Model 3 with more extensive upstream parent artery with the rigid wall for arterial wall far from the aneurysm and the elastic wall for arterial wall near the aneurysm.The results show that Model 1 could predict complex intra-aneurismal flow patterns and wall shear stress distribution in the aneurysm,but is unable to give aneurismal wall deformation and tension,Model 2 demonstrates aneurismal wall deformation and tension,but fails to properly model inflow pattern contributed by the upstream parent artery,resulting in local misunderstanding Wall Shear Stress (WSS) distribution,Model 3 can overcome limitations of the former two models,and give an overall and accurate analysis on intra-aneurismal flow patterns,wall shear stress distribution,aneurismal-wall deformation and tension.Therefore we suggest that the proper length of extensive upstream parent artery and aneuri-smal-wall elasticity should be considered carefully in establishing computational model to predict the intra-aneurismal hemodynamic and wall tension.

  14. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.

    Science.gov (United States)

    Mäkelä, J T A; Korhonen, R K

    2016-06-14

    Modern fibril-reinforced computational models of articular cartilage can include inhomogeneous tissue composition and structure, and nonlinear mechanical behavior of collagen, proteoglycans and fluid. These models can capture well experimental single step creep and stress-relaxation tests or measurements under small strains in unconfined and confined compression. Yet, it is known that in indentation, especially at high strain velocities, cartilage can express highly nonlinear response. Different fibril reinforced poroelastic and poroviscoelastic models were used to assess measured highly nonlinear stress-relaxation response of rabbit articular cartilage in indentation. Experimentally measured depth-dependent volume fractions of different tissue constituents and their mechanical nonlinearities were taken into account in the models. In particular, the collagen fibril network was modeled using eight separate models that implemented five different constitutive equations to describe the nonlinearity. These consisted of linear elastic, nonlinear viscoelastic and multiple nonlinear elastic representations. The model incorporating the most nonlinearly increasing Young׳s modulus of collagen fibrils as a function of strain captured best the experimental data. Relative difference between the model and experiment was ~3%. Surprisingly, the difference in the peak forces between the experiment and the model with viscoelastic collagen fibrils was almost 20%. Implementation of the measured volume fractions did not improve the ability of the model to capture the measured mechanical data. These results suggest that a highly nonlinear formulation for collagen fibrils is needed to replicate multi-step stress-relaxation response of rabbit articular cartilage in indentation with high strain rates.

  15. Role of high-fat diet in stress response of Drosophila.

    Directory of Open Access Journals (Sweden)

    Erilynn T Heinrichsen

    Full Text Available Obesity is associated with many diseases, one of the most common being obstructive sleep apnea (OSA, which in turn leads to blood gas disturbances, including intermittent hypoxia (IH. Obesity, OSA and IH are associated with metabolic changes, and while much mammalian work has been done, mechanisms underlying the response to IH, the role of obesity and the interaction of obesity and hypoxia remain unknown. As a model organism, Drosophila offers tremendous power to study a specific phenotype and, at a subsequent stage, to uncover and study fundamental mechanisms, given the conservation of molecular pathways. Herein, we characterize the phenotype of Drosophila on a high-fat diet in normoxia, IH and constant hypoxia (CH using triglyceride and glucose levels, response to stress and lifespan. We found that female flies on a high-fat diet show increased triglyceride levels (p<0.001 and a shortened lifespan in normoxia, IH and CH. Furthermore, flies on a high-fat diet in normoxia and CH show diminished tolerance to stress, with decreased survival after exposure to extreme cold or anoxia (p<0.001. Of interest, IH seems to rescue this decreased cold tolerance, as flies on a high-fat diet almost completely recovered from cold stress following IH. We conclude that the cross talk between hypoxia and a high-fat diet can be either deleterious or compensatory, depending on the nature of the hypoxic treatment.

  16. Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression

    Institute of Scientific and Technical Information of China (English)

    Ravindranadh BOBBILI; V. MADHU; A.K. GOGIA

    2014-01-01

    An artificial neural network (ANN) constitutive model is developed for high strength armor steel tempered at 500 ?C, 600 ?C and 650 ?C based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures (500e650 ?C), strains (0.05e0.2) and strain rates (1000e5500/s) are employed to formulate JeC model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the JeC model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.

  17. Stent implantation influence wall shear stress evolution

    Science.gov (United States)

    Bernad, S. I.; Totorean, A. F.; Bosioc, A. I.; Petre, I.; Bernad, E. S.

    2016-06-01

    Local hemodynamic factors are known affect the natural history of the restenosis critically after coronary stenting of atherosclerosis. Stent-induced flows disturbance magnitude dependent directly on the strut design. The impact of flow alterations around struts vary as the strut geometrical parameters change. Our results provide data regarding the hemodynamic parameters for the blood flow in both stenosed and stented coronary artery under physiological conditions, namely wall shear stress and pressure drop.

  18. A New Hemodynamic Ex Vivo Model for Medical Devices Assessment.

    Science.gov (United States)

    Maurel, Blandine; Sarraf, Christophe; Bakir, Farid; Chai, Feng; Maton, Mickael; Sobocinski, Jonathan; Hertault, Adrien; Blanchemain, Nicolas; Haulon, Stephan; Lermusiaux, Patrick

    2015-11-01

    In-stent restenosis (ISR) remains a major public health concern associated with an increased morbidity, mortality, and health-related costs. Drug-eluting stents (DES) have reduced ISR, but generate healing-related issues or hypersensitivity reactions, leading to an increased risk of late acute stent thrombosis. Assessments of new DES are based on animal models or in vitro release systems, which have several limitations. The role of flow and shear stress on endothelial cell and ISR has also been emphasized. The aim of this work was to design and first evaluate an original bioreactor, replicating ex vivo hemodynamic and biological conditions similar to human conditions, to further evaluate new DES. This bioreactor was designed to study up to 6 stented arteries connected in bypass, immersed in a culture box, in which circulated a physiological systolo-diastolic resistive flow. Two centrifugal pumps drove the flow. The main pump generated pulsating flows by modulation of rotation velocity, and the second pump worked at constant rotation velocity, ensuring the counter pressure levels and backflows. The flow rate, the velocity profile, the arterial pressure, and the resistance of the flow were adjustable. The bioreactor was placed in an incubator to reproduce a biological environment. A first feasibility experience was performed over a 24-day period. Three rat aortic thoracic arteries were placed into the bioreactor, immersed in cell culture medium changed every 3 days, and with a circulating systolic and diastolic flux during the entire experimentation. There was no infection and no leak. At the end of the experimentation, a morphometric analysis was performed confirming the viability of the arteries. We designed and patented an original hemodynamic ex vivo model to further study new DES, as well as a wide range of vascular diseases and medical devices. This bioreactor will allow characterization of the velocity field and drug transfers within a stented artery with new

  19. Corrosion Fatigue of High-Strength Titanium Alloys Under Different Stress Gradients

    Science.gov (United States)

    Baragetti, Sergio; Villa, Francesco

    2015-05-01

    Ti-6Al-4V is the most widely used high strength-to-mass ratio titanium alloy for advanced engineering components. Its adoption in the aerospace, maritime, automotive, and biomedical sectors is encouraged when highly stressed components with severe fatigue loading are designed. The extents of its applications expose the alloy to several aggressive environments, which can compromise its brilliant mechanical characteristics, leading to potentially catastrophic failures. Ti-6Al-4V stress-corrosion cracking and corrosion-fatigue sensitivity has been known since the material testing for pressurized tanks for Apollo missions, although detailed investigations on the effects of harsh environment in terms of maximum stress reduction have been not carried out until recent times. In the current work, recent experimental results from the authors' research group are presented, quantifying the effects of aggressive environments on Ti-6Al-4V under fatigue loading in terms of maximum stress reduction. R = 0.1 axial fatigue results in laboratory air, 3.5 wt.% NaCl solution, and CH3OH methanol solution at different concentrations are obtained for mild notched specimens ( K t = 1.18) at 2e5 cycles. R = 0.1 tests are also conducted in laboratory air, inert environment, 3.5 wt.% NaCl solution for smooth, mild and sharp notched specimens, with K t ranging from 1 to 18.65, highlighting the environmental effects for the different load conditions induced by the specimen geometry.

  20. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    Energy Technology Data Exchange (ETDEWEB)

    Dadfarnia, Mohsen (University of Illinois at Urbana-Champaign, Urbana, IL); Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros (University of Illinois at Urbana-Champaign, Urbana, IL); Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A. (CP Industries, McKeesport, PA)

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  1. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akira; Kawahara, Nobuhiro [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Takagi, Hiroshi, E-mail: hiro@bs.naist.jp [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  2. Linear superposition of sensory-evoked and ongoing cortical hemodynamics

    Directory of Open Access Journals (Sweden)

    Mohamad Saka

    2010-08-01

    Full Text Available Modern non-invasive brain imaging techniques utilise changes in cerebral blood flow, volume and oxygenation that accompany brain activation. However, stimulus-evoked hemodynamic responses display considerable inter-trial variability even when identical stimuli are presented and the sources of this variability are poorly understood. One of the sources of this response variation could be ongoing spontaneous hemodynamic fluctuations. To investigate this issue, 2-dimensional optical imaging spectroscopy was used to measure cortical hemodynamics in response to sensory stimuli in anaesthetised rodents Pre-stimulus cortical hemodynamics displayed spontaneous periodic fluctuations and as such, data from individual stimulus presentation trials were assigned to one of four groups depending on the phase angle of pre-stimulus hemodynamic fluctuations and averaged. This analysis revealed that sensory evoked cortical hemodynamics displayed distinctive response characteristics and magnitudes depending on the phase angle of ongoing fluctuations at stimulus onset. To investigate the origin of this phenomenon, ‘null-trails’ were collected without stimulus presentation. Subtraction of phase averaged ‘null trials’ from their phase averaged stimulus-evoked counterparts resulted in four similar time series that resembled the mean stimulus-evoked response. These analyses suggest that linear superposition of evoked and ongoing cortical hemodynamic changes may be a property of the structure of inter-trial variability.

  3. The principle of stability control of surrounding rock-bearing struc-tures in high stress soft rock roadways

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-jun; ZHU Yong-jian; LI Shu-qing; ZHANG Peng

    2009-01-01

    Through the description of the deformational features of the surrounding rock around high stress engineering soft rock roadways,the coupling stabilization principle of inner and outer structures in surrounding rock was put forward.The supporting principles of high stress engineering soft rock roadway (high resistance and yielding support,timely support,high strength and high stiffness supports) were proposed,which were applied in engineering practices,and obtained better achievements.

  4. The principle of stability control of surrounding rock-bearing structures in high stress soft rock roadways

    Energy Technology Data Exchange (ETDEWEB)

    Wei-jun Wang; Yong-jian Zhu; Shu-qing Li; Peng Zhang [Hunan Key Laboratory of Safe Mining Techniques of Coal Mines, Xiangtan (China)

    2009-03-15

    Through the description of the deformational features of the surrounding rock around high stress engineering soft rock roadways, the coupling stabilization principle of inner and outer structures in surrounding rock was put forward. The supporting principles of high stress engineering soft rock roadway (high resistance and yielding support, timely support, high strength and high stiffness supports) were proposed, which were applied in engineering practices in Shuijingtou colliery, and obtained better achievements. 5 refs., 4 figs.

  5. A cross-cultural study of stress responses and social support between Chinese and Japanese junior high school students.

    OpenAIRE

    鉄, 拳

    2013-01-01

    This comparative research’s objective is to demonstrate the relation between stress responses and social support in Japanese and Chinese junior high school students. The subjects were 602 Japanese students and 611 Chinese students. As a result, by comparison of the stress reaction, Japan was intentionally high and it was shown by comparison of social support that Chinese one is intentionally high. Lower than the score became a junior high school students of Japanese junior high school student...

  6. MRI-based multiscale models for the hemodynamic and structural evaluation of surgically reconstructed aortic arches

    DEFF Research Database (Denmark)

    Pittaccio, S; Migliavacca, F; Balossino, R

    2007-01-01

    interposition (GGI) and Gore-tex patch graft aortoplasty (GPGA) are compared in this study with a control model, employing a computational fluid-structure-interaction scheme. This study analyzes the impact of introducing synthetic materials on aortic hemodynamics and wall mechanics. Three-dimensional (3D......-like repairs increased blood velocity, whereas GPGA limited it. Vortex presence was greater and longer lasting in GGI. The highest power losses corresponded to GPGA. GGI had an intermediate effect, while E/E dissipated only slightly more than the control case. Wall stresses peak in a longitudinal strip...

  7. Growth strains and stress relaxation in alumina scales during high temperature oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P.Y.; Paulikas, A.P.; Veal, B.W.

    2004-03-23

    A novel X-ray technique was used, exploiting synchrotron radiation at the Advanced Photon Source at Argonne National Laboratory, to investigate the growth stresses in {alpha}-Al{sub 2}O{sub 3}. In-situ measurements of Debye-Scherrer diffraction patterns from the scale were recorded during oxidation and cooling, and the elliptical distortion of the diffraction rings was analyzed to yield the in-plane strain. Fe-28Al, Fe-40Al, Fe-40Al-0.2Hf, Fe-20Cr-10Al and Ni-50Al (at. %) were studied. Data were acquired in air at temperatures between 950-1100 C and during cool down. In all cases, the steady stage growth strain was relatively low (<0.1%) and was either tensile or compressive depending on the alloy. A higher tensile strain often existed during the initial oxidation period when transition alumina was present. Thermal stresses imposed on NiAl by reducing the sample temperature to 950 C for a period of time showed noticeable stress relaxation by creep. Different degrees of relaxation were also found during cooling depending on alloy composition and scale microstructure. On all Fe-based alloys, the first formed {alpha}-Al{sub 2}O{sub 3} was highly textured with the degree of texture decreasing with further oxidation. The relationships between stress development, scale wrinkling, oxide phase changes, and the effect of reactive element addition on growth stresses are discussed. Results are compared with other reports of growth stresses in Al{sub 2}O{sub 3} scales.

  8. Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress.

    Science.gov (United States)

    Swinnen, Steve; Goovaerts, Annelies; Schaerlaekens, Kristien; Dumortier, Françoise; Verdyck, Pieter; Souvereyns, Kris; Van Zeebroeck, Griet; Foulquié-Moreno, María R; Thevelein, Johan M

    2015-09-01

    Very high ethanol tolerance is a distinctive trait of the yeast Saccharomyces cerevisiae with notable ecological and industrial importance. Although many genes have been shown to be required for moderate ethanol tolerance (i.e., 6 to 12%) in laboratory strains, little is known of the much higher ethanol tolerance (i.e., 16 to 20%) in natural and industrial strains. We have analyzed the genetic basis of very high ethanol tolerance in a Brazilian bioethanol production strain by genetic mapping with laboratory strains containing artificially inserted oligonucleotide markers. The first locus contained the ura3Δ0 mutation of the laboratory strain as the causative mutation. Analysis of other auxotrophies also revealed significant linkage for LYS2, LEU2, HIS3, and MET15. Tolerance to only very high ethanol concentrations was reduced by auxotrophies, while the effect was reversed at lower concentrations. Evaluation of other stress conditions showed that the link with auxotrophy is dependent on the type of stress and the type of auxotrophy. When the concentration of the auxotrophic nutrient is close to that limiting growth, more stress factors can inhibit growth of an auxotrophic strain. We show that very high ethanol concentrations inhibit the uptake of leucine more than that of uracil, but the 500-fold-lower uracil uptake activity may explain the strong linkage between uracil auxotrophy and ethanol sensitivity compared to leucine auxotrophy. Since very high concentrations of ethanol inhibit the uptake of auxotrophic nutrients, the active uptake of scarce nutrients may be a major limiting factor for growth under conditions of ethanol stress. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Modeling of high homologous temperature deformation behavior for stress and life-time analyses

    Energy Technology Data Exchange (ETDEWEB)

    Krempl, E. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1997-12-31

    Stress and lifetime analyses need realistic and accurate constitutive models for the inelastic deformation behavior of engineering alloys at low and high temperatures. Conventional creep and plasticity models have fundamental difficulties in reproducing high homologous temperature behavior. To improve the modeling capabilities {open_quotes}unified{close_quotes} state variable theories were conceived. They consider all inelastic deformation rate-dependent and do not have separate repositories for creep and plasticity. The viscoplasticity theory based on overstress (VBO), one of the unified theories, is introduced and its properties are delineated. At high homologous temperature where secondary and tertiary creep are observed modeling is primarily accomplished by a static recovery term and a softening isotropic stress. At low temperatures creep is merely a manifestation of rate dependence. The primary creep modeled at low homologous temperature is due to the rate dependence of the flow law. The model is unaltered in the transition from low to high temperature except that the softening of the isotropic stress and the influence of the static recovery term increase with an increase of the temperature.

  10. Effects of adiponectin on oxidative stress and apoptosis in human cardiac myocytes cultured with high glucose

    Institute of Scientific and Technical Information of China (English)

    LI Xing; LI Mei-rong; GUO Zhi-xin

    2012-01-01

    Background Diabetic cardiomyopathy is the major cause of morbidity and mortality in diabetic patients.Oxidative stress plays an important role in diabetic cardiomyopathy.This study aimed to investigate the effects of adiponectin on oxidative stress and apoptosis in human cardiac myocytes (HCM) cultured with high glucose.Methods The cells were assigned to three group: control group,high glucose group and high glucose plus adiponectin group.After culture for 24,48,72 hours,oxidative stress was evaluated by detecting levels of malondialdehyde (MDA)and superoxide dismutase (SOD) in the supernatant of culture media.The expression of p66Shc and Heme oxygenase-1 (HO-1) was detected by real-time polymerase chain reaction (PCR).Flow cytometry was designed to observe and detect cellular apoptosis.Results Our findings showed significant increase in MDA levels and decrease in SOD activity in the high glucose group compared with the control group (P <0.05).However,MDA levels were significantly decreased and SOD activity was significantly increased in the adiponectin group compared with those in the high-glucose group (P <0.05).The mRNA expression of HO-1 in the high glucose group was significantly increased in a time-dependent manner compared with that in the control group (P <0.05).Adiponectin further increased the mRNA expression of HO-1 induced by high glucose in a time-dependent manner (P <0.05).The expression of p66Shc was significantly increased in high glucose group compared with that in the control group (P <0.05).Adiponectin significantly suppressed the upregulation of p66Shc induced by high glucose (P <0.05).The apoptotic rate of cardiomyocytes was significantly increased in the high glucose group compared with that in the control group while the apoptotic rate in the adiponectin group was remarkably declined in comparison with that in the high glucose group.Conclusion Adiponectin reduces high glucose-induced oxidative stress and apoptosis and plays a

  11. Influence of Processing Parameters on Residual Stress of High Velocity Oxy-Fuel Thermally Sprayed WC-Co-Cr Coating

    Science.gov (United States)

    Gui, M.; Eybel, R.; Asselin, B.; Radhakrishnan, S.; Cerps, J.

    2012-10-01

    Residual stress in high velocity oxy-fuel (HVOF) thermally sprayed WC-10Co-4Cr coating was studied based on design of experiment (DOE) with five factors of oxygen flow, fuel gas hydrogen flow, powder feed rate, stand-off distance, and surface speed of substrate. In each DOE run, the velocity and temperature of in-flight particle in flame, and substrate temperature were measured. Almen-type N strips were coated, and their deflections after coating were used for evaluation of residual stress level in the coating. The residual stress in the coating obtained in all DOE runs is compressive. In the present case of HVOF thermally sprayed coating, the residual stress is determined by three types of stress: peening, quenching, and cooling stress generated during spraying or post spraying. The contribution of each type stress to the final compressive residual stress in the coating depends on material properties of coating and substrate, velocity and temperature of in-flight particle, and substrate temperature. It is found that stand-off distance is the most important factor to affect the final residual stress in the coating, following by two-factor interaction of oxygen flow and hydrogen flow. At low level of stand-off distance, higher velocity of in-flight particle in flame and higher substrate temperature post spraying generate more peening stress and cooling stress, resulting in higher compressive residual stress in the coating.

  12. Advanced hemodynamic monitoring: principles and practice in neurocritical care.

    Science.gov (United States)

    Lazaridis, Christos

    2012-02-01

    Advanced hemodynamic monitoring is necessary for many patients with acute brain and/or spinal cord injury. Optimizing cerebral and systemic physiology requires multi-organ system function monitoring. Hemodynamic manipulations are cardinal among interventions to regulate cerebral perfusion pressure and cerebral blood flow. The pulmonary artery catheter is not any more the sole tool available; less invasive and potentially more accurate methodologies have been developed and employed in the operating room and among diverse critically ill populations. These include transpulmonary thermodilution, arterial pressure pulse contour, and waveform analysis and bedside critical care ultrasound. A thorough understanding of hemodynamics and of the available monitoring modalities is an essential skill for the neurointensivist.

  13. Simulation of Stress-Strain behavior for one-dimensional aluminum samples subjected to high temperature

    DEFF Research Database (Denmark)

    Bellini, Anna; Thorborg, Jesper; Hattel, Jesper

    2004-01-01

    In order to satisfy the growing need in high quality aluminum cast parts of the automobile industries, in the last decades the foundries have been showing an increasing interest in the implementation of numerical simulations as part of their process design. As a consequence, it is possible to find...... the analysis of the next phases, such as heat treatment and life prediction of the cast parts. Because of the lack of numerical program tools capable of predicting the stress-strain behavior of aluminum parts subjected to high temperature, it is indeed normally assumed that at the end of the thermal treatment...... in literature several programs capable of simulating the entire casting process, i.e. filling, solidification, as well as developed thermomechanical stresses. However, it is common practice in the foundry industry that the results obtained by the simulation of the cast process are "forgotten" during...

  14. A Damaged Constitutive Model for Rock under Dynamic and High Stress State

    Directory of Open Access Journals (Sweden)

    Yan-Long Li

    2017-01-01

    Full Text Available The main research work of this paper focuses on the theoretical prediction of the constitutive relationship for rock, concrete, and other quasi-brittle materials under dynamic and complex stress state and the influence of dynamic mechanical behavior of rock on practical engineering problems was studied. A damaged elastoplastic model (DEPM is established for the investigation and prediction of static or dynamic mechanical behavior of rock material. The mechanical behavior (brittleness or plasticity and dynamic response (due to underground impact pressure and high-velocity impact of projectile of rock under high in situ stress were investigated via the DEPM combined with the explicit finite element method. This paper suggests the influence of the brittle or plastic mechanical behavior of rock material on deep underground rock engineering.

  15. Analysis of trigger behavior of high voltage LDMOS under TLP and VFTLP stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jing; Qian Qinsong; Sun Weifeng; Liu Siyang, E-mail: zhj_seu@126.co [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)

    2010-01-15

    The physical mechanisms triggering electrostatic discharge (ESD) in high voltage LDMOS power transistors (> 160 V) under transmission line pulsing (TLP) and very fast transmission line pulsing (VFTLP) stress are investigated by TCAD simulations using a set of macroscopic physical models related to previous studies implemented in Sentaurus Device. Under VFTLP stress, it is observed that the triggering voltage of the high voltage LDMOS obviously increases, which is a unique phenomenon compared with the low voltage ESD protection devices like NMOS and SCR. The relationship between the triggering voltage increase and the parasitic capacitances is also analyzed in detail. A compact equivalent circuit schematic is presented according to the investigated phenomena. An improved structure to alleviate this effect is also proposed and confirmed by the experiments. (semiconductor devices)

  16. Content analysis to detect high stress in oral interviews and text documents

    Science.gov (United States)

    Thirumalainambi, Rajkumar (Inventor); Jorgensen, Charles C. (Inventor)

    2012-01-01

    A system of interrogation to estimate whether a subject of interrogation is likely experiencing high stress, emotional volatility and/or internal conflict in the subject's responses to an interviewer's questions. The system applies one or more of four procedures, a first statistical analysis, a second statistical analysis, a third analysis and a heat map analysis, to identify one or more documents containing the subject's responses for which further examination is recommended. Words in the documents are characterized in terms of dimensions representing different classes of emotions and states of mind, in which the subject's responses that manifest high stress, emotional volatility and/or internal conflict are identified. A heat map visually displays the dimensions manifested by the subject's responses in different colors, textures, geometric shapes or other visually distinguishable indicia.

  17. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress.

    Science.gov (United States)

    Zhang, Shize; Fu, Wenyan; Li, Ning; Zhang, Fan; Liu, Tong-Xian

    2015-02-01

    Temperature is one of the most important environmental factors, and is responsible for a variety of physiological stress responses in organisms. Induced thermal stress is associated with elevated reactive oxygen species (ROS) generation leading to oxidative damage. The ladybeetle, Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae), is considered a successful natural enemy because of its tolerance to high temperatures in arid and semi-arid areas in China. In this study, we investigated the effect of high temperatures (35, 37, 39, 41 and 43 °C) on the survival and activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST), and total antioxidant capacity (TAC) as well as malondialdehyde (MDA) concentrations in P. japonica adults. The results indicated that P. japonica adults could not survive at 43 °C. CAT, GST and TAC were significantly increased when compared to the control (25 °C), and this played an important role in the process of antioxidant response to thermal stress. SOD and POD activity, as well as MDA, did not differ significantly at 35 and 37 °C compared to the control; however, there were increased levels of SOD, POD and MDA when the temperature was above 37 °C. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play important roles in reducing oxidative damage in P. japonica adults. This study represents the first comprehensive report on the antioxidant defense system in predaceous coccinellids (the third trophic level). The findings provide useful information for predicting population dynamics and understanding the potential for P. japonica as a natural enemy to control pest insects under varied environmental conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Gonzalo H Villarino

    Full Text Available Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  19. Transcriptomic Analysis of Petunia hybrida in Response to Salt Stress Using High Throughput RNA Sequencing

    Science.gov (United States)

    Villarino, Gonzalo H.; Bombarely, Aureliano; Giovannoni, James J.; Scanlon, Michael J.; Mattson, Neil S.

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments. PMID:24722556

  20. Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood.

    Science.gov (United States)

    Oomen, Charlotte A; Soeters, Heleen; Audureau, Nathalie; Vermunt, Lisa; van Hasselt, Felisa N; Manders, Erik M M; Joëls, Marian; Lucassen, Paul J; Krugers, Harm

    2010-05-12

    Early life stress increases the risk for developing stress-related pathologies later in life. Recent studies in rats suggest that mild early life stress, rather than being overall unfavorable, may program the hippocampus such that it is optimally adapted to a stressful context later in life. Here, we tested whether this principle of "adaptive programming" also holds under severely adverse early life conditions, i.e., 24 h of maternal deprivation (MD), a model for maternal neglect. In young adult male rats subjected to MD on postnatal day 3, we observed reduced levels of adult hippocampal neurogenesis as measured by cell proliferation, cell survival, and neuronal differentiation. Also, mature dentate granule cells showed a change in their dendritic morphology that was most noticeable in the proximal part of the dendritic tree. Lasting structural changes due to MD were paralleled by impaired water maze acquisition but did not affect long-term potentiation in the dentate gyrus. Importantly, in the presence of high levels of the stress hormone corticosterone, even long-term potentiation in the dentate gyrus of MD animals was facilitated. In addition to this, contextual learning in a high-stress environment was enhanced in MD rats. These morphological, electrophysiological, and behavioral observations show that even a severely adverse early life environment does not evolve into overall impaired hippocampal functionality later in life. Rather, adversity early in life can prepare the organism to perform optimally under conditions associated with high corticosteroid levels in adulthood.

  1. Residual stress measurement with high energy x-rays at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Winholtz, R. A.; Haeffner, D. R.; Green, R.E.L.; Varma, R.; Hammond, D.

    2000-03-02

    Preliminary measurements with high energy x-rays from the SRI CAT 1-ID beam line at the Advanced Photon show great promise for the measurement of stress and strain using diffraction. Comparisons are made with neutron measurements. Measurements of strains in a 2 mm thick 304 stainless steel weld show that excellent strain and spatial resolutions are possible. With 200 {micro}m slits, strain resolutions of 1 x 10{sup {minus}5} were achieved.

  2. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    OpenAIRE

    JARDINE, KOLBY J.; CHAMBERS, JEFFREY Q.; Jennifer Holm; Angela B. Jardine; Clarissa G. Fontes; Zorzanelli, Raquel F.; Kimberly T. Meyers; Vinicius Fernadez de Souza; Sabrina Garcia; Gimenez,Bruno O.; Luani R. de O. Piva; Niro Higuchi; Paulo Artaxo; Scot Martin; Manzi, Antônio O.

    2015-01-01

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxid...

  3. Control of Mechanical Stresses of High Pressure Container Walls by Magnetoelastic Method

    Science.gov (United States)

    Kulak, S. M.; Novikov, V. F.; Baranov, A. V.

    2016-10-01

    Deformations of the walls of pressure vessels arising in the process of testing and operation, as well as reduce their thickness due to corrosion, to create the prerequisites for the growth of mechanical stresses which accelerating the processes of strain aging, embrittlement of the material and reducing its fatigue properties. This article is devoted to researches of the magnetoelastic demagnetization in the wall of steel vessel of loading by internal pressure. It is established that the increasing pressure on the vessel wall is accompanied by a monotonic decrease in the intensity of the magnetic stray field of local magnetization of steel. It is shown that a magnetic stray field of local magnetization of the wall of steel vessel is non-uniform due to differences in structure and stresses. It is proposed to use the obtained results to control the stress state of vessels, experiencing multi-axial loads generated by internal pressure (pipelines, oil tanks, etc.) The method of magnetoelastic of the demagnetization of the steel has a high sensitivity to mechanical stress, the simplicity of implementation and expressiveness compared to the strain gauge and method of coercive force.

  4. Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Cheevadhanarak Supapon

    2009-09-01

    Full Text Available Abstract The present study examined the changes in protein expression in Spirulina platensis upon exposure to high temperature, with the changes in expression analyzed at the subcellular level. In addition, the transcriptional expression level of some differentially expressed proteins, the expression pattern clustering, and the protein-protein interaction network were analyzed. The results obtained from differential expression analysis revealed up-regulation of proteins involved in two-component response systems, DNA damage and repair systems, molecular chaperones, known stress-related proteins, and proteins involved in other biological processes, such as capsule formation and unsaturated fatty acid biosynthesis. The clustering of all differentially expressed proteins in the three cellular compartments showed: (i the majority of the proteins in all fractions were sustained tolerance proteins, suggesting the roles of these proteins in the tolerance to high temperature stress, (ii the level of resistance proteins in the photosynthetic membrane was 2-fold higher than the level in two other fractions, correlating with the rapid inactivation of the photosynthetic system in response to high temperature. Subcellular communication among the three cellular compartments via protein-protein interactions was clearly shown by the PPI network analysis. Furthermore, this analysis also showed a connection between temperature stress and nitrogen and ammonia assimilation.

  5. CO2 laser scribe of chemically strengthened glass with high surface compressive stress

    Science.gov (United States)

    Li, Xinghua; Vaddi, Butchi R.

    2011-03-01

    Chemically strengthened glass is finding increasing use in handheld, IT and TV cover glass applications. Chemically strengthened glass, particularly with high (>600MPa) compressive stress (CS) and deeper depth of layer (DOL), enable to retain higher strength after damage than non-strengthened glass when its surface is abraded. Corning Gorilla® Glass has particularly proven to be advantageous over competition in this attribute. However, due to high compressive stress (CS) and Central Tension (CT) cutting ion-exchanged glass is extremely difficult and often unmanageable where ever the applications require dicing the chemically strengthened mother glass into smaller parts. We at Corning have developed a CO2 laser scribe and break method (LSB) to separate a single chemically strengthened glass sheet into plurality of devices. Furthermore, CO2 laser scribe and break method enables debris-free separation of glass with high edge strength due to its mirror-like edge finish. We have investigated laser scribe and break of chemically strengthened glass with surface compressive stress greater than 600 MPa. In this paper we present the results of CO2 scribe and break method and underlying laser scribing mechanisms. We demonstrated cross-scribe repetitively on GEN 2 size chemically strengthened glass substrates. Specimens for edge strength measurements of different thickness and CS/DOL glass were prepared using the laser scribe and break technique. The specimens were tested using the standard 4-point bend method and the results are presented.

  6. Investigation of the dynamic mechanical behavior of polyetheretherketone (PEEK) in the high stress tensile regime

    Science.gov (United States)

    Berer, M.; Major, Z.; Pinter, G.; Constantinescu, D. M.; Marsavina, L.

    2014-11-01

    Due to its outstanding mechanical performance both in static and dynamic loading and its resistance up to very high temperatures, Polyetheretherketone (PEEK) has attracted many practical applications. The loaded contact state for the application of PEEK rolls as bearing elements was recently analyzed by the corresponding author. High irreversible deformations on the mantle side were caused by the rolling contact and thus the rolling performance is supposed to be strongly affected by the dynamic mechanical properties of this irreversibly deformed material. Tensile fatigue tests at various stress levels up to the thermally dominated fatigue regime were conducted in order to get information regarding the dynamic mechanical material behavior at high stress regimes. Two types of PEEK (annealed and untreated) were investigated and two load ratios, R, were used (0.1 and 0.5). During the fatigue tests extensometer strain, load and surface temperature were recorded and a quantitative hysteresis loop analysis with calculated secant modulus and dynamic modulus was performed. Furthermore, the concept of isocyclic stress-strain diagrams was applied to enlarge and confirm the results obtained from the hysteresis loop analysis. A sharp transition between thermally dominated and mechanically dominated fatigue regimes was found for both PEEK types (annealed and untreated) and for both load ratios. Moreover, the annealed PEEK was stiffer in the tensile fatigue tests than the untreated material. Both examined PEEK types showed distinct hardening throughout the fatigue tests which made them "more elastic" (higher stiffness and less damping).

  7. Physiological and biochemical responses of Prorocentrum minimum to high light stress

    Science.gov (United States)

    Park, So Yun; Choi, Eun Seok; Hwang, Jinik; Kim, Donggiun; Ryu, Tae Kwon; Lee, Taek-Kyun

    2009-12-01

    Prorocentrum minimum is a common bloomforming photosynthetic dinoflagellate found along the southern coast of Korea. To investigate the adaptive responses of P. minimum to high light stress, we measured growth rate, and generation of reactive oxidative species (ROS), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) in cultures exposed to normal (NL) and high light levels (HL). The results showed that HL (800 μmol m-2 s-1) inhibited growth of P. minimum, with maximal inhibition after 7-9 days. HL also increased the amount of ROS and MDA, suggesting that HL stress leads to oxidative damage and lipid peroxidation in this species. Under HL, we first detected superoxide on day 4 and H2O2 on day 5. We also detected SOD activity on day 5 and CAT activity on day 6. The level of lipid peroxidation, an indicator of cell death, was high on day 8. Addition of diphenyleneiodonium (DPI), an NAD(P)H inhibitor, decreased the levels of superoxide generation and lipid peroxidation. Our results indicate that the production of ROS which results from HL stress in P. minimum also induces antioxidative enzymes that counteract oxidative damage and allow P. minimum to survive.

  8. Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects.

    Science.gov (United States)

    Zhong, Jianxiang; Reece, E Albert; Yang, Peixin

    2015-11-13

    Maternal diabetes-induced birth defects remain a significant health problem. Studying the effect of natural compounds with antioxidant properties and minimal toxicities on diabetic embryopathy may lead to the development of new and safe dietary supplements. Punicalagin is a primary polyphenol found in pomegranate juice, which possesses antioxidant, anti-inflammatory and anti-tumorigenic properties, suggesting a protective effect of punicalagin on diabetic embryopathy. Here, we examined whether punicalagin could reduce high glucose-induced neural tube defects (NTDs), and if this rescue occurs through blockage of cellular stress and caspase activation. Embryonic day 8.5 (E8.5) mouse embryos were cultured for 24 or 36 h with normal (5 mM) glucose or high glucose (16.7 mM), in presence or absence of 10 or 20 μM punicalagin. 10 μM punicalagin slightly reduced NTD formation under high glucose conditions; however, 20 μM punicalagin significantly inhibited high glucose-induced NTD formation. Punicalagin suppressed high glucose-induced lipid peroxidation marker 4-hydroxynonenal, nitrotyrosine-modified proteins, and lipid peroxides. Moreover, punicalagin abrogated endoplasmic reticulum stress by inhibiting phosphorylated protein kinase ribonucleic acid (RNA)-like ER kinase (p-PERK), phosphorylated inositol-requiring protein-1α (p-IRE1α), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP) and x-box binding protein 1 (XBP1) mRNA splicing. Additionally, punicalagin suppressed high glucose-induced caspase 3 and caspase 8 cleavage. Punicalagin reduces high glucose-induced NTD formation by blocking cellular stress and caspase activation. These observations suggest punicalagin supplements could mitigate the teratogenic effects of hyperglycemia in the developing embryo, and possibly prevent diabetes-induced NTDs.

  9. High and low emotion events influence emotional stress perceptions and are associated with salivary cortisol response changes in a consecutive stress paradigm.

    Science.gov (United States)

    Nejtek, Vicki A

    2002-04-01

    Numerous studies over the last few decades have successfully utilized "psychological" stressors to examine stress-induced cortisol release as a function of the hypothalamic-pituitary-adrenal (HPA) cascade. In contrast, research examining the effect emotionally-laden stressors may have on cortisol release is scarce. Moreover, the results from the few studies that have examined subjective perceptions of emotional stress and their relationship to cortisol release are mixed. Thus, little is known about the impact an emotionally-charged stressor may have on cortisol responsivity and even less is understood about the relationship between cortisol release and perceived emotional stress. The primary goal of the present research was to investigate the effect of consecutive, emotionally stressful events on cortisol release. The secondary goal was to examine the influence perceptions about emotionally stressful events might have on cortisol responsivity. This is the first study to identify two distinct patterns of cortisol release that were significantly reversed (P=0.006) in response to high and low emotion events presented in a consecutive stress paradigm that were associated with perceptions of emotional stress.

  10. Inflammatory and Oxidative Stress Responses to High-Carbohydrate and High-Fat Meals in Healthy Humans

    Directory of Open Access Journals (Sweden)

    S. Gregersen

    2012-01-01

    Full Text Available The postprandial state is hypothesised to be proinflammatory and prooxidative, but the relative contributions of fat versus carbohydrate are unclear. Therefore, we examined inflammation and oxidative stress responses in serum and skeletal muscle before and after 1000 kcal meals, which were high in either fat or carbohydrate in 15 healthy individuals. Serum and muscle expression of IL6 was elevated 3 hours after each meal, independently of macronutrient composition (P<0.01. Serum IL18 was decreased after high-fat meal only (P<0.01. Plasma total antioxidative status and muscle Cu/Zn-superoxide dismutase were decreased after high-carbohydrate meal only (P<0.05. We conclude that a high-carbohydrate meal may evoke a greater postprandial oxidative stress response, whereas both fat and carbohydrate increased IL6. We speculate that the observed increases in postprandial IL6, without increases in any other markers of inflammation, may indicate a normal IL6 response to enhance glucose uptake, similar to its role postexercise.

  11. Reproductive parameters and oxidative stress status of male rats fed with low and high salt diet

    Directory of Open Access Journals (Sweden)

    Bolanle O Iranloye

    2013-01-01

    Full Text Available Background: Deficiency of minerals and micronutrients has been reported to impair the process of spermatogenesis. Historically, salt has been used by women on their husbands to increase their libido, however, the role of salt diet on sperm parameters are yet to be ascertained. AIM: The present study was designed to determine the effect of low and high salt diet on sperm parameters, oxidative status and reproductive hormone levels of male rats. Materials and Methods: A total of 18 rats were divided into three groups: Group I: (control received 0.3% salt diet, Group II: low salt (received 0.14% salt diet and Group III: high salt (received 8% salt diet. All animals were treated for 6 weeks; after which epididymal sperm parameters; oxidative stress markers (malondialdehyde, glutathione, catalase and superoxide dismutase in the testes and epididymal tissues, as well as follicle stimulating hormone (FSH, luteinizing hormone (LH and testosterone levels were determined. Results: The results showed decreased sperm count in the low salt diet rats while increased sperm count was observed in the high salt diet treated rats. Both low salt and high salt diet fed rats exhibited increased abnormal sperm cells and increased epididymal oxidative stress when compared with their respective control. FSH and testosterone levels were increased in the high salt fed rats while LH level was decreased when compared with the control values. Conclusion: This study suggests that both low and high salt diet play a negative role in the fertility of male rats.

  12. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  13. New approach to intracardiac hemodynamic measurements in small animals

    DEFF Research Database (Denmark)

    Eskesen, Kristian; Olsen, Niels T; Dimaano, Veronica L

    2012-01-01

    Invasive measurements of intracardiac hemodynamics in animal models have allowed important advances in the understanding of cardiac disease. Currently they are performed either through a carotid arteriotomy or via a thoracotomy and apical insertion. Both of these techniques have disadvantages...

  14. Aortic endograft sizing in trauma patients with hemodynamic instability

    NARCIS (Netherlands)

    Jonker, Frederik H. W.; Verhagen, Hence J. M.; Mojibian, Hamid; Davis, Kimberly A.; Moll, Frans L.; Muhs, Bart E.

    2010-01-01

    Objectives: To investigate changes in aortic diameter in hemodynamically unstable trauma patients and the implications for sizing of thoracic endovascular aortic repair (TEVAR) in patients with traumatic thoracic aortic injury (TTAI). Methods: We retrospectively evaluated all trauma patients that we

  15. Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Hell, Michaela M., E-mail: michaela.hell@uk-erlangen.de [Department of Cardiology, University of Erlangen (Germany); Dey, Damini [Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Taper Building, Room A238, 8700 Beverly Boulevard, Los Angeles, CA 90048 (United States); Marwan, Mohamed; Achenbach, Stephan; Schmid, Jasmin; Schuhbaeck, Annika [Department of Cardiology, University of Erlangen (Germany)

    2015-08-15

    Highlights: • Overestimation of coronary lesions by coronary computed tomography angiography and subsequent unnecessary invasive coronary angiography and revascularization is a concern. • Differences in plaque characteristics and contrast density difference between hemodynamically significant and non-significant stenoses, as defined by invasive fractional flow reserve, were assessed. • At a threshold of ≥24%, contrast density difference predicted hemodynamically significant lesions with a specificity of 75%, sensitivity of 33%, PPV of 35% and NPV of 73%. • The determination of contrast density difference required less time than transluminal attenuation gradient measurement. - Abstract: Objectives: Coronary computed tomography angiography (CTA) allows the detection of obstructive coronary artery disease. However, its ability to predict the hemodynamic significance of stenoses is limited. We assessed differences in plaque characteristics and contrast density difference between hemodynamically significant and non-significant stenoses, as defined by invasive fractional flow reserve (FFR). Methods: Lesion characteristics of 59 consecutive patients (72 lesions) in whom invasive FFR was performed in at least one coronary artery with moderate to high-grade stenoses in coronary CTA were evaluated by two experienced readers. Coronary CTA data sets were acquired on a second-generation dual-source CT scanner using retrospectively ECG-gated spiral acquisition or prospectively ECG-triggered axial acquisition mode. Plaque volume and composition (non-calcified, calcified), remodeling index as well as contrast density difference (defined as the percentage decline in luminal CT attenuation/cross-sectional area over the lesion) were assessed using a semi-automatic software tool (Autoplaq). Additionally, the transluminal attenuation gradient (defined as the linear regression coefficient between intraluminal CT attenuation and length from the ostium) was determined

  16. Interactive effects of chronic stress and a high-sucrose diet on nonalcoholic fatty liver in young adult male rats.

    Science.gov (United States)

    Corona-Pérez, Adriana; Díaz-Muñoz, Mauricio; Cuevas-Romero, Estela; Luna-Moreno, Dalia; Valente-Godínez, Héctor; Vázquez-Martínez, Olivia; Martínez-Gómez, Margarita; Rodríguez-Antolín, Jorge; Nicolás-Toledo, Leticia

    2017-10-02

    Glucocorticoids have been implicated in nonalcoholic fatty liver diseases (NAFLD). The influence of a palatable diet on the response to stress is controversial. This study explored whether a high-sucrose diet could protect from hepatic steatosis induced by chronic restraint stress in young adult rats. Male Wistar rats aged 21 days were allocated into four groups (n = 6-8 per group): control, chronic restraint stress, 30% sucrose diet, and 30% sucrose diet plus chronic restraint stress. After being exposed to either tap water or sucrose solution during eight weeks, half of the rats belonging to each group were subject or not to repeated restraint stress (1 h per day, 5 days per week) during four weeks. Triacylglycerol (TAG), oxidative stress, activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1), infiltration of immune cells, and glycogen amount in the liver were quantified. Serum concentrations of corticosterone and testosterone were also measured. The stressed group showed normal serum concentrations of corticosterone and did not have hepatic steatosis. However, this group showed increased glycogen, inflammation, mild fibrosis, oxidative stress, and a high activity of 11β-HSD-1 in the liver. The group exposed to the high-sucrose diet had lower concentrations of corticosterone, hepatic steatosis and moderate fibrosis. The group subject to high-sucrose diet plus chronic restraint stress showed low concentrations of corticosterone, hepatic steatosis, oxidative stress, and high concentrations of testosterone. Thus, restraint stress and a high-sucrose diet each generate different components of nonalcoholic fatty liver in young adult rats. The combination of both the factors could promote a faster development of NAFLD.

  17. [Snacking behavior among elementary and junior high school students and its relationship to stress-coping].

    Science.gov (United States)

    Shimai, S; Kawabata, T; Nishioka, N; Haruki, T

    2000-01-01

    The aim of the present study was to investigate current problems of snacking behavior and their relationship to stress coping among 1,486 fourth through ninth grade students from 10 elementary schools and six junior high schools. An anonymous self-completed questionnaire was utilized which included items about 1) selection of snack foods, which were classified into healthy, popular, complementary and western-style snacks, 2) problems of snacking behavior, which included external and emotional eating scores, and 3) stress coping scale. The stress coping scale contained two sub-scales; problem-focused and emotion-focused coping. The results were as follows: 1) Students who frequently went without breakfast did not select healthy foods, i.e., fruits and dairy products, but popular snacks, i.e., potato chips, pop corn and sweet beverage. 2) Both external and emotional eating scores increased by age in girls but was not apparent in boys. 3) Students who preferred either western-style or popular snacks showed higher score of external and emotional eating. 4) The score of problem-focused coping was positively correlated with preference for health snacks, but emotion-focused coping was positively correlated with external and emotional eating scores. The close relationship between snack food selection and problematic aspects of eating behavior suggests that modification of eating behavior is necessary to develop healthy snack habits in early adolescents. Also, it is interesting that snacking behavior is closely related to stress coping, which suggested the behavioral intervention for healthy eating habit should be included in development of stress-coping skills against various kinds of demands in life.

  18. Cardiovascular, hemodynamic, neuroendocrine, and inflammatory markers in women with and without vasomotor symptoms.

    Science.gov (United States)

    Gordon, Jennifer L; Rubinow, David R; Thurston, Rebecca C; Paulson, Julia; Schmidt, Peter J; Girdler, Susan S

    2016-11-01

    Vasomotor symptoms (VMS) may be associated with an increased risk of cardiovascular disease. One candidate mechanism may involve alterations in physiological responses to stress. The current study therefore examined the relationship between self-reported VMS bother and cardiovascular, hemodynamic, neuroendocrine, and inflammatory responses to an acute psychosocial stress protocol. One hundred eighty-six women in the menopausal transition or early postmenopausal stage (age 45-60 y) provided the data for this article. Subjective hot flash and night sweat bother were assessed using the Greene Climacteric Scale. Women also underwent a stressor battery involving a speech and a mental arithmetic task while cardiovascular, hemodynamic, neuroendocrine, and inflammatory responses were assessed. Repeated measures regression analyses were used to examine the relationship between self-reported VMS and physiologic responses to the stressor. In multivariate analyses adjusting for potential confounders, self-reported hot flash bother was associated with lower overall cardiac index and stroke volume index and higher overall vascular resistance index and levels of the inflammatory cytokine interleukin-6. Hot flash bother also tended to be associated with higher overall cortisol levels and higher baseline levels of plasma norepinephrine. Night sweat bother, on the other hand, was associated with higher overall cortisol levels and tended to be associated with higher interleukin-6. Self-reported VMS bother is associated with an unfavorable hemodynamic and neuroendocrine profile characterized by increased hypothalamic-pituitary-adrenal axis and central sympathetic activation, inflammation, and vasoconstriction. Further research investigating this profile in relation to VMS, and the potential health implications of this association, is warranted.

  19. Computational study of the hemodynamics of the patients after the fontan procedure

    Energy Technology Data Exchange (ETDEWEB)

    Shim, E.B.; Ko, H.J.; Kim, K.H. [Kumoh National University of Technology, Kumi (Korea); Roger D, Kamm [MIT, Cambridge (United States)

    2000-11-01

    In this study, the computational method is presented to simulate the hemodynamics of the patients after the Fontan procedure. The short-term feedback control models are implemented to assess the hemodynamic responses of the patients exposed to the stresses such as gravitational effect or hemorrhage. To construct the base line of the Fontan model, we assume an increase in venous tone, in heart rates, and in systemic resistance that are based on the clinical observations. For the verification of the present method we simulate the LBNP(lower body negative pressure) test for the normal and the Fontan model and we compare these with experimental data. Computational results show that the diastolic ABP(arterial blood pressure) increases but the systolic ABP decreases during LBNP. The increase in heart rate is due to the control system activated by the decreased mean ABP and CVP(central venous pressure). In case of the Fontan model, the increased venous tone is the reason of the diminished CVP change during LBNP. We also simulate 20 % hemorrhage stress to the patient after the Fontan procedure and these results are compared with the experimental and the existing computational one. Computational results on the hemodynamics of patients after the Fontan procedure show that the mean ABP and cardiac output decrease. Heart rate and systemic resistance increase to compensate for the decrease in ABP. The sensitivity analysis according to the conduit resistance is also presented to delineate the effects of the local blood flow resistance. The cardiac output decreases according to the increase of the conduit resistance. The 50 % increase in the conduit resistance causes about 3 % decrease of cardiac output. (author). 12 refs., 8 figs.

  20. Residual Stresses in Inertia-Friction-Welded Dissimilar High-Strength Steels

    Science.gov (United States)

    Moat, R. J.; Hughes, D. J.; Steuwer, A.; Iqbal, N.; Preuss, M.; Bray, S. E.; Rawson, M.

    2009-09-01

    The welding of dissimilar alloys is seen increasingly as a way forward to improve efficiencies in modern aeroengines, because it allows one to tailor varying material property demands across a component. Dissimilar inertia friction welding (IFW) of two high-strength steels, Aermet 100 and S/CMV, has been identified as a possible joint for rotating gas turbine components and the resulting welds are investigated in this article. In order to understand the impact of the welding process and predict the life expectancy of such structures, a detailed understanding of the residual stress fields present in the welded component is needed. By combining energy-dispersive synchrotron X-ray diffraction (EDSXRD) and neutron diffraction, it has been possible to map the variations in lattice spacing of the ferritic phase on both sides of two tubular Aermet 100-S/CMV inertia friction welds (as-welded and postweld heat-treated condition) with a wall thickness of 37 mm. Laboratory-based XRD measurements were required to take into account the variation in the strain-free d-spacing across the weld region. It was found that, in the heat-affected zone (HAZ) slightly away from the weld line, residual stress fields showed tensile stresses increasing most dramatically in the hoop direction toward the weld line. Closer to the weld line, in the plastically affected zone, a sharp drop in the residual stresses was observed on both sides, although more dramatically in the S/CMV. In addition to residual stress mapping, synchrotron XRD measurements were carried out to map microstructural changes in thin slices cut from the welds. By studying the diffraction peak asymmetry of the 200- α diffraction peak, it was possible to demonstrate that a martensitic phase transformation in the S/CMV is responsible for the significant stress reduction close to the weld line. The postweld heat treatment (PWHT) chosen to avoid any overaging of the Aermet 100 and to temper the S/CMV martensite resulted in little

  1. Central Hemodynamic Function in Miners with Thermal Injury

    Directory of Open Access Journals (Sweden)

    V. V. Moroz

    2008-01-01

    Full Text Available Objective: to study the specific features of central hemodynamic function in the acute phase of severe thermal injury (STI in miners who had a length of service of 10 years or more. Subjects and methods. A noninvasive study of central hemodynamics was conducted in 33 miners with severe thermal injury (a study group and 34 patients without a length of underground work who had the same condition (a control group. Both groups were matched by age and the nature and severity of thermal injuries. Central hemodynamics was evaluated by the following parameters: mean arterial blood, heart rate, stroke index (SI, cardiac index (CI, cardiac output (CO, specific vascular peripheral resistance (SVPR determined by Cubichek tetrapolar rheography. Results. The study indicated that on posttraumatic days 3—7, as compared with victims without a length of underground service, the miners had more pronounced central hemodynamic changes: decreases in CI, SI, and CO and an increase in SVPR. In the control group, from day 3, the hemodynamic changes were the following: increases in SI, SI, and CO and a decrease in SVPR. In the miners, the above features were attributable to the baseline central hemodynamic function. Conclusion. Thus, unlike the victims without a length of underground service, the miners with severe thermal injury develop more significant and prolonged central hemodynamic disorders. The detected differences during thermal injury are determined by the lowered reserve capacities of the cardiovascular system in miners due to the long-term exposure to poor working conditions, i. e. an underground service length of 10 years or more. Key words: thermal injury, miner, hemodynamics, type of circulation.

  2. Hemodynamics of patient-specific aorta-pulmonary shunt configurations

    OpenAIRE

    Pekkan, Kerem; Pişkin, Senol; Altın, H. Fırat; Yıldız, Okan; Bakır, İhsan

    2017-01-01

    Optimal hemodynamics in aorta-pulmonary shunt reconstruction is essential for improved post-operative recovery of the newborn congenital heart disease patient. However, prior to in vivo execution, the prediction of post-operative hemodynamics is extremely challenging due to the interplay of multiple confounding physiological factors. It is hypothesized that the post-operative performance of the surgical shunt can be predicted through computational blood flow simulations that consider patient ...

  3. Thermo-Mechanical Stress in High-Frequency Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana; Luhmann, Neville C.; Ravani, Bahram

    2017-01-01

    Analysis of the thermo-mechanical performance of high-frequency vacuum electron devices is essential to the advancement of RF sources towards high-power generation. Operation in an ultra-high vacuum environment, space restricting magnetic focusing, and limited material options are just some of the constraints that complicate thermal management in a high-power VED. An analytical method for evaluating temperature, stress, and deformation distribution in thin vacuum-to-cooling walls is presented, accounting for anisotropic material properties. Thin plate geometry is used and analytical expressions are developed for thermo-mechanical analysis that includes the microstructure effects of grain orientations. The method presented evaluates the maximum allowable heat flux that can be used to establish the power-handling limitation of high-frequency VEDs prior to full-scale design, accelerating time-to-manufacture.

  4. Thermo-Mechanical Stress in High-Frequency Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana; Luhmann, Neville C.; Ravani, Bahram

    2016-09-01

    Analysis of the thermo-mechanical performance of high-frequency vacuum electron devices is essential to the advancement of RF sources towards high-power generation. Operation in an ultra-high vacuum environment, space restricting magnetic focusing, and limited material options are just some of the constraints that complicate thermal management in a high-power VED. An analytical method for evaluating temperature, stress, and deformation distribution in thin vacuum-to-cooling walls is presented, accounting for anisotropic material properties. Thin plate geometry is used and analytical expressions are developed for thermo-mechanical analysis that includes the microstructure effects of grain orientations. The method presented evaluates the maximum allowable heat flux that can be used to establish the power-handling limitation of high-frequency VEDs prior to full-scale design, accelerating time-to-manufacture.

  5. Experimental Results of High Pressure and High Strain Rate Tantalum Flow Stress on Omega and NIF

    Science.gov (United States)

    Park, Hye-Sook; Arsenlis, A.; Barton, N.; Benedetti, L.; Huntington, C.; McNaney, J.; Orlikowski, D.; Prisbrey, S.; Remington, B.; Rudd, R.; Swift, D.; Weber, S.; Wehrenberg, C.; Comley, A.

    2015-11-01

    Understanding the high pressure, high strain rate plastic deformation dynamics of materials is an area of research of high interest to planetary formation dynamics, meteor impact dynamics, and inertial confinement fusion designs. Developing predictive theoretical and computational descriptions of such systems, however, has been a difficult undertaking. We have performed many experiments on Omega, LCLS and NIF to test Ta strength models at high pressures (~ up to 4 Mbar), high strain rates (~ 107 s-1) and high strains (>30%) under ramped compression conditions using Rayleigh-Taylor and Richtmyer-Meshkov instability properties. These experiments use plasma drive to ramp compress the sample to higher pressure without shock-melting. We also studied lattice level strength mechanisms under shocked compression using a diffraction-based technique. Our studies show that the strength mechanisms from macro to micro scales are different from the traditional strength model predictions and that they are loading path dependent. We will report the experimental results. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  6. Evolution from electrophysiologic to hemodynamic monitoring: the story of left atrial and pulmonary artery pressure monitors

    Directory of Open Access Journals (Sweden)

    Deirdre M Mooney

    2015-10-01

    Full Text Available Heart failure (HF is a costly, challenging and highly prevalent medical condition. Hospitalization for acute decompensation is associated with high morbidity and mortality. Despite application of evidence-based medical therapies and technologies, HF remains a formidable challenge for virtually all healthcare systems. Repeat hospitalizations for acute decompensated HF (ADHF can have major financial impact on institutions and resources. Early and accurate identification of impending ADHF is of paramount importance yet there is limited high quality evidence or infrastructure to guide management in the outpatient setting. Historically, ADHF was identified by physical exam findings or invasive hemodynamic monitoring during a hospital admission; however, advances in medical microelectronics and the advent of device-based diagnostics have enabled long-term ambulatory monitoring of HF patients in the outpatient setting. These monitors have evolved from piggybacking on cardiac implantable electrophysiologic devices to standalone implantable hemodynamic monitors that transduce left atrial or pulmonary artery pressures as surrogate measures of left ventricular filling pressure. As technology evolves, devices will likely continue to miniaturize while their capabilities grow. An important, persistent challenge that remains is developing systems to translate the large volumes of real-time data, particularly data trends, into actionable information that leads to appropriate, safe and timely interventions without overwhelming outpatient cardiology and general medical practices. Future directions for implantable hemodynamic monitors beyond their utility in heart failure may include management of other major chronic diseases such as pulmonary hypertension, end stage renal disease and portal hypertension.

  7. Tensile stress corrosion cracking of type 304 stainless steel irradiated to very high dose

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Ruther, W. E.; Strain, R. V.; Shack, W. J.

    2001-09-01

    Certain safety-related core internal structural components of light water reactors, usually fabricated from Type 304 or 316 austenitic stainless steels (SSs), accumulate very high levels of irradiation damage (20--100 displacement per atom or dpa) by the end of life. The data bases and mechanistic understanding of, the degradation of such highly irradiated components, however, are not well established. A key question is the nature of irradiation-assisted intergranular cracking at very high dose, i.e., is it purely mechanical failure or is it stress-commotion cracking? In this work, hot-cell tests and microstructural characterization were performed on Type 304 SS from the hexagonal fuel can of the decommissioned EBR-11 reactor after irradiation to {approximately}50 dpa at {approximately}370 C. Slow-strain-rate tensile tests were conducted at 289 C in air and in water at several levels of electrochemical potential (ECP), and microstructural characteristics were analyzed by scanning and transmission electron microcopies. The material deformed significantly by twinning and exhibited surprisingly high ductility in air, but was susceptible to severe intergranular stress corrosion cracking (IGSCC) at high ECP. Low levels of dissolved O and ECP were effective in suppressing the susceptibility of the heavily irradiated material to IGSCC, indicating that the stress corrosion process associated with irradiation-induced grain-boundary Cr depletion, rather than purely mechanical separation of grain boundaries, plays the dominant role. However, although IGSCC was suppressed, the material was susceptible to dislocation channeling at low ECP, and this susceptibility led to poor work-hardening capability and low ductility.

  8. Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development

    Science.gov (United States)

    Giorno, Filomena; Wolters-Arts, Mieke; Mariani, Celestina; Rieu, Ivo

    2013-01-01

    Sexual reproduction in flowering plants is very sensitive to environmental stresses, particularly to thermal insults which frequently occur when plants grow in field conditions in the warm season. Although abnormalities in both male and female reproductive organs due to high temperatures have been described in several crops, the failure to set fruits has mainly been attributed to the high sensitivity of developing anthers and pollen grains, particularly at certain developmental stages. A global view of the molecular mechanisms involved in the response to high temperatures in the male reproductive organs will be presented in this review. In addition, transcriptome and proteomic data, currently available, will be discussed in the light of physiological and metabolic changes occurring during anther and pollen development. A deep understanding of the molecular mechanisms involved in the stress response to high temperatures in flowers and, particularly, in the male reproductive organs will be a major step towards development of effective breeding strategies for high and stable production in crop plants. PMID:27137389

  9. Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development

    Directory of Open Access Journals (Sweden)

    Filomena Giorno

    2013-07-01

    Full Text Available Sexual reproduction in flowering plants is very sensitive to environmental stresses, particularly to thermal insults which frequently occur when plants grow in field conditions in the warm season. Although abnormalities in both male and female reproductive organs due to high temperatures have been described in several crops, the failure to set fruits has mainly been attributed to the high sensitivity of developing anthers and pollen grains, particularly at certain developmental stages. A global view of the molecular mechanisms involved in the response to high temperatures in the male reproductive organs will be presented in this review. In addition, transcriptome and proteomic data, currently available, will be discussed in the light of physiological and metabolic changes occurring during anther and pollen development. A deep understanding of the molecular mechanisms involved in the stress response to high temperatures in flowers and, particularly, in the male reproductive organs will be a major step towards development of effective breeding strategies for high and stable production in crop plants.

  10. Oxidative stress and innate immunity status in chickens exposed to high dose of ascorbic acid.

    Science.gov (United States)

    Berzina, Nadezhda; Markovs, Jurijs; Dizhbite, Tatiana; Apsite, Mirdza; Vasilyeva, Svetlana; Basova, Nataliya; Smirnova, Galina; Isajevs, Sergejs

    2013-10-01

    The effects of high dose ascorbic acid (10 000 mg·kg(-1) in the diet) and the transition metal on the presence of oxidative stress in the internal organs of growing chicks, as well as on the innate immune system status, were investigated. Supplementation with a high dose of ascorbic acid had pro-inflammatory effects on the intestinal mucosa, and lysozyme levels were decreased significantly in all organs studied. High-dose ascorbic acid caused an imbalance between prooxidative and antioxidative activities and was associated with the generation of semiquinone radicals. We observed that ascorbic acid increased iron and cadmium absorption. When a high dose of ascorbic acid was applied, elevated kidney and intestinal mucosa iron concentrations were observed. The amount of free malondialdehyde in the above organs has increased as well. These data have important implications for the mechanism of the oxidative stress development under the influence of high dose of ascorbic acid, indicating the importance of the side reactions of the mitochondrial electron transport chain with the formation of semiquinone radicals and the role of transition metals in this process.

  11. Crowd Behaviour during High-Stress Evacuations in an Immersive Virtual Environment

    CERN Document Server

    Moussaïd, Mehdi; Thrash, Tyler; Sumner, Robert W; Gross, Markus; Helbing, Dirk; Hölscher, Christoph

    2016-01-01

    Understanding the collective dynamics of crowd movements during stressful emergency situations is central to reducing the risk of deadly crowd disasters. Yet, their systematic experimental study remains a challenging open problem due to ethical and methodological constraints. In this paper, we demonstrate the viability of shared 3D virtual environments as an experimental platform for conducting crowd experiments with real people. In particular, we show that crowds of real human subjects moving and interacting in an immersive 3D virtual environment exhibit typical patterns of real crowds as observed in real-life crowded situations. These include the manifestation of social conventions and the emergence of self-organized patterns during egress scenarios. High-stress evacuation experiments conducted in this virtual environment reveal movements characterized by mass herding and dangerous overcrowding as they occur in crowd disasters. We describe the behavioral mechanisms at play under such extreme conditions and ...

  12. Engineering study on roadway support in high-stress composite soft rock

    Institute of Scientific and Technical Information of China (English)

    贾明魁; 程东泉

    2003-01-01

    The present study is focused on the roadway support in high-stress composite soft rock. This paper expounds the two main features of roadway in soft rock, i.e., great deformation of surrounding rock and remarkable rheological deformation. Furthermore, on the basis of analyzing physico-chemical component of surrounding rock and the situation of the damaged roadway, the method of adopting strong bolting and shotcreting mesh for the primary support, bolting and grouting for the secondary support is put forward in light of the on-the-spot investigation of stress tension, mechanical parameter and engineering geology. The application reveals the method facilitates the continuation of west main roadway and the restoration of shaft station and chambers. Consequently, better techno-economic results have been achieved.

  13. Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring.

    Science.gov (United States)

    Kellmann, M

    2010-10-01

    In sports, the importance of optimizing the recovery-stress state is critical. Effective recovery from intense training loads often faced by elite athletes can often determine sporting success or failure. In recent decades, athletes, coaches, and sport scientists have been keen to find creative, new methods for improving the quality and quantity of training for athletes. These efforts have consistently faced barriers, including overtraining, fatigue, injury, illness, and burnout. Physiological and psychological limits dictate a need for research that addresses the avoidance of overtraining, maximizes recovery, and successfully negotiates the fine line between high and excessive training loads. Monitoring instruments like the Recovery-Stress Questionnaire for Athletes can assist with this research by providing a tool to assess their perceived state of recovery. This article will highlight the importance of recovery for elite athletes and provide an overview of monitoring instruments. © 2010 John Wiley & Sons A/S.

  14. Zeolites relieves inhibitory stress from high concentrations of long chain fatty acids.

    Science.gov (United States)

    Nordell, Erik; Hansson, Anna B; Karlsson, Martin

    2013-12-01

    Protein and fat rich slaughterhouse waste is a very attractive waste stream for the production of biogas because of the high biochemical methane potential of the substrate. The material has however some drawbacks as the sole material for biogas production due to the production of several process disturbing metabolites such as ammonia, sulfides and long chain fatty acids. We can in this work present results that show that zeolites have the potential to relieve inhibitory stress from the presence of long chain fatty acids. Moreover, the results strongly indicate that it is mainly acetic acid consumers that are most negatively affected by long chain fatty acids and that the mechanism of stress relief is an adsorption of long chain fatty acids to the zeolites. In addition to this, it is shown that the effect is immediate and that only a small amount of zeolites is necessary to cancel the inhibitory effect of long chain fatty acids.

  15. Fatty acids from high rate algal pond's microalgal biomass and osmotic stress effects.

    Science.gov (United States)

    Drira, Neila; Dhouibi, Nedra; Hammami, Saoussen; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2017-11-01

    The extraction of oil from a wild microalgae biomass collected from a domestic wastewater treatment facility's high rate algal pond (HRAP) was investigated. An experiment plan was used to determine the most efficient extraction method, the optimal temperature, time and solvent system based on total lipids yield. Microwave-assisted extraction was the most efficient method whether in n-hexane or in a mixture of chloroform/methanol compared to Soxhlet, homogenization, and ultrasounds assisted extractions. This same wild biomass was cultivated in a photobioreactor (PBR) and the effect of osmotic stress was studied. The lipids extraction yield after 3days of stress increased by more than four folds without any significant loss of biomass, however, the quality of extracted total lipids in terms of saturated, monounsaturated and polyunsaturated fatty acids was not affected by salinity change in the culture medium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  17. Stressed Cooper pairing in QCD at high isospin density: effective Lagrangian and random matrix theory

    Science.gov (United States)

    Kanazawa, Takuya; Wettig, Tilo

    2014-10-01

    We generalize QCD at asymptotically large isospin chemical potential to an arbitrary even number of flavors. We also allow for small quark chemical potentials, which stress the coincident Fermi surfaces of the paired quarks and lead to a sign problem in Monte Carlo simulations. We derive the corresponding low-energy effective theory in both p- and ɛ-expansion and quantify the severity of the sign problem. We construct the random matrix theory describing our physical situation and show that it can be mapped to a known random matrix theory at low baryon density so that new insights can be gained without additional calculations. In particular, we explain the Silver Blaze phenomenon at high isospin density. We also introduce stressed singular values of the Dirac operator and relate them to the pionic condensate. Finally we comment on extensions of our work to two-color QCD.

  18. Modeling of Flow Stress of High Titanium Content 6061 Aluminum Alloy Under Hot Compression

    Science.gov (United States)

    Chen, Wei; Guan, Yingping; Wang, Zhenhua

    2016-09-01

    Hot compression tests were performed on high titanium content 6061 aluminum alloy (AA 6061-Ti) using a Gleeble-3500 thermomechanical testing system at temperatures from 350 to 510 °C with a constant strain rate in the range of 0.001-10 s-1. Three types of flow stress models were established from the experimental stress-strain curves, the correlation coefficient ( R), mean absolute relative error ( MARE), and root mean square deviation ( RMSD) between the predicted data and the experimental data were also calculated. The results show that the Fields-Backofen model, which includes a softening factor, was the simplest mathematical expression with a level of precision appropriate for the numerical simulations. However, the Arrhenius and artificial neural network (ANN) models were also consistent with the experimental results but they are more limited in their application in terms of their accuracy and the mathematical expression of the models.

  19. Stress of dying is not suppressed by high-dose morphine or by dementia.

    Science.gov (United States)

    Erkut, Zeynel A; Klooker, Tamira; Endert, Eric; Huitinga, Inge; Swaab, Dick F

    2004-01-01

    Hypothalamo-pituitary-adrenal (HPA)-axis activation is a response of the organism to psychological and physical stress, resulting in elevated levels of glucocorticoids, mainly cortisol in humans. In our previous studies we found post-mortem blood and cerebrospinal fluid (CSF) cortisol levels to be up to 20-fold higher than in vivo levels. Since clinical observations point to similar strong elevations of cortisol in fatally ill patients, we suggested that the high post-mortem cortisol levels might be due to the stress during the process of dying. We hypothesized that if the cortisol rise during dying is due to the psychological stress of the impending death, then the rise in cortisol should be inversely proportional to the degree of dementia, and that high-dose morphine giving analgesia, sedation, and sleep would suppress this response. Therefore, we measured the cortisol levels by radioimmunoassay (RIA) in the post-mortem CSF of 85 Alzheimer patients and 52 controls. In addition, post-mortem serum cortisol of 17 subjects from the Alzheimer group and nine from the control group were measured. The Alzheimer patients were subdivided according to their degree of dementia, as scored on the Reisberg Scale, before their death. All groups were further analyzed for the effect of morphine treatment, as well as for the effects of the confounding factors like age, gender, time, and season of death. Alzheimer patients had significantly higher cortisol levels than controls, both in CSF (mean (nmol/l)+/-SEM: 482+/-32 vs 285+/-30, respectively, plevel of the severely demented Alzheimer group was even significantly higher than that of mildly demented group (508+/-35 vs 225+/-65, p=0.024) and controls (plevels correlated positively with the degree of dementia in the Alzheimer group (r=0.236, p=0.035). High-dose morphine did not cause a suppression of cortisol rise, neither in controls nor in Alzheimer patients. Our results indicate that the extreme elevations of cortisol levels

  20. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    Science.gov (United States)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  1. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol.

    Science.gov (United States)

    Benjaphokee, Suthee; Hasegawa, Daisuke; Yokota, Daiki; Asvarak, Thipa; Auesukaree, Choowong; Sugiyama, Minetaka; Kaneko, Yoshinobu; Boonchird, Chuenchit; Harashima, Satoshi

    2012-02-15

    Use of super strains exhibiting tolerance to high temperature, acidity and ethanol is a promising way to make ethanol production economically feasible. We describe here the breeding and performance of such a multiple-tolerant strain of Saccharomyces cerevisiae generated by a spore-to-cell hybridization technique without recombinant DNA technology. A heterothallic strain showing a high-temperature (41°C) tolerant (Htg(+)) phenotype, a derivative from a strain isolated from nature, was crossed with a homothallic strain displaying high-ethanol productivity (Hep(+)), a stock culture at the Thailand Institute of Scientific and Technological Research. The resultant hybrid TJ14 displayed ability to rapidly utilize glucose, and produced ethanol (46.6g/l) from 10% glucose fermentation medium at high temperature (41°C). Not only ethanol productivity at 41°C but also acid tolerance (Acd(+)) was improved in TJ14 as compared with its parental strains, enabling TJ14 to grow in liquid medium even at pH 3. TJ14 maintained high ethanol productivity (46.0g/l) from 10% glucose when fermentation was done under multiple-stress conditions (41°C and pH 3.5). Furthermore, when TJ14 was subjected to a repeated-batch fermentation scheme, the growth and ethanol production of TJ14 were maintained at excellent levels over ten cycles of fermentation. Thus, the multiple-stress (Htg(+) Hep(+) Acd(+)) resistant strain TJ14 should be useful for cost-effective bioethanol production under high-temperature and acidic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. A new sensor for stress measurement based on blood flow fluctuations

    Science.gov (United States)

    Fine, I.; Kaminsky, A. V.; Shenkman, L.

    2016-03-01

    It is widely recognized that effective stress management could have a dramatic impact on health care and preventive medicine. In order to meet this need, efficient and seamless sensing and analytic tools for the non-invasive stress monitoring during daily life are required. The existing sensors still do not meet the needs in terms of specificity and robustness. We utilized a miniaturized dynamic light scattering sensor (mDLS) which is specially adjusted to measure skin blood flow fluctuations and provides multi- parametric capabilities. Based on the measured dynamic light scattering signal from the red blood cells flowing in skin, a new concept of hemodynamic indexes (HI) and oscillatory hemodynamic indexes (OHI) have been developed. This approach was utilized for stress level assessment for a few usecase scenario. The new stress index was generated through the HI and OHI parameters. In order to validate this new non-invasive stress index, a group of 19 healthy volunteers was studied by measuring the mDLS sensor located on the wrist. Mental stress was induced by using the cognitive dissonance test of Stroop. We found that OHIs indexes have high sensitivity to the mental stress response for most of the tested subjects. In addition, we examined the capability of using this new stress index for the individual monitoring of the diurnal stress level. We found that the new stress index exhibits similar trends as reported for to the well-known diurnal behavior of cortisol levels. Finally, we demonstrated that this new marker provides good sensitivity and specificity to the stress response to sound and musical emotional arousal.

  3. Focused assessment with sonography for trauma (FAST) versus multidetector computed tomography in hemodynamically unstable emergency patients.

    Science.gov (United States)

    Fornell Pérez, R

    2017-02-10

    This critically appraised topic (CAT) study aims to evaluate the quality and extent of the scientific evidence that supports the use of focused assessment with sonography for trauma (FAST) versus multidetector computed tomography (MDCT) in hemodynamically unstable trauma patients in the emergency room. An efficient search of the literature yielded several recent articles with a high level of evidence. The CAT study concludes that FAST is an acceptable initial imaging test in hemodynamically unstable patients, although its performance is limited in certain circumstances. The decision whether to use MDCT should be determined by evaluating the patient's degree of instability and the distance to the MDCT scanner. Nevertheless, few articles address the question of the distance to MDCT scanners in emergency departments. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. INSTRUMENTAL AND DI