WorldWideScience

Sample records for high energy variability

  1. A new Variable Resolution Associative Memory for High Energy Physics

    CERN Document Server

    Annovi, A; The ATLAS collaboration; Beretta, M; Bossini, E; Crescioli, F; Dell'Orso, M; Giannetti, P; Hoff, J; Liberali, V; Liu, T; Magalotti, D; Piendibene, M; Sacco, A; Schoening, A; Soltveit, H K; Stabile, A; Tripiccione, R; Vitillo, R; Volpi, G

    2011-01-01

    We describe an important advancement for the Associative Memory device (AM). The AM is a VLSI processor for pattern recognition based on Content Addressable Memory (CAM) architecture. The AM is optimized for on-line track finding in high-energy physics experiments. Pattern matching is carried out finding track candidates in coarse resolution “roads”. A large AM bank stores all trajectories of interest, called “patterns”, for a given detector resolution. The AM extracts roads compatible with a given event during detector read-out. Two important variables characterize the quality of the AM bank: its “coverage” and the level of “found fakes”. The coverage, which describes the geometric efficiency of a bank, is defined as the fraction of tracks that match at least a pattern in the bank. Given a certain road size, the coverage of the bank can be increased just adding patterns to the bank, while the number of found fakes unfortunately is roughly proportional to this number of patterns in the bank. M...

  2. Integrating High Levels of Variable Renewable Energy into Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As more variable renewable energy is integrated into electric power systems, there are a range of challenges and solutions to accommodating very high penetration levels. This presentation highlights some of the recent research in this area.

  3. Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow

    Science.gov (United States)

    Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao

    2018-05-01

    An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.

  4. High energy fast neutrons from the Harwell variable energy cyclotron. II. Biologic studies in mammalian systems

    International Nuclear Information System (INIS)

    Berry, R.J.; Bance, D.A.; Barnes, D.W.H.; Cox, R.; Goodhead, D.T.; Sansom, J.M.; Thacker, J.

    1977-01-01

    A high energy fast neutron beam potentially suitable for radiotherapy has been described in a companion paper. Its biologic effects have been studied in the following experimental systems: clonal survival and mutation induction after irradiation in vitro in Chinese hamster cells and human diploid fibroblasts; survival of reproductive capacity in vivo of murine hemopoietic colony-forming cells and murine intestinal crypts after irradiation in vivo; survival of reproductive capacity in vivo after irradiation in vitro or in vivo of murine lymphocytic leukemia cells; acute intestinal death following total body irradiation of mice and guinea pigs; and hemopoietic death following total body irradiation of mice and guinea pigs. The relative biologic effectiveness of these high energy neutrons varied among the different biologic systems, and in several cases varied with the size of the radiation dose. The oxygen enhancement ratio was studied in murine lymphocytic leukemia cells irradiated under aerobic or hypoxic conditions in vitro and assayed for survival of reproductive capacity in vivo. Compared with x-rays, the potential therapeutic gain factor for these neutrons was about 1.5. This work represents a ''radiobiologic calibration'' program which it is suggested should be undertaken before new and unknown fast neutron spectra are used for experimental radiotherapy. The results are compared with biologic studies carried out at high energy fast neutron generators in the United States

  5. Selection of variables for neural network analysis. Comparisons of several methods with high energy physics data

    International Nuclear Information System (INIS)

    Proriol, J.

    1994-01-01

    Five different methods are compared for selecting the most important variables with a view to classifying high energy physics events with neural networks. The different methods are: the F-test, Principal Component Analysis (PCA), a decision tree method: CART, weight evaluation, and Optimal Cell Damage (OCD). The neural networks use the variables selected with the different methods. We compare the percentages of events properly classified by each neural network. The learning set and the test set are the same for all the neural networks. (author)

  6. Sub-Hour X-Ray Variability of High-Energy Peaked BL Lacertae Objects

    Directory of Open Access Journals (Sweden)

    Bidzina Kapanadze

    2018-03-01

    Full Text Available The study of multi-wavelength flux variability in BL Lacertae objects is very important to discern unstable processes and emission mechanisms underlying their extreme observational features. While the innermost regions of these objects are not accessible from direct observations, we may draw conclusions about their internal structure via the detection of flux variations on various timescales, based on the light-travel argument. In this paper, we review the sub-hour X-ray variability in high-energy peaked BL Lacertae sources (HBLs that are bright at X-rays and provide us with an effective tool to study the details related to the physics of the emitting particles. The X-ray emission of these sources is widely accepted to be a synchrotron radiation from the highest-energy electrons, and the complex spectral variability observed in this band reflects the injection and radiative evolution of freshly-accelerated particles. The detection of sub-hour X-ray flux variability is very important since it can be related to the small-scale jet turbulent structures or triggered by unstable processes occurring in the vicinity of a central supermassive black hole. We summarize the fastest X-ray variability instances detected in bright HBLs and discuss their physical implications.

  7. Data re-arranging techniques leading to proper variable selections in high energy physics

    Science.gov (United States)

    Kůs, Václav; Bouř, Petr

    2017-12-01

    We introduce a new data based approach to homogeneity testing and variable selection carried out in high energy physics experiments, where one of the basic tasks is to test the homogeneity of weighted samples, mainly the Monte Carlo simulations (weighted) and real data measurements (unweighted). This technique is called ’data re-arranging’ and it enables variable selection performed by means of the classical statistical homogeneity tests such as Kolmogorov-Smirnov, Anderson-Darling, or Pearson’s chi-square divergence test. P-values of our variants of homogeneity tests are investigated and the empirical verification through 46 dimensional high energy particle physics data sets is accomplished under newly proposed (equiprobable) quantile binning. Particularly, the procedure of homogeneity testing is applied to re-arranged Monte Carlo samples and real DATA sets measured at the particle accelerator Tevatron in Fermilab at DØ experiment originating from top-antitop quark pair production in two decay channels (electron, muon) with 2, 3, or 4+ jets detected. Finally, the variable selections in the electron and muon channels induced by the re-arranging procedure for homogeneity testing are provided for Tevatron top-antitop quark data sets.

  8. A new variable-resolution associative memory for high energy physics

    International Nuclear Information System (INIS)

    Annovi, A.; Amerio, S.; Beretta, M.; Bossini, E.; Crescioli, F.; Dell'Orso, M.; Giannetti, P.; Hoff, J.; Liu, T.; Magalotti, D.; Piendibene, M.; Sacco, I.; Schoening, A.; Soltveit, H. K.; Stabile, A.; Tripiccione, R.; Liberali, V.; Vitillo, R.; Volpi, G.

    2011-01-01

    We describe an important advancement for the Associative Memory device (AM). The AM is a VLSI processor for pattern recognition based on Content Addressable Memory (CAM) architecture. The AM is optimized for on-line track finding in high-energy physics experiments. Pattern matching is carried out by finding track candidates in coarse resolution 'roads'. A large AM bank stores all trajectories of interest, called 'patterns', for a given detector resolution. The AM extracts roads compatible with a given event during detector read-out. Two important variables characterize the quality of the AM bank: its 'coverage' and the level of fake roads. The coverage, which describes the geometric efficiency of a bank, is defined as the fraction of tracks that match at least one pattern in the bank. Given a certain road size, the coverage of the bank can be increased just adding patterns to the bank, while the number of fakes unfortunately is roughly proportional to the number of patterns in the bank. Moreover, as the luminosity increases, the fake rate increases rapidly because of the increased silicon occupancy. To counter that, we must reduce the width of our roads. If we decrease the road width using the current technology, the system will become very large and extremely expensive. We propose an elegant solution to this problem: the 'variable resolution patterns'. Each pattern and each detector layer within a pattern will be able to use the optimal width, but we will use a 'don't care' feature (inspired from ternary CAMs) to increase the width when that is more appropriate. In other words we can use patterns of variable shape. As a result we reduce the number of fake roads, while keeping the efficiency high and avoiding excessive bank size due to the reduced width. We describe the idea, the implementation in the new AM design and the implementation of the algorithm in the simulation. Finally we show the effectiveness of the 'variable resolution patterns' idea using simulated

  9. The predictive value of baseline variables in the treatment of benign prostatic hyperplasia using high-energy transurethral microwave thermotherapy

    NARCIS (Netherlands)

    D'Ancona, F. C.; Francisca, E. A.; Hendriks, J. C.; Debruyne, F. M.; de la Rosette, J. J.

    1998-01-01

    To evaluate the combination of patient age, prostate size, grade of outlet obstruction and total amount of energy, all independent predictive variables of treatment outcome in patients with lower urinary tract symptoms (LUTS) and benign prostatic hyperplasia (BPH) treated with high-energy

  10. Sub-Hour X-Ray Variability of High-Energy Peaked BL Lacertae Objects

    OpenAIRE

    Bidzina Kapanadze

    2018-01-01

    The study of multi-wavelength flux variability in BL Lacertae objects is very important to discern unstable processes and emission mechanisms underlying their extreme observational features. While the innermost regions of these objects are not accessible from direct observations, we may draw conclusions about their internal structure via the detection of flux variations on various timescales, based on the light-travel argument. In this paper, we review the sub-hour X-ray variability in high-e...

  11. A new “Variable Resolution Associative Memory” for High Energy Physics

    CERN Document Server

    Annovi, A; The ATLAS collaboration; Beretta, M; Bossini, E; Crescioli, F; Dell'Orso, M; Giannetti, P; Hoff, J; Liberali, V; Liu, T; Magalotti, D; Piendibene, M; Sacco, A; Schoening, A; Soltveit, H K; Stabile, A; Tripiccione, R; Vitillo, R; Volpi, G

    2011-01-01

    We describe an important advancement for the Associative Memory device (AM). The AM is a VLSI processor for pattern recognition based on Content Addressable Memory (CAM) architecture. The AM is optimized for on-line track finding in high-energy physics experiments. Pattern matching is carried out finding track candidates in coarse resolution “roads”. A large AM bank stores all trajectories of interest, called “patterns”, for a given detector resolution. The AM extracts roads compatible with a given event during detector read-out. Two important variables characterize the quality of the AM bank: its “coverage” and the level of “found fakes”. The coverage, which describes the geometric efficiency of a bank, is defined as the fraction of tracks that match at least a pattern in the bank. Given a certain road size, the coverage of the bank can be increased just adding patterns to the bank, while the number of found fakes unfortunately is roughly proportional to this number of patterns in the bank. M...

  12. High vacuum test of the dynamic components of the cyclotron dee chamber at the 224 cm variable energy cyclotron

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.; Bandopadhyay, D.K.; Ghosh, D.K.; Gowariker, S.R.

    1979-01-01

    The 224 cm Variable Energy Cyclotron constructed and commissioned at Calcutta comprises a number of dynamic components in the high vacuum Dee Chamber. The static and dynamic conditions of these components have to be tested for high vacuum worthiness prior to their installation in the Dee Tank. A special set up was fabricated and used for simulating the Dee Chamber conditions and testing the components. A high vacuum of the order of 1 x 10 -5 torr was achieved under both dynamic and static conditions with and without coolant hydraulic pressures. The details of the set up, methods employed for the various tests carried out and the results obtained are described. (auth.)

  13. Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin; Johnson, Brian; Zhang, Yingchen; Gevorgian, Vahan; Denholm, Paul; Hodge, Bri-Mathias; Hannegan, Bryan

    2017-03-01

    What does it mean to achieve a 100% renewable grid? Several countries already meet or come close to achieving this goal. Iceland, for example, supplies 100% of its electricity needs with either geothermal or hydropower. Other countries that have electric grids with high fractions of renewables based on hydropower include Norway (97%), Costa Rica (93%), Brazil (76%), and Canada (62%). Hydropower plants have been used for decades to create a relatively inexpensive, renewable form of energy, but these systems are limited by natural rainfall and geographic topology. Around the world, most good sites for large hydropower resources have already been developed. So how do other areas achieve 100% renewable grids? Variable renewable energy (VRE), such as wind and solar photovoltaic (PV) systems, will be a major contributor, and with the reduction in costs for these technologies during the last five years, large-scale deployments are happening around the world.

  14. Impacts of High Variable Renewable Energy Futures on Wholesale Electricity Prices, and on Electric-Sector Decision Making

    Energy Technology Data Exchange (ETDEWEB)

    Seel, Joachim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deb, Sidart [LCG Consulting, Los Altos, CA (United States); Asokkumar, Aarthi [LCG Consulting, Los Altos, CA (United States); Hassanzadeh, Mohammad [LCG Consulting, Los Altos, CA (United States); Aarabali, Amirsaman [LCG Consulting, Los Altos, CA (United States)

    2018-05-11

    Increasing penetrations of variable renewable energy (VRE) can affect wholesale electricity price patterns and make them meaningfully different from past, traditional price patterns. Many long-lasting decisions for supply- and demand-side electricity infrastructure and programs are based on historical observations or assume a business-as-usual future with low shares of VRE. Our motivating question is whether certain electric-sector decisions that are made based on assumptions reflecting low VRE levels will still achieve their intended objective in a high VRE future. We qualitatively describe how various decisions may change with higher shares of VRE and outline an analytical framework for quantitatively evaluating the impacts of VRE on long-lasting decisions. We then present results from detailed electricity market simulations with capacity expansion and unit commitment models for multiple regions of the U.S. for low and high VRE futures. We find a general decrease in average annual hourly wholesale energy prices with more VRE penetration, increased price volatility and frequency of very low-priced hours, and changing diurnal price patterns. Ancillary service prices rise substantially and peak net-load hours with high capacity value are shifted increasingly into the evening, particularly for high solar futures. While in this report we only highlight qualitatively the possible impact of these altered price patterns on other demand- and supply-side electric sector decisions, the core set of electricity market prices derived here provides a foundation for later planned quantitative evaluations of these decisions in low and high VRE futures.

  15. Effect of process variables on synthesis of MgB2 by a high energy ball mill

    Directory of Open Access Journals (Sweden)

    Kurama Haldun

    2016-01-01

    Full Text Available The discovery of superconductivity of MgB2 in 2001, with a critical temperature of 39 K, offered the promise of important large-scale applications at around 20 K. Except than the other featured synthesis methods, mechanical activation performed by high energy ball mills, as bulk form synthesis or as a first step of wire and thin film productions, has considered as an effective alternative production route in recent years. The process of mechanical activation (MA starts with mixing the powders in the right proportion and loading the powder mixture into the mill with the grinding media. The milled powder is then consolidated into a bulk shape and heat-treated to obtain desired microstructure and properties. Thus, the important components of the MA process are the raw materials, mill type and process variables. During the MA process, heavy deformation of particles occure. This is manifested by the presence of a variety of crystal defects such as dislocations, vacancies, stacking faults and increased number of particle boundaries. The presence of this defect structure enhances the diffusivity of solute hence the critical currents and magnetic flux pinning ability of MgB2 are improved. The aim of the present study is to determine the effects of process variables such as ball-to-powder mass ratio, size of balls, milling time, annealing temperature and contribution of process control agent (toluene on the product size, morphology and conversion level of precursor powders to MgB2 after subsequent heat treatment. The morphological analyses of the samples were performed by a high vacuum electron microscope ZEISS SUPRA VP 50. The phase compositions of the samples were performed with an Rigaku-Rint 2200 diffractometer, with nickel filtered Cu Kα radiation and conversion level. The MgB2 phase wt % was calculated by the Rietveld refinement method. The obtained results were discussed according to the process variables to find out their affect on the structure

  16. Spatiotemporal Co-variability of Surface Climate for Renewable Energy across the Contiguous United States: Role of the North Atlantic Subtropical High

    Science.gov (United States)

    Doering, K.; Steinschneider, S.

    2017-12-01

    The variability of renewable energy supply and drivers of demand across space and time largely determines the energy balance within power systems with a high penetration of renewable technologies. This study examines the joint spatiotemporal variability of summertime climate linked to renewable energy production (precipitation, wind speeds, insolation) and energy demand (temperature) across the contiguous United States (CONUS) between 1948 and 2015. Canonical correlation analysis is used to identify the major modes of joint variability between summer wind speeds and precipitation and related patterns of insolation and temperature. Canonical variates are then related to circulation anomalies to identify common drivers of the joint modes of climate variability. Results show that the first two modes of joint variability between summer wind speeds and precipitation exhibit pan-US dipole patterns with centers of action located in the eastern and central CONUS. Temperature and insolation also exhibit related US-wide dipoles. The relationship between canonical variates and lower-tropospheric geopotential height indicates that these modes are related to variability in the North Atlantic subtropical high (NASH). This insight can inform optimal strategies for siting renewables in an interconnected electric grid, and has implications for the impacts of climate variability and change on renewable energy systems.

  17. Impacts of High Variable Renewable Energy Futures on Wholesale Electricity Prices, and on Electric-Sector Decision Making

    OpenAIRE

    Seel, J; Mills, AD; Wiser, RH

    2018-01-01

    Increasing penetrations of variable renewable energy (VRE) can affect wholesale electricity price patterns and make them meaningfully different from past, traditional price patterns. Many long-lasting decisions for supply- and demand-side electricity infrastructure and programs are based on historical observations or assume a business-as-usual future with low shares of VRE. Our motivating question is whether certain electric-sector decisions that are made based on assumptions reflecting low V...

  18. IMP-8 observations of the spectra, composition, and variability of solar heavy ions at high energies relevant to manned space missions

    International Nuclear Information System (INIS)

    Tylka, Allan J.; Dietrich, William F.

    1999-01-01

    In more than 25 years of almost continuous observations, the University of Chicago's Cosmic Ray Telescope (CRT) on IMP-8 has amassed a unique database on high-energy solar heavy ions of potential relevance to manned spaceflight. In the very largest particle events, IMP-8/CRT has even observed solar Fe ions above the Galactic cosmic ray background up to ∼800 MeV/nucleon, an energy sufficiently high to penetrate nearly 25 g/cm 2 of shielding. IMP-8/CRT observations show that high-energy heavy-ion spectra are often surprisingly hard power laws, without the exponential roll-offs suggested by stochastic acceleration fits to lower energy measurements alone. Also, in many solar particle events the Fe/O ratio grows with increasing energy, contrary to the notion that ions with higher mass-to-charge ratios should be less abundant at higher energies. Previous studies of radiation hazards for manned spaceflight have often assumed heavy-ion composition and steeply-falling energy spectra inconsistent with these observations. Conclusions based on such studies should therefore be re-assessed. The significant event-to-event variability observed in the high-energy solar heavy ions also has important implications for strategies in building probabilistic models of solar particle radiation hazards

  19. High Energy $\

    CERN Multimedia

    2002-01-01

    This experiment is a high statistics exposure of BEBC filled with hydrogen to both @n and &bar.@n beams. The principal physics aims are : \\item a) The study of the production of charmed mesons and baryons using fully constrained events. \\end{enumerate} b) The study of neutral current interactions on the free proton. \\item c) Measurement of the cross-sections for production of exclusive final state N* and @D resonances. \\item d) Studies of hadronic final states in charged and neutral current reactions. \\item e) Measurement of inclusive charged current cross-sections and structure functions. \\end{enumerate}\\\\ \\\\ The neutrino flux is determined by monitoring the flux of muons in the neutrino shield. The Internal Picket Fence and External Muon Identifier of BEBC are essential parts of the experiment. High resolution cameras are used to search for visible decays of short-lived particles.

  20. High energy

    International Nuclear Information System (INIS)

    Bonner, B.E.; Roberts, J.B. Jr.

    1993-01-01

    We report here on progress made for the period from December 1, 1992 (the date of submission of our latest progress report) to November 30, 1993 for DOE Grant No. DE-FG05-92ER40717. The new results from the SMC experiment have generated a buzz of theoretical activity. Our involvement with the D0 experiment and the upgrade has increased substantially during the past two years so that we now have six people heavily committed and making what can only be described as a large and disproportionate impact on D0 physics output. Some of the new developments made here at Rice in Neural Network and Probability Density Estimation techniques for data analysis promise to have applications both in D0 and beyond. We report a load of new results from our high-p t jet photoproduction experiment. In addition we have been working on KTeV, albeit without having adequate funding for this work. Progress on the theoretical front has been nothing short of amazing, as is reported herein. In a grand lecture tour during this sabbatical year, Paul Stevenson has already reported his breakthroughs at ten institutions, including CERN, Oxford, Cambridge, Rutherford Lab, Imperial College, and Durham University. The group at Rice University has had an exceptionally productive year and we are justifiably proud of the progress which is reported here

  1. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  2. Adhesive bonding using variable frequency microwave energy

    Science.gov (United States)

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  3. NuSTAR detection of high-energy X-ray emission and rapid variability from Sagittarius A{sup *} flares

    Energy Technology Data Exchange (ETDEWEB)

    Barrière, Nicolas M.; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Zoglauer, Andreas [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Baganoff, Frederick K. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Kgs. Lyngby (Denmark); Dexter, Jason [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States); Grefenstette, Brian; Harrison, Fiona A.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, Caltech, Pasadena, CA 91125 (United States); Hailey, Charles J.; Mori, Kaya; Zhang, Shuo [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W. [X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-05-01

    Sagittarius A{sup *} harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius A{sup *} spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours at a time. The physical processes giving rise to the X-ray flares are uncertain. Here we report the detection with the NuSTAR observatory in Summer and Fall 2012 of four low to medium amplitude X-ray flares to energies up to 79 keV. For the first time, we clearly see that the power-law spectrum of Sagittarius A{sup *} X-ray flares extends to high energy, with no evidence for a cutoff. Although the photon index of the absorbed power-law fits are in agreement with past observations, we find a difference between the photon index of two of the flares (significant at the 95% confidence level). The spectra of the two brightest flares (∼55 times quiescence in the 2-10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters obtained with synchrotron models are, for the X-ray emission, physically more reasonable than those obtained with inverse Compton models. One flare exhibits large and rapid (<100 s) variability, which, considering the total energy radiated, constrains the location of the flaring region to be within ∼10 Schwarzschild radii of the black hole.

  4. Energy conservation by reducing process variability

    Energy Technology Data Exchange (ETDEWEB)

    Wising, Ulrika; Lafourcade, Sebastien [Pepite S.A., Liege (Belgium); Mack, Philippe [Pepite Technologies Inc., Montreal (Canada)

    2011-12-21

    Energy conservation is becoming an increasingly important instrument to stay competitive in today is increasingly global market. Important investments have been made in infrastructure and personnel in order to improve the management of energy such as increased metering, energy dashboards, energy managers, etc. Despite these investments, the results have not materialized and there is still a significant potential to further reduce energy consumption. In this paper a new methodology will be presented that helps industry better operate existing assets in order to reduce energy consumption, without having to make capital investments. The methodology uses a combination of advanced data analysis tools and a specific implementation scheme that has lead to significant savings in industry. The advanced data analysis tools are used to analyze the variability of the process in order to assess when the plant has been operated well or not so well in the past. By finding the root causes of these variations and the key variables that can explain them, improved operating guidelines and models can be developed and implemented. The specific implementation scheme is an important part of the methodology as it involves the people operating the plant. Several user cases will be presented showing an energy conservation of between 10%-20% without capital investments necessary. (author)

  5. Quantification of variables that affect energy consumption

    International Nuclear Information System (INIS)

    Warren, C.S.

    1993-01-01

    Facility energy consumption is the summation of a number of contributory factors, caused by equipment that uses energy in response to demands placed by the user and according to its particular design. While energy efficiency improvements usually concentrate on individual parts or systems, overall energy consumption is analyzed by examining the use of specific fuels. Because independent variables effect the consumption of these fuels, accurate comparisons of a facility's energy consumption for time-measured periods must include these effects. In many cases, it is possible to determine and quantify the effects of one or more of the independent variables through a statistically valid regression analysis of the data. The regression model can be linear, or be dependent on other functions such as powers, time lead or lag, or exponential. The most common model is linear, but other dependencies are often encountered. Regression analyses are not difficult to accomplish, and are included as one of the tools in most spreadsheet software. The analyses provide the energy manager with a means to better understand the energy consumption of his/her facility

  6. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  7. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  8. MAXI INVESTIGATION INTO THE LONG-TERM X-RAY VARIABILITY FROM THE VERY-HIGH-ENERGY γ-RAY BLAZAR Mrk 421

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, Naoki [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA) 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Sato, Ryosuke; Ueda, Yoshihiro; Hayashida, Masaaki; Shidatsu, Megumi; Kawamuro, Taiki [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Ueno, Shiro; Matsuoka, Masaru [ISS Science Project Office, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Sugizaki, Mutsumi; Sugimoto, Juri; Mihara, Tatehiro [MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Negoro, Hitoshi, E-mail: n-isobe@ir.isas.jaxa.jp [Department of Physics, Nihon University, 1-8-14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2015-01-01

    The archetypical very-high-energy γ-ray blazar Mrk 421 was monitored for more than three years with the Gas Slit Camera on board Monitor of All Sky X-ray Image (MAXI), and its long-term X-ray variability was investigated. The MAXI light curve in the 3-10 keV range was transformed into the periodogram in the frequency range f = 1 × 10{sup –8}-2 × 10{sup –6} Hz. The artifacts on the periodogram, resulting from data gaps in the observed light curve, were extensively simulated for variations with a power-law-like power spectrum density (PSD). By comparing the observed and simulated periodograms, the PSD index was evaluated as α = 1.60 ± 0.25. This index is smaller than that obtained in the higher-frequency range (f ≳ 1 × 10{sup –5} Hz), namely, α = 2.14 ± 0.06 in the 1998 ASCA observation of the object. The MAXI data impose a lower limit on the PSD break at f {sub b} = 5 × 10{sup –6} Hz, consistent with the break of f {sub b} = 9.5 × 10{sup –6} Hz suggested from the ASCA data. The low-frequency PSD index of Mrk 421 derived with MAXI falls well within the range of typical values among nearby Seyfert galaxies (α = 1-2). The physical implications from these results are briefly discussed.

  9. Variable-energy drift-tube linacs

    International Nuclear Information System (INIS)

    Swenson, D.A.; Boyd, T.J. Jr.; Potter, J.M.; Stovall, J.E.

    1982-01-01

    Practical applications of ion linacs are more viable now than ever before because of the recent development of the radio-frequency quadrupole accelerating structure, as well as other technological advances developed under the Pion Generator for Medical Irradiations program. This report describes a practical technique for varying the energy of drift-tube linacs and thus further broadening the possibilities for linac applications. This technique involves using the post couplers (normally used to flatten and stabilize the electric fields) to create a step in the fields, thus terminating the acceleration process. In the examples given for a 70-MeV accelerator design, when using this technique the energy is continually variable down to 20 MeV, while maintaining a small energy spread

  10. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  11. The high energy galaxy

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  12. ECR ion source for variable energy cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Bose, D K; Taki, G S; Nabhiraj, P Y; Pal, G; Dasgupta, B; Mallik, C; Das, S K; Bandopadhaya, D K; Bhandari, R K [Variable Energy Cyclotron Centre, Calcutta (India)

    1995-09-01

    Some performance characteristics of 6.4 GHz two stage ECR ion source which was under development at this centre is presented. The present ion source will facilitate acceleration of light heavy ions with the existing k=130 variable energy cyclotron. Multiply charged heavy ion (MCHI) beam from the source will also be utilized for atomic physics studies. Oxygen beam has already been used for ion implantation studies. The external injection system under development is nearing completion. Heavy ion beam from cyclotron is expected by end of 1995. (author).

  13. Very-high-energy gamma-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs

    Science.gov (United States)

    Lopez-Coto, Ruben

    2015-07-01

    The history of astronomy is as ancient as the reach of our written records. All the human civilizations have been interested in the study and interpretation of the night sky and its objects and phenomena. These observations were performed with the naked eye until the beginning of the 17th century, when Galileo Galilei started to use an instrument recently developed called telescope. Since then, the range of accessible wavelengths has been increasing, with a burst in the 20th century with the developing of instruments to observe them: antennas (radio and submillimeter), telescopes (optical, IR) and satellites (UV, X-rays and soft gamma rays). The last wavelength range accessed was the Very-High-Energy (VHE) gamma rays. At this range fluxes are so low that it is not possible to use space-based instruments with typical collection areas of O(1) m2. We must resort to the imaging atmospheric Cherenkov technique, which is based on the detection of the flashes of Cherenkov light that VHE gamma rays produce when they interact with the Earth's atmosphere. The field is very young, with the first source discovered in 1989 by the pioneering Whipple telescope. It is very dynamic with more than 150 sources detected to date, most of them by MAGIC, HESS and VERITAS, that make up the current generation of instruments. Finally, the field is also very promising, with the preparation of a next generation of imaging atmospheric Cherenkov telescopes: CTA, that is expected to start full operation in 2020. The work presented in this thesis comprises my efforts to take the ground-based γ-ray astronomy one step forward. Part I of the thesis is an introduction to the non- thermal universe, the imaging atmospheric Cherenkov technique and the Imaging Atmospheric Cherenkov Telescopes (IACTs) MAGIC and CTA. Part II deals with several ways to reduce the trigger threshold of IACTs. This includes the simula- tion, characterization and test of an analog trigger especially designed to achieve the

  14. High energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  15. High energy astrophysics

    International Nuclear Information System (INIS)

    Engel, A.R.

    1979-01-01

    High energy astrophysical research carried out at the Blackett Laboratory, Imperial College, London is reviewed. Work considered includes cosmic ray particle detection, x-ray astronomy, gamma-ray astronomy, gamma and x-ray bursts. (U.K.)

  16. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  17. Systematic Multi-variable H-infinity Control Design for Primary Frequency Regulation in Stand-alone Microgrids with High Penetration of Renewable Energy Sources

    OpenAIRE

    Lam , Quang Linh; Bratcu , Antoneta Iuliana; Riu , Delphine

    2016-01-01

    International audience; In this paper, a systematic design of a robust multi-variable control structure for primary frequency regulation in microgrids with high rate of renewable source penetration is proposed. The considered microgrid represents a diesel-photovoltaic-supercapacitor hybrid power generation system operating in stand-alone mode. The proposed control structure relies on a two-level architecture: classical PI-based current tracking controllers are placed on the low control level ...

  18. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  19. Progress report: Variable Energy Cyclotron Centre, Calcutta

    International Nuclear Information System (INIS)

    1999-01-01

    This volume of the progress report brings out the scientific and technical activities of Variable Energy Cyclotron Centre, Calcutta during the year 1999. This includes brief review of the various R and D activities of the Centre and outside users of the cyclotron from the universities and other research institutes. The operational activities of the cyclotron with ECR ion sources, accelerator oriented research activities, activities on detector, target and electronics are reported. The activities of the Computer and Informatics group are described. The status report of the ongoing projects is also provided. The main activities of the superconducting cyclotron project, radioactive ion beam project, heavy ion experimental facility, advanced computational facility, recovery and analysis of helium from hot springs and material science research are described

  20. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  1. High energy radiation detector

    International Nuclear Information System (INIS)

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  2. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  3. Energy, variability and weather finance engineering

    Science.gov (United States)

    Roussis, Dimitrios; Parara, Iliana; Gournari, Panagiota; Moustakis, Yiannis; Dimitriadis, Panayiotis; Iliopoulou, Theano; Koutsoyiannis, Demetris; Karakatsanis, Georgios

    2017-04-01

    Most types of renewable energies are characterized by intense intermittency, causing significant instabilities to the grid; further requiring additional infrastructure (e.g. pumped-storage) for buffering hydrometeorological uncertainties, as well as complex operational rules for load balancing. In addition, most intermittent renewable units are subsidized, creating significant market inefficiencies. Weather derivatives comprise mature financial tools for integrating successfully the intermittent-load and base-load components into a unified hybrid energy system and establish their operation within a generalized uncertainty management market. With a growing global market share and 46% utilization of this financial tool by the energy industry and 12% by agriculture (that partially concerns biofuel resources), weather derivatives are projected to constitute a critical subsystem of many grids for buffering frequent hydrometeorological risks of low and medium impacts -which are not covered by standard insurance contracts that aim exclusively at extreme events and high financial damages. In this context, we study the attributes of hydrometeorological time series in a remote and small island in Greece, powered by an autonomous hybrid energy system. Upon the results we choose the optimal underlying index and we further compose and engineer a weather derivative with features of a typical option contract -which we consider most flexible and appropriate for the case- to test our assumptions on its beneficiary effects for both the budget of private energy producers and the island's public administration. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  4. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1992-01-01

    This progress report discusses research by Columbia University staff in high energy physics. Some of the topics discussed are as follows: lattice gauge theory; quantum chromodynamics; parity doublets; solitons; baryon number violation; black holes; magnetic monopoles; gluon plasma; Chern-Simons theory; and the inflationary universe

  5. High energy astrophysics

    International Nuclear Information System (INIS)

    Shklorsky, I.S.

    1979-01-01

    A selected list of articles of accessible recent review articles and conference reports, wherein up-to-date summaries of various topics in the field of high energy astrophysics can be found, is presented. A special report outlines work done in the Soviet Union in this area. (Auth.)

  6. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  7. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  8. High Energy Physics

    Science.gov (United States)

    Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP

  9. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  10. High energy dosimetry

    International Nuclear Information System (INIS)

    Ruhm, W.

    2010-01-01

    Full text: Currently, quantification of doses from high-energy radiation fields is a topical issue. This is so because high-energy neutrons play an important role for radiation exposure of air crew members and personnel outside the shielding of ion therapy facilities. In an effort to study air crew exposure from cosmic radiation in detail, two Bonner Sphere Spectrometers (BSSs) have recently been installed to measure secondary neutrons from cosmic radiation, one at the environmental research station 'Schneefernerhaus' at an altitude of 2650 m on the Zugspitze mountain, Germany, the other at the Koldewey station close to the North Pole on Spitsbergen. Based on the measured neutron fluence distributions and on fluence-to-dose conversion coefficients, mean ambient dose equivalent rate values of 75.0 ± 2.9 nSv/h and 8.7 ± 0.6 nSv/h were obtained for October 2008, respectively. Neutrons with energies above about 20 MeV contribute about 50% to dose, at 2650 m. Ambient dose equivalent rates measured by means of a standard rem counter and an extended rem counter at the Schneefernerhaus confirm this result. In order to study the response of state-of-the-art radiation instrumentation in such a high-energy radiation field, a benchmark exercise that included both measurements in and simulation of the stray neutron radiation field at the high-energy particle accelerator at GSI, Germany, were performed. This CONRAD (COordinated Network for RAdiation Dosimetry) project was funded by the European Commission, and the organizational framework was provided by the European Radiation Dosimetry Group, EURADOS. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers suggest the neutron fluence distributions to be very similar to those of secondary neutrons from cosmic radiation. The results of this intercomparison exercise in terms of ambient dose equivalent are also discussed

  11. High energy physics problems

    International Nuclear Information System (INIS)

    Arbuzov, B.A.

    1977-01-01

    Described are modern views on the particle structure and particle interactions at high energies. According to the latest data recieved, all particles can be classified in three groups: 1) strong interacting hadrons; 2) leptons, having no strong interactions; 3) photon. The particle structure is described in a quark model, and with the use of gluons. The elementary particle theory is based on the quantum field theory. The energy increase of interacting particles enables to check the main theory principles, such as conventions for causality, relativistic invariance and unitarity. Investigations of weak interactions are of great importance. The progress in this field is connected with unified gauge theories of weak and electromagnetic interactions. For weak interactions promissing are the experiments with colliding electron-proton rings. The new data, especially at higher energies, will lead to a further refinement of the nature of particles and their interactions

  12. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    Science.gov (United States)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  13. Conspicuous plumage colours are highly variable

    OpenAIRE

    Delhey, Kaspar; Szecsenyi, Beatrice; Nakagawa, Shinichi; Peters, Anne

    2017-01-01

    Elaborate ornamental traits are often under directional selection for greater elaboration, which in theory should deplete underlying genetic variation. Despite this, many ornamental traits appear to remain highly variable and how this essential variation is maintained is a key question in evolutionary biology. One way to address this question is to compare differences in intraspecific variability across different types of traits to determine whether high levels of variation are associated wit...

  14. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  15. Quantitative variability of renewable energy resources in Norway

    Science.gov (United States)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  16. High energy medical accelerators

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1990-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (carbon, oxygen, neon), has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. These high energy medical accelerators are presented in this paper. (author) 15 refs.; 14 figs.; 8 tabs

  17. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  18. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  19. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1985-05-01

    The conclusions are relatively simple, but represent a considerable challenge to the machine builder. High luminosity is essential. We may in the future discover some new kind of high cross section physics, but all we know now indicates that the luminosity has to increase as the square of the center of mass energy. A reasonable luminosity to scale from for electron machines would be 10 33 cm -2 s -1 at a center of mass energy of 3 TeV. The required emittances in very high energy machines are small. It will be a real challenge to produce these small emittances and to maintain them during acceleration. The small emittances probably make acceleration by laser techniques easier, if such techniques will be practical at all. The beam spot sizes are very small indeed. It will be a challenge to design beam transport systems with the necessary freedom from aberration required for these small spot sizes. It would of course help if the beta functions at the collision points could be reduced. Beam power will be large - to paraphrase the old saying, ''power is money'' - and efficient acceleration systems will be required

  20. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  1. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  2. High frequency energy measurements

    International Nuclear Information System (INIS)

    Stotlar, S.C.

    1981-01-01

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  3. Conspicuous plumage colours are highly variable.

    Science.gov (United States)

    Delhey, Kaspar; Szecsenyi, Beatrice; Nakagawa, Shinichi; Peters, Anne

    2017-01-25

    Elaborate ornamental traits are often under directional selection for greater elaboration, which in theory should deplete underlying genetic variation. Despite this, many ornamental traits appear to remain highly variable and how this essential variation is maintained is a key question in evolutionary biology. One way to address this question is to compare differences in intraspecific variability across different types of traits to determine whether high levels of variation are associated with specific trait characteristics. Here we assess intraspecific variation in more than 100 plumage colours across 55 bird species to test whether colour variability is linked to their level of elaboration (indicated by degree of sexual dichromatism and conspicuousness) or their condition dependence (indicated by mechanism of colour production). Conspicuous colours had the highest levels of variation and conspicuousness was the strongest predictor of variability, with high explanatory power. After accounting for this, there were no significant effects of sexual dichromatism or mechanisms of colour production. Conspicuous colours may entail higher production costs or may be more sensitive to disruptions during production. Alternatively, high variability could also be related to increased perceptual difficulties inherent to discriminating highly elaborate colours. Such psychophysical effects may constrain the exaggeration of animal colours. © 2017 The Author(s).

  4. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  5. High energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1991-01-01

    This progress report presents a review of research done over the past five years by the Duke High Energy Physics Group. This research has been centered at Fermilab where we have had a continuing involvement with both the Tevatron collider and fixed-target programs. In 1988 we began extensive detector R ampersand D for the SSC through its Major Subsystem Program. Duke has been an active member of the Solenoidal Detector Collaboration (SDC) since its formation. These last five years has also been used to finish the analysis of data from a series of hybrid bubble chamber experiments which formed the core of Duke's research program in the early 1980's

  6. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  7. Prospects at high energies

    International Nuclear Information System (INIS)

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs

  8. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb - 1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989

  9. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  10. Automation of variable low-energy positron beam experiments

    CERN Document Server

    Jayapandian, J; Amarendra, G; Venugopal-Rao, G; Purniah, B; Viswanathan, B

    2000-01-01

    By exploiting the special BIOS interrupt (INT 1CH) of PC in conjunction with a compatible high-voltage controller card and menu-driven control program, we report here the automation of variable low-energy positron beam experiments. The beam experiment consists of monitoring the Doppler broadening lineshape parameters corresponding to the annihilation 511 keV gamma-ray at various positron beam implantation energies. The variation and monitoring of the sample high voltage, which determines positron beam energy, is carried out using a controller add-on card coupled to a 0-30 kV high-voltage unit. The design features of this controller card are discussed. This controller card is housed in a PC, which also houses a multichannel analyser (MCA) card. The MCA stores the Doppler energy spectrum of the annihilation gamma-ray. The interactive control program, written in Turbo C, carries out the assigned tasks. The design features of the automation and results are presented.

  11. High energy magnetic excitations

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1988-01-01

    The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La 2 CuO 4 , which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)

  12. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  13. Dual-energy chest imaging with the variable compensation technique

    International Nuclear Information System (INIS)

    Dobbins, J.T.; Powell, A.O.

    1988-01-01

    The authors reported on a new imaging algorithm, termed the variable compensation (VC) technique, that combines the signal-to-noise ratio (S/N) advantages of x-ray beam compensation with the ability to adjust retrospectively the amount of displayed image equalization. The VC technique acquires a compensated image of the patient and also an image of the modulated beam profile incident on the patient. A fraction of the beam profile image is then subtracted from the compensated image. A limitation of traditional dual-energy techniques is the significant S/N degradation in poorly penetrated regions. Their new VC technique permits improvement in image S/N before formation of the dual-energy image pair. Specifically, the authors subtract 100% of the beam image from the compensated image for both the high- and low-energy images and produce a pair of images that appear similar to the normal high- and low-energy pair, except for improved S/N in the mediastinum due to the beam compensator. S/N measurements in tissue-canceled chest phantom images show the improved S/N visualization of calcified squares in the mediastinum with our technique

  14. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  15. Spatiotemporal variability of marine renewable energy resources in Norway

    NARCIS (Netherlands)

    Varlas, George; Christakos, Konstantinos; Cheliotis, Ioannis; Papadopoulos, A.; Steeneveld, G.J.

    2017-01-01

    Marine Renewable Energy (MRE) resources such as wind and wave energy depend on the complex behaviour of weather and climatic conditions which determine the development of MRE technologies, energy grid, supply and prices. This study investigates the spatiotemporal variability of MRE resources along

  16. Integrated assessment of variable density-viscosity groundwater flow for a high temperature mono-well aquifer thermal energy storage (HT-ATES) system in a geothermal reservoir

    NARCIS (Netherlands)

    Zeghici, Răzvan Mihai; Oude Essink, Gualbert H.P.; Hartog, Niels; Sommer, Wijb

    2015-01-01

    The use of groundwater systems for heat storage increasingly gains interest among water managers, policy makers and researchers as a way to increase the efficiency of energy production and to allow the re-use of waste heat. Typically, mono-well storage systems are thought to require the use of

  17. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10 5 Z's by the end of 1989 and 10 6 in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry

  18. High energy plasma accelerators

    International Nuclear Information System (INIS)

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  19. High efficiency, variable geometry, centrifugal cryogenic pump

    International Nuclear Information System (INIS)

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  20. High energy neutron generator

    International Nuclear Information System (INIS)

    Barjon, R.; Breynat, G.

    1987-01-01

    This patent describes a generator of fast neutrons only slightly contaminated by neutrons of energy less than 15 MeV, comprising a source of charged particles of energy equal to at least 15 MeV, a target made of lithium deuteride, and means for cooling the target. The target comprises at least two elements placed in series in the path of the charged particles and separated from each other, the thickness of each of the elements being selected as a function of the average energy of the charged particles emitted from the source and the energy of the fast neutrons to be generated such that neutrons of energy equal to at least 15 MeV are emitted in the forward direction in response to the bombardment of the target from behind by the charged particles. The target cooling means comprises means for circulating between and around the elements a gas which does not chemically react with lithium deuteride

  1. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  2. Responding to high energy prices: energy management services

    International Nuclear Information System (INIS)

    Raynolds, M.

    2001-01-01

    Rapid growth in the number and sophistication of energy management companies has been observed in the wake of rising energy prices. These companies offer energy-efficiency consulting services to utilities, government and industry with the promise of improved cost efficiency, marketplace competitiveness and environmental commitments. The environmental benefits result from the reduction in emissions and pollutants associated with power production and natural gas used for space heating. In general, the stock in trade of these energy management companies is the energy audit involving evaluation of existing equipment in buildings and facilities and the resulting recommendations to install energy-efficient equipment such as lighting retrofits, boiler replacement, chiller replacement, variable speed drives, high-efficiency motors, improved insulation and weather proofing, water heaters and piping. The North American market for energy management services was estimated in 1997 at $208 billion (rising to $350 billion by 2004). Current market penetration is less than two per cent

  3. Exploiting variability for energy optimization of parallel programs

    Energy Technology Data Exchange (ETDEWEB)

    Lavrijsen, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Iancu, Costin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); de Jong, Wibe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Xin [Georgia Inst. of Technology, Atlanta, GA (United States); Schwan, Karsten [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-04-18

    Here in this paper we present optimizations that use DVFS mechanisms to reduce the total energy usage in scientific applications. Our main insight is that noise is intrinsic to large scale parallel executions and it appears whenever shared resources are contended. The presence of noise allows us to identify and manipulate any program regions amenable to DVFS. When compared to previous energy optimizations that make per core decisions using predictions of the running time, our scheme uses a qualitative approach to recognize the signature of executions amenable to DVFS. By recognizing the "shape of variability" we can optimize codes with highly dynamic behavior, which pose challenges to all existing DVFS techniques. We validate our approach using offline and online analyses for one-sided and two-sided communication paradigms. We have applied our methods to NWChem, and we show best case improvements in energy use of 12% at no loss in performance when using online optimizations running on 720 Haswell cores with one-sided communication. With NWChem on MPI two-sided and offline analysis, capturing the initialization, we find energy savings of up to 20%, with less than 1% performance cost.

  4. Renewable Energy Riding High

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    China is putting greater emphasis on green energy as it tries to clean up industry and meet target for cuts in carbon emissions over the past two years, China has already leapfrogged competitors from Denmark, Germany, Spain and the United States to become the world's largest maker of wind turbines and solar panels. At the same time, the country is also taking steps to build more nuclear reactors and energy-efficient coal power plants.

  5. Energy peaks: A high energy physics outlook

    Science.gov (United States)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  6. Cyclotrons with fast variable and/or multiple energy extraction

    Directory of Open Access Journals (Sweden)

    C. Baumgarten

    2013-10-01

    Full Text Available We discuss the possibility in principle of stripping extraction in combination with reverse bends in isochronous separate-sector cyclotrons (and/or fixed field alternating gradient accelerators. If one uses reverse bends between the sectors (instead of or in combination with drifts and places stripper foils at the sector exit edges, the stripped beam has a reduced bending radius and it should be able to leave the cyclotron within the range of the valley—even if the beam is stripped at less than full energy. We are especially interested in stripping of H_{2}^{+}, as it doubles the charge to mass ratio of the ions. However the method could be applied to other ions or ionized molecules as well. For the production of proton beams by stripping extraction of an H_{2}^{+} beam, we discuss possible designs for three types of machines: First, a low-energy cyclotron for the simultaneous production of several beams at multiple energies—for instance 15, 30, and 70 MeV—thus allowing beam delivery on several isotope production targets. In this case it can be an advantage to have a strong energy dependence of the direction of the extracted beam. Second, we consider a fast variable-energy proton machine for cancer therapy that should allow extraction (of the complete beam at all energies in the range of about 70 MeV to about 250 MeV into the same beam line. Third, we consider a high-intensity high-energy machine, where the main design goals are extraction with low losses, low activation of components, and high reliability. Especially if such a machine is considered for an accelerator driven system (ADS, this extraction mechanism has advantages: Beam trips by the failure of electrostatic elements could be avoided and the turn separation would be less critical, which allows operation at lower main cavity voltages. This would in turn reduce the number of rf trips. The price that has to be paid for these advantages is an increase in size and/or field

  7. BROOKHAVEN: High energy gold

    International Nuclear Information System (INIS)

    Bleser, Ed

    1992-01-01

    On April 24, Brookhaven's Alternating Gradient Synchrotron (AGS) started to deliver gold ions at 11.4 GeV per nucleon (2,000 GeV per ion) to experimenters who were delighted not only to receive the world's highest energy gold beam but also to receive it on schedule

  8. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Carol J. [Fermilab; Taylor, J. [Huddersfield U.; Edgecock, R. [Huddersfield U.; Schulte, R. [Loma Linda U.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  9. QED at high energies

    International Nuclear Information System (INIS)

    Gastmans, R.

    1980-01-01

    This chapter demonstrates that to establish the validity of QED at the level of a few percent requires knowledge of the cross sections of the QED processes to the same accuracy. Discusses the virtual radiative corrections to the processes. Calculates the vertex correction effect to illustrate the technique. Examines the hadronic vacuum polarization because of its numerical significance. Calculates the effects of soft real photon bremsstrahlung, and shows that they cancel infrared divergences introduced by the virtual corrections. Outlines the analytical work and introduces the dimensional regularization of the infrared divergences as for the virtual photon case. Describes the calculation of the cross section for the bremsstrahlung processes in the ultra-relativistic limit. Shows the surprising simplicity of these cross sections. Discusses the phase space and the choice of integration variables in which the selection criteria must be expressed. Concludes with a comparison of some of the latest experiments on these QED reactions

  10. SRAM Design for Wireless Sensor Networks Energy Efficient and Variability Resilient Techniques

    CERN Document Server

    Sharma, Vibhu; Dehaene, Wim

    2013-01-01

    This book features various, ultra low energy, variability resilient SRAM circuit design techniques for wireless sensor network applications. Conventional SRAM design targets area efficiency and high performance at the increased cost of energy consumption, making it unsuitable for computation-intensive sensor node applications.  This book, therefore, guides the reader through different techniques at the circuit level for reducing   energy consumption and increasing the variability resilience. It includes a detailed review of the most efficient circuit design techniques and trade-offs, introduces new memory architecture techniques, sense amplifier circuits and voltage optimization methods for reducing the impact of variability for the advanced technology nodes.    Discusses fundamentals of energy reduction for SRAM circuits and applies them to energy limitation challenges associated with wireless sensor  nodes; Explains impact of variability resilience in reducing the energy consumption; Describes various...

  11. High energy cosmic ray astronomy

    International Nuclear Information System (INIS)

    Fonseca, V.

    1996-01-01

    A brief introduction to High Energy Cosmic Ray Astronomy is presented. This field covers a 17 decade energy range (2.10 4 -10 20 ) eV. Recent discoveries done with gamma-ray detectors on-board satellites and ground-based Cherenkov devices are pushing for a fast development of new and innovative techniques, specially in the low energy region which includes the overlapping of satellite and ground-based measurements in the yet unexplored energy range 20 keV-250 GeV. Detection of unexpected extremely high energy events have triggered the interest of the international scientific community. (orig.)

  12. High Energy Materials

    Indian Academy of Sciences (India)

    IAS Admin

    Propellants used in rockets, pyrotechnics used in festivities, explosives used for .... In World War II, Wernher von Braun designed the. V-2 rockets which were ... A. Solid Propellants. A solid propellant is made from low or diluted high explosives.

  13. Computing in high energy physics

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  14. Variable sound speed in interacting dark energy models

    Science.gov (United States)

    Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy

    2018-04-01

    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.

  15. High-energy communication

    CERN Multimedia

    CERN Communication Group

    2015-01-01

    On Wednesday at 10.40 a.m., the LHC operators declared “stable beams” after two years of technical stop and a few months of commissioning. It was an exciting day for all the teams involved, including those who worked on communicating the news to the public and the media on multiple platforms.   CERN’s most successful tweet on 3 June featured collision images from ALICE, ATLAS, CMS and LHCb and was shared 800 times by the Twitter audience. Live blogging, social media posts, a live webcast, and a constant outpouring of photos and videos: Wednesday morning was a crazy time for the communication teams from CERN, the experiments and various institutes around the world. Even though the event started very early in the morning (the live CCC blog started at 7 a.m. and the live webcast at 8.20 a.m.), the public and the media tuned in to follow and generously cover the start of the LHC’s physics run at an unprecedented energy of 13 TeV. The statistics showed th...

  16. High-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Thomas K. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)]. E-mail: gaisser@bartol.udel.edu; Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2006-10-17

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the knee above 10{sup 15} eV and the ankle above 10{sup 18} eV. An important question is whether the highest-energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  17. Ultra high energy cosmic rays

    International Nuclear Information System (INIS)

    Watson, A.A.

    1986-01-01

    Cosmic radiation was discovered 70 years ago but its origin remains an open question. The background to this problem is outlined and attempts to discover the origin of the most energetic and rarest group above 10 15 eV are described. Measurements of the energy spectrum and arrival direction pattern of the very highest energy particles, mean energy about 6 x 10 19 eV, are used to argue that these particles originate outside our galaxy. Recent evidence from the new field of ultra high energy γ-ray astronomy are discussed in the context of a galactic origin hypothesis for lower energy cosmic rays. (author)

  18. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R ampersand D on silicon microstrip tracking devices for the SSC. High statistics studies of Z 0 decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka's program includes a detailed investigation of the magnetic-flip approach to the solar neutrino

  19. How animals distribute themselves in space: variable energy landscapes

    OpenAIRE

    Masello, Juan F.; Kato, Akiko; Sommerfeld, Julia; Mattern, Thomas; Quillfeldt, Petra

    2017-01-01

    Background Foraging efficiency determines whether animals will be able to raise healthy broods, maintain their own condition, avoid predators and ultimately increase their fitness. Using accelerometers and GPS loggers, features of the habitat and the way animals deal with variable conditions can be translated into energetic costs of movement, which, in turn, can be translated to energy landscapes.We investigated energy landscapes in Gentoo Penguins Pygoscelis papua from two colonies at New Is...

  20. High energy physics research

    International Nuclear Information System (INIS)

    Piroue, P.A.

    1992-10-01

    The goal of this research is to understand the fundamental constituents of matter and their interactions. At this time, the following activities are underway: e + e - interactions and Z 0 physics at CERN; studies to upgrade the L3 detector at LHC; very high statistics charm physics at Fermilab; search for the H particle at BNL; search for the fifth force; rare kaon decay experiments at BNL; study of B-meson physics at hadron colliders; e + e - pair creation by light at SLAC; R ampersand D related to SSC experiments and the GEM detector; and theoretical research in elementary particle physics and cosmology. The main additions to the activities described in detail in the original grant proposal are (1) an experiment at SLAC (E-144) to study strong-field QED effects in e-laser and γ-laser collisions, and (2) a search for the H particle at BNL (E-188). The R ampersand D efforts for the GEM detector have also considerably expanded. In this paper we give a brief status report for each activity currently under way

  1. High energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z degrees resonance include (a) a measurement of the strong coupling constant α s for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e + e - → ν bar νγ. We also began a major upgrade of the L3 luminosity monitor by replacing PWC chamber by a Si strip system in front of the BGO calorimeters. Finally we have continued our SSC R ampersand D work on BaF 2 by joining the GEM collaboration

  2. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  3. Future of high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  4. Status of Chandigarh variable energy cyclotron and present experimental programmes

    International Nuclear Information System (INIS)

    Govil, I.M.

    2005-01-01

    The paper describes the status report of the Chandigarh variable energy cyclotron and some of the recent modifications which has improved the stability and performance of the machine considerably. The machine is now used for Proton Induced X-Ray Emission (PIXE) for trace element analysis along with nuclear irradiation for material science research and Nuclear Spectroscopy using (p, n γ) reaction. (author)

  5. A novel energy-efficient rotational variable stiffness actuator

    NARCIS (Netherlands)

    Rao, S.; Carloni, Raffaella; Stramigioli, Stefano

    This paper presents the working principle, the design and realization of a novel rotational variable stiffness actuator, whose stiffness can be varied independently of its output angular position. This actuator is energy-efficient, meaning that the stiffness of the actuator can be varied by keeping

  6. 77 FR 41481 - Integration of Variable Energy Resources

    Science.gov (United States)

    2012-07-13

    ... point to the importance of the Proposed Rule in removing market barriers to VER integration. NextEra... Commission's initiative to remove market and operational barriers to VERs integration and eliminate undue... Commission 18 CFR Part 35 Integration of Variable Energy Resources; Final Rule #0;#0;Federal Register / Vol...

  7. Variable-energy drift-tube linear accelerator

    Science.gov (United States)

    Swenson, Donald A.; Boyd, Jr., Thomas J.; Potter, James M.; Stovall, James E.

    1984-01-01

    A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.

  8. Impact of Variable Renewable Energy on European Cross-Border Electricity Transmission

    NARCIS (Netherlands)

    Brancucci Martinez-Anido, C.; De Vries, L.J.; Fulli, G.

    2012-01-01

    The estimated growth of Europe’s electricity demand and the policy goals of mitigating climate change result in an expected increase in variable renewable energy. A high penetration of wind and solar energy will bring several new challenges to the European electricity transmission network. The

  9. High Energy Transport Code HETC

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1985-09-01

    The physics contained in the High Energy Transport Code (HETC), in particular the collision models, are discussed. An application using HETC as part of the CALOR code system is also given. 19 refs., 5 figs., 3 tabs

  10. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  11. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  12. [Research in high energy physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  13. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  14. Problems of high energy physics

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.

    1989-01-01

    Some problems of high energy physics are discussed. The main attention is paid to describibg the standard model. The model comprises quantum chromodynamics and electroweak interaction theory. The problem of CP breaking is considered as well. 8 refs.; 1 tab

  15. Developments in high energy theory

    Indian Academy of Sciences (India)

    journal of. July 2009 physics pp. 3–60. Developments in high energy theory .... and operated by CERN (European Organization for Nuclear Research), this ma- ...... [2] S Dodelson, Modern cosmology (Academic Press, Amsterdam, 2003).

  16. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  17. The Evolution of Power System Planning with High Levels of Variable Renewable Generation

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milligan, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of the Greening the Grid introduces the evolution of power system planning with high levels of variable renewable generation.

  18. Effects of atmospheric variability on energy utilization and conservation. [Space heating energy demand modeling; Program HEATLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Johnson, G.R.; Somervell, W.L. Jr.; Sparling, E.W.; Dreiseitly, E.; Macdonald, B.C.; McGuirk, J.P.; Starr, A.M.

    1976-11-01

    Research conducted between 1 July 1975 and 31 October 1976 is reported. A ''physical-adaptive'' model of the space-conditioning demand for energy and its response to changes in weather regimes was developed. This model includes parameters pertaining to engineering factors of building construction, to weather-related factors, and to socio-economic factors. Preliminary testing of several components of the model on the city of Greeley, Colorado, yielded most encouraging results. Other components, especially those pertaining to socio-economic factors, are still under development. Expansion of model applications to different types of structures and larger regions is presently underway. A CRT-display model for energy demand within the conterminous United States also has passed preliminary tests. A major effort was expended to obtain disaggregated data on energy use from utility companies throughout the United States. The study of atmospheric variability revealed that the 22- to 26-day vacillation in the potential and kinetic energy modes of the Northern Hemisphere is related to the behavior of the planetary long-waves, and that the midwinter dip in zonal available potential energy is reflected in the development of blocking highs. Attempts to classify weather patterns over the eastern and central United States have proceeded satisfactorily to the point where testing of our method for longer time periods appears desirable.

  19. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  20. Interacting ghost dark energy models with variable G and Λ

    Science.gov (United States)

    Sadeghi, J.; Khurshudyan, M.; Movsisyan, A.; Farahani, H.

    2013-12-01

    In this paper we consider several phenomenological models of variable Λ. Model of a flat Universe with variable Λ and G is accepted. It is well known, that varying G and Λ gives rise to modified field equations and modified conservation laws, which gives rise to many different manipulations and assumptions in literature. We will consider two component fluid, which parameters will enter to Λ. Interaction between fluids with energy densities ρ1 and ρ2 assumed as Q = 3Hb(ρ1+ρ2). We have numerical analyze of important cosmological parameters like EoS parameter of the composed fluid and deceleration parameter q of the model.

  1. High energy HF pulsed lasers

    International Nuclear Information System (INIS)

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  2. Kilovoltage energy imaging with a radiotherapy linac with a continuously variable energy range.

    Science.gov (United States)

    Roberts, D A; Hansen, V N; Thompson, M G; Poludniowski, G; Niven, A; Seco, J; Evans, P M

    2012-03-01

    In this paper, the effect on image quality of significantly reducing the primary electron energy of a radiotherapy accelerator is investigated using a novel waveguide test piece. The waveguide contains a novel variable coupling device (rotovane), allowing for a wide continuously variable energy range of between 1.4 and 9 MeV suitable for both imaging and therapy. Imaging at linac accelerating potentials close to 1 MV was investigated experimentally and via Monte Carlo simulations. An imaging beam line was designed, and planar and cone beam computed tomography images were obtained to enable qualitative and quantitative comparisons with kilovoltage and megavoltage imaging systems. The imaging beam had an electron energy of 1.4 MeV, which was incident on a water cooled electron window consisting of stainless steel, a 5 mm carbon electron absorber and 2.5 mm aluminium filtration. Images were acquired with an amorphous silicon detector sensitive to diagnostic x-ray energies. The x-ray beam had an average energy of 220 keV and half value layer of 5.9 mm of copper. Cone beam CT images with the same contrast to noise ratio as a gantry mounted kilovoltage imaging system were obtained with doses as low as 2 cGy. This dose is equivalent to a single 6 MV portal image. While 12 times higher than a 100 kVp CBCT system (Elekta XVI), this dose is 140 times lower than a 6 MV cone beam imaging system and 6 times lower than previously published LowZ imaging beams operating at higher (4-5 MeV) energies. The novel coupling device provides for a wide range of electron energies that are suitable for kilovoltage quality imaging and therapy. The imaging system provides high contrast images from the therapy portal at low dose, approaching that of gantry mounted kilovoltage x-ray systems. Additionally, the system provides low dose imaging directly from the therapy portal, potentially allowing for target tracking during radiotherapy treatment. There is the scope with such a tuneable system

  3. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  4. High energy proton PIXE [HEPP

    International Nuclear Information System (INIS)

    McKee, J.S.C.

    1993-01-01

    Studies of particle induced X-ray emission (PIXE) have been widespread and detailed in recent years and despite the fact that most data obtained are from low energy 1-3 MeV experiments, the value of higher energy proton work with its emphasis on K X-ray emission has become more marked as time has progressed. The purpose of this review paper is to outline the history of analysis using high energy protons and to compare and contrast the results obtained with those from lower energy analysis using more firmly established analytical techniques. The work described will concentrate exclusively on proton induced processes and will attempt to outline the rationale for selecting an energy, greater than 20 and up to 70 MeV protons for initiating particles. The relative ease and accuracy of the measurements obtained will be addressed. Clearly such X-ray studies should be seen as complementing low energy work in many instances rather than competing directly with them. However, it will be demonstrated that above a Z value of approximately 20, K X-ray analysis using high energy protons is the only way to go in this type of analysis. (author)

  5. High energy elastic hadron scattering

    International Nuclear Information System (INIS)

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  6. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  7. Variability of consumer impacts from energy efficiency standards

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, James E.; Liu, Xiaomin

    2000-06-15

    A typical prospective analysis of the expected impact of energy efficiency standards on consumers is based on average economic conditions (e.g., energy price) and operating characteristics. In fact, different consumers face different economic conditions and exhibit different behaviors when using an appliance. A method has been developed to characterize the variability among individual households and to calculate the life-cycle cost of appliances taking into account those differences. Using survey data, this method is applied to a distribution of consumers representing the U.S. Examples of clothes washer standards are shown for which 70-90% of the population benefit, compared to 10-30% who are expected to bear increased costs due to new standards. In some cases, sufficient data exist to distinguish among demographic subgroups (for example, low income or elderly households) who are impacted differently from the general population. Rank order correlations between the sampled input distributions and the sampled output distributions are calculated to determine which variability inputs are main factors. This ''importance analysis'' identifies the key drivers contributing to the range of results. Conversely, the importance analysis identifies variables that, while uncertain, make so little difference as to be irrelevant in deciding a particular policy. Examples will be given from analysis of water heaters to illustrate the dominance of the policy implications by a few key variables.

  8. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  9. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  10. Viscous dark energy models with variable G and Λ

    International Nuclear Information System (INIS)

    Arbab, Arbab I.

    2008-01-01

    We consider a cosmological model with bulk viscosity η and variable cosmological A ∝ ρ -α , alpha = const and gravitational G constants. The model exhibits many interesting cosmological features. Inflation proceeds due to the presence of bulk viscosity and dark energy without requiring the equation of state p=-ρ. During the inflationary era the energy density ρ does not remain constant, as in the de-Sitter type. Moreover, the cosmological and gravitational constants increase exponentially with time, whereas the energy density and viscosity decrease exponentially with time. The rate of mass creation during inflation is found to be very huge suggesting that all matter in the universe is created during inflation. (author)

  11. An attempt to assess the energy related climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Iotova, A [Bulgarian Academy of Sciences, Sofia (Bulgaria). National Inst. of Meteorology and Hydrology

    1996-12-31

    A lot of efforts are directed now to study the interactions between energy and climate because of their significant importance for our planet. Globally, energy related emissions of Greenhouse Gases (GHGs) contribute for atmospheric warming. On regional level, where it is more difficult to determine concrete direction of climate variability and change, the role of energy remains considerable being not so direct as in the case of emissions` impact. Still there is essential necessity for further analyses and assessments of energy related climate variations and change in order to understand better and to quantify the energy - climate relations. In the presentation an attempt is made to develop approach for assessment of energy related climate variations on regional level. For this purpose, data and results from the research within Bulgarian Case Study (BCS) in the DECADES Inter-Agency Project framework are used. Considering the complex nature of the examined interconnections and the medium stage of the Study`s realisation, at the moment the approach can be presented in conceptual form. Correspondingly, the obtained results are illustrative and preliminary

  12. An attempt to assess the energy related climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Iotova, A. [Bulgarian Academy of Sciences, Sofia (Bulgaria). National Inst. of Meteorology and Hydrology

    1995-12-31

    A lot of efforts are directed now to study the interactions between energy and climate because of their significant importance for our planet. Globally, energy related emissions of Greenhouse Gases (GHGs) contribute for atmospheric warming. On regional level, where it is more difficult to determine concrete direction of climate variability and change, the role of energy remains considerable being not so direct as in the case of emissions` impact. Still there is essential necessity for further analyses and assessments of energy related climate variations and change in order to understand better and to quantify the energy - climate relations. In the presentation an attempt is made to develop approach for assessment of energy related climate variations on regional level. For this purpose, data and results from the research within Bulgarian Case Study (BCS) in the DECADES Inter-Agency Project framework are used. Considering the complex nature of the examined interconnections and the medium stage of the Study`s realisation, at the moment the approach can be presented in conceptual form. Correspondingly, the obtained results are illustrative and preliminary

  13. Integrating Variable Renewable Energy into the Grid: Key Issues, Greening the Grid (Spanish Version)

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    This is the Spanish version of 'Greening the Grid - Integrating Variable Renewable Energy into the Grid: Key Issues'. To foster sustainable, low-emission development, many countries are establishing ambitious renewable energy targets for their electricity supply. Because solar and wind tend to be more variable and uncertain than conventional sources, meeting these targets will involve changes to power system planning and operations. Grid integration is the practice of developing efficient ways to deliver variable renewable energy (VRE) to the grid. Good integration methods maximize the cost-effectiveness of incorporating VRE into the power system while maintaining or increasing system stability and reliability. When considering grid integration, policy makers, regulators, and system operators consider a variety of issues, which can be organized into four broad topics: New Renewable Energy Generation, New Transmission, Increased System Flexibility, and Planning for a High RE Future.

  14. Multiprocessors for high energy physics

    International Nuclear Information System (INIS)

    Pohl, M.

    1987-01-01

    I review the role, status and progress of multiprocessor projects relevant to high energy physics. A short overview of the large variety of multiprocessors architectures is given, with special emphasis on machines suitable for experimental data reconstruction. A lot of progress has been made in the attempt to make the use of multiprocessors less painful by creating a ''Parallel Programming Environment'' supporting the non-expert user. A high degree of usability has been reached for coarse grain (event level) parallelism. The program development tools available on various systems (subroutine packages, preprocessors and parallelizing compilers) are discussed in some detail. Tools for execution control and debugging are also developing, thus opening the path from dedicated systems for large scale, stable production towards support of a more general job mix. At medium term, multiprocessors will thus cover a growing fraction of the typical high energy physics computing task. (orig.)

  15. Instrumentation in high energy physics

    International Nuclear Information System (INIS)

    Serin, L.

    2007-01-01

    The instrumentation in high energy physics is a wide and advanced domain which cannot be covered in a single lesson. The main basic physics processes for charged and neutral particles are recalled with the definition of a few concepts needed to understand or design a detector. The application of these principles to charged particle measurement devices (momentum), light detection or energy measurement are presented mostly with examples from collider experiments. The particle identification which is often the combination of different techniques in a same experiment is also discussed. Finally in a very short section, a few considerations about electronics/processing with their impact on the detector performance are given

  16. Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving

    International Nuclear Information System (INIS)

    Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing

    2015-01-01

    The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system

  17. First high energy hydrogen cluster beams

    International Nuclear Information System (INIS)

    Gaillard, M.J.; Genre, R.; Hadinger, G.; Martin, J.

    1993-03-01

    The hydrogen cluster accelerator of the Institut de Physique Nucleaire de Lyon (IPN Lyon) has been upgraded by adding a Variable Energy Post-accelerator of RFQ type (VERFQ). This operation has been performed in the frame of a collaboration between KfK Karlsruhe, IAP Frankfurt and IPN Lyon. The facility has been designed to deliver beams of mass selected Hn + clusters, n chosen between 3 and 49, in the energy range 65-100 keV/u. For the first time, hydrogen clusters have been accelerated at energies as high as 2 MeV. This facility opens new fields for experiments which will greatly benefit from a velocity range never available until now for such exotic projectiles. (author) 13 refs.; 1 fig

  18. Local energy decay for linear wave equations with variable coefficients

    Science.gov (United States)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  19. Computing in high energy physics

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Hoogland, W.

    1986-01-01

    This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume

  20. Harvard University High Energy Physics

    International Nuclear Information System (INIS)

    1993-01-01

    The mainly experimental research program in high energy physics at Harvard is summarized in a descriptive fashion according to the following outline: Proton endash antiproton colliding beam program at Fermilab -- CDF (forward/backward electromagnetic calorimeters -- FEM, central muon extension -- CMX, gas calorimetry and electronics development, front-end electronics upgrades, software development, physics analysis, timetable), electron -- positron collisions in the upsilon region -- CLEO (the hardware projects including CLEO II barrel TOF system and silicon drift detector R ampersand D, physics analysis), search for ν μ to ν τ oscillations with the NOMAD experiment at CERN, the solenoidal detector collaboration at the SSC, muon scattering at FNAL -- E665, the L3 experiment, and phenomenological analysis of high-energy bar pp cross sections. 149 refs

  1. Analysis on Japan's long-term energy outlook considering massive deployment of variable renewable energy under nuclear energy scenario

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Fujii, Yasumasa

    2012-01-01

    This paper investigates Japan's long-term energy outlook to 2050 considering massive deployment of solar photovoltaic (PV) system and wind power generation under nuclear energy scenario. The extensive introduction of PV system and wind power system are expected to play an important role in enhancing electricity supply security after Fukushima Nuclear Power Accident which has increased the uncertainty of future additional construction of nuclear power plant in Japan. On these backgrounds, we develop integrated energy assessment model comprised of both econometric energy demand and supply model and optimal power generation mix model. The latter model is able to explicitly analyze the impact of output fluctuation in variable renewable in detailed time resolution at 10 minutes on consecutive 365 days, incorporating the role of stationary battery technology. Simulation results reveal that intermittent fluctuation derived from high penetration level of those renewables is controlled by quick load following operation by natural gas combined cycle power plant, pumped-storage hydro power, stationary battery technology and the output suppression of PV and wind power. The results show as well that massive penetration of the renewables does not necessarily require the comparable scale of stationary battery capacity. Additionally, on the scenario which assumes the decommissioning of nuclear power plants which lifetime are over 40 years, required PV capacity in 2050 amounts to more than double of PV installment potential in both building and abandoned farmland area. (author)

  2. A high energy physics perspective

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1997-01-01

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional open-quotes Hidden Symmetries close quotes are discussed. Experimental approaches to uncover open-quotes New Physicsclose quotes associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given

  3. [Research in high energy physics

    International Nuclear Information System (INIS)

    LoSecco, J.

    1989-01-01

    We review the efforts of the Notre Dame non accelerator high energy physics group. Our major effort has been directed toward the IMB deep underground detector. Since the departure of the Michigan group our responsibilities to the group have grown. We are also very active in pursuing physics with the IMB 3 detector. Currently we are studying proton decay, point neutrino sources and neutrino oscillations with the contained event sample

  4. Cosmology for high energy physicists

    International Nuclear Information System (INIS)

    Albrecht, A.

    1987-11-01

    The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs

  5. High Energy Physics in Europe

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A thorough survey of the present and possible future activities and resources in high energy physics in the CERN Member States has been carried out by a Working Group of ECFA (European Committee for Future Accelerators) under the Chairmanship of John Mulvey. The aim has been to obtain a view of the present European scene and to see whether it looks well adapted to the effective exploitation of possible future machines in Europe (particular LEP) and the rest of the world

  6. Bell inequalities in high energy physics

    International Nuclear Information System (INIS)

    Ding Yibing; Li Junli; Qiao Congfeng

    2007-01-01

    We review in this paper the research status on testing the completeness of Quantum mechanics in High Energy Physics, especially on the Bell Inequalities. We briefly introduce the basic idea of Einstein, Podolsky, and Rosen paradox and the results obtained in photon experiments. In the content of testing the Bell inequalities in high energy physics, the early attempts of using spin correlations in particle decays and later on the mixing of neutral mesons used to form the quasi-spin entangled states are covered. The related experimental results in K 0 and B 0 systems are presented and discussed. We introduce the new scheme, which is based on the non-maximally entangled state and proposed to implement in φ factory, in testing the Local Hidden Variable Theory. And, we also discuss about the possibility of realising it to the tau charm factory. (authors)

  7. High energy electron positron physics

    International Nuclear Information System (INIS)

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; Υ Spectroscopy; Hadronic Decays of the Υ; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles

  8. Astrophysics at very high energies

    International Nuclear Information System (INIS)

    Aharonian, Felix; Bergstroem, Lars; Dermer, Charles

    2013-01-01

    Presents three complementary lectures on very-high-energy astrophysics given by worldwide leaders in the field. Reviews the recent advances in and prospects of gamma-ray astrophysics and of multi-messenger astronomy. Prepares readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors. With the success of Cherenkov Astronomy and more recently with the launch of NASA's Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergstroem presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.

  9. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    2000-01-01

    Full text: Following our long-time tradition we will present under a common header the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics: Department of Particle Theory (Dept. V); Department of Leptonic Interactions (Dept XI); Department of Hadron Structure (Dept XII); Department of High Energy Nuclear Interactions (Dept XIII); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). At the end we will list our common activities: lectures and courses as well as seminars. Our research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluation of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY, Hamburg) is also carried out. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy. This location, close to the Jagiellonian University, facilitates the collaboration with the latter and with the University of Mining and Metallurgy. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of our activities is teaching and training students from

  10. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  11. High energy overcurrent protective device

    Science.gov (United States)

    Praeg, Walter F.

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  12. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  13. Theories of Variable Mass Particles and Low Energy Nuclear Phenomena

    Science.gov (United States)

    Davidson, Mark

    2014-02-01

    Variable particle masses have sometimes been invoked to explain observed anomalies in low energy nuclear reactions (LENR). Such behavior has never been observed directly, and is not considered possible in theoretical nuclear physics. Nevertheless, there are covariant off-mass-shell theories of relativistic particle dynamics, based on works by Fock, Stueckelberg, Feynman, Greenberger, Horwitz, and others. We review some of these and we also consider virtual particles that arise in conventional Feynman diagrams in relativistic field theories. Effective Lagrangian models incorporating variable mass particle theories might be useful in describing anomalous nuclear reactions by combining mass shifts together with resonant tunneling and other effects. A detailed model for resonant fusion in a deuterium molecule with off-shell deuterons and electrons is presented as an example. Experimental means of observing such off-shell behavior directly, if it exists, is proposed and described. Brief explanations for elemental transmutation and formation of micro-craters are also given, and an alternative mechanism for the mass shift in the Widom-Larsen theory is presented. If variable mass theories were to find experimental support from LENR, then they would undoubtedly have important implications for the foundations of quantum mechanics, and practical applications may arise.

  14. IV. Workshop on High Energy Spin Physics

    International Nuclear Information System (INIS)

    Nurushev, S.

    1992-01-01

    In this proceedings the results on high energy spin physics are summarized. The theory of spin phenomenon and the experimental results at intermediate energy and at high energy spin physics and new technical developments in polarization experiments are presented

  15. Developments in high energy physics

    International Nuclear Information System (INIS)

    Mukhi, Sunil; Roy, Probir

    2009-01-01

    This non-technical review article is aimed at readers with some physics background, including beginning research students. It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the standard model, and proposals - including the radical paradigm of string theory - have been made to go beyond the standard model. The list of references provided here is not intended to properly credit all original work but rather to supply the reader with a few pointers to the literature, specifically highlighting work done by Indian authors. (author)

  16. Assessing high wind energy penetration

    International Nuclear Information System (INIS)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project settings are close to ideal, including a very capable national utility company, Electra, a conventional power supply system based on imported heavy fuel and gas oil, and favourable wind conditions with an estimated annual average of 9.3 m/s at the hub height of the wind turbines. With the applied case study assumptions, simulations with WINSYS over the lifetime of the assessed wind power investment show that investments up to 4.2 MW are economically viable. The economic optimum is found at 2.4 MW reaching an internal rate of return of almost 8% p.a. This 2.4 MW of wind power would, together with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h. (Author)

  17. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  18. Feasibility of wavelet expansion methods to treat the energy variable

    International Nuclear Information System (INIS)

    Van Rooijen, W. F. G.

    2012-01-01

    This paper discusses the use of the Discrete Wavelet Transform (DWT) to implement a functional expansion of the energy variable in neutron transport. The motivation of the work is to investigate the possibility of adapting the expansion level of the neutron flux in a material region to the complexity of the cross section in that region. If such an adaptive treatment is possible, 'simple' material regions (e.g., moderator regions) require little effort, while a detailed treatment is used for 'complex' regions (e.g., fuel regions). Our investigations show that in fact adaptivity cannot be achieved. The most fundamental reason is that in a multi-region system, the energy dependence of the cross section in a material region does not imply that the neutron flux in that region has a similar energy dependence. If it is chosen to sacrifice adaptivity, then the DWT method can be very accurate, but the complexity of such a method is higher than that of an equivalent hyper-fine group calculation. The conclusion is thus that, unfortunately, the DWT approach is not very practical. (authors)

  19. Duke University high energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and Χ meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report

  20. The high energy astronomy observatories

    Science.gov (United States)

    Neighbors, A. K.; Doolittle, R. F.; Halpers, R. E.

    1977-01-01

    The forthcoming NASA project of orbiting High Energy Astronomy Observatories (HEAO's) designed to probe the universe by tracing celestial radiations and particles is outlined. Solutions to engineering problems concerning HEAO's which are integrated, yet built to function independently are discussed, including the onboard digital processor, mirror assembly and the thermal shield. The principle of maximal efficiency with minimal cost and the potential capability of the project to provide explanations to black holes, pulsars and gamma-ray bursts are also stressed. The first satellite is scheduled for launch in April 1977.

  1. Weak interactions at high energies

    International Nuclear Information System (INIS)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references

  2. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  3. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  4. Representation of variable renewable energy sources in TIMER, an aggregated energy system simulation model

    NARCIS (Netherlands)

    de Boer, Harmen Sytze (H S.).; van Vuuren, Detlef (D P.).

    2017-01-01

    The power system is expected to play an important role in climate change mitigation. Variable renewable energy (VRE) sources, such as wind and solar power, are currently showing rapid growth rates in power systems worldwide, and could also be important in future mitigation strategies. It is

  5. Isochronous variable energy cyclotron of IPEN-CNEN/SP (Brazil)

    International Nuclear Information System (INIS)

    Lucki, G.; Zanchetta, A.A.; Gouveia, S.; Klein, H.

    1984-01-01

    The cyclotron CV-28 installed at the Radiation Damage Division of IPEN-CNEN/SP is a multi-particle radiation source where protons, deuterons, 3 He ions and alpha particles can be accelerated with variable energy up to 24, 14, 36 and 28 MeV, respectively. The cyclotron is a versatile machine that can be applied in research and development of : radioisotope production - materials science - nuclear physics - activation analysis and others. First internal beam with 24 MeV protons has been obtained in April 23, 1981. First irradiation of Cu sample, at the external beam (beam current 1.5 μA), with 28 MeV alpha particles was performed in December 29, 1983. Main characteristics of the cyclotron are given together with a description of peripheral systems and experimental capability. Presently the accelerator is being optimized for cpontinuous running. (Author) [pt

  6. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  7. Duke University High Energy Physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1993-03-01

    The research program of the Duke High Energy Physics Group is described in this Progress Report and a separate Proposal containing their plans for 1994. These two documents are supplemented by compilations of selected publications, thesis abstracts, and the curriculum vitae of the eleven Ph.D. physicists who are carrying out this research program. This Progress Report contains a review of the research which has been done over the first half (1992 and 1993 to date) of the current three-year DOE grant, plus some earlier research to establish a broader perspective of the research interests. High energy physics research at Duke has three components. The first, Task A, is based upon experiments carried out at Fermilab's Tevatron Collider. The group is finishing the analysis of data from their first collider experiment (E735), a study of inclusive particle production from bar p p collisions at √ bar s = 1.8 TeV. The second component of the research, Task B, deals primarily with heavy flavor physics. The third part of the research program, Task D, deals with preparation for research at the SSC. The authors have been active in the development of tracking detectors for the SSC since 1989, and are now concentrating on the design and construction of straw tube drift chambers for the solenoid detector

  8. Spinoff from high energy physics

    International Nuclear Information System (INIS)

    Hoffmann, Hans

    1994-01-01

    This year the CERN Courier is featuring the spinoff and technological benefits arising from research in fundamental physics. After initial illustrations in applied data processing sectors, this article by Hans Hoffman of CERN examines the rationale and underlying objectives of the 'new awareness' of the market value of basic science. He is the Chairman of a new panel on the subject set up recently by the International Committee for Future Accelerators (ICFA). The other members are: Oscar Barbalat of CERN, Hans Christian Dehne of DESY, Sin-ichi Kurakawa of KEK, Gennady Kulipanov of the Budker Institute (Novosibirsk), Anthony Montgomery, formerly of the SSC, A. H. Walenta of Siegen, Germany, and Zhongqiang Yu of IHEP Beijing. High energy physics - the quest to find and understand the structure of matter - is mainly seen as an essential part of human culture. However this basic science increasingly has to jostle for funding attention with other branches of science. Applied sciences aim for a rapid transformation of investment cash into viable market products. In times of economic difficulties this is attractive to funding agencies and governments, and economic usefulness and technological relevance also become criteria for a basic science like high energy physics.

  9. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.

    1991-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics of the evolution of the early universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including studies of the nature of dark matter and the signature of annihilations in the galactic halo, where the resulting γ-ray fluxes are potentially observable, and in stars, where stellar evolution may be affects. We will develop constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon, examining the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in both flat and curved cosmological models, and implications for observations of large-scale galaxy clustering and structure formation theories. We will also study spectral distortions in the microwave background radiation that are produced by exotic particle decays in the very early universe. We expect such astrophysical considerations to provide fruitful insights both into high-energy particle physics and into possible cosmological for the early universe

  10. Supersimplicity: a Remarkable High Energy SUSY Property

    International Nuclear Information System (INIS)

    Gounaris, G.J.; Renard, F.M.

    2011-01-01

    It is known that for any 2-to-2 process in MSSM, only the helicity conserving (HC) amplitudes survive asymptotically. Studying many such processes, at the 1-loop Electroweak (EW) order, it is found that their high energy HC amplitudes are determined by just three forms: a log-squared function of the ratio of two of the (s, t, u) variables, to which a π 2 is added; and two Sudakov-like ln- and ln 2 -terms accompanied by respective mass-dependent constants. Apart from a possible additional residual constant (which is also discussed), these HC amplitudes, may be expressed as linear combinations of the above three forms, with coefficients being rational functions of the (s, t, u) variables. This 1-loop property, called supersimplicity, is of course claimed for the 2-to-2 processes considered; but no violating examples are known at present. For ug → dW, supersimplicity is found to be a very good approximation at LHC energies, provided the SUSY scale is not too high. SM processes are also discussed, and their differences are explored. (authors)

  11. A novel design for a variable energy positron lifetime spectrometer

    International Nuclear Information System (INIS)

    Chen, D.; Zhang, J.D.; Cheng, C.C.; Beling, C.D.; Fung, S.

    2008-01-01

    We present computer simulations of a new design of a variable energy positron lifetime beam that uses for a start signal the secondary electron emission from a 25-nm thick carbon foil (C-foil) located in front of the sample. A needle of ∼30 μm diameter is positioned on-axis right behind the foil, creating a radial electric field that deflects the secondary electrons radially outward so as to miss the sample and to hit the micro-channel plate (MCP) detector placed down beam. The MCP signal provides the start signal for the positron lifetime spectrometer. A grid can be further introduced between the sample holder and the MCP to yield a cleaner signal by preventing the positrons with large transmitted scattering angle from hitting the MCP. The cylindrical symmetry of this design reduces the experimental complexity and offers good timing resolution. We show that the design is robust against the transmitted energy and angle of the secondary electrons and positrons

  12. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  13. Air temperature variability in a high-elevation Himalayan catchment

    NARCIS (Netherlands)

    Heynen, Martin; Miles, Evan; Ragettli, Silvan; Buri, Pascal; Immerzeel, Walter W.; Pellicciotti, Francesca

    2016-01-01

    Air temperature is a key control of processes affecting snow and glaciers in high-elevation catchments, including melt, snowfall and sublimation. It is therefore a key input variable to models of land-surface-atmosphere interaction. Despite this importance, its spatial variability is poorly

  14. Dynamics of high energy reactions

    International Nuclear Information System (INIS)

    Field, R.D.

    1979-01-01

    During last several years, a new framework to describe strong interaction physics has emerged, i.e. quantum chromodynamics (QCD). It is the simplest field theory which incorporates color-dependent force among quarks. This force is generated by the exchange of colored vector gluons coupled to the quarks in gauge-invariant manner. The theory is closely related to the most successful quantum field theory, QED, and the only but very important difference is the gauge group involved. Although the theory is well defined, precisely what it predicts is not yet clearly known. However, at very high energy or momentum transfer Q, the effective coupling between quarks and gluons decreases toward zero with increasing Q 2 , and the calculation of a process involving high Q 2 is possible by the use of perturbation theory. In this paper, many applications of QCD to the processes involving high momentum transfer are examined. The effective coupling resulting from strong interaction between quarks and gluons, the scale violation in deep inelastic lepton scattering, large mass muon pair production, quark and gluon fragmentation functions, large transverse momentum meson and jet production in hadron-hadron collision, and the search for three-jet events are discussed. (Kako, I.)

  15. High-energy particle diffraction

    International Nuclear Information System (INIS)

    Barone, V.; Predazzi, E.

    2002-01-01

    This monograph gives a comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers the general formalism (the optical analogy, the eikonal picture, high-energy kinematics, S-matrix theory) and soft hadron-hadron scattering (including the Regge theory) in a complete and mature presentation. It can be used as a textbook in particle physics classes. The remainder of the book is devoted to the 'new diffraction': the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes, jet production etc. It presents recent results and experimental findings and their phenomenological interpretations. This part addresses graduate students as well as researchers. (orig.)

  16. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  17. Variable kernel density estimation in high-dimensional feature spaces

    CSIR Research Space (South Africa)

    Van der Walt, Christiaan M

    2017-02-01

    Full Text Available Estimating the joint probability density function of a dataset is a central task in many machine learning applications. In this work we address the fundamental problem of kernel bandwidth estimation for variable kernel density estimation in high...

  18. Uncertainty in wave energy resource assessment. Part 2: Variability and predictability

    International Nuclear Information System (INIS)

    Mackay, Edward B.L.; Bahaj, AbuBakr S.; Challenor, Peter G.

    2010-01-01

    The uncertainty in estimates of the energy yield from a wave energy converter (WEC) is considered. The study is presented in two articles. The first article considered the accuracy of the historic data and the second article, presented here, considers the uncertainty which arises from variability in the wave climate. Mean wave conditions exhibit high levels of interannual variability. Moreover, many previous studies have demonstrated longer-term decadal changes in wave climate. The effect of interannual and climatic changes in wave climate on the predictability of long-term mean WEC power is examined for an area off the north coast of Scotland. In this location anomalies in mean WEC power are strongly correlated with the North Atlantic Oscillation (NAO) index. This link enables the results of many previous studies on the variability of the NAO and its sensitivity to climate change to be applied to WEC power levels. It is shown that the variability in 5, 10 and 20 year mean power levels is greater than if annual power anomalies were uncorrelated noise. It is also shown that the change in wave climate from anthropogenic climate change over the life time of a wave farm is likely to be small in comparison to the natural level of variability. Finally, it is shown that despite the uncertainty related to variability in the wave climate, improvements in the accuracy of historic data will improve the accuracy of predictions of future WEC yield. (author)

  19. 78 FR 72878 - Integration of Variable Energy Resources; Notice Of Filing Procedures for Order No. 764...

    Science.gov (United States)

    2013-12-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-11-000] Integration of Variable Energy Resources; Notice Of Filing Procedures for Order No. 764 Electronic Compliance Filings Take... Variable Energy Resources, Order No. 764, FERC Stats. & Regs. ] 31,331, order on reh'g, Order No. 764-A...

  20. High-current pulses from inductive energy stores

    International Nuclear Information System (INIS)

    Wipf, S.L.

    1981-01-01

    Superconducting inductive energy stores can be used for high power pulse supplies if a suitable current multiplication scheme is used. The concept of an inductive Marx generator is superior to a transformer. A third scheme, a variable flux linkage device, is suggested; in multiplying current it also compresses energy. Its function is in many ways analogous to that of a horsewhip. Superconductor limits indicate that peak power levels of TW can be reached for stored energies above 1 MJ

  1. Caging in high energy reactions

    International Nuclear Information System (INIS)

    Ache, H.J.

    1977-01-01

    The concept of caging high energy reactions is considered. It is noted that there is no easy and unambiguous way, short of a complete and very tedious product and mechanistic analysis, which is feasible only for very few systems, to determine the contribution made by caging. It is emphasized that some products resulting from the hot reaction with a certain substrate may be formed via caging while others are not. In research on the mechanism of caging the results of Roots work on the reactions of hot 18 F with the CF 3 CH 3 system seem to provide evidence for caging, with 18 F being the caged moiety, thus proceeding via a radical--radical recombination mechanism. Their work with H 2 S additive also seems to indicate that scavenging via hydrogen abstraction from H 2 S to form does not interfere with the radical--radical recombination consistent with Bunkers molecular approach to explain the cage effects. In other research a series of observations resulting from stereochemical and combined stereochemical density variation techniques seem to favor a caged-complex. It is clear that a more conclusive answer can only be reached by more systematic studies, utilizing the whole range of nuclear reactions such as (n,2n), (n,γ) and E.C. processes in mechanistically well defined systems to elucidate the effect of variations in the recoil energies, by carrying out studies in different solvents or host substances to assess the effect of the physical parameters, such as molecule size and intermolecular interactions on the escape probability or caging efficiencies

  2. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1989-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale--free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry-breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large-scale structures whose dynamics are dominated by weakly interacting particles such as axions, massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study of the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  3. [High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1988-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry--breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large--scale structures whose dynamics are dominated by weakly interacting particles such as axions massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation in galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  4. Correlation between measured energy expenditure and clinically obtained variables in trauma and sepsis patients.

    Science.gov (United States)

    Frankenfield, D C; Omert, L A; Badellino, M M; Wiles, C E; Bagley, S M; Goodarzi, S; Siegel, J H

    1994-01-01

    Indirect calorimetry is the preferred method for determining caloric requirements of patients, but availability of the device is limited by high cost. A study was therefore conducted to determine whether clinically obtainable variables could be used to predict metabolic rate. Patients with severe trauma or sepsis who required mechanical ventilation were measured by an open-circuit indirect calorimeter. Several clinical variables were obtained simultaneously. Measurements were repeated every 12 hours for up to 10 days. Twenty-six trauma and 30 sepsis patients were measured 423 times. Mean resting energy expenditure was 36 +/- 7 kcal/kg (trauma) vs 45 +/- 8 kcal/kg (sepsis) (p types.

  5. Quantum Sensing for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Zeeshan; et al.

    2018-03-29

    Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.

  6. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  7. Lasers and future high energy colliders

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    Future high energy colliders, directions for particle physics and relationship to new technology such as lasers are discussed. Experimental approaches to explore New Physics with emphasis on the utility of high energy colliders are also discussed

  8. Fatigue Crack Propagation Under Variable Amplitude Loading Analyses Based on Plastic Energy Approach

    Directory of Open Access Journals (Sweden)

    Sofiane Maachou

    2014-04-01

    Full Text Available Plasticity effects at the crack tip had been recognized as “motor” of crack propagation, the growth of cracks is related to the existence of a crack tip plastic zone, whose formation and intensification is accompanied by energy dissipation. In the actual state of knowledge fatigue crack propagation is modeled using crack closure concept. The fatigue crack growth behavior under constant amplitude and variable amplitude loading of the aluminum alloy 2024 T351 are analyzed using in terms energy parameters. In the case of VAL (variable amplitude loading tests, the evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading. A linear relationship between the crack growth rate and the hysteretic energy dissipated per block is obtained at high growth rates. For lower growth rates values, the relationship between crack growth rate and hysteretic energy dissipated per block can represented by a power law. In this paper, an analysis of fatigue crack propagation under variable amplitude loading based on energetic approach is proposed.

  9. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.

  10. Present state and perspectives of variable renewable energies in Spain

    Science.gov (United States)

    Gómez-Calvet, Roberto; Martínez-Duart, José Manuel; Serrano Calle, Silvia

    2018-03-01

    In accordance with the Paris Climate Agreement (2015) and the more recent European Union Winter Package of November 2016, the European nations have committed to drastically cut CO2 emissions during the next decades, especially in the power sector. To this end, Spain as well as many other European countries are initiating plans for a large deployment of variable renewable energy sources (VRES), especially motivated by the huge lowering in prices of solar and wind installations. In the first part of this work, a detailed analysis of the current Spanish electricity mix is carried out, especially of the present generation by VRES. To this end, we present hourly and daily fan charts, for the different days of the week as well as months or seasons of the year. These studies show that the current power system is quite varied and presents a large installed capacity in relation to peak demand. Other aspects, that will surely assist the transition to lower emission targets are the following: the recent adjudication of 9000MW of VRES, which will be operational within the next 2-3 years; a large overcapacity of Combined Cycle Gas Turbines (CCGT) plants, which could be used during the transition as backup plants; and the relatively large hydro-pump potential for the storage of possible VRES surpluses. Finally, the possibility of decommissioning several nuclear plants in a few years is also discussed.

  11. Hadron dynamics at high energies

    International Nuclear Information System (INIS)

    Storrow, J.K.

    1977-01-01

    The nine lectures give a very brief introduction to hadron dynamics at high energies. They concentrate on basic concepts such as Regge poles, duality and geometrical ideas, and simple applications of these ideas to the problem of understanding data. To some extent two body phenomenology is emphasized at the expense of multiparticle final states and when the latter have been considered they have concentrated on inclusive reactions. One lecture discussed data on 2-2 reactions in order to provide the motivation for Regge pole theory, then two lectures are devoted to basic concepts. Then duality is introduced and shown to provide reasonable restrictions on a pole model. A lecture is then devoted to discussing geometrical ideas i.e. the t-dependence of data is looked at from an s-channel point of view. The section on two-body phenomenology is then concluded by discussing applications of the above ideas to two reactions-pion-nucleon scattering and np charge exchange scattering. The remaining three lectures are devoted to multiparticle reactions. Exclusive reactions are considered briefly and then the remainder of the course is concerned with inclusive reactions. The concepts of scaling and limiting fragmentation are discussed and Mueller's generalised optical theorem introduced and then applied in various kinematic limits. (author)

  12. Long-term optimal energy mix planning towards high energy security and low GHG emission

    International Nuclear Information System (INIS)

    Thangavelu, Sundar Raj; Khambadkone, Ashwin M.; Karimi, Iftekhar A.

    2015-01-01

    Highlights: • We develop long-term energy planning considering the future uncertain inputs. • We analyze the effect of uncertain inputs on the energy cost and energy security. • Conventional energy mix prone to cause high energy cost and energy security issues. • Stochastic and optimal energy mix show benefits over conventional energy planning. • Nuclear option consideration reduces the energy cost and carbon emissions. - Abstract: Conventional energy planning focused on energy cost, GHG emission and renewable contribution based on future energy demand, fuel price, etc. Uncertainty in the projected variables such as energy demand, volatile fuel price and evolution of renewable technologies will influence the cost of energy when projected over a period of 15–30 years. Inaccurate projected variables could affect energy security and lead to the risk of high energy cost, high emission and low energy security. The energy security is an ability of generation capacity to meet the future energy demand. In order to minimize the risks, a generic methodology is presented to determine an optimal energy mix for a period of around 15 years. The proposed optimal energy mix is a right combination of energy sources that minimize the risk caused due to future uncertainties related to the energy sources. The proposed methodology uses stochastic optimization to address future uncertainties over a planning horizon and minimize the variations in the desired performance criteria such as energy security and costs. The developed methodology is validated using a case study for a South East Asian region with diverse fuel sources consists of wind, solar, geothermal, coal, biomass and natural gas, etc. The derived optimal energy mix decision outperformed the conventional energy planning by remaining stable and feasible against 79% of future energy demand scenarios at the expense of 0–10% increase in the energy cost. Including the nuclear option in the energy mix resulted 26

  13. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  14. Market Designs for High Levels of Variable Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  15. High energy physics and grid computing

    International Nuclear Information System (INIS)

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  16. High-Speed Photo-Polarimetry of Magnetic Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    S. B. Potter

    2015-02-01

    Full Text Available I review recent highlights of the SAAO High-speed Photo-POlarimeter (HIPPO on the study of magnetic Cataclysmic Variables. Its high-speed capabilities are demonstrated with example observations made of the intermediate polar NY Lup and the polar IGRJ14536-5522.

  17. High Suicidal Ideation and Psychosocial Variables in University Students

    Science.gov (United States)

    Sanchez-Teruel, David; Garcia-Leon, Ana; Muela-Martinez, Jose A.

    2013-01-01

    Introduction: The college students have high rates of suicidal ideation often associated with psychosocial factors. The aim of this study was to evaluate whether some of these psychosocial variables are related to the high prevalence of suicidal ideation in a College Spanish. Method: Participants (n = 40), aged between 21 and 34 years, Mean =…

  18. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    Directory of Open Access Journals (Sweden)

    J. D. S. Cullis

    2018-02-01

    Full Text Available Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing

  19. Modelling the water energy nexus: should variability in water supply impact on decision making for future energy supply options?

    Science.gov (United States)

    Cullis, James D. S.; Walker, Nicholas J.; Ahjum, Fadiel; Juan Rodriguez, Diego

    2018-02-01

    Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing additional water

  20. Effects of atmospheric variability on energy utilization and conservation. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, E.R.; Burns, C.C.; Cochrane, H.; Johnson, G.R.; Leong, H.; Sheaffer, J.D.

    1980-07-01

    Research progress for the period September 1979 to July 1980 is reported. Research was structured along four major tasks: (1) atmospheric circulation and climate variability; (2) urban mesoclimate; (3) energy demand modelling; and (4) economic implications of weather variability and energy demand: stimulating residential energy conservation through the financial section. (ACR)

  1. High density energy storage capacitor

    International Nuclear Information System (INIS)

    Whitham, K.; Howland, M.M.; Hutzler, J.R.

    1979-01-01

    The Nova laser system will use 130 MJ of capacitive energy storage and have a peak power capability of 250,000 MW. This capacitor bank is a significant portion of the laser cost and requires a large portion of the physical facilities. In order to reduce the cost and volume required by the bank, the Laser Fusion Program funded contracts with three energy storage capacitor producers: Aerovox, G.E., and Maxwell Laboratories, to develop higher energy density, lower cost energy storage capacitors. This paper describes the designs which resulted from the Aerovox development contract, and specifically addresses the design and initial life testing of a 12.5 kJ, 22 kV capacitor with a density of 4.2 J/in 3 and a projected cost in the range of 5 cents per joule

  2. States of high energy density

    International Nuclear Information System (INIS)

    Murray, M.

    1988-02-01

    The transverse energy, E/sub tau/ spectra for O 16 and S 32 incident for various elements at 200 GeVnucleon are shown. The target and projectile dependencies of the data are discussed. The energy density achieved is estimated. For O 16 on Tungsten the multiplicity spectrum is also presented as well as the pseudorapidity spectra as a function of the transverse energy. The multiplicity cross section dσdN as measured in the backward hemisphere (0.9 < /eta/ < 2.9/ is found to be very similar in shape to the transverse energy distribution dσdE/tau/ reflecting the particular geometry of nucleus nucleus nucleus collisions. The dependence on the atomic mass of the target, A/sub tau/ and projectile A/sub p/ is not what one would expect from naive considerations

  3. Impact of perennial energy crops income variability on the crop selection of risk averse farmers

    International Nuclear Information System (INIS)

    Alexander, Peter; Moran, Dominic

    2013-01-01

    The UK Government policy is for the area of perennial energy crops in the UK to expand significantly. Farmers need to choose these crops in preference to conventional rotations for this to be achievable. This paper looks at the potential level and variability of perennial energy crop incomes and the relation to incomes from conventional arable crops. Assuming energy crop prices are correlated to oil prices the results suggests that incomes from them are not well correlated to conventional arable crop incomes. A farm scale mathematical programming model is then used to attempt to understand the affect on risk averse farmers crop selection. The inclusion of risk reduces the energy crop price required for the selection of these crops. However yields towards the highest of those predicted in the UK are still required to make them an optimal choice, suggesting only a small area of energy crops within the UK would be expected to be chosen to be grown. This must be regarded as a tentative conclusion, primarily due to high sensitivity found to crop yields, resulting in the proposal for further work to apply the model using spatially disaggregated data. - Highlights: ► Energy crop and conventional crop incomes suggested as uncorrelated. ► Diversification effect of energy crops investigated for a risk averse farmer. ► Energy crops indicated as optimal selection only on highest yielding UK sites. ► Large establishment grant rates to substantially alter crop selections.

  4. modelling of hydropower reservoir variables for energy generation

    African Journals Online (AJOL)

    Osondu

    the River Niger (Kainji and Jebba dams) in Nigeria for energy generation using multilayer ... coefficient showed that the networks are reliable for modeling energy generation as a function of ... water, like wind and sun, is a renewable resource.

  5. modelling of hydropower reservoir variables for energy generation

    African Journals Online (AJOL)

    Osondu

    the River Niger (Kainji and Jebba dams) in Nigeria for energy generation using multilayer ... coefficient showed that the networks are reliable for modeling energy generation as a function of ... through turbines and electric generator system.

  6. High energy neutrinos: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark DE 19716 (United States)

    2006-05-15

    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.

  7. Properties of a new variable collimator at orthovoltage energies

    International Nuclear Information System (INIS)

    Lee, K.; Butson, M.; Metcalfe, P.; University of Wollongong, Wollongong, NSW

    1996-01-01

    Full text: Beam characteristics of a Therapax DXT 300 Orthovoltage Machine are investigated using fixed collimators or 'cones' and a variable collimator. Previously, fixed collimators have always been used throughout patient treatments. The variable collimator is an optional accessory to the DXT 300 machine and has just been implemented at our centre. The variable collimator mounts to the DXT 300 at the same position as the fixed collimators and produces rectangular field sizes up to 20 x 20 cmm at 50 cm FSD. Surface/near surface charge measurements were performed for the variable collimator and various configurations of cones for a 10 x 10 cm field at 250kVp and a FSD of 50cm in solid water using a Markus Type 329 parallel plate ionisation chamber connected via a shielded triaxial cable to a 2570/1 NE Farmer electrometer. Central axis percentage depth doses and beam profiles were measured using a Scanditronix RK ionisation chamber in a RFA300 water tank for both cones and the variable collimator. This data was then transferred to the Target Series 2 computer planning system for isodose display. Measurements were performed at 250 kVp. Beam profiles were scanned both perpendicular to and along the cathode-anode direction. A change in charge measured at the surface and to 1 mm depth for the variable collimator and the cones was observed. The normal cone and the variable collimator have surface charges of 100% and 98% respectively. Maximum surface charge occurred for the open-end 'lead' cone. A comparison was made between the central axis percentage depth dose produced by the cones and variable collimator for field sizes of 10 x 10cm and 20 x 20 cm. Maximum dose for the cones is deposited at the surface whereas for the variable collimator there is a slight build-up region before maximum dose is deposited at a depth of 1 mm. Upon comparing the beam profiles produced by the variable collimator and the cones, it was observed that the width of the penumbra differed by

  8. Multiplicities in high energy interactions

    International Nuclear Information System (INIS)

    Derrick, M.

    1984-01-01

    Charged particle multiplicities in hadronic collision have been measured for all energies up to √s = 540 GeV in the center of mass. Similar measurements in e + e - annihilation cover the much smaller range - up to √s = 40 GeV. Data are also available from deep inelastic neutrino scattering up to √s approx. 10 GeV. The experiments measure the mean charged multiplicity , the rapidity density at y = O, and the distributions in prong number. The mean number of photons associated with the events can be used to measure the π 0 and eta 0 multiplicities. Some information is also available on the charged pion, kaon, and nucleon fractions as well as the K 0 and Λ 0 rates and for the higher energy data, the identically equal fraction. We review this data and consider the implications of extrapolations to SSC energies. 13 references

  9. High education and nuclear energy

    International Nuclear Information System (INIS)

    Ghitescu, Petre; Prisecaru, Ilie; Stefanescu, Petre

    1998-01-01

    The Faculty of Energy of the University 'Politecnica' in Bucharest is the only faculty in Romania in the field of nuclear energy education. With an experience of more than 29 years, the Faculty of Energy offers the major 'Nuclear Power Plants', which students graduate after a 5-year education as engineers in the Nuclear Power Plant major. Among the principal objectives of the development and reshape of the Romanian education system was mentioned the upgrading of organizational forms by introducing the transfer credit system, and starting in the fall '97 by accrediting Radioprotection and Nuclear Safety Master education. As a result of co-operation and assistance offered by TEMPUS-SENECA program, the new major is shaped and endowed with a modern curriculum harmonized with UE and IAEA requirements and a modern and performing laboratory. This way the Romanian higher education offers a fully correct and concordant structure with UE countries education. (authors)

  10. High efficiency pool filtering systems utilising variable frequency drives

    Energy Technology Data Exchange (ETDEWEB)

    Hameiri, Z.; Sproul, A.B. [School of Photovoltaic and Renewable Energy Engineering, UNSW, Sydney, NSW 2052 (Australia); Spooner, T. [School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052 (Australia)

    2009-02-15

    Over 1 year, private swimming pools in Australia will typically consume 1680 GWh of electricity, producing 2130 kt of CO{sub 2}. Redesigning a pool's filtration system and using it more efficiently can reduce the energy use, and hence the CO{sub 2} production, by a significant amount. This paper describes experimental measurements carried out on a new design of pool pump system. Initial experiments using a variable frequency drive (VFD) with a standard, single phase pump/motor system have achieved energy savings of 40%. Utilising a VFD and a three phase pump/motor energy savings of 61% have been achieved, without degrading the system performance. (author)

  11. Overview of Variable Renewable Energy Regulatory Issues: A Clean Energy Regulators Initiative Report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.; Cox, S.

    2014-05-01

    This CERI report aims to provide an introductory overview of key regulatory issues associated with the deployment of renewable energy -- particularly variable renewable energy (VRE) sources such wind and solar power. The report draws upon the research and experiences from various international contexts, and identifies key ideas that have emerged from the growing body of VRE deployment experience and regulatory knowledge. The report assumes basic familiarity with regulatory concepts, and although it is not written for a technical audience, directs the reader to further reading when available. VRE deployment generates various regulatory issues: substantive, procedural, and public interest issues, and the report aims to provide an empirical and technical grounding for all three types of questions as appropriate.

  12. High energy particle accelerators as radiation Sources

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  13. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  14. Harvard University High Energy Physics progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard's High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops

  15. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  16. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  17. Particle accelerators and lasers high energy sources

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  18. Operations Optimization of Hybrid Energy Systems under Variable Markets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jun; Garcia, Humberto E.

    2016-07-01

    Hybrid energy systems (HES) have been proposed to be an important element to enable increasing penetration of clean energy. This paper investigates the operations flexibility of HES, and develops a methodology for operations optimization to maximize its economic value based on predicted renewable generation and market information. The proposed operations optimizer allows systematic control of energy conversion for maximal economic value, and is illustrated by numerical results.

  19. Renewable energy at high altitudes

    International Nuclear Information System (INIS)

    Beltramo, R.; Cuzzolin, B.

    2000-01-01

    Improving environmental performance by paying greater attention to the environment factor is becoming the prime objective of many companies and organizations in general. But not theirs alone. Even the tourism sector is making a number of efforts in this direction. This is the case, for example, of the Regina Margherita Refuge located on Point Gnifetti on the Monte Rosa massif, where a research project called Crest was conducted. This was a study on the feasibility of meeting the refuge's energy sources, that is, by using a photovoltaic or hybrid (wind-based and photovoltaic) energy production system. A plant thus able to exploit the landscape and meteorological characteristics typical of a mountain refuge, saving money and reducing the pollution load [it

  20. High-energy cosmic rays

    CERN Document Server

    Cronin, James Watson

    1996-01-01

    Recently two cosmic rays with energy in excess of 2 1020 eV have been recorded. These are some 108 times more energetic than the protons produced by accelerators on earth. There is no credible understanding of the mechanism of acceleration by known a Because of the short mean free path in the cosmic background radiation they must come from nearby distances on a cosmological scale (< 50 Mpc). Their magnetic rigidity suggests that they should point to their source. Lectures will cover the present available data on the highest energy cosmic rays, their detection, possible acceleration mechanisms, their propagation in the galaxy and in extra galactic space and design of new detectors where simulations of air show ers play an important role.

  1. High-voltage variable-duration pulse generator

    International Nuclear Information System (INIS)

    Anisimova, T.E.; Akkuratov, E.V.; Gromovenko, V.M.; Nikonov, Yu.P.; Malinin, A.N.

    1988-01-01

    A high-voltage generator is described that allows pulse duration tau to be varied within wide limits and has high efficiency (at least 50% for tau = 0.5 tau/sub max/) and an amplitude of up to 5 kV, a repetition frequency of up to 200 Hz,and a variable duration of 0-30 μsec. The generator is used in the controller of an electron accelerator

  2. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  3. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  4. High energy physics and cloud computing

    International Nuclear Information System (INIS)

    Cheng Yaodong; Liu Baoxu; Sun Gongxing; Chen Gang

    2011-01-01

    High Energy Physics (HEP) has been a strong promoter of computing technology, for example WWW (World Wide Web) and the grid computing. In the new era of cloud computing, HEP has still a strong demand, and major international high energy physics laboratories have launched a number of projects to research on cloud computing technologies and applications. It describes the current developments in cloud computing and its applications in high energy physics. Some ongoing projects in the institutes of high energy physics, Chinese Academy of Sciences, including cloud storage, virtual computing clusters, and BESⅢ elastic cloud, are also described briefly in the paper. (authors)

  5. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  6. Hot Thermal Storage in a Variable Power, Renewable Energy System

    Science.gov (United States)

    2014-06-01

    where cost effective, increase the utilization of distributed electric power generation through wind, solar, geothermal , and biomass renewable...characteristics and may not necessarily be available in all cases. Types of direct heat energy systems include solar thermal, waste heat, and geothermal ...of super capacitor energy storage system in microgrid,” in International Conference on Sustainable Power Generation and Supply, Janjing, China

  7. URBox : High tech energy and informal housing

    NARCIS (Netherlands)

    Cuperus, Y.J.; Smets, D.

    2011-01-01

    This paper reports on the URBox concept encompassing the high tech end of solar energy and informal low cost and affordable housing. It aims to contribute to solving the global energy crisis by building solar energy settlements in deserts where land is affordable and sunshine in abundance. First the

  8. Dielectric energy versus plasma energy, and Hamiltonian action-angle variables for the Vlasov equation

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1992-04-01

    Expressions for the energy content of one-dimensional electrostatic perturbations about homogeneous equilibria are revisited. The well-known dielectric energy, var-epsilon D , is compared with the exact plasma free energy expression, δ 2 F, that is conserved by the Vlasov-Poisson system. The former is an expression in terms of the perturbed electric field amplitude, while the latter is determined by a generating function, which describes perturbations of the distribution function that respect the important constraint of dynamical accessibility of the system. Thus the comparison requires solving the Vlasov equation for such a perturbations of the distribution function in terms of the electric field. This is done for neutral modes of oscillation that occur for equilibria with stationary inflection points, and it is seen that for these special modes δ 2 F = var-epsilon D . In the case of unstable and corresponding damped modes it is seen that δ 2 F ≠ var-epsilon D ; in fact δ 2 F ≡ 0. This failure of the dielectric energy expression persists even for arbitrarily small growth and damping rates since var-epsilon D is nonzero in this limit, whereas δ 2 F remains zero. The connection between the new exact energy expression and the at-best approximate var-epsilon D is described. The new expression motivates natural definitions of Hamiltonian action variables and signature. A general linear integral transform is introduced that maps the linear version of the noncanonical Hamiltonian structure, which describes the Vlasov equation, to action-angle (diagonal) form

  9. Integrating Variable Renewable Energy in Electric Power Markets: Best Practices from International Experience, Summary for Policymakers

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.

    2012-04-01

    Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  10. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience, Summary for Policymakers

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-04-30

    Many countries - reflecting very different geographies, markets, and power systems - are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  11. Integrating Variable Renewable Energy in Electric Power Markets. Best Practices from International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-04-30

    Many countries—reflecting very different geographies, markets, and power systems—are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.

  12. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  13. Quantifying the energy impact of a variable flow pump in a ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Iolova, K.; Bernier, M.A. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique; Nichols, L. [Dessau-Soprin, Montreal, PQ (Canada)

    2006-07-01

    The thermal behaviour of an energy-efficient public high school building was modelled using the TRNSYS multi-zone building simulation program. The architectural elements such as windows, external and internal walls, roofs, and slabs were described in detail. The two-storey Ecole du Tournant high school near Montreal is the most efficient in Quebec and the second in Canada. It consumes 79.2 per cent less source energy than a typical high school built in accordance with the Model National Energy Code of Canada for Buildings. This presentation described the case study and quantified the energy impact of replacing a constant speed pump with a pump driven by a variable frequency drive in a ground-coupled heat pump (GCHP) system that was installed in the high school. Performance data collected from an on-site energy management system showed that the annual energy consumption of the heat pumps is 33 per cent (63700 kWh) of the total energy consumption of the school while the circulating pump consumes 7.1 per cent (13702 kWh). This performance data was used to validate the energy simulations which were performed using TRNSYS 15. Simulations with variable-flow pumping showed that pumping energy consumption was reduced by about 82 per cent while the total energy used by the circulating pump and heat pumps was reduced by 18.5 per cent. 11 refs., 2 tabs., 13 figs.

  14. High-resolution grids of hourly meteorological variables for Germany

    Science.gov (United States)

    Krähenmann, S.; Walter, A.; Brienen, S.; Imbery, F.; Matzarakis, A.

    2018-02-01

    We present a 1-km2 gridded German dataset of hourly surface climate variables covering the period 1995 to 2012. The dataset comprises 12 variables including temperature, dew point, cloud cover, wind speed and direction, global and direct shortwave radiation, down- and up-welling longwave radiation, sea level pressure, relative humidity and vapour pressure. This dataset was constructed statistically from station data, satellite observations and model data. It is outstanding in terms of spatial and temporal resolution and in the number of climate variables. For each variable, we employed the most suitable gridding method and combined the best of several information sources, including station records, satellite-derived data and data from a regional climate model. A module to estimate urban heat island intensity was integrated for air and dew point temperature. Owing to the low density of available synop stations, the gridded dataset does not capture all variations that may occur at a resolution of 1 km2. This applies to areas of complex terrain (all the variables), and in particular to wind speed and the radiation parameters. To achieve maximum precision, we used all observational information when it was available. This, however, leads to inhomogeneities in station network density and affects the long-term consistency of the dataset. A first climate analysis for Germany was conducted. The Rhine River Valley, for example, exhibited more than 100 summer days in 2003, whereas in 1996, the number was low everywhere in Germany. The dataset is useful for applications in various climate-related studies, hazard management and for solar or wind energy applications and it is available via doi: 10.5676/DWD_CDC/TRY_Basis_v001.

  15. A prototype of a novel energy efficient variable stiffness actuator

    NARCIS (Netherlands)

    Visser, L.C.; Carloni, Raffaella; Klijnstra, F.; Stramigioli, Stefano

    In this work, we present a proof of concept of a novel variable stiffness actuator. The actuator design is based on the conceptual design proposed in earlier work, and is such that the apparent output stiffness of the actuator can be changed independently of the output position and without any

  16. Interferometry of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Padula, S.S.

    1990-01-01

    The interferometry is used for determining large space time dimensions of the Quark Gluon Plasma formed in high energy nuclear collisions or in high multiplicity fluctuations in p-barp collisions. (M.C.K.)

  17. Variable-Energy Cyclotron for Proton Therapy Application

    CERN Document Server

    Alenitsky, Yu G; Vorozhtsov, A S; Glazov, A A; Mytsyn, G V; Molokanov, A G; Onishchenko, L M

    2004-01-01

    The requirements to characteristics of the beams used for proton therapy are considered. The operation and proposed cyclotrons for proton therapy are briefly described. The technical decisions of creation of the cyclotron with energy variation in the range 70-230 MeV and with current up to 100 nA are estimated. Taking into account the fact, that the size and cost of the cyclotron are approximately determined by the maximum proton energy, it is realistically offered to limit the maximum proton energy to 190 MeV and to elaborate a cyclotron project with a warm winding of the magnet for acceleration of H^{-} ions. The energy of the extracted protons for each run is determined by a stripped target radius in the vacuum chamber of the accelerator, and the radiation dose field for the patient is created by the external devices using the developed techniques.

  18. High energy physics in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  19. High energy physics in the United States

    International Nuclear Information System (INIS)

    Month, M.

    1985-01-01

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range

  20. A unified treatment of high energy interactions

    International Nuclear Information System (INIS)

    Drescher, H.J.; Werner, K.; Ostapchenko, S.; Centre National de la Recherche Scientifique, 44 - Nantes

    1999-01-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author)

  1. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  2. Expectations for ultra-high energy interactions

    International Nuclear Information System (INIS)

    Feynman, R.P.

    1978-01-01

    Strong interactions at ultra-high energies are discussed with emphasis on the hadrons produced in high energy collisions. Evidence is considered that quantum chromodynamics might be the right theory, and also some estimates are given of quantum chromodynamics asymptotic-freedom phenomena, the work under discussion being very preliminary. 6 references

  3. New aspects of high energy density plasma

    International Nuclear Information System (INIS)

    Hotta, Eiki

    2005-10-01

    The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)

  4. A solar reserve methodology for renewable energy integration studies based on sub-hourly variability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Eduardo; Brinkman, Gregory; Hummon, Marissa [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lew, Debra

    2012-07-01

    Increasing penetration of wind and solar energy are raising concerns among electric system operators because of the variability and uncertainty associated with the power sources. Previous work focused on the quantification of reserves for systems with wind power. This paper presents a new methodology that allows the determination of necessary reserves for high penetrations of photovoltaic power and compares it to the wind-based methodology. The solar reserve methodology was applied to Phase 2 of the Western Wind and Solar Integration Study. A summary of the results is included. (orig.)

  5. High energy physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    The hadron collider group is studying proton-antiproton interactions at the world`s highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t{bar t} decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-{mu}-{tau} universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices.

  6. High energy physics at UCR

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.

    1997-01-01

    The hadron collider group is studying proton-antiproton interactions at the world's highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t bar t decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-μ-τ universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices

  7. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  8. Remarks on High Energy Evolution

    OpenAIRE

    Kovner, Alex; Lublinsky, Michael

    2005-01-01

    We make several remarks on the B-JIMWLK hierarchy. First, we present a simple and instructive derivation of this equation by considering an arbitrary projectile wave function with small number of valence gluons. We also generalize the equation by including corrections which incorporate effects of high density in the projectile wave function. Second, we systematically derive the dipole model approximation to the hierarchy. We show that in the dipole approximation the hierarchy has a simplifyin...

  9. Impact of Variable Renewable Energy in the Iberian Electricity Market

    DEFF Research Database (Denmark)

    Nuño, Edgar; Pereira, Adelino J. C.; Machado Ferreira, C. M.

    2015-01-01

    Market and system operators face new challenges as more renewable energy sources are added. The driving factors in this trend are mainly associated with environmental benefits of the renewable generation and climate change mitigation, as well as the reduction of the dependency of conventional...... and external energy source. If integrated in large scale, the nondispatchable nature of intermittent resources imposes some technical and economic challenges on the operation of power systems. Particularly, market dynamics and prices could be influenced by such integrations. Over the last years, the generation...... mix of Spain and Portugal has undergone a dramatic change, driven by new environmental policies and financial incentives. In this regard, wind has become one of the most popular alternative sources of energy, bringing new challenges from the operational and structural point of view. This trend has...

  10. A CMOS variable gain amplifier for PHENIX electromagnetic calorimeter and RICH energy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Wintenberg, A.L.; Simpson, M.L.; Young, G.R. [Oak Ridge National Lab., TN (United States); Palmer, R.L.; Moscone, C.G.; Jackson, R.G. [Tennessee Univ., Knoxville, TN (United States)

    1996-12-31

    A variable gain amplifier (VGA) has been developed equalizing the gains of integrating amplifier channels used with multiple photomultiplier tubes operating from common high-voltage supplies. The PHENIX lead-scintillator electromagnetic calorimeter will operate in that manner, and gain equalization is needed to preserve the dynamic range of the analog memory and ADC following the integrating amplifier. The VGA is also needed for matching energy channel gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5-bit digital control, and the risetime is held between 15 and 23 ns using switched compensation in the VGA. An additional feature is gated baseline restoration. Details of the design and results from several prototype devices fabricated in 1.2-{mu}m Orbit CMOS are presented.

  11. Ultra high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  12. North Atlantic Origin of Interdecadal variability of Siberian High

    Science.gov (United States)

    Kim, Seon-Hwa; Sung, Mi-Kyung; Kim, Baek-Min

    2017-04-01

    We suggest that the changes in the mean atmospheric circulation structure in the North Atlantic Ocean upstream region of Eurasian continent play an important role in the interdecadal variability of Siberian High (SH) through the modulation of Ural blocking frequency. Previous studies suggested that the interdecadal variability of SH is partly explained by the Arctic Oscillation. However, in this study, we emphasize the role of 'Warm Arctic and Cold Eurasia (WACE)', which is the second mode of winter surface air temperature variability over Eurasia. We show that the correlation between SH and WACE is high in general compared to that between SH and AO. However, the correlation between SH and WACE does not always exhibit high constant value. It shows a distinctive interdecadal fluctuation in the correlation. We found that this fluctuation in the correlation is due to the interdecadal fluctuation of the continental trough over the North Atlantic and the resultant strengthening of in-situ atmospheric baroclinicity. This accompanies changes in the transient vorticity flux divergence which leads to the downstream wave development and anomalous anticyclonic flow near Ural region. Obviously, the existence of anticyclonic flow over Ural region helps more frequent occurrence of Ural blocking and it is shown that this condition favors positive WACE event, which links to an intensified SH.

  13. Beta activity measurements in high, variable gamma backgrounds

    International Nuclear Information System (INIS)

    Stanga, D.; Sandu, E.; Craciun, L.

    1997-01-01

    In many cases beta activity measurements must be performed in high and variable gamma backgrounds. In such instances it is necessary to use well-shielded detectors but this technique is limited to laboratory equipment and frequently insufficient. In order to perform in a simple manner beta activity measurements in high and variable backgrounds a software-aided counting technique have been developed and a counting system have been constructed. This technique combines the different counting techniques with traditional method of successive measurement of the sample and background. The counting system is based on a programmable multi-scaler which is endowed with appropriate software and allow all operations to be performed via keyboard in an interactive fashion. Two large - area proportional detectors were selected in order to have the same background and the same gamma response within 5%. A program has been developed for the counting data analysis and beta activity computing. The software-aided counting technique has been implemented for beta activity measurement in high and variable backgrounds. (authors)

  14. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  15. High energy hadron spin-flip amplitude

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    2016-01-01

    The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru

  16. Individual Dosimetry for High Energy Radiation Fields

    International Nuclear Information System (INIS)

    Spurny, F.

    1999-01-01

    The exposure of individuals on board aircraft increased interest in individual dosimetry in high energy radiation fields. These fields, both in the case of cosmic rays as primary radiation and at high energy particle accelerators are complex, with a large diversity of particle types, their energies, and linear energy transfer (LET). Several already existing individual dosemeters have been tested in such fields. For the component with high LET (mostly neutrons) etched track detectors were tested with and without fissile radiators, nuclear emulsions, bubble detectors for both types available and an albedo dosemeter. Individual dosimetry for the low LET component has been performed with thermoluminescent detectors (TLDs), photographic film dosemeters and two types of electronic individual dosemeters. It was found that individual dosimetry for the low LET component was satisfactory with the dosemeters tested. As far as the high LET component is concerned, there are problems with both the sensitivity and the energy response. (author)

  17. The Influence of Output Variability from Renewable Electricity Generation on Net Energy Calculations

    Directory of Open Access Journals (Sweden)

    Hannes Kunz

    2014-01-01

    Full Text Available One key approach to analyzing the feasibility of energy extraction and generation technologies is to understand the net energy they contribute to society. These analyses most commonly focus on a simple comparison of a source’s expected energy outputs to the required energy inputs, measured in the form of energy return on investment (EROI. What is not typically factored into net energy analysis is the influence of output variability. This omission ignores a key attribute of biological organisms and societies alike: the preference for stable returns with low dispersion versus equivalent returns that are intermittent or variable. This biologic predilection for stability, observed and refined in academic financial literature, has a direct relationship to many new energy technologies whose outputs are much more variable than traditional energy sources. We investigate the impact of variability on net energy metrics and develop a theoretical framework to evaluate energy systems based on existing financial and biological risk models. We then illustrate the impact of variability on nominal energy return using representative technologies in electricity generation, with a more detailed analysis on wind power, where intermittence and stochastic availability of hard-to-store electricity will be factored into theoretical returns.

  18. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  19. Seychelles Dome variability in a high resolution ocean model

    Science.gov (United States)

    Nyadjro, E. S.; Jensen, T.; Richman, J. G.; Shriver, J. F.

    2016-02-01

    The Seychelles-Chagos Thermocline Ridge (SCTR; 5ºS-10ºS, 50ºE-80ºE) in the tropical Southwest Indian Ocean (SWIO) has been recognized as a region of prominence with regards to climate variability in the Indian Ocean. Convective activities in this region have regional consequences as it affect socio-economic livelihood of the people especially in the countries along the Indian Ocean rim. The SCTR is characterized by a quasi-permanent upwelling that is often associated with thermocline shoaling. This upwelling affects sea surface temperature (SST) variability. We present results on the variability and dynamics of the SCTR as simulated by the 1/12º high resolution HYbrid Coordinate Ocean Model (HYCOM). It is observed that locally, wind stress affects SST via Ekman pumping of cooler subsurface waters, mixing and anomalous zonal advection. Remotely, wind stress curl in the eastern equatorial Indian Ocean generates westward-propagating Rossby waves that impacts the depth of the thermocline which in turn impacts SST variability in the SCTR region. The variability of the contributions of these processes, especially with regard to the Indian Ocean Dipole (IOD) are further examined. In a typical positive IOD (PIOD) year, the net vertical velocity in the SCTR is negative year-round as easterlies along the region are intensified leading to a strong positive curl. This vertical velocity is caused mainly by anomalous local Ekman downwelling (with peak during September-November), a direct opposite to the climatology scenario when local Ekman pumping is positive (upwelling favorable) year-round. The anomalous remote contribution to the vertical velocity changes is minimal especially during the developing and peak stages of PIOD events. In a typical negative IOD (NIOD) year, anomalous vertical velocity is positive almost year-round with peaks in May and October. The remote contribution is positive, in contrast to the climatology and most of the PIOD years.

  20. Practical neutron dosimetry at high energies

    International Nuclear Information System (INIS)

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently

  1. Computing in high-energy physics

    International Nuclear Information System (INIS)

    Mount, Richard P.

    2016-01-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software

  2. Computing in high-energy physics

    Science.gov (United States)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  3. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  4. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  5. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  6. New accelerators in high-energy physics

    International Nuclear Information System (INIS)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting

  7. High energy physics. Ultimate structure of matter and energy

    International Nuclear Information System (INIS)

    1979-04-01

    Some of the principle discoveries and insights and their development up to today are sketched. It is shown how one layer after another was discovered by penetrating farther into the structure of matter. Covered are the mounting energy scale, discoveries at high energy frontier, the families of quarks and leptons, the four forces of nature, some achievements of the past few years, particle accelerators and experimental apparatus. A glossary of terms is included

  8. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  9. High energy physics and nuclear structure

    International Nuclear Information System (INIS)

    Measday, D.F.; Thomas, A.W.

    1980-01-01

    These proceedings contain the papers presented at the named conference. These concern eletromagnetic interactions, weak interactions, strong interactions at intermediate energy, pion reactions, proton reactions, strong interactions at high energy, as well as new facilities and applications. See hints under the relevant topics. (HSI)

  10. Ultra high-energy cosmic ray composition

    International Nuclear Information System (INIS)

    Longley, N.P.

    1993-01-01

    The Soudan 2 surface-underground cosmic ray experiment can simultaneously measure surface shower size, underground muon multiplicity, and underground muon separation for ultra high energy cosmic ray showers. These measurements are sensitive to the primary composition. Analysis for energies from 10 1 to 10 4 TeV favors a light flux consisting of predominantly H and He nuclei

  11. Pi-nucleon phenomenology at high energies

    International Nuclear Information System (INIS)

    Kogitz, S.

    1973-01-01

    A brief introduction to the phenomenology of strong interactions at high energy is presented. This includes discussion of the topics including absorption, finite energy sum rules, and duality. The application of these ideas to two-particle inelastic reactions is examined. (author)

  12. Experiments on very high energy heavy ions

    International Nuclear Information System (INIS)

    Willis, W.J.

    1981-01-01

    In this paper I describe experimental techniques which could be used to investigate central collision of very high energy heavy ions. For my purposes, the energy range is defined by the number of pions produced, Nsub(π) >> 100, and consequently Nsub(π) >> Nsub(nucleon). In this regime we may expect that new phenomena will appear. (orig.)

  13. Energy confinement of high-density tokamaks

    NARCIS (Netherlands)

    Schüller, F.C.; Schram, D.C.; Coppi, B.; Sadowski, W.

    1977-01-01

    Neoclassical ion heat conduction is the major energy loss mechanism in the center of an ohmically heated high-d. tokamak discharge (n>3 * 1020 m-3). This fixes the mutual dependence of plasma quantities on the axis and leads to scaling laws for the poloidal b and energy confinement time, given the

  14. Geometrical scaling in high energy hadron collisions

    International Nuclear Information System (INIS)

    Kundrat, V.; Lokajicek, M.V.

    1984-06-01

    The concept of geometrical scaling for high energy elastic hadron scattering is analyzed and its basic equations are solved in a consistent way. It is shown that they are applicable to a rather small interval of momentum transfers, e.g. maximally for |t| 2 for pp scattering at the ISR energies. (author)

  15. A variable energy Moeller polarimeter at the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Barday, Roman; Enders, Joachim [Institut fuer Kernphysik, TU Darmstadt (Germany); Mueller, Wolfgang; Steiner, Bastian [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany)

    2008-07-01

    A coincidence Moeller polarimeter is designed for both cw and pulsed beam of the Superconducting Darmstadt Linear Accelerator S-DALINAC where polarized electron beams will become available in 2008. The designed polarimeter covers an energy region between 15 and 130 MeV. The beam polarisation at currents of up to 1 {mu}A is inferred from measurement of the asymmetry in polarized electron-electron scattering from the Fe-Co foil. The influence of the atomic motion of the target electrons on the polarisation, the so-called Levchuk effect was investigated.

  16. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  17. Laser fusion and high energy density science

    International Nuclear Information System (INIS)

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  18. Physics at high energy photon photon colliders

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  19. Organisation of high-energy physics

    CERN Document Server

    Kluyver, J C

    1981-01-01

    Tabulates details of major accelerator laboratories in western Europe, USA, and USSR, and describes the various organisations concerned with high-energy physics. The Dutch organisation uses the NIKHEF laboratory in Amsterdam and cooperates with CERN. (0 refs).

  20. New informative techniques in high energy physics

    International Nuclear Information System (INIS)

    Klimenko, S.V.; Ukhov, V.I.

    1992-01-01

    A number of new informative techniques applied to high energy physics are considered. These are the object-oriented programming, systems integration, UIMS, visualisation, expert systems, neural networks. 100 refs

  1. Multiplicity distributions in high energy collisions

    International Nuclear Information System (INIS)

    Giovannini, A.; Lupia, S.; Ugoccioni, R.

    1992-01-01

    We discuss the important phases in the evolution of our understanding of multiplicity distributions in high energy collisions with particular emphasis to intermittent behavior and shoulder structure problem. (orig.)

  2. Multiplicity distributions in high energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, A.; Lupia, S.; Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. Turin (Italy) INFN, Turin (Italy))

    1992-03-01

    We discuss the important phases in the evolution of our understanding of multiplicity distributions in high energy collisions with particular emphasis to intermittent behavior and shoulder structure problem. (orig.).

  3. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community

  4. High Energy Density Polymer Film Capacitors

    National Research Council Canada - National Science Library

    Boufelfel, Ali

    2006-01-01

    High-energy-density capacitors that are compact and light-weight are extremely valuable in a number of critical DoD systems that include portable field equipment, pulsed lasers, detection equipment...

  5. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  6. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  7. Proceedings of progress in high energy physics

    International Nuclear Information System (INIS)

    Pauchy Hwang, W.Y.; Lee, S.C.; Lee, C.E.; Ernst, D.J.

    1991-01-01

    This book contains the proceedings of progress in high energy physics. Topics covered include: Particle Phenomology; Particles and Fields; Physics in 2 and 1 Dimensions; Cosmology, Astrophysics, and Gravitation; Some Perspertives on the Future of Particle Physics

  8. Battery Energy Storage Systems to Mitigate the Variability of Photovoltaic Power Generation

    Science.gov (United States)

    Gurganus, Heath Alan

    Methods of generating renewable energy such as through solar photovoltaic (PV) cells and wind turbines offer great promise in terms of a reduced carbon footprint and overall impact on the environment. However, these methods also share the attribute of being highly stochastic, meaning they are variable in such a way that is difficult to forecast with sufficient accuracy. While solar power currently constitutes a small amount of generating potential in most regions, the cost of photovoltaics continues to decline and a trend has emerged to build larger PV plants than was once feasible. This has brought the matter of increased variability to the forefront of research in the industry. Energy storage has been proposed as a means of mitigating this increased variability --- and thus reducing the need to utilize traditional spinning reserves --- as well as offering auxiliary grid services such as peak-shifting and frequency control. This thesis addresses the feasibility of using electrochemical storage methods (i.e. batteries) to decrease the ramp rates of PV power plants. By building a simulation of a grid-connected PV array and a typical Battery Energy Storage System (BESS) in the NetLogo simulation environment, I have created a parameterized tool that can be tailored to describe almost any potential PV setup. This thesis describes the design and function of this model, and makes a case for the accuracy of its measurements by comparing its simulated output to that of well-documented real world sites. Finally, a set of recommendations for the design and operational parameters of such a system are then put forth based on the results of several experiments performed using this model.

  9. Evaluation of energy savings potential of variable refrigerant flow (VRF from variable air volume (VAV in the U.S. climate locations

    Directory of Open Access Journals (Sweden)

    Dongsu Kim

    2017-11-01

    Full Text Available Variable refrigerant flow (VRF systems are known for their high energy performance and thus can improve energy efficiency both in residential and commercial buildings. The energy savings potential of this system has been demonstrated in several studies by comparing the system performance with conventional HVAC systems such as rooftop variable air volume systems (RTU-VAV and central chiller and boiler systems. This paper evaluates the performance of VRF and RTU-VAV systems in a simulation environment using widely-accepted whole building energy modeling software, EnergyPlus. A medium office prototype building model, developed by the U.S. Department of Energy (DOE, is used to assess the performance of VRF and RTU-VAV systems. Each system is placed in 16 different locations, representing all U.S. climate zones, to evaluate the performance variations. Both models are compliant with the minimum energy code requirements prescribed in ASHRAE standard 90.1-2010 — energy standard for buildings except low-rise residential buildings. Finally, a comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of VRF systems. The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses compared to the RTU-VAV systems. In addition, calculated results for annual HVAC cost savings point out that hot and mild climates show higher percentage cost savings for the VRF systems than cold climates mainly due to the differences in electricity and gas use for heating sources.

  10. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  11. Scaling violations at ultra-high energies

    International Nuclear Information System (INIS)

    Tung, W.K.

    1979-01-01

    The paper discusses some of the features of high energy lepton-hadron scattering, including the observed (Bjorken) scaling behavior. The cross-sections where all hadron final states are summed over, are examined and the general formulas for the differential cross-section are examined. The subjects of scaling, breaking and phenomenological consequences are studied, and a list of what ultra-high energy neutrino physics can teach QCD is given

  12. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  13. Research of high energy radioactivity identification detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Kyun; Lee, Yong Bum; Hwang, Jong Sun; Choi, Seok Ki

    1998-07-01

    {Delta} {Epsilon}-{Epsilon} telescope high radioactivity detector was designed, fabricated, and tested at the 35 MeV proton energy. We developed the computer code to calculate the energy loss of projectile ions in the matter. Using the code, we designed and fabricated a detector to measure 15-50 MeV protons. The detector was successfully tested to measure the energy of protons and deuterons and to identify the ions. In future, we would like to extend the present result to the development of a higher energy proton detector and a heavy ion detector. (author). 10 refs., 3 tabs., 14 figs

  14. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  15. High density plasma heating in the Tokamak à configuration variable

    International Nuclear Information System (INIS)

    Curchod, L.

    2011-04-01

    The Tokamak à Configuration Variable (TCV) is a medium size magnetic confinement thermonuclear fusion experiment designed for the study of the plasma performances as a function of its shape. It is equipped with a high power and highly flexible electron cyclotron heating (ECH) and current drive (ECCD) system. Up to 3 MW of 2 nd harmonic EC power in ordinary (O 2 ) or extraordinary (X 2 ) polarization can be injected from TCV low-field side via six independently steerable launchers. In addition, up to 1.5 MW of 3 rd harmonic EC power (X 3 ) can be launched along the EC resonance from the top of TCV vacuum vessel. At high density, standard ECH and ECCD are prevented by the appearance of a cutoff layer screening the access to the EC resonance at the plasma center. As a consequence, less than 50% of TCV density operational domain is accessible to X 2 and X 3 ECH. The electron Bernstein waves (EBW) have been proposed to overcome this limitation. EBW is an electrostatic mode propagating beyond the plasma cutoff without upper density limit. Since it cannot propagate in vacuum, it has to be excited by mode conversion of EC waves in the plasma. Efficient electron Bernstein waves heating (EBH) and current drive (EBCD) were previously performed in several fusion devices, in particular in the W7-AS stellarator and in the MAST spherical tokamak. In TCV, the conditions for an efficient O-X-B mode conversion (i.e. a steep density gradient at the O 2 plasma cutoff) are met at the edge of high confinement (H-mode) plasmas characterized by the appearance of a pedestal in the electron temperature and density profiles. TCV experiments have demonstrated the first EBW coupling to overdense plasmas in a medium aspect-ratio tokamak via O-X-B mode conversion. This thesis work focuses on several aspects of ECH and EBH in low and high density plasmas. Firstly, the experimental optimum angles for the O-X-B mode conversion is successfully compared to the full-wave mode conversion calculation

  16. Report on high energy neutron dosimetry workshop

    International Nuclear Information System (INIS)

    Alvar, K.R.; Gavron, A.

    1993-01-01

    The workshop was called to assess the performance of neutron dosimetry per the responses from ten DOE accelerator facilities to an Office of Energy Research questionnaire regarding implementation of a personnel dosimetry requirement in DRAFT DOE 5480.ACC, ''Safety of Accelerator Facilities''. The goals of the workshop were to assess the state of dosimetry at high energy accelerators and if such dosimetry requires improvement, to reach consensus on how to proceed with such improvements. There were 22 attendees, from DOE Programs and contract facilities, DOE, Office of Energy Research (ER), Office of Environmental Safety and Health (EH), Office of Fusion Energy, and the DOE high energy accelerator facilities. A list of attendees and the meeting agenda are attached. Copies of the presentations are also attached

  17. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M.T.

    2015-05-22

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  18. Cosmic physics: the high energy frontier

    International Nuclear Information System (INIS)

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies 10 8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic γ-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violations of Lorentz invariance as well as Planck scale physics and quantum gravity. (topical review)

  19. The Impact of Energy Price Decline on China's Energy-Economy-Environment System Variables Using a CGE Model

    DEFF Research Database (Denmark)

    Guo, Zhengquan; Wang, Daojuan; Chen, Chong

    In recent years, prices of coal and crude oil have fallen significantly. These declines have had a large impact on China’s energy-economy-environment system variables. This paper establishes a computable general equilibrium model to systematically analyse the impact of coal price changes alone...... or the decline of both coal and oil prices on the variables of China's energy-economy-environment system. The results of the analysis show that the decline of the coal price alone or of coal and crude oil prices together will lead to a significant increase in demand for either coal and total energy or coal...

  20. High energy physics advisory panel's subpanel on vision for the future of high-energy physics

    International Nuclear Information System (INIS)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report's own origins and development

  1. Scales of snow depth variability in high elevation rangeland sagebrush

    Science.gov (United States)

    Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.

    2017-09-01

    In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.

  2. High Turndown Ratio, High Delta-Emittance, Variable Emissivity Electrochromics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Variable-emittance materials are in high demand for applications ranging from manned and unmanned space platforms (e.g. in radiators at the Moon's poles where damage...

  3. Parametric study of variable renewable energy integration in Europe: Advantages and costs of transmission grid extensions

    International Nuclear Information System (INIS)

    Schaber, Katrin; Steinke, Florian; Mühlich, Pascal; Hamacher, Thomas

    2012-01-01

    Wind and solar energy will play an important role in the decarbonization of the European electricity generation. However, high shares of these variable renewable energies (VREs) challenge the power system considerably due to their temporal fluctuations and geographical dispersion. In this paper, we systematically analyze transmission grid extensions as an integration measure for VREs in Europe. We show the effects of grid extensions for fundamental properties of the power system as a function of the penetration and mix of wind and solar energy. Backup capacity requirements and overproduction are reduced with a powerful overlay transmission grid. We determine the costs of the grid extensions in dependence of the VRE penetration and mix and find that the grid integration costs remain below 25% of the VRE investment costs for all conceivable VRE configurations. Furthermore, robust design features of future power systems in terms of grid geometry and flexibility requirements for backup technologies are identified. We apply a spatially and temporally highly resolved techno-economic model of the European power system for our analysis. - Highlights: ► Quantification of the advantages and costs of a European overlay transmission grid. ► Grid integration costs for VREs in Europe remain below 6€/MWh. ► Application of a detailed power system model to a wide parameter space.

  4. Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget

    Science.gov (United States)

    Renfrew, Ian A.; King, John C.; Markus, Thorsten

    2002-06-01

    The surface energy budget of coastal polynyas in the southern Weddell Sea has been evaluated for the period 1992-1998 using a combination of satellite observations, meteorological data, and simple physical models. The study focuses on polynyas that habitually form off the Ronne Ice Shelf. The coastal polynya areal data are derived from an advanced multichannel polynya detection algorithm applied to passive microwave brightness temperatures. The surface sensible and latent heat fluxes are calculated via a fetch-dependent model of the convective-thermal internal boundary layer. The radiative fluxes are calculated using well-established empirical formulae and an innovative cloud model. Standard meteorological variables that are required for the flux calculations are taken from automatic weather stations and from the National Centers for Environmental Production/National Center for Atmospheric Research reanalyses. The 7 year surface energy budget shows an overall oceanic warming due to the presence of coastal polynyas. For most of the period the summertime oceanic warming, due to the absorption of shortwave radiation, is approximately in balance with the wintertime oceanic cooling. However, the anomalously large summertime polynya of 1997-1998 allowed a large oceanic warming of the region. Wintertime freezing seasons are characterized by episodes of high heat fluxes interspersed with more quiescent periods and controlled by coastal polynya dynamics. The high heat fluxes are primarily due to the sensible heat flux component, with smaller complementary latent and radiative flux components. The average freezing season area-integrated energy exchange is 3.48 × 1019 J, with contributions of 63, 22, and 15% from the sensible, latent, and radiative components, respectively. The average melting season area-integrated energy exchange is -5.31 × 1019 J, almost entirely due to the radiative component. There is considerable interannual variability in the surface energy budget

  5. Very high energy emission sources beyond the Galaxy

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Active Galactic Nuclei (AGN are considered as potential extragalactic sources of very and ultra high energy cosmic rays. According to theoretical predictions cosmic ray acceleration can take place at the shock created by the expanding cocoons around active galactic nuclei as well as at AGN jets. The measurements of AGN TeV spectra, the variability time scale of TeV emission can provide essential information on the dynamics of AGN jets, the localization of acceleration region and an estimation of its size. SHALON observations yielded data on extragalactic sources of different AGN types in the energy range of 800 GeV–100 TeV. The data from SHALON observations are compared with those from other experiments at high and very high energies.

  6. Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping

    Directory of Open Access Journals (Sweden)

    Jieqiong Wu

    2015-09-01

    Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.

  7. The high energy accelerator program in Japan

    International Nuclear Information System (INIS)

    Ozaki, S.

    1987-01-01

    The author observes that in order to survey the intentions of Japanese high energy physicists and to make a recommendation to the High Energy Committee on future plans for high energy physics in Japan, including accelerators after TRISTAN, international collaboration projects and non-accelerator physics, a subcommittee of fifteen members is formed. The committee recommendation reads: A) For a new energy frontier, 1. Immediate initiation of R/D efforts for an e/sup +/e/sup -/ linear collider of TeV class, constructs a possible home-based facility, 2. Promotes international collaborative experiments using the SSC for the hadron sector, B) As projects of immediate concern: 1. The energy of the TRISTAN main ring increases further makes a possible low energy, high luminosity e/sup +/e/sup -/ collider operation in the TRISTAN complex, 2. The intensity of the 12 GeV PS at KEK increases, 3. Experiments in non-accelerator particle physics are promoted. In this contribution, the current status of the TRISTAN project and some of the R/D program on accelerator technology are reported

  8. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-01-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN

  9. High energy experimental physics: Progress report

    International Nuclear Information System (INIS)

    Rosen, J.; Miller, D.

    1988-01-01

    This report contains papers of high energy physics experiments and detector equipment design. Proposals are also given for future experiments. Some of the topics covered in this report are: high energy predictions for /bar char/pp and pp elastic scattering and total cross sections; D0 forward drift chambers; polarized beam facility; analyzing power measurment in inclusive pion production at high transverse momentum; Skyrme model for baryons; string models for color flux tubes; hadronic decays for the /tau/ lepton; and meson form factors in perturbative QCD

  10. Temporal and spatial distribution of high energy electrons at Jupiter

    Science.gov (United States)

    Jun, I.; Garrett, H. B.; Ratliff, J. M.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to study the high energy electron environment in the Jovian magnetosphere, especially in the region between 8 to 18 Rj (1 Rj = 1 Jovian radius = 71,400 km). 10-minute averages of the EPD data collected between Jupiter orbit insertion (JOI) in 1995 and the orbit number 33 (I33) in 2002 form an extensive dataset, which has been extremely useful to observe temporal and spatial variability of the Jovian high energy electron environment. The count rates of the EPD electron channels (0.174, 0.304, 0.527, 1.5, 2.0, and 11 MeV) were grouped into 0.5 Rj or 0.5 L bins and analyzed statistically. The results indicate that: (1) a log-normal Gaussian distribution well describes the statistics of the high energy electron environment (for example, electron differential fluxes) in the Jovian magnetosphere, in the region studied here; (2) the high energy electron environments inferred by the Galileo EPD measurements are in a close agreement with the data obtained using the Divine model, which was developed more than 30 years ago from Pioneer 10, 11 and Voyager 1, 2 data; (3) the data are better organized when plotted against magnetic radial parameter L than Rj; (4) the standard deviations of the 0.174, 0.304, 0.527 MeV channel count rates are larger than those of the 1.5, 2.0, 11 MeV count rates in 12 Rj. These observations are very helpful to understand short- and long-term, and local variability of the Jovian high energy electron environment, and are discussed in detail.

  11. Economic competitiveness of electricity production means inside smart grids: application to nuclear energy and variable renewable energies

    International Nuclear Information System (INIS)

    Keppler, J.H.; Baritaud, M.; Berthelemy, M.

    2017-01-01

    For a long time the comparison of the production costs of electricity from various primary sources were made on the basis of levelised costs of electricity (LCOE). LCOE is in fact the cost of the technology used for the production. In recent years solar and wind energies have seen their LCOE drop sharply (-60 % for solar power in 5 years) while nuclear energy's LCOE is now stabilized. In order to assess the cost of renewable energies, LCOE are not sufficient because variable energies like solar or wind power require other means of production to compensate their variability. Another point is that renewable energies are decentralized and as a consequence require investments to develop the power distribution system. This analysis presents a new methodology to compare the costs of electricity production means. This methodology takes into account LCOE and a system cost that represents the cost of the effects of the technology on the rest of the electricity production system. (A.C.)

  12. Opportunities for high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.; Hansen, J.C.

    1997-01-01

    Wind power is today a mature technology, which at windy locations, is economically competitive to conventional power generation technologies. This and growing global environmental concerns have led governments to encourage and plan for wind energy development, a typical aim being 10% of electricity...... consumption. The successful operation of the three major power systems of Cape Verde, with a total wind energy penetration of about 15% since December 1994, demonstrates that power systems can be operated with high penetration of wind energy by adding simple control and monitoring systems only. Thorough...... analyses conclude that expanding to even above 15% wind energy penetration in the Cape Verde power systems is economical. Worldwide, numerous locations with favorable wind conditions and power systems similar to the Capeverdean provide good opportunities for installing wind farms and achieving high wind...

  13. High energy density propulsion systems and small engine dynamometer

    Science.gov (United States)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  14. High-energy capacitance electrostatic micromotors

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, E. G.

    2003-03-01

    The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.

  15. High energy collisions of nuclei: experiments

    International Nuclear Information System (INIS)

    Heckman, H.H.

    1977-09-01

    Heavy-ion nuclear reactions with projectile energies up to 2.1 GeV/A are reviewed. The concept of ''rapidity'' is elucidated, and the reactions discussed are divided into sections dealing with target fragmentation, projectile fragmentation, and the intermediate region, with emphasis on the production of light nuclei in high-energy heavy-ion collisions. Target fragmentation experiments using nuclear emulsion and AgCl visual track detectors are also summarized. 18 figures

  16. High energy cosmic rays: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor; Gaisser, Thomas K.; Tilav, Serap

    2014-04-01

    We discuss the production of a unique energy spectrum of the high energy cosmic rays detected with air showers by shifting the energy estimates of different detectors. After such a spectrum is generated we fit the spectrum with three or four populations of cosmic rays that might be accelerated at different cosmic ray sources. We also present the chemical composition that the fits of the spectrum generates and discuss some new data sets presented this summer at the ICRC in Rio de Janeiro that may require new global fits.

  17. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  18. High Energy Density Sciences with High Power Lasers at SACLA

    Science.gov (United States)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  19. High-energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    While high energy collision experiments yield a wealth of complicated patterns, there are a few general and very striking features that stand out. Because of the universality of these features, and because of the dominating influence they have on high energy phenomena, it is the authors opinion that a physical picture of high energy collisions must address itself first of all to these features before going into specific details. In this short talk these general and striking features are stated and a physical picture developed in the last few years to specifically accommodate these features is described. The picture was originally discussed for elastic scattering. But it leads naturally, indeed inevitably as they shall discuss, to conclusions about inelastic processes, resulting in an idea called the hypothesis of limiting fragmentation

  20. Experimental and theoretical high energy physics research

    International Nuclear Information System (INIS)

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e + e - analysis, bar P decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the φ factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K L 0 → π 0 γγ and π 0 ν bar ν, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R ampersand D

  1. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    Directory of Open Access Journals (Sweden)

    P. E. Bachem

    2017-09-01

    Full Text Available The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial–interglacial variability. Here, we present high-resolution records of sea surface temperature (SST and ice-rafted debris (IRD in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  2. The HESP (High Energy Solar Physics) project

    Science.gov (United States)

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  3. Improved method for solving the neutron transport problem by discretization of space and energy variables

    International Nuclear Information System (INIS)

    Bosevski, T.

    1971-01-01

    The polynomial interpolation of neutron flux between the chosen space and energy variables enabled transformation of the integral transport equation into a system of linear equations with constant coefficients. Solutions of this system are the needed values of flux for chosen values of space and energy variables. The proposed improved method for solving the neutron transport problem including the mathematical formalism is simple and efficient since the number of needed input data is decreased both in treating the spatial and energy variables. Mathematical method based on this approach gives more stable solutions with significantly decreased probability of numerical errors. Computer code based on the proposed method was used for calculations of one heavy water and one light water reactor cell, and the results were compared to results of other very precise calculations. The proposed method was better concerning convergence rate, decreased computing time and needed computer memory. Discretization of variables enabled direct comparison of theoretical and experimental results

  4. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.

  5. ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Yu Wenfei; Zhang Wenda

    2013-01-01

    We found that the black hole candidate MAXI J1659–152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

  6. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  7. High energy physics computing in Japan

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1989-01-01

    A brief overview of the computing provision for high energy physics in Japan is presented. Most of the computing power for high energy physics is concentrated in KEK. Here there are two large scale systems: one providing a general computing service including vector processing and the other dedicated to TRISTAN experiments. Each university group has a smaller sized mainframe or VAX system to facilitate both their local computing needs and the remote use of the KEK computers through a network. The large computer system for the TRISTAN experiments is described. An overview of a prospective future large facility is also given. (orig.)

  8. The production of iodine-123 on the Harwell variable energy cyclotron

    International Nuclear Information System (INIS)

    Cuninghame, J.G.; Hill, J.I.S.; Nichols, A.L.; Taylor, N.K.

    1978-01-01

    123 I has often been called the isotope of choice for dynamic body function studies in nuclear medicine. There has therefore, been a keen interest in the possibility of regular supply of high purity 123 I produced by the Harwell Variable Energy Cyclotron (VEC) and Synchrocyclotron (SC). This report describes a three year research and development programme on the VEC which has resulted in a method for the safe and reliable large scale production of 123 I by irradiation of di-iodomethane with 58 MeV protons. The quality of the product, and the medical trials which have been carried out with it, are also discussed. The processing and handling of the hundreds of millicuries produced during a run presents serious handling problems. These have been solved and the methods and equipment developed are described. (author)

  9. Variable low energy positron beams for depth resolved defect spectroscopy in thin film structures

    International Nuclear Information System (INIS)

    Amarendra, G.; Viswanathan, B.; Venugopal Rao, G.; Parimala, J.; Purniah, B.

    1997-01-01

    The design, development and commissioning details of an ultra high vacuum compatible, magnetically-guided and compact variable low energy positron beam facility are reported. Information pertaining to the nature, concentration and spatial distribution of defects present at various depths in the near-surface layers of a material can be obtained using this technique. Some of the experimental results obtained using this facility, in terms of surface-sensitive positronium fraction measurements on Cu surfaces as well as defect-sensitive Doppler broadening measurements on semiconductor interfaces and ion irradiated silicon are presented. These results essentially provide an illustration of the research capability of the technique for the study of sub-surface regions and thin film interfaces. (author)

  10. Increased demand-side flexibility: market effects and impacts on variable renewable energy integration

    Directory of Open Access Journals (Sweden)

    Åsa Grytli Tveten

    2016-12-01

    Full Text Available This paper investigates the effect of increased demand-side flexibility (DSF on integration and market value of variable renewable energy sources (VRE. Using assumed potentials, system-optimal within-day shifts in demand are investigated for the Northern European power markets in 2030, applying a comprehensive partial equilibrium model with high temporal and spatial resolution. Increased DSF is found to cause only a minor (less than 3% reduction in consumers’ cost of electricity. VRE revenues are found to increase (up to 5% and 2% for wind and solar power, respectively, and total VRE curtailment decreases by up to 7.2 TWh. Increased DSF causes only limited reductions in GHG emissions. The emission reduction is, however, sensitive to underlying assumptions. We conclude that increased DSF is a promising measure for improving VRE integration. However, low consumers’ savings imply that policies stimulating DFS will be needed to fully use the potential benefits of DSF for VRE integration

  11. Progress in high-energy laser technology

    International Nuclear Information System (INIS)

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  12. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  13. Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi-Sugeno-Kang fuzzy model

    International Nuclear Information System (INIS)

    Galdi, V.; Piccolo, A.; Siano, P.

    2009-01-01

    Nowadays, incentives and financing options for developing renewable energy facilities and the new development in variable speed wind technology make wind energy a competitive source if compared with conventional generation ones. In order to improve the effectiveness of variable speed wind systems, adaptive control systems able to cope with time variances of the system under control are necessary. On these basis, a data driven designing methodology for TSK fuzzy models design is presented in this paper. The methodology, on the basis of given input-output numerical data, generates the 'best' TSK fuzzy model able to estimate with high accuracy the maximum extractable power from a variable speed wind turbine. The design methodology is based on fuzzy clustering methods for partitioning the input-output space combined with genetic algorithms (GA), and recursive least-squares (LS) optimization methods for model parameter adaptation

  14. Baryon number violation in high energy collisions

    International Nuclear Information System (INIS)

    Farrar, G.R.; Meng, R.

    1990-08-01

    We study the phenomenology of baryon number violation induced by electroweak instantons. We find that if the naive-instanton amplitudes were valid for arbitrarily high energies, the event rate at the SSC would be a few per hour, with a typical event consisting of 3 'primary' antileptons and 7 'primary' antiquark jets, accompanied by ≅ 85 electroweak gauge bosons, having a sharp threshold in the total sub-energy at about 17 TeV. We describe how to establish their electroweak-instanton-induced origin. The naive instanton approximation is known to overestimate the rate for these processes, so this work focusses attention on the need for more accurate calculations, and for a calculational method which is appropriate when the energy of the initial particles is above the sphaleron energy. (orig.)

  15. Navigating Cuba’s Energy Choices: Design Variables and Insights from Duke University’s ‘Energy for Emerging Markets’ Case Competition

    International Nuclear Information System (INIS)

    Vermeer, Daniel L.; Fernandez-Aballí Altamirano, Carlos; Masters, Harry

    2017-01-01

    Cuba’s energy decision makers are facing challenging choices as they consider the Country’s energy needs in coming decades. A shifting tide in domestic policy and international relations is ushering in new economic activity that will increase demand for electricity on the long run. Meanwhile, recent events with Cuba’s traditional energy partners have highlighted concerns around reliance on foreign fuel sources for electricity production. These factors create a compelling mandate for the government to chart a transition to cleaner sources of energy and greater resiliency of its energy system. Inherently, energy systems are technically complex, capital-intensive, highly regulated, and involve a wide variety of disciplines and stakeholders. While there are a multitude of questions to address, such topics can be distilled into several key design variables . These design variables broadly fall into three categories: technology, policy, and finance. The designers of Cuba’s energy system must decide which technologies to utilize, what policies are needed to enable new approaches, and how capital will be attracted to enable the required investment. By working with international academic partners, Cuba can benefit from new insights and innovative approaches to rapidly evolving its energy system to meet its future needs. (author)

  16. Enhancing energy recovery in the steel industry: Matching continuous charge with off-gas variability smoothing

    International Nuclear Information System (INIS)

    Dal Magro, Fabio; Meneghetti, Antonella; Nardin, Gioacchino; Savino, Stefano

    2015-01-01

    Highlights: • A system based on phase change material is inserted into the off-gas-line of a continuous charge electric arc furnace. • The off-gas temperature profile after scrap preheating is smoothed. • A heat transfer fluid through phase change material containers allows to control overheating issues. • The smoothed off-gas profiles enable efficient downstream power generation. • The recovery system investment cost is decreased due to lower sizes of components. - Abstract: In order to allow an efficient energy recovery from off-gas in the steel industry, the high variability of heat flow should be managed. A temperature smoothing device based on phase change materials at high temperatures is inserted into the off-gas line of a continuous charge electric arc furnace process with scrap preheating. To address overheating issues, a heat transfer fluid flowing through containers is introduced and selected by developing an analytical model. The performance of the smoothing system is analyzed by thermo-fluid dynamic simulations. The reduced maximum temperature of off-gas allows to reduce the size and investment cost of the downstream energy recovery system, while the increased minimum temperature enhances the steam turbine load factor, thus increasing its utilization. Benefits on environmental issues due to dioxins generation are also gained

  17. Application of nanotechnologies in high energy physics

    International Nuclear Information System (INIS)

    Angelucci, R.; Corticelli, F.; Cuffiani, M.; Dallavalle, G.M.; Malferraxi, L.; Montanari, A.; Montanari, C.; Odorici, F.; Rizzoli, R.; Summonte, C.

    2003-01-01

    In the past, the progressive reduction of electronics integration scale has allowed high energy physics experiments to build particle detectors with a high number of sensitive channels and high spatial granularity, down to the micron scale. Nowadays, the increasing effort towards nanoelectronics and progresses in various fields of nanotechnologies, suggests that the time for nanodetectors is not far to come. As an example of possible application of nanotechnologies in HEP, we present results on fabrication of nanochannel matrices in anodic porous alumina as a template for preparing an array of carbon nanotubes, which we believe can be a promising building block in developing particle detectors with high spatial resolution

  18. 22nd DAE High Energy Physics Symposium

    CERN Document Server

    2018-01-01

    These proceedings gather invited and contributed talks presented at the XXII DAE-BRNS High Energy Physics (HEP) Symposium, which was held at the University of Delhi, India, on 12–16 December 2016. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Neutrino Physics, (2) Standard Model Physics (including Electroweak, Flavour Physics), (3) Beyond Standard Model Physics, (4) Heavy Ion Physics & QCD (Quantum Chromodynamics), (5) Particle Astrophysics & Cosmology, (6) Future Experiments and Detector Development, (7) Formal Theory, and (8) Societal Applications: Medical Physics, Imaging, etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the leading symposiums in the field of Elementary Particle Physics, is held every other year in India and supported by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India. As man...

  19. Photodisintegration of the deuteron at high energy

    International Nuclear Information System (INIS)

    Holt, R.J.

    1992-01-01

    Measurements of the angular distribution for the γd→+pn reaction were performed at SLAC for photon energies between 0.7 and 1.8 GeV (experiment NE8) and between 1.6 and 4.4. GeV (experiment NE17). The final results for experiment NE8 will be presented, but only preliminary results for NE17 will be discussed. The data at θ cm = 90 degrees appear to follow the constituent counting rules. The angular distribution at high photon energies exhibit large values of the cross section at forward angles. There is evidence that the cross section may also be large at backward angles and high energies

  20. Maximizing Energy Capture of Fixed-Pitch Variable-Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K.; Migliore, P.

    2000-08-01

    Field tests of a variable-speed, stall-regulated wind turbine were conducted at a US Department of Energy Laboratory. A variable-speed generating system, comprising a doubly-fed generator and series-resonant power converter, was installed on a 275-kW, downwind, two-blade wind turbine. Gearbox, generator, and converter efficiency were measured in the laboratory so that rotor aerodynamic efficiency could be determined from field measurement of generator power. The turbine was operated at several discrete rotational speeds to develop power curves for use in formulating variable-speed control strategies. Test results for fixed-speed and variable-speed operation are presented along with discussion and comparison of the variable-speed control methodologies. Where possible, comparisons between fixed-speed and variable-speed operation are shown.

  1. High energy excitations in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  2. Charged current weak interactions at high energy

    International Nuclear Information System (INIS)

    Cline, D.

    1977-01-01

    We review high energy neutrino and antineutrino charged current interactions. An overview of the experimental data is given, including a discussion of the experimental status of the y anomaly. Locality tests, μ-e universality and charge symmetry invariance tests are discussed. Charm production is discussed. The experimental status of trimuon events and possible phenomenological models for these events are presented. (orig.) [de

  3. High energy electron multibeam diffraction and imaging

    International Nuclear Information System (INIS)

    Bourret, Alain.

    1980-04-01

    The different theories of dynamical scattering of electrons are firstly reviewed with special reference to their basis and the validity of the different approximations. Then after a short description of the different experimental set ups, structural analysis and the investigation of the optical potential by means of high energy electrons will be surveyed

  4. Nuclear emulsion and high-energy physics

    International Nuclear Information System (INIS)

    Sun Hancheng; Zhang Donghai

    2008-01-01

    The history of the development of nuclear emulsion and its applications in high-energy physics, from the discovery of pion to the discovery of tau neutrino, are briefly reviewed in this paper. A new stage of development of nuclear-emulsion technique is discussed

  5. High energy spin isospin modes in nuclei

    International Nuclear Information System (INIS)

    Chanfray, G.; Ericson, M.

    1984-01-01

    The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch

  6. Theoretical and experimental high energy physics

    International Nuclear Information System (INIS)

    Walsh, T.; Ruddick, K.

    1990-01-01

    This report discusses the following topics: The Soudan enterprise; study of strange quarks at Fermilab; direct photons at Fermilab; the Brookhaven programs; AMY and CLEO: studies of e + e - annihilations; cosmic ray studies with the DO muon chamber; progress report on HEP computer upgrade; muon triggering and reconstruction at SSC; and, theoretical high energy physics

  7. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1993-02-01

    The NIU high energy physics group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, members of the group participate in the SDC collaboration at the SSC

  8. PC database for high energy preprint collections

    International Nuclear Information System (INIS)

    Haymaker, R.

    1985-06-01

    We describe a microcomputer database used by the high energy group to keep track of preprints in our collection. It is used as a supplement to the SLAC-SPIRES database to retrieve preprints on hand. This was designed as a low overhead system for a small group

  9. Indiana University High Energy Physics, Task A

    International Nuclear Information System (INIS)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider

  10. High energy electron irradiation of flowable materials

    International Nuclear Information System (INIS)

    Offermann, B.P.

    1975-01-01

    In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated. (U.S.)

  11. Trends in experimental high-energy physics

    International Nuclear Information System (INIS)

    Sanford, T.W.L.

    1982-06-01

    Data from a scan of papers in Physical Review Letters and Physical Review are used to demonstrate that American high-energy physicists show a pattern of accelerator and instrumentation usage characteristic of that expected from the logistic-substitution model of Marchetti and of Fischer and Pry

  12. High energy radiation from neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  13. Indiana University High Energy Physics, Task A

    Energy Technology Data Exchange (ETDEWEB)

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider.

  14. Synthesis and Characterization of High Energy Polymers.

    Science.gov (United States)

    1981-03-31

    and characterization of new high energy elastomers. IV. References 1. J.C.W. Chien, T. Kohara , C. P. Lillya, T. Sarubbi, B.-H. Su and R. S. Miller, J...Catalyzed Nitromercuration of Diene Polymers, J.C.W. Chien, T. Kohara , C. P. Lillya, T. Sarubbi, B.-H. Su, and R. S. Miller, J. Polm.. Sci. Polym. Chem. Ed

  15. Perspective in high energy physics instrumentation

    International Nuclear Information System (INIS)

    Rossi, L.

    1995-10-01

    The discovery potential of the next generation of particle accelerators, and in particular of the large hadron collider (LHC), can only be fully exploited by very sophisticated particle detectors. The basics of detectors for momentum and energy measurement is here presented together with a recollection of recent developments which are relevant for use at high luminosity accelerators

  16. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  17. Theoretical and experimental high energy physics

    International Nuclear Information System (INIS)

    Gasiorowicz, S.; Ruddick, K.

    1988-01-01

    This report discusses experimental and theoretical work in High Energy Physics. Some topics discussed are: quantum field theory; supersymmetry; cosmology; superstring model; relic photinos; inflationary universe; dark matter; standard model; supernovae; semileptonic decay; quantum Langevin equation; underground neutrino detection at Soudan; strange quark systems; cosmic ray detection; superconducting super collider detectors; and studies of direct photon production

  18. Prizes reward high-energy physics

    CERN Multimedia

    2005-01-01

    The European Physical Society (EPS) has recognized four individuals and a collaboration for their work on charge-parity (CP) violation, gamma-ray astronomy, cosmology and outreach activities. Heinrich Wahl, formerly of CERN, and the NA31 collaboration share the 2005 High Energy and Particle Physics Prize for their work on CP violation at CERN (½ page)

  19. Astrophysics, cosmology and high energy physics

    International Nuclear Information System (INIS)

    Rees, M.J.

    1983-01-01

    A brief survey is given of some topics in astrophysics and cosmology, with special emphasis on the inter-relation between the properties of the early Universe and recent ideas in high energy physics, and on simple order-of-magnitude arguments showing how the scales and dimensions of cosmic phenomena are related to basic physical constants. (orig.)

  20. Heavy ion fragmentation in high energy

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    A review is made on the theoretical aspects of heavy ion collisions at high energies. A comparison with several experimental data obtained in a large variety of experiments is present. An emphasis is given on the basis of Glauber's theory of scattering. (L.C.) [pt

  1. SU(5) at very high energies

    International Nuclear Information System (INIS)

    Hueffel, H.

    1982-01-01

    By exhibiting the relationship between the full SU(5) theory in the unitary gauge and the underlying Higgs-Goldstone system in the t'Hooft-Feynman gauge the high energy limits of amplitudes (involving gauge and Higgs bosons) can be calculated easily. As an application tree unitarity bounds on Higgs parameters and masses are discussed. (Author)

  2. Status of (US) High Energy Physics Networking

    International Nuclear Information System (INIS)

    Montgomery, H.E.

    1987-02-01

    The current status of Networking to and between computers used by the High Energy Physics community is discussed. Particular attention is given to developments over the last year and to future prospects. Comparison between the current status and that of two years ago indicates that considerable strides have been made but that much remains to be done to achieve an acceptable level of functionality

  3. UNIX at high energy physics Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, Alan

    1994-03-15

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide.

  4. Studies in theorectical high energy particles physics

    International Nuclear Information System (INIS)

    Aratyn, H.; Keung, Wai-Yee; Panigrahi, P.; Sukhatme, U.

    1990-02-01

    This paper discusses the research being done at the University of Illinois in theoretical high energy physics. Some areas discussed are string models, collider physics, symmetries in gauge theories, sigma model, radiative decay of mesons, supersymmetry, superconducting, and hydroproduction of charm

  5. Saving energy via high-efficiency fans.

    Science.gov (United States)

    Heine, Thomas

    2016-08-01

    Thomas Heine, sales and market manager for EC Upgrades, the retrofit arm of global provider of air movement solutions, ebm-papst A&NZ, discusses the retrofitting of high-efficiency fans to existing HVAC equipment to 'drastically reduce energy consumption'.

  6. Activities in nuclear and high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    High energy and nuclear physics research concerning bubble chamber investigations, European hybrid system ACCMOR, WA 18, PETRA, PEP, VA 4, SING, LENA, LEP 3 and DELPHI experiments is summarized. Experiments with electron beams, and in pions and muons physics, and radiochemistry are reported on.

  7. Resume: networking in high energy physics

    International Nuclear Information System (INIS)

    Hutton, J.S.

    1985-11-01

    Networking in High Energy Physics covers communications inside the experiment and internationally. Inside the experiment the need for agreed 'codes of practice' is now accepted. Within Europe it is accepted that a common infrastructure based on the use of the ISO OSI protocols should be used. In the USA a community initiative has been proposed. The background to these approaches is discussed. (author)

  8. Microphysics, cosmology, and high energy astrophysics

    International Nuclear Information System (INIS)

    Hoyle, F.

    1974-01-01

    The discussion of microphysics, cosmology, and high energy astrophysics includes particle motion in an electromagnetic field, conformal transformations, conformally invariant theory of gravitation, particle orbits, Friedman models with k = 0, +-1, the history and present status of steady-state cosmology, and the nature of mass. (U.S.)

  9. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  10. A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Hitoshi [Univ. of Tsukuba (Japan)

    1984-09-01

    High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower.

  11. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    Energy Technology Data Exchange (ETDEWEB)

    Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weekley, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stoltenberg, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parsons, B. [Evergreen Renewable Consulting, CO (United States); Batra, P. [Central Electricity Authority, New Delhi (India); Mehta, B. [Gujarat Energy Transmission Corporation Ltd., Vadodara (India); Patel, D. [Gujarat Energy Transmission Corporation Ltd., Vadodara (India)

    2014-03-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  12. Portable high energy gamma ray imagers

    International Nuclear Information System (INIS)

    Guru, S.V.; Squillante, M.R.

    1996-01-01

    To satisfy the needs of high energy gamma ray imagers for industrial nuclear imaging applications, three high energy gamma cameras are presented. The RMD-Pinhole camera uses a lead pinhole collimator and a segmented BGO detector viewed by a 3 in. square position sensitive photomultiplier tube (PSPMT). This pinhole gamma camera displayed an energy resolution of 25.0% FWHM at the center of the camera at 662 keV and an angular resolution of 6.2 FWHM at 412 keV. The fixed multiple hole collimated camera (FMCC), used a multiple hole collimator and a continuous slab of NaI(Tl) detector viewed by the same PSPMT. The FMCC displayed an energy resolution of 12.4% FWHM at 662 keV at the center of the camera and an angular resolution of 6.0 FWHM at 412 keV. The rotating multiple hole collimated camera (RMCC) used a 180 antisymmetric rotation modulation collimator and CsI(Tl) detectors coupled to PIN silicon photodiodes. The RMCC displayed an energy resolution of 7.1% FWHM at 662 keV and an angular resolution of 4.0 FWHM at 810 keV. The performance of these imagers is discussed in this paper. (orig.)

  13. High energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Chou, T.T.

    1990-01-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e + e - annihilation. The geometrical description of high-energy elastic scattering developed earlier is still in general agreement with experiments at the CERN-S bar ppS energies. A simple one-parameter expression for the blackness of bar pp system has been proposed recently which describes very well all existing data from ISR to S bar ppS energies. The geometrical description has also been extended to include processes of fragmentation and diffraction dissociation and other phenomena. In the past five years, a unified physical picture for multiparticle emission in hadron-hadron and e + e - collisions was developed. It focuses on the idea of the wide range of values for the total angular momentum in hadron-hadron collisions. An extension of this consideration yields a theory for the momentum distribution of the outgoing particles which agrees with bar pp and e + e - collision experiments. The results and conclusions of this theory have been extrapolated to higher energies and yielded many predictions which can be experimentally tested. 37 refs

  14. Non-critical strings at high energy

    CERN Document Server

    Aoki, Kenichiro; Aoki, Kenichiro; Hoker, Eric D'

    1996-01-01

    We consider scattering amplitudes in non-critical string theory of $N$ external states in the limit where the energy of all external states is large compared to the string tension. We argue that the amplitudes are naturally complex analytic in the matter central charge $c$ and we propose to define the amplitudes for arbitrary value of $c$ by analytic continuation. We show that the high energy limit is dominated by a saddle point that can be mapped onto an equilibrium electro-static energy configuration of an assembly of $N$ pointlike (Minkowskian) charges, together with a density of charges arising from the Liouville field. We argue that the Liouville charges accumulate on segments of curves, and produce quadratic branch cuts on the worldsheet. The electro-statics problem is solved for string tree level in terms of hyper-elliptic integrals and is given explicitly for 3- and 4-point functions. We show that the high energy limit should behave in a string-like fashion with exponential dependence on the energy sc...

  15. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  16. FPGA implementation of high-frequency multiple PWM for variable voltage variable frequency controller

    Energy Technology Data Exchange (ETDEWEB)

    Boumaaraf, Abdelâali, E-mail: aboumaaraf@yahoo.fr [Université Abbès Laghrour, Laboratoire des capteurs, Instrumentations et procédés (LCIP), Khenchela (Algeria); University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Mohamadi, Tayeb [University of Farhat Abbas Setif1, Sétif, 19000 (Algeria); Gourmat, Laïd [Université Abbès Laghrour, Khenchela, 40000 (Algeria)

    2016-07-25

    In this paper, we present the FPGA implementation of the multiple pulse width modulation (MPWM) signal generation with repetition of data segments, applied to the variable frequency variable voltage systems and specially at to the photovoltaic water pumping system, in order to generate a signal command very easily between 10 Hz to 60 Hz with a small frequency and reduce the cost of the control system.

  17. Variable Scheduling to Mitigate Channel Losses in Energy-Efficient Body Area Networks

    Directory of Open Access Journals (Sweden)

    Lavy Libman

    2012-11-01

    Full Text Available We consider a typical body area network (BAN setting in which sensor nodes send data to a common hub regularly on a TDMA basis, as defined by the emerging IEEE 802.15.6 BAN standard. To reduce transmission losses caused by the highly dynamic nature of the wireless channel around the human body, we explore variable TDMA scheduling techniques that allow the order of transmissions within each TDMA round to be decided on the fly, rather than being fixed in advance. Using a simple Markov model of the wireless links, we devise a number of scheduling algorithms that can be performed by the hub, which aim to maximize the expected number of successful transmissions in a TDMA round, and thereby significantly reduce transmission losses as compared with a static TDMA schedule. Importantly, these algorithms do not require a priori knowledge of the statistical properties of the wireless channels, and the reliability improvement is achieved entirely via shuffling the order of transmissions among devices, and does not involve any additional energy consumption (e.g., retransmissions. We evaluate these algorithms directly on an experimental set of traces obtained from devices strapped to human subjects performing regular daily activities, and confirm that the benefits of the proposed variable scheduling algorithms extend to this practical setup as well.

  18. Very High Energy Neutron Scattering from Hydrogen

    International Nuclear Information System (INIS)

    Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I

    2010-01-01

    The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.

  19. Chemistry of high-energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Ludwig-Maximilians-Univ., Muenchen (Germany). Dept. of Chemistry; Maryland Univ., College Park, MD (US). Center of Energetic Concepts Development (CECD)

    2011-07-01

    The graduate-level textbook Chemistry of High-Energy Materials provides an introduction to and an overview of primary and secondary (high) explosives as well as propellant charges, rocket propellants and pyrotechnics. After a brief historical overview, the main classes of energetic materials are discussed systematically. Thermodynamic aspects, as far as relevant to energetic materials, are discussed, as well as modern computational approaches to predict performance and sensitivity parameters. The most important performance criteria such as detonation velocity, detonation pressure and heat of explosion, as well as the relevant sensitivity parameters suc as impact and friction sensitivity and electrostatic discharge sensitivity are explored in detail. Modern aspects of chemical synthesis including lead-free primary explosives and high-nitrogen compounds are also included in this book together with a discussion of high-energy materials for future defense needs. The most important goal of this book, based on a lecture course which has now been held at LMU Munich for over 12 years, is to increase knowledge and know-how in the synthesis and safe handling of high-energy materials. Society needs now as much as ever advanced explosives, propellant charges, rocket propellants and pyrotechnics to meet the demands in defense and engineering. This book is first and foremost aimed at advanced students in chemistry, engineering and materials sciences. However, it is also intended to provide a good introduction to the chemistry of energetic materials and chemical defense technology for scientists in the defense industry and government-run defense organizations. (orig.)

  20. Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  1. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  2. Proposal for a High Energy Nuclear Database

    International Nuclear Information System (INIS)

    Brown, David A.; Vogt, Ramona

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews

  3. Rare earth magnets with high energy products

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  4. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  5. A high-energy nuclear database proposal

    International Nuclear Information System (INIS)

    Brown, D.A.; Vogt, R.; UC Davis, CA

    2006-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews. (author)

  6. Proposal for a High Energy Nuclear Database

    International Nuclear Information System (INIS)

    Brown, D A; Vogt, R

    2005-01-01

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews

  7. Experimental microdosimetry in high energy radiation fields

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Bottollier-Depois, J.-F.; Molokanov, A.G.

    2000-01-01

    To determine microdosimetric characteristics in the beams and fields of high energy panicles with the goal, also, to compare the classical method of experimental microdosimetry, a tissue equivalent low pressure proportional counter (TEPC) with the linear energy transfer (LET) spectrometer based on a chemically etched polyallyldiglycolcarbonate as a track etched detector (TED). To test the use of TED LET spectrometer in the conditions, where the use or TEPC is not possible (high energy charged particle beams at high dose rates). The results obtained with the TEPC NAUSICAA were used in this work to compare them with other data. This TEPC measures directly the linear energy in the interval between 0.15 and 1500 keV/μm in tissue, the low gas pressure (propan based TE mixture) permits to simulate a tissue element of about 3 μm. It can be used in the fields with instantaneous dose equivalent rates between 1 μSv/hour and 1 mSv/ hour. TED LET spectrometer developed to determine LET spectra between 10 and 700 keV/μm in tissue. Primarily, track-to-bulk etch rate ratios are determined through the track parameters measurements, the spectra of these ratios are convened to LET spectra using the calibration curve established by means of heavy charge panicles. The critical volume of thi spectrometer is supposed to be a few nm. There is no limit of use for the dose rate, the background tracks limit the lowest threshold to about 1 mSv, the overlapping of tracks (the highest one) to 100 mSv. Both experimental microdosimetry methods have been used in on board aircraft radiation fields, in on-Earth high energy radiation reference fields, and in the beams of protons with energies up to 300 MeV (Dubna, Moscow, Loma Linda). First, it should be emphasized, that in all high energy radiation fields studied, we concentrated our analysis on the region, where both methods overlap, i.e. between 10 and 1000 keV/μm in tissue. It should be also stressed, that the events observed in this region

  8. Ionization of atoms by high energy photons

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Ioffe, A.F.

    1994-01-01

    Photoionization of atoms by high energy photons is considered. It is emphasized that in this frequency region the cross section and other characteristics of the process are strongly effected by electron shell polarization and rearrangement effects, including that due to inner vacancy Auger decay. In the effects of nuclear structure could be important and noticeable, i.e. of virtual or real excitation of the nucleus degrees of freedom and of the Quantum Electrodynamics vacuum. Ionization accompanied by secondary photon emission (Compton ionization) is analyzed in the considered domain of energies

  9. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  10. Models of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-06-01

    The discussion covers nuclear collisions at relativistic energies including classes of high energy nucleus--nucleus collisions, and the kinetics of a central collision; and the asymptotic hadron spectrum including known and unknown hadrons, the relevance of the spectrum and the means of its study, thermodynamics of hadronic matter, examples of hadronic spectra, the temperature, composition of the initial fireball and its expansion, isoergic expansion with no pre-freezeout radiation, isentropic expansion of the fireball, the quasi-dynamical expansion, and finally antinuclei, hypernuclei, and the quark phase. 28 references

  11. High-p{sub T} B-tagging and top-tagging with variable-R jets in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Behr, Katharina [Sub-department of Particle Physics, University of Oxford, Denys-Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)

    2015-07-01

    Variable-R jets, whose effective size is inversely proportional to their transverse momentum, are a versatile tool for object reconstruction across the large transverse momentum regime accessible during Run 2 of the LHC. I discuss the performance of Variable-R jets in two different contexts: (1) Boosted top-tagging. The separation between the decay products of highly energetic top quarks decreases with p{sub T}{sup top} causing them to overlap and merge into a single jet. Taggers relying on large fixed-R jets overestimate the real size of the top jet in the highly boosted regime and are more susceptible to the effects of pile-up. Variable-R jets are studied as the basis for more natural taggers which may not even require grooming. (2) B-tagging. The b-tagging performance in boosted topologies suffers in the presence of close-by jets. This limits the sensitivity of many searches such as those in boosted hh → 4b final states. New b-taggers relying on track jets with smaller sizes than the traditional R=0.4 to better isolate the b-hadron decay show significant improvements in highly boosted scenarios but perform worse at low transverse momenta where they fail to capture the full b-jet. Variable-R track jets provide a unified approach to b-tagging in both p{sub T} regimes.

  12. High taxonomic variability despite stable functional structure across microbial communities.

    Science.gov (United States)

    Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; Srivastava, Diane S; Parfrey, Laura Wegener; Farjalla, Vinicius F; Doebeli, Michael

    2016-12-05

    Understanding the processes that are driving variation of natural microbial communities across space or time is a major challenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynamics. The relative importance of these processes and their effects on community function remain largely unknown. To address this uncertainty, here we examined bacterial and archaeal communities in replicate 'miniature' aquatic ecosystems contained within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine metabolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composition within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral and roughly separate processes.

  13. Input variable selection for interpolating high-resolution climate ...

    African Journals Online (AJOL)

    Although the primary input data of climate interpolations are usually meteorological data, other related (independent) variables are frequently incorporated in the interpolation process. One such variable is elevation, which is known to have a strong influence on climate. This research investigates the potential of 4 additional ...

  14. Robust total energy demand estimation with a hybrid Variable Neighborhood Search – Extreme Learning Machine algorithm

    International Nuclear Information System (INIS)

    Sánchez-Oro, J.; Duarte, A.; Salcedo-Sanz, S.

    2016-01-01

    Highlights: • The total energy demand in Spain is estimated with a Variable Neighborhood algorithm. • Socio-economic variables are used, and one year ahead prediction horizon is considered. • Improvement of the prediction with an Extreme Learning Machine network is considered. • Experiments are carried out in real data for the case of Spain. - Abstract: Energy demand prediction is an important problem whose solution is evaluated by policy makers in order to take key decisions affecting the economy of a country. A number of previous approaches to improve the quality of this estimation have been proposed in the last decade, the majority of them applying different machine learning techniques. In this paper, the performance of a robust hybrid approach, composed of a Variable Neighborhood Search algorithm and a new class of neural network called Extreme Learning Machine, is discussed. The Variable Neighborhood Search algorithm is focused on obtaining the most relevant features among the set of initial ones, by including an exponential prediction model. While previous approaches consider that the number of macroeconomic variables used for prediction is a parameter of the algorithm (i.e., it is fixed a priori), the proposed Variable Neighborhood Search method optimizes both: the number of variables and the best ones. After this first step of feature selection, an Extreme Learning Machine network is applied to obtain the final energy demand prediction. Experiments in a real case of energy demand estimation in Spain show the excellent performance of the proposed approach. In particular, the whole method obtains an estimation of the energy demand with an error lower than 2%, even when considering the crisis years, which are a real challenge.

  15. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  16. Variability Bugs in Highly Configurable Systems: A Qualitative Analysis

    DEFF Research Database (Denmark)

    Abal, Iago; Melo, Jean; Stanciulescu, Stefan

    2018-01-01

    Variability-sensitive verification pursues effective analysis of the exponentially many variants in number of features of a program family. Several variability-aware techniques have been proposed, but researchers still lack examples of concrete bugs induced by variability, occurring in real large......-scale systems. A collection of real world bugs is needed to evaluate tool implementations of variability-sensitive analyses by testing them on real bugs. We present a qualitative study of 98 diverse variability bugs collected from bug-fixing commits in the Apache, BusyBox, Linux kernel and Marlin repositories....... We analyze each of the bugs, and record the results in a database. For each bug, we create a self-contained simplified C99 version and a simplified patch, in order to help researchers who are not experts on these subject studies to understand them, so that they can use it for evaluation...

  17. Production processes at extremely high energies

    CERN Document Server

    Gastmans, R; Wu, Tai Tsun

    2013-01-01

    The production processes are identified that contribute to the rise of the total cross section in proton-proton scattering at extremely high energies, s->~. At such energies, the scattering can be described by a black disk (completely absorptive) with a radius expanding logarithmically with energy surrounded by a gray fringe (partially absorptive). For the leading term of (lns)^2 in the increasing total cross section, the gray fringe is neglected, and geometrical optics is generalized to production processes. It is known that half of the rise in the total cross section is due to elastic scattering. The other half is found to originate from the production of jets with relatively small momenta in the center-of-mass system.

  18. Energy harvesting in high voltage measuring techniques

    International Nuclear Information System (INIS)

    Żyłka, Pawel; Doliński, Marcin

    2016-01-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed. (paper)

  19. Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy

    Directory of Open Access Journals (Sweden)

    Xiuli Wu

    2018-03-01

    Full Text Available Renewable energy is an alternative to non-renewable energy to reduce the carbon footprint of manufacturing systems. Finding out how to make an alternative energy-efficient scheduling solution when renewable and non-renewable energy drives production is of great importance. In this paper, a multi-objective flexible flow shop scheduling problem that considers variable processing time due to renewable energy (MFFSP-VPTRE is studied. First, the optimization model of the MFFSP-VPTRE is formulated considering the periodicity of renewable energy and the limitations of energy storage capacity. Then, a hybrid non-dominated sorting genetic algorithm with variable local search (HNSGA-II is proposed to solve the MFFSP-VPTRE. An operation and machine-based encoding method is employed. A low-carbon scheduling algorithm is presented. Besides the crossover and mutation, a variable local search is used to improve the offspring’s Pareto set. The offspring and the parents are combined and those that dominate more are selected to continue evolving. Finally, two groups of experiments are carried out. The results show that the low-carbon scheduling algorithm can effectively reduce the carbon footprint under the premise of makespan optimization and the HNSGA-II outperforms the traditional NSGA-II and can solve the MFFSP-VPTRE effectively and efficiently.

  20. Creating high performance buildings: Lower energy, better comfort

    International Nuclear Information System (INIS)

    Brager, Gail; Arens, Edward

    2015-01-01

    Buildings play a critical role in the challenge of mitigating and adapting to climate change. It is estimated that buildings contribute 39% of the total U.S. greenhouse gas (GHG) emissions [1] primarily due to their operational energy use, and about 80% of this building energy use is for heating, cooling, ventilating, and lighting. An important premise of this paper is about the connection between energy and comfort. They are inseparable when one talks about high performance buildings. Worldwide data suggests that we are significantly overcooling buildings in the summer, resulting in increased energy use and problems with thermal comfort. In contrast, in naturally ventilated buildings without mechanical cooling, people are comfortable in much warmer temperatures due to shifting expectations and preferences as a result of occupants having a greater degree of personal control over their thermal environment; they have also become more accustomed to variable conditions that closely reflect the natural rhythms of outdoor climate patterns. This has resulted in an adaptive comfort zone that offers significant potential for encouraging naturally ventilated buildings to improve both energy use and comfort. Research on other forms for providing individualized control through low-energy personal comfort systems (desktop fans, foot warmed, and heated and cooled chairs) have also demonstrated enormous potential for improving both energy and comfort performance. Studies have demonstrated high levels of comfort with these systems while ambient temperatures ranged from 64–84°F. Energy and indoor environmental quality are inextricably linked, and must both be important goals of a high performance building

  1. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  2. Effects of high-carbohydrate and high-fat dietary treatments on measures of heart rate variability and sympathovagal balance.

    Science.gov (United States)

    Millis, Richard M; Austin, Rachel E; Bond, Vernon; Faruque, Mezbah; Goring, Kim L; Hickey, Brian M; Blakely, Raymond; Demeersman, Ronald E

    2009-07-17

    We tested the hypothesis that respiratory quotient (RQ) determines sympathovagal balance associated with metabolism of stored and dietary energy substrates. Six 18-20 year-old African-American males were studied after two control pretreatments of fasting and post-treatments of metabolizing high-fat and high-carbohydrate beverages. RQ, heart rate (HR), energy expenditure (EE) and blood pressure (BP) were recorded at rest and repeated 1 h-3 h after ingesting isocaloric high-carbohydrate and high-fat beverages. Sympathovagal modulation of HR was quantified by the low frequency/high frequency (LF/HF) ratio from fast Fourier transform (spectral) analysis of the electrocardiogram RR intervals during paced breathing at 0.2 Hz. Significance of differences of peak post-treatment values from controls was evaluated by analysis of covariance and of correlations by linear regression at Pcarbohydrate and high-fat treatments increased RQ, EE, HR and LF/HF with significant interactions between covariates. LF/HF values were not significant after eliminating covariance of RQ, EE and HR for the control vs. high-fat and for the high-fat vs. high-carbohydrate and after eliminating covariance of EE and HR for the control vs. high-carbohydrate treatments. Across the RQ values, correlations were significant for EE and LF/HF. These findings imply that high RQ and sympathetic modulation produced by metabolizing carbohydrate is associated with high resting energy expenditure. We conclude that respiratory quotient may be an important determinant of the LF/HF ratio in the heart rate variability spectrum, likely, by a respiratory chemosensory mechanism.

  3. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  4. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  5. Shielding for high energy, high intensity electron accelerator installation

    International Nuclear Information System (INIS)

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  6. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1994-01-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet

  7. [Experimental and theoretical high energy physics

    International Nuclear Information System (INIS)

    Boulware, D.

    1988-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled us to make the world's most accurate determination of the composition of the cosmic rays above 10 13 eV. We have the only detector that can observe interaction vertices and identify particles at energies up to 10--15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detectors will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques are also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15--200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  8. Linear solvation energy relationships: "rule of thumb" for estimation of variable values

    Science.gov (United States)

    Hickey, James P.; Passino-Reader, Dora R.

    1991-01-01

    For the linear solvation energy relationship (LSER), values are listed for each of the variables (Vi/100, π*, &betam, αm) for fundamental organic structures and functional groups. We give the guidelines to estimate LSER variable values quickly for a vast array of possible organic compounds such as those found in the environment. The difficulty in generating these variables has greatly discouraged the application of this quantitative structure-activity relationship (QSAR) method. This paper present the first compilation of molecular functional group values together with a utilitarian set of the LSER variable estimation rules. The availability of these variable values and rules should facilitate widespread application of LSER for hazard evaluation of environmental contaminants.

  9. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Albanese, R.C.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March--December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  10. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March through December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  11. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contact AC02-87ER40368 during the period from March of 1989 to February of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a precision study of the A-dependence of massive muon-pion production and a study of low-multiplicity decay modes of charm. We are also participating in the design of detectors for the SSC. Finally, a minor effort is being given to analyzing data from Fermilab of particles with lifetime between 10 -12 and 10 -13 seconds. A more detailed description of the work of the NIU high energy physics group can be found in the narrative accompanying our grant renewal proposal. 10 refs

  12. Prospects of High Energy Laboratory Astrophysics

    International Nuclear Information System (INIS)

    Ng, Johnny S.T.; SLAC

    2006-01-01

    Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms

  13. Compilation of current high energy physics experiments

    International Nuclear Information System (INIS)

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche

  14. A Parton Shower for High Energy Jets

    CERN Document Server

    Andersen, Jeppe R; Smillie, Jennifer M

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss in detail the arising description of the soft, collinear and hard regions by examples in pure QCD jet-production.

  15. Origin of the universe and high energy

    International Nuclear Information System (INIS)

    Montoya Z, M.

    1994-01-01

    In this book it is briefly exposed what it is done in the world in relation with the high energy physics. Also, it is presented a brief historical description of the earth evolution, the universe and physics in general. This book counts with eight chapters. The first chapter deals with the relationship of man with science. The second chapter speaks about the origin of universe. The third chapter comments about the stars and galaxies formation. The fourth chapter treats how the scientists and researchers continue to studying the subnuclear world. The fifth chapter deals with subjects and models of nuclear physics. In the sixth chapter it is described the function of the particles accelerator. The seventh chapter comments about the multidisciplinary aspects of the research of elementary particles. Finally, the eighth chapter deals with the advances of high energy physics in the andean region of Latin America. (author)

  16. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  17. High energy materials. Propellants, explosives and pyrotechnics

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Jai Prakash

    2010-07-01

    Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defence organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer. (orig.)

  18. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1988-01-01

    Current interest in gamma-ray astronomy at energies above 100 GeV comes from the identification of Cygnus X-3 and other X-ray binaries as sources. In addition there are reports of emission from radio pulsars and a variety of other objects. The statistical significance of many of the observations is not high and many reported effects await confirmation, but there are a sufficient number of independent reports that very high energy gamma-ray astronomy must now be considered to have an observational basis. The observations are summarized with particular emphasis on those reported since 1980. The techniques used - the detection of small air showers using the secondary photons and particles at ground level - are unusual and are described. Future prospects for the field are discussed in relation to new ground-based experiments, satellite gamma-ray studies and proposed neutrino astronomy experiments. (orig.) With 296 refs

  19. Unparticles: Scales and high energy probes

    International Nuclear Information System (INIS)

    Bander, Myron; Feng, Jonathan L.; Rajaraman, Arvind; Shirman, Yuri

    2007-01-01

    Unparticles from hidden conformal sectors provide qualitatively new possibilities for physics beyond the standard model. In the theoretical framework of minimal models, we clarify the relation between energy scales entering various phenomenological analyses. We show that these relations always counteract the effective field theory intuition that higher dimension operators are more highly suppressed, and that the requirement of a significant conformal window places strong constraints on possible unparticle signals. With these considerations in mind, we examine some of the most robust and sensitive probes and explore novel effects of unparticles on gauge coupling evolution and fermion production at high energy colliders. These constraints are presented both as bounds on four-fermion interaction scales and as constraints on the fundamental parameter space of minimal models

  20. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  1. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli

    2017-11-01

    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  2. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  3. ANTARES: A High Energy Neutrino Undersea Telescope

    International Nuclear Information System (INIS)

    Hernandez, J.J.

    1999-01-01

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration, formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological defects, Q-balls, etc.). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented. (author)

  4. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  5. High energy physics at UC Riverside

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given

  6. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  7. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  8. Applications of SSNTD's in high energy physics

    International Nuclear Information System (INIS)

    Otterlund, I.

    1976-09-01

    Different applications of the emulsion technique in high energy physics are given. Investigations of heavy ion and proton-nucleus reactions with the conventional emulsion technique are presented together with a short interpretation of recent results. Methods of using nuclear emulsion with embedded targets will be discussed. Emulsion stacks in hybrid systems with electronic tagging suggest a new and interesting application of the emulsion technique. (Auth.)

  9. High-energy accelerators in medicine

    CERN Document Server

    Mandrillon, Pierre

    1992-05-04

    The treatment of tumours with charged particles, ranging from protons to "light ions" ( Carbon, Oxygen, Neon) has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. The rationale for this new radiotherapy, the high energy accelerators and the beam delivery systems are presented in these two lectures.

  10. An experimental high energy physics program

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.

    1988-01-01

    The theoretical and experimental high energy physics program is reviewed, including particle detectors. Topics discussed include τ and B physics, gamma-ray astronomy, neutrino oscillations in matter with three flavors applied to solar and supernova neutrinos, effective field theories, a possible fifth force, the dynamics of hadrons and superstrings, mathematics of grand unified theories, chiral symmetry breaking, physics at the Fermilab collider, and development of the TOPAZ detector

  11. Perspectives in high energy nuclear collisions

    International Nuclear Information System (INIS)

    Rafelski, J.

    1983-08-01

    This report gives an overview of some aspects of hadronic physics relevant for the conception of a research facility devoted to the study of high energy nuclear collisions. Several concepts to be studied in nuclear collisions are selected, with emphasis placed on the properties and nature of the quark-gluon plasma, the formation of the plasma state in the central region and its anticipated lifetime, and the observability, through strangeness content of this new form of nuclear matter. (orig.)

  12. Particle physics experiments at high energy colliders

    International Nuclear Information System (INIS)

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  13. UNIX at high energy physics Laboratories

    International Nuclear Information System (INIS)

    Silverman, Alan

    1994-01-01

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide

  14. High energy transients: The millisecond domain

    Science.gov (United States)

    Rao, A. R.

    2018-02-01

    The search for high energy transients in the millisecond domain has come to the focus in recent times due to the detection of gravitational wave events and the identification of fast radio bursts as cosmological sources. Here we highlight the sensitivity limitations in the currently operating hard X-ray telescopes and give some details of the search for millisecond events in the AstroSat CZT Imager data.

  15. Quark model and high energy collisions

    International Nuclear Information System (INIS)

    Nyiri, J.; Kobrinsky, M.N.

    1982-06-01

    The aim of the present review is to show that the additive quark model describes well not only the static features of hadrons but also the interaction processes at high energies. Considerations of the hadron-hadron and hadron-nucleus interactions and of the hadron production in multiparticle production processes suggest serious arguments in favour of the nucleus-like hadron structure and show the possibility to apply the rules of quark statistics to the description of the secondary particle production. (author)

  16. Introduction to high energy cosmic ray physics

    International Nuclear Information System (INIS)

    Battistoni, G.; Grillo, A.F.

    1995-01-01

    After a few general qualitative considerations about the characteristics of primary cosmic rays arriving at the top of atmosphere, the fundamental concepts on their propagation and acceleration are discussed. The experimental situation, both from direct and indirect experiments, is presented, followed by a discussion on some concepts on hadronic interactions at high energy which are applied in a simplified and analytical model to the production of secondary particles in atmosphere

  17. High energy irradiation of bacterial membrane vesicles

    International Nuclear Information System (INIS)

    De La Rosa, M.A.M.

    1977-01-01

    The interactions of membrane components and two well-defined transport systems in the E. coli ML 308-225 membrane vesicles with 60 Co gamma radiation were investigated. The results presented show that gamma radiation can monitor membrane components and functions of varying radiosensitivities. The possible application of high-energy radiation as a physical probe of membrane structure and functions is indeed promising

  18. A Neural Network Controller for Variable-Speed Variable-Pitch Wind Energy Conversion Systems Using Generalized Minimum Entropy Criterion

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-01-01

    Full Text Available This paper considers the neural network controller design problem for variable pitch wind energy conversion systems (WECS with non-Gaussian wind speed disturbances in the stochastic distribution control framework. The approach here is used to directly model the unknown control law based on a fixed neural network (the number of layers and nodes in a neural network is fixed without the need to construct a separate model for the WECS. In order to characterize the randomness of the WECS, a generalized minimum entropy criterion is established to train connection weights of the neural network. For the train purpose, both kernel density estimation method and sliding window technique are adopted to estimate the PDF of tracking error and entropies. Due to the unknown process dynamics, the gradient of the objective function in a gradient-descent-type algorithm is estimated using an incremental perturbation method. The proposed approach is illustrated on a simulated WECS with non-Gaussian wind speed.

  19. INTEGRAL highlights in the high energy astrophysics panorama

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.

    2013-10-15

    ESAs INTEGRAL Space Observatory has spent his first decade in orbit, and its scientific outcome has completely changed our view of the hard-X/soft γ-ray sky. The scientific result comprises, among other discoveries, the production of the all-sky high energy sources catalogue, confirming the time variability over all time scales of most of the soft γ-ray sources observed, the first detailed map of the Aluminium and 511 keV annihilation line in the Galaxy and the evidence of polarized γ-ray emission from the Crab Nebula and Cyg X-1. This paper will review the latest INTEGRAL discoveries in the framework of the high energy sky panorama.

  20. Variable flow controls of closed system pumps for energy savings in maritime power systems

    OpenAIRE

    Su, Chun-Lien; Liao, Chi-Hsiang; Chou, Tso-Chu; Chou, Ming-Hung; Guerrero, Josep M.

    2016-01-01

    Pumps are extensively used in maritime industries as marine vessels utilize a wide range of pumps and pumping techniques to transfer and distribute all types of air and fluids. The electrical energy consumed by the various motors accounts for about 70% of a vessel’s total power consumption, and this presents a problem in unique marine environments. Such situations are especially conducive to energy-saving strategies using variable frequency drives (VFDs) in centrifugal load service. This pape...

  1. Low-Energy Real-Time OS Using Voltage Scheduling Algorithm for Variable Voltage Processors

    OpenAIRE

    Okuma, Takanori; Yasuura, Hiroto

    2001-01-01

    This paper presents a real-time OS based on $ mu $ITRON using proposed voltage scheduling algorithm for variable voltage processors which can vary supply voltage dynamically. The proposed voltage scheduling algorithms assign voltage level for each task dynamically in order to minimize energy consumption under timing constraints. Using the presented real-time OS, running tasks with low supply voltage leads to drastic energy reduction. In addition, the presented voltage scheduling algorithm is ...

  2. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  3. Hadron interactions at high energy in QCD

    International Nuclear Information System (INIS)

    Levin, E.M.; Ryskin, M.G.

    1988-01-01

    Well known the typical hadronic interactions at high energy are soft processes occurring at large distances where the mysterious confinement forces should be essential. Due to this fact, discussing these processes at first sight the authors are to use and really use some models that incorporate their educated guess about the confinement and utilize the QCD degrees of freedom. But really these models use the QCD terminology rather than the explicit form of the QCD interaction. Up to now the multiparticle dynamics had been the dynamics of reggeons with some detailization coming from their hypothesis about confinement. It is the Reggeon Calculus or the reggeon phenomenology that allows them to describe the main properties of exclusive and inclusive reactions at high energy in agreement with experiment. This paper discusses this problem at this Symposium in many details. However, such pure phenomenological understanding cannot satisfy all of us at the moment. The authors would like to understand the multiparticle production and other soft processes at high energy in more microscopic way using directly the form of the QCD Lagrangian

  4. High energy behaviour of nonabelian gauge theories

    International Nuclear Information System (INIS)

    Bartels, J.

    1979-10-01

    The high energy behavior (in the Regge limit) of nonabelian gauge theories is reviewed. After a general remark concerning the question to what extent the Regge limit can be approached within perturbation theory, we first review the reggeization of elementary particles within nonabelian gauge theories. Then the derivation of a unitary high energy description of a massive (= spontaneously broken) nonabelian gauge model is described, which results in a complete reggeon calculus. There is strong evidence that the zero mass limit of this reggeon calculus exists, thus giving rise to the hope that the Regge behavior in pure Yang-Mills theories (QCD) can be reached in this way. In the final part of these lectures two possible strategies for solving this reggeon calculus (both for the massive and the massless case) are outlined. One of them leads to a geometrical picture in which the distribution of the wee partons obeys a diffusion law. The other one makes contact with reggeon field theory and predicts that QCD in the high energy limit is described by critical reggeon field theory. (orig.)

  5. Energy Storage on the Grid and the Short-term Variability of Wind

    Science.gov (United States)

    Hittinger, Eric Stephen

    Wind generation presents variability on every time scale, which must be accommodated by the electric grid. Limited quantities of wind power can be successfully integrated by the current generation and demand-side response mix but, as deployment of variable resources increases, the resulting variability becomes increasingly difficult and costly to mitigate. In Chapter 2, we model a co-located power generation/energy storage block composed of wind generation, a gas turbine, and fast-ramping energy storage. A scenario analysis identifies system configurations that can generate power with 30% of energy from wind, a variability of less than 0.5% of the desired power level, and an average cost around $70/MWh. While energy storage technologies have existed for decades, fast-ramping grid-level storage is still an immature industry and is experiencing relatively rapid improvements in performance and cost across a variety of technologies. Decreased capital cost, increased power capability, and increased efficiency all would improve the value of an energy storage technology and each has cost implications that vary by application, but there has not yet been an investigation of the marginal rate of technical substitution between storage properties. The analysis in chapter 3 uses engineering-economic models of four emerging fast-ramping energy storage technologies to determine which storage properties have the greatest effect on cost-of-service. We find that capital cost of storage is consistently important, and identify applications for which power/energy limitations are important. In some systems with a large amount of wind power, the costs of wind integration have become significant and market rules have been slowly changing in order to internalize or control the variability of wind generation. Chapter 4 examines several potential market strategies for mitigating the effects of wind variability and estimate the effect that each strategy would have on the operation and

  6. Observation of defects associated with the Cu/W(110) interface as studied with variable-energy positrons

    International Nuclear Information System (INIS)

    Schultz, P.J.; Lynn, K.G.; Frieze, W.E.; Vehanen, A.

    1983-01-01

    Positron emission from a W(110) single crystal has been studied as a function of copper coverage utilizing a variable-energy positron beam in conjunction with low-energy electron diffraction and Auger-electron spectroscopy. Evidence is presented that indicates that sig- p nificant positron localization occurs at defects associated with the Cu/W(110) interface, which can be removed by high-temperature annealing. Our data also reveal new information about the islanding of copper on tungsten, providing a reliable means of identifying and quantifying the relative two-dimensional coverage of the surface by these islands

  7. High-energy proton scattering on nuclei

    CERN Document Server

    Klovning, A; Schlüpmann, K

    1973-01-01

    High-energy proton scattering on Be, C, Cu and Pb targets is studied using a single-arm spectrometer. The projectile momenta were 19 and 24 GeV/c, the square of the four-momentum transfer varied from t=0.1 to t =4.4 GeV/sup 2/. Momentum distributions of scattered protons are recorded in the high-momentum range. An application of multiple- scattering theory yielded agreement of calculation and experimental results to within a +or-30% uncertainty of the former. (15 refs).

  8. Very high energy gamma ray astrophysics

    International Nuclear Information System (INIS)

    Lamb, R.C.; Lewis, D.A.

    1991-01-01

    The Whipple Observatory High Resolution Camera will be used in a vigorous program of observations to search for new sources of very-high-energy gamma rays. In addition, a search for antimatter using the moon-earth system as an ion spectrometer will be begun. The first phase of GRANITE, the new 37-element 11-m camera, will be concluded with first light scheduled for September, 1991. The two cameras will operate in support of the Gamma Ray Observatory mission in the winter of 1991/2

  9. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  10. Embolism of high energy firearm projectile

    Directory of Open Access Journals (Sweden)

    Jaime Álvarez Soler

    2016-12-01

    Full Text Available The embolism of a projectile is very rare and out of the normal context, so the cor-oner in front of a wound projectile firearm must make a very judicious and careful analysis to recover the projectile and/or its fragments. This case presents evidence how modern military high-velocity weapons have a high kinetic energy which is transferred to body tissues, so including their fragments and parts of the projectile can cause serious injury and embolism, requiring a great effort scientific and in-terdisciplinary to give technical support to justice.

  11. High energy radiation in cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    Certain basic recommendations on the use of supervoltage radiation and radioisotope teletherapy in the treatment of malignant growths have been made by an expert study group which met in Vienna in August this y ear. The group, convened jointly by the International Atomic Energy Agency and the World Health Organization, was composed of 20 radiotherapists and radiation physicists from 12 countries. High energy radiation, used in the treatment of malignant tumours, can be either in the form of gamma- or X-rays or in the form of beams of accelerated electrons. The source of radiation is kept at a certain distance from the patient. The study group was agreed on the value of supervoltage radiotherapy, including gamma-ray and high voltage x-ray therapy as well as electron beam therapy. The required gamma radiation can be obtained from large sources of radioactive materials like cobalt 60 or caesium 137, while electron beams are produced by high voltage accelerators. The experts considered the sources in four broad categories: large supervoltage units, intermediate units, small isotope units and units of electron beams or very high energy x-rays. Each group of source was described including its usage. The experts made it clear that while supervoltage radiation should be a part of an organized radiotherapy department, the radiation facilities at any particular establishment should not be of the supervoltage type alone. The high energy facilities could be fruitfully used only when there was a background of general radiotherapy. The group emphasized that supervoltage radiotherapy, in common with other forms of radiotherapy, should be conducted only by adequately trained and qualified personnel, including radiation physicists, and specified the training and qualifications required of such personnel. It was felt that specialized training was one of the main requirements at the present stage and the training programmes of IAEA and WHO should be utilized extensively for this

  12. High energy radiation in cancer treatment

    International Nuclear Information System (INIS)

    1959-01-01

    Certain basic recommendations on the use of supervoltage radiation and radioisotope teletherapy in the treatment of malignant growths have been made by an expert study group which met in Vienna in August this y ear. The group, convened jointly by the International Atomic Energy Agency and the World Health Organization, was composed of 20 radiotherapists and radiation physicists from 12 countries. High energy radiation, used in the treatment of malignant tumours, can be either in the form of gamma- or X-rays or in the form of beams of accelerated electrons. The source of radiation is kept at a certain distance from the patient. The study group was agreed on the value of supervoltage radiotherapy, including gamma-ray and high voltage x-ray therapy as well as electron beam therapy. The required gamma radiation can be obtained from large sources of radioactive materials like cobalt 60 or caesium 137, while electron beams are produced by high voltage accelerators. The experts considered the sources in four broad categories: large supervoltage units, intermediate units, small isotope units and units of electron beams or very high energy x-rays. Each group of source was described including its usage. The experts made it clear that while supervoltage radiation should be a part of an organized radiotherapy department, the radiation facilities at any particular establishment should not be of the supervoltage type alone. The high energy facilities could be fruitfully used only when there was a background of general radiotherapy. The group emphasized that supervoltage radiotherapy, in common with other forms of radiotherapy, should be conducted only by adequately trained and qualified personnel, including radiation physicists, and specified the training and qualifications required of such personnel. It was felt that specialized training was one of the main requirements at the present stage and the training programmes of IAEA and WHO should be utilized extensively for this

  13. 76 FR 53119 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period, beginning...-range planning and priorities in the national High Energy Physics program. Additionally, the renewal of...

  14. Prospects for high energy heavy ion accelerators

    International Nuclear Information System (INIS)

    Leemann, C.

    1979-03-01

    The acceleration of heavy ions to relativistic energies (T greater than or equal to 1 GeV/amu) at the beam intensities required for fundamental research falls clearly in the domain of synchrotons. Up to date, such beams have been obtained from machines originally designed as proton acccelerators by means of modified RF-programs, improved vacuum and, most importantly, altered or entirely new injector systems. Similarly, for the future, substantial changes in synchrotron design itself are not foreseen, but rather the judicious application and development of presently known principles and technologies and a choice of parameters optimized with respect to the peculiarities of heavy ions. The low charge to mass ratio, q/A, of very heavy ions demands that superconducting magnets be considered in the interest of the highest energies for a given machine size. Injector brightness will continue to be of highest importance, and although space charge effects such as tune shifts will be increased by a factor q 2 /A compared with protons, advances in linac current and brightness, rather than substantially higher energies are required to best utilize a given synchrotron acceptance. However, high yeilds of fully stripped, very heavy ions demand energies of a few hundred MeV/amu, thus indicating the need for a booster synchrotron, although for entirely different reasons than in proton facilities. Finally, should we consider colliding beams, the high charge of heavy ions will impose severe current limitations and put high demands on system design with regard to such quantities as e.g., wall impedances or the ion induced gas desorption rate, and advanced concepts such as low β insertions with suppressed dispersion and very small crossing angles will be essential to the achievement of useful luminosities

  15. THE CURIOUS CASE OF GLASS I: HIGH IONIZATION AND VARIABILITY OF DIFFERENT TYPES

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Andrew J. [Department of Physical Science, Wilbur Wright College, 4300 N. Narragansett Ave., Chicago, IL 60634 (United States); Richter, Matthew J. [Department of Physics, University of California at Davis, One Shields Ave., Davis, CA 95616 (United States); Carr, John S. [Remote Sensing Division, Naval Research Laboratory, Code 7210, Washington, DC 20375 (United States); Najita, Joan R. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Moerchen, Margaret M. [European Southern Observatory, Alonso de Cordova 3107, Santiago (Chile); Doppmann, Greg W. [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Seifahrt, Andreas [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States)

    2013-02-20

    Our Spitzer IRS observation of the infrared companion Glass Ib revealed fine-structure emission with high ionization ([Ne III]/[Ne II] = 2.1 and [S IV]/[S III] = 0.6) that indicates that the gas is likely illuminated by hard radiation. While models suggest that extreme-ultraviolet radiation could be present in T Tauri stars, this is the first detection of [S IV] and such a high [Ne III]/[Ne II] ratio in a young star. We also find that Glass Ib displays the molecules HCN, CO{sub 2}, and H{sub 2}O in emission. Here we investigate the Glass I binary system and consider possible mechanisms that may have caused the high ionization, whether from an outflow or disk irradiation. We also model the spectral energy distributions of Glass Ia and Ib to test if the system is a young member of the Chameleon I star-forming region, and we consider other possible classifications for the system. We find that Glass Ib is highly variable, showing changes in continuum strength and emission features at optical, near-infrared, and mid-infrared wavelengths. The optical light curve indicates that a central stellar component in Glass Ib became entirely visible for 2.5 years beginning in mid-2002 and possibly displayed periodic variability with repeated, short-period dimming during that time. As the fine-structure emission was not detected in observations before or after our Spitzer IRS observation, we explore whether the variable nature of Glass Ib is related to the gas being highly ionized, possibly due to variable accretion or an X-ray flare.

  16. RE Data Explorer: Informing Variable Renewable Energy Grid Integration for Low Emission Development

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sarah L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-08

    The RE Data Explorer, developed by the National Renewable Energy Laboratory, is an innovative web-based analysis tool that utilizes geospatial and spatiotemporal renewable energy data to visualize, execute, and support analysis of renewable energy potential under various user-defined scenarios. This analysis can inform high-level prospecting, integrated planning, and policy making to enable low emission development.

  17. Topics in calorimetry for high energy physics

    International Nuclear Information System (INIS)

    Hollebeek, R.

    1992-01-01

    These lectures focus on a series of topics now of interest or which have been of interest to designes of calorimeters in the past few years. The examples concentrate on calorimeters from DESY because its focus this year is on e-P physics, and on CDF and SDC because they are best known to the author. Calorimeters are, broadly speaking, devices to measure the total energy of particles. In general, no one device will be optimal for all types of particles. The two broadest classes of calorimeters in high energy physics are the electromagnetic calorimeters used primarily for photons and electrons, and the hadronic calorimeters used for most charged mesons and baryons. Most operate by absorbing and thereby measuring a significant amount of the incoming particles energy directly. Some particles may require special devices for their interactions and observation. Modern calorimeters are characterized by energy and position resolution, and cost and size. Calorimeter cost is often a trade-off between performance desired and money available. The optimum cost will require a careful choice of materials, reduction of the overall size of the detector, elimination of labor intensive construction techniques, and careful consideration of the cost of calibration systems. Since at least some of these requirements which optimize cost and resolution are contradictory, the ideal calorimeter in seldom what one ends up building

  18. Nanoscopic analysis using Maruhn-Greiner theory by energy based variables in lattice for low energy nuclear reactions (LENRs)

    International Nuclear Information System (INIS)

    Cho, Hyo Sung; WooTae Ho

    2016-01-01

    Maruhn-Greiner theory is investigated for the low energy nuclear reactions (LENRs) in the aspect of the energy productions. Conventional nuclear reactions could give the hints in another kind of the nuclear theoretical utilizations. The results of simulations show the ranges of the configurations for H-ion to Pd with 10; 000 ions as 10 and 180 keV. The most probable ranges are 30 and 600 nanometers respectively. In the simulation result of broad energy regions, the cutoff energy, 350 keV , is very significant in analyzing the LENR, because the range usually depends on the entering particle, target particle, and energy of the entering particle. Therefore, the 350 keV shows there is priority for hydrogen interaction from the energy. In the analysis, the water (H_2O) has the better possibility in LENR after the 350 keV . Following the simulation for searching LENRs, the possible conditions that include the energy based variables of atomic ranges, Debye length, and reaction time has been investigated for the designed energy productions

  19. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.; Easley, S.

    2012-05-01

    The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  20. Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. [Building Media and the Building America Retrofit Alliance (BARA), Wilmington, DE (United States); Easley, S. [Building Media and the Building America Retrofit Alliance (BARA), Wilmington, DE (United States)

    2012-05-01

    This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  1. Theory Summary: Very High Energy Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sarkar Subir

    2013-06-01

    Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.

  2. Perspectives on future high energy physics

    International Nuclear Information System (INIS)

    Samios, N.P.

    1996-01-01

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e + e - and μ + μ - colliders. Finally, the international cooperative activities should be strengthened and maintained

  3. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  4. High energy neutrino astronomy and its telescopes

    International Nuclear Information System (INIS)

    Halzen, F.

    1995-01-01

    Doing astronomy with photons of energies in excess of a GeV has turned out to be extremely challenging. Efforts are underway to develop instruments that may push astronomy to wavelengths smaller than 10 -14 cm by mapping the sky using high energy neutrinos instead. Neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach outside the galaxy and make measurements relevant to cosmology. The field is immersed in technology in the domains of particle physics to which many of its research goals are intellectually connected. To mind come the search for neutrino mass, cold dark matter (supersymmetric particles?) and the monopoles of the Standard Model. While a variety of collaborations are pioneering complementary methods by building telescopes with effective area in excess of 0.01 km 2 , we show here that the natural scale of a high energy neutrino telescope is 1 km 2 . With several thousand optical modules and a price tag unlikely to exceed 100 million dollars, the scope of a kilometer-scale instrument is similar to that of experiments presently being commissioned such as the SNO neutrino observatory in Canada and the Superkamiokande experiment in Japan

  5. Prompt High Energy Dipole γ Emission

    International Nuclear Information System (INIS)

    Corsi, A.; Giaz, A; Bracco, A.

    2011-01-01

    The study of the collective properties of a nuclear system is a powerful tool to understand the structure which lies inside the nucleus. A successful technique which has been used in this field is the measurement of the γ-decay of the highly collective Giant Dipole Resonance (GDR). In fact, GDR can be used as a probe for the internal structure of hot nuclei and, in addition, constitutes a clock for the thermalization process. Using the fusion-evaporation reaction, it has been recently possible to study (i) the yield of the high-energy γ-ray emission of the Dynamical Dipole which takes place during the fusion process and (ii) the degree of isospin mixing at high temperature in the decay of 80 Zr. In the first case it is important to stress the fact that the predictions of the theoretical models might differ depending on the type of nuclear equation of state (EOS) and on the N-N in-medium cross-section used in the calculations while, in the second physics case, the data are relative to the heaviest N = Z nucleus which has been possible to populate in the I = 0 channel using fusion-evaporation reaction. Both experiments were performed at the Laboratori Nazionali di Legnaro using the HECTOR-GARFIELD array. The high-energy γ-rays were measured in coincidence with light charged particles and fusion-evaporation residues. (author)

  6. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  7. GRID computing for experimental high energy physics

    International Nuclear Information System (INIS)

    Moloney, G.R.; Martin, L.; Seviour, E.; Taylor, G.N.; Moorhead, G.F.

    2002-01-01

    Full text: The Large Hadron Collider (LHC), to be completed at the CERN laboratory in 2006, will generate 11 petabytes of data per year. The processing of this large data stream requires a large, distributed computing infrastructure. A recent innovation in high performance distributed computing, the GRID, has been identified as an important tool in data analysis for the LHC. GRID computing has actual and potential application in many fields which require computationally intensive analysis of large, shared data sets. The Australian experimental High Energy Physics community has formed partnerships with the High Performance Computing community to establish a GRID node at the University of Melbourne. Through Australian membership of the ATLAS experiment at the LHC, Australian researchers have an opportunity to be involved in the European DataGRID project. This presentation will include an introduction to the GRID, and it's application to experimental High Energy Physics. We will present the results of our studies, including participation in the first LHC data challenge

  8. Capturing Inter-Annual Variability of PV Energy Production in South Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Roberts, Billy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rosenlieb, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-08-25

    Long-term variability of solar resource is an important factor in planning a utility-scale photovoltaic (PV) generation plant, and annual generation for a given location can vary significantly from year to year. Based on multiple years of solar irradiance data, an exceedance probability is the amount of energy that could potentially be produced by a power plant in any given year. An exceedance probability accounts for long-term variability and climate cycles (e.g., monsoons or changes in aerosols), which ultimately impact PV energy generation. Study results indicate that a significant bias could be associated with relying solely on typical meteorological year (TMY) resource data to capture long-term variability. While the TMY tends to under-predict annual generation overall compared to the P50, there appear to be pockets of over-prediction as well.

  9. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...

  10. Grid Computing in High Energy Physics

    International Nuclear Information System (INIS)

    Avery, Paul

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them.Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software resources, regardless of location); (4) collaboration (providing tools that allow members full and fair access to all collaboration resources and enable distributed teams to work effectively, irrespective of location); and (5) education, training and outreach (providing resources and mechanisms for training students and for communicating important information to the public).It is believed that computing infrastructures based on Data Grids and optical networks can meet these challenges and can offer data intensive enterprises in high energy physics and elsewhere a comprehensive, scalable framework for collaboration and resource sharing. A number of Data Grid projects have been underway since 1999. Interestingly, the most exciting and far ranging of these projects are led by collaborations of high energy physicists, computer scientists and scientists from other disciplines in support of experiments with massive, near-term data needs. I review progress in this

  11. Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part II: Dynamic cost analysis

    International Nuclear Information System (INIS)

    Garcia, Humberto E.; Mohanty, Amit; Lin, Wen-Chiao; Cherry, Robert S.

    2013-01-01

    Dynamic analysis of HES (hybrid energy systems) under flexible operation and variable renewable generation is considered in this two-part communication to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Advanced HES solutions are investigated in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. In particular, a comparative dynamic cost analysis is conducted in this part two of the communication to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance and overnight capital costs, and also variable operational costs, such as cost of operational variability, variable operations and maintenance cost, and cost of environmental impact, together with revenues. Assuming natural gas, coal, and nuclear as primary heat sources, preliminary results identify the level of renewable penetration at which a given advanced HES option (e.g., a nuclear hybrid) becomes increasingly more economical than a traditional electricity-only generation solution. Conditions are also revealed under which carbon resources may be better utilized as carbon sources for chemical production rather than as combustion material for electricity generation. - Highlights: ► Dynamic analysis of HES to investigate challenges related to renewable penetration. ► Evaluation of dynamic synergies among HES constituents on system performance. ► Comparison of traditional versus advanced HES candidates. ► Dynamic cost analysis of HES candidates to investigate their economic viability. ► Identification of conditions under which an energy commodity may be best utilized

  12. Foldable, High Energy Density Lithium Ion Batteries

    Science.gov (United States)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of

  13. Detecting ultra high energy neutrinos with LOFAR

    International Nuclear Information System (INIS)

    Mevius, M.; Buitink, S.; Falcke, H.; Hörandel, J.; James, C.W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; Veen, S. ter

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (∼150MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the cut-off in sensitivity at lower energies. A first upper limit on the UHE neutrino flux from data of the Westerbork Radio Telescope (WSRT) has been published, while a second experiment, using the new LOFAR telescope, is in preparation. The advantages of LOFAR over WSRT are the larger collecting area, the better pointing accuracy and the use of ring buffers, which allow the implementation of a sophisticated self-trigger algorithm. The expected sensitivity of LOFAR reaches flux limits within the range of some theoretical production models.

  14. Angular correlations and high energy evolution

    International Nuclear Information System (INIS)

    Kovner, Alex; Lublinsky, Michael

    2011-01-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N c approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  15. QCD and high-energy nuclear collisions

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Six years ago, Relativistic Heavy Ion Collider at Brookhaven started colliding heavy nuclei at record center-of-mass energies of up to 200 GeV/nucleon. Very soon, the Large Hadron Collider at CERN will push the energy of the ions to an astounding 5 TeV/nucleon. What can be learnt from the experiments at these machines? What do we know about the physics of super--dense matter already? I will argue that heavy ion accelerators bring us to the new frontiers of physical knowledge by creating strong color fields and very high densities of partons, at which qualitatively new phenomena emerge. I will also discuss the cross-disciplinary implications for cosmology, astrophysics, and connections to condensed matter physics.

  16. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P.

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  17. High Variability in Outcome Reporting Patterns in High-Impact ACL Literature.

    Science.gov (United States)

    Makhni, Eric C; Padaki, Ajay S; Petridis, Petros D; Steinhaus, Michael E; Ahmad, Christopher S; Cole, Brian J; Bach, Bernard R

    2015-09-16

    ACL (anterior cruciate ligament) reconstruction is one of the most commonly performed and studied procedures in modern sports medicine. A multitude of objective and subjective patient outcome measures exists; however, nonstandardized reporting patterns of these metrics may create challenges in objectively analyzing pooled results from different studies. The goal of this study was to document the variability in outcome reporting patterns in high-impact orthopaedic studies of ACL reconstruction. All clinical studies pertaining to ACL reconstruction in four high-impact-factor orthopaedic journals over a five-year period were reviewed. Biomechanical, basic science, and imaging studies were excluded, as were studies with fewer than fifty patients, yielding 119 studies for review. Incorporation of various objective and subjective outcomes was noted for each study. Substantial variability in reporting of both objective and subjective measures was noted in the study cohort. Although a majority of studies reported instrumented laxity findings, there was substantial variability in the type and method of laxity reporting. Most other objective outcomes, including range of motion, strength, and complications, were reported in <50% of all studies. Return to pre-injury level of activity was infrequently reported (24% of studies), as were patient satisfaction and pain assessment following surgery (8% and 13%, respectively). Of the patient-reported outcomes, the International Knee Documentation Committee (IKDC), Lysholm, and Tegner scores were most often reported (71%, 63%, and 42%, respectively). Substantial variability in outcome reporting patterns exists among high-impact studies of ACL reconstruction. Such variability may create challenges in interpreting results and pooling them across different studies. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  18. Energy saving opportunity with variable speed drive in primary air-handling unit

    International Nuclear Information System (INIS)

    Li, J.S.M.

    2007-01-01

    Air conditioners used in the court buildings in Kowloon City, Hong Kong were retrofitted with variable speed drives in the primary air handling unit (PAU) in an effort to reduce energy consumption. The initial effect of this retrofit was investigated along with the feasibility of using a carbon dioxide (CO 2 ) based demand control ventilation to reduce energy consumption while optimizing indoor air quality. The air flow in most air conditioning fans is either constant or controlled by motorized inlet guide vanes. Although this controls the flow and may reduce the load on the fan, this constriction adds an energy loss, resulting in inefficient operation. Variable speed drives should be used on the PAU in order to maintain system efficiency. As the speed of the fans are reduced, the flow will decrease proportionally, while the power required by the fan will reduce the cube of the speed. Therefore, if the fresh air supply can be controlled by reducing the speed of the fan motor, then flow control would be more efficient. The energy saving associated with variable fresh air supply flow rate was evaluated along with the cost to building owners. This paper presented the results of the potential energy and cost savings associated with this retrofit, and included implementation cost and pay back period. It was estimated that about 20 per cent of power consumption and electricity costs can be saved per year, with a simple payback period of 2 years. 7 refs., 3 tabs., 3 figs

  19. Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bistline, John [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Blanford, Geoffrey [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Young, David [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Marcy, Cara [U.S. Energy Information Administration, Washington, DC (United States); Namovicz, Chris [U.S. Energy Information Administration, Washington, DC (United States); Edelman, Risa [US Environmental Protection Agency (EPA), Washington, DC (United States); Meroney, Bill [US Environmental Protection Agency (EPA), Washington, DC (United States); Sims, Ryan [US Environmental Protection Agency (EPA), Washington, DC (United States); Stenhouse, Jeb [US Environmental Protection Agency (EPA), Washington, DC (United States); Donohoo-Vallett, Paul [Dept. of Energy (DOE), Washington DC (United States)

    2017-11-01

    Long-term capacity expansion models of the U.S. electricity sector have long been used to inform electric sector stakeholders and decision-makers. With the recent surge in variable renewable energy (VRE) generators — primarily wind and solar photovoltaics — the need to appropriately represent VRE generators in these long-term models has increased. VRE generators are especially difficult to represent for a variety of reasons, including their variability, uncertainty, and spatial diversity. This report summarizes the analyses and model experiments that were conducted as part of two workshops on modeling VRE for national-scale capacity expansion models. It discusses the various methods for treating VRE among four modeling teams from the Electric Power Research Institute (EPRI), the U.S. Energy Information Administration (EIA), the U.S. Environmental Protection Agency (EPA), and the National Renewable Energy Laboratory (NREL). The report reviews the findings from the two workshops and emphasizes the areas where there is still need for additional research and development on analysis tools to incorporate VRE into long-term planning and decision-making. This research is intended to inform the energy modeling community on the modeling of variable renewable resources, and is not intended to advocate for or against any particular energy technologies, resources, or policies.

  20. Stiffness Control of Variable Serial Elastic Actuators: Energy Efficiency through Exploitation of Natural Dynamics

    Directory of Open Access Journals (Sweden)

    Philipp Beckerle

    2017-09-01

    Full Text Available Variable elastic actuators are very promising for applications in physical human–robot interaction. Besides enabling human safety, such actuators can support energy efficiency, especially if the natural behavior of the system is exploited. In this paper, the power and energy consumption of variable stiffness actuators with serial elasticity is investigated analytically and experimentally. Besides the fundamental mechanics, the influence of friction and electrical losses is discussed. A simple but effective stiffness control method is used to exploit the corresponding knowledge of natural dynamics by tuning the system to antiresonance operation. Despite nonlinear friction effects and additional electrical dynamics, the consideration of the ideal mechanical dynamics is completely sufficient for stiffness control. Simulations and experiments show that this yields a distinct reduction in power and energy consumption, which underlines the suitability of the control strategy.

  1. Variable flow controls of closed system pumps for energy savings in maritime power systems

    DEFF Research Database (Denmark)

    Su, Chun-Lien; Liao, Chi-Hsiang; Chou, Tso-Chu

    2016-01-01

    and field tests of a practical auxiliary boiler feed water management system on a commercial vessel. It is proved that the proposed method can maintain constant water pressure for closed system pumps and provide an efficient way to measure energy savings and maintenance benefits. The results serve......Pumps are extensively used in maritime industries as marine vessels utilize a wide range of pumps and pumping techniques to transfer and distribute all types of air and fluids. The electrical energy consumed by the various motors accounts for about 70% of a vessel’s total power consumption......, and this presents a problem in unique marine environments. Such situations are especially conducive to energy-saving strategies using variable frequency drives (VFDs) in centrifugal load service. This paper presents the design and results of applying variable frequency constant pressure technology in closed system...

  2. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  3. High-performance control of continuously variable transmissions

    NARCIS (Netherlands)

    Meulen, van der S.H.

    2010-01-01

    Nowadays, developments with respect to the pushbelt continuously variable transmission (CVT) are mainly directed towards a reduction of the fuel consumption of a vehicle. The fuel consumption of a vehicle is affected by the variator of the CVT, which transfers the torque and varies the transmission

  4. Do high fetal catecholamine levels affect heart rate variability and ...

    African Journals Online (AJOL)

    Objectives. To deternrine the relationship between Umbilical arterial catecholamine levels and fetal heart rate variability and meconium passage. Study design. A prospective descriptive study was perfonned. Umbilical artery catecholamine levels were measured in 55 newborns and correlated with fetal heart rate before ...

  5. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  6. Tibiofibula Transposition in High-Energy Fractures

    Directory of Open Access Journals (Sweden)

    Peter R. Loughenbury

    2016-01-01

    Full Text Available We report two cases of failed attempts at closed reduction of high-energy tibial fractures with an associated fibula fracture. The first case was a 39-year-old male involved in high-speed motorbike collision, while the second was a 14-year-old male who injured his leg following a fall of three metres. Emergency medical services at the scenes of the accidents reported a 90-degree valgus deformity of the injured limb and both limbs were realigned on scene and stabilized. Adequate alignment of the tibia could not be achieved by manipulation under sedation or anaesthesia. Open reduction and exposure of the fracture sites revealed that the distal fibula fragment was “transposed” and entrapped in the medulla of the proximal tibial fragment. Reduction required simulation of the mechanism of injury in order to disengage the fragments and allow reduction. Tibiofibula transposition is a rare complication of high-energy lower limb fractures which has not previously been reported and may prevent adequate closed reduction. Impaction of the distal fibula within the tibial medulla occurs as the limb is realigned by paramedic staff before transfer to hospital. We recommend that when this complication is identified the patient is transferred to the operating room for open reduction and stabilization of the fracture.

  7. Higher Energy Intake Variability as Predisposition to Obesity: Novel Approach Using Interquartile Range.

    Science.gov (United States)

    Forejt, Martin; Brázdová, Zuzana Derflerová; Novák, Jan; Zlámal, Filip; Forbelská, Marie; Bienert, Petr; Mořkovská, Petra; Zavřelová, Miroslava; Pohořalá, Aneta; Jurášková, Miluše; Salah, Nabil; Bienertová-Vašků, Julie

    2017-12-01

    It is known that total energy intake and its distribution during the day influences human anthropometric characteristics. However, possible association between variability in total energy intake and obesity has thus far remained unexamined. This study was designed to establish the influence of energy intake variability of each daily meal on the anthropometric characteristics of obesity. A total of 521 individuals of Czech Caucasian origin aged 16–73 years (390 women and 131 men) were included in the study, 7-day food records were completed by all study subjects and selected anthropometric characteristics were measured. The interquartile range (IQR) of energy intake was assessed individually for each meal of the day (as a marker of energy intake variability) and subsequently correlated with body mass index (BMI), body fat percentage (%BF), waist-hip ratio (WHR), and waist circumference (cW). Four distinct models were created using multiple logistic regression analysis and backward stepwise logistic regression. The most precise results, based on the area under the curve (AUC), were observed in case of the %BF model (AUC=0.895) and cW model (AUC=0.839). According to the %BF model, age (p<0.001) and IQR-lunch (p<0.05) seem to play an important prediction role for obesity. Likewise, according to the cW model, age (p<0.001), IQR-breakfast (p<0.05) and IQR-dinner (p <0.05) predispose patients to the development of obesity. The results of our study show that higher variability in the energy intake of key daily meals may increase the likelihood of obesity development. Based on the obtained results, it is necessary to emphasize the regularity in meals intake for maintaining proper body composition. Copyright© by the National Institute of Public Health, Prague 2017

  8. European School of High-Energy Physics

    CERN Document Server

    2006-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures notes on field theory and the Standard Model, quantum chromodynamics, flavour physics and CP violation, experimental aspects of CP violation in K and B decays, relativistic heavy-ion physics, and the scientific programme of the Joint Institute for Nuclear Research. These core scientific topics are complemented by a lecture about the physics of ski jumping.

  9. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    1991-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract FG02-91ER40641 during the period from March 1991 to December 1991. Our group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, we are also members of the SDC collaboration at the SSC

  10. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  11. Channeling and dechanneling at high energy

    International Nuclear Information System (INIS)

    Carrigan, R.A. Jr.

    1987-01-01

    The possibility of using channeling as a tool for high energy particle physics has now been extensively investigated. Bent crystals have been used as an accelerator extraction element and for particle deflection. Applications as accelerating devices have been discussed but appear remote. The major advantage in using a bent crystal rather than a magnet is the large deflection that can be achieved in a short length. The major disadvantage is the low transmission. A good understanding of dechanneling is important for applications. 43 refs., 1 fig., 3 tabs

  12. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  13. Radiographic imaging system for high energy radiation

    International Nuclear Information System (INIS)

    1975-01-01

    A radiographic imaging system for high energy radiation is described utilizing a detector of such radiation and a mask having regions relatively transparent to such radiation and interspersed among regions relatively opaque to such radiation. A relative motion is imparted between the mask and the detector, the detector providing a time varying signal in response to the incident radiation and in response to the relative motion. The time varying signal provides, with the aid of a decoder, an image of a source of such radiation

  14. Studies in theoretical high energy particle physics

    International Nuclear Information System (INIS)

    Aratyn, H.; Brekke, L.; Keung, Wai-Yee; Sukhatme, U.

    1993-01-01

    Theoretical work on the following topics is briefly summarized: symmetry structure of conformal affine Toda model and KP hierarchy; solitons in the affine Toda and conformal affine Toda models; classical r-matrices and Poisson bracket structures on infinite-dimensional groups; R-matrix formulation of KP hierarchies and their gauge equivalence; statistics of particles and solitons; charge quantization in the presence of an Alice string; knotting and linking of nonabelian flux; electric dipole moments; neutrino physics in gauge theories; CP violation in the high energy colliders; supersymmetric quantum mechanics; parton structure functions in nuclei; dual parton model. 38 refs

  15. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1993-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from July of 1990 to June of 1991 and from February to March 1992. Our group has three main efforts which will be discussed in this paper. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789 which involved detection of meson decays. Finally, we discuss our work with the SDC collaboration at the SSC

  16. High energy ion implantation for IC processing

    International Nuclear Information System (INIS)

    Oosterhoff, S.

    1986-01-01

    In this thesis the results of fundamental research on high energy ion implantation in silicon are presented and discussed. The implantations have been carried out with the 500 kV HVEE ion implantation machine, that was acquired in 1981 by the IC technology and Electronics group at Twente University of Technology. The damage and anneal behaviour of 1 MeV boron implantations to a dose of 10 13 /cm 2 have been investigated as a function of anneal temperature by sheet resistance, Hall and noise measurements. (Auth.)

  17. Photomask specifications for high energy physics detectors

    CERN Document Server

    Pindo, M

    2002-01-01

    Planar technologies used for radiation detector fabrication imply an extensive use of photomasks whose characteristics are critical in determining final detector performance. Compatibly with their manufacturing process, photomasks must satisfy the application-specific requirements dictated both by wafer manufacturers and detector final users. The design and realization of microstrip and pixel detectors, widely used in high energy physics experiments, ask for intensive scientific effort, advanced technology and important economical investments. Photomask specification definition is one of the fundamental steps to optimize detector fabrication processes and fulfill experimental requirements at the most appropriate cost.

  18. Siberian Snakes in high-energy accelerators

    International Nuclear Information System (INIS)

    Mane, S R; Shatunov, Yu M; Yokoya, K

    2005-01-01

    We review modern techniques to accelerate spin-polarized beams to high energy and to preserve their polarization in storage rings. Crucial to the success of such work is the use of so-called Siberian Snakes. We explain these devices and the reason for their necessity. Closely related to Snakes is the concept of 'spin rotators'. The designs and merits of several types of Snakes and spin rotators are examined. Theoretical work with Snakes and spin rotators, and experimental results from several storage rings, are reviewed, including the so-called Snake resonances. (topical review)

  19. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  20. Superconductivity in high energy particle accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)