WorldWideScience

Sample records for high energy shot

  1. Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhiming, Lu, E-mail: lzm@zjut.edu.cn; Laimin, Shi, E-mail: 810050107@qq.com; Shenjin, Zhu, E-mail: 523469865@qq.com; Zhidong, Tang, E-mail: 466054569@qq.com; Yazhou, Jiang, E-mail: 191268219@qq.com

    2015-06-18

    The weld joint of 304 stainless steel is treated using high energy shot peening(HESP) with various shot peening pressures. The grain size and metallographic microstructure of the specimen surface layer are analyzed using the X-ray diffraction method, and the surface hardness is measured. Slow strain rate tension tests are then performed to investigate the effect of shot peening pressure on the stress corrosion sensitivity. The results show that in the surface layer of the specimen, the grain refinement, hardness and the strain-induced plastic deformation all increase with the increasing shot peening pressure. Martensitic transformation is observed in the surface layer after being treated with HESP. The martensite phase ratio is found to increase with increasing shot peening pressure. The result also shows that the effects of the shot peening treatment on the stress corrosion sensitivity index depend on the shot peening pressure. When the shot peening pressure is less than 0.4 MPa, the grain refinement effect plays the main role, and the stress corrosion sensitivity index decreases with the increasing shot peening pressure. In contrast, when the shot peening pressure is higher than 0.4 MPa, the martensite transformation effect plays the main role, the stress corrosion sensitivity index increases with increasing shot peening pressure.

  2. The gradient crystalline structure and microhardness in the treated layer of TC17 via high energy shot peening

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huimin [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yingang, E-mail: lygsuper1987@163.com [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Miaoquan, E-mail: honeymli@nwpu.edu.cn [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Hongjie [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China)

    2015-12-01

    Graphical abstract: - Highlights: • The gradient nanocrystalline structure was induced in treated layer of TC17. • The thickness of nanograin layer with an average grain size of 10.5 nm was 20 μm. • The composition of the treated layer of TC17 was discussed. • The gradient variation of the microhardness was obtained in treated layer of TC17. - Abstract: The gradient nanocrystalline structure from the topmost surface to the matrix of a bulk coarse-grained TC17 was attained by using high energy shot peening treatment at an air pressure of 0.35 MPa and a processing duration of 30 min. The thickness from the topmost surface with a grain size of about 10.5 nm to the matrix with a micrometer structure was about 120 μm, and the thickness in the nanocrystalline layer was about 20 μm. The microscopic and nanocrystalline structure characteristic in the treated layer were investigated via X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. The nanograins layer, the nanometer-thick laminated structure layer, the refined grains layer and the low-strain matrix layer occurred in sequence from the topmost surface to the matrix, and therefore the gradient nanocrystalline structure in the treated layer was produced by using high energy shot peening. TEM investigation confirmed that the dislocation activity with very high stacking fault energy induced by surface severe plastic deformation mainly controlled the grain refinement. The microhardness (HV{sub 0.02}) from the topmost surface to the matrix gradually increased by 43% from 440 to 629 and the gradient variation of the microhardness with the depths from the topmost surface to the matrix of treated TC17 was obtained.

  3. Single-shot structural analysis by high-energy X-ray diffraction using an ultrashort all-optical source.

    Science.gov (United States)

    Rakowski, R; Golovin, G; O'Neal, J; Zhang, J; Zhang, P; Zhao, B; Wilson, M D; Veale, M C; Seller, P; Chen, S; Banerjee, S; Umstadter, D; Fuchs, M

    2017-11-30

    High-energy X-rays (HEX-rays) with photon energies on order of 100 keV have attractive characteristics, such as comparably low absorption, high spatial resolution and the ability to access inner-shell states of heavy atoms. These properties are advantageous for many applications ranging from studies of bulk materials to the investigation of materials in extreme conditions. Ultrafast X-ray diffraction allows the direct imaging of atomic dynamics simultaneously on its natural time and length scale. However, using HEX-rays for ultrafast studies has been limited due to the lack of sources that can generate pulses of sufficiently short (femtosecond) duration in this wavelength range. Here we show single-crystal diffraction using ultrashort ~90 keV HEX-ray pulses generated by an all-optical source based on inverse Compton scattering. We also demonstrate a method for measuring the crystal lattice spacing in a single shot that contains only ~105 photons in a spectral bandwidth of ~50% full width at half maximum (FWHM). Our approach allows us to obtain structural information from the full X-ray spectrum. As target we use a cylindrically bent Ge crystal in Laue transmission geometry. This experiment constitutes a first step towards measurements of ultrafast atomic dynamics using femtosecond HEX-ray pulses.

  4. New Single Shot Beam Position Monitor of the GSI High Energy Transfer Line

    CERN Document Server

    Schölles, J

    2005-01-01

    In the near future, single bunch handling with intensities from 104 up to 1012 particles and minimum lengths of 50 ns are expected at the GSI high energy transfer line. Thus, the demand of an accurate realtime position monitoring is mandatory. At the moment, a recently developed amplifier optimised for the best common mode amplification covers a dynamic range from nearly -80 dBm up to +20 dBm and a bandwidth of 200 MHz. To gain the required dynamic range of 160 dB, an improvement of the amplifiers is necessary. The data acquisition shall be done by commercial DSOs which have a sample rate of 2 GS/s on each of the four channels for every PU. This DSO based solution is cheap in comparison to the usage of other available sampling units. The data transfer from the DSOs to the operating stuff is foreseen via Ethernet. Amplifier controlling and position calculation happens at the control centre with LabVIEW. First results measured at the GSI synchrotron will be presented.

  5. Experimental capabilities of 0.4 PW, 1 shot/min Scarlet laser facility for high energy density science.

    Science.gov (United States)

    Poole, P L; Willis, C; Daskalova, R L; George, K M; Feister, S; Jiang, S; Snyder, J; Marketon, J; Schumacher, D W; Akli, K U; Van Woerkom, L; Freeman, R R; Chowdhury, E A

    2016-06-10

    We report on the recently completed 400 TW upgrade to the Scarlet laser at The Ohio State University. Scarlet is a Ti:sapphire-based ultrashort pulse system that delivers >10  J in 30 fs pulses to a 2 μm full width at half-maximum focal spot, resulting in intensities exceeding 5×1021  W/cm2. The laser fires at a repetition rate of once per minute and is equipped with a suite of on-demand and on-shot diagnostics detailed here, allowing for rapid collection of experimental statistics. As part of the upgrade, the entire laser system has been redesigned to facilitate consistent, characterized high intensity data collection at high repetition rates. The design and functionality of the laser and target chambers are described along with initial data from commissioning experimental shots.

  6. Single-shot fluctuations in waveguided high-harmonic generation.

    Science.gov (United States)

    Goh, S J; Tao, Y; van der Slot, P J M; Bastiaens, H J M; Herek, J; Biedron, S G; Danailov, M B; Milton, S V; Boller, K-J

    2015-09-21

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide.

  7. Caffeine Content in Popular Energy Drinks and Energy Shots.

    Science.gov (United States)

    Attipoe, Selasi; Leggit, Jeffrey; Deuster, Patricia A

    2016-09-01

    The use of energy beverages is high among the general population and military personnel. Previous studies have reported discrepancies between the actual amount of caffeine in products and the amount of caffeine on stated labels. Thus, the purpose of this study was to examine the content of caffeine listed on the labels of various energy drinks and energy shots. Top-selling energy drinks (n = 9) and energy shots (n = 5) were purchased from retail stores. Three of each of the 14 products were purchased and analyzed for caffeine content by an independent laboratory. Of the 14 products tested, 5 did not provide caffeine amounts on their facts panel-of those, 3 listed caffeine as an ingredient and 2 listed caffeine as part of a proprietary blend. The remaining 9 (of 14) products stated the amounts of caffeine on their labels, all of which were within 15% of the amount indicated on the label. In this study, although the energy beverages that indicated the amount of caffeine it contained had values within ±15% of the amount listed on the label, a potentially acceptable range, this finding is not acceptable with regard to current labeling regulations, which require added ingredients to total 100%. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  8. Ultrabroadband 2D electronic spectroscopy with high-speed, shot-to-shot detection.

    Science.gov (United States)

    Son, Minjung; Mosquera-Vázquez, Sandra; Schlau-Cohen, Gabriela S

    2017-08-07

    Two-dimensional electronic spectroscopy (2DES) is an incisive tool for disentangling excited state energies and dynamics in the condensed phase by directly mapping out the correlation between excitation and emission frequencies as a function of time. Despite its enhanced frequency resolution, the spectral window of detection is limited to the laser bandwidth, which has often hindered the visualization of full electronic energy relaxation pathways spread over the entire visible region. Here, we describe a high-sensitivity, ultrabroadband 2DES apparatus. We report a new combination of a simple and robust setup for increased spectral bandwidth and shot-to-shot detection. We utilize 8-fs supercontinuum pulses generated by gas filamentation spanning the entire visible region (450 - 800 nm), which allows for a simultaneous interrogation of electronic transitions over a 200-nm bandwidth, and an all-reflective interferometric delay system with angled nanopositioner stages achieves interferometric precision in coherence time control without introducing wavelength-dependent dispersion to the ultrabroadband spectrum. To address deterioration of detection sensitivity due to the inherent instability of ultrabroadband sources, we introduce a 5-kHz shot-to-shot, dual chopping acquisition scheme by combining a high-speed line-scan camera and two optical choppers to remove scatter contributions from the signal. Comparison of 2D spectra acquired by shot-to-shot detection and averaged detection shows a 15-fold improvement in the signal-to-noise ratio. This is the first direct quantification of detection sensitivity on a filamentation-based ultrabroadband 2DES apparatus.

  9. Single-shot fluctuations in waveguided high-harmonic generation

    NARCIS (Netherlands)

    Goh, S.J.; Tao, Y.; van der Slot, Petrus J.M.; Bastiaens, Hubertus M.J.; Herek, Jennifer Lynn; Biedron, S.G.; Danailov, M.B.; Milton, S.V.; Boller, Klaus J.

    2015-01-01

    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic

  10. Shot-to-shot reproducibility in the emission of fast highly charged metal ions from a laser ion source.

    Science.gov (United States)

    Krása, J; Velyhan, A; Margarone, D; Krouský, E; Krouský, L; Jungwirth, K; Rohlena, K; Ullschmied, J; Parys, P; Ryć, L; Wołowski, J

    2012-02-01

    The generation of fast highly charged metal ions with the use of the sub-nanosecond Prague Asterix Laser System, operated at a fundamental wavelength of 1315 nm, is reported. Particular attention is paid to shot-to-shot reproducibility in the ion emission. Au and Pd targets were exposed to intensities up to 5 × 10(16) W∕cm(2). Above the laser intensity threshold of ∼3 × 10(14) W∕cm(2) the plasma is generated in a form of irregular bursts. The maximum energy of protons constituting the leading edge of the fastest burst reaches a value up to 1 MeV. The fast ions in the following bursts have energy gradually decreasing with the increasing burst number, namely, from a value of about 0.5 MeV∕charge regardless of the atomic number and mass of the ionized species.

  11. On the Path to SunShot - The Environmental and Public Health Benefits of Achieving High Penetrations of Solar Energy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Carpenter, Alberta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cohen, Stuart [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Monetizing the environmental health benefits of solar could add ~3.5¢/kWh to the value of solar energy (see Wiser et al. 2016). The monetary impacts due to environmental degradation and public health impacts seem far removed from the apparent “sticker price” of electricity. Yet quantifying these impacts is essential to understanding the true costs and benefits of solar and conventional generating technologies. Compared with fossil fuel generators, PV and CSP produce far lower lifecycle levels of greenhouse gas (GHG) emissions and harmful pollutants including fine particular matter (PM2.5), sulfur dioxide (SO2), and nitrogen oxides (NOx). Achieving the SunShot-level solar deployment targets—14% of U.S. electricity demand met by solar in 2030 and 27% in 2050—could reduce cumulative power-sector GHG emissions by 10% between 2015 and 2050, resulting in savings of $238–$252 billion. This is equivalent to 2.0–2.2 cents per kilowatt-hour of solar installed (¢/kWh-solar). Similarly, realizing these levels of solar deployment could reduce cumulative power-sector emissions of PM2.5 by 8%, SO2 by 9%, and NOx by 11% between 2015 and 2050. This could produce $167 billion in savings from lower future health and environmental damages, or 1.4¢/kWh-solar—while also preventing 25,000–59,000 premature deaths. To put this in perspective, the estimated 3.5¢/kWh-solar in benefits due to SunShot-level solar deployment is approximately equal to the additional LCOE reduction needed to make unsubsidized utility-scale solar competitive with conventional generators today. In addition, water savings from achieving the SunShot goals, could result in the 2015–2050 cumulative savings of 4% of total power-sector withdrawals and 9% of total power-sector consumption—a particularly important consideration for arid states where substantial solar will be deployed. Improving public health and the environment is but one aspect of solar’s many costs and benefits. Clearly, however

  12. Use and Perceptions of Caffeinated Energy Drinks and Energy Shots in Canada.

    Science.gov (United States)

    Wiggers, Danielle; Reid, Jessica L; White, Christine M; Hammond, David

    2017-12-01

    In Canada, energy drinks and energy shots are currently classified and regulated differently (food and drugs versus natural health products, respectively), on the assumption that they are used and perceived differently. The current study examined potential differences in use and perceptions of energy drinks and shots. An online survey was conducted in 2015 using a national commercial online panel of youth and young adults aged 12-24 years (n=2,040 retained for analysis in 2016). Participants were randomized to view an image of an energy shot or drink, and were asked about 14 potential reasons for using the product. Past consumption of each product was also assessed. Chi-square and t-tests were conducted to examine differences in use and perceptions between products. Overall, 15.6% of respondents reported using both energy shots and drinks. Of all respondents, energy shots, whereas 58.0% had tried only energy drinks. For each product, the most commonly reported reasons for use were "to stay awake" and "to increase concentration or alertness." Out of 14 potential reasons for use, respondents were significantly more likely to endorse seven of the reasons for energy drinks rather than shots; however, the magnitude of these differences was modest and the ordering of the reasons for use of each product was comparable. Despite differences in prevalence of ever-use of energy shots and drinks, consumption patterns and perceived reasons for using the products are similar. The findings provide little support for regulating energy shots differently than energy drinks. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Stabilized high-accuracy optical tracking system (SHOTS)

    Science.gov (United States)

    Ruffatto, Donald; Brown, H. Donald; Pohle, Richard H.; Reiley, Michael F.; Haddock, Delmar D.

    2001-08-01

    This paper describes an 0.75 meter aperture, Stabilized High-accuracy Optical Tracking System (SHOTS), two of which are being developed by Textron Systems Corporation, under contract to the Navy's Space and Naval Warfare Systems Center, San Diego (SPAWAR-SD). The SHOTS design is optimized to meet the requirements of the Navy's Theater Ballistic Missile Defense (TBMD) testing program being conducted at the Kauai Pacific Missile Range Facility (PMRF). The SHOTS utilizes a high-precision, GPS aided inertial navigation unit (INU) coupled with a 3-axis, rate gyro stabilized mount which allows precision pointing to be achieved on either land or sea-based platforms. The SHOTS mount control system architecture, acquisition, tracking and pointing (ATP) functionality and methodology which allows the system to meet the TBMD mission data collection requirements are discussed. High frame rate visible and MWIR sensors are incorporated into the system design to provide the capability of capturing short duration events, e.g., missile-target intercepts. These sensors along with the supporting high speed data acquisition, recording and control subsystems are described. Simulations of the SHOTS imaging performance in TBMD measurement scenarios are presented along with an example of the image improvement being achieved with post-processing image reconstruction algorithms.

  14. Pulse shape measurements using single shot-frequency resolved optical gating for high energy (80 J) short pulse (600 fs) laser.

    Science.gov (United States)

    Palaniyappan, S; Shah, R C; Johnson, R; Shimada, T; Gautier, D C; Letzring, S; Jung, D; Hörlein, R; Offermann, D T; Fernández, J C; Hegelich, B M

    2010-10-01

    Relevant to laser based electron/ion accelerations, a single shot second harmonic generation frequency resolved optical gating (FROG) system has been developed to characterize laser pulses (80 J, ∼600 fs) incident on and transmitted through nanofoil targets, employing relay imaging, spatial filter, and partially coated glass substrates to reduce spatial nonuniformity and B-integral. The device can be completely aligned without using a pulsed laser source. Variations of incident pulse shape were measured from durations of 613 fs (nearly symmetric shape) to 571 fs (asymmetric shape with pre- or postpulse). The FROG measurements are consistent with independent spectral and autocorrelation measurements.

  15. SunShot Initiative: Making Solar Energy Affordable for All Americans (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-10-01

    Through SunShot, DOE supports efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, making solar energy affordable for more American families and businesses.

  16. High Cycle Fatigue Behavior of Shot-Peened Steels

    Science.gov (United States)

    Mirzazadeh, M. M.; Plumtree, A.

    2012-08-01

    The uniaxial fully reversed (R = -1) long life fatigue behavior of four shot-peened engineering steels with approximately the same hardness was investigated. Shot-peening, air-cooled forged AISI 1141 and crackable AISI 1070 steels had little effect on their fatigue limits (+2.5 and -2.0 pct, respectively). In the case of a powder forged 0.5 pct C steel, an increase in the fatigue limit of 10.4 pct was observed, albeit with a large standard deviation. Shot-peening quench and tempered AISI 1151 steel decreased its fatigue limit 12.0 pct, as a result of cyclic softening. In general, the beneficial effects of shot-peening these smooth specimens were relatively small. Neither cyclic softening nor hardening occurred in the non-shot-peened steels cycled under the same conditions.

  17. Effects of shot peening on fatigue behavior in high speed steel and cast iron with spheroidal vanadium carbides dispersed within martensitic-matrix microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Y., E-mail: yuematsu@gifu-u.ac.jp [Department of Mechanical and Systems Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Kakiuchi, T.; Tokaji, K. [Department of Mechanical and Systems Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Nishigaki, K. [Okamoto Co. Ltd., 5 Nawate-cho, Gifu 500-8743 (Japan); Ogasawara, M. [MEIRA Co. Ltd., 17-15 Tsubaki-cho, Nakamura-ku, Nagoya City, Aichi 453-0015 (Japan)

    2013-01-20

    Four-point bending fatigue tests had been performed using high speed steel and cast iron with vanadium carbides (VCs) dispersed within the martensitic-matrix microstructure. Shot peening or shot blast was applied to both the materials and the effect of surface treatments on fatigue behavior was investigated. The fatigue strengths of the high speed steel were improved by both shot peening and shot blast processes due to the high hardness near the specimen surface and residual compressive stress. Although the hardness of cast iron was enhanced by both treatments, the fatigue strengths were not improved by the shot blast because of the existence of large casting defects. Shot peening with higher shot energy could induce the transition of crack initiation mechanism of cast iron, where crack initiated from the cluster of VCs. However the shot peening had small effect on the fatigue strengths of the cast iron because large casting defects were not removed by the shot peening due to the high hardness of the martensitic matrix.

  18. Spectrometer for shot-to-shot photon energy characterization in the multi-bunch mode of the free electron laser at Hamburg.

    Science.gov (United States)

    Palutke, S; Gerken, N C; Mertens, K; Klumpp, S; Mozzanica, A; Schmitt, B; Wunderer, C; Graafsma, H; Meiwes-Broer, K-H; Wurth, W; Martins, M

    2015-11-01

    The setup and first results from commissioning of a fast online photon energy spectrometer for the vacuum ultraviolet free electron laser at Hamburg (FLASH) at DESY are presented. With the use of the latest advances in detector development, the presented spectrometer reaches readout frequencies up to 1 MHz. In this paper, we demonstrate the ability to record online photon energy spectra on a shot-to-shot base in the multi-bunch mode of FLASH. Clearly resolved shifts in the mean wavelength over the pulse train as well as shot-to-shot wavelength fluctuations arising from the statistical nature of the photon generating self-amplified spontaneous emission process have been observed. In addition to an online tool for beam calibration and photon diagnostics, the spectrometer enables the determination and selection of spectral data taken with a transparent experiment up front over the photon energy of every shot. This leads to higher spectral resolutions without the loss of efficiency or photon flux by using single-bunch mode or monochromators.

  19. High-Dose Flu Shot May Help Nursing Home Residents Avoid Hospital

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_167348.html High-Dose Flu Shot May Help Nursing Home Residents Avoid Hospital ... July 21, 2017 (HealthDay News) -- Nobody wants the flu, but it can prove deadly for frail residents ...

  20. Fourier Analysis of Single-Shot Dual-Energy X-ray Imaging Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Woo; Kim, Dong Woon; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The sandwich detector was realized by stacking two scintillator-based flat-panel detectors (FPDs) between which an intermediate copper (Cu) filter layer was placed to further enhance spectral energy separation. As a result, the proper selection of filter material and its thickness could be a trade-off between the extent of energy separation (hence, DE image quality) and image noise due to reduction in the number of x-ray quanta reaching the rear FPD. Although the conventional kVp-switching dual-shot method showed better image qualities than the single-shot method because of larger spectral energy separation, the motion-artifact-free DE image with reasonably good image quality was a potential prospect of the single-shot method. For the reliable and better use of the sandwich detector for specific imaging applications, the sandwich detector should be optimally designed with a proper selection of scintillator material and thickness in each detector layer (i.e. the front and rear detectors), and aforementioned intermediate filter material and thickness. It is noted that glue is used to adhere the fragile photodiode array onto the ceramic substrate and these glue patterns are apparent in the rear and DE images. The glue pattern in the rear image comes from the front FPD. Unlike the conventional ESF as shown in Fig. 3(a), the ESF obtained from the subtracted image showed an enhancement as shown in Fig. 3(b). Consequently, the MTF obtained from the subtraction ESF showed a bandpass filter characteristic, as shown in Fig. 3(c), unlike the conventional low-pass filter characteristic (i.e., monotonic decrease of MTF value with increasing the spatial frequency). This MTF characteristic is due to the subtraction of two images with different spatial resolving powers (i.e., different thicknesses of phosphors between the front and rear detectors) as can be seen in unsharp masking digital image processing, which subtracts Gaussian-blurred image from the original image.

  1. If it looks like a duck and quacks like a duck…: Energy "shots" should be regulated as energy drinks in Canada.

    Science.gov (United States)

    Hammond, David; Reid, Jessica L

    2016-06-27

    In 2012, Health Canada transitioned caffeinated energy drinks from Natural Health Product to Food and Drug classification and regulations, implementing temporary guidelines with requirements such as caffeine content limits, mandatory cautionary labelling, and restrictions on health claims. "Energy shots" often contain as much or more caffeine compared to energy drinks and have been associated with a similar number of adverse health events. However, current requirements for energy drinks do not apply to energy shots, which remain classified as "natural health products" on the basis that they are "not consumed or perceived as foods" in the same way as energy drinks. An online survey was conducted with Canadian youth and young adults aged 12-24 years (N = 2040) in October 2014 to examine perceptions of energy shots. Respondents viewed an image of a popular energy shot and were asked which term best described it, with six randomly-ordered options. The vast majority (78.8%) perceived the energy shot as an "energy drink" (vs. "supplement", "vitamin drink", "natural health product", "soft drink" or "food product"). Given consumer perceptions and the similarity in product constituents, there is little basis for regulating energy shots differently from energy drinks; these products should be subject to similar labelling and health warning requirements.

  2. Motion immune diffusion imaging using augmented MUSE (AMUSE) for high-resolution multi-shot EPI

    Science.gov (United States)

    Guhaniyogi, Shayan; Chu, Mei-Lan; Chang, Hing-Chiu; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    Purpose To develop new techniques for reducing the effects of microscopic and macroscopic patient motion in diffusion imaging acquired with high-resolution multi-shot EPI. Theory The previously reported Multiplexed Sensitivity Encoding (MUSE) algorithm is extended to account for macroscopic pixel misregistrations as well as motion-induced phase errors in a technique called Augmented MUSE (AMUSE). Furthermore, to obtain more accurate quantitative DTI measures in the presence of subject motion, we also account for the altered diffusion encoding among shots arising from macroscopic motion. Methods MUSE and AMUSE were evaluated on simulated and in vivo motion-corrupted multi-shot diffusion data. Evaluations were made both on the resulting imaging quality and estimated diffusion tensor metrics. Results AMUSE was found to reduce image blurring resulting from macroscopic subject motion compared to MUSE, but yielded inaccurate tensor estimations when neglecting the altered diffusion encoding. Including the altered diffusion encoding in AMUSE produced better estimations of diffusion tensors. Conclusion The use of AMUSE allows for improved image quality and diffusion tensor accuracy in the presence of macroscopic subject motion during multi-shot diffusion imaging. These techniques should facilitate future high-resolution diffusion imaging. PMID:25762216

  3. Comparison of caffeine disposition following administration by oral solution (energy drink) and inspired powder (AeroShot) in human subjects.

    Science.gov (United States)

    Laizure, S Casey; Meibohm, Bernd; Nelson, Kembral; Chen, Feng; Hu, Zhe-Yi; Parker, Robert B

    2017-12-01

    To determine the disposition and effects of caffeine after administration using a new dosage form (AeroShot) that delivers caffeine by inspiration of a fine powder into the oral cavity and compare it to an equivalent dose of an oral solution (energy drink) as the reference standard. Healthy human subjects (n = 17) inspired a 100 mg caffeine dose using the AeroShot device or consumed an energy drink on separate study days. Heart rate, blood pressure and subject assessments of effects were measured over an 8-h period. Plasma concentrations of caffeine and its major metabolites were determined by liquid chromatography-mass spectrometry. Pharmacokinetic, cardiovascular and perceived stimulant effects were compared between AeroShot and energy drink phases using a paired t test and standard bioequivalency analysis. Caffeine disposition was similar after caffeine administration by the AeroShot device and energy drink: peak plasma concentration 1790 and 1939 ng ml -1 , and area under the concentration-time curve (AUC) 15 579 and 17 569 ng ml -1 × h, respectively, but they were not bioequivalent: AeroShot AUC of 80.3% (confidence interval 71.2-104.7%) and peak plasma concentration of 86.3% (confidence interval 62.8-102.8%) compared to the energy drink. Female subjects did have a significantly larger AUC compared to males after consumption of the energy drink. The heart rate and blood pressure were not significantly affected by the 100 mg caffeine dose, and there were no consistently perceived stimulant effects by the subjects using visual analogue scales. Inspiration of caffeine as a fine powder using the AeroShot device produces a similar caffeine profile and effects compared to administration of an oral solution (energy drink). © 2017 The British Pharmacological Society.

  4. Effects of caffeinated versus decaffeinated energy shots on blood pressure and heart rate in healthy young volunteers.

    Science.gov (United States)

    Kurtz, Abigail M; Leong, Jessica; Anand, Monica; Dargush, Anthony E; Shah, Sachin A

    2013-08-01

    To evaluate the effects of a caffeinated 5-hour Energy shot compared with a decaffeinated 5-hour Energy shot as assessed by changes in blood pressure and heart rate in healthy, nonhypertensive volunteers. Randomized, double-blind, controlled, crossover study. University campus. Twenty healthy volunteers. Subjects were randomized to receive either the caffeinated 5-hour Energy shot or the decaffeinated 5-hour Energy shot; after a washout period of at least 6 days, subjects were given the alternate energy shot. Systolic (SBP) and diastolic (DBP) blood pressures were recorded for each subject at baseline and at 1, 3, and 5 hours after consumption of the energy shot. Heart rate, adverse effects, and energy levels were also assessed. Mean ± standard deviation (SD) baseline SBP for all study subjects was 114.06 ± 11.30 mm Hg and DBP was 69.53 ± 7.63 mm Hg. Mean changes in SBP between the caffeinated arm and the decaffeinated arm at the 1- and 3-hour time points were significantly increased compared with baseline (mean ± SD 6.08 ± 7.71 mm Hg at 1 hour [p=0.001] vs 3.33 ± 6.99 mm Hg at 3 hours [p=0.042]). Similarly, mean DBP changes between the caffeinated arm and the decaffeinated arm were significantly increased at the 1- and 3-hour time points compared with baseline (mean ± SD 5.18 ± 8.38 mm Hg at 1 hour [p=0.007] and 5.43 ± 7.21 mm Hg at 3 hours [p=0.005]). Heart rate, adverse effects, and energy levels were similar between the two groups. Caffeinated energy shots significantly increased SBP and DBP over a 3-hour period compared with decaffeinated energy shots in healthy, nonhypertensive individuals. © 2013 Pharmacotherapy Publications, Inc.

  5. Measurement of the single-shot pulse energy of a free electron laser using a cryogenic radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Masahiro, Kato; Norio, Saito; Yuichiro, Morishita; Takahiro, Tanaka [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba (Japan); Masahiro, Kato; Norio, Saito; Kai, Tiedtke; Pavle N, Juranic; Sorokin, A.A.; Richter, M.; Takahiro, Tanaka; Mitsuru, Nagasono; Makina, Yabashi; Kensuke, Tono; Tadashi, Togashi; Tetsuya, Ishikawa [RIKEN, XFEL Project Head Office, Kouto, Sayo, Hyogo (Japan); Kai, Tiedtke; Pavle N, Juranic; Sorokin, A.A.; Jastrow, U. [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany); Sorokin, A.A. [Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, St Petersburg (Russian Federation); Richter, M.; Kroth, U.; Schoppe, H. [Physikalisch-Technische Bundesanstalt, PTB, Berlin (Germany); Tadashi, Togashi; Hiroaki, Kimura; Haruhiko, Ohashi [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo (Japan)

    2010-10-15

    The absolute single-shot pulse energy of the SPring 8 extreme ultraviolet (EUV) free electron laser (FEL) was measured using a cryogenic radiometer with a relative standard uncertainty of 3%. The temperature change of the cavity in the cryogenic radiometer caused by an incident FEL pulse was determined using a lock-in amplifier and an ac Wheatstone bridge. The measured pulse energies were compared with a gas-monitor detector developed by Physikalisch-Technische Bundesanstalt/Deutsches Elektronen-Synchrotron/Ioffe Physico-Technical Institute (Ioffe) at a wavelength of 51.3 nm at the SPring-8 EUV-FEL in a shot-to-shot mode. The pulse energies measured using the two detectors agree within 2.0%. (authors)

  6. Analysis of entry of additional energy to gunpowder in electrothermal chemical shot

    Science.gov (United States)

    Burkin, Viktor; Ishchenko, Alexandr; Kasimov, Vladimir; Samorokova, Nina; Sidorov, Aleksey

    2017-11-01

    In the article two series of ballistic experiments conducted according to the scheme of electrothermal chemical control of ballistic parameters of the shot at the Research Institute of Applied Mathematics and Mechanics of Tomsk State University (RIAMM TSU, Russia) are considered. The experimental part of the work is described. The analysis of the electro physical data of ballistic experiments is carried out. A methodical approach that allows to take into account the entry of an electric discharge plasma in a gunpowder in the mathematical model of internal ballistic processes in barrel systems is proposed and tested. Under the conditions of these experiments, the effects of various characteristics of the plasmatron on the nature of the energy entry are estimated.

  7. Fatigue Characteristics and Compressive Residual Stress of Shot Preened Alloy 600 Under High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Cheon; Cheong, Seong Kyun [Seoul Nat' l Univ. of Science and Technology, Seoul (Korea, Republic of); Cho, Hong Seok [KEPCO Plant Service and Engineering co., Ltd., Seongnam (Korea, Republic of)

    2013-03-15

    The compressive residual stress and fatigue behavior of shot preened alloy 600 under a high-temperature environment is investigated in this study. Alloy 600 is used in the main parts of nuclear power plants, and the compressive residual stress induced by the shot peening process is considered to prevent Succ (stress corrosion cracking). To obtain practical results, the fatigue characteristics and compressive residual stress are evaluated under the actual operating temperature of a domestic nuclear power plant, as well as a high-temperature environment. The experimental results show that the peening effects are valid at a high temperature lower than approximately 538 .deg. C,, which is the threshold temperature. The fatigue life was maintained at temperatures lower than 538 .deg. C, and the compressive residual stress at 538 .deg. C was 68.2% of that at room temperature. The present results are expected to be used to obtain basic safety and reliability data.

  8. Effect of laser shot peening on precipitation hardened aluminum alloy 6061-T6 using low energy laser

    Science.gov (United States)

    Sathyajith, S.; Kalainathan, S.

    2012-03-01

    Mechanical properties of engineering material can be improved by introducing compressive residual stress on the material surface and refinement of their microstructure. Variety of mechanical process such as shot peening, water jet peening, ultrasonic peening, laser shot peening were developed in the last decades on this contrast. Among these, lasers shot peening emerged as a novel industrial treatment to improve the crack resistance of turbine blades and the stress corrosion cracking (SCC) of austenic stainless steel in power plants. In this study we successfully performed laser shot peening on precipitation hardened aluminum alloy 6061-T6 with low energy (300 mJ, 1064 nm) Nd:YAG laser using different pulse densities of 22 pulses/mm 2 and 32 pulses/mm 2. Residual stress evaluation based on X-ray diffraction sin 2 ψ method indicates a maximum of 190% percentage increase on surface compressive stress. Depth profile of micro-hardness shows the impact of laser generated shock wave up to 1.2 mm from the surface. Apart from that, the crystalline size and micro-strain on the laser shot peened surfaces have been investigated and compared with the unpeened surface using X-ray diffraction in conjunction with line broadening analysis through the Williamson-Hall plot.

  9. Surface Characteristics and High Cycle Fatigue Performance of Shot Peened Magnesium Alloy ZK60

    Directory of Open Access Journals (Sweden)

    Jie Dong

    2011-01-01

    Full Text Available The current work investigated the effect of shot peening (SP on high cycle fatigue (HCF behavior of the hot-extruded ZK60 magnesium alloy. SP can significantly improve the fatigue life of the ZK60 alloy. After SP at the optimum Almen intensities, the fatigue strength at 107 cycles in the as-extruded (referred to as ZK60 and the T5 aging-treated (referred to as ZK60-T5 alloys increased from 140 and 150 MPa to 180 and 195 MPa, respectively. SP led to a subsurface fatigue crack nucleation in both ZK60 and ZK60-T5 alloys. The mechanism by which the compressive residual stress induced by shot peening results in the improvement of fatigue performance for ZK60 and ZK60-T5 alloys was discussed.

  10. Allergy shots

    Science.gov (United States)

    ... bite sensitivity Eczema , a skin condition that a dust mite allergy can make worse Allergy shots are effective for ... tree pollen Grass Mold or fungus Animal dander Dust mites Insect ... receive allergy shots. Your provider is not likely to recommend ...

  11. Indirect monitoring shot-to-shot shock waves strength reproducibility during pump–probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, T. A., E-mail: tatiana.pikuz@eie.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 Japan (Japan); Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871 Japan (Japan); Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Faenov, A. Ya. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871 (Japan); Ozaki, N.; Habara, H.; Tanaka, K. A.; Kodama, R. [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 Japan (Japan); Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871 Japan (Japan); Hartley, N. J.; Matsuoka, T. [Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871 (Japan); Albertazzi, B.; Matsuyama, S.; Yamauchi, K.; Ochante, R. [Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 Japan (Japan); Takahashi, K.; Sueda, K. [Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871 Japan (Japan); Tange, Y. [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Sakata, O. [Synchrotron X-ray Station at SPring-8, NIMS, Sayo, Hyogo 679-5148 (Japan); Sekine, T.; Sato, T.; Umeda, Y. [Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Inubushi, Y. [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); RIKEN Spring-8 Center, Sayo, Hyogo 679-5148 Japan (Japan); and others

    2016-07-21

    We present an indirect method of estimating the strength of a shock wave, allowing on line monitoring of its reproducibility in each laser shot. This method is based on a shot-to-shot measurement of the X-ray emission from the ablated plasma by a high resolution, spatially resolved focusing spectrometer. An optical pump laser with energy of 1.0 J and pulse duration of ∼660 ps was used to irradiate solid targets or foils with various thicknesses containing Oxygen, Aluminum, Iron, and Tantalum. The high sensitivity and resolving power of the X-ray spectrometer allowed spectra to be obtained on each laser shot and to control fluctuations of the spectral intensity emitted by different plasmas with an accuracy of ∼2%, implying an accuracy in the derived electron plasma temperature of 5%–10% in pump–probe high energy density science experiments. At nano- and sub-nanosecond duration of laser pulse with relatively low laser intensities and ratio Z/A ∼ 0.5, the electron temperature follows T{sub e} ∼ I{sub las}{sup 2/3}. Thus, measurements of the electron plasma temperature allow indirect estimation of the laser flux on the target and control its shot-to-shot fluctuation. Knowing the laser flux intensity and its fluctuation gives us the possibility of monitoring shot-to-shot reproducibility of shock wave strength generation with high accuracy.

  12. Computer-aided analysis of star shot films for high-accuracy radiation therapy treatment units.

    Science.gov (United States)

    Depuydt, Tom; Penne, Rudi; Verellen, Dirk; Hrbacek, Jan; Lang, Stephanie; Leysen, Katrien; Vandevondel, Iwein; Poels, Kenneth; Reynders, Truus; Gevaert, Thierry; Duchateau, Michael; Tournel, Koen; Boussaer, Marlies; Cosentino, Dorian; Garibaldi, Cristina; Solberg, Timothy; De Ridder, Mark

    2012-05-21

    As mechanical stability of radiation therapy treatment devices has gone beyond sub-millimeter levels, there is a rising demand for simple yet highly accurate measurement techniques to support the routine quality control of these devices. A combination of using high-resolution radiosensitive film and computer-aided analysis could provide an answer. One generally known technique is the acquisition of star shot films to determine the mechanical stability of rotations of gantries and the therapeutic beam. With computer-aided analysis, mechanical performance can be quantified as a radiation isocenter radius size. In this work, computer-aided analysis of star shot film is further refined by applying an analytical solution for the smallest intersecting circle problem, in contrast to the gradient optimization approaches used until today. An algorithm is presented and subjected to a performance test using two different types of radiosensitive film, the Kodak EDR2 radiographic film and the ISP EBT2 radiochromic film. Artificial star shots with a priori known radiation isocenter size are used to determine the systematic errors introduced by the digitization of the film and the computer analysis. The estimated uncertainty on the isocenter size measurement with the presented technique was 0.04 mm (2σ) and 0.06 mm (2σ) for radiographic and radiochromic films, respectively. As an application of the technique, a study was conducted to compare the mechanical stability of O-ring gantry systems with C-arm-based gantries. In total ten systems of five different institutions were included in this study and star shots were acquired for gantry, collimator, ring, couch rotations and gantry wobble. It was not possible to draw general conclusions about differences in mechanical performance between O-ring and C-arm gantry systems, mainly due to differences in the beam-MLC alignment procedure accuracy. Nevertheless, the best performing O-ring system in this study, a BrainLab/MHI Vero system

  13. A high-capacity model for one shot association learning in the brain

    Directory of Open Access Journals (Sweden)

    Hafsteinn eEinarsson

    2014-11-01

    Full Text Available We present a high-capacity model for one-shot association learning(hetero-associative memory in sparse networks. We assume that basic patternsare pre-learned in networks and associations between two patterns are presentedonly once and have to be learned immediately. The model is a combination of anAmit-Fusi like network sparsely connected to a Willshaw type network. Thelearning procedure is palimpsest and comes from earlier work on one-shotpattern learning. However, in our setup we can enhance the capacity of thenetwork by iterative retrieval. This yields a model for sparse brain-likenetworks in which populations of a few thousand neurons are capable of learninghundreds of associations even if they are presented only once. The analysis ofthe model is based on a novel result by Janson et. al. on bootstrappercolation in random graphs.

  14. High Energy $\

    CERN Multimedia

    2002-01-01

    This experiment is a high statistics exposure of BEBC filled with hydrogen to both @n and &bar.@n beams. The principal physics aims are : \\item a) The study of the production of charmed mesons and baryons using fully constrained events. \\end{enumerate} b) The study of neutral current interactions on the free proton. \\item c) Measurement of the cross-sections for production of exclusive final state N* and @D resonances. \\item d) Studies of hadronic final states in charged and neutral current reactions. \\item e) Measurement of inclusive charged current cross-sections and structure functions. \\end{enumerate}\\\\ \\\\ The neutrino flux is determined by monitoring the flux of muons in the neutrino shield. The Internal Picket Fence and External Muon Identifier of BEBC are essential parts of the experiment. High resolution cameras are used to search for visible decays of short-lived particles.

  15. Influence of Severe Shot Peening on the Surface State and Ultra-High-Cycle Fatigue Behavior of an AW 7075 Aluminum Alloy

    Science.gov (United States)

    Trško, Libor; Guagliano, Mario; Bokůvka, Otakar; Nový, František; Jambor, Michal; Florková, Zuzana

    2017-04-01

    The ever more pressing and concurrent requirements of light design, increased performances and reliability, energy savings together with acceptable costs, is always pushing researchers and engineers toward the definition and application of new materials and treatments, able to guarantee superior properties and adequate repeatability and reliability. This means that one step beyond the definition of a potentially successful solution, a complete characterization of the new materials is needed, in order to get the right data and use them in the design process. A promising severe plastic deformation surface treatment to improve the fatigue properties of materials and metal parts is considered in this paper. The used treatment is called the severe shot peening, and it is derived from the conventional shot peening but with use of unusually high peening parameters. It was proven that it is able to generate a nanostructured surface layer of material, which results in superior fatigue properties when applied to many structural materials. The severe shot peening is applied to an AW 7075 Al alloy, widely used in mechanical and aeronautic constructions and the effects of such a treatment on this material are investigated in this paper, with particular emphasis on the ultra-high-cycle fatigue behavior. The results address the choice of the correct treatment parameters for getting an evaluable advantage of this treatment and are critically discussed for a complete understanding of the mechanisms leading to the modified fatigue behavior, in view of the future developments and research in the field.

  16. On the analogy between pulse-pile-up in energy-sensitive, photon-counting detectors and level-crossing of shot noise

    Science.gov (United States)

    Roessl, Ewald; Bartels, Matthias; Daerr, Heiner; Proksa, Roland

    2016-03-01

    Shot noise processes are omnipresent in physics and many of their properties have been extensively studied in the past, including the particular problem of level crossing of shot noise. Energy-sensitive, photon-counting detectors using comparators to discriminate pulse-heights are currently heavily investigated for medical applications, e.g. for x-ray computed tomography and x-ray mammography. Surprisingly, no mention of the close relation between the two topics can be found in the literature on photon-counting detectors. In this paper, we point out the close analogy between level crossing of shot noise and the problem of determining count rates of photon- counting detectors subject to pulse pile-up. The latter is very relevant for obtaining precise forward models for photon-counting detectors operated under conditions of very high x-ray flux employed in clinical x-ray computed tomography. Although several attempts have been made to provide reasonably accurate, approximative models for the registered number of counts in x-ray detectors under conditions of high flux and arbitrary x-ray spectra, see, e.g., no exact, analytic solution is given in the literature for general continuous pulse shapes. In this paper we present such a solution for arbitrary response functions, x-ray spectra and continuous pulse shapes based on a result from the theory of level crossing. We briefly outline the theory of level crossing including the famous Rice theorem and translate from the language of level crossing to the language of photon-counting detection.

  17. Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier.

    Science.gov (United States)

    Okawachi, Yoshitomo; Salem, Reza; Johnson, Adrea R; Saha, Kasturi; Levy, Jacob S; Lipson, Michal; Gaeta, Alexander L

    2012-12-01

    We demonstrate asynchronous, single-shot characterization of an ultrafast, high-repetition-rate pulse source using a time-lens-based temporal magnifier. We measure a 225 GHz repetition-rate pulse train from a microresonator-based frequency comb. In addition, we show that such a system can be used as a frequency compressor for real-time, high-speed RF spectral characterization.

  18. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE).

    Science.gov (United States)

    Chen, Nan-Kuei; Guidon, Arnaud; Chang, Hing-Chiu; Song, Allen W

    2013-05-15

    Diffusion weighted magnetic resonance imaging (DWI) data have been mostly acquired with single-shot echo-planar imaging (EPI) to minimize motion induced artifacts. The spatial resolution, however, is inherently limited in single-shot EPI, even when the parallel imaging (usually at an acceleration factor of 2) is incorporated. Multi-shot acquisition strategies could potentially achieve higher spatial resolution and fidelity, but they are generally susceptible to motion-induced phase errors among excitations that are exacerbated by diffusion sensitizing gradients, rendering the reconstructed images unusable. It has been shown that shot-to-shot phase variations may be corrected using navigator echoes, but at the cost of imaging throughput. To address these challenges, a novel and robust multi-shot DWI technique, termed multiplexed sensitivity-encoding (MUSE), is developed here to reliably and inherently correct nonlinear shot-to-shot phase variations without the use of navigator echoes. The performance of the MUSE technique is confirmed experimentally in healthy adult volunteers on 3Tesla MRI systems. This newly developed technique should prove highly valuable for mapping brain structures and connectivities at high spatial resolution for neuroscience studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. On the Path to SunShot. Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and Transmission System

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    This report examines how the bulk power system may need to evolve to accommodate the increased photovoltaic (PV) penetration resulting from achievement of the U.S. Department of Energy's SunShot cost targets. The variable and uncertain nature of PV-generated electricity presents grid-integration challenges. For example, the changing net load associated with high midday PV generation and low electricity demand can create 'overgeneration' that requires curtailment of PV output and reduces PV's value and cost-competitiveness. Accommodating the changes in net load resulting from increased variable generation requires enhancements to a power system's 'flexibility,' or ability to balance supply and demand over multiple time scales through options including changes in system operation, flexible generation, reserves from solar, demand response, energy storage, and enhanced transmission and regional coordination. For utility-scale PV with a baseline SunShot levelized cost of electricity (LCOE) of 6 cents/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6 cents/kWh to almost 11 cents/kWh in a California grid system with limited flexibility. However, increasing system flexibility could minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. In the longer term, energy storage technologies--such as concentrating solar power with thermal energy storage--could facilitate the cost-effective integration of even higher PV penetration. Efficient deployment of the grid-flexibility options needed to maintain solar's value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.

  20. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

    Science.gov (United States)

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Lassalle-Kaiser, Benedikt; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Hellmich, Julia; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Schafer, Donald W.; Sellberg, Jonas; Kenney, Christopher; Herbst, Ryan; Pines, Jack; Hart, Philip; Herrmann, Sven; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Zouni, Athina; Messinger, Johannes; Glatzel, Pieter; Sauter, Nicholas K.; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe

    2012-01-01

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II. PMID:23129631

  1. Multishot versus single-shot pulse sequences in very high field fMRI: a comparison using retinotopic mapping.

    Directory of Open Access Journals (Sweden)

    Jascha D Swisher

    Full Text Available High-resolution functional MRI is a leading application for very high field (7 Tesla human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI.

  2. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    resistor in terms of shock and vibration, mounting requirements, total volume, system reliability, and cost. All of these parameters were improved...protection from shock and vibration on a deployed system. III. STATE OF THE ART FOR HIGH ENERGY DENSITY CAPACITOR AND NEAR TERM PROJECTIONS The...it t tipo ymer m qua y an capac or cons ruc on. Energy Density of 10,000 Shot High Efficiency Pulse Power Capacitors The primary driver was 1 5

  3. Real Time Computer Control of Neutral Beam Energy and Current During a DIII-D Tokamak Shot

    Science.gov (United States)

    Pawley, C. J.; Pace, D. C.; Rauch, J. M.; Scoville, J. T.

    2017-10-01

    A new control system has been implemented on DIII-D neutral beams which has been used during the 2016 and 2017 experimental campaign to directly change the beam acceleration voltage (V) and beam current (I) by the Plasma Control System (PCS) during a shot. Small changes in the beam voltage of 1-2 kV can be made in 1 msec or larger changes of up to 20kV in 0.5 seconds. The beam current can be modified by as much as +/-20% at a fixed beam voltage. Since both can be independently and simultaneously changed it is possible to change beam power (IV) at fixed voltage, keep constant power while sweeping beam voltage, or to maintain minimum beam divergence during a beam voltage sweep by changing I simultaneously to keep a constant beam perveance. The limitations of the variability will be presented with required changes in equipment to extend either the speed or range of the controls. Some of the effects on fast ion plasma instabilities or other plasma mode changes made possible by this control will also be presented (see also D.C. Pace, this conference). Design and changes to the control system was performed under General Atomics Internal Research and Development support, while plasma experiments on DIII-D were supported in part by the US Department of Energy under Award No. DE-FC02-04ER54698.

  4. Get Important Shots

    Science.gov (United States)

    ... just like kids do. Make sure you are up to date on your shots. Get a flu vaccine every ... Protect yourself and those around you by staying up to date on your shots. Next section Other Shots Previous ...

  5. Allergy Shots (For Parents)

    Science.gov (United States)

    ... Giving Teens a Voice in Health Care Decisions Allergy Shots KidsHealth > For Parents > Allergy Shots Print A ... to help a child deal with them. Why Allergy Shots Are Used An allergy occurs when the ...

  6. Mississippi Renewable Energy and Energy Efficiency Report. A snap shot of related activities in the state of Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Sumesh M. [Mississippi Technology Alliance, Jackson, MS (United States); Linton, Joseph A. [Mississippi Technology Alliance, Jackson, MS (United States)

    2011-05-11

    In recent years, due to concerns over national security from both economic and military standpoints, increased attention has been given to the production of renewable energy in order to reduce American dependence on foreign supplies of energy. These concerns, along with those related to the effect of fossil fuels on the environment, have served to heighten the enthusiasm for finding replacements for traditional energy sources, along with helping to highlight the need for energy efficiency in American homes and businesses. Throughout the nation, this has been exemplified in an increased entrepreneurial activity to produce liquid fuels, thermal energy and electricity from a vast range of sources such as plants, trees, bacteria, the sun, wind, waves and the Earth itself. Coupled with tax subsidies, loan guarantees, renewable fuel standards, and various other government incentives and legislative encouragements we have seen a big jump in the production of renewable energy in the United States in the last ten years. But we are just getting started!

  7. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Okan, E-mail: unalokan78@gmail.com [Mechanical Engineering Department, Bartın University, Bartın 74100 (Turkey); Varol, Remzi [Mechanical Engineering Department, Suleyman Demirel University, Isparta 32200 (Turkey)

    2015-10-01

    Highlights: • CSP and SSP treatments transform austenite to metastable martensite structure. • Nanograin layer thickness after CSP and SSP is 8 μm and 22 μm, respectively. • Shot peening leads to carbon segregation from coarse to nano grain layer. • Repeening is an effective way to reduce surface roughness. - Abstract: Air blast conventional shot peening (CSP), severe shot peening (SSP) and repeening (RP) as a severe plastic deformation applications on AISI 304 austenitic stainless steel is addressed. Shot peened specimens are investigated based on optical, FESEM and digital microscope. The investigations present the austenite transformation to metastable martensite via mechanical twinning due to plastic deformation with high strain rates. It is found that SSP induces thicker nanograin layer with compared to CSP. In XRD studies, the austenite peaks broaden by means of severe shot peening and FWHM increase reveals the grain size reduction below 25 nm regimes on the surface. In EDAX line analysis of CSP specimen, carbon content increase has been detected from deformed layer through the nanocrystalline layer then the content reduces. The carbon segregation takes place due to the energy level distinction between dislocations and Fe−C bonds. 3d contour digital microscope studies and roughness investigations reveal that SSP has deleterious side effect on the surface roughness and surface flatness. However, RP is an effective way to reduce the surface roughness to reasonable values.

  8. Phase-space characterization and optimization of high-brightness electron beams for femtosecond imaging and spectroscopy near the single-shot limit

    Science.gov (United States)

    Williams, Joseph; Zhou, Faran; Sun, Tianyin; Duxbury, Phillip; Lund, Steven; Zerbe, Brandon; Ruan, Chong-Yu

    We describe a system and optimization method for generating high-brightness femtosecond (fs) electron beams for imaging, and spectroscopy near the single-shot limit. We study focusability in the energy-time domain through an active atomic grating driven by fs laser pulses and from which the energy and time dispersion, electron dose and coherence length can be simultaneously monitored over controlled parameters, including the electron numbers and focusing strength in transverse and longitudinal directions. We show with tuning of electron optics that conserve the source brightness high performance can be attained. In cases where we focus on the time response, we show ultrahigh speed lattice responses in VO2 leading to phase transition on 100fs timescale, and sub-100fs time resolution to image active modes is possible through a jitter correction scheme. When tuning the optics for coherent diffraction, transformations of 10nm scale domain structures in TaS2 are transiently resolved, without sacrificing time resolution. Implementing the optics for energy compression leads to opportunities for high dose ultrafast spectroscopy. These results exhibit the abilities of multi-modality ultrafast imaging and spectroscopy in the next-generation ultrafast electron microscope development. This work was funded by DOE Grant DE-FG02-06ER46309 and supported by NSF MRI facility Grant DMR 1126343.

  9. High energy semiconductor switch

    Science.gov (United States)

    Risberg, R. L.

    1989-02-01

    The objective was a controller for electric motors. By operating standard Nema B induction motors at variable speed a great deal of energy is saved. This is especially true in pumping and air conditioning applications. To allow wider use of variable speed AC drives, and to provide improved performance, a better semiconductor switch was sought. This was termed the High Energy Semiconductor Switch.

  10. On the Path to SunShot - Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and Transmission System

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As the deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.

  11. One-shot Synesthesia.

    Science.gov (United States)

    Kirschner, Alexandra; Nikolić, Danko

    2017-01-01

    Synesthesia is commonly thought to be a phenomenon of fixed associations between an outside inducer and a vivid concurrent experience. Hence, it has been proposed that synesthesia occurs due to additional connections in the brain with which synesthetes are born. Here we show that synesthesia can be a much richer and more flexible phenomenon with a capability to creatively construct novel synesthetic experiences as events unfold in people's lives. We describe here cases of synesthetes who occasionally generate novel synesthetic experience, called one-shot synesthesias. These synesthetic experiences seem to share all the properties with the classical synesthetic associations except that they occur extremely rarely, people recalling only a few events over the lifetime. It appears that these one-shots are not created at random but are instead responses to specific life events. We contrast the properties of those rare synesthetic events with other, more commonly known forms of synesthesia that also create novel synesthetic experiences, but at a high rate-sometimes creating novel experiences every few seconds. We argue that one-shot synesthesias indicate that synesthetic associations are by their nature not prewired at birth but are dynamically constructed through mental operations and according to the needs of a synesthetic mind. Our conclusions have implications for understanding the biological underpinnings of synesthesia and the role the phenomenon plays in the lives of people endowed with synesthetic capacities.

  12. One-shot synesthesia

    Directory of Open Access Journals (Sweden)

    Kirschner Alexandra

    2017-11-01

    Full Text Available Synesthesia is commonly thought to be a phenomenon of fixed associations between an outside inducer and a vivid concurrent experience. Hence, it has been proposed that synesthesia occurs due to additional connections in the brain with which synesthetes are born. Here we show that synesthesia can be a much richer and more flexible phenomenon with a capability to creatively construct novel synesthetic experiences as events unfold in people’s lives. We describe here cases of synesthetes who occasionally generate novel synesthetic experience, called one-shot synesthesias. These synesthetic experiences seem to share all the properties with the classical synesthetic associations except that they occur extremely rarely, people recalling only a few events over the lifetime. It appears that these one-shots are not created at random but are instead responses to specific life events. We contrast the properties of those rare synesthetic events with other, more commonly known forms of synesthesia that also create novel synesthetic experiences, but at a high rate—sometimes creating novel experiences every few seconds. We argue that one-shot synesthesias indicate that synesthetic associations are by their nature not prewired at birth but are dynamically constructed through mental operations and according to the needs of a synesthetic mind. Our conclusions have implications for understanding the biological underpinnings of synesthesia and the role the phenomenon plays in the lives of people endowed with synesthetic capacities.

  13. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  14. Highly noise-tolerant hybrid algorithm for phase retrieval from a single-shot spatial carrier fringe pattern

    Science.gov (United States)

    Dong, Zhichao; Cheng, Haobo

    2018-01-01

    A highly noise-tolerant hybrid algorithm (NTHA) is proposed in this study for phase retrieval from a single-shot spatial carrier fringe pattern (SCFP), which effectively combines the merits of spatial carrier phase shift method and two dimensional continuous wavelet transform (2D-CWT). NTHA firstly extracts three phase-shifted fringe patterns from the SCFP with one pixel malposition; then calculates phase gradients by subtracting the reference phase from the other two target phases, which are retrieved respectively from three phase-shifted fringe patterns by 2D-CWT; finally, reconstructs the phase map by a least square gradient integration method. Its typical characters include but not limited to: (1) doesn't require the spatial carrier to be constant; (2) the subtraction mitigates edge errors of 2D-CWT; (3) highly noise-tolerant, because not only 2D-CWT is noise-insensitive, but also the noise in the fringe pattern doesn't directly take part in the phase reconstruction as in previous hybrid algorithm. Its feasibility and performances are validated extensively by simulations and contrastive experiments to temporal phase shift method, Fourier transform and 2D-CWT methods.

  15. Single-shot full strain tensor determination with microbeam X-ray Laue diffraction and a two-dimensional energy-dispersive detector.

    Science.gov (United States)

    Abboud, A; Kirchlechner, C; Keckes, J; Conka Nurdan, T; Send, S; Micha, J S; Ulrich, O; Hartmann, R; Strüder, L; Pietsch, U

    2017-06-01

    The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.

  16. Birth Control Shot

    Science.gov (United States)

    ... Counselors Kidney Stones Brain and Nervous System Birth Control Shot KidsHealth > For Teens > Birth Control Shot Print A A A What's in this ... La inyección anticonceptiva What Is It? The birth control shot is a long-acting form of progesterone, ...

  17. Subcortical White Matter Changes with Normal Aging Detected by Multi-Shot High Resolution Diffusion Tensor Imaging.

    Directory of Open Access Journals (Sweden)

    Sheng Xie

    Full Text Available Subcortical white matter builds neural connections between cortical and subcortical regions and constitutes the basis of neural networks. It plays a very important role in normal brain function. Various studies have shown that white matter deteriorates with aging. However, due to the limited spatial resolution provided by traditional diffusion imaging techniques, microstructural information from subcortical white matter with normal aging has not been comprehensively assessed. This study aims to investigate the deterioration effect with aging in the subcortical white matter and provide a baseline standard for pathological disorder diagnosis. We apply our newly developed multi-shot high resolution diffusion tensor imaging, using self-feeding multiplexed sensitivity-encoding, to measure subcortical white matter changes in regions of interest of healthy persons with a wide age range. Results show significant fractional anisotropy decline and radial diffusivity increasing with age, especially in the anterior part of the brain. We also find that subcortical white matter has more prominent changes than white matter close to the central brain. The observed changes in the subcortical white matter may be indicative of a mild demyelination and a loss of myelinated axons, which may contribute to normal age-related functional decline.

  18. Subcortical White Matter Changes with Normal Aging Detected by Multi-Shot High Resolution Diffusion Tensor Imaging.

    Science.gov (United States)

    Xie, Sheng; Zhang, Zhe; Chang, Feiyan; Wang, Yishi; Zhang, Zhenxia; Zhou, Zhenyu; Guo, Hua

    2016-01-01

    Subcortical white matter builds neural connections between cortical and subcortical regions and constitutes the basis of neural networks. It plays a very important role in normal brain function. Various studies have shown that white matter deteriorates with aging. However, due to the limited spatial resolution provided by traditional diffusion imaging techniques, microstructural information from subcortical white matter with normal aging has not been comprehensively assessed. This study aims to investigate the deterioration effect with aging in the subcortical white matter and provide a baseline standard for pathological disorder diagnosis. We apply our newly developed multi-shot high resolution diffusion tensor imaging, using self-feeding multiplexed sensitivity-encoding, to measure subcortical white matter changes in regions of interest of healthy persons with a wide age range. Results show significant fractional anisotropy decline and radial diffusivity increasing with age, especially in the anterior part of the brain. We also find that subcortical white matter has more prominent changes than white matter close to the central brain. The observed changes in the subcortical white matter may be indicative of a mild demyelination and a loss of myelinated axons, which may contribute to normal age-related functional decline.

  19. Penalty Shot

    Science.gov (United States)

    Hood, Lucy

    2005-01-01

    In this article, the author introduces Eusebio Montoya, Smithfield-Selma High School senior and soccer player with his sights set on college, who faces hurdles shared by nearly 2 million undocumented immigrants nationwide. Known as "Sabs," Eusebio Montoya came to Smithfield, North Carolina, as a 4th grader speaking no English. A high…

  20. Experimental high energy physics

    CERN Document Server

    De Paula, L

    2004-01-01

    A summary of the contributions on experimental high energy physics to the XXIV Brazilian National Meeting on Particle and Fields is presented. There were 5 invited talks and 32 submitted contributions. The active Brazilian groups are involved in several interesting projects but suffer from the lack of funding and interaction with Brazilian theorists.

  1. High Energy Exoplanet Transits

    Science.gov (United States)

    Llama, Joe; Shkolnik, Evgenya L.

    2017-10-01

    X-ray and ultraviolet transits of exoplanets allow us to probe the atmospheres of these worlds. High energy transits have been shown to be deeper but also more variable than in the optical. By simulating exoplanet transits using high-energy observations of the Sun, we can test the limits of our ability to accurately measure the properties of these planets in the presence of stellar activity. We use both disk-resolved images of the Solar disk spanning soft X-rays, the ultraviolet, and the optical and also disk-integrated Sun-as-a-star observations of the Lyα irradiance to simulate transits over a wide wavelength range. We find that for stars with activity levels similar to the Sun, the planet-to-star radius ratio can be overestimated by up to 50% if the planet occults an active region at high energies. We also compare our simulations to high energy transits of WASP-12b, HD 189733, 55 Cnc b, and GJ 436b.

  2. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  3. High energy particle astronomy.

    Science.gov (United States)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  4. Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams.

    Science.gov (United States)

    Meyer, R; Jacquot, M; Giust, R; Safioui, J; Rapp, L; Furfaro, L; Lacourt, P-A; Dudley, J M; Courvoisier, F

    2017-11-01

    Ultrafast lasers have revolutionized material processing, opening a wealth of new applications in many areas of science. A recent technology that allows the cleaving of transparent materials via non-ablative processes is based on focusing and translating a high-intensity laser beam within a material to induce a well-defined internal stress plane. This then enables material separation without debris generation. Here, we use a non-diffracting beam engineered to have a transverse elliptical spatial profile to generate high-aspect-ratio elliptical channels in glass of a dimension 350  nm×710  nm and subsequent cleaved surface uniformity at the sub-micron level.

  5. Single shot ultrafast laser processing of high-aspect ratio nanochannels using elliptical Bessel beams

    OpenAIRE

    Meyer, R.; Jacquot, M.; Giust, R.; Safioui, J.; Rapp, L.; Furfaro, L.; Lacourt, P. -A.; Dudley, J. M.; Courvoisier, F.

    2017-01-01

    Ultrafast lasers have revolutionized material processing, opening a wealth of new applications in many areas of science. A recent technology that allows the cleaving of transparent materials via non-ablative processes is based on focusing and translating a high-intensity laser beam within a material to induce a well-defined internal stress plane. This then enables material separation without debris generation. Here, we use a non-diffracting beam engineered to have a transverse elliptical spat...

  6. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  7. Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits

    Science.gov (United States)

    Walter, T.; Kurpiers, P.; Gasparinetti, S.; Magnard, P.; Potočnik, A.; Salathé, Y.; Pechal, M.; Mondal, M.; Oppliger, M.; Eichler, C.; Wallraff, A.

    2017-05-01

    The speed of quantum gates and measurements is a decisive factor for the overall fidelity of quantum protocols when performed on physical qubits with a finite coherence time. Reducing the time required to distinguish qubit states with high fidelity is, therefore, a critical goal in quantum-information science. The state-of-the-art readout of superconducting qubits is based on the dispersive interaction with a readout resonator. Here, we bring this technique to its current limit and demonstrate how the careful design of system parameters leads to fast and high-fidelity measurements without affecting qubit coherence. We achieve this result by increasing the dispersive-interaction strength, by choosing an optimal linewidth of the readout resonator, by employing a Purcell filter, and by utilizing phase-sensitive parametric amplification. In our experiment, we measure 98.25% readout fidelity in only 48 ns, when minimizing readout time, and 99.2% in 88 ns, when maximizing the fidelity, limited predominantly by the qubit lifetime of 7.6 μ s . The presented scheme is also expected to be suitable for integration into a multiplexed readout architecture.

  8. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  9. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources

    NARCIS (Netherlands)

    Loch, R.A.; Sobierajski, R.; Louis, Eric; Bosgra, J.; Bosgra, J.; Bijkerk, Frederik

    2012-01-01

    The single shot damage thresholds of multilayer optics for highintensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly

  10. On the Path to SunShot - Emerging Issues and Challenges with Integrating High Levels of Solar into the Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Palminitier, Bryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Broderick, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mather, Barry [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baker, Kyri [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ding, Fei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reno, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lave, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bharatkumar, Ashwini [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-05-01

    Wide use of advanced inverters could double the electricity-distribution system’s hosting capacity for distributed PV at low costs—from about 170 GW to 350 GW (see Palmintier et al. 2016). At the distribution system level, increased variable generation due to high penetrations of distributed PV (typically rooftop and smaller ground-mounted systems) could challenge the management of distribution voltage, potentially increase wear and tear on electromechanical utility equipment, and complicate the configuration of circuit-breakers and other protection systems—all of which could increase costs, limit further PV deployment, or both. However, improved analysis of distribution system hosting capacity—the amount of distributed PV that can be interconnected without changing the existing infrastructure or prematurely wearing out equipment—has overturned previous rule-of-thumb assumptions such as the idea that distributed PV penetrations higher than 15% require detailed impact studies. For example, new analysis suggests that the hosting capacity for distributed PV could rise from approximately 170 GW using traditional inverters to about 350 GW with the use of advanced inverters for voltage management, and it could be even higher using accessible and low-cost strategies such as careful siting of PV systems within a distribution feeder and additional minor changes in distribution operations. Also critical to facilitating distributed PV deployment is the improvement of interconnection processes, associated standards and codes, and compensation mechanisms so they embrace PV’s contributions to system-wide operations. Ultimately SunShot-level PV deployment will require unprecedented coordination of the historically separate distribution and transmission systems along with incorporation of energy storage and “virtual storage,” which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Additional analysis and

  11. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  12. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  13. Development and application of inverse heat transfer model between liquid metal and shot sleeve in high pressure die casting process under non-shooting condition

    Directory of Open Access Journals (Sweden)

    Wen-bo Yu

    2016-07-01

    Full Text Available To predict the heat transfer behavior of A380 alloy in a shot sleeve, a numerical approach (inverse method is used and validated by high pressure die casting (HPDC experiment under non-shooting condition. The maximum difference between the measured and calculated temperature profiles is smaller than 3 ℃, which suggests that the inverse method can be used to predict the heat transfer behavior of alloys in a shot sleeve. Furthermore, the results indicate an increase in maximum interfacial heat flux density (qmax and heat transfer coefficient (hmax with an increase in sleeve filling ratio, especially at the pouring zone (S2 zone. In addition, the values of initial temperature (TIDS and maximum shot sleeve surface temperature (Tsimax at the two end zones (S2 and S10 are higher than those at the middle zone (S5. Moreover, in comparison with fluctuations in heat transfer coefficient (h with time at the two end zones (S2 and S10, 2.4-6.5 kW·m-2·K-1, 3.5-12.5 kW·m-2·K-1, respectively, more fluctuations are found at S5 zone, 2.1-14.7 kW·m-2·K-1. These differences could theoretically explain the formation of the three zones: smooth pouring zone, un-smooth middle zone and smooth zone, with different morphologies in the metal log under the non-shot casting condition. Finally, our calculations also reveal that the values of qmax and hmax cast at 680 ℃ are smaller than those cast at 660 ℃ and at 700 ℃.

  14. A novel technique for single-shot energy-resolved 2D x-ray imaging of plasmas relevant for the inertial confinement fusion.

    Science.gov (United States)

    Labate, L; Köster, P; Levato, T; Gizzi, L A

    2012-10-01

    A novel x-ray diagnostic of laser-fusion plasmas is described, allowing 2D monochromatic images of hot, dense plasmas to be obtained in any x-ray photon energy range, over a large domain, on a single-shot basis. The device (named energy-encoded pinhole camera) is based upon the use of an array of many pinholes coupled to a large area CCD camera operating in the single-photon mode. The available x-ray spectral domain is only limited by the quantum efficiency of scientific-grade x-ray CCD cameras, thus extending from a few keV up to a few tens of keV. Spectral 2D images of the emitting plasma can be obtained at any x-ray photon energy provided that a sufficient number of photons had been collected at the desired energy. Results from recent inertial confinement fusion related experiments will be reported in order to detail the new diagnostic.

  15. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  16. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  17. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  18. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  19. On the Path to SunShot. The Environmental and Public Health Benefits of Achieving High Solar Penetrations in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Carpenter, Alberta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cohen, Stuart [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Compared with fossil fuel generators, photovoltaics (PV) and concentrating solar power (CSP) produce far lower lifecycle levels of greenhouse gas (GHG) emissions and harmful pollutants including fine particular matter (PM2.5), sulfur dioxide (SO2), and nitrogen oxides (NOx). In this report, we monetize the emission reductions from achieving the U.S. Department of Energy's SunShot deployment goals: 14% of U.S. electricity demand met by solar in 2030 and 27% in 2050. We estimate that achieving these goals could reduce cumulative power-sector GHG emissions by 10% between 2015 and 2050, resulting in savings of $238-$252 billion. This is equivalent to 2.0-2.2 cents per kilowatt-hour of solar installed (cents/kWh-solar). Similarly, realizing these levels of solar deployment could reduce cumulative power-sector emissions of PM2.5 by 8%, SO2 by 9%, and NOx by 11% between 2015 and 2050. This could produce $167 billion in savings from lower future health and environmental damages, or 1.4 cents/kWh-solar--while also preventing 25,000-59,000 premature deaths. To put this in perspective, this estimated combined benefit of 3.5 cents/kWh-solar due to SunShot-level solar deployment is approximately equal to the additional levelized cost of electricity reduction needed to make unsubsidized utility-scale solar competitive with conventional generators today. In addition, the analysis shows that achieving the SunShot goals could save 4% of total power-sector water withdrawals and 9% of total power-sector water consumption over the 2015-2050 period--a particularly important consideration for arid states where substantial solar will be deployed. These results have potential implications for policy innovation and the economic competitiveness of solar and other generation technologies.

  20. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10{sup 5} Z`s by the end of 1989 and 10{sup 6} in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry.

  1. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  2. MEET ISOLDE - High Energy Physics

    CERN Multimedia

    2017-01-01

    Meet ISOLDE - High Energy Physics. ISOLDE is always developing, equipment moves on and off the hall floor, new groups start and end experiments regularly, visiting scientists come and go and experiments evolve. So it was a natural step for ISOLDE to expand from its core low energy science into high-energies.

  3. Pregnant Women Need a Flu Shot

    Science.gov (United States)

    Pregnant? You Need a Flu Shot! Information for pregnant women Because you are pregnant, CDC and your ob- ... more likely to get severely ill from flu. Pregnant women who get flu are at high risk of ...

  4. Energy peaks: A high energy physics outlook

    Science.gov (United States)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  5. High-throughput single-shot hyperspectral interferometer for areal profilometry based on microlens array integral field unit

    Science.gov (United States)

    Ruiz, Pablo D.; Huntley, Jonathan M.

    2017-06-01

    A single-shot technique to measure areal profiles on optically smooth and rough surfaces and for applications in noncooperative environments is presented. It is based on hyperspectral interferometry (HSI), a technique in which the output of a white-light interferometer provides the input to a hyperspectral imaging system. Previous HSI implementations suffered from inefficient utilisation of the available pixels which limited the number of measured coordinates and/or unambiguous depth range. In this paper a >20-fold increase in pixel utilization is achieved through the use of a 2-D microlens array as proposed for integral field units in astronomy applications. This leads to a 35×35 channel system with an unambiguous depth range of 0.88 mm.

  6. SunShot Initiative Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    DOE Solar Energy Technologies Office

    2015-04-01

    The U.S. Department of Energy (DOE) SunShot Initiative is a collaborative national effort launched in 2011 that aggressively drives innovation to make solar energy fully cost competitive with traditional energy sources before the end of the decade. The SunShot fact sheet outlines goals and successes of the program as it works with private companies, universities, non-profit organizations, state and local governments, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, without incentives, by the year 2020.

  7. High Energy Materials

    Indian Academy of Sciences (India)

    IAS Admin

    sition giving out heat, light, sound and large volumes of gases. The amount of energy released varies with the ... Explosives are classified according to applications either for. 2 Pyrotechnics is the art of manu- facturing or .... rockets are based on Newton's Third Law: an action will always have an equal and opposite reaction.

  8. High energy neutrinos from GRBs

    CERN Document Server

    De Paolis, F; Orlando, D; Perrone, L

    2001-01-01

    It is by now recognized that GRBs can accelerate protons to relativistic energies and that high density media may be present nearby the source. We compute the high-energy gamma-ray and neutrino fluxes from the decay of pions produced through the interaction of accelerated protons with nucleons in the surrounding medium. Then, we estimate the flux of high-energy muons induced on a detector by upward-going neutrinos interacting through charge current processes with the surrounding matter.

  9. High-energy communication

    CERN Multimedia

    CERN Communication Group

    2015-01-01

    On Wednesday at 10.40 a.m., the LHC operators declared “stable beams” after two years of technical stop and a few months of commissioning. It was an exciting day for all the teams involved, including those who worked on communicating the news to the public and the media on multiple platforms.   CERN’s most successful tweet on 3 June featured collision images from ALICE, ATLAS, CMS and LHCb and was shared 800 times by the Twitter audience. Live blogging, social media posts, a live webcast, and a constant outpouring of photos and videos: Wednesday morning was a crazy time for the communication teams from CERN, the experiments and various institutes around the world. Even though the event started very early in the morning (the live CCC blog started at 7 a.m. and the live webcast at 8.20 a.m.), the public and the media tuned in to follow and generously cover the start of the LHC’s physics run at an unprecedented energy of 13 TeV. The statistics showed th...

  10. Shot peening speed measurements using lidar technology

    DEFF Research Database (Denmark)

    Angelou, Nikolas; Zhang, Xiaodan; Sjöholm, Mikael

    The shot peening technique is used for the surface modification of metallic components that are part of wind turbines, such as gears, bolts and blade coatings to prevent erosion. An important parameter of this technique is the dynamic energy of emitted shots. In this context the objective...... of this project is to present a proof of concept measurement method for the evaluation of the speed of the shots. A remote sensing laser anemometer was selected as a probing instrument of the peening shots’ speed since it avoids any disturbances to the flow from the presence of an in-situ instrument. Furthermore......, the risk of damaging the peening machine by installing an instrument inside the chamber during operation is eliminated by this approach. Laser anemometers are being researched and developed in the department of Wind Energy, mainly in the framework of the WindScanner.dk infrastructure project [1], but also...

  11. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  12. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z[degrees] resonance include (a) a measurement of the strong coupling constant [alpha][sub s] for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e[sup +]e[sup [minus

  13. SnapShot:Macropinocytosis.

    Science.gov (United States)

    Marques, Pedro E; Grinstein, Sergio; Freeman, Spencer A

    2017-05-04

    Macropinocytosis is the bulk ingestion of extracellular fluids via large endocytic vacuoles. This SnapShot provides an overview of physiological macropinocytosis in immune surveillance and its pathogenic contribution during infection and cancer proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z{degrees} resonance include (a) a measurement of the strong coupling constant {alpha}{sub s} for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e{sup +}e{sup {minus}} {yields} {nu}{bar {nu}}{gamma}. We also began a major upgrade of the L3 luminosity monitor by replacing PWC chamber by a Si strip system in front of the BGO calorimeters. Finally we have continued our SSC R&D work on BaF{sub 2} by joining the GEM collaboration.

  15. Developments in high energy theory

    Indian Academy of Sciences (India)

    It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the Standard Model, and proposals – including the radical ...

  16. Numerical study on multi-pulse dynamics and shot-to-shot coherence property in quasi-mode-locked regimes of a highly-pumped anomalous dispersion fiber ring cavity.

    Science.gov (United States)

    Kwon, Youngchul; Vazquez-Zuniga, Luis Alonso; Lee, Seungjong; Kim, Hyuntai; Jeong, Yoonchan

    2017-02-20

    We numerically investigate quasi-mode-locked (QML) multi-pulse dynamics in a fiber ring laser cavity in the anomalous dispersion regime. We show that the laser cavity can operate in five constitutively different QML regimes, depending on the saturation power of the saturable absorber element and the length of the passive fiber section that parameterize the overall nonlinearity and dispersion characteristic of the laser cavity. We classify them into the incoherent noise-like-pulse, partially-coherent noise-like-pulse, symbiotic, partially-coherent multi-soliton, and coherent multi-soliton regimes, accounting for their coherence and multi-pulse formation features. In particular, we numerically clarify and confirm the symbiotic regime for the first time to the best of our knowledge, in which noise-like pulses and multi-solitons coexist stably in the cavity that has recently been observed experimentally. Furthermore, we analyze the shot-to-shot coherence characteristics of the individual QML regimes relative to the amount of the nonlinear-phase shift per roundtrip, and verify a strong correlation between them. We also show that the net-cavity dispersion plays a critical role in determining the multi-pulse dynamics out of the partially-coherent noise-like-pulse, symbiotic, and partially-coherent multi-soliton regimes, when the cavity bears moderate nonlinearity. We quantify and visualize all those characteristics onto contour maps, which will be very useful and helpful in discussing and clarifying the complex QML dynamics.

  17. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  18. High-energy astroparticle physics

    CERN Document Server

    Semikoz, A

    2010-01-01

    In these three lectures I discuss the present status of high-energy astroparticle physics including Ultra-High-Energy Cosmic Rays (UHECR), high-energy gamma rays, and neutrinos. The first lecture is devoted to ultra-high-energy cosmic rays. After a brief introduction to UHECR I discuss the acceleration of charged particles to highest energies in the astrophysical objects, their propagation in the intergalactic space, recent observational results by the Auger and HiRes experiments, anisotropies of UHECR arrival directions, and secondary gamma rays produced by UHECR. In the second lecture I review recent results on TeV gamma rays. After a short introduction to detection techniques, I discuss recent exciting results of the H.E.S.S., MAGIC, and Milagro experiments on the point-like and diffuse sources of TeV gamma rays. A special section is devoted to the detection of extragalactic magnetic fields with TeV gammaray measurements. Finally, in the third lecture I discuss Ultra-High-Energy (UHE) neutrinos. I review t...

  19. Innovative single-shot diagnostics for electrons accelerated through laser-plasma interaction at FLAME

    Science.gov (United States)

    Bisesto, F. G.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Costa, G.; Curcio, A.; Ferrario, M.; Galletti, M.; Pompili, R.; Schleifer, E.; Zigler, A.

    2017-05-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and optical transition radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC LAB LINAC, will be shown.

  20. Maskless lithography: estimation of the number of shots for each layer in a logic device with character-projection-type low-energy electron-beam direct writing system

    Science.gov (United States)

    Inanami, Ryoichi; Magoshi, Shunko; Kousai, Shouhei; Ando, Atsushi; Nakasugi, Tetsuro; Mori, Ichiro; Sugihara, Kazuyoshi; Miura, Akira

    2003-06-01

    Electron beam direct writing (EBDW) system is at the head of systems fabricating circuit patterns by maskless. But the throughput of EBDW is very poor beause very large number of electron beam (EB) shots are requested for exposure of whole patterns on a wafer. We had proposed methods of reduction of the number of EB shots with Character Projection (CP) and designing the best devicve pattern for CP-EBDW to fabricate logic devices such as ASIC or SoC device. Though the method is effective to Front-End-Of-Line (FEOL) layers of cell based logic deviec, Back-End-Of-Line (BEOL) layers cannot be exposed by the method with small number of characters and EB shots. Now, we will propose methods for appropriate CP exposure and data processign for patterns in BEOL layers. By the methods, each BEOL layer in a typical logic device cna be exposed with throughputs about 6 to 8 wafers/h, with a Low-energy-EBDW system produced by e-BEAM Corporation, named "EBIS".

  1. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  2. ZAPP shot summary

    Energy Technology Data Exchange (ETDEWEB)

    Loisel, Guillaume Pascal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This was the second Z Astrophysical Plasma Properties (ZAPP) fundamental science shot series of 2015. ZAPP experiments measure fundamental properties of atoms in plasmas to solve the following important astrophysical puzzles: Why can’t we accurately model the opacity of Fe at the convection zone boundary in the Sun? How accurate are the photoionization models used to interpret data from xray satellite observations? and Why doesn’t spectral fitting provide the correct properties for White Dwarfs?

  3. High-energy scissors mode

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R.; Faessler, A.; Dingfelder, M. [Institut fuer Theoretische Physik, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    1995-05-01

    All the orbital {ital M}1 excitations, at both low and high energies, obtained from a rotationally invariant quasiparticle random-phase approximation, represent the fragmented scissors mode. The high-energy {ital M}1 strength is almost purely orbital and resides in the region of the isovector giant quadrupole resonance. In heavy deformed nuclei the high-energy scissors model is strongly fragmented between 17 and 25 MeV (with uncertainties arising from the poor knowledge of the isovector potential). The coherent scissors motion is hindered by the fragmentation and {ital B}({ital M}1){lt}0.25{mu}{sub {ital N}}{sup 2} for single transitions in this region. The ({ital e},{ital e}{prime}) cross sections for excitations above 17 MeV are one order of magnitude larger for {ital E}2 than for {ital M}1 excitations even at backward angles.

  4. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  5. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  6. Developments in high energy theory

    Indian Academy of Sciences (India)

    High-energy physics; gauge theories; Standard Model; physics beyond the ... elusive goal. The Standard Model describes the electromagnetic, weak and strong interactions, but only unifies the first two. Despite its spectacular success in ex ..... Towards the end of the 1960s, a path-breaking new 'deep inelastic' electron scat-.

  7. Multi-energy ion implantation from high-intensity laser

    Directory of Open Access Journals (Sweden)

    Cutroneo Mariapompea

    2016-06-01

    Full Text Available The laser-matter interaction using nominal laser intensity above 1015 W/cm2 generates in vacuum non-equilibrium plasmas accelerating ions at energies from tens keV up to hundreds MeV. From thin targets, using the TNSA regime, plasma is generated in the forward direction accelerating ions above 1 MeV per charge state and inducing high-ionization states. Generally, the ion energies follow a Boltzmann-like distribution characterized by a cutoff at high energy and by a Coulomb-shift towards high energy increasing the ion charge state. The accelerated ions are emitted with the high directivity, depending on the ion charge state and ion mass, along the normal to the target surface. The ion fluencies depend on the ablated mass by laser, indeed it is low for thin targets. Ions accelerated from plasma can be implanted on different substrates such as Si crystals, glassy-carbon and polymers at different fluences. The ion dose increment of implanted substrates is obtainable with repetitive laser shots and with repetitive plasma emissions. Ion beam analytical methods (IBA, such as Rutherford backscattering spectroscopy (RBS, elastic recoil detection analysis (ERDA and proton-induced X-ray emission (PIXE can be employed to analyse the implanted species in the substrates. Such analyses represent ‘off-line’ methods to extrapolate and to character the plasma ion stream emission as well as to investigate the chemical and physical modifications of the implanted surface. The multi-energy and species ion implantation from plasma, at high fluency, changes the physical and chemical properties of the implanted substrates, in fact, many parameters, such as morphology, hardness, optical and mechanical properties, wetting ability and nanostructure generation may be modified through the thermal-assisted implantation by multi-energy ions from laser-generated plasma.

  8. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  9. A high energy physics perspective

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.

    1997-01-13

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  10. Vaccinating High-Risk Pediatric Patients and Their Families in the Hospital Setting: Give It a Shot!

    OpenAIRE

    Barros, Rebecca; Gornick, Wendi; Tran, M Tuan; Huff, Beth; Singh, Jasjit

    2017-01-01

    Abstract Background Hospitalization and hospital-based clinics confer an opportunity to target high-risk patients and their families who would benefit from vaccination. Methods CHOC Children’s Hospital is a tertiary-care hospital in Southern California with 11,995 admissions in 2016, including 1,580 hematology/oncology (HO) admissions. We examined the trend in influenza vaccine administration in hospitalized and HO patients over the last decade. We assessed the trend in Tdap and influenza vac...

  11. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  12. Novel Single-Shot Diagnostics for Electrons from Laser-Plasma Interaction at SPARC_LAB

    Directory of Open Access Journals (Sweden)

    Fabrizio Bisesto

    2017-10-01

    Full Text Available Nowadays, plasma wakefield acceleration is the most promising acceleration technique for compact and cheap accelerators, needed in several fields, e.g., novel compact light sources for industrial and medical applications. Indeed, the high electric field available in plasma structures (>100 GV/m allows for accelerating electrons at the GeV energy scale in a few centimeters. Nevertheless, this approach still suffers from shot-to-shot instabilities, mostly related to experimental parameter fluctuations, e.g., laser intensity and plasma density. Therefore, single shot diagnostics are crucial in order to properly understand the acceleration mechanism. In this regard, at the SPARC_LAB Test Facility, we have developed two diagnostic tools to investigate properties of electrons coming from high intensity laser–matter interaction: one relying on Electro Optical Sampling (EOS for the measurement of the temporal profile of the electric field carried by fast electrons generated by a high intensity laser hitting a solid target, the other one based on Optical Transition Radiation (OTR for single shot measurements of the transverse emittance. In this work, the basic principles of both diagnostics will be presented as well as the experimental results achieved by means of the SPARC high brightness photo-injector and the high power laser FLAME.

  13. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  14. Centrifugal shot blasting. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

  15. Investigation of kinematics of knuckling shot in soccer

    Science.gov (United States)

    Asai, T.; Hong, S.

    2017-02-01

    In this study, we use four high-speed video cameras to investigate the swing characteristics of the kicking leg while delivering the knuckling shot in soccer. We attempt to elucidate the impact process of the kicking foot at the instant of its impact with the ball and the technical mechanisms of the knuckling shot via comparison of its curved motion with that of the straight and curved shots. Two high-speed cameras (Fastcam, Photron Inc., Tokyo, Japan; 1000 fps, 1024 × 1024 pixels) are set up 2 m away from the site of impact with a line of sight perpendicular to the kicking-leg side. In addition, two semi-high-speed cameras (EX-F1, Casio Computer Co., Ltd., Tokyo, Japan; 300 fps; 720 × 480 pixels) are positioned, one at the rear and the other on the kicking-leg side, to capture the kicking motion. We observe that the ankle joint at impact in the knuckling shot flexes in an approximate L-shape in a manner similar to the joint flexing for the curve shot. The hip's external rotation torque in the knuckling shot is greater than those of other shots, which suggests the tendency of the kicker to push the heel forward and impact with the inside of the foot. The angle of attack in the knuckling shot is smaller than that in other shots, and we speculate that this small attack angle is a factor in soccer kicks which generate shots with smaller rotational frequencies of the ball.

  16. Duke University high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and {sub {Chi}} meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report.

  17. SunShot Vision Study: February 2012 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    The objective of the SunShot Vision Study is to provide an in-depth assessment of the potential for solar technologies to meet a significant share of electricity demand in the United States during the next several decades. Specifically, it explores a future in which the price of solar technologies declines by about 75% between 2010 and 2020 - in line with the U.S. Department of Energy (DOE) SunShot Initiative's targets.

  18. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  19. An investigation of the properties of conventional and severe shot peened low alloy steel

    Science.gov (United States)

    Quang Trung, Pham; Butler, David Lee; Win Khun, Nay

    2017-07-01

    The effects of the conventional shot peening and severe shot peening process on the mechanical and tribological properties of shot peened AISI 4340 high strength steel were systematically investigated. Compared with the conventional shot peened sample, the ultrafine grain surface layer with a depth of about 20 µm generated by the severe shot peening process can enhance the hardness and wear resistance of the treated material. However, deeper dimples generated by the high media velocity in the severe shot peening process resulted in a higher surface roughness, which is considered as a side effect of this method reducing the fatigue life of the material. Applying a smaller shot size with an appropriate intensity can be used to peen the severe shot peened samples to not only reduce the surface roughness and friction coefficient but also improve the wear resistance for these samples. This work was presented in the shot peening section during ‘The 30th International Conference on Surface Modification Technologies, 2016, Milan, Italy’ (SMT30, ID 61, entitled ‘Comparison of the effects of conventional shot peening and severe shot peening processes on the mechanical and tribological properties of shot peened AISI 4340’) and the authors were encouraged to submit a manuscript to the Materials Research Express journal after adding some nessesary information.

  20. Tactical high-energy laser

    Science.gov (United States)

    Shwartz, Josef; Wilson, Gerald T.; Avidor, Joel M.

    2002-06-01

    The Nautilus Project was started in 1995 as a joint US-Israel feasibility study for using laser systems to defend against short-range artillery rockets. It has now matured into a successful laser weapon demonstration program - the Tactical High Energy Laser (THEL) Advanced Concept Technology Demonstration (ACTD) Program. By now the THEL Demonstrator has engaged and destroyed a large number of artillery rockets in mid-flight in an extended series of demonstration tests at the US Army's White Sands Missile Range in New Mexico. The THEL ACTD hardware and development process are described in this paper, as well as the major test results. The paper also describes the operational concept for a deployed THEL weapon system and some possible growth paths for the THEL ACTD Program.

  1. High temperature thermoelectric energy conversion

    Science.gov (United States)

    Wood, Charles

    1987-01-01

    The theory and current status of materials research for high-temperature thermoelectric energy conversion are reviewed. Semiconductors are shown to be the preferred class of materials for this application. Optimization of the figure of merit of both broadband and narrow-band semiconductors is discussed as a function of temperature. Phonon scattering mechanisms are discussed, and basic material guidelines are given for reduction of thermal conductivity. Two general classes of materials show promise for high temperature figure of merit (Z) values, namely the rare earth chalcogenides and the boron-rich borides. The electronic transport properties of the rare earth chalcogenides are explicable on the basis of degenerate or partially degenerate n-type semiconductors. Boron and boron-rich borides exhibit p-type hopping conductivity, with detailed explanations proposed for the transport differing from compound to compound. Some discussion is presented on the reasons for the low thermal conductivities in these materials. Also, ZTs greater than one appear to have been realized at high temperature in many of these compounds.

  2. SunShot Catalyst Prize Competition Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2015-04-01

    This fact sheet is an overview of the Catalyst Energy Innovation Prize, an open innovation program launched in 2014 by the U.S. Department of Energy SunShot Initiative. This program aims to catalyze the rapid creation and development of products and solutions that address near-term challenges in the U.S. solar energy marketplace.

  3. Shot noise in diffusive SNS and SIN junctions

    Science.gov (United States)

    Lefloch, Francois; Hoffmann, Christian; Quirion, David; Sanquer, Marc

    2003-05-01

    We studied shot noise in metallic SNS and doped silicon-based SIN junctions. In SNS structures, the shot noise is very much enhanced due to incoherent multiple Andreev reflections (IMAR) which are truncated, at low voltages, by inelastic electron-electron interaction. These experimental results show good agreement with recent semiclassical theory. In SIN junctions, the zero-voltage conductance is increased by disorder-induced coherent MAR (reflectionless tunneling) and we found that the shot noise is double ( SI=4 eI) below the Thouless energy and equals the full shot noise ( SI=2 eI) above. We also present conductance measurements which show the same zero bias anomaly but in a double-barrier metallic SININ junction.

  4. Relationships among balance, visual search, and lacrosse-shot accuracy.

    Science.gov (United States)

    Marsh, Darrin W; Richard, Leon A; Verre, Arlene B; Myers, Jay

    2010-06-01

    The purpose of this study was to examine variables that may contribute to shot accuracy in women's college lacrosse. A convenience sample of 15 healthy women's National Collegiate Athletic Association Division III College lacrosse players aged 18-23 (mean+/-SD, 20.27+/-1.67) participated in the study. Four experimental variables were examined: balance, visual search, hand grip strength, and shoulder joint position sense. Balance was measured by the Biodex Stability System (BSS), and visual search was measured by the Trail-Making Test Part A (TMTA) and Trail-Making Test Part B (TMTB). Hand-grip strength was measured by a standard hand dynamometer, and shoulder joint position sense was measured using a modified inclinometer. All measures were taken in an indoor setting. These experimental variables were then compared with lacrosse-shot error that was measured indoors using a high-speed video camera recorder and a specialized L-shaped apparatus. A Stalker radar gun measured lacrosse-shot velocity. The mean lacrosse-shot error was 15.17 cm with a mean lacrosse-shot velocity of 17.14 m.s (38.35 mph). Lower scores on the BSS level 8 eyes open (BSS L8 E/O) test and TMTB were positively related to less lacrosse-shot error (r=0.760, p=0.011) and (r=0.519, p=0.048), respectively. Relations were not significant between lacrosse-shot error and grip strength (r=0.191, p = 0.496), lacrosse-shot error and BSS level 8 eyes closed (BSS L8 E/C) (r=0.501, p=0.102), lacrosse-shot error and BSS level 4 eyes open (BSS L4 E/O) (r=0.313, p=0.378), lacrosse-shot error and BSS level 4 eyes closed (BSS L4 E/C) (r=-0.029, p=0.936) lacrosse-shot error and shoulder joint position sense (r=-0.509, p=0.055) and between lacrosse-shot error and TMTA (r=0.375, p=0.168). The results reveal that greater levels of shot accuracy may be related to greater levels of visual search and balance ability in women college lacrosse athletes.

  5. Concrete Cleaning, Inc. centrifugal shot blaster: Baseline report; Greenbook (chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The centrifugal shot blaster technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The centrifugal shot blaster is an electronically operated shot blast machine that has been modified to remove layers of concrete to varying depths. A hardened steel shot propelled at a high rate of speed abrades the surface of the concrete. The depth of material removed is determined by the rate of speed the machine is traveling and the volume of shot being fired into the blast chamber. The steel shot is recycled and used over until it is pulverized into dust, which ends up in the waste container with the concrete being removed. Debris is continually vacuumed by a large dust collection system attached to the shot blaster. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  6. Concrete Cleaning, Inc. centrifugal shot blaster: Baseline report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The centrifugal shot blaster technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The centrifugal shot blaster is an electronically operated shot blast machine that has been modified to remove layers of concrete to varying depths. A hardened steel shot propelled at a high rate of speed abrades the surface of the concrete. The depth of material removed is determined by the rate of speed the machine is traveling and the volume of shot being fired into the blast chamber. The steel shot is recycled and used over until it is pulverized into dust, which ends up in the waste container with the concrete being removed. Debris is continually vacuumed by a large dust collection system attached to the shot blaster. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  7. Video Shot Boundary Detection based on Multifractal Analisys

    Directory of Open Access Journals (Sweden)

    B. D. Reljin

    2011-11-01

    Full Text Available Extracting video shots is an essential preprocessing step to almost all video analysis, indexing, and other content-based operations. This process is equivalent to detecting the shot boundaries in a video. In this paper we presents video Shot Boundary Detection (SBD based on Multifractal Analysis (MA. Low-level features (color and texture features are extracted from each frame in video sequence. Features are concatenated in feature vectors (FVs and stored in feature matrix. Matrix rows correspond to FVs of frames from video sequence, while columns are time series of particular FV component. Multifractal analysis is applied to FV component time series, and shot boundaries are detected as high singularities of time series above pre defined treshold. Proposed SBD method is tested on real video sequence with 64 shots, with manually labeled shot boundaries. Detection accuracy depends on number FV components used. For only one FV component detection accuracy lies in the range 76-92% (depending on selected threshold, while by combining two FV components all shots are detected completely (accuracy of 100%.

  8. High energy chemical laser system

    Science.gov (United States)

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  9. Terawatt Post compression of high energy fs pulses using ionization: A way to overcome the conventional limitation in energy of few optical cycle pulses

    Directory of Open Access Journals (Sweden)

    Descamps D.

    2013-03-01

    Full Text Available By using optical-field-ionization of helium we postcompress 50 fs pulses to 8 fs with a pulse energy of 8,7 mJ. Hence few cycle pulses were obtained with TW peak power and a good shot-to-shot stability.

  10. 77 FR 36272 - SunShot Prize: America's Most Affordable Rooftop

    Science.gov (United States)

    2012-06-18

    ...The Department of Energy (DOE) announces in this notice the release of the SunShot Prize: America's Most Affordable Rooftop Solar for public comment. Interested persons are encouraged to learn about the SunShot Prize: America's Most Affordable Rooftop rules at eere.energy.gov/solar/sunshot/prize.html.

  11. Biomechanical analysis of the jump shot in basketball.

    Science.gov (United States)

    Struzik, Artur; Pietraszewski, Bogdan; Zawadzki, Jerzy

    2014-09-29

    Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player's jumping ability.

  12. Biomechanical Analysis of the Jump Shot in Basketball

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2014-10-01

    Full Text Available Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player’s jumping ability

  13. High Energy Density Electrolytic Capacitor

    Science.gov (United States)

    Evans, David A.

    1996-01-01

    A new type of electrolytic capacitor which combines an electrolytic capacitor anode with an electrochemical capacitor cathode was developed. The resulting capacitor has a four time higher energy density than standard electrolytic capacitors, with comparable electric performance. The prototype, a 480 microFarad, 200 V device, has an energy density exceeding 4 J/cc. Now a 680 microFarad 50 V, MIL-style all tantalum device has been constructed and is undergoing qualification testing. Pending a favorable outcome, work will begin on other ratings. The potential for commercially significant development exists in applying this technology to aluminum-based electrolytic capacitors. It is possible to at least double the energy density of aluminum electrolytics, while using existing manufacturing methods, and without adding material expense. Data presented include electrical characteristics and performance measurements of the 200 V and 50 V hybrid capacitors and results from ongoing qualification testing of the MIL-style tantalum capacitors.

  14. The Atlas High-Energy Density Physics Project

    Science.gov (United States)

    Davis, Harold A.

    1998-11-01

    Atlas is a pulsed-power facility under development at Los Alamos National Laboratory to drive high-energy density experiments. It is optimized for materials properties and hydrodynamics experiments under extreme conditions. The system is designed to implode heavy liner loads ( ~ 50 g) with a peak current of 30 MA delivered in 4 μs. Atlas will be operational near the end of 2000 and is designed to provide 100 shots per year. The Atlas capacitor bank consists of an array of 240-kV Marx modules storing a total of 23 MJ. The bank is resistively damped to limit fault currents and capacitor voltage reversal and will have 16 nH total initial inductance. The current is propagated radially from the Marx generators to the one-meter radius by 24 vertical, triplate, oil-insulated transmission lines. A combination of flat and conical, radially converging transmission lines will deliver the current to the load from the one-meter radius. A prototype Marx generator has been successfully tested at full charge voltage. For many applications the Atlas liner will be a nominal 50-gram-aluminum cylinder with ~ 5-cm radius and 4-cm length. Implosion velocities exceeding 1.4 cm/μs are predicted. Using composite inner layers and a variety of interior target designs, a wide array of experiments in cm^3 volumes may be performed.---Sponsored by US DOE under contract W-7405-ENG-36

  15. High energy resolution off-resonant spectroscopy: A review

    Science.gov (United States)

    Błachucki, Wojciech; Hoszowska, Joanna; Dousse, Jean-Claude; Kayser, Yves; Stachura, Regina; Tyrała, Krzysztof; Wojtaszek, Klaudia; Sá, Jacinto; Szlachetko, Jakub

    2017-10-01

    We review the high energy resolution off-resonant spectroscopy (HEROS) technique. HEROS probes the unoccupied electronic states of matter in a single-shot manner thanks to the combination of off-resonant excitation around atomic core states using wavelength dispersive X-ray detection setups. In this review we provide a general introduction to the field of X-ray spectroscopy together with the specification of the available X-ray techniques and X-ray methodologies. Next, the theoretical description of the HEROS approach is introduced with a special focus on the derivation of the X-ray emission and X-ray absorption correspondence relation at off-resonant excitation conditions. Finally, a number of experimental HEROS reports are reviewed in the field of chemistry and material science. We emphasize the applicability of HEROS to pulsed X-ray sources, like X-ray free electron lasers, and support the review with experimental examples. The review is complemented with perspectives on and possible further applications of the HEROS technique to the field of X-ray science.

  16. Developments in high energy theory

    Indian Academy of Sciences (India)

    them aimed at a final unification of all fundamental forces including gravity. Attempts have been made to extend the reach of some of these theories, based on an underlying string-theory picture, all the way to the Planck energy scale MPl = (8πGN). −1/2,. GN being Newton's gravitational constant. MPl is. Keywords.

  17. Effect of shot peening on the residual stress and mechanical behaviour of low-temperature and high-temperature annealed martensitic gear steel 18CrNiMo7-6

    Science.gov (United States)

    Yang, R.; Zhang, X.; Mallipeddi, D.; Angelou, N.; Toftegaard, H. L.; Li, Y.; Ahlström, J.; Lorentzen, L.; Wu, G.; Huang, X.

    2017-07-01

    A martensitic gear steel (18CrNiMo7-6) was annealed at 180 °C for 2h and at ∼ 750 °C for 1h to design two different starting microstructures for shot peening. One maintains the original as-transformed martensite while the other contains irregular-shaped sorbite together with ferrite. These two materials were shot peened using two different peening conditions. The softer sorbite + ferrite microstructure was shot peened using 0.6 mm conditioned cut steel shots at an average speed of 25 m/s in a conventional shot peening machine, while the harder tempered martensite steel was shot peened using 1.5 mm steel shots at a speed of 50 m/s in an in-house developed shot peening machine. The shot speeds in the conventional shot peening machine were measured using an in-house lidar set-up. The microstructure of each sample was characterized by optical and scanning electron microscopy, and the mechanical properties examined by microhardness and tensile testing. The residual stresses were measured using an Xstress 3000 G2R diffractometer equipped with a Cr Kα x-ray source. The correspondence between the residual stress profile and the gradient structure produced by shot peening, and the relationship between the microstructure and strength, are analyzed and discussed.

  18. Split School of High Energy Physics 2015

    CERN Document Server

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  19. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  20. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  1. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  2. The interaction region of high energy protons

    CERN Document Server

    Dremin, I.M.

    2016-01-01

    The spatial view of the interaction region of colliding high energy protons (in terms of impact parameter) is considered. It is shown that the region of inelastic collisions has a very peculiar shape. It saturates for central collisions at an energy of 7 TeV. We speculate on the further evolution with energy, which is contrasted to the "black disk" picture.

  3. URBox : High tech energy and informal housing

    NARCIS (Netherlands)

    Cuperus, Y.J.; Smets, D.

    2011-01-01

    This paper reports on the URBox concept encompassing the high tech end of solar energy and informal low cost and affordable housing. It aims to contribute to solving the global energy crisis by building solar energy settlements in deserts where land is affordable and sunshine in abundance. First the

  4. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  5. High Energy Particles from the Universe

    CERN Document Server

    Ong, R A

    2000-01-01

    The field of high energy particle astronomy is exciting and rapidly developing. In the last few years, we have detected extragalactic sources of intense TeV gamma radiation and individual cosmic ray particles with energies exceeding 25 Joules. Understanding the workings of astrophysics under extreme conditions is the primary goal of this field. Also important is the possibility of using high energy particles from space to probe beyond the standard models of particle physics and cosmology. This paper presents a review of high energy particle astronomy using photons, cosmic rays, and neutrinos.

  6. Effect of shot peening on the residual stress and mechanical behaviour of low-temperature and high-temperature annealed martensitic gear steel 18CrNiMo7-6

    DEFF Research Database (Denmark)

    Yang, R.; Zhang, X.; Mallipeddi, D.

    2017-01-01

    A martensitic gear steel (18CrNiMo7-6) was annealed at 180 degrees C for 2h and at similar to 750 degrees C for 1h to design two different starting microstructures for shot peening. One maintains the original as-transformed martensite while the other contains irregular-shaped sorbite together...... with ferrite. These two materials were shot peened using two different peening conditions. The softer sorbite + ferrite microstructure was shot peened using 0.6 mm conditioned cut steel shots at an average speed of 25 m/s in a conventional shot peening machine, while the harder tempered martensite steel...... was shot peened using 1.5 mm steel shots at a speed of 50 m/s in an in-house developed shot peening machine. The shot speeds in the conventional shot peening machine were measured using an in-house lidar set-up. The microstructure of each sample was characterized by optical and scanning electron microscopy...

  7. How to give a heparin shot

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000661.htm How to give a heparin shot To use the sharing ... nurse or other health professional will teach you how to prepare the medicine and give the shot. The ...

  8. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  9. High energy interactions of cosmic ray particles

    Science.gov (United States)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  10. High energy physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    The hadron collider group is studying proton-antiproton interactions at the world`s highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t{bar t} decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-{mu}-{tau} universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices.

  11. Wavefield characterization of perforation shot signals in a shale gas reservoir

    Science.gov (United States)

    Li, Yanpeng; Wang, Hua; Fehler, Michael; Fu, Yongqiang

    2017-06-01

    Signals of perforation or string shots, which are usually used for calibrating velocity models and estimating the orientation of 3 component down-hole receivers during microseismic monitoring, are occasionally hard to identify due to poor signal-to-noise ratios (SNR) or confusion with the events induced during fracturing in adjacent wells. A significant feature for distinguishing perforation signals from hydraulic fracturing events is the tube wave, which is generated in the treatment well and received in the monitoring well. We analyze seismic wavefields from perforations during a hydraulic fracturing operation on a pad well (a group of horizontal wells with the wellheads at a same small surface area) in a shale gas reservoir to understand the wave propagation phenomena including attenuation and the identification of tube waves (guided wave in borehole) and their conversions. Since they are dominated by high frequencies and lack energy at low frequencies, the P- and S-wave arrivals of perforation shots decrease much more rapidly with propagation distance than that of induced events. We identify six modes within the wavefields of the perforation or string shots recorded in a nearby well that are related to the tube waves. The six modes include P- & S-waves converted from tube waves in the shot (treatment) well at plugs or the well bottom, an up-going tube wave in the monitoring well generated by the tube wave in the nearby treatment well, a down-going tube wave from the treatment wellhead and the multiple, a scatting body wave activated by tube waves in the treatment well. These wave modes all originate from the waves radiated at the perforation point in the treatment well as tube waves and are then radiated into the formation and received by geophones in the nearby borehole as P, S, or tube waves. If energy from the perforation shot is strong enough, the tube wave will turn back from the surface and be reflected at the well bottom or plugs, which would excite the

  12. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  13. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-01-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  14. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-12-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  15. Single shot interferogram analysis for optical metrology.

    Science.gov (United States)

    Singh, Mahendra Pratap; Singh, Mandeep; Khare, Kedar

    2014-10-10

    We report a novel constrained optimization method for single shot interferogram analysis. The unknown test wavefront is estimated as a minimum L2-norm squared solution whose phase is constrained to the space spanned by a finite number of Zernike polynomials. Using a single frame from standard phase shifting datasets, we demonstrate that our approach provides a phase map that matches with that generated using phase shifting algorithms to within λ/100  rms error. Our simulations and experimental results suggest the possibility of a simplified low-cost high quality optical metrology system for performing routine metrology tests involving smooth surface profiles.

  16. Indirect high-bandwidth stabilization of carrier-envelope phase of a high-energy, low-repetition-rate laser.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2016-06-13

    We demonstrate a method of stabilizing the carrier-envelope phase (CEP) of low-repetition-rate, high-energy femtosecond laser systems such as TW-PW class lasers. A relatively weak high-repetition-rate (~1 kHz) reference pulse copropagates with a low-repetition-rate (10 Hz) high-energy pulse, which are s- and p-polarized, respectively. Using a Brewster angle window, the reference pulse is separated after the power amplifier and used for feedback to stabilize its CEP. The single-shot CEP of the high-energy pulse is indirectly stabilized to 550 mrad RMS, which is the highest CEP stability ever reported for a low-repetition-rate (10-Hz) high-energy laser system. In this novel method, the feedback frequency of the reference pulse from the front-end preamplifier can be almost preserved. Thus, higher CEP stability can be realized than for lower frequencies. Of course, a reference pulse with an even higher repetition rate (e.g., 10 kHz) can be easily employed to sample and feed back CEP jitter over a broader frequency bandwidth.

  17. High Energy Physics Research at Louisiana Tech

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Lee [Louisiana State Univ., Baton Rouge, LA (United States); Greenwood, Zeno [Louisiana State Univ., Baton Rouge, LA (United States); Wobisch, Marcus [Louisiana State Univ., Baton Rouge, LA (United States)

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the DØ experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  18. New accelerators in high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting.

  19. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  20. Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME

    Science.gov (United States)

    Bisesto, F. G.; Anania, M. P.; Cianchi, A.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Pompili, R.; Zigler, A.

    2017-07-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC_LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and Optical Transition Radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC_LAB LINAC, used in an experiment on electrons from laser wakefield acceleration still undergoing, will be shown.

  1. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.

    Science.gov (United States)

    Mileva, Ana; Nelson, James H; Johnston, Josiah; Kammen, Daniel M

    2013-08-20

    The United States Department of Energy's SunShot Initiative has set cost-reduction targets of $1/watt for central-station solar technologies. We use SWITCH, a high-resolution electricity system planning model, to study the implications of achieving these targets for technology deployment and electricity costs in western North America, focusing on scenarios limiting carbon emissions to 80% below 1990 levels by 2050. We find that achieving the SunShot target for solar photovoltaics would allow this technology to provide more than a third of electric power in the region, displacing natural gas in the medium term and reducing the need for nuclear and carbon capture and sequestration (CCS) technologies, which face technological and cost uncertainties, by 2050. We demonstrate that a diverse portfolio of technological options can help integrate high levels of solar generation successfully and cost-effectively. The deployment of GW-scale storage plays a central role in facilitating solar deployment and the availability of flexible loads could increase the solar penetration level further. In the scenarios investigated, achieving the SunShot target can substantially mitigate the cost of implementing a carbon cap, decreasing power costs by up to 14% and saving up to $20 billion ($2010) annually by 2050 relative to scenarios with Reference solar costs.

  2. One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates.

    Science.gov (United States)

    Wan, Dehui; Chen, Hsuen-Li; Tseng, Shao-Chin; Wang, Lon A; Chen, Yung-Pin

    2010-01-26

    In this paper, we report a new optical data storage method: photomodification of hollow gold nanoparticle (HGN) monolayers induced by one-shot deep-ultraviolet (DUV) KrF laser recording. As far as we are aware, this study is the first to apply HGNs in optical data storage and also the first to use a recording light source for the metal nanoparticles (NPs) that is not a surface plasmon resonance (SPR) wavelength. The short wavelength of the recording DUV laser improved the optical resolution dramatically. We prepared HGNs exhibiting two absorbance regions: an SPR peak in the near-infrared (NIR) region and an intrinsic material extinction in the DUV region. A single pulse from a KrF laser heated the HGNs and transformed them from hollow structures to smaller solid spheres. This change in morphology for the HGNs was accompanied by a significant blue shift of the SPR peak. Employing this approach, we demonstrated its patterning ability with a resolving power of a half-micrometer (using a phase mask) and developed a readout method (using a blue-ray laser microscope). Moreover, we prepared large-area, uniform patterns of monolayer HGNs on various substrates (glass slides, silicon wafers, flexible plates). If this spectral recording technique could be applied onto thin flexible tapes, the recorded data density would increase significantly relative to that of current rigid discs (e.g., compact discs).

  3. The problem of shot selection in basketball.

    Directory of Open Access Journals (Sweden)

    Brian Skinner

    Full Text Available In basketball, every time the offense produces a shot opportunity the player with the ball must decide whether the shot is worth taking. In this article, I explore the question of when a team should shoot and when they should pass up the shot by considering a simple theoretical model of the shot selection process, in which the quality of shot opportunities generated by the offense is assumed to fall randomly within a uniform distribution. Within this model I derive an answer to the question "how likely must the shot be to go in before the player should take it?" and I show that this lower cutoff for shot quality f depends crucially on the number n of shot opportunities remaining (say, before the shot clock expires, with larger n demanding that only higher-quality shots should be taken. The function f(n is also derived in the presence of a finite turnover rate and used to predict the shooting rate of an optimal-shooting team as a function of time. The theoretical prediction for the optimal shooting rate is compared to data from the National Basketball Association (NBA. The comparison highlights some limitations of the theoretical model, while also suggesting that NBA teams may be overly reluctant to shoot the ball early in the shot clock.

  4. GENERALITY OF THE MATCHING LAW AS A DESCRIPTOR OF SHOT SELECTION IN BASKETBALL

    Science.gov (United States)

    Alferink, Larry A; Critchfield, Thomas S; Hitt, Jennifer L; Higgins, William J

    2009-01-01

    Based on a small sample of highly successful teams, past studies suggested that shot selection (two- vs. three-point field goals) in basketball corresponds to predictions of the generalized matching law. We examined the generality of this finding by evaluating shot selection of college (Study 1) and professional (Study 3) players. The matching law accounted for the majority of variance in shot selection, with undermatching and a bias for taking three-point shots. Shot-selection matching varied systematically for players who (a) were members of successful versus unsuccessful teams, (b) competed at different levels of collegiate play, and (c) served as regulars versus substitutes (Study 2). These findings suggest that the matching law is a robust descriptor of basketball shot selection, although the mechanism that produces matching is unknown. PMID:20190921

  5. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  6. Research in High Energy Physics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  7. The evolution of high energy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

  8. 1570 nm High Energy Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy fiber laser for remote sensing. Current state-of-art technologies can not provide all features of...

  9. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  10. High-energy cosmic-ray acceleration

    CERN Document Server

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  11. European School of High-Energy Physics

    CERN Document Server

    2007-01-01

    The European School of High-Energy Physics is intended to give young experimental and phenomenological physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lecture notes on the Standard Model of electroweak interactions, Monte Carlo generators, relativistic heavy-ion physics, the flavour dynamics and CP violation in the Standard Model, cosmology, and high-energy neutrino astronomy with IceCube.

  12. Future of high energy physics some aspects

    CERN Document Server

    Prokofiev, Kirill

    2017-01-01

    This book comprises 26 carefully edited articles with well-referenced and up-to-date material written by many of the leading experts. These articles originated from presentations and dialogues at the second HKUST Institute for Advanced Study Program on High Energy Physics are organized into three aspects, Theory, Accelerator, and Experiment, focusing on in-depth analyses and technical aspects that are essential for the developments and expectations for the future high energy physics.

  13. New developments in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Neal, H.A.

    1977-01-01

    Some of the important developments in the field of high energy physics are reviewed. Starting from the status of knowledge of the structure of matter the details of experiments leading to the discovery of charmed particles and psi resonances are emphasized. Also some of the areas of activity of the Indiana University High Energy group are reviewed and related to the principal unsolved problems in the field. (JFP)

  14. Heavy Quark Production at High Energy

    CERN Document Server

    Ball, R D

    2001-01-01

    We report on QCD radiative corrections to heavy quark production valid at high energy. The formulae presented will allow a matched calculation of the total cross section which is correct at $O(\\as^3)$ and includes resummation of all terms of order $\\as^3 [\\as \\ln (s/m^2)]^n$. We also include asymptotic estimates of the effect of the high energy resummation. A complete description of the calculation of the heavy quark impact factor is included in an appendix.

  15. Elementary particle physics and high energy phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  16. Institute for High Energy Density Science

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Alan [Univ. of Texas, Austin, TX (United States)

    2017-01-13

    The project objective was for the Institute of High Energy Density Science (IHEDS) at the University of Texas at Austin to help grow the High Energy Density (HED) science community, by connecting academia with the Z Facility (Z) and associated staff at Sandia National Laboratories (SNL). IHEDS was originally motivated by common interests and complementary capabilities at SNL and the University of Texas System (UTX), in 2008.

  17. Lead in tissues of mallard ducks dosed with two types of lead shot

    Science.gov (United States)

    Finley, M.T.; Dieter, M.P.; Locke, L.N.

    1976-01-01

    Mallard ducks (Anas platyrhynchos) were sacrificed one month after ingesting one number 4 all-lead shot or one number 4 lead-iron shot. Livers, kidneys, blood, wingbones, and eggs were analyzed for lead by atomic absorption. Necropsy of sacrificed ducks failed to reveal any of the tissue lesions usually associated with lead poisoning in waterfowl. Lead levels in ducks given all-lead shot averaged about twice those in ducks given lead-iron shot, reflecting the amount of lead in the two types of shot. Lead in the blood of ducks dosed with all-lead shot averaged 0.64 ppm, and 0.28 ppm in ducks given lead-iron shot. Lead residues in livers and kidneys of females given all-lead shot were significantly higher than in males. In both dosed groups, lead levels in wingbones of females were about 10 times those in males, and were significantly correlated with the number of eggs laid after dosage. Lead levels in contents and shells of eggs laid by hens dosed with all-lead shot were about twice those in eggs laid by hens dosed with lead-iron shot. Eggshells were found to best reflect levels of lead in the blood. Our results indicate that mallards maintained on a balanced diet and dosed with one lead shot may not accumulate extremely high lead levels in the liver and kidney. However, extremely high lead deposition may result in the bone of laying hens after ingesting sublethal amounts of lead shot as a result of mobilization of calcium from the bone during eggshell formation.

  18. Fundamentals of high energy electron beam generation

    Science.gov (United States)

    Turman, B. N.; Mazarakis, M. G.; Neau, E. L.

    High energy electron beam accelerator technology has been developed over the past three decades in response to military and energy-related requirements for weapons simulators, directed-energy weapons, and inertially-confined fusion. These applications required high instantaneous power, large beam energy, high accelerated particle energy, and high current. These accelerators are generally referred to as 'pulsed power' devices, and are typified by accelerating potential of millions of volts (MV), beam current in thousands of amperes (KA), pulse duration of tens to hundreds of nanoseconds, kilojoules of beam energy, and instantaneous power of gigawatts to teffawatts (10(exp 9) to 10(exp 12) watts). Much of the early development work was directed toward single pulse machines, but recent work has extended these pulsed power devices to continuously repetitive applications. These relativistic beams penetrate deeply into materials, with stopping range on the order of a centimeter. Such high instantaneous power deposited in depth offers possibilities for new material fabrication and processing capabilities that can only now be explored. Fundamental techniques of pulse compression, high voltage requirements, beam generation and transport under space-charge-dominated conditions will be discussed in this paper.

  19. Identifying the nature of high energy Astroparticles

    CERN Document Server

    Mora, Karen Salomé Caballero

    2016-01-01

    High energy Astroparticles include Cosmic Ray, gamma ray and neutrinos, all of them coming from the universe. The origin and production, acceleration and propagation mechanisms of ultrahigh-energy CR (up to $10^{20}$ eV) are still unknown. Knowledge on particle interactions taking place at those energies, useful for studying current theories on particle physics, can be obtained only from measurements of high energy astroparticles. In the present document some techniques on data analysis of mass composition of UHECR with the Pierre Auger Observatory are described. The relevance of the muon component of air showers produced by the primary CR, as well as some low energy simulations of that component, are explained.

  20. Identifying the nature of high energy Astroparticles

    Science.gov (United States)

    Salomé Caballero Mora, Karen

    2016-10-01

    High energy Astroparticles include Cosmic Ray (CR), gamma ray and neutrinos, all of them coming from the universe. The origin and production, acceleration and propagation mechanisms of ultrahigh-energy CR (UHECR ∼ 1020 eV) are still unknown. Knowledge on particle interactions taking place at those energies, useful for studying current theories on particle physics, can be obtained only from measurements of high energy astroparticles. In the present document some techniques on data analysis of mass composition of UHECR with the Pierre Auger Observatory are described. The relevance of the muon component of air showers produced by the primary CR, as well as some low energy simulations of that component, are explained.

  1. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M.T.

    2015-05-22

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  2. Progress toward high energy electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Sergei Nagaitsev

    2001-07-20

    All electron cooling systems in operation to date can be classified as low energy systems. The electron beam kinetic energy in such a system is limited to about 0.6-1 MeV by the use of a conventional commercial Cockcroft-Walton high-voltage power supply. This, in turn, bounds the maximum ion kinetic energy, accessible for cooling with today's standard technology, to about 2 GeV/nucleon (about a factor of 2-3 times higher than the electron systems in operation today). Electron cooling systems with kinetic energies above 1 MeV could provide economically justifiable improvements in the performance of many existing and proposed accelerator complexes, such as RHIC, Tevatron and HERA. This paper reviews the status of the development of the technology needed for high energy electron cooling.

  3. Investigation of laser induced damage threshold measurement with single-shot on thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhichao, E-mail: zcliu44@163.com; Zheng, Yi; Pan, Feng; Lin, Qi; Ma, Ping; Wang, Jian

    2016-09-30

    Highlights: • Developed a rapid-testing method of the laser induced damage threshold for thin film surface within only one shot. • Comparison of single shot test and the ISO standard test has been performed on several types of reflectors. • Factors that impacted the measurement accuracy were discussed, and the optimization process was mentioned in this paper as well. - Abstract: A method for rapid determination of laser induced damage threshold (LIDT) of optical coatings is proposed and investigated in this paper. By use of this method, the LIDT of thin film can be rapidly obtained by only one shot. The modulation of laser beam profile, which is considered as a negative factor in conventional LIDT test, is utilized in this method. Basing on image processing technique, the damage information could be extracted from the comparison between the damage pattern and beam intensity distribution in the test region. The applicability and repeatability of this testing method has been verified on three type reflectors, HfO{sub 2}/SiO{sub 2}, HfO{sub 2}/Al{sub 2}O{sub 3} and Ta{sub 2}O{sub 5}/SiO{sub 2}. In addition, the experimental results showed that appropriate beam size, laser energy and image compression ratio are the key factors to ensure a high accuracy of LIDT.

  4. Study on the use of types of shots in Valencian Handball on professional players

    Directory of Open Access Journals (Sweden)

    José Antonio Martínez Carbonell

    2013-01-01

    Full Text Available Due to the shortage of studies of analysis in Valencian ball, we have centred this study on this sport. The aim of study has been to analyze and to quantify the types of shots , and to compare the same ones between the positions of game of 1st game line (resto and 2nd game line (medio. Analysis of 6 games of the 19th Professional League of Stand and rope 2009-2010 was carried out so i, and specifically of 12 players, using Sports Code analysis software. The results indicate significant differences (p<0.05 between the shots carried out by first game line player and second game line in the rebound and rebound-shot all of them of right and left hand,and stand shot right hand; being almost realitzados only by players from the first game line position. At the same time we find data which demonstrate us by another band used mainly by second game line players beatings, these have been volley shot, volley shot after bounce, volley shot under the line of the shoulders, palm shot and horizontal shot all of them of right hand. As conclusion of the study, we have obtained that depending on the position of game the players use a few types of I throb or others. Therefore, we affirm, that the analysis of the high performance in stand and rope from the advances of the technologies, a valuable information contributes us to establish specific bosses of training.

  5. 77 FR 58114 - SunShot Prize: Race to the Rooftop

    Science.gov (United States)

    2012-09-19

    ...This notice announces the release of the SunShot Prize: Race to the Rooftop competition. This competition offers $10 million in prizes to those who can lower the non-hardware installation cost of rooftop solar energy systems.

  6. STACKING FAULT ENERGY IN HIGH MANGANESE ALLOYS

    Directory of Open Access Journals (Sweden)

    Eva Mazancová

    2009-04-01

    Full Text Available Stacking fault energy of high manganese alloys (marked as TWIP and TRIPLEX is an important parameter determining deformation mechanism type realized in above mentioned alloys. Stacking fault energy level can be asserted with a gliding of partial and/or full dislocations, b gliding mechanism and twinning deformation process in connection with increasing of fracture deformation level (deformation elongation and with increasing of simultaneously realized work hardening proces., c gliding mechanism and deformation induced e-martensite formation. In contribution calculated stacking fault energies are presented for various chemical compositions of high manganese alloys. Stacking fault energy dependences on manganese, carbon, iron and alluminium contents are presented. Results are confronted with some accessible papers.The aim of work is to deepen knowledge of presented data. The TWIP and TRIPLEX alloys can be held for promissing new automotive materials.

  7. Opportunities for high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.; Hansen, J.C.

    1997-01-01

    Wind power is today a mature technology, which at windy locations, is economically competitive to conventional power generation technologies. This and growing global environmental concerns have led governments to encourage and plan for wind energy development, a typical aim being 10% of electricity...... consumption. The successful operation of the three major power systems of Cape Verde, with a total wind energy penetration of about 15% since December 1994, demonstrates that power systems can be operated with high penetration of wind energy by adding simple control and monitoring systems only. Thorough...... analyses conclude that expanding to even above 15% wind energy penetration in the Cape Verde power systems is economical. Worldwide, numerous locations with favorable wind conditions and power systems similar to the Capeverdean provide good opportunities for installing wind farms and achieving high wind...

  8. Analysis of shot-to-shot variability in post-disruption runaway electron currents for diverted DIII-D discharges

    Science.gov (United States)

    Izzo, V. A.; Humphreys, D. A.; Kornbluth, M.

    2012-09-01

    In DIII-D experiments, rapid termination by Ar-pellet injection sometimes produces a post-termination runaway electron (RE) current plateau, but this effect is highly non-reproducible on a shot-to-shot basis, particularly for diverted target plasmas. A set of DIII-D discharges is analyzed with two MHD codes to understand the relationship between the current profile of the target plasma and the amplitude of the RE current plateau. Using the linear stability code GATO, a correlation between the radial profile of the unstable n = 1 mode just after Ar-pellet injection and the observed appearance of an RE plateau is identified. Nonlinear NIMROD simulations with RE test-particle calculations directly predict RE confinement times during the disruption. With one exception, NIMROD predicts better RE confinement for shots in which higher RE currents were observed in DIII-D. But, the variation in confinement is primarily connected to the saturated n = 1 mode amplitude and not its radial profile. Still, both sets of analyses support the hypothesis that RE deconfinement by MHD fluctuations is a major factor in the shot-to-shot variability of RE plateaus, though additional factors such as seed current amplitude cannot be ruled out.

  9. Utilization of Wind Energy at High Altitude

    OpenAIRE

    Bolonkin, Alexander

    2007-01-01

    Ground based, wind energy extraction systems have reached their maximum capability. The limitations of current designs are: wind instability, high cost of installations, and small power output of a single unit. The wind energy industry needs of revolutionary ideas to increase the capabilities of wind installations. This article suggests a revolutionary innovation which produces a dramatic increase in power per unit and is independent of prevailing weather and at a lower cost per unit of energ...

  10. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Mick

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  11. Who Takes Advantage of Free Flu Shots? Examining the Effects of an Expansion in Coverage

    NARCIS (Netherlands)

    Carman, K.G.; Mosca, I.

    2011-01-01

    Because of the high risk of costly complications (including death) and the externalities of contagious diseases, many countries provide free flu shots to certain populations free of charge. This paper examines the expansion of the free flu shot program in the Netherlands. This program expanded in

  12. Generality of the Matching Law as a Descriptor of Shot Selection in Basketball

    Science.gov (United States)

    Alferink, Larry A.; Critchfield, Thomas S.; Hitt, Jennifer L.; Higgins, William J.

    2009-01-01

    Based on a small sample of highly successful teams, past studies suggested that shot selection (two- vs. three-point field goals) in basketball corresponds to predictions of the generalized matching law. We examined the generality of this finding by evaluating shot selection of college (Study 1) and professional (Study 3) players. The matching law…

  13. Supersonic-jet experiments using a high-energy laser.

    Science.gov (United States)

    Loupias, B; Koenig, M; Falize, E; Bouquet, S; Ozaki, N; Benuzzi-Mounaix, A; Vinci, T; Michaut, C; Rabec le Goahec, M; Nazarov, W; Courtois, C; Aglitskiy, Y; Faenov, A Ya; Pikuz, T

    2007-12-31

    In this Letter, laboratory astrophysical jet experiments performed with the LULI2000 laser facility are presented. High speed plasma jets (150 km.s(-1)) are generated using foam-filled cone targets. Accurate experimental characterization of the plasma jet is performed by measuring its time evolution and exploring various target parameters. Key jet parameters such as propagation and radial velocities, temperature, and density are obtained. For the first time, the required dimensionless quantities are experimentally determined on a single-shot basis. Although the jets evolve in vacuum, most of the scaling parameters are relevant to astrophysical conditions.

  14. High energy particles and quanta in astrophysics

    Science.gov (United States)

    Mcdonald, F. B. (Editor); Fichtel, C. E.

    1974-01-01

    The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.

  15. A Parton Shower for High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Lonnblad, Leif; M. Smillie, Jennifer

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching...... it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss...

  16. Strongly Interacting Matter at High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    McLerran,L.

    2008-09-07

    This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.

  17. SnapShot: O-Glycosylation Pathways across Kingdoms

    DEFF Research Database (Denmark)

    Joshi, Hiren J.; Narimatsu, Yoshiki; Schjoldager, Katrine T.

    2018-01-01

    O-glycosylation is one of the most abundant and diverse types of post-translational modifications of proteins. O-glycans modulate the structure, stability, and function of proteins and serve generalized as well as highly specific roles in most biological processes. This ShapShot presents types of...

  18. High-energy, high-rate materials processing

    Science.gov (United States)

    Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.

    1987-12-01

    The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.

  19. A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Hitoshi [Tsukuba U.

    1984-01-01

    High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower....

  20. Equilibrium and shot noise in mesoscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, T.

    1994-10-01

    Within the last decade, there has been a resurgence of interest in the study of noise in Mesoscopic devices, both experimentally and theoretically. Noise in solid state devices can have different origins: there is 1/f noise, which is believed to arise from fluctuations in the resistance of the sample due to the motion of impurities. On top of this contribution is a frequency independent component associated with the stochastic nature of electron transport, which will be the focus of this paper. If the sample considered is small enough that dephasing and inelastic effects can be neglected, equilibrium (thermal) and excess noise can be completely described in terms of the elastic scattering properties of the sample. As mentioned above, noise arises as a consequence of random processes governing the transport of electrons. Here, there are two sources of randomness: first, electrons incident on the sample occupy a given energy state with a probability given by the Fermi-Dirac distribution function. Secondly, electrons can be transmitted across the sample or reflected in the same reservoir where they came from with a probability given by the quantum mechanical transmission/reflection coefficients. Equilibrium noise refers to the case where no bias voltage is applied between the leads connected to the sample, where thermal agitation alone allows the electrons close to the Fermi level to tunnel through the sample. In general, equilibrium noise is related to the conductance of the sample via the Johnson-Nyquist formula. In the presence of a bias, in the classical regime, one expects to recover the full shot noise < {Delta}{sup 2}I >= 2I{Delta}{mu} as was observed a long time ago in vacuum diodes. In the Mesoscopic regime, however, excess noise is reduced below the shot noise level. The author introduces a more intuitive picture, where the current passing through the device is a superposition of pulses, or electron wave packets, which can be transmitted or reflected.

  1. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  2. Hard scattering in high-energy QCD

    CERN Document Server

    Mangano, Michelangelo L

    2000-01-01

    I review the recent results in the field of QCD at high energy presented to this Conference. In particular, I will concentrate on measurements of $\\as$ from studies of event structures and jet rates, jet production in hadronic collisions, and heavy quark production.

  3. Perspective in high energy physics instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, L. [INFN, Genoa (Italy)

    1995-10-01

    The discovery potential of the next generation of particle accelerators, and in particular of the large hadron collider (LHC), can only be fully exploited by very sophisticated particle detectors. The basics of detectors for momentum and energy measurement is here presented together with a recollection of recent developments which are relevant for use at high luminosity accelerators.

  4. Detecting ultra high energy neutrinos with LOFAR

    NARCIS (Netherlands)

    Mevius, M.; Buitink, S.; Falcke, H.; Horandel, J.; James, C. W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; ter Veen, S.

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (similar to 150 MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the

  5. Maximal Entanglement in High Energy Physics

    NARCIS (Netherlands)

    Cervera-Lierta, Alba; Latorre, José I.; Rojo, Juan; Rottoli, Luca

    2017-01-01

    We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i) $s$-channel processes

  6. High energy bosons do not propagate

    Energy Technology Data Exchange (ETDEWEB)

    Kurkov, M.A., E-mail: Kurkov@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Lizzi, Fedele, E-mail: fedele.lizzi@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II (Italy); INFN, Sezione di Napoli (Italy); Departament de Estructura i Constituents de la Matèria, Institut de Ciéncies del Cosmos, Universitat de Barcelona, Barcelona, Catalonia (Spain); Vassilevich, Dmitri, E-mail: dvassil@gmail.com [CMCC, Universidade Federal do ABC, Santo André, S.P. (Brazil)

    2014-04-04

    We discuss the propagation of bosons (scalars, gauge fields and gravitons) at high energy in the context of the spectral action. Using heat kernel techniques, we find that in the high-momentum limit the quadratic part of the action does not contain positive powers of the derivatives. We interpret this as the fact that the two-point Green functions vanish for nearby points, where the proximity scale is given by the inverse of the cutoff.

  7. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  8. On the Path to SunShot - Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-05-01

    The halfway mark of the SunShot Initiative’s 2020 target date is a good time to take stock: How much progress has been made? What have we learned? What barriers and opportunities must still be addressed to ensure that solar technologies achieve cost parity in 2020 and realize their full potential in the decades beyond? To answer these questions, the Solar Energy Technology Office launched the On the Path to SunShot series in early 2015 in collaboration with the National Renewable Energy Laboratory (NREL) and with contributions from Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Argonne National Laboratory (ANL). The reports focus on the areas of technology development, systems integration, and market enablers.

  9. Photons as Ultra High Energy Cosmic Rays ?

    CERN Document Server

    Kalashev, O E; Semikoz, D V; Tkachev, Igor I

    2001-01-01

    We study spectra of the Ultra High Energy Cosmic Rays assuming primaries are protons and photons, and that their sources are extragalactic. We assume power low for the injection spectra and take into account the influence of cosmic microwave, infrared, optical and radio backgrounds as well as extragalactic magnetic fields on propagation of primaries. Our additional free parameters are the maximum energy of injected particles and the distance to the nearest source. We find a parameter range where the Greisen-Zatsepin-Kuzmin cut-off is avoided.

  10. High Energy Emission From Millisecond Pulsars

    Science.gov (United States)

    Harding, Alice K.

    2003-01-01

    Emission at X-ray and gamma-ray energies has been detected from millisecond pulsars, both isolated and in binary systems. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, so that high-energy emission from these sources is not unexpected. In fact, several nearby energetic millisecond pulsars that have been detected in X-rays could easily have been detected in gamma-rays by EGRET, but they were not. The reason for this may lie in a high-energy spectrum that is very different in these sources from that of normal pulsars. Both polar cap and outer gap models predict a two-component spectrum, one component peaking in hard X-rays and the other peaking above 1 GeV, with a gap at EGRET peak sensitivity. I will discuss the models for high-energy emission from millisecond pulsars, highlighting the differences between polar cap and outer gap models in spectrum and geometry of the emission.

  11. Proposal for a High Energy Nuclear Database

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David A.; Vogt, Ramona

    2005-03-31

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  12. Study of anti-laser irradiation performance of shot-peened 40CrNiMoA alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhanwei, E-mail: liuzw@bit.edu.cn [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wu, Ningning; Huang, Xianfu [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Xie, Huimin, E-mail: xiehm@mail.tsinghua.edu.cn [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Lv, Xintao [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); He, Guang [School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2012-12-15

    In this paper, shot-peening treatment was introduced to reinforce an alloy surface to protect it from laser irradiation, and experiments were carried out on 40CrNiMoA alloy steel. Macro-mechanical properties were studied and compared before and after both shot-peening and laser irradiation by conducting tensile and hardness measurements. Experimental results showed that the shot-peened alloy showed better mechanical properties after laser irradiation when compared to the alloy without shot-peening treatment. The enhanced ability of the shot-peened alloy for anti-laser irradiation was explained as due to the large residual compressive stress distributions over the shot-peening layer greatly reducing the thermal shock effect introduced by the laser. On the other hand, the growth of microstructures in specific shape absorbed the thermal energy during irradiation, giving a higher probability for the alloy to resist damage.

  13. SunShot Initiative Portfolio Book 2014

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2014-05-01

    The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot’s five subprogram areas, as well as a description of every active project in the SunShot’s project portfolio as of May 2014.

  14. Allergy Shots: Could They Help Your Allergies?

    Science.gov (United States)

    ... healthWhat kind of allergies can be treated with allergy shots? Common allergens include mold and pollen from grasses, ragweed, and trees. You may be allergic to dust mites or an insect that stings, such as bees. Allergy shots also can relieve eye allergies or improve ...

  15. The killing efficiency of soft iron shot

    Science.gov (United States)

    Andrews, R.; Longcore, J.R.

    1969-01-01

    A cooperative research effort between the ammunition industry and the Bureau of Sport Fisheries and Wildlife is aimed at finding a suitable non-toxic substitute for lead shot. A contract study by an independent research organization evaluated ways of coating or detoxifying lead shot or replacing it with another metal. As a result of that study, the only promising candidate is soft iron. Previous tests of hard iron shot had suggested that its killing effectiveness was poor at longer ranges due to the lower density. In addition, its hardness caused excessive damage to shotgun barrels. A unique, automated shooting facility was constructed at the Patuxent Wildlife Research Center to test the killing effectiveness of soft iron shot under controlled conditions. Tethered game-farm mallards were transported across a shooting point in a manner simulating free flight. A microswitch triggered a mounted shotgun so that each shot was 'perfect.' A soft iron shot, in Number 4 size, was produced by the ammunition industry and loaded in 12-gauge shells to give optimum ballistic performance. Commercial loads of lead shot in both Number 4 and Number 6 size were used for comparison. A total of 2,010 ducks were shot at ranges of 30 to 65 yards and at broadside and head-on angles in a statistically designed procedure. The following data were recorded for each duck: time until death, broken wing or leg bones, and number of embedded shot. Those ducks not killed outright were held for 10 days. From these data, ducks were categorized as 'probably bagged,' 'probably lost cripples,' or survivors. The test revealed that the killing effectiveness of this soft iron shot was superior to its anticipated performance and close to that obtained with commercial lead loads containing an equal number of pellets. Bagging a duck, in terms of rapid death or broken wing, was primarily dependent on the probability of a shot striking that vital area, and therefore a function of range. There was no indication

  16. SnapShot: Hormones of the gastrointestinal tract.

    Science.gov (United States)

    Coate, Katie C; Kliewer, Steven A; Mangelsdorf, David J

    2014-12-04

    Specialized endocrine cells secrete a variety of peptide hormones all along the gastrointestinal (GI) tract, making it one of the largest endocrine organs in the body. Nutrients and developmental and neural cues trigger the secretion of gastrointestinal (GI) hormones from specialized endocrine cells along the GI tract. These hormones act in target tissues to facilitate digestion and regulate energy homeostasis. This SnapShot summarizes the production and functions of GI hormones. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Energy harvesting in high voltage measuring techniques

    Science.gov (United States)

    Żyłka, Pawel; Doliński, Marcin

    2016-02-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed.

  18. A review on the basketball jump shot.

    Science.gov (United States)

    Okazaki, Victor H A; Rodacki, André L F; Satern, Miriam N

    2015-06-01

    The ability to shoot an effective jump shot in the sport of basketball is critical to a player's success. In an attempt to better understand the aspects related to expert performance, researchers have investigated successful free throws and jump shots of various basketball players and identified movement variables that contribute to their success. The purpose of this study was to complete a systematic review of the scientific literature on the basketball free throw and jump shot for the purpose of revealing the critical components of shooting that coaches, teachers, and players should focus on when teaching, learning, practising, and performing a jump shot. The results of this review are presented in three sections: (a) variables that affect ball trajectory, (b) phases of the jump shot, and (c) additional variables that influence shooting.

  19. One shot, one kill: the forces delivered by archer fish shots to distant targets.

    Science.gov (United States)

    Burnette, Morgan F; Ashley-Ross, Miriam A

    2015-10-01

    Archer fishes are skillful hunters of terrestrial prey, firing jets of water that dislodge insects perched on overhead vegetation. In the current investigation, we sought an answer to the question: are distant targets impractical foraging choices? Targets far from the shooter might not be hit with sufficient force to cause them to fall. However, observations from other investigators show that archer fish fire streams of water that travel in a non-ballistic fashion, which is thought to keep on-target forces high, even to targets that are several body lengths distant from the fish. We presented targets at different distances and investigated three aspects of foraging behavior: (i) on-target forces, (ii) shot velocity, (iii) a two-target choice assay to determine if fish would show any preference for downing closer targets or more distant targets. In general, shots from our fish (Toxotes chatareus) showed a mild decrease (less than 15% on average) in on-target forces at our most distant target offered (5.8 body lengths) with respect to the closest target offered (2.3 body lengths). One individual in our investigation showed slightly, but significantly, greater on-target forces as target distance increased. Forces on the furthest targets offered were found to double that of attachment forces for 200mg insects, even for individuals whose on-target forces showed mild decreases with increases in target distance. High-speed video analysis of jet impact with the target revealed that the shot was traveling in a non-ballistic manner, even to our most distant target offered, corroborating previous suppositions that on-target forces should remain high. Fish were able to accomplish this without large changes to shot velocity, but we did find evidence that the water jets appeared to differ in the timing of their acceleration as target distance increased. Our two-target choice experiment revealed that fish show preference for downing the closer target first, even though impact

  20. Shot noise and biased tracers: A new look at the halo model

    Science.gov (United States)

    Ginzburg, Dimitry; Desjacques, Vincent; Chan, Kwan Chuen

    2017-10-01

    Shot noise is an important ingredient to any measurement or theoretical modeling of discrete tracers of the large scale structure. Recent work has shown that the shot noise in the halo power spectrum becomes increasingly sub-Poissonian at high mass. Interestingly, while the halo model predicts a shot noise power spectrum in qualitative agreement with the data, it leads to an unphysical white noise in the cross halo-matter and matter power spectrum. In this work, we show that absorbing all the halo model sources of shot noise into the halo fluctuation field leads to meaningful predictions for the shot noise contributions to halo clustering statistics and remove the unphysical white noise from the cross halo-matter statistics. Our prescription straightforwardly maps onto the general bias expansion, so that the renormalized shot noise terms can be expressed as combinations of the halo model shot noises. Furthermore, we demonstrate that non-Poissonian contributions are related to volume integrals over correlation functions and their response to long-wavelength density perturbations. This leads to a new class of consistency relations for discrete tracers, which appear to be satisfied by our reformulation of the halo model. We test our theoretical predictions against measurements of halo shot noise bispectra extracted from a large suite of numerical simulations. Our model reproduces qualitatively the observed sub-Poissonian noise, although it underestimates the magnitude of this effect.

  1. Current Perspectives in High Energy Astrophysics

    Science.gov (United States)

    Ormes, Jonathan F. (Editor)

    1996-01-01

    High energy astrophysics is a space-age discipline that has taken a quantum leap forward in the 1990s. The observables are photons and particles that are unable to penetrate the atmosphere and can only be observed from space or very high altitude balloons. The lectures presented as chapters of this book are based on the results from the Compton Gamma-Ray Observatory (CGRO) and Advanced Satellite for Cosmology and Astrophysics (ASCA) missions to which the Laboratory for High Energy Astrophysics at NASA's Goddard Space Flight Center made significant hardware contributions. These missions study emissions from very hot plasmas, nuclear processes, and high energy particle interactions in space. Results to be discussed include gamma-ray beaming from active galactic nuclei (AGN), gamma-ray emission from pulsars, radioactive elements in the interstellar medium, X-ray emission from clusters of galaxies, and the progress being made to unravel the gamma-ray burst mystery. The recently launched X-ray Timing Explorer (XTE) and prospects for upcoming Astro-E and Advanced X-ray Astronomy Satellite (AXAF) missions are also discussed.

  2. Hepatitis A and the Vaccine (Shot) to Prevent It

    Science.gov (United States)

    ... and Teen Vaccine Resources Related Links Vaccines & Immunizations Hepatitis A and the Vaccine (Shot) to Prevent It ... the vaccine. Why should my child get the hepatitis A shot? The hepatitis A shot: Protects your ...

  3. The High Energy Telescope for STEREO

    Science.gov (United States)

    von Rosenvinge, T. T.; Reames, D. V.; Baker, R.; Hawk, J.; Nolan, J. T.; Ryan, L.; Shuman, S.; Wortman, K. A.; Mewaldt, R. A.; Cummings, A. C.; Cook, W. R.; Labrador, A. W.; Leske, R. A.; Wiedenbeck, M. E.

    2008-04-01

    The IMPACT investigation for the STEREO Mission includes a complement of Solar Energetic Particle instruments on each of the two STEREO spacecraft. Of these instruments, the High Energy Telescopes (HETs) provide the highest energy measurements. This paper describes the HETs in detail, including the scientific objectives, the sensors, the overall mechanical and electrical design, and the on-board software. The HETs are designed to measure the abundances and energy spectra of electrons, protons, He, and heavier nuclei up to Fe in interplanetary space. For protons and He that stop in the HET, the kinetic energy range corresponds to ˜13 to 40 MeV/n. Protons that do not stop in the telescope (referred to as penetrating protons) are measured up to ˜100 MeV/n, as are penetrating He. For stopping He, the individual isotopes 3He and 4He can be distinguished. Stopping electrons are measured in the energy range ˜0.7 6 MeV.

  4. High energy electron-positron physics

    CERN Document Server

    Ali, Ahmed

    1988-01-01

    With the termination of the physics program at PETRA, and with the start of TRISTAN and the SLC and later LEP, an era of e+e- physics has come to an end and a new one begins. The field is changing from a field of few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way most useful to any high energy physicists, in particular to newcomers in the e+e- field. This is the purpose of the book. This book should be used as a reference for future workers in the field of

  5. High energy physics at UC Riverside

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report discusses progress made for the following two tasks: experimental high energy physics, Task A, and theoretical high energy physics, Task B. Task A1 covers hadron collider physics. Information for Task A1 includes: personnel/talks/publications; D0: proton-antiproton interactions at 2 TeV; SDC: proton-proton interactions at 40 TeV; computing facilities; equipment needs; and budget notes. The physics program of Task A2 has been the systematic study of leptons and hadrons. Information covered for Task A2 includes: personnel/talks/publications; OPAL at LEP; OPAL at LEP200; CMS at LHC; the RD5 experiment; LSND at LAMPF; and budget notes. The research activities of the Theory Group are briefly discussed and a list of completed or published papers for this period is given.

  6. High energy density redox flow device

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Carter, Craig W.; Ho, Bryan Y.; Duduta, Mihai; Limthongkul, Pimpa

    2017-10-10

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  7. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  8. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli

    2017-11-01

    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  9. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  10. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Landen, O. L.; Wehrenberg, C. E.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California, 94551 (United States); Hohenberger, M.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-04-15

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb He{sub α} x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a “prepulse” shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  11. High-Temperature Thermoelectric Energy Conversion

    Science.gov (United States)

    Wood, C.

    1987-01-01

    Theory of thermoelectric energy conversion at high temperatures and status of research on conversion materials reviewed in report. Shows highest values of thermoelectric figure of merit, Z, found in semiconductor materials. Semiconductors keep wide choice of elements and compounds. Electrical properties tailored to particular application by impurity doping and control of stoichiometry. Report develops definition of Z useful for comparing materials and uses it to evaluate potentials of different classes of materialsmetals, semiconductors, and insulators.

  12. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  13. MASS SEPARATION OF HIGH ENERGY PARTICLES

    Science.gov (United States)

    Marshall, L.

    1962-09-25

    An apparatus and method are described for separating charged, high energy particles of equal momentum forming a beam where the particles differ slightly in masses. Magnetic lenses are utilized to focus the beam and maintain that condition while electrostatic fields located between magnetic lenses are utilized to cause transverse separation of the particles into two beams separated by a sufficient amount to permit an aperture to block one beam. (AEC)

  14. High energy neutrinos from the sun

    Science.gov (United States)

    Masip, Manuel

    2018-01-01

    The Sun is a main source of high energy neutrinos. These neutrinos appear as secondary particles after the Sun absorbs high-energy cosmic rays, that find there a low-density environment (much thinner than our atmosphere) where most secondary pions, kaons and muons can decay before they lose energy. The main uncertainty in a calculation of the solar neutrino flux is due to the effects of the magnetic fields on the absorption rate of charged cosmic rays. We use recent data from HAWC on the cosmic-ray shadow of the Sun to estimate this rate. We evaluate the solar neutrino flux and show that at 1 TeV it is over ten times larger than the atmospheric one at zenith θz =30∘ /150∘ . The flux that we obtain has a distinct spectrum and flavor composition: it is harder and richer in antineutrinos and tau/electron neutrinos than the atmospheric background. This solar flux could be detected in current and upcoming neutrino telescopes. KM3NeT, in particular, looks very promising: it will see the Sun high in the sky (the atmospheric flux is lower there than near the horizon) and expects a very good angular resolution (the Sun's radius is just 0.27°).

  15. Data Preservation in High Energy Physics

    CERN Document Server

    Kogler, Roman; Steder, Michael

    2011-01-01

    Data from high-energy physics experiments are collected with significant financial and human effort and are mostly unique. However, until recently no coherent strategy existed for data preservation and re-use, and many important and complex data sets have simply been lost. While the current focus is on the LHC at CERN, in the current period several important and unique experimental programs at other facilities are coming to an end, including those at HERA, b-factories and the Tevatron. To address this issue, an inter-experimental study group on HEP data preservation and long-term analysis (DPHEP) was convened at the end of 2008. The group now aims to publish a full and detailed review of the present status of data preservation in high energy physics. This contribution summarises the results of the DPHEP study group, describing the challenges of data preservation in high energy physics and the group's first conclusions and recommendations. The physics motivation for data preservation, generic computing and pre...

  16. Embolism of high energy firearm projectile

    Directory of Open Access Journals (Sweden)

    Jaime Álvarez Soler

    2016-12-01

    Full Text Available The embolism of a projectile is very rare and out of the normal context, so the cor-oner in front of a wound projectile firearm must make a very judicious and careful analysis to recover the projectile and/or its fragments. This case presents evidence how modern military high-velocity weapons have a high kinetic energy which is transferred to body tissues, so including their fragments and parts of the projectile can cause serious injury and embolism, requiring a great effort scientific and in-terdisciplinary to give technical support to justice.

  17. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    Science.gov (United States)

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  18. Quantum Phenomena in High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, Margaret [Univ. of Colorado, Boulder, CO (United States); Kapteyn, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-05-10

    The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV

  19. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  20. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  1. Basketball shot types and shot success in different levels of competitive basketball.

    Directory of Open Access Journals (Sweden)

    Frane Erčulj

    Full Text Available The purpose of our research was to investigate the relative frequencies of different types of basketball shots (above head, hook shot, layup, dunk, tip-in, some details about their technical execution (one-legged, two-legged, drive, cut, …, and shot success in different levels of basketball competitions. We analysed video footage and categorized 5024 basketball shots from 40 basketball games and 5 different levels of competitive basketball (National Basketball Association (NBA, Euroleague, Slovenian 1st Division, and two Youth basketball competitions. Statistical analysis with hierarchical multinomial logistic regression models reveals that there are substantial differences between competitions. However, most differences decrease or disappear entirely after we adjust for differences in situations that arise in different competitions (shot location, player type, and attacks in transition. Differences after adjustment are mostly between the Senior and Youth competitions: more shots executed jumping or standing on one leg, more uncategorised shot types, and more dribbling or cutting to the basket in the Youth competitions, which can all be attributed to lesser technical and physical ability of developing basketball players. The two discernible differences within the Senior competitions are that, in the NBA, dunks are more frequent and hook shots are less frequent compared to European basketball, which can be attributed to better athleticism of NBA players. The effect situational variables have on shot types and shot success are found to be very similar for all competitions.

  2. Basketball shot types and shot success in different levels of competitive basketball.

    Science.gov (United States)

    Erčulj, Frane; Štrumbelj, Erik

    2015-01-01

    The purpose of our research was to investigate the relative frequencies of different types of basketball shots (above head, hook shot, layup, dunk, tip-in), some details about their technical execution (one-legged, two-legged, drive, cut, …), and shot success in different levels of basketball competitions. We analysed video footage and categorized 5024 basketball shots from 40 basketball games and 5 different levels of competitive basketball (National Basketball Association (NBA), Euroleague, Slovenian 1st Division, and two Youth basketball competitions). Statistical analysis with hierarchical multinomial logistic regression models reveals that there are substantial differences between competitions. However, most differences decrease or disappear entirely after we adjust for differences in situations that arise in different competitions (shot location, player type, and attacks in transition). Differences after adjustment are mostly between the Senior and Youth competitions: more shots executed jumping or standing on one leg, more uncategorised shot types, and more dribbling or cutting to the basket in the Youth competitions, which can all be attributed to lesser technical and physical ability of developing basketball players. The two discernible differences within the Senior competitions are that, in the NBA, dunks are more frequent and hook shots are less frequent compared to European basketball, which can be attributed to better athleticism of NBA players. The effect situational variables have on shot types and shot success are found to be very similar for all competitions.

  3. Theory Summary: Very High Energy Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sarkar Subir

    2013-06-01

    Full Text Available This is a summary of ISVHECRI 2012 from a theorist’s perspective. A hundred years after their discovery, there is renewed interest in very high energy cosmic raysand their interactions which can provide unique information on new physics well beyond the Standard Model if only we knew how to unambiguously decipher the experimental data. While the observational situation has improved dramatically on the past decade with regard to both improved statistics and better understood systematics, the long standing questions regarding the origin of cosmic rays remain only partially answered, while further questions have been raised by new data. A recent development discussed at this Symposium is the advent of forward physics data from several experiments at the LHC, which have broadly vindicated the air shower simulation Monte Carlos currently in use and reduced their uncertainties further. Nevertheless there is still a major extrapolation required to interpret the highest energy air showers observed which appear to be undergoing a puzzling change in their elemental composition, even casting doubt on whether the much vaunted GZK cutoff has indeedbeen observed. The situation is further compounded by the apparent disagreement between Auger and Telescope Array data. A crucial diagnostic will be provided by the detection of the accompanying ultra-high energy cosmic neutrinos — two intriguing events have recently been recorded by IceCube.

  4. Perspectives on future high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Samios, N.P.

    1996-12-31

    The author states two general ways in which one must proceed in an attempt to forecast the future of high energy physics. The first is to utilize the state of knowledge in the field and thereby provide theoretical and experimental guidance on future directions. The second approach is technical, namely, how well can one do in going to higher energies with present techniques or new accelerator principles. He concludes that the future strategy is straightforward. The present accelerator facilities must be upgraded and run to produce exciting and forefront research. At the same time, the theoretical tools should be sharpened both extrapolating from lower energies (100 GeV) to high (multi TeV) and vice versa. The US should be involved in the LHC, both in the accelerator and experimental areas. There should be an extensive R and D program on accelerators for a multi-TeV capability, emphasizing e{sup +}e{sup {minus}} and {mu}{sup +}{mu}{sup {minus}} colliders. Finally, the international cooperative activities should be strengthened and maintained.

  5. Clinical application of Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) imaging accelerated by simultaneous multi-slice acquisition

    NARCIS (Netherlands)

    Schulz, J.; Marques, J.P.; Telgte, A. ter; Dorst, A van; Leeuw, H.F. de; Meijer, F.J.A.; Norris, D.G.

    2018-01-01

    Purpose As a single-shot sequence with a long train of refocusing pulses, Half-Fourier Acquisition Single-Shot Turbo-Spin-Echo (HASTE) suffers from high power deposition limiting use at high resolutions and high field strengths, particularly if combined with acceleration techniques such as

  6. Extreme Transients in the High Energy Universe

    Science.gov (United States)

    Kouveliotou, Chryssa

    2013-01-01

    The High Energy Universe is rich in diverse populations of objects spanning the entire cosmological (time)scale, from our own present-day Milky Way to the re-ionization epoch. Several of these are associated with extreme conditions irreproducible in laboratories on Earth. Their study thus sheds light on the behavior of matter under extreme conditions, such as super-strong magnetic fields (in excess of 10^14 G), high gravitational potentials (e.g., Super Massive Black Holes), very energetic collimated explosions resulting in relativistic jet flows (e.g., Gamma Ray Bursts, exceeding 10^53 ergs). In the last thirty years, my work has been mostly focused on two apparently different but potentially linked populations of such transients: magnetars (highly magnetized neutron stars) and Gamma Ray Bursts (strongly beamed emission from relativistic jets), two populations that constitute unique astrophysical laboratories, while also giving us the tools to probe matter conditions in the Universe to redshifts beyond z=10, when the first stars and galaxies were assembled. I did not make this journey alone I have either led or participated in several international collaborations studying these phenomena in multi-wavelength observations; solitary perfection is not sufficient anymore in the world of High Energy Astrophysics. I will describe this journey, present crucial observational breakthroughs, discuss key results and muse on the future of this field.

  7. High energy microlaser and compact MOPA transmitter

    Science.gov (United States)

    Brickeen, Brian K.; Bernot, Dave; Geathers, Eliot; Mosovsky, Joseph

    2011-06-01

    A compact micro-oscillator incorporating a dual-bounce, grazing incidence gain module with a folded resonator cavity is presented. The gain module, previously developed for Nd:YVO4, is embodied in highly doped ceramic Nd:YAG to generate improved Q-switch performance while maintaining localized pump absorption. The cavity design utilizes a doubly folded optics path around the gain crystal to increase the intra-cavity mode for a more optimum overlap with the pump light volume produced by standard lensed laser diode bars. A modified CS-package diode mount is developed to facilitate the reduced size of the oscillator without sacrificing the ability to use a high-energy, side-pumping arrangement. The oscillator is combined with a high gain, high energy extraction VHGM amplifier to generate a transmitter source on the order of 50 mJ. Cooling for both the oscillator and amplifier modules is provided via a conductive path through the base of the package. Both devices are mounted on opposite sides of a phase-change cooling reservoir to enable self-contained, burst-mode operation. Beam shaping of the oscillator output, in preparation for injection into the amplifier, is contained in a small cut-away path on the reservoir side.

  8. Extremely High Current, High-Brightness Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Grimes, Jacob T; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Lambiase, Robert; Litvinenko, Vladimir N; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Segalov, Zvi; Smith, Kevin T; Todd, Alan M M; Warren-Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  9. SQUID based resistance bridge for shot noise measurement on low impedance samples

    OpenAIRE

    Jehl, X.; Payet-Burin, P.; Baraduc, C.; Calemczuk, R.; Sanquer, M.

    1999-01-01

    We present a resistance bridge which uses a SQUID to measure the shot noise in low impedance samples. The experimental requirements are high DC bias currents (typically 10mA) together with high AC sensitivity (pA/VHz). This system is used to investigate the shot noise in Superconductor/Normal/Superconductor junctions where Andreev reflection enhanced shot noise is expected. Because our setup has an intrinsic noise much smaller than the thermal noise of the resistance bridge at 4.2K, reliable ...

  10. Grid Computing in High Energy Physics

    Science.gov (United States)

    Avery, Paul

    2004-09-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software resources, regardless of location); (4) collaboration (providing tools that allow members full and fair access to all collaboration resources and enable distributed teams to work effectively, irrespective of location); and (5) education, training and outreach (providing resources and mechanisms for training students and for communicating important information to the public). It is believed that computing infrastructures based on Data Grids and optical networks can meet these challenges and can offer data intensive enterprises in high energy physics and elsewhere a comprehensive, scalable framework for collaboration and resource sharing. A number of Data Grid projects have been underway since 1999. Interestingly, the most exciting and far ranging of these projects are led by collaborations of high energy physicists, computer scientists and scientists from other disciplines in support of experiments with massive, near-term data needs. I review progress in this

  11. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P.

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  12. High energy neutrinos from the Fermi bubbles.

    Science.gov (United States)

    Lunardini, Cecilia; Razzaque, Soebur

    2012-06-01

    Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent. Its highest energy part, above 20-50 TeV, is observable at a kilometer-scale detector in the northern hemisphere, such as the planned KM3NeT, while interesting constraints on it could be obtained by the IceCube Neutrino Observatory at the South Pole. The detection or exclusion of neutrinos from the Fermi bubbles will discriminate between hadronic and leptonic models, thus bringing unique information on the still mysterious origin of these objects and on the time scale of their formation.

  13. High Current Energy Recovery Linac at BNL

    CERN Document Server

    Litvinenko, Vladimir N; Ben-Zvi, Ilan; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Lambiase, Robert; Mahler, George; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Smith, Kevin T; Todd, Alan M M; Warren Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2004-01-01

    We present the design and the parameters of a small Energy Recovery Linac (ERL) facility, which is under construction at BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. The possibility for future up-grade to a two-pass ERL is being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. We present the status and plans for this facility.

  14. QCD and high-energy nuclear collisions

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Six years ago, Relativistic Heavy Ion Collider at Brookhaven started colliding heavy nuclei at record center-of-mass energies of up to 200 GeV/nucleon. Very soon, the Large Hadron Collider at CERN will push the energy of the ions to an astounding 5 TeV/nucleon. What can be learnt from the experiments at these machines? What do we know about the physics of super--dense matter already? I will argue that heavy ion accelerators bring us to the new frontiers of physical knowledge by creating strong color fields and very high densities of partons, at which qualitatively new phenomena emerge. I will also discuss the cross-disciplinary implications for cosmology, astrophysics, and connections to condensed matter physics.

  15. High-energy neutrinos from AGN

    Energy Technology Data Exchange (ETDEWEB)

    Toschke, Marius [Ruhr-Universitaet Bochum (Germany); TU Dortmund (Germany); Becker Tjus, Julia [Ruhr-Universitaet Bochum (Germany); Rhode, Wolfgang [TU Dortmund (Germany)

    2016-07-01

    In the outer space there are galactic and extragalactic sources like gamma-ray bursts (GRB), active galactic nuclei (AGN), supernovae or other phenomena which produce high-energy neutrinos. In contrast to supernovae, GRBs and AGN are supposed to generate neutrinos at the highest energies. Neutrinos have a tiny cross section as they mainly suffer from the weak interaction. Therefore, they are useful messenger particles providing information about the direction of the source. With observations of the gamma flux from galactic and extragalactic sources, it is possible to make predictions for the neutrino flux. We suppose that neutrinos are predominantly generated by inelastic proton-proton interactions and derive the possible galactic and extragalactic sources. In this talk, first results are presented.

  16. High Current Energy Recovery Linac at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility.

  17. Hunting shot – evolution of manufacturing technology

    Directory of Open Access Journals (Sweden)

    Piotr Bochyński

    2016-09-01

    Full Text Available Hunting shot are 1.2–10 mm diameter balls, usually made of lead alloys, forming a cluster projectile used in smoothbore hunting shotguns. Shot may also be used in pistol and revolver ammunition, in which it can constitute structural element of the projectile. Shot pellets may also be made of other materials and have other shapes. The aim of this paper is to aggregate information on the topic available from a number of different sources. It is hoped that such information will be useful for forensic ballistics experts. Historical development of pellets and their manufacturing technology from the 15th century is presented.

  18. Hunting shot - evolution of manufacturing technology

    Science.gov (United States)

    Bochyński, Piotr; Kuliczkowski, Maciej; Karpiewska, Anna; Turkiewicz, Mariola; Dobosz, Tadeusz

    2016-01-01

    Hunting shot are 1.2-10 mm diameter balls, usually made of lead alloys, forming a cluster projectile used in smoothbore hunting shotguns. Shot may also be used in pistol and revolver ammunition, in which it can constitute structural element of the projectile. Shot pellets may also be made of other materials and have other shapes. The aim of this paper is to aggregate information on the topic available from a number of different sources. It is hoped that such information will be useful for forensic ballistics experts. Historical development of pellets and their manufacturing technology from the 15th century is presented.

  19. Calibration Shots Recorded for the Salton Seismic Imaging Project, Salton Trough, California

    Science.gov (United States)

    Murphy, J. M.; Rymer, M. J.; Fuis, G. S.; Stock, J. M.; Goldman, M.; Sickler, R. R.; Miller, S. A.; Criley, C. J.; Ricketts, J. W.; Hole, J. A.

    2009-12-01

    The Salton Seismic Imaging Project (SSIP) is a collaborative venture between the U.S. Geological Survey, California Institute of Technology, and Virginia Polytechnic Institute and State University, to acquire seismic reflection/wide angle refraction data, and currently is scheduled for data acquisition in 2010. The purpose of the project is to get a detailed subsurface 3-D image of the structure of the Salton Trough (including both the Coachella and Imperial Valleys) that can be used for earthquake hazards analysis, geothermal studies, and studies of the transition from ocean-ocean to continent-continent plate-boundary. In June 2009, a series of calibration shots were detonated in the southern Imperial Valley with specific goals in mind. First, these shots were used to measure peak particle velocity and acceleration at various distances from the shots. Second, the shots were used to calibrate the propagation of energy through sediments of the Imperial Valley. Third, the shots were used to test the effects of seismic energy on buried clay drainage pipes, which are abundant throughout the irrigated parts of the Salton Trough. Fourth, we tested the ODEX drilling technique, which uses a down-hole casing hammer for a tight casing fit. Information obtained from the calibration shots will be used for final planning of the main project. The shots were located in an unused field adjacent to Hwy 7, about 6 km north of the U.S. /Mexican border (about 18 km southeast of El Centro). Three closely spaced shot points (16 meters apart) were aligned N-S and drilled to 21-m, 23.5-m, and 27-m depth. The holes were filled with 23-kg, 68-kg, and 123-kg of ammonium-nitrate explosive, respectively. Four instrument types were used to record the seismic energy - six RefTek RT130 6-channel recorders with a 3-component accelerometer and a 3-component 2-Hz velocity sensor, seven RefTek RT130 3-channel recorders with a 3-component 4.5-Hz velocity sensor, 35 Texans with a vertical component 4

  20. Cotunneling current and shot noise in quantum dots.

    Science.gov (United States)

    Thielmann, Axel; Hettler, Matthias H; König, Jürgen; Schön, Gerd

    2005-09-30

    We derive general expressions for the current and the shot noise, taking into account non-Markovian memory effects. In generalization of previous approaches, our theory is valid for an arbitrary Coulomb interaction and coupling strength and is applicable to quantum dots and more complex systems such as molecules. A fully consistent diagrammatic expansion up to second order in the coupling strength, taking into account cotunneling processes, allows for a study of transport in an intermediate coupling strength regime relevant to many current experiments. We discuss a single-level quantum dot as a first example, focusing on the Coulomb-blockade regime where the cotunneling processes dominate. We find super-Poissonian shot noise due to inelastic spin-flip cotunneling processes at an energy scale different from the one expected from first-order calculations.

  1. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  2. Tibiofibula Transposition in High-Energy Fractures

    Directory of Open Access Journals (Sweden)

    Peter R. Loughenbury

    2016-01-01

    Full Text Available We report two cases of failed attempts at closed reduction of high-energy tibial fractures with an associated fibula fracture. The first case was a 39-year-old male involved in high-speed motorbike collision, while the second was a 14-year-old male who injured his leg following a fall of three metres. Emergency medical services at the scenes of the accidents reported a 90-degree valgus deformity of the injured limb and both limbs were realigned on scene and stabilized. Adequate alignment of the tibia could not be achieved by manipulation under sedation or anaesthesia. Open reduction and exposure of the fracture sites revealed that the distal fibula fragment was “transposed” and entrapped in the medulla of the proximal tibial fragment. Reduction required simulation of the mechanism of injury in order to disengage the fragments and allow reduction. Tibiofibula transposition is a rare complication of high-energy lower limb fractures which has not previously been reported and may prevent adequate closed reduction. Impaction of the distal fibula within the tibial medulla occurs as the limb is realigned by paramedic staff before transfer to hospital. We recommend that when this complication is identified the patient is transferred to the operating room for open reduction and stabilization of the fracture.

  3. Post-Shot Simulations of NIC Experiments with Comparison to X-ray Measurements

    Science.gov (United States)

    Eder, David; Jones, Oggie; Suter, Larry; Moore, Alastair; Schneider, Marilyn

    2012-10-01

    National Ignition Campaign experiments at NIF are ongoing and post-shot simulations play an important role in understanding the physical processes occurring in the quest for demonstrating fusion burn. In particular, it is important to understand the x-ray environment inside the hohlraum targets, which is studied using various x-ray diagnostics. The Dante instrument measures the time dependent x-ray emission escaping out of the hohlraum laser entrance holes (LEHs) and the SXI instrument provides a time-integrated image of both soft and hard x-rays. We compare calculated total x-ray emission with Dante data as well as the relative high energy Mband emission that contributes to capsule preheat. We correct our calculated x-ray emission to account for differences between simulation and data on LEH closure using SXI data. We provide results for both ``standard candle'' simulation with no added multipliers and for simulations with time-dependent multipliers that are used to obtain agreement with shock timing and implosion velocity data. The physics justification for the use of multipliers is to account for potential missing energy or incorrect ablation modeling. The relative importance of these two effects can be studied through comparison of post-shot simulations with x-ray measurements.

  4. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  5. Data Preservation in High Energy Physics

    CERN Document Server

    Mount, Richard; Le Diberder, Francois; Dubois-Felsmann, Gregory; Neal, Homer; Bellis, Matt; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; Konigsberg, Jacobo; Roser, Robert; Snider, Rick; Lucchesi, Donatella; Denisov, Dmitri; Soldner-Rembold, Stefan; Li, Qizhong; Varnes, Erich; Jonckheere, Alan; Gasthuber, Martin; Gülzow, Volker; Kemp, Yves; Ozerov, Dmitri; Diaconu, Cristinel; South, David; Lobodzinski, Bogdan; Olsson, Jan; Haas, Tobias; Wrona, Krzysztof; Szuba, Janusz; Schnell, Gunar; Sasaki, Takashi; Katayama, Nobu; Hernandez, Fabio; Mele, Salvatore; Holzner, Andre; Hemmer, Frederic; Schroeder, Matthias; Barring, Olof; Brun, Rene; Maggi, Marcello; Igo-Kemenes, Peter; Van Wezel, Jos; Heiss, Andreas; Chen, Gang; Wang, Yifang; Asner, David; Riley, Daniel; Corney, David; Gordon, John

    2009-01-01

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group.

  6. Weak interactions at high energies. [Lectures, review

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references. (JFP)

  7. Advanced Analysis Methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  8. Reclustering of high energy physics data

    CERN Document Server

    Schaller, M

    1999-01-01

    The coming high energy physics experiments will store Petabytes of data into object databases. Analysis jobs will frequently traverse collections containing millions of stored objects. Clustering is one of the most effective means $9 to enhance the performance of these applications. The paper presents a reclustering algorithm for independent objects contained in multiple possibly overlapping collections on secondary storage. The algorithm decomposes the stored $9 objects into a number of independent chunks and then maps these chunks to a traveling salesman problem. Under a set of realistic assumptions, the number of disk seeks is reduced almost to the theoretical minimum. Experimental results $9 obtained from a prototype are included. (17 refs).

  9. Photomask specifications for high energy physics detectors

    CERN Document Server

    Pindo, M

    2002-01-01

    Planar technologies used for radiation detector fabrication imply an extensive use of photomasks whose characteristics are critical in determining final detector performance. Compatibly with their manufacturing process, photomasks must satisfy the application-specific requirements dictated both by wafer manufacturers and detector final users. The design and realization of microstrip and pixel detectors, widely used in high energy physics experiments, ask for intensive scientific effort, advanced technology and important economical investments. Photomask specification definition is one of the fundamental steps to optimize detector fabrication processes and fulfill experimental requirements at the most appropriate cost.

  10. Predictions of High Energy Experimental Results

    Directory of Open Access Journals (Sweden)

    Comay E.

    2010-10-01

    Full Text Available Eight predictions of high energy experimental results are presented. The predictions contain the $Sigma ^+$ charge radius and results of two kinds of experiments using energetic pionic beams. In addition, predictions of the failure to find the following objects are presented: glueballs, pentaquarks, Strange Quark Matter, magnetic monopoles searched by their direct interaction with charges and the Higgs boson. The first seven predictions rely on the Regular Charge-Monopole Theory and the last one relies on mathematical inconsistencies of the Higgs Lagrangian density.

  11. Particle identification methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Va' Vra, J.

    2000-01-27

    This paper deals with two major particle identification methods: dE/dx and Cherenkov detection. In the first method, the authors systematically compare existing dE/dx data with various predictions available in the literature, such as the Particle Data group recommendation, and judge the overall consistency. To my knowledge, such comparison was not done yet in a published form for the gaseous detectors used in High-Energy physics. As far as the second method, there are two major Cherenkov light detection techniques: the threshold and the Ring imaging methods. The authors discuss the recent trend in these techniques.

  12. [Experimental and theoretical high energy physics program

    Energy Technology Data Exchange (ETDEWEB)

    Finley, J.; Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Shipsey, I.P.

    1993-04-01

    Experimental and theoretical high-energy physics research at Purdue is summarized in a number of reports. Subjects treated include the following: the CLEO experiment for the study of heavy flavor physics; gas microstrip detectors; particle astrophysics; affine Kac{endash}Moody algebra; nonperturbative mass bounds on scalar and fermion systems due to triviality and vacuum stability constraints; resonance neutrino oscillations; e{sup +}e{sup {minus}} collisions at CERN; {bar p}{endash}p collisions at FNAL; accelerator physics at Fermilab; development work for the SDC detector at SSC; TOPAZ; D-zero physics; physics beyond the standard model; and the Collider Detector at Fermilab. (RWR)

  13. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  14. Computing support for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Avery, P.; Yelton, J. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-01

    This computing proposal (Task S) is submitted separately but in support of the High Energy Experiment (CLEO, Fermilab, CMS) and Theory tasks. The authors have built a very strong computing base at Florida over the past 8 years. In fact, computing has been one of the main contributions to their experimental collaborations, involving not just computing capacity for running Monte Carlos and data reduction, but participation in many computing initiatives, industrial partnerships, computing committees and collaborations. These facts justify the submission of a separate computing proposal.

  15. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  16. POST-SHOT RADIATION ENVIRONMENT FOLLOWING LOW-YIELD SHOTS INSIDE THE NATIONAL IGNITION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, S; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Verbeke, J

    2010-10-29

    A detailed model of the Target Bay (TB) at the National Ignition Facility (NIF) has been developed to estimate the post-shot radiation environment inside the facility. The model includes large number of structures and diagnostic instruments present inside the TB. These structures and instruments are activated by the few nanosecond pulse of neutrons generated during a shot and the resultant gamma dose rates are estimated at various decay times following the shot. The results presented in this paper are based on a low-yield D-T shot of 10{sup 16} neutrons. General environment dose rates drop to below 3 mrem/h within three hours following a shot with higher dose rates observed at contact with some of the components. Dose rate maps of the different TB levels were generated to aid in estimating worker stay-out times following a shot before entry is permitted into the TB.

  17. Predicting Induced Radioactivity at High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto

    1999-08-27

    Radioactive nuclides are produced at high-energy electron accelerators by different kinds of particle interactions with accelerator components and shielding structures. Radioactivity can also be induced in air, cooling fluids, soil and groundwater. The physical reactions involved include spallations due to the hadronic component of electromagnetic showers, photonuclear reactions by intermediate energy photons and low-energy neutron capture. Although the amount of induced radioactivity is less important than that of proton accelerators by about two orders of magnitude, reliable methods to predict induced radioactivity distributions are essential in order to assess the environmental impact of a facility and to plan its decommissioning. Conventional techniques used so far are reviewed, and a new integrated approach is presented, based on an extension of methods used at proton accelerators and on the unique capability of the FLUKA Monte Carlo code to handle the whole joint electromagnetic and hadronic cascade, scoring residual nuclei produced by all relevant particles. The radiation aspects related to the operation of superconducting RF cavities are also addressed.

  18. Shot-Peening Sensitivity of Aerospace Materials

    National Research Council Canada - National Science Library

    Grendahl, Scott; Snoha, Daniel; Hardisky, Benjamin

    2007-01-01

    ... that the U.S. Army Research Laboratory, Weapons and Materials Research Directorate at Aberdeen Proving Ground, MD develop and execute a program aimed at evaluating the shot-peening sensitivity of several aerospace materials...

  19. Bye-Bye Flu Shot, Hello Patch?

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_166897.html Bye-Bye Flu Shot, Hello Patch? Early results look promising for ... TUESDAY, June 27, 2017 (HealthDay News) -- An experimental flu vaccine patch with dissolving microneedles appears safe and ...

  20. Grid computing in high energy physics

    CERN Document Server

    Avery, P

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...

  1. High energy gravitational scattering: a numerical study

    CERN Document Server

    Marchesini, Giuseppe

    2008-01-01

    The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschild's radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.

  2. Laboratory high-energy astrophysics on lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, W.H.; Liedahl, D.A.; Walling, R.S.; Foord, M.E.; Osterheld, A.L.; Wilson, B.G.

    1994-12-01

    The tremendous range of temperatures and densities spanned by astrophysical plasmas has significant overlap with conditions attainable using high-power laser facilities. These facilities provide an opportunity to create, control, and characterize plasmas in the laboratory that mirror conditions in some of the most important cosmological systems. Moreover, laboratory experiments can enhance astrophysical understanding by focusing on and isolating important physical processes, without necessarily reproducing the exact conditions of the integral system. Basic study of radiative properties, transport phenomena, thermodynamic response and hydrodynamic evolution in plasmas under properly scaled conditions leads both directly and indirectly to improved models of complex astrophysical systems. In this paper, we will discuss opportunities for current and planned highpower lasers to contribute to the study of high-energy astrophysics.

  3. Supernovae and supernova remnants at high energies

    Science.gov (United States)

    Chevalier, Roger A.

    1990-01-01

    The physical phenomena that are observable with X- and gamma-ray observations of supernovae are discussed with respect to possible high-energy astrophysics experiments. Prompt photospheric emission and its echo are discussed, supernova radioactivity and neutron star effects are examined, and circumstellar and interstellar interaction are reviewed. The primary uncertainties are found to be the hardening of the spectrum by non-LTE effects and the amount of absorption of the radiation from the initial soft X-ray burst. The radioactivity in supernovae is theorized to lead to gamma-ray lines and continuum emission unless the event is low-mass type II. Gamma-ray observations are proposed to examine the efficiency of particle acceleration, and high-resolution spectroscopy can provide data regarding ionization, temperature, composition, and velocities of the X-ray-emitting gas.

  4. Almen intensity effect on microstructure and mechanical properties of low carbon steel subjected to severe shot peening

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Okan, E-mail: ounal@bartin.edu.tr [Department of Mechanical Engineering, Bartin University, 74100, Bartin (Turkey); Varol, Remzi, E-mail: remzivarol@sdu.edu.tr [Department of Mechanical Engineering, Suleyman Demirel University, 32260 Isparta (Turkey)

    2014-01-30

    This paper discusses alteration of microstructure and mechanical properties of low carbon steel after severe shot peening process. An ultra fine grained surface layer was formed on AISI 1017 mild steel by means of severe shot peening process. Surface characteristics were affirmed using optical microscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Nano hardness measurements were taken along the depth from shot peened surface using nanoindentation methods. The results showed that severe (unconventional) air blast shot peening process is an effective way to obtain ultra fine grained surface layer and to obtain superior mechanical properties.

  5. High energy laser demonstrators for defense applications

    Science.gov (United States)

    Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.

    2017-01-01

    Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.

  6. On the Path to SunShot. Advancing Concentrating Solar Power Technology, Performance, and Dispatchability

    Energy Technology Data Exchange (ETDEWEB)

    Mehos, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This report examines the remaining challenges to achieving the competitive concentrating solar power (CSP) costs and large-scale deployment envisioned under the U.S. Department of Energy's SunShot Initiative. Although CSP costs continue to decline toward SunShot targets, CSP acceptance and deployment have been hindered by inexpensive photovoltaics (PV). However, a recent analysis found that thermal energy storage (TES) could increase CSP's value--based on combined operational and capacity benefits--by up to 6 cents/kWh compared to variable-generation PV, under a 40% renewable portfolio standard in California. Thus, the high grid value of CSP-TES must be considered when evaluating renewable energy options. An assessment of net system cost accounts for the difference between the costs of adding new generation and the avoided cost from displacing other resources providing the same level of energy and reliability. The net system costs of several CSP configurations are compared with the net system costs of conventional natural-gas-fired combustion-turbine (CT) and combined-cycle plants. At today's low natural gas prices and carbon emission costs, the economics suggest a peaking configuration for CSP. However, with high natural gas prices and emission costs, each of the CSP configurations compares favorably against the conventional alternatives, and systems with intermediate to high capacity factors become the preferred alternatives. Another analysis compares net system costs for three configurations of CSP versus PV with batteries and PV with CTs. Under current technology costs, the least-expensive option is a combination of PV and CTs. However, under future cost assumptions, the optimal configuration of CSP becomes the most cost-effective option.

  7. 30 CFR 75.1320 - Multiple-shot blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Multiple-shot blasting. 75.1320 Section 75.1320... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1320 Multiple-shot blasting... first shot or shots fired in a round shall be initiated in the row nearest the kerf or the row or rows...

  8. Precision high energy liner implosion experiments PHELIX [1

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A [Los Alamos National Laboratory; Baca, David M [Los Alamos National Laboratory; Griego, Jeffrey R [Los Alamos National Laboratory; Reinovsky, Robert E [Los Alamos National Laboratory; Rousculp, Christopher L [Los Alamos National Laboratory; Turchi, Peter J [Los Alamos National Laboratory

    2009-01-01

    This paper describes the hardware design of a small megajoule sized transformer coupled pulse power system utilized to drive hydrodynamic liner experiments with a nominal current capability of 10 megAmperes. The resulting liner velocities and characteristics provide properties of physics interest. The capacitor banks utilize the ''Atlas'' plastic cased 60 kV, 60 kJ capacitors [2] and railgaps [3]. The air insulated marx'S are configured to dive a multi-filar toroidal transformer. The 4:1 multi-filar toroidal transformer is mechanically part of a circular disc line and this feature results in an attractive inductance budget. Because of the compact size, re-usable transformer, and resulting low maintenance cost, shot rates can be high compared to other ''large'' machines or explosively driven hydrodynamic methods. The PHELIX modeling, construction status, and test results will also be provided.

  9. Deterministic superresolution with coherent states at the shot noise limit.

    Science.gov (United States)

    Distante, Emanuele; Ježek, Miroslav; Andersen, Ulrik L

    2013-07-19

    Interference of light fields plays an important role in various high-precision measurement schemes. It has been shown that superresolving phase measurements beyond the standard coherent state limit can be obtained either by using maximally entangled multiparticle states of light or using complex detection approaches. Here we show that superresolving phase measurements at the shot noise limit can be achieved without resorting to nonclassical optical states or to low-efficiency detection processes. Using robust coherent states of light, high-efficiency homodyne detection, and a deterministic binarization processing technique, we show a narrowing of the interference fringes that scales with 1/√[N] where N is the mean number of photons of the coherent state. Experimentally we demonstrate a 12-fold narrowing at the shot noise limit.

  10. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Hector [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1) Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of

  11. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  12. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  13. [Effects of laser shot frequency on plasma radiation characteristics].

    Science.gov (United States)

    Chen, Jin-Zhong; Bai, Jin-Ning; Song, Guang-Ju; Sun, Jiang; Deng, Ze-Chao; Wang, Ying-Long

    2012-11-01

    To improve the quality of laser-induced breakdown spectroscopy, nanosecond pulse laser generated by Nd:YAG laser was used to excite soil sample. The intensity and signal-to-background ratio of A1 I 394.401 nm, Ba I 455.403 nm, Fe I 430.791 nm and Ti I 498.173 nm were observed using a grating spectrometer and a photoelectric detection system. The effects of laser shot frequency (5, 10 and 15 Hz)on the radiation characteristics of laser-induced plasma was studied. The experimental results show that as compared with the laser shot frequency of 5 Hz, the spectral line intensity of A1, Ba, Fe and Ti increased by about 50.94%, 112.7%, 107.46%, and 99.38% at 15 Hz respectively under the same laser energy, while the spectral signal-to-background ratio increased by about 15.16%, 24.08%, 40.26% and 72.06% respectively. The effects mechanism of the laser shot frequency on radiation characteristics of plasma is explained by measuring plasma parameters.

  14. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  15. High-Intensity Sweeteners and Energy Balance

    Science.gov (United States)

    Swithers, Susan E.; Martin, Ashley A.; Davidson, Terry L.

    2010-01-01

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance. PMID:20060008

  16. Precision timing calorimeter for high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin; Apresyan, Artur [California Institute of Technology, Pasadena, CA 91125 (United States); Bornheim, Adolf, E-mail: bornheim@hep.caltech.edu [California Institute of Technology, Pasadena, CA 91125 (United States); Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si [California Institute of Technology, Pasadena, CA 91125 (United States); Ronzhin, Anatoly [Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510-5011 (United States)

    2016-07-11

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm{sup 3} sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  17. Precision timing calorimeter for high energy physics

    Science.gov (United States)

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Peña, Cristián; Spiropulu, Maria; Trevor, Jason; Xie, Si; Ronzhin, Anatoly

    2016-07-01

    Scintillator based calorimeter technology is studied with the aim to achieve particle detection with a time resolution on the order of a few 10 ps for photons and electrons at energies of a few GeV and above. We present results from a prototype of a 1.4×1.4×11.4 cm3 sampling calorimeter cell consisting of tungsten absorber plates and Cerium-doped Lutetium Yttrium Orthosilicate (LYSO) crystal scintillator plates. The LYSO plates are read out with wave lengths shifting fibers which are optically coupled to fast photo detectors on both ends of the fibers. The measurements with electrons were performed at the Fermilab Test Beam Facility (FTBF) and the CERN SPS H2 test beam. In addition to the baseline setup plastic scintillation counter and a MCP-PMT were used as trigger and as a reference for a time of flight measurement (TOF). We also present measurements with a fast laser to further characterize the response of the prototype and the photo sensors. All data were recorded using a DRS4 fast sampling digitizer. These measurements are part of an R&D program whose aim is to demonstrate the feasibility of building a large scale electromagnetic calorimeter with a time resolution on the order of 10 ps, to be used in high energy physics experiments.

  18. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  19. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  20. High peak power diode stacks for high energy lasers

    Science.gov (United States)

    Negoita, Viorel C.; Vethake, Thilo; Jiang, John; Roff, Robert; Shih, Ming; Duck, Richard; Bauer, Marc; Mite, Roberto; Boucke, Konstantin; Treusch, Georg

    2015-02-01

    High energy solid state lasers are being developed for fusion experiments and other research applications where high energy per pulse is required but the repetition rate is rather low, around 10Hz. We report our results on high peak power diode laser stacks used as optical pumps for these lasers. The stacks are based on 10 mm bars with 4 mm cavity length and 55% fill factor, with peak power exceeding 500 W per bar. These bars are stacked and mounted on a cooler which provides backside cooling and electrical insulation. Currently we mount 25 bars per cooler for a nominal peak power of 12.5 kW, but in principle the mounting scheme can be scaled to a different number of devices depending on the application. Pretesting of these bars before soldering on the cooler enables us to select devices with similar wavelength and thus we maintain tight control of the spectral width (FWHM less than 6 nm). Fine adjustments of the centroid wavelength can be done by means of temperature of the cooling fluid or bias current. The available wavelength range spans from 880 nm to 1000 nm, and the wavelength of the entire assembly of stacks can be controlled to within 0.5 nm of the target value, which makes these stacks suitable for pumping a variety of gain media. The devices are fast axis collimated, with over 95% power being collimated in 6 mrad (full angle). The slow axis divergence is 9° (full angle) for 95% power content.

  1. Single-shot dynamic transmission electron microscopy

    Science.gov (United States)

    LaGrange, T.; Armstrong, M. R.; Boyden, K.; Brown, C. G.; Campbell, G. H.; Colvin, J. D.; DeHope, W. J.; Frank, A. M.; Gibson, D. J.; Hartemann, F. V.; Kim, J. S.; King, W. E.; Pyke, B. J.; Reed, B. W.; Shirk, M. D.; Shuttlesworth, R. M.; Stuart, B. C.; Torralva, B. R.; Browning, N. D.

    2006-07-01

    A dynamic transmission electron microscope (DTEM) has been designed and implemented to study structural dynamics in condensed matter systems. The DTEM is a conventional in situ transmission electron microscope (TEM) modified to drive material processes with a nanosecond laser, "pump" pulse and measure it shortly afterward with a 30-ns-long probe pulse of ˜107 electrons. An image with a resolution of <20nm may be obtained with a single pulse, largely eliminating the need to average multiple measurements and enabling the study of unique, irreversible events with nanosecond- and nanometer-scale resolution. Space charge effects, while unavoidable at such a high current, may be kept to reasonable levels by appropriate choices of operating parameters. Applications include the study of phase transformations and defect dynamics at length and time scales difficult to access with any other technique. This single-shot approach is complementary to stroboscopic TEM, which is capable of much higher temporal resolution but is restricted to the study of processes with a very high degree of repeatability.

  2. Monolithic pixel detectors for high energy physics

    CERN Document Server

    Snoeys, W

    2013-01-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio ( Q / C ). It is shown that monolithic detectors can achieve Q / C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining suf fi cient Q / C , collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  3. Polarized targets in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, G.D. Jr. [Princeton Univ., NJ (United States)

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail.

  4. Nonextensive statistical mechanics and high energy physics

    Directory of Open Access Journals (Sweden)

    Tsallis Constantino

    2014-04-01

    Full Text Available The use of the celebrated Boltzmann-Gibbs entropy and statistical mechanics is justified for ergodic-like systems. In contrast, complex systems typically require more powerful theories. We will provide a brief introduction to nonadditive entropies (characterized by indices like q, which, in the q → 1 limit, recovers the standard Boltzmann-Gibbs entropy and associated nonextensive statistical mechanics. We then present somerecent applications to systems such as high-energy collisions, black holes and others. In addition to that, we clarify and illustrate the neat distinction that exists between Lévy distributions and q-exponential ones, a point which occasionally causes some confusion in the literature, very particularly in the LHC literature

  5. High energy physics, past, present and future

    Science.gov (United States)

    Sugawara, Hirotaka

    2017-03-01

    At the beginning of last century we witnessed the emergence of new physics, quantum theory and gravitational theory, which gave us correct understanding of the world of atoms and deep insight into the structure of universe we live in. Towards the end of the century, string theory emerged as the most promising candidate to unify these two theories. In this talk, I would like to assert that the understanding of the origin of physical constants, ℏ (Planck constant) for quantum theory, and G (Newton’s gravitational constant) for gravitational theory within the framework of string theory is the key to understanding string theory. Then, I will shift to experimental high energy physics and discuss the necessity of world-wide collaboration in the area of superconducting technology which is essential in constructing the 100 TeV hadron collider.

  6. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  7. The high energy telescope on EXIST

    Science.gov (United States)

    Hong, J.; Grindlay, J. E.; Allen, B.; Barthelmy, S. D.; Skinner, G. K.; Gehrels, N.

    2009-08-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed next generation multi-wavelength survey mission. The primary instrument is a High Energy telescope (HET) that conducts the deepest survey for Gamma-ray Bursts (GRBs), obscured-accreting and dormant Supermassive Black Holes and Transients of all varieties for immediate followup studies by the two secondary instruments: a Soft X-ray Imager (SXI) and an Optical/Infrared Telescope (IRT). EXIST will explore the early Universe using high redshift GRBs as cosmic probes and survey black holes on all scales. The HET is a coded aperture telescope employing a large array of imaging CZT detectors (4.5 m2, 0.6 mm pixel) and a hybrid Tungsten mask. We review the current HET concept which follows an intensive design revision by the HET imaging working group and the recent engineering studies in the Instrument and Mission Design Lab at the Goddard Space Flight Center. The HET will locate GRBs and transients quickly (<10-30 sec) and accurately (< 20") for rapid (< 1-3 min) onboard followup soft X-ray and optical/IR (0.3-2.2 μm) imaging and spectroscopy. The broad energy band (5-600 keV) and the wide field of view (~90° × 70&° at 10% coding fraction) are optimal for capturing GRBs, obscured AGNs and rare transients. The continuous scan of the entire sky every 3 hours will establish a finely-sampled long-term history of many X-ray sources, opening up new possibilities for variability studies.

  8. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    López, Angel M. [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2015-10-27

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico’s Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group’s history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group’s leveraging of funds from the Department of Energy’s core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group’s research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group’s work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group’s scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass, theoretical calculations

  9. 75 FR 17701 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2010-04-07

    ... Energy Physics Advisory Panel AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the High Energy Physics Advisory Panel (HEPAP.... FOR FURTHER INFORMATION CONTACT: John Kogut, Executive Secretary; High Energy Physics Advisory Panel...

  10. 78 FR 50405 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2013-08-19

    ... Energy Physics Advisory Panel AGENCY: Office of Science, Department of Energy. ACTION: Notice of Intent... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period beginning...-range planning and priorities in the national high-energy physics program. Additionally, the renewal of...

  11. Long Life, High Energy Cell Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a need to develop higher energy density battery systems to meet the power requirements of future energy devices. In this proposed Phase I program, PSI will...

  12. Shot noise of charge current in a quantum dot responded by rotating and oscillating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hong-Kang, E-mail: zhaohonk@yahoo.com; Zou, Wei-Ke [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Chen, Qiao [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2014-09-07

    We have investigated the shot noise and Fano factor of the dynamic spin-polarized quantum dot under the perturbations of a rotating magnetic field (RMF), and an oscillating magnetic field (OMF) by employing the non-equilibrium Green's function approach. The shot noise is enhanced from sub-Poissonian to super-Poissonian due to the application of RMF and OMF, and it is controlled sensitively by the tilt angle θ of RMF. The magnitude of shot noise increases as the photon energy ℏω of OMF increases, and its valley eventually is reversed to peaks as the photon energy is large enough. Double-peak structure of Fano factor is exhibited as the frequency of OMF increases to cover a large regime. The Zeeman energy μ{sub 0}B{sub 0} acts as an effective gate bias to exhibit resonant behavior, and novel peak emerges associated with the applied OMF.

  13. Modular, Reconfigurable, High-Energy Technology Development

    Science.gov (United States)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  14. Shot noise in a toroidal carbon nanotube coupled with Majorana fermion states

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Zhao, Hong-Kang, E-mail: zhaohonk@bit.edu.cn; Wang, Qing

    2016-03-24

    Highlights: • The toroidal carbon nanotube interferometer coupled with Majorana fermions is considered. • The terminal current and shot noise have been investigated through equation of motion method. • The Andreev and cross-Andreev reflections contribute to the current and shot noise. • The enhancement of shot noise is generated by the application of Majorana fermions. • The periodic oscillations versus Aharonov–Bohm flux exhibit the controlling of Majorana fermions. - Abstract: The shot noise of a toroidal carbon nanotube (TCN) interferometer coupled with Majorana fermions is deduced from evaluating the current correlation. Many novel channels are opened for electrons to transport, and the energy gap of the semiconducting TCN becomes narrower. The Majorana fermions cause additional current correlations among the normal tunneling currents and Andreev reflection currents, and hence the shot noise and Fano factor are enhanced. The conductance, current, and shot noise are modified by Majorana fermions to exhibit different oscillation and resonance structures. The detailed behaviors of these quantities are quite different from the metal and semiconducting TCNs.

  15. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  16. Low Energy Lorentz Violation from Modified Dispersion at High Energies.

    Science.gov (United States)

    Husain, Viqar; Louko, Jorma

    2016-02-12

    Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities.

  17. Interpreting New Data from the High Energy Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Jesse [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-09-26

    This is the final technical report for DOE grant DE-SC0006389, "Interpreting New Data from the High Energy Frontier", describing research accomplishments by the PI in the field of theoretical high energy physics.

  18. Antennas tune in to high-energy particles

    CERN Document Server

    Gorham, P W

    2001-01-01

    After 40 years of research, physicists met at the first international workshop on the radio detection of high energy particles to discuss the detection of high-energy cosmic rays and neutrinos using radio waves. (0 refs).

  19. Jet Physics at High Energy Colliders

    Science.gov (United States)

    Chien, Yang-Ting

    The future of new physics searches at the LHC will be to look for hadronic signals with jets. In order to distinguish a hadronic signal from its background, it is important to develop advanced collider physics techniques that make accurate theoretical predictions. This work centers on phenomenological and formal studies of Quantum Chromodynamics (QCD), including resummation of hadronic observables using Soft Collinear Effective Theory (SCET), calculating anomalous dimensions of multi-Wilson line operators in AdS, and improving jet physics analysis using multiple event interpretations. Hadronic observables usually involve physics at different energy scales, and the calculations depend on large logarithms of the energy ratios. We can prove factorization theorems of observables and resum large logarithms using renormalization-group techniques. The heavy jet mass distribution for e +e- collisions is calculated at next-to-next-to-next-to leading logarithmic order (N3LL), and we measure the strong coupling constant at 0.3% accuracy. We also calculate the jet-mass distribution at partial N2LL in gamma + jet events at the LHC. The effect of non-global logarithms in resummation estimated, and it is significant only at the peak region. Soft QCD interactions among jets can be described by multi-Wilson line operators, with each Wilson line pointing along one of the jet directions. The anomalous dimensions of these operators are key for higher-order resummation. We study these operators using radial quantization and conformal gauge, which leads to a drastic simplification of the two-loop anomalous dimension calculation. We also find that the anomalous dimension calculation is closely related to a corresponding Witten diagram calculation. Jets are complicated objects to identify in high energy collider experiments. A single interpretation of each event can only extract a limited amount of information. We propose telescoping jet algorithms which give multiple event

  20. On the Path to SunShot - Advancing Concentrating Solar Power Technology, Performance, and Dispatchability

    Energy Technology Data Exchange (ETDEWEB)

    Mehos, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Energy storage will help enable CSP compete by adding flexibility value to a high-variable-generation (solar plus wind) power system (see Mehos et al. 2016). Compared with PV, CSP systems are more complex to develop, design, construct, and operate, and they require a much larger minimum effective scale—typically at least 50 MW, compared with PV systems that can be as small as a few kilowatts. In recent years, PV’s greater modularity and lower LCOE have made it more attractive to many solar project developers, and some large projects that were originally planned for CSP have switched to PV. However, the ability of CSP to use thermal energy storage—and thus provide continuous power for long periods when the sun is not shining—could give CSP a vital role in evolving electricity systems. Because CSP with storage can store energy when net demand is low and release that energy when demand is high, it increases the electricity system’s ability to balance supply and demand over multiple time scales. Such flexibility becomes increasingly important as more variable-generation renewable energy is added to the system. For example, one analysis suggests that, under a 40% renewable portfolio standard in California, CSP with storage could provide more than twice as much value to the electricity system as variable-generation PV. For this reason, enhanced thermal energy storage is a critical component of the SunShot Initiative’s 2020 CSP technology-improvement roadmap.

  1. Comprehensive System-Based Architecture for an Integrated High Energy Laser Test Bed

    Science.gov (United States)

    2015-03-01

    Demonstrator (MLD). LaWS, is an application of fiber SSL that are widely used in industry for cutting and welding metal (Figure 1). It utilizes six... welding lasers that are incoherently combined into a 33kW beam with the capability to disable or destroy targets. The system successfully shot down...transmission parameters impact visibility among other things. There are, however, two major challenges to implanting this system in a directed energy testing

  2. Oklahoma Center for High Energy Physics (OCHEP)

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, S; Strauss, M J; Snow, J; Rizatdinova, F; Abbott, B; Babu, K; Gutierrez, P; Kao, C; Khanov, A; Milton, K A; Neaman, H; H Severini, P Skubic

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma's impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research areas ranging

  3. Spin structure in high energy processes

    Science.gov (United States)

    Deporcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers of the following topics: Spin, Mass, and Symmetry; physics with polarized Z(sup 0)s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ((sup 3)HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b yields sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  4. Nuclear and High-Energy Astrophysics

    Science.gov (United States)

    Weber, Fridolin

    2003-10-01

    There has never been a more exciting time in the overlapping areas of nuclear physics, particle physics and relativistic astrophysics than today. Orbiting observatories such as the Hubble Space Telescope, Rossi X-ray Timing Explorer (RXTE), Chandra X-ray satellite, and the X-ray Multi Mirror Mission (XMM) have extended our vision tremendously, allowing us to see vistas with an unprecedented clarity and angular resolution that previously were only imagined, enabling astrophysicists for the first time ever to perform detailed studies of large samples of galactic and extragalactic objects. On the Earth, radio telescopes (e.g., Arecibo, Green Bank, Parkes, VLA) and instruments using adaptive optics and other revolutionary techniques have exceeded previous expectations of what can be accomplished from the ground. The gravitational wave detectors LIGO, LISA VIRGO, and Geo-600 are opening up a window for the detection of gravitational waves emitted from compact stellar objects such as neutron stars and black holes. Together with new experimental forefront facilities like ISAC, ORLAND and RIA, these detectors provide direct, quantitative physical insight into nucleosynthesis, supernova dynamics, accreting compact objects, cosmic-ray acceleration, and pairproduction in high energy sources which reinforce the urgent need for a strong and continuous feedback from nuclear and particle theory and theoretical astrophysics. In my lectures, I shall concentrate on three selected topics, which range from the behavior of superdense stellar matter, to general relativistic stellar models, to strange quark stars and possible signals of quark matter in neutron stars.

  5. Automatic keywording of High Energy Physics

    CERN Document Server

    Dallman, David Peter

    1999-01-01

    Bibliographic databases were developed from the traditional library card catalogue in order to enable users to access library documents via various types of bibliographic information, such as title, author, series or conference date. In addition these catalogues sometimes contained some form of indexation by subject, such as the Universal (or Dewey) Decimal Classification used for books. With the introduction of the eprint archives, set up by the High Energy Physics (HEP) Community in the early 90s, huge collections of documents in several fields have been made available on the World Wide Web. These developments however have not yet been followed up from a keywording point of view. We will see in this paper how important it is to attribute keywords to all documents in the area of HEP Grey Literature. As libraries are facing a future with less and less manpower available and more and more documents, we will explore the possibility of being helped by automatic classification software. We will specifically menti...

  6. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  7. Aspen Winter Conferences on High Energy

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-12

    The 2011 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 12 to February 18, 2011. Ninety-four participants from ten countries, and several universities and national labs attended the workshop titled, "New Data From the Energy Frontier." There were 54 formal talks, and a considerable number of informal discussions held during the week. The week's events included a public lecture ("The Hunt for the Elusive Higgs Boson" given by Ben Kilminster from Ohio State University) and attended by 119 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists. The 2011 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was "Indirect and Direct Detection of Dark Matter." It was held from February 6 to February 12, 2011. The 70 participants came from 7 countries and attended 53 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Blas Cabrera of Stanford University gave a public lecture titled "What Makes Up Dark Matter." There were 183 members of the general public in attendance. Before the lecture, 45 people attended the physics cafe to discuss dark matter. This report provides the attendee lists, programs, and announcement posters for each event.

  8. High Energy Electron Detectors on Sphinx

    Science.gov (United States)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  9. Three Decades of High Energy Transients

    Science.gov (United States)

    Kouveliotou, Chryssa

    2012-01-01

    Gamma-Ray Bursts are the most brilliant explosions in space. The first GRB was discovered on 1967, just over 40 years ago. It took several years and multiple generations of space and ground instruments to unravel some of the mysteries of this phenomenon. However, many questions remain open today. I will discuss the history, evolution and current status of the GRB field and its contributions in our understanding of the transient high energy sky. Finally, I will describe how GRBs can be utilized in future missions as tools, to probe the cosmic chemical evolution of the Universe Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 24) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11, 2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from several magnetar sources. In total, six new sources were discovered between 2008 and 2011, with a synergy between Swift, RXTE, Fermi and the Interplanetary Network (IPN). I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts.

  10. Precision probes of QCD at high energies

    Science.gov (United States)

    Alioli, Simone; Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.

    2017-07-01

    New physics, that is too heavy to be produced directly, can leave measurable imprints on the tails of kinematic distributions at the LHC. We use energetic QCD processes to perform novel measurements of the Standard Model (SM) Effective Field Theory. We show that the dijet invariant mass spectrum, and the inclusive jet transverse momentum spectrum, are sensitive to a dimension 6 operator that modifies the gluon propagator at high energies. The dominant effect is constructive or destructive interference with SM jet production. We compare differential next-to-leading order predictions from POWHEG to public 7 TeV jet data, including scale, PDF, and experimental uncertainties and their respective correlations. We constrain a New Physics (NP) scale of 3.5 TeV with current data. We project the reach of future 13 and 100 TeV measurements, which we estimate to be sensitive to NP scales of 8 and 60 TeV, respectively. As an application, we apply our bounds to constrain heavy vector octet colorons that couple to the QCD current. We project that effective operators will surpass bump hunts, in terms of coloron mass reach, even for sequential couplings.

  11. Data Preservation in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mount, Richard; Brooks, Travis; /SLAC; Le Diberder, Francois; /Orsay, LAL; Dubois-Felsmann, Gregory; Neal, Homer; /SLAC; Bellis, Matt; /Stanford U.; Boehnlein, Amber; Votava, Margaret; White, Vicky; Wolbers, Stephen; /Fermilab; Konigsberg, Jacobo; /Florida U.; Roser, Robert; Snider, Rick; /Fermilab; Lucchesi, Donatella; /INFN, Padua; Denisov, Dmitri; /Fermilab; Soldner-Rembold, Stefan; /Manchester U.; Li, Qizhong; /Fermilab; Varnes, Erich; /Arizona U.; Jonckheere, Alan; /Fermilab; Gasthuber, Martin; Gulzow, Volker; /DESY /Marseille, CPPM /Dortmund U. /DESY /Gent U. /DESY, Zeuthen /KEK, Tsukuba /CC, Villeurbanne /CERN /INFN, Bari /Gjovik Coll. Engineering /Karlsruhe, Forschungszentrum /Beijing, Inst. High Energy Phys. /Carleton U. /Cornell U. /Rutherford

    2012-04-03

    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage of experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.

  12. High specific energy, high capacity nickel-hydrogen cell design

    Science.gov (United States)

    Wheeler, James R.

    1993-01-01

    A 3.5 inch rabbit-ear-terminal nickel-hydrogen cell was designed and tested to deliver high capacity at steady discharge rates up to and including a C rate. Its specific energy yield of 60.6 wh/kg is believed to be the highest yet achieved in a slurry-process nickel-hydrogen cell, and its 10 C capacity of 113.9 AH the highest capacity yet of any type in a 3.5 inch diameter size. The cell also demonstrated a pulse capability of 180 amps for 20 seconds. Specific cell parameters and performance are described. Also covered is an episode of capacity fading due to electrode swelling and its successful recovery by means of additional activation procedures.

  13. Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators

    CERN Document Server

    Blanco Sancho, Juan; Schmidt, R

    The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

  14. Fuzzy systems in high-energy physics

    Science.gov (United States)

    Castellano, Marcello; Masulli, Francesco; Penna, Massimo

    1996-06-01

    Decision making is one of the major subjects of interest in physics. This is due to the intrinsic finite accuracy of measurement that leads to the possible results to span a region for each quantity. In this way, to recognize a particle type among the others by a measure of a feature vector, a decision must be made. The decision making process becomes a crucial point whenever a low statistical significance occurs as in space cosmic ray experiments where searching in rare events requires us to reject as many background events as possible (high purity), keeping as many signal events as possible (high efficiency). In the last few years, interesting theoretical results on some feedforward connectionist systems (FFCSs) have been obtained. In particular, it has been shown that multilayer perceptrons (MLPs), radial basis function networks (RBFs), and some fuzzy logic systems (FLSs) are nonlinear universal function approximators. This property permits us to build a system showing intelligent behavior , such as function estimation, time series forecasting, and pattern classification, and able to learn their skill from a set of numerical data. From the classification point of view, it has been demonstrated that non-parametric classifiers based FFCSs holding the universal function approximation property, can approximate the Bayes optimal discriminant function and then minimize the classification error. In this paper has been studied the FBF when applied to a high energy physics problem. The FBF is a powerful neuro-fuzzy system (or adaptive fuzzy logic system) holding the universal function approximation property and the capability of learning from examples. The FBF is based on product-inference rule (P), the Gaussian membership function (G), a singleton fuzzifier (S), and a center average defuzzifier (CA). The FBF can be regarded as a feedforward connectionist system with just one hidden layer whose units correspond to the fuzzy MIMO rules. The FBF can be identified both by

  15. Innovation development for highly energy-efficient housing

    NARCIS (Netherlands)

    Mlecnik, E.

    2014-01-01

    Buildings account for 40% of EU final energy demand and policy developments like the Energy Performance of Buildings Directive are stimulating the innovation development for nearly zero-energy housing. However, businesses switching to innovative products for highly energy-efficient houses is a

  16. 76 FR 53119 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-08-25

    ... Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION: Notice of renewal. SUMMARY: Pursuant... Energy Physics Advisory Panel will be renewed for a two-year period, beginning on August 12, 2011. The... priorities in the national High Energy Physics program. Additionally, the renewal of the HEPAP has been...

  17. Energy Efficient Beam Transfer Channels for High Energy Particle Accelerators

    CERN Document Server

    Gardlowski, Philipp; Ondreka, David

    2016-01-01

    conducting (NC) magnets or high current pulsed (HCP) magnets are an economic solution. For high repetition rates above 1.0 Hz, superconducting Cos(N) (SC) magnets or superferric (SF) magnets are more attractive; at least if they are operated in DC mode and if no dynamic losses occur in the cryogenic system. Unfortunately, a range between these values exist, in which no...

  18. Accuracy of single-shot autocorrelation measurements of petawatt laser pulses.

    Science.gov (United States)

    Ouyang, Xiaoping; Ma, Jingui; Yang, Lin; Tang, Shunxing; Liu, Chong; Peng, Yonghua; Qian, Liejia; Zhu, Baoqiang; Zhu, Jianqiang; Lin, Zunqi

    2012-06-20

    At the Shen Guang II (SGII) Petawatt Laser Facility, measurements of large-energy, single-shot laser pulses sometimes feature asymmetric autocorrelation signals, causing uncertainty in the measurement of compressed pulses. This study presents a method for defining and describing the asymmetry of autocorrelation signals. We discuss two sources of asymmetry: the nonuniform distribution of the near field excited by a beam, and the rotation of autocorrelator arms from the cylinder lens. The pulsewidth of an asymmetric autocorrelation signal is shorter than its real width. After updating the autocorrelator, the single-shot autocorrelator for the SGII petawatt laser exhibits a measurement uncertainty of below 12.3%. Recommendations on reducing asymmetry in large-energy, single-shot autocorrelation are discussed.

  19. Phase conjugation of high energy lasers.

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, David E; Valley, Michael T.; Atherton, Briggs W.; Bigman, Verle Howard; Boye, Lydia Ann; Broyles, Robin Scott; Kimmel, Mark W.; Law, Ryan J.; Yoder, James R.

    2013-01-01

    In this report we explore claims that phase conjugation of high energy lasers by stimulated Brillouin scattering (SBS) can compensate optical aberrations associated with severely distorted laser amplifier media and aberrations induced by the atmosphere. The SBS media tested was a gas cell pressurized up to 300 psi with SF6 or Xe or both. The laser was a 10 Hz, 3J, Q-switched Nd:YAG with 25 ns wide pulses. Atmospheric aberrations were created with space heaters, helium jets and phase plates designed with a Kolmogorov turbulence spectrum characterized by a Fried parameter, ro , ranging from 0.6 6.0 mm. Phase conjugate tests in the laboratory were conducted without amplification. For the strongest aberrations, D/ro ~ 20, created by combining the space heaters with the phase plate, the Strehl ratio was degraded by a factor of ~50. Phase conjugation in SF6 restored the peak focusable intensity to about 30% of the original laser. Phase conjugate tests at the outdoor laser range were conducted with laser amplifiers providing gain in combination with the SBS cell. A large 600,000 BTU kerosene space heater was used to create turbulence along the beam path. An atmospheric structure factor of Cn2 = 5x10-13 m2/3 caused the illumination beam to expand to a diameter 250mm and overfill the receiver. The phase conjugate amplified return could successfully be targeted back onto glints 5mm in diameter. Use of a lenslet arrays to lower the peak focusable intensity in the SBS cell failed to produce a useful phase conjugate beam; The Strehl ratio was degraded with multiple random lobes instead of a single focus. I will review literature results which show how multiple beams can be coherently combined by SBS when a confocal reflecting geometry is used to focus the laser in the SBS cell.

  20. High energy particle collisions near black holes

    Science.gov (United States)

    Zaslavskii, O. B.

    2016-10-01

    If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect). The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process).

  1. Interaction of the high energy deuterons with the graphite target in the plasma focus devices based on Lee model

    Energy Technology Data Exchange (ETDEWEB)

    Akel, M., E-mail: pscientific2@aec.org.sy; Alsheikh Salo, S.; Ismael, Sh. [Department of Physics, Atomic Energy Commission, Damascus, P. O. Box 6091 (Syrian Arab Republic); Saw, S. H. [INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone VIC 3148 (Australia); Lee, S. [INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone VIC 3148 (Australia); Physics Department, University of Malaya, Kuala Lumpur (Malaysia)

    2014-07-15

    Numerical experiments are systematically carried out using the Lee model code extended to compute the ion beams on various plasma focus devices operated with Deuterium gas. The deuteron beam properties of the plasma focus are studied for low and high energy plasma focus device. The energy spectral distribution for deuteron ions ejected from the pinch plasma is calculated and the ion numbers with energy around 1 MeV is then determined. The deuteron–graphite target interaction is studied for different conditions. The yield of the reaction {sup 12}C(d,n){sup 13}N and the induced radioactivity for one and multi shots plasma focus devices in the graphite solid target is investigated. Our results present the optimized high energy repetitive plasma focus devices as an alternative to accelerators for the production of {sup 13}N short lived radioisotopes. However, technical challenges await solutions on two fronts: (a) operation of plasma focus machines at high rep rates for a sufficient period of time (b) design of durable targets that can take the thermal load.

  2. FLUKA as a new high energy cosmic ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Battistoni, Giuseppe [INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano (Italy); Margiotta, Annarita, E-mail: margiotta@bo.infn.i [Dipartimento di Fisica dell' Universita di Bologna and INFN, Sezione di Bologna, V.le Berti Pichat 6/2, I-40127, Bologna (Italy); Muraro, Silvia [INFN, Sezione di Milano, Via Celoria 16, I-20133, Milano (Italy); Sioli, Maximiliano [Dipartimento di Fisica dell' Universita di Bologna and INFN, Sezione di Bologna, V.le Berti Pichat 6/2, I-40127, Bologna (Italy)

    2011-01-21

    FLUKA is a multipurpose Monte Carlo code, which can transport particles over a wide range of energies in user-defined geometries. Here we present a new FLUKA library, which allows the interaction and propagation of high energy cosmic rays in the Earth atmosphere and the transport of high energy muons in underground/underwater environments.

  3. Novel Lithium Ion High Energy Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this SBIR project a new chemistry for Li-ion cells will be developed that will enable a major advance in secondary battery gravimetric and volumetric energy...

  4. Investigation of laser induced damage threshold measurement with single-shot on thin films

    Science.gov (United States)

    Liu, Zhichao; Zheng, Yi; Pan, Feng; Lin, Qi; Ma, Ping; Wang, Jian

    2016-09-01

    A method for rapid determination of laser induced damage threshold (LIDT) of optical coatings is proposed and investigated in this paper. By use of this method, the LIDT of thin film can be rapidly obtained by only one shot. The modulation of laser beam profile, which is considered as a negative factor in conventional LIDT test, is utilized in this method. Basing on image processing technique, the damage information could be extracted from the comparison between the damage pattern and beam intensity distribution in the test region. The applicability and repeatability of this testing method has been verified on three type reflectors, HfO2/SiO2, HfO2/Al2O3 and Ta2O5/SiO2. In addition, the experimental results showed that appropriate beam size, laser energy and image compression ratio are the key factors to ensure a high accuracy of LIDT.

  5. Particle damage sources for fused silica optics and their mitigation on high energy laser systems.

    Science.gov (United States)

    Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S

    2017-05-15

    High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm 2 of beam area) for shots from 8.6 J/cm 2 to 9.5 J/cm 2 of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.

  6. Adventures in high energy theory and phenomenology

    Science.gov (United States)

    Robinson, Dean Jonathan

    Various studies of high energy theory and phenomenology are presented. We first present a mechanism that naturally produces light Dirac neutrinos. The central idea is that the right-handed neutrinos are composite. Any realistic composite model must involve 'hidden flavor' chiral symmetries. In general some of these symmetries may survive confinement, and in particular, if a U(1) survives it must imply an exact B -- L symmetry at low energies. Dirac neutrinos are therefore produced, which are naturally light due to compositeness. In general, elementary keV sterile Dirac neutrinos can be a natural ingredient of this composite neutrino scenario. For a certain class of composite neutrino theories, these sterile neutrinos naturally have the appropriate mixing angles to be resonantly produced warm dark matter (WDM). Alternatively, we show these sterile neutrinos can be WDM produced by an entropy-diluted thermal freeze-out, with the necessary entropy production arising not from an out-of-equilibrium decay, but rather from the confinement of the composite neutrino sector, provided there is sufficient supercooling. We next present a formalism for the flavor oscillation of unstable particles that relies only upon the analytic structure of the time Fourier-transformed two-point function. We derive exact oscillation probability and integrated oscillation probability formulae, and verify that our results reproduce the known results for both neutrino and neutral meson oscillation in the expected regimes of parameter space. The generality of our approach permits us to investigate flavor oscillation in exotic parameter regimes, and present the corresponding oscillation formulae. Kinematic edges in cascade decays provide a probe of the masses of new particles. In some new physics scenarios the decay chain involves intermediate particles of different flavors that can mix and oscillate. We discuss the implication of such oscillation, and in particular its interplay with the non

  7. SnapShot: chronic lymphocytic leukemia.

    Science.gov (United States)

    Ciccone, Maria; Ferrajoli, Alessandra; Keating, Michael J; Calin, George A

    2014-11-10

    Chronic lymphocytic leukemia (CLL) is the most common leukemia among adults in western countries. This SnapShot depicts the origins and evolution of this B cell malignancy, describes prognostic factors and CLL animal models, and illustrates therapies in preclinical and clinical development against CLL. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  9. High Energy Density Lithium Air Batteries for Oxygen Concentrators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....

  10. Global information pickup underpins anticipation of tennis shot direction

    NARCIS (Netherlands)

    Huys, R.; Canal Bruland, R.; Hagemann, N.; Beek, P.J.; Smeeton, N.J.; Williams, A.M.

    2009-01-01

    The authors examined the importance of local dynamical information when anticipating tennis shot direction. In separate experiments, they occluded the arm and racket, shoulders, hips, trunk, and legs and locally neutralized dynamical differences between shot directions, respectively. The authors

  11. What You Can Expect with a Cortisone Shot

    Science.gov (United States)

    ... Plantar fasciitis Psoriatic arthritis Reactive arthritis Rheumatoid arthritis Tendinitis Risks Complications of cortisone shots can include: Joint ... If you received a cortisone shot in your knee, stay off your feet when you can. Apply ...

  12. Recent Flu Shot Shouldn't Prevent Vaccination During Pregnancy

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_167523.html Recent Flu Shot Shouldn't Prevent Vaccination During Pregnancy Study ... women and newborns are particularly vulnerable to the flu and its complications, guidelines recommend a flu shot ...

  13. Get Your Flu Shot!| NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Flu Shot Get Your Flu Shot! Past Issues / Winter 2011 Table of Contents ... failure, or lung disease "For the 2010–2011 flu season, the flu vaccine provides protection against the ...

  14. Flu Shot Falls Short More Often for Obese People: Study

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_166544.html Flu Shot Falls Short More Often for Obese People: ... 2017 TUESDAY, June 13, 2017 (HealthDay News) -- A flu shot is the best way to avoid getting ...

  15. Research of shot noise based on realistic nano-MOSFETs

    Directory of Open Access Journals (Sweden)

    Xiaofei Jia

    2017-05-01

    Full Text Available Experimental measurements and simulation results have shown that the dominant noise source of current noise changes from thermal noise to shot noise with scaling of MOSFET, and shot noise were suppressed by Fermi and Coulomb interactions. In this paper, Shot noise test system is established, and experimental results proved that shot noise were suppressed, and the expressions of shot noise in realistic nano-MOSFETs are derived with considering Fermi effect, Coulomb interaction and the combination of the both co-existence, respectively. On this basis, the variation of shot noise with voltage, temperature and source-drain doping were researched. The results we obtained are consistent with those from experiments and the theoretically explanation is given. At the same time, the shot noise test system is suitable for traditional nanoscale electronic components; the shot noise model is suitable for nanoscale MOSFET.

  16. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    2004-11-01

    The Energy Design Guidelines for High Performance Schools--Tropical Island Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in tropical island climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

  17. Shot-Noise Limited Time-Encoded Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sebastian Karpf

    2017-01-01

    Full Text Available Raman scattering, an inelastic scattering mechanism, provides information about molecular excitation energies and can be used to identify chemical compounds. Albeit being a powerful analysis tool, especially for label-free biomedical imaging with molecular contrast, it suffers from inherently low signal levels. This practical limitation can be overcome by nonlinear enhancement techniques like stimulated Raman scattering (SRS. In SRS, an additional light source stimulates the Raman scattering process. This can lead to orders of magnitude increase in signal levels and hence faster acquisition in biomedical imaging. However, achieving a broad spectral coverage in SRS is technically challenging and the signal is no longer background-free, as either stimulated Raman gain (SRG or loss (SRL is measured, turning a sensitivity limit into a dynamic range limit. Thus, the signal has to be isolated from the laser background light, requiring elaborate methods for minimizing detection noise. Here, we analyze the detection sensitivity of a shot-noise limited broadband stimulated time-encoded Raman (TICO-Raman system in detail. In time-encoded Raman, a wavelength-swept Fourier domain mode locking (FDML laser covers a broad range of Raman transition energies while allowing a dual-balanced detection for lowering the detection noise to the fundamental shot-noise limit.

  18. Single-shot work extraction in quantum thermodynamics revisited

    Science.gov (United States)

    Wang, Shang-Yung

    2018-01-01

    We revisit the problem of work extraction from a system in contact with a heat bath to a work storage system, and the reverse problem of state formation from a thermal system state in single-shot quantum thermodynamics. A physically intuitive and mathematically simple approach using only elementary majorization theory and matrix analysis is developed, and a graphical interpretation of the maximum extractable work, minimum work cost of formation, and corresponding single-shot free energies is presented. This approach provides a bridge between two previous methods based respectively on the concept of thermomajorization and a comparison of subspace dimensions. In addition, a conceptual inconsistency with regard to general work extraction involving transitions between multiple energy levels of the work storage system is clarified and resolved. It is shown that an additional contribution to the maximum extractable work in those general cases should be interpreted not as work extracted from the system, but as heat transferred from the heat bath. Indeed, the additional contribution is an artifact of a work storage system (essentially a suspended ‘weight’ that can be raised or lowered) that does not truly distinguish work from heat. The result calls into question the common concept that a work storage system in quantum thermodynamics is simply the quantum version of a suspended weight in classical thermodynamics.

  19. High energy particle collisions near black holes

    Directory of Open Access Journals (Sweden)

    Zaslavskii O. B.

    2016-01-01

    Full Text Available If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect. The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process.

  20. Optimization of the prescription isodose line for Gamma Knife radiosurgery using the shot within shot technique.

    Science.gov (United States)

    Johnson, Perry B; Monterroso, Maria I; Yang, Fei; Mellon, Eric

    2017-11-25

    This work explores how the choice of prescription isodose line (IDL) affects the dose gradient, target coverage, and treatment time for Gamma Knife radiosurgery when a smaller shot is encompassed within a larger shot at the same stereotactic coordinates (shot within shot technique). Beam profiles for the 4, 8, and 16 mm collimator settings were extracted from the treatment planning system and characterized using Gaussian fits. The characterized data were used to create over 10,000 shot within shot configurations by systematically changing collimator weighting and choice of prescription IDL. Each configuration was quantified in terms of the dose gradient, target coverage, and beam-on time. By analyzing these configurations, it was found that there are regions of overlap in target size where a higher prescription IDL provides equivalent dose fall-off to a plan prescribed at the 50% IDL. Furthermore, the data indicate that treatment times within these regions can be reduced by up to 40%. An optimization strategy was devised to realize these gains. The strategy was tested for seven patients treated for 1-4 brain metastases (20 lesions total). For a single collimator setting, the gradient in the axial plane was steepest when prescribed to the 56-63% (4 mm), 62-70% (8 mm), and 77-84% (16 mm) IDL, respectively. Through utilization of the optimization technique, beam-on time was reduced by more than 15% in 16/20 lesions. The volume of normal brain receiving 12 Gy or above also decreased in many cases, and in only one instance increased by more than 0.5 cm3. This work demonstrates that IDL optimization using the shot within shot technique can reduce treatment times without degrading treatment plan quality.

  1. Development on the National Ignition Facility of a High Energy Density Opacity Platform

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dodd, Evan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); DeVolder, Barbara Gloria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johns, Heather Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cardenas, Tana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Archuleta, Thomas Nick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kline, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Flippo, Kirk Adler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sherrill, Manolo Edgar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilde, Bernhard Heinz [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Douglas, Melissa Rae [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Heeter, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Liedahl, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, B. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Iglesias, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martin, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); London, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ahmed, M. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, N. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Emig, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zika, M. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Opachich, Y. P. [Nevada National Security Site (NNSS), NV (United States); King, J. A. [Nevada National Security Site (NNSS), NV (United States); Ross, P. W. [Nevada National Security Site (NNSS), NV (United States); Huffman, E. J. [Nevada National Security Site (NNSS), NV (United States); Knight, R. A. [Nevada National Security Site (NNSS), NV (United States); Koch, J. A. [Nevada National Security Site (NNSS), NV (United States); Pond, T. D. [Nevada National Security Site (NNSS), NV (United States); Craxton, R. S. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Zhang, R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; McKenty, P. W. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Garcia, E. M. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Bailey, J. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, G. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, S. B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-02

    X-ray opacity is a crucial factor in all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in simulation codes for high-energy-density plasmas. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment for various mid-Z elements (Fe, Cr, Ni). These discrepancies raise doubts regarding the accuracy of the opacity models which are used in ICF and stewardship as well as in astrophysics. Therefore, a new experimental opacity platform has been developed on the National Ignition Facility (NIF), not only to verify the Z-machine experimental results, but also to extend the experiments to other temperatures and densities. Within the context of the national opacity strategy, the first NIF experiments were directed towards measuring the opacity of iron at a temperature of ~160 eV and an electron density of ~7xl021 cm-3(Anchor 1). The Z data agree with theory at these conditions, providing a reference point for validation of the NIF platform. Development shots on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule, and also a combined hohlraum, sample and laser drive able to produce iron plasmas at the desired conditions. Spectrometer qualification has been completed, albeit with additional improvements planned, and the first iron absorption spectra have now been obtained.

  2. Observation of high energy gamma rays in intermediate energy nucleus-nucleus collisions

    NARCIS (Netherlands)

    Beard, K.B.; Benenson, W.; Bloch, C.; Kashy, E.; Stevenson, J.; Morrissey, D.J.; Plicht, J. van der; Sherrill, B.; Winfield, J.S.

    1985-01-01

    High energy electrons and positrons observed in medium energy nucleus-nucleus collisions are shown to be primarily due to the external conversion of high energy gamma rays. The reaction 14N+Cu was studied at E/A=40 MeV, and a magnetic spectrograph was used with a specially constructed multiwire

  3. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  4. High energy nuclear collisions: Theory overview

    Indian Academy of Sciences (India)

    The Universe a few microseconds after the Big Bang was filled with a hot and dense phase of matter. We believe that quarks and gluons at those temperatures, above. 1012 K, were deconfined and existed as a quark gluon plasma (QGP). These ideas can be tested in collisions of nuclei at ultra-relativistic energies.

  5. The high energy source 3C 273

    Science.gov (United States)

    Vonmontigny, Corinna

    1990-01-01

    The properties of 3C 273 are reviewed and an attempt is made to find an answer to the question why 3C 273 is the only extragalactic source so far, which was detected at energies greater than or equal to 50 MeV.

  6. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  7. A Gene Family Coding for Salivary Proteins (SHOT) of the Polyphagous Spider Mite Tetranychus urticae Exhibits Fast Host-Dependent Transcriptional Plasticity.

    Science.gov (United States)

    Jonckheere, Wim; Dermauw, Wannes; Khalighi, Mousaalreza; Pavlidi, Nena; Reubens, Wim; Baggerman, Geert; Tirry, Luc; Menschaert, Gerben; Kant, Merijn R; Vanholme, Bartel; Van Leeuwen, Thomas

    2017-11-02

    The salivary protein repertoire released by the herbivorous pest Tetranychus urticae is assumed to hold keys to its success on diverse crops. We report on a spider mite-specific protein family that is expanded in T. urticae. The encoding genes have an expression pattern restricted to the anterior podocephalic glands, while peptide fragments were found in the T. urticae secretome, supporting the salivary nature of these proteins. As peptide fragments were identified in a host-dependent manner, we designated this family as the SHOT (secreted host-responsive protein of Tetranychidae) family. The proteins were divided in three groups based on sequence similarity. Unlike TuSHOT3 genes, TuSHOT1 and TuSHOT2 genes were highly expressed when feeding on a subset of family Fabaceae, while expression was depleted on other hosts. TuSHOT1 and TuSHOT2 expression was induced within 24 h after certain host transfers, pointing toward transcriptional plasticity rather than selection as the cause. Transfer from an 'inducer' to a 'noninducer' plant was associated with slow yet strong downregulation of TuSHOT1 and TuSHOT2, occurring over generations rather than hours. This asymmetric on and off regulation points toward host-specific effects of SHOT proteins, which is further supported by the diversity of SHOT genes identified in Tetranychidae with a distinct host repertoire.

  8. Evaluation of Monte Carlo tools for high energy atmospheric physics

    NARCIS (Netherlands)

    C. Rutjes (Casper); D. Sarria (David); A.B. Skeltved (Alexander Broberg); A. Luque (Alejandro); G. Diniz (Gabriel); N. Østgaard (Nikolai); U. Ebert (Ute)

    2016-01-01

    textabstractThe emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires

  9. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  10. Summaries of FY 1977, research in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    The U.S. Department of Energy, through the Office of Energy Research and the Division of High Energy and Nuclear Physics, provides approximately 90% of the total federal support for high energy physics research effort in the United States. The High Energy Physics Program primarily utilizes four major U.S. high energy accelerator facilities and over 50 universities under contract to do experimental and theoretical investigations on the properties, structure and transformation of matter and energy in their most basic forms. This compilation of research summaries is intended to present a convenient report of the scope and nature of high energy physics research presently funded by the U.S. Department of Energy. The areas covered include conception, design, construction, and operation of particle accelerators; experimental research using the accelerators and ancillary equipment; theoretical research; and research and development programs to advance accelerator technology, particle detector systems, and data analysis capabilities. Major concepts and experimental facts in high energy physics have recently been discovered which have the promise of unifying the fundamental forces and of understanding the basic nature of matter and energy. The summaries contained in this document were reproduced in essentially the form submitted by contractors as of January 1977.

  11. Laser Shot Peening System Final Report CRADA No. TC-1369-96

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Harris, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This CRADA project was established with a primary goal to develop a laser shot peening system which could operate at production throughput rates and produce the desired depth and intensity of induced shots. The first objective was to understand all parameters required for acceptable peening, including pulse energy, pulse temporal format, pulse spatial format, sample configuration and tamping mechanism. The next objective was to demonstrate the technique on representative samples and then on representative parts. The final objective was to implement the technology into a meaningful industrial peen.

  12. Studies of High Energy Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Nitz, David F [Michigan Technological University; Fick, Brian E [Michigan Technological University

    2014-07-30

    This report covers the progress of the Michigan Technological University particle astrophysics group during the period April 15th, 2011 through April 30th, 2014. The principal investigator is Professor David Nitz. Professor Brian Fick is the Co-PI. The focus of the group is the study of the highest energy cosmic rays using the Pierre Auger Observatory. The major goals of the Pierre Auger Observatory are to discover and understand the source or sources of cosmic rays with energies exceeding 10**19 eV, to identify the particle type(s), and to investigate the interactions of those cosmic particles both in space and in the Earth's atmosphere. The Pierre Auger Observatory in Argentina was completed in June 2008 with 1660 surface detector stations and 24 fluorescence telescopes arranged in 4 stations. It has a collecting area of 3,000 square km, yielding an aperture of 7,000 km**2 sr.

  13. High-energy particles. [in Jovian magnetosphere

    Science.gov (United States)

    Schardt, A. W.; Goertz, C. K.

    1983-01-01

    It is pointed out that the magnetosphere of Jupiter is in many respects quite different from that of the earth. The energy required to drive the Jovian magnetosphere is apparently extracted from Jupiter's rotational energy rather than from the solar wind. Jupiter is a strong source of energetic charged particles which can be detected as far away as the orbit of Mercury. The structure and dynamics of the energetic particle distribution in the inner magnetosphere is discussed, taking into account observations, transport and losses in the inner magnetosphere, satellite interactions, and electron synchrotron radiation. The subsolar hemisphere is considered, giving attention to particle fluxes in the subsolar magnetosphere, conditions in the middle magnetosphere, and the characteristics of the outer magnetosphere. A description of the predawn magnetosphere is also provided.

  14. High energy physics in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Lawrence W. [University of Michigan, Ann Arbor, Michigan (United States)

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  15. Temporal optimization of ultrabroadband high-energy OPCPA

    National Research Council Canada - National Science Library

    Jeffrey Moses; Cristian Manzoni; Shu-Wei Huang; Giulio Cerullo; Franz X. Kaertner

    2009-01-01

    We present general guidelines for the design of ultrabroadband, high-energy optical parametric chirped-pulse amplifiers, where maximization of both conversion efficiency and bandwidth and simultaneous...

  16. Predicting the statistics of high-energy astrophysical backgrounds

    NARCIS (Netherlands)

    Feyereisen, M.R.

    2017-01-01

    This thesis presents improvements to a methodology for predicting the probability distribution of diffuse isotropic astrophysical backgrounds, applied to high-energy extragalactic gamma rays and neutrinos.

  17. Potential Hazard to Human Health from Exposure to Fragments of Lead Bullets and Shot in the Tissues of Game Animals

    Science.gov (United States)

    Pain, Deborah J.; Cromie, Ruth L.; Newth, Julia; Brown, Martin J.; Crutcher, Eric; Hardman, Pippa; Hurst, Louise; Mateo, Rafael; Meharg, Andrew A.; Moran, Annette C.; Raab, Andrea; Taggart, Mark A.; Green, Rhys E.

    2010-01-01

    Background Lead is highly toxic to animals. Humans eating game killed using lead ammunition generally avoid swallowing shot or bullets and dietary lead exposure from this source has been considered low. Recent evidence illustrates that lead bullets fragment on impact, leaving small lead particles widely distributed in game tissues. Our paper asks whether lead gunshot pellets also fragment upon impact, and whether lead derived from spent gunshot and bullets in the tissues of game animals could pose a threat to human health. Methodology/Principal Findings Wild-shot gamebirds (6 species) obtained in the UK were X-rayed to determine the number of shot and shot fragments present, and cooked using typical methods. Shot were then removed to simulate realistic practice before consumption, and lead concentrations determined. Data from the Veterinary Medicines Directorate Statutory Surveillance Programme documenting lead levels in raw tissues of wild gamebirds and deer, without shot being removed, are also presented. Gamebirds containing ≥5 shot had high tissue lead concentrations, but some with fewer or no shot also had high lead concentrations, confirming X-ray results indicating that small lead fragments remain in the flesh of birds even when the shot exits the body. A high proportion of samples from both surveys had lead concentrations exceeding the European Union Maximum Level of 100 ppb w.w. (0.1 mg kg−1 w.w.) for meat from bovine animals, sheep, pigs and poultry (no level is set for game meat), some by several orders of magnitude. High, but feasible, levels of consumption of some species could result in the current FAO/WHO Provisional Weekly Tolerable Intake of lead being exceeded. Conclusions/Significance The potential health hazard from lead ingested in the meat of game animals may be larger than previous risk assessments indicated, especially for vulnerable groups, such as children, and those consuming large amounts of game. PMID:20436670

  18. On the Path to SunShot. Emerging Issues and Challenges in Integrating Solar with the Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Palmintier, Bryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Broderick, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mather, Barry [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baker, Kyri [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ding, Fei [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reno, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lave, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bharatkumar, Ashwini [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-05-01

    inverter functions. Finally, additional local and system-level value could be provided by integrating DGPV with energy storage and 'virtual storage,' which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Together, continued innovation across this rich distribution landscape can enable the very-high deployment levels envisioned by SunShot.

  19. Experimental measurements of thermal properties of high-temperature refractory materials used for thermal energy storage

    Science.gov (United States)

    El-Leathy, Abdelrahman; Jeter, Sheldon; Al-Ansary, Hany; Abdel-Khalik, Said; Golob, Matthew; Danish, Syed Noman; Saeed, Rageh; Djajadiwinata, Eldwin; Al-Suhaibani, Zeyad

    2016-05-01

    This paper builds on studies conducted on thermal energy storage (TES) systems that were built as a part of the work performed for a DOE-funded SunShot project titled "High Temperature Falling Particle Receiver". In previous studies, two small-scale TES systems were constructed for measuring heat loss at high temperatures that are compatible with the falling particle receiver concept, both of which had shown very limited heat loss. Through the course of those studies, it became evident that there was a lack of information about the thermal performance of some of the insulating refractory materials used in the experiments at high temperatures, especially insulating firebrick and perlite concrete. This work focuses on determining the thermal conductivities of those materials at high temperatures. The apparatus consists of a prototype cylindrical TES bin built with the same wall construction used in previous studies. An electric heater is placed along the centerline of the bin, and thermocouples are used to measure temperature at the interfaces between all layers. Heat loss is measured across one of the layers whose thermal conductivity had already been well established using laboratory experiments. This value is used to deduce the thermal conductivity of other layers. Three interior temperature levels were considered; namely, 300°C, 500°C, and 700°C. Results show that the thermal conductivity of insulating firebrick remains low (approximately 0.22 W/m.K) at an average layer temperature as high as 640°C, but it was evident that the addition of mortar had an impact on its effective thermal conductivity. Results also show that the thermal conductivity of perlite concrete is very low, approximately 0.15 W/m.K at an average layer temperature of 360°C. This is evident by the large temperature drop that occurs across the perlite concrete layer. These results should be useful for future studies, especially those that focus on numerical modeling of TES bins.

  20. High tonnage harvesting and skidding for loblolly pine energy plantations

    Science.gov (United States)

    Patrick Jernigan; Tom Gallagher; Dana Mitchell; Mathew Smidt; Larry Teeter

    2016-01-01

    The southeastern United States has a promising source for renewable energy in the form of woody biomass. To meet the energy needs, energy plantations will likely be utilized. These plantations will contain a high density of small-stem pine trees. Since the stems are relatively small when compared with traditional product removal, the harvesting costs will increase. The...

  1. Optimization of a neutron dosimeter for the high energy accelerators

    Directory of Open Access Journals (Sweden)

    Sokolov Alexey

    2017-01-01

    Full Text Available In high energy accelerator facilities the neutron radiation should be continuously measured during operation to control the ambient dose. This requires a reliable neutron dosimeter in a wide energy range. In this work we present an optimization of a compact cylindrical passive neutron dosimeter for the usage in wide energy neutron fields.

  2. 78 FR 65573 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot...

    Science.gov (United States)

    2013-11-01

    ... control the hunting of migratory game birds through regulations in 50 CFR part 20. We prohibit the use of... shot and the coatings, and one contained no useful information. Therefore, as stated in the proposed... testing Approved shot type* weight device** Bismuth-tin 97 bismuth, and 3 tin. Hot Shot *** Iron (steel...

  3. INFLUENCE OF SHOT PEENING ON AISI 316Ti FATIGUE PROPERTIES

    Directory of Open Access Journals (Sweden)

    František Nový

    2012-09-01

    Full Text Available This paper deals with examination of fatigue properties of AISI 316Ti stainless steel before and after shot peening including analysis of residual stress relaxation during rotating bending fatigue tests (f = 50 Hz, T = 20 ± 3 °C, R = - 1 with use of X - ray diffractometer. Obtained experimental results show increase of fatigue properties in the high – cycle region including fatigue limit and show the behavior of residual stress at cyclic loading in the region from N = 103 cycles to N = 107 cycles of loading.

  4. INFLUENCE OF SHOT PEENING ON AISI 316Ti FATIGUE PROPERTIES

    Directory of Open Access Journals (Sweden)

    Mario Guagliano

    2012-05-01

    Full Text Available This paper deals with examination of fatigue properties of AISI 316Ti stainless steel before and after shot peening including analysis of residual stress relaxation during rotating bending fatigue tests (f = 50 Hz, T = 20 ± 3 °C, R = - 1 with use of X - ray diffractometer. Obtained experimental results show increase of fatigue properties in the high – cycle region including fatigue limit and show the behavior of residual stress, decrease, at given cyclic loading amplitude in the region from N = 103 cycles to N = 107 cycles of loading.

  5. The Physics of Shot Towers

    Science.gov (United States)

    2012-04-01

    Landmark. But it is interesting to think of them as a way to introduce physics modeling to a high school or introductory college physics class. How does...a physicist by training, is the author of The Physics of Rugby (Nottingham Univ. Press, 2009) and coauthor of Albert Einstein: A Biography

  6. Trajectories of high energy electrons in a plasma focus

    Science.gov (United States)

    Harries, W. L.; Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    Measurements are made of high-energy electron trajectories in a plasma focus as functions of position, time, energy, and angle of emission. The spatial resolution of the X-ray emission shows that low-energy X-rays are emitted from the anode surface. It is also suggested that the highest energy X-rays originate from a small region on the axis. The so-called shadow technique shows that the electron beam is perpendicular to the anode surface. Polar diagrams of medium and high-energy X-rays agree with the bremsstrahlung emission from a relativistic electron beam, the current of which is several 100 A.

  7. Histopathology of mallards dosed with lead and selected substitute shot

    Science.gov (United States)

    Locke, L.N.; Irby, H.D.; Bagley, George E.

    1967-01-01

    The histopathological response of male game farm mallards fed lead, three types of plastic-coated lead, two lead-magnesium alloys, iron, copper, zinc-coated iron, and molybdenum-coated iron shot was studied. Mallards fed lead, plastic-coated lead, or lead-magnesium alloy shot developed a similar pathological response, including the formation of acid-fast intranuclear inclusion bodies in the kidneys. Birds fed iron or molybdenum-coated iron shot developed hemosiderosis of the liver. Two of four mallards fed zinc-coated iron shot also developed hemosiderosis of the liver. No lesions were found in mallards fed copper shot.

  8. Co-axial, high energy gamma generator

    Science.gov (United States)

    Reijonen, Jani Petteri [Princeton, NJ; Gicquel, Frederic [Pennington, NJ

    2011-08-16

    A gamma ray generator includes an ion source in a first chamber. A second chamber is configured co-axially around the first chamber at a lower second pressure. Co-axially arranged plasma apertures separate the two chambers and provide for restricted passage of ions and gas from the first to the second chamber. The second chamber is formed by a puller electrode having at least one long channel aperture to draw ions from the first chamber when the puller electrode is subject to an appropriate applied potential. A plurality of electrodes rings in the third chamber in third pressure co-axially surround the puller electrode and have at least one channel corresponding to the at least one puller electrode aperture and plasma aperture. The electrode rings increase the energy of the ions to a selected energy in stages in passing between successive pairs of the electrodes by application of an accelerating voltage to the successive pairs of accelerator electrodes. A target disposed co-axially around the plurality of electrodes receives the beam of accelerated ions, producing gamma rays.

  9. The effect of different shot peening intensities on fatigue life of AW 7075 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Libor Trško

    2013-12-01

    Full Text Available In this study the effect of different shot peening intensities, from very light peening with ceramic beads to severe shot peening with high coverage, on the fatigue life of aircraft AW 7075 aluminium alloy was investigated. Results were discussed in means of surface roughness, character of deformed surface layer and residual stress profile measured by XRD methods. Light peening intensity creates high and shallow compression residual stress field in the subsurface layers of material and increases the fatigue life of studied alloy. Increasing the peening intensity increases the depth of residual stress field, however the surface damage created by impact of shots at high velocity causes significant surface damage and rapidly degrade the fatigue properties of AW 7075 aluminium alloy.

  10. Shot Group Statistics for Small Arms Applications

    Science.gov (United States)

    2017-06-01

    we provide analytical formulas for the means and variances of these dispersion measures treating one shot group, with exception to R and ES with n...n = 2). (7) For n = 2, simple analytical results are provided for the probability distribution and first two moments of R /σ. If n > 2, an...42-44. Bibliography 1. Spiegel, Murray R ., “Schaum’s Outline Series of Theory and Problems of Probability and Statistics ,” McGraw-Hill, 1992. 2

  11. Beauty and science in a shot

    Science.gov (United States)

    Ciceri, Piera

    2017-04-01

    Taking pictures has become a daily action for young. Photography is an essential component of many areas of science, has played a crucial role in the study of anatomy, botany, archeology, ... Still today it is a "scientific tool" in the school textbooks: pictures describe, make reality larger or smaller, faster or slower, show evidence and experimental results. But a photograph has the ability to move, engage and inspire viewers. That means that a photograph can build an emotional bridge between science and people. People and students can get closer to science through beautiful, evocative and expressive shot. In this project students are involved in taking pictures with a scientific and aesthetic content looking around, setting an experiment, watching nature, playing with light, point of wiew, colors and perspective. They have to write a short text and a title that explains the scientific content, why and how they have taken the picture. Both description and title should let increase curiosity, could looks fun or stress artistic aspects. Student show their shots in an official public event in Milan managed by a committee of science and photograph experts and in a local event to parents and local community. "Shots of science" is a project promoted by the italian national association "Scienza under 18", the Physic Department of "Università degli Studi di Milano" and the "Museo di fotografia contemporanea" of Cinisello Balsamo (MI) that help students in discussing about scientific and artistic aspects of their shots. This project contributes to develop digital skills (such as to manage digital images, to share documents, to learn about copyright and creative commons license), communication skills (such as to write a caption, public speaking, to use a picture to communicate), collaboration skills (such as to work with pairs, to respect scheduled times, to be positive in giving and taking into account suggestions) and artistic skills (to learn how to compose a good

  12. Probing a SET nanomagnet with shot noise.

    Science.gov (United States)

    Contreras-Pulido, L. D.; Fernandez-Rossier, J.; Aguado, R.

    2008-03-01

    Although recent experiments show that single atomic spins [1] and molecular magnets [2] can be proved via transport measurements, their magnetic properties can hardly be tuned once they are fabricated. In a recent Letter [3], we have shown that a single-electron transistor (SET) based upon a II--VI semiconductor quantum dot and doped with a single-Mn ion behaves like a quantum nanomagnet with magnetic properties which can be controlled electrically. Conversely, the electrical properties of this SET depend on the quantum state of the Mn spin. Here, we extend these previous ideas and study the shot noise of this kind of nanomagnets. Our results reveal that shot noise contains much more information that the one contained in the average current. Interestingly, important quantities of the nanomagnet like the spin relaxation time and information about current-induced spin precession can be directly extracted from shot noise measurements. [1] Cyrus F. Hirjibehedin et al, Science, 317, 1199 (2007). [2] Moon-Ho Jo et al, Nanoletters, 6, 2014, (2006); H. B. Heersche et al., Phys. Rev. Lett. 96, 206801 (2006). [3] J. Fernandez-Rossier and R. Aguado, Phys. Rev. Lett. 98, 106805 (2007).

  13. Apparatus for advancing a wellbore using high power laser energy

    Science.gov (United States)

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  14. 3-D analysis of fatigue crack behaviour in a shot peened steam turbine blade material

    Energy Technology Data Exchange (ETDEWEB)

    He, B.Y., E-mail: Binyan.he@soton.ac.uk [Engineering Materials, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Katsamenis, O.L. [muVIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Mellor, B.G.; Reed, P.A.S. [Engineering Materials, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-08-26

    Serial mechanical sectioning and high resolution X-ray tomography have been used to study the three-dimensional morphology of small fatigue cracks growing in a 12 Cr tempered martensitic steam turbine blade material. A range of surface conditions has been studied, namely polished and shot peened (with varying levels of intensity). In the polished (unpeened) condition, inclusions (alumina and manganese sulphide) played an important role in initiating and controlling early fatigue crack behaviour. When fatigue cracks initiated from an alumina stringer, the crack morphology was normally dominated by single stringers, which were always in the centre of the fatigue crack, indicating its primary role in initiation. Manganese sulphide inclusion groups however seemed to dominate and affect the crack path along both the surface and depth crack growth directions. The more intensely shot peened condition did not however evidence inclusion or stringer affected fatigue crack initiation or growth behaviour; sub-surface crack coalescence being clearly observed by both serial sectioning and computed tomography (CT) imaging techniques at a depth of about 150–180 μm. These sub-surface crack coalescences can be linked to both the extent of the compressive residual stress as well as the depth of the plastic deformation arising from the intense shot peening process. Shot peening appears to provide a different defect population that initiates fatigue cracks and competes with the underlying metallurgical defect populations. The most beneficial shot peening process would in this case appear to “deactivate” the original metallurgical defect population and substitute a known defect distribution from the shot peening process from which fatigue cracks grow rather slowly in the strain hardened surface layer which also contains compressive residual stresses. A benefit to fatigue life in bending, even under Low Cycle Fatigue (LCF) conditions, has been observed in these tests if a

  15. Italian Meeting on High Energy Physics

    CERN Document Server

    Nicrosini, Oreste; Vercesi, Valerio; IFAE 2006; Incontri Di Fisica Delle Alte Energie

    2007-01-01

    This book collects the Proceedings of the Workshop ``Incontri di Fisica delle Alte Energie (IFAE) 2006, Pavia, 19-21 April 2006". This is the fifth edition of a new series of meetings on fundamental research in particle physics and was attended by more than 150 researchers. Presentations, both theoretical and experimental, addressed the status of Standard Model and Flavour phyiscs, Neutrino and Cosmological topics, new insights beyond the present understanding of particle physics and cross-fertilization in areas such as medicine, biology, technological spin-offs and computing. Special emphasis was given to the expectations of the forthcoming Large Hadron Collider, due in operation in 2007. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings and of the open questions in this extremely challenging cultural field.

  16. High energy asymptotics of the scattering amplitude for the ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    High energy asymptotics of the scattering amplitude for the. Schrödinger equation. D YAFAEV. Department of Mathematics, University Rennes-1, Campus Beaulieu, 35042 Rennes,. France. Abstract. We find an explicit function approximating at high energies the kernel of the scattering matrix with arbitrary accuracy.

  17. Participation in High Energy Physics at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Martinec, Emil J. [Univ. of Chicago, IL (United States). Enrico Fermi Inst.

    2013-06-27

    This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

  18. CZT drift strip detectors for high energy astrophysics

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions.We report on experimental investigations on the CZT drift detector developed DTU Space...

  19. Space and Astrophysical Plasmas: High energy universe–Satellite ...

    Indian Academy of Sciences (India)

    A variety of satellite missions to observe the high energy universe are currently operating and some more with more versatility and capability are on the anvil. In this paper, after giving a brief introduction to the constituents of the high energy universe and the related plasma physical problems, general as well as specific ...

  20. Metal azides under pressure: An emerging class of high energy ...

    Indian Academy of Sciences (India)

    Metal azides are well-known for their explosive properties such as detonation or deflagration. As chemically pure sources of nitrogen, alkali metal azides under high pressure have the ability to form polymeric nitrogen, an ultimate green high energy density material with energy density three times greater than that of known ...

  1. Crystal collimator systems for high energy frontier

    Science.gov (United States)

    Sytov, A. I.; Tikhomirov, V. V.; Lobko, A. S.

    2017-07-01

    Crystalline collimators can potentially considerably improve the cleaning performance of the presently used collimator systems using amorphous collimators. A crystal-based collimation scheme which relies on the channeling particle deflection in bent crystals has been proposed and extensively studied both theoretically and experimentally. However, since the efficiency of particle capture into the channeling regime does not exceed ninety percent, this collimation scheme partly suffers from the same leakage problems as the schemes using amorphous collimators. To improve further the cleaning efficiency of the crystal-based collimation system to meet the requirements of the FCC, we suggest here a double crystal-based collimation scheme, to which the second crystal is introduced to enhance the deflection of the particles escaping the capture to the channeling regime in its first crystal. The application of the effect of multiple volume reflection in one bent crystal and of the same in a sequence of crystals is simulated and compared for different crystal numbers and materials at the energy of 50 TeV. To enhance also the efficiency of use of the first crystal of the suggested double crystal-based scheme, we propose: the method of increase of the probability of particle capture into the channeling regime at the first crystal passage by means of fabrication of a crystal cut and the method of the amplification of nonchanneled particle deflection through the multiple volume reflection in one bent crystal, accompanying the particle channeling by a skew plane. We simulate both of these methods for the 50 TeV FCC energy.

  2. High power and high energy electrodes using carbon nanotubes

    Science.gov (United States)

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  3. Influence of high energy electrons on ECRH in LHD

    Directory of Open Access Journals (Sweden)

    Ogasawara S.

    2012-09-01

    Full Text Available The central bulk electron temperature of more than 20 keV is achieved in LHD as a result of increasing the injection power and the lowering the electron density near 2 × 1018 m−3. Such collision-less regime is important from the aspect of the neoclassical transport and also the potential structure formation. The presences of appreciable amount of high energy electrons are indicated from hard X-ray PHA, and the discrepancy between the stored energy and kinetic energy estimated from Thomson scattering. ECE spectrum are also sensitive to the presence of high energy electrons and discussed by solving the radiation transfer equation. The ECRH power absorption to the bulk and the high energy electrons are dramatically affected by the acceleration and the confinement of high energy electrons. The heating mechanisms and the acceleration process of high energy electrons are discussed by comparing the experimental results and the ray tracing calculation under assumed various density and mean energy of high energy electrons.

  4. Sustaining high-energy orbits of bi-stable energy harvesters by attractor selection

    Science.gov (United States)

    Udani, Janav P.; Arrieta, Andres F.

    2017-11-01

    Nonlinear energy harvesters have the potential to efficiently convert energy over a wide frequency range; however, difficulties in attaining and sustaining high-energy oscillations restrict their applicability in practical scenarios. In this letter, we propose an actuation methodology to switch the state of bi-stable harvesters from the low-energy intra-well configuration to the coexisting high-energy inter-well configuration by controlled phase shift perturbations. The strategy is designed to introduce a change in the system state without creating distinct metastable attractors by exploiting the basins of attraction of the coexisting stable attractors. Experimental results indicate that the proposed switching strategy yields a significant improvement in energy transduction capabilities, is highly economical, enabling the rapid recovery of energy spent in the disturbance, and can be practically implemented with widely used low-strain piezoelectric transducers.

  5. Efficacy of triplet regimen antiemetic therapy for chemotherapy-induced nausea and vomiting (CINV) in bone and soft tissue sarcoma patients receiving highly emetogenic chemotherapy, and an efficacy comparison of single-shot palonosetron and consecutive-day granisetron for CINV in a randomized, single-blinded crossover study.

    Science.gov (United States)

    Kimura, Hiroaki; Yamamoto, Norio; Shirai, Toshiharu; Nishida, Hideji; Hayashi, Katsuhiro; Tanzawa, Yoshikazu; Takeuchi, Akihiko; Igarashi, Kentaro; Inatani, Hiroyuki; Shimozaki, Shingo; Kato, Takashi; Aoki, Yu; Higuchi, Takashi; Tsuchiya, Hiroyuki

    2015-03-01

    The first aim of this study was to evaluate combination antiemetic therapy consisting of 5-HT3 receptor antagonists, neurokinin-1 receptor antagonists (NK-1RAs), and dexamethasone for multiple high emetogenic risk (HER) anticancer agents in bone and soft tissue sarcoma. The second aim was to compare the effectiveness of single-shot palonosetron and consecutive-day granisetron in a randomized, single-blinded crossover study. A single randomization method was used to assign eligible patients to the palonosetron or granisetron arm. Patients in the palonosetron arm received a palonosetron regimen during the first and third chemotherapy courses and a granisetron regimen during the second and fourth courses. All patients received NK-1RA and dexamethasone. Patients receiving the palonosetron regimen were administered 0.75 mg palonosetron on day 1, and patients receiving the granisetron regimen were administered 3 mg granisetron twice daily on days 1 through 5. All 24 patients in this study received at least 4 chemotherapy courses. A total of 96 courses of antiemetic therapy were evaluated. Overall, the complete response CR rate (no emetic episodes and no rescue medication use) was 34%, while the total control rate (a CR plus no nausea) was 7%. No significant differences were observed between single-shot palonosetron and consecutive-day granisetron. Antiemetic therapy with a 3-drug combination was not sufficient to control chemotherapy-induced nausea and vomiting (CINV) during chemotherapy with multiple HER agents for bone and soft tissue sarcoma. This study also demonstrated that consecutive-day granisetron was not inferior to single-shot palonosetron for treating CINV. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  7. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  8. Highly efficient distributed generation and high-capacity energy storage

    DEFF Research Database (Denmark)

    Hemmes, Kas; Guerrero, Josep M.; Zhelev, Toshko

    2012-01-01

    and solar that deliver electricity to the grid. Solution directions are the development of smart grids, demand side management, virtual power plants and storage of electricity. These are directions that, rightly so, are already attracting a lot of attention and R&D funding. In this paper critical issues......With the growing amount of decentralized power production the design and operation of the grid has to be reconsidered. New problems include the two-way flow of electricity and maintaining the power balance given the increased amount of uncertain and fluctuating renewable energy sources like wind...... are identified and specified. However, we will also explore new solution directions based on an integrative approach as proposed by the Dutch Royal Academy of Science foresight committee on renewable energy conversions. These alternative solutions include flexible coproduction and local production of chemicals...

  9. High-energy photoproduction of neutral mesons

    CERN Document Server

    Charity, Tim

    1987-01-01

    This thesis presents results from the first full period of data-taking of the experiment WA69 at the Omega^'^ectrometer, CERN, Geneva. The experiment used a tagged photon beam of energy 60-180 GeV incident on a liquid hydrogen target to study photoproduction of hadronic states. The various components of the experiment are described, with particular emphasis on the electromagnetic calorimeters, and the associated offline software for event reconstruction and acceptance calculation. The performance of the outer calorimeter is discussed, and the pi^0 detection and reconstruction efficiency is examined by comparison with pi^{+/- } production. Searches for photoproduction of neutral meson states reveal a clear signal for the pi^0, eta^0 , and omega^0 mesons. The cross-section for elastic omega^0 production is estimated, and found to be consistent with the established value of 1 mub. The cross-section for inclusive pi^0 and eta^0 production is studied using the variable Feynman-x (x_{F }), and pi^0 production as a ...

  10. High Energy Computed Tomographic Inspection of Munitions

    Science.gov (United States)

    2016-11-01

    Picatinny scientists test body armor integrity, protect Soldiers’ lives,” http://www.army.mil/ article /94448, Picatinny Arsenal, NJ, 2013. 2. Youngberg, J...The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by...munitions and weapon systems. In many cases, the use of CT is overlooked or discounted due to its lack of use in high throughput production settings

  11. Electroweak splitting functions and high energy showering

    Science.gov (United States)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  12. Solution to the incompatibility between reactor protection logic and turbine shot logic. Scram by high pressure; Solucion a la incompatibilidad entre logica de proteccion de reactor y logica de disparo de turbina. SCRAM por alta presion

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Q, R.; Santiago F, C.; Gonzalez P, G., E-mail: ruben.ramos01@cfe.gob.mx [Comision Federal de Electricidad, Central Nuclear Laguna Verde, Subgerencia de Ingenieria, Carretera Cardel-Nautla Km. 42.5, Alto Lucero, Veracruz (Mexico)

    2013-10-15

    The nuclear power plant of Laguna Verde carried out the Modernization and Increase of Extended Power Project in its two Units (2005-2011). This modernization included to the electro-hydraulic control system of the main turbine, replacing an ana logical system by one digital (Digital Electro-hydraulic Control - DEHC) whose functions are of controlling the reactor pressure in the different operation ways as wells as of controlling the velocity and load of the main turbine. Also, it has protections that are related with diverse plant systems, as the Reactor Protection Systems (RPS). During the tests stage was realized a programmed load rejection, which Reactor Scram should cause when being presented the shot of main turbine. However, the logic of the RPS was inhibited due to the quick response of the new control DEHC, propitiating a condition of non prospective plant and, in consequence, the Reactor Scram happened for another protection of the RPS. (author)

  13. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P. (Kurchatov Institute, Moscow, Russia); Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle " Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

    2007-01-01

    Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is

  14. High-Performance Energy Applications and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Barton [Univ. of Wisconsin, Madison, WI (United States)

    2014-01-01

    The Paradyn project has a history of developing algorithms, techniques, and software that push the cutting edge of tool technology for high-end computing systems. Under this funding, we are working on a three-year agenda to make substantial new advances in support of new and emerging Petascale systems. The overall goal for this work is to address the steady increase in complexity of these petascale systems. Our work covers two key areas: (1) The analysis, instrumentation and control of binary programs. Work in this area falls under the general framework of the Dyninst API tool kits. (2) Infrastructure for building tools and applications at extreme scale. Work in this area falls under the general framework of the MRNet scalability framework. Note that work done under this funding is closely related to work done under a contemporaneous grant, “Foundational Tools for Petascale Computing”, SC0003922/FG02-10ER25940, UW PRJ27NU.

  15. School for Young High Energy Physicists

    CERN Document Server

    Evans, M E

    2003-01-01

    Forty-seven experimental particle physicists attended the 2002 Summer School, held, as usual, at The Cosener's House in Abingdon during September. The weather was glorious allowing a number of tutorials and impromptu seminars to take place in the lovely gardens. The lectures were of a high standard and were delivered and received enthusiastically, providing material for lively discussions in tutorials and elsewhere. The students each gave a ten-minute seminar and the general quality of the talks was impressive and the time keeping excellent. The activities described ranged from front-line physics analysis to preparations for the next generation of machines and detectors, and gave a clear indication of the breadth of particle physics activities in the UK

  16. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    Directory of Open Access Journals (Sweden)

    Taito Osaka

    2017-11-01

    Full Text Available Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL pulses by capturing single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. This is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.

  17. High-performance dual-energy imaging with a flat-panel detector: imaging physics from blackboard to benchtop to bedside

    Science.gov (United States)

    Siewerdsen, J. H.; Shkumat, N. A.; Dhanantwari, A. C.; Williams, D. B.; Richard, S.; Daly, M. J.; Paul, N. S.; Moseley, D. J.; Jaffray, D. A.; Yorkston, J.; Van Metter, R.

    2006-03-01

    The application of high-performance flat-panel detectors (FPDs) to dual-energy (DE) imaging offers the potential for dramatically improved detection and characterization of subtle lesions through reduction of "anatomical noise," with applications ranging from thoracic imaging to image-guided interventions. In this work, we investigate DE imaging performance from first principles of image science to preclinical implementation, including: 1.) generalized task-based formulation of NEQ and detectability as a guide to system optimization; 2.) measurements of imaging performance on a DE imaging benchtop; and 3.) a preclinical system developed in our laboratory for cardiac-gated DE chest imaging in a research cohort of 160 patients. Theoretical and benchtop studies directly guide clinical implementation, including the advantages of double-shot versus single-shot DE imaging, the value of differential added filtration between low- and high-kVp projections, and optimal selection of kVp pairs, filtration, and dose allocation. Evaluation of task-based NEQ indicates that the detectability of subtle lung nodules in double-shot DE imaging can exceed that of single-shot DE imaging by a factor of 4 or greater. Filter materials are investigated that not only harden the high-kVp beam (e.g., Cu or Ag) but also soften the low-kVp beam (e.g., Ce or Gd), leading to significantly increased contrast in DE images. A preclinical imaging system suitable for human studies has been constructed based upon insights gained from these theoretical and experimental studies. An important component of the system is a simple and robust means of cardiac-gated DE image acquisition, implemented here using a fingertip pulse oximeter. Timing schemes that provide cardiac-gated image acquisition on the same or successive heartbeats is described. Preclinical DE images to be acquired under research protocol will afford valuable testing of optimal deployment, facilitate the development of DE CAD, and support

  18. Structural effects of shot-peening in bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mear, F.O., E-mail: francois.mear@univ-lille1.f [University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Doisneau, B.; Yavari, A.R. [SIMaP-CNRS UA29, Domaine Universitaire BP 75, Saint Martin d' Heres 38402 (France); Greer, A.L. [University of Cambridge, Department of Materials Science and Metallurgy, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2009-08-26

    Shot-peening induces surface compressive stresses in bulk metallic glass components, improving their plasticity. Structural changes in the peened surface of fully glassy and partially crystalline Zr{sub 55}Al{sub 10}Cu{sub 30}Ni{sub 5} are studied by X-ray diffraction, transmission electron microscopy and differential scanning calorimetry. An earlier study is extended by examining the effect of sample temperature. While fully glassy samples show no phase change under peening, partially crystalline samples show either amorphization or crystallization depending on temperature. Peening can induce very large stored energy in metallic glasses rendering them susceptible to crystallization below room temperature, a result which may be relevant for improving the plasticity of these materials.

  19. High-energy drinks may provoke aortic dissection.

    Science.gov (United States)

    Jonjev, Zivojin S; Bala, Gustav

    2013-05-01

    High-energy drinks have become extremely popular after Red Bull's promotion at 1987 in Austria and 1997 in the United States. Since then, we witnessed spectacular increase in different brands, caffeine content and market consumption all over the world. However, there are no reports published in the scientific literature related with detrimental side effects after heavy consumption of high-energy drinks. We report a series of three high-risk cardiovascular patients who had aortic dissection (De Bakey type I and II) following significant consumption of high-energy drinks. All of them required emergency surgical procedure and were remaining stable after surgery. We propose that uncontrolled consumption of high-energy drinks, especially in patients with underlying heart disease, could provoke potentially lethal cardiovascular events as well as acute aortic dissection.

  20. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    AFRL-AFOSR-UK-TR-2017-0015 High energy ion acceleration by extreme laser radiation pressure Paul McKenna UNIVERSITY OF STRATHCLYDE VIZ ROYAL COLLEGE...MM-YYYY)   14-03-2017 2. REPORT TYPE  Final 3. DATES COVERED (From - To)  01 May 2013 to 31 Dec 2016 4. TITLE AND SUBTITLE High energy ion acceleration...Prescribed by ANSI Std. Z39.18 Page 1 of 1FORM SF 298 3/15/2017https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll 1 HIGH ENERGY ION ACCELERATION BY

  1. High-Energy-Density Physics at the National Ignition Facility

    Science.gov (United States)

    Hurricane, O. A.; Herrmann, M. C.

    2017-10-01

    At modern laser facilities, energy densities ranging from 1 Mbar to many hundreds of gigabars can regularly be achieved. These high-energy states of matter last for mere moments, measured in nanoseconds to tens of picoseconds, but during those times numerous high-precision instruments can be employed, revealing remarkable compressed matter physics, radiation-hydrodynamics physics, laser-matter interaction physics, and nuclear physics processes. We review the current progress of high-energy-density physics at the National Ignition Facility and describe the underlying physical principles.

  2. Multi-energy ion implantation from high-intensity laser

    OpenAIRE

    Cutroneo Mariapompea; Torrisi Lorenzo; Ullschmied Jiri; Dudzak Roman

    2016-01-01

    The laser-matter interaction using nominal laser intensity above 1015 W/cm2 generates in vacuum non-equilibrium plasmas accelerating ions at energies from tens keV up to hundreds MeV. From thin targets, using the TNSA regime, plasma is generated in the forward direction accelerating ions above 1 MeV per charge state and inducing high-ionization states. Generally, the ion energies follow a Boltzmann-like distribution characterized by a cutoff at high energy and by a Coulomb-shift towards high ...

  3. High-current pulses from inductive energy stores

    Science.gov (United States)

    Wipf, S. L.

    1981-11-01

    Superconducting inductive energy stores can be used for high power pulse supplies if a suitable current multiplication scheme is used. The concept of an inductive Marx generator is superior to a transformer. A third scheme, a variable flux linkage device, is suggested; in multiplying current it also compresses energy. Its function is in many ways analogous to that of a horsewhip. Superconductor limits indicate that peak power levels of TW can be reached for stored energies above 1 MJ.

  4. Robust Energy Management for Microgrids With High-Penetration Renewables

    OpenAIRE

    Zhang, Yu; Gatsis, Nikolaos; Georgios B. Giannakis

    2012-01-01

    Due to its reduced communication overhead and robustness to failures, distributed energy management is of paramount importance in smart grids, especially in microgrids, which feature distributed generation (DG) and distributed storage (DS). Distributed economic dispatch for a microgrid with high renewable energy penetration and demand-side management operating in grid-connected mode is considered in this paper. To address the intrinsically stochastic availability of renewable energy sources (...

  5. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  6. High-Energy Emission From Millisecond Pulsars

    Science.gov (United States)

    Harding, Alice K.; Usov, Vladimir V.; Muslimov, Alex G.

    2004-01-01

    The X-ray and gamma-ray spectrum of rotation-powered millisecond pulsars is investigated in a model for acceleration and pair cascades on open field lines above the polar caps. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, but the majority do not produce sufficient pairs to completely screen the accelerating electric field. In these sources, the primary and secondary electrons continue to accelerate to high altitude and their Lorentz factors are limited by curvature and synchrotron radiation reaction. The accelerating particles maintain high Lorentz factors and undergo cyclotron resonant absorption of radio emission, that produces and maintains a large pitch angle, resulting in a strong synchrotron component. The resulting spectra consist of several distinct components: curvature radiation from primary electrons dominating from 1 - 100 GeV, synchrotron radiation from primary and secondary electrons dominating up to about 100 MeV, and much weaker inverse-Compton radiation from primary electrons a t 0.1 - 1 TeV. We find that the relative size of these components depends on pulsar period, period derivative, and neutron star mass and radius with the level of the synchrotron component also depending sensitively on the radio emission properties. This model is successful in describing the observed X-ray and gamma-ray spectrum of PSR J0218+4232 as synchrotron radiation, peaking around 100 MeV and extending up to a turnover around several GeV. The predicted curvature radiation components from a number of millisecond pulsars, as well as the collective emission from the millisecond pulsars in globular clusters, should be detectable with AGILE and GLAST. We also discuss a hidden population of X-ray-quiet and radio-quiet millisecond pulsars which have evolved below the pair death line, some of which may be detectable by telescopes sensitive above 1 GeV. Subject headings: pulsars: general

  7. High Voltage in Noble Liquids for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, B. [Fermilab; Bernard, E. [Yale U.; Faham, C. H. [LBL, Berkeley; Ito, T. M. [Los Alamos; Lundberg, B. [Maryland U.; Messina, M. [Columbia U.; Monrabal, F. [Valencia U., IFIC; Pereverzev, S. P. [LLNL, Livermore; Resnati, F. [Zurich, ETH; Rowson, P. C. [SLAC; Soderberg, M. [Fermilab; Strauss, T. [Bern U.; Tomas, A. [Imperial Coll., London; Va' vra, J. [SLAC; Wang, H. [UCLA

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  8. Indonesian residential high rise buildings: A life cycle energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Utama, Agya; Gheewala, Shabbir H. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2009-11-15

    This study evaluates the effect of building envelopes on the life cycle energy consumption of high rise residential buildings in Jakarta, Indonesia. For high rise residential buildings, the enclosures contribute 10-50% of the total building cost, 14-17% of the total material mass and 20-30% of the total heat gain. The direct as well as indirect influence of the envelope materials plays an important role in the life cycle energy consumption of buildings. The initial embodied energy of typical double wall and single wall envelopes for high residential buildings is 79.5 GJ and 76.3 GJ, respectively. Over an assumed life span of 40 years, double walls have better energy performance than single walls, 283 GJ versus 480 GJ, respectively. Material selection, which depends not only on embodied energy but also thermal properties, should, therefore, play a crucial role during the design of buildings. (author)

  9. Cosmogenic neutrinos and ultra-high energy cosmic ray models

    Energy Technology Data Exchange (ETDEWEB)

    Aloisio, R.; Petrera, S. [Gran Sasso Science Institute (INFN), L' Aquila (Italy); Boncioli, D.; Grillo, A.F. [INFN/Laboratori Nazionali Gran Sasso, Assergi (Italy); Di Matteo, A. [INFN and Department of Physical and Chemical Sciences, University of L' Aquila, L' Aquila (Italy); Salamida, F., E-mail: aloisio@arcetri.astro.it, E-mail: denise.boncioli@lngs.infn.it, E-mail: armando.dimatteo@aquila.infn.it, E-mail: aurelio.grillo@lngs.infn.it, E-mail: sergio.petrera@aquila.infn.it, E-mail: salamida@ipno.in2p3.fr [Institut de Physique Nucléaire d' Orsay (IPNO), Université Paris 11, CNRS-IN2P3, Orsay (France)

    2015-10-01

    We use an updated version of SimProp, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.

  10. Study of High Energy Positron Annihilation in GEANT4

    CERN Document Server

    Chikuma, Naruhiro

    2014-01-01

    A high energy positron may annihilate with an electron in atoms not only into two photons, but also into muon pairs or hadrons if the energy is over the energy threshold, 43.69 GeV in laboratory frame with electrons at rest. This report shows modication of high energy electromagnetic processes in GEANT4(version 10.01.b01) in order to include these annihilation processes properly, validation of GEANT4 cross-sections of these processes by theoretical calculation, and the results of simulation for high energy processes in a simple setup. As a results of simulation, both of annihilation to muon pairs and to hadrons happen by the probability of 10-6 to 10-5.

  11. Beneficial effect of shot peening on steamside oxidation of 300-series austenitic steels: An electrochemical study

    Science.gov (United States)

    Bystrianský, Václav; Krausová, Aneta; Macák, Jan; Děd, Jiří; Eltai, Elsadig; Hamouda, Abdel Magid

    2018-01-01

    The formation of a protective oxide ensures the good corrosion resistance of austenitic steels in high temperature steam. However after long-term interaction even the protective oxide may tend to exfoliate and cause operational problems. With shot peening believed to be an effective method for mitigating steamside oxidation and exfoliation, we compared oxide layers formed on two materials: AISI 316H with a rugged untreated surface and Super304H with a shot-peened surface. In addition to conventional methods (SEM/EDS, Raman spectroscopy), Mott-Schottky analysis was used to characterize the oxide layers in order to determine the quality of the protective oxide. The oxides formed on Super 304H showed unexpected semiconducting behaviour with a significantly lower charge carrier density, thereby supporting the benefits of shot peening. Our findings extend the knowledge applicable to the design of more efficient coal-fired power plants.

  12. Gun-shot injuries in UK military casualties - Features associated with wound severity.

    Science.gov (United States)

    Penn-Barwell, Jowan G; Sargeant, Ian D

    2016-05-01

    Surgical treatment of high-energy gun-shot wounds (GSWs) to the extremities is challenging. Recent surgical doctrine states that wound tracts from high-energy GSWs should be laid open, however the experience from previous conflicts suggests that some of these injuries can be managed more conservatively. The aim of this study is to firstly characterise the GSW injuries sustained by UK forces, and secondly test the hypothesis that the likely severity of GSWs can be predicted by features of the wound. The UK Military trauma registry was searched for cases injured by GSW in the five years between 01 January 2009 and 31 December 2013: only UK personnel were included. Clinical notes and radiographs were then reviewed. Features associated with energy transfer in extremity wounds in survivors were further examined with number of wound debridements used as a surrogate marker of wound severity. There were 450 cases who met the inclusion criteria. 96 (21%) were fatally injured, with 354 (79%) surviving their injuries. Casualties in the fatality group had a median New Injury Severity Score (NISS) of 75 (IQR 75-75), while the median NISS of the survivors was 12 (IQR 4-48) with 10 survivors having a NISS of 75. In survivors the limbs were most commonly injured (56%). 'Through and through' wounds, where the bullet passes intact through the body, were strongly associated with less requirement for debridement (pwound debridements (p=0.0002), as there was if a bullet fractured a bone (p=0.0006). More complex wounds, as indicated by the requirement for repeated debridements, are associated with injuries where the bullet does not pass straight through the body, or where a bone is fractured. Gunshot wounds should be assessed according to the likely energy transferred, extremity wounds without features of high energy transfer do not require extensive exploration. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Crack formation and fracture energy of normal and high strength ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. The crack path through composite materials such as concrete depends on the mechanical interaction of inclusions with the cement-based matrix. Fracture energy depends on the deviations of a real crack from an idealized crack plane. Fracture energy and strain softening of normal, high strength, and self- ...

  14. On the bremsstrahlung background correction to the high-energy ...

    Indian Academy of Sciences (India)

    A methodology for bremsstrahlung (BS) background correction to extract a true Compton profile in high-energy Compton scattering experiments is presented. The BS background profiles for Hg, computed within the Born approximation, are estimated for different values of incident energy. It is seen for the first time that the BS ...

  15. High energy astrophysical neutrino flux and modified dispersion relations

    DEFF Research Database (Denmark)

    Alba, J. L. Bazo; Bustamante, M.; Gago, A. M.

    2009-01-01

    Motivated by the interest in searches for violation of CPT invariance, we study its possible effects in the flavour ratios of high-energy neutrinos coming from cosmic accelerators. In particular, we focus on the effect of an energy independent new physics contribution to the neutrino flavour osci...

  16. On the bremsstrahlung background correction to the high-energy ...

    Indian Academy of Sciences (India)

    Abstract. A methodology for bremsstrahlung (BS) background correction to extract a true Compton profile in high-energy Compton scattering experiments is presented. The. BS background profiles for Hg, computed within the Born approximation, are estimated for different values of incident energy. It is seen for the first time ...

  17. Working group report: High energy and collider physics

    Indian Academy of Sciences (India)

    and Rishikesh Vaidya20. 1Tata Institute of Fundamental Research, Mumbai 400 005, India ... The projects undertaken in the working group I on high energy and collider physics can be classified into (i) Higgs ...... lous couplings for realistic polarization and integrated luminosity at a design LC energy of √s = 500 GeV.

  18. High Energy Charged Particles in Space at One Astronomical Unit

    Science.gov (United States)

    Feynman, J.; Gabriel, S. B.

    1995-01-01

    Single event effects and many other spacecraft anomalies are caused by positively charged high energy particles impinging on the vehicle and its component parts. Reviewed here are the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects. State-of-the-art engineering models are briefly described along with comments on the future work required.

  19. SnapShot: Phosphoregulation of Mitosis.

    Science.gov (United States)

    Burgess, Andrew; Vuong, Jenny; Rogers, Samuel; Malumbres, Marcos; O'Donoghue, Seán I

    2017-06-15

    During mitosis, a cell divides its duplicated genome into two identical daughter cells. This process must occur without errors to prevent proliferative diseases (e.g., cancer). A key mechanism controlling mitosis is the precise timing of more than 32,000 phosphorylation and dephosphorylation events by a network of kinases and counterbalancing phosphatases. The identity, magnitude, and temporal regulation of these events have emerged recently, largely from advances in mass spectrometry. Here, we show phosphoevents currently believed to be key regulators of mitosis. For an animated version of this SnapShot, please see http://www.cell.com/cell/enhanced/odonoghue2. Copyright © 2017. Published by Elsevier Inc.

  20. Shot noise of a quantum shuttle

    DEFF Research Database (Denmark)

    Novotny, Tomas; Donarini, Andrea; Flindt, Christian

    2004-01-01

    We formulate a theory for shot noise in quantum nanoelectromechanical systems. As a specific example, the theory is applied to a quantum shuttle, and the zero-frequency noise, measured by the Fano factor F, is computed. F reaches very low values (Fsimilar or equal to10(-2)) in the shuttling regime...... even in the quantum limit, confirming that shuttling is universally a low noise phenomenon. In approaching the semiclassical limit, the Fano factor shows a giant enhancement (Fsimilar or equal to10(2)) at the shuttling threshold, consistent with predictions based on phase-space representations...

  1. Fatigue strength improvement of the AISI 316Ti austenitic stainless steel by shot peening

    Directory of Open Access Journals (Sweden)

    František Nový

    2014-10-01

    Full Text Available Stainless steels are structural materials used for a wide range of applications. One of the fields of application of these highly corrosion resistant materials is for various medical applications. Different methods of mechanical property improvement have been studied in recent years to increase the durability of components manufactured from these materials. The main goal of this study was an analysis of fatigue strength improvement of the AISI 316Ti austenitic stainless steel by shot peening. A significant improvement of surface hardness, yield strength and fatigue limit by shot peening was observed in this study. This is despite increasing the surface roughness which usually degrades material’s fatigue strength.

  2. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    Energy Technology Data Exchange (ETDEWEB)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  3. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  4. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  5. The role of technology in high-energy research

    CERN Document Server

    Carreras, Rafel

    1974-01-01

    A brief survey of the activities of CERN is presented, and examples of technological problems occurring in the performance of high-energy physics experiments are given. The main fields discussed are: acceleration, production of particles, detectors, and data handling.

  6. Theoretical high energy physics research at the University of Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, J.L.; Martinec, E.J.; Sachs, R.G.

    1990-09-01

    This report discusses research being done at the University of Chicago in High Energy Physics. Some topic covered are: CP violation; intermediate vector bosons; string models; supersymmetry; and rare decay of kaons. (LSP)

  7. Final Report. Research in Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Greensite, Jeffrey P. [San Francisco State Univ., CA (United States); Golterman, Maarten F.L. [San Francisco State Univ., CA (United States)

    2015-04-30

    Grant-supported research in theoretical high-energy physics, conducted in the period 1992-2015 is briefly described, and a full listing of published articles result from those research activities is supplied.

  8. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  9. Silicon-embedded copper nanostructure network for high energy storage

    Science.gov (United States)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  10. Shot Noise Thermometry for Thermal Characterization of Templated Carbon Nanotubes

    OpenAIRE

    Sayer, Robert A; Kim, Sunkook; Franklin, Aaron D; Mohammadi, Saeed; Fisher, Timothy

    2010-01-01

    A carbon nanotube (CNT) thermometer that operates on the principles of electrical shot noise is reported. Shot noise thermometry is a self-calibrating measurement technique that relates statistical fluctuations in dc current across a device to temperature. A structure consisting of vertical, top, and bottom-contacted single-walled carbon nanotubes in a porous anodic alumina template was fabricated and used to measure shot noise. Frequencies between 60 and 100 kHz were observed to preclude sig...

  11. Fifth International Conference on High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat

    2017-07-05

    The Fifth International Conference on High Energy Density Physics (ICHED 2015) was held in the Catamaran Hotel in San Diego from August 23-27, 2015. This meeting was the fifth in a series which began in 2008 in conjunction with the April meeting of the American Physical Society (APS). The main goal of this conference has been to bring together researchers from all fields of High Energy Density Science (HEDS) into one, unified meeting.

  12. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ....... Complementary information is obtained by post mortem electron microscopy on the same sample volume previously investigated by HEDM....

  13. 11th Latin American Symposium on High Energy Physics

    CERN Document Server

    2016-01-01

    SILAFAE is one of the premier series of international meetings – High energy physics in Latin America. The present edition will be held in the city of Antigua Guatemala, from November 14 - 18th 2016. The program contains plenary talks aimed at reviewing the status of the recent advances in frontier topics in High Energy Physics, both theoretical and experimental. It also includes parallel sessions of specialized talks.

  14. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  15. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  16. High Energy Measurement of the Deuteron Photodisintegration Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Elaine [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2002-05-01

    New measurements of the high energy deuteron photodisintegration differential cross section were made at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. Two experiments were performed. Experiment E96-003 was performed in experimental Hall C. The measurements were designed to extend the highest energy differential cross section values to 5.5 GeV incident photon energy at forward angles. This builds upon previous high energy measurements in which scaling consistent with the pQCD constituent counting rules was observed at 90 degrees and 70 degrees in the center of mass. From the new measurements, a threshold for the onset of constituent counting rule scaling seems present at transverse momentum approximately 1.3 GeV/c. The second experiment, E99-008, was performed in experimental Hall A. The measurements were designed to explore the angular distribution of the differential cross section at constant energy. The measurements were made symmetric about 90 degrees

  17. Methodology of Testing Shot Blasting Machines in Industrial Conditions

    Directory of Open Access Journals (Sweden)

    R. Wrona

    2012-04-01

    Full Text Available Shot blasting machines are widely used for automated surface treatment and finishing of castings. In shot blasting processes the stream of shots is generated and shaped by blasting turbines, making up a kinetic and dynamic system comprising a separating rotor, an adapting sleeve and a propelling rotor provided with blades. The shot blasting performance- i.e. the quality of shot treated surfaces depends on the actual design and operational parameters of the unit whilst the values of relevant parameters are associated with the geometry of turbine components and the level of its integration with the separator system. The circulation of the blasting medium becomes the integrating factor of the process line, starting from the hopper, through the propeller turbine, casting treatment, separation of contaminated abrasive mixture, to its recycling and reuse.Inferior quality of the abrasive agent (shot and insufficient purity of the abrasive mixture are responsible for low effectiveness of shot blasting. However, most practitioners fail to fully recognise the importance of proper diagnostics of the shot blasting process in industrial conditions. The wearing of major machine components and of the blasting agent and quality of shot treated surfaces are often misinterpreted, hence the need to take into account all factors involved in the process within the frame of a comprehensive methodology.This paper is an attempt to formulate and apply the available testing methods to the engineering practice in industrial conditions.

  18. Entrance, exit, and reentrance of one shot with a shotgun

    DEFF Research Database (Denmark)

    Gulmann, C; Hougen, H P

    1999-01-01

    The case being reported is one of a homicidal shotgun fatality with an unusual wound pattern. A 34-year-old man was shot at close range with a 12-gauge shotgun armed with No. 5 birdshot ammunition. The shot entered the left axillary region, exited through the left infraclavicular region, and ther......The case being reported is one of a homicidal shotgun fatality with an unusual wound pattern. A 34-year-old man was shot at close range with a 12-gauge shotgun armed with No. 5 birdshot ammunition. The shot entered the left axillary region, exited through the left infraclavicular region...

  19. Searching for ultra-high energy cosmic rays with smartphones

    Science.gov (United States)

    Whiteson, Daniel; Mulhearn, Michael; Shimmin, Chase; Cranmer, Kyle; Brodie, Kyle; Burns, Dustin

    2016-06-01

    We propose a novel approach for observing cosmic rays at ultra-high energy (>1018 eV) by repurposing the existing network of smartphones as a ground detector array. Extensive air showers generated by cosmic rays produce muons and high-energy photons, which can be detected by the CMOS sensors of smartphone cameras. The small size and low efficiency of each sensor is compensated by the large number of active phones. We show that if user adoption targets are met, such a network will have significant observing power at the highest energies.

  20. Energy sources of the high latitude upper atmosphere

    Science.gov (United States)

    Banks, P. M.

    1981-01-01

    Electrodynamic (Joule) dissipation and plasma wave heating are reviewed as sources of energy for the upper atmosphere at high latitudes. Electrodynamic heating in the thermosphere is described by a generalized energy balance equation taking into account a variety of inelastic processes and energy losses, and the use of height-integrated values of the Joule heating rate to estimate the importance of electrodynamic heating at high latitudes is discussed. Observations of electrons between 95 and 115 km altitude that are up to 1000 K hotter than the neutral atmosphere is presented as evidence for atmospheric heating due to unstable plasma waves arising from the Farley-Buneman modified two-stream instability.

  1. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    CERN Document Server

    Nakane, Y; Sakamoto, Y

    2003-01-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable...

  2. CALET: High energy cosmic ray observatory on International Space Station

    Science.gov (United States)

    Mori, Masaki; CALET Collaboration

    2012-12-01

    The CALorimeteric Electron Telescope (CALET) is a Japanese-led international mission being developed as part of the utilization plan for the International Space Station (ISS). CALET will be launched by an H-II B rocket utilizing the Japanese developed HTV (H-II Transfer Vehicle) in 2014. The instrument will be robotically emplaced upon the Exposed Facility attached to the Japanese Experiment Module (JEM-EF). CALET is a calorimeter based instrument which will have superior energy resolution and excellent separation between hadrons and electrons and between charged particles and gamma rays in the GeV to trans-TeV energy range. CALET will address many questions in high energy astrophysics, including (1) the nature of the sources of high energy particles and photons, through the high energy electron spectrum, (2) signatures of dark matter, in either the high energy electron or gamma ray spectrum, (3) the details of particle propagation in the Galaxy, by a combination of energy spectrum measurements of electrons, protons and highercharged nuclei. In this paper the outline and current status of CALET are summarized.

  3. High energy high intensity coherent photon beam for the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of ..pi../sup 0/ in the neutral beam, are converted to e/sup +/e/sup -/ pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator.

  4. Solar Energy Education. Renewable energy activities for junior high/middle school science

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  5. Variably spaced superlattice energy filter, a new device design concept for high-energy electron injection

    Science.gov (United States)

    Summers, C. J.; Brennan, K. F.

    1986-01-01

    A new variably spaced superlattice energy filter is proposed which provides high-energy injection of electrons into a bulk semiconductor layer based on resonant tunneling between adjacent quantum well levels which are brought into alignment by an applied bias. Applications of this concept to a variety of optoelectronic devices and to thin-film electroluminescent devices and photodetectors are discussed.

  6. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  7. High-energy X-ray spectra of five sources.

    Science.gov (United States)

    Ricker, G. R.; Mcclintock, J. E.; Gerassimenko, M.; Lewin , W. H. G.

    1973-01-01

    On October 15-16, 1970, we carried out balloon X-ray observations from Australia at energies above 15 keV. We present the high-energy X-ray spectra of three sources discovered by us, GX 301-2, GX 304-1, and GX 1 + 4. The data suggest that these high-energy sources correspond to the sources 2U 1223-62, 2U 1258-61, and 2U 1728-24 respectively. We also present the spectra for two additional sources, GX 5-1 (2U 1757-25) and GX 3 + 1 (2U 1744-26). The average intensity of the highly variable source GX 301-2 was observed to be as great as Tau X-1 in the energy range 15-50 keV.

  8. Spectral shape variation of interstellar electrons at high energies

    Science.gov (United States)

    Tan, L. C.

    1985-01-01

    The high energy electron spectrum analysis has shown that the electron intensity inside the H2 cloud region, or in a spiral arm, should be much lower than that outside it and the observed electron energy spectrum should flatten again at about 1 TeV. In the framework of the leady box model the recently established rigidity dependence of the escape pathlength of cosmic rays would predict a high energy electron spectrum which is flatter than the observed one. This divergence is explained by assuming that the leaky box model can only apply to cosmic ray heavy nuclei, and light nuclei and electrons in cosmic rays may have different behaviors in the interstellar propagation. Therefore, the measured data on high energy electrons should be analyzed based on the proposed nonuniform galactic disk (NUGD) mode.

  9. Host boring preferences of the tea shot-hole borer Euwallacea fornicatus (Coleoptera: Curculionidae: Scolytinae)

    Science.gov (United States)

    The non-native shot-hole borer, Euwallacea nr. fornicatus Eichhoff (Coleoptera: Curculionidae: Scolytinae), was discovered in Florida’s avocado production area in Homestead in 2010. It is a highly polyphagous ambrosia beetle that carries Fusarium fungal symbionts. In susceptible host trees, the fung...

  10. A novel percutaneous nephrolithotomy (PCNL set: The ‘Economical One-shot PCNL Set’ (Ecoset

    Directory of Open Access Journals (Sweden)

    Necmettin Penbegul

    2017-09-01

    Conclusions: The one-shot dilatation technique using the Ecoset for PCNL can be feasibly, safely, and effectively performed in almost every adult patient. The Amplatz dilator set and balloon dilator set have the disadvantage of relatively high cost, whereas the Ecoset is the cheapest ‘disposable set’ that can be used during PCNL surgery.

  11. Energy compensation after sprint- and high-intensity interval training.

    Science.gov (United States)

    Schubert, Matthew M; Palumbo, Elyse; Seay, Rebekah F; Spain, Katie K; Clarke, Holly E

    2017-01-01

    Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE). This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI) and decreases in non-exercise physical activity (NEPA). We examined the degree of energy compensation in healthy young men and women in response to interval training. Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1) completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography) and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100%) and low (high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  12. Evaluation of Monte Carlo tools for high energy atmospheric physics

    Science.gov (United States)

    Rutjes, Casper; Sarria, David; Broberg Skeltved, Alexander; Luque, Alejandro; Diniz, Gabriel; Østgaard, Nikolai; Ebert, Ute

    2016-11-01

    The emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.

  13. Evaluation of Monte Carlo tools for high energy atmospheric physics

    Directory of Open Access Journals (Sweden)

    C. Rutjes

    2016-11-01

    Full Text Available The emerging field of high energy atmospheric physics (HEAP includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.

  14. Time correlations of high energy muons in an underground detector

    CERN Document Server

    Becherini, Y; Chiarusi, T; Cozzi, M; Dekhissi, H; Derkaoui, J; Esposito, L S; Giacomelli, G; Giglietto, N; Giorgini, M; Maaroufi, F; Mandrioli, G; Manzoor, S; Margiotta, A; Moussa, A

    2005-01-01

    We present the result of a search for correlations in the arrival times of high energy muons collected from 1995 till 2000 with the streamer tube system of the complete MACRO detector at the underground Gran Sasso Lab. Large samples of single muons (8.6 million), double muons (0.46 million) and multiple muons with multiplicities from 3 to 6 (0.08 million) were selected. These samples were used to search for time correlations of cosmic ray particles coming from the whole upper hemisphere or from selected space cones. The results of our analyses confirm with high statistics a random arrival time distribution of high energy cosmic rays.

  15. Energy Efficient and Compact RF High-Power Amplifiers

    NARCIS (Netherlands)

    Calvillo Cortés, D.A.

    2014-01-01

    The main objectives of this thesis are to improve the energy efficiency and physical form-factor of high-power amplifiers in base station applications. As such, the focus of this dissertation is placed on the outphasing amplifier concept, which can offer high-efficiency, good linearity and excellent

  16. High-energy pediatric pelvic and acetabular fractures

    NARCIS (Netherlands)

    Amorosa, Louis F.; Kloen, Peter; Helfet, David L.

    2014-01-01

    Pediatric pelvic and acetabular fractures are rare injuries. They are almost always the result of a high-energy injury mechanism. A full trauma protocol should be instituted, having a high index of suspicion for associated life-threatening injuries. In the past, it was recommended that almost all of

  17. High energy neutrino scattering results from NuTeV

    Science.gov (United States)

    Naples, D.; Adams, T.; Alton, A.; Avvakumov, S.; de Barbaro, L.; de Barbaro, P.; Bernstein, R. H.; Bodek, A.; Bolton, T.; Brau, J.; Buchholz, D.; Budd, H.; Conrad, J.; Drucker, R. B.; Fleming, B. T.; Formaggio, J.; Frey, R.; Goldman, J.; Goncharov, M.; Harris, D. A.; Kim, J. H.; Koutsoliotas, S.; Johnson, R. A.; Lamm, M. J.; McDonald, J.; Marsh, W.; Mason, D.; McFarland, K. S.; McNulty, C.; Nienaber, P.; Radescu, V.; Romosan, A.; Sakumoto, W. K.; Schellman, H.; Shaevitz, M. H.; Spentzouris, P.; Stern, E. G.; Suwonjandee, N.; Tobien, N.; Tzanov, M.; Vaitaitis, A.; Vakili, M.; Yang, U. K.; Yu, J.; Zeller, G. P.; Zimmerman, E. D.

    2003-04-01

    The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and antineutrino interactions using a novel high-energy sign-selected neutrino beam. Recent results from this sample are presented including a precision measurement of the electroweak parameter sin2≡ W, which is observed to be three standard deviations above the standard model prediction.

  18. Graphene supercapacitor with both high power and energy density

    Science.gov (United States)

    Yang, Hao; Kannappan, Santhakumar; Pandian, Amaresh S.; Jang, Jae-Hyung; Lee, Yun Sung; Lu, Wu

    2017-11-01

    Supercapacitors, based on fast ion transportation, are specialized to provide high power, long stability, and efficient energy storage using highly porous electrode materials. However, their low energy density excludes them from many potential applications that require both high energy density and high power density performances. Using a scalable nanoporous graphene synthesis method involving an annealing process in hydrogen, here we show supercapacitors with highly porous graphene electrodes capable of achieving not only a high power density of 41 kW kg-1 and a Coulombic efficiency of 97.5%, but also a high energy density of 148.75 Wh kg-1. A high specific gravimetric and volumetric capacitance (306.03 F g-1 and 64.27 F cm-3) are demonstrated. The devices can retain almost 100% capacitance after 7000 charging/discharging cycles at a current density of 8 A g-1. The superior performance of supercapacitors is attributed to their ideal pore size, pore uniformity, and good ion accessibility of the synthesized graphene.

  19. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  20. Machine learning applied to single-shot x-ray diagnostics in an XFEL

    CERN Document Server

    Sanchez-Gonzalez, A; Olivier, C; Barillot, T R; Ilchen, M; Lutman, A A; Marinelli, A; Maxwell, T; Achner, A; Agåker, M; Berrah, N; Bostedt, C; Buck, J; Bucksbaum, P H; Montero, S Carron; Cooper, B; Cryan, J P; Dong, M; Feifel, R; Frasinski, L J; Fukuzawa, H; Galler, A; Hartmann, G; Hartmann, N; Helml, W; Johnson, A S; Knie, A; Lindahl, A O; Liu, J; Motomura, K; Mucke, M; O'Grady, C; Rubensson, J-E; Simpson, E R; Squibb, R J; Såthe, C; Ueda, K; Vacher, M; Walke, D J; Zhaunerchyk, V; Coffee, R N; Marangos, J P

    2016-01-01

    X-ray free-electron lasers (XFELs) are the only sources currently able to produce bright few-fs pulses with tunable photon energies from 100 eV to more than 10 keV. Due to the stochastic SASE operating principles and other technical issues the output pulses are subject to large fluctuations, making it necessary to characterize the x-ray pulses on every shot for data sorting purposes. We present a technique that applies machine learning tools to predict x-ray pulse properties using simple electron beam and x-ray parameters as input. Using this technique at the Linac Coherent Light Source (LCLS), we report mean errors below 0.3 eV for the prediction of the photon energy at 530 eV and below 1.6 fs for the prediction of the delay between two x-ray pulses. We also demonstrate spectral shape prediction with a mean agreement of 97%. This approach could potentially be used at the next generation of high-repetition-rate XFELs to provide accurate knowledge of complex x-ray pulses at the full repetition rate.

  1. High-energy vector boson scattering after the Higgs discovery

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, Wolfgang; Sekulla, Marco [University of Siegen, Siegen (Germany); Ohl, Thorsten [Wuerzburg University, Wuerzburg (Germany); Reuter, Juergen [DESY, Hamburg (Germany)

    2015-07-01

    Weak vector boson scattering (VBS)at high energies will be one of the key measurements in the upcoming LHC runs. It is very sensitive to any new physics associated with electroweak symmetry breaking. But a conventional EFT analysis will fail at high energies, especially in the presence of the light 125 GeV Higgs boson. In this talk I present how to extend the EFT to a simplified model by adding additional resonances to VBS and therefore increase the energy validity of the theoretical description. Furthermore I introduce the T-matrix unitarization scheme as an extension of the K-matrix unitarization prescription. It provides an asymptotically consistent reference model, which has been matched to the low-energy effective theory of arbitrary non-perturbative and perturbative models.

  2. MARIACHI - Detecting Ultra High Energy Cosmic Rays with radar.

    Science.gov (United States)

    Takai, Helio

    2006-04-01

    Ultra High Energy Cosmic Rays with energies in excess of 10^20eV (100 EeV) have been detected by several experiments. They present a conundrum whose solution may provide insight into the origins and evolution of the universe. There are no known sources within our galaxy or those close to us that could accelerate particles to these almost macroscopic energies, and yet the turn-on of pion production through the interactions of high energy charged particles with the 2.7K microwave background provides a strong limit for propagation from greater distances. The detection of UHECR to date has been accomplished either by detection of the particles from the extensive air showers by ground arrays or by means of detection of the light produced by the EAS in the atmosphere from Cerenkov radiation. MARIACHI (Mixed Apparatus for Radar Investigation of Cosmic-rays of High Ionization) is an innovative concept that will explore the detection of UHECR by bi-static radar using VHF transmitters. If successful, the MARIACHI technique will allow for detection of UHECR economically over much larger areas than currently possible, and might provide for detection of the associated ultra high energy neutrino flux. MARIACHI is also innovative in that ground array detectors that will initially confirm the radio signals are scintillator arrays to be built and operated by high school students and teachers. We will present the present status of the experiment.

  3. CONSTRAINTS ON VERY HIGH ENERGY EMISSION FROM GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Barnacka, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Berger, K. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connaughton, V. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Cui, W. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Falcone, A., E-mail: aune@astro.ucla.edu, E-mail: sjzhu@umd.edu, E-mail: veres@email.gwu.edu [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2014-11-01

    Prompt emission from the very fluent and nearby (z = 0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-Ray Space Telescope for ∼70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ∼71 ks (∼20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB 130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.

  4. On formation of electromagnetic clot of high energy in plasma

    Science.gov (United States)

    Alanakyan, Yu. R.

    2017-04-01

    It is known that an oscillating electromagnetic field can be localized inside a self-sustaining resonator formed in plasma. In this paper, it is shown that the Maxwell tension of the electromagnetic field can reduce the resonator volume, thereby increasing the energy density of the field considered. This results in the formation of a quasi-stationary structure of high electromagnetic energy density. A similar mechanism explains the ball lightning phenomenon.

  5. High-efficiency pumps drastically reduce energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2002-05-01

    Wilo's Stratos pumps for air conditioning and other domestic heating applications combine the advantages of wet runner technology with an innovative electronic commutator motor. The energy consumption of these high-efficiency pumps is halved compared with similar wet runner designs. With vast numbers of pumps used in buildings across Europe alone, the adoption of this technology potentially offers significant energy sayings. (Author)

  6. Investigation of high capacity heat energy storage for building applications

    OpenAIRE

    Ding, Yate

    2014-01-01

    The problems of excessive consumption of fossil resources, oil shortages and greenhouse gas emissions are becoming increasingly severe. Research and development work on new methods of thermal energy storage are imminently required. To effectively store seasonal renewable energy, a novel high capacity heat storage system has been designed and evaluated/validated through laboratory experiments and numerical simulations in this research. The system is driven by direct flow evacuated tube solar c...

  7. High energy gain by volume ignition-A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Eliezer, S.; Martinez-Val, J.M.; Piera, M. [Institute of Nuclear Fusion, Polytechnical University of Madrid (Spain); Hora, H. [Institute of Nuclear Fusion, Polytechnical University of Madrid (Spain)]|[Theoretical Physics Department, University of New South Wales, Kensington (Australia)

    1994-10-05

    Ignition models for Inertial Confinement Fusion (ICF) are analyzed on the basis of fuel energy balances. Spark ignition models are in general identified as more effective alternatives than raw volume ignition. Nevertheless, it is demonstrated that volume ignition can yield very high energy gains comparable to spark ignition if the whole picture is properly taken into account. References are made to some outstanding experiments and to numerical simulations which support this tutorial explanation. {copyright} 1994 {ital American} {ital Institute} {ital of} {ital Physics}

  8. High energy physics research. Final technical report, 1957--1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  9. Energy compensation after sprint- and high-intensity interval training.

    Directory of Open Access Journals (Sweden)

    Matthew M Schubert

    Full Text Available Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE. This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI and decreases in non-exercise physical activity (NEPA. We examined the degree of energy compensation in healthy young men and women in response to interval training.Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1 completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100% and low (< 100% levels of energy compensation were assessed. Linear regressions were utilized to determine associations between energy compensation and ΔVO2max, ΔEI, ΔNEPA, and Δresting metabolic rate.Very large individual differences in energy compensation were noted. In comparison to individuals with low levels of compensation, individuals with high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p < 0.001 and ΔNEPA (p < 0.001.Considerable variation exists in response to short-term, low dose interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  10. Endogenous magnetic reconnection and associated high energy plasma processes

    Science.gov (United States)

    Coppi, B.; Basu, B.

    2018-02-01

    An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic change of magnetic field topology occurs. A process of this kind is shown to take place when an electron temperature gradient is present in a magnetically confined plasma and the evolving electron temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even when large macroscopic distances are considered. In view of the fact that there are plasmas in the Universe with considerable electron thermal energy contents this feature can be relied upon in order to produce generation or conversion of magnetic energy, high energy particle populations and momentum and angular momentum transport.

  11. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Dai, Wei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Xu, Nu [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Zhuang, Pengfei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)

    2016-12-15

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  12. Why Some Pool Shots are More Difficult Than Others

    Indian Academy of Sciences (India)

    IAS Admin

    The physics behind the game of billiards is rather well understood as is our grasp of classical me- chanics. We present here a mathematical expla- nation of why slice shots are more difficult than direct shots. Despite a large number of treatises dedicated to the study of physics of billiards, it appears that the simple ...

  13. SnapShot: Olfactory Classical Conditioning of Drosophila.

    Science.gov (United States)

    Davis, Ronald L

    2015-10-08

    This SnapShot summarizes current knowledge about the molecules and circuitry that mediate olfactory memory formation in Drosophila, with emphasis on neural circuits carrying the learned sensory information; the molecular mechanisms for acquisition, memory storage, and forgetting; and the output pathways for memory expression. To view this SnapShot, open or download the PDF. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Josephson radiation and shot noise of a semiconductor nanowire junction

    Science.gov (United States)

    van Woerkom, David J.; Proutski, Alex; van Gulik, Ruben J. J.; Kriváchy, Tamás; Car, Diana; Plissard, Sébastian R.; Bakkers, Erik P. A. M.; Kouwenhoven, Leo P.; Geresdi, Attila

    2017-09-01

    We measured the Josephson radiation emitted by an InSb semiconductor nanowire junction utilizing photon-assisted quasiparticle tunneling in an ac-coupled superconducting tunnel junction. We quantify the action of the local microwave environment by evaluating the frequency dependence of the inelastic Cooper-pair tunneling of the nanowire junction and find the zero-frequency impedance Z (0 )=492 Ω with a cutoff frequency of f0=33.1 GHz . We extract a circuit coupling efficiency of η ≈0.1 and a detector quantum efficiency approaching unity in the high-frequency limit. In addition to the Josephson radiation, we identify a shot noise contribution with a Fano factor F ≈1 , consistently with the presence of single electron states in the nanowire channel.

  15. Robust Shot Boundary Detection from Video Using Dynamic Texture

    Directory of Open Access Journals (Sweden)

    Peng Taile

    2014-03-01

    Full Text Available Video boundary detection belongs to a basis subject in computer vision. It is more important to video analysis and video understanding. The existing video boundary detection methods always are effective to certain types of video data. These methods have relatively low generalization ability. We present a novel shot boundary detection algorithm based on video dynamic texture. Firstly, the two adjacent frames are read from a given video. We normalize the two frames to get the same size frame. Secondly, we divide these frames into some sub-domain on the same standard. The following thing is to calculate the average gradient direction of sub-domain and form dynamic texture. Finally, the dynamic texture of adjacent frames is compared. We have done some experiments in different types of video data. These experimental results show that our method has high generalization ability. To different type of videos, our algorithm can achieve higher average precision and average recall relative to some algorithms.

  16. Single-shot time stretch stimulated Raman spectroscopy (Conference Presentation)

    Science.gov (United States)

    Saltarelli, Francesco; Kumar, Vikas; Viola, Daniele; Crisafi, Francesco; Preda, Fabrizio; Cerullo, Giulio; Polli, Dario

    2017-02-01

    Stimulated Raman scattering spectroscopy is a powerful technique for label-free molecular identification, but its broadband implementation is technically challenging. We introduce and experimentally demonstrate a novel approach based on photonic time stretch. The broadband femtosecond Stokes pulse, after interacting with the sample, is stretched by a telecom fiber to 15ns, mapping its spectrum in time. The signal is sampled through a fast analog-to-digital converter, providing single-shot spectra at 80-kHz rate. We demonstrate 10^-5 sensitivity over 500 cm-1 in the C-H region. Our results pave the way to high-speed broadband vibrational imaging for materials science and biophotonics.

  17. The Slap Shot in Ice Hockey

    Science.gov (United States)

    Cross, Rod; Lindsey, Crawford

    2018-01-01

    An ice hockey player can strike a puck at speeds up to about 45 m/s (100 mph) using a technique known as the slap shot. There is nothing unusual about the speed, since golf balls, tennis balls, and baseballs can also be projected at that speed or even higher. The unusual part is that the player strikes the ice before striking the puck, causing the stick to slow down and to bend. If a tennis player or a golfer did something like that, by hitting the ground before hitting the ball, it would be classed as a miss-hit and the ball would probably dribble away at low speed. Nevertheless, there appears to be a significant advantage in hitting the ice before hitting the puck, otherwise hockey players would have learned from experience not to do that.

  18. SnapShot: Electrochemical Communication in Biofilms.

    Science.gov (United States)

    Lee, Dong-Yeon D; Prindle, Arthur; Liu, Jintao; Süel, Gürol M

    2017-06-29

    The role of electricity in biological systems was first appreciated through electrical stimulation experiments performed by Luigi Galvani in the 18(th) century. These pioneering experiments demonstrated that the behavior of living tissues is governed by the flow of electrochemical species-an insight that gave rise to the modern field of electrophysiology. Since then, electrophysiology has largely remained a bastion of neuroscience. However, exciting recent developments have demonstrated that even simple bacteria residing in communities use electrochemical communication to coordinate population-level behaviors. These recent works are defining the emerging field of bacterial biofilm electrophysiology. To view this SnapShot, open or download the PDF. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. AN EFFECT OF SHOT PEENING ON GROWTH AND RETARDATION OF PHYSICALLY SHORT FATIGUE CRACKS IN AN AIRCRAFT Al-ALLOY

    Directory of Open Access Journals (Sweden)

    Ivo Černý

    2009-11-01

    Full Text Available Results of an investigation of effect of shot peening on development of physically short fatigue crack in an aircraft V-95 Al-alloy, which is of a similar type as 7075 alloy, are described and discussed in the paper. The first part deals with adaptation and verification of direct current potential drop method for detection and measurement of short crack initiation and growth. The specific material and quite large dimensions of flat specimens with side necking of a low stress concentration factor had to be considered when position of electrodes was specified and the measurement method verified. The specimen type and dimensions were proposed taking account of the investigation of shot peening effects. Physically short fatigue cracks of the length from 0.2 mm to more than 3 mm, most of them between 0.8 – 1.5 mm, were prepared under high cycle fatigue loading of a constant nominal stress amplitude plus/minus 160 MPa. Specimens with existing short fatigue cracks were shot peened using two different groups of parameters. Development of crack growth after shot peening was measured and compared with crack growth in specimens without shot peening. Retardation of crack growth was significant particularly with cracks shorter than 2 mm. For the specific stress amplitude, evaluated results enable to estimate threshold length of defects, which after the application of shot peening will be reliably arrested.

  20. Frontiers for Discovery in High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics