WorldWideScience

Sample records for high energy lithium

  1. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  2. Lithium-Based High Energy Density Flow Batteries

    Science.gov (United States)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  3. Strain-tolerant High Capacity Silicon Anodes via Directed Lithium Ion Transport for High Energy Density Lithium-ion Batteries

    Science.gov (United States)

    Goldman, Jason

    2012-02-01

    Energy storage is an essential component of modern technology, with applications including public infrastructure, transportation systems, and consumer electronics. Lithium-ion batteries are the preeminent form of energy storage when high energy / moderate power densities are required. Improvements to lithium-ion battery energy / power density through the adoption of silicon anodes—with approximately an order of magnitude greater gravimetric capacity than traditional carbon-based anodes--have been limited by ˜300% strains during electrochemical lithium insertion which result in short operational lifetimes. In two different systems we demonstrated improvements to silicon-based anode performance via directed lithium ion transport. The first system demonstrated a crystallographic-dependent anisotropic electrochemical lithium insertion in single-crystalline silicon anode microstructures. Exploiting this anisotropy, we highlight model silicon anode architectures that limit the maximum strain during electrochemical lithium insertion. This self-strain-limiting is a result of selecting a specific microstructure design such that during lithiation the anisotropic evolution of strain, above a given threshold, blocks further lithium intercalation. Exemplary design rules have achieved self-strain-limited charging capacities ranging from 677 mAhg-1 to 2833 mAhg-1. A second system with variably encapsulated silicon-based anodes demonstrated greater than 98% of their initial capacity after 130+ cycles. This anode also can operate stably at high energy/power densities. A lithium-ion battery with this anode was able to continuously (dis)charge in 10 minutes, corresponding to a power / energy density of ˜1460 W/kg and ˜243 Wh/kg--up to 780% greater power density and 220% higher energy density than conventional lithium-ion batteries. Anodes were also demonstrated with areal capacities of 12.7 mAh/cm^2, two orders of magnitude greater than traditional thin-film silicon anodes.[4pt

  4. Novel Lithium Ion High Energy Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this SBIR project a new chemistry for Li-ion cells will be developed that will enable a major advance in secondary battery gravimetric and volumetric energy...

  5. Investigation of lithium sulphate for high temperature thermal energy storage

    Science.gov (United States)

    Bayon, Alicia; Liu, Ming; Bruno, Frank; Hinkley, Jim

    2017-06-01

    Lithium sulphate (Li2SO4) was evaluated as a solid-solid PCM material to be coupled with concentrated solar power (CSP) technologies. The energy is stored in a cubic crystalline phase that is formed at temperatures above 576°C and can potentially be discharged at temperatures as low as 150°C, providing both sensible and latent thermal energy storage in a hybrid sensible-latent system. These operational conditions are appropriate for current CSP technologies based on subcritical steam Rankine power cycles. Results from thermal cycling experiments in air showed no change in energy storage capacity after 15 cycles. There was up to a 5% reduction in latent thermal capacity and 0.95% in total thermal capacity after 150 cycles in air. In our paper, we evaluate a hybrid sensible-latent thermal energy storage system based on lithium sulphate from an economic and technical performance point of view, demonstrating its potential as a high temperature thermal energy storage material.

  6. Advancing High Energy Lithium-Sulfur Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-Ion batteries have been a main source of energy for many aerospace applications over the past decade. Future space missions are facing a number of...

  7. High energy lithium-oxygen batteries - Transport barriers and thermodynamics

    KAUST Repository

    Das, Shyamal K.

    2012-01-01

    We show that it is possible to achieve higher energy density lithium-oxygen batteries by simultaneously lowering the discharge overpotential and increasing the discharge capacity via thermodynamic variables alone. By assessing the relative effects of temperature and pressure on the cell discharge profiles, we characterize and diagnose the critical roles played by multiple dynamic processes that have hindered implementation of the lithium-oxygen battery. © 2012 The Royal Society of Chemistry.

  8. A Lithium-Air Battery with a High Energy Air Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will advance an efficient and lightweight energy storage device for Oxygen Concentrators by developing a high specific energy lithium-air cell....

  9. Advanced Cathode Material For High Energy Density Lithium-Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  10. Reviving the lithium metal anode for high-energy batteries

    Science.gov (United States)

    Lin, Dingchang; Liu, Yayuan; Cui, Yi

    2017-03-01

    Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is one of the most favoured choices for next-generation Li batteries, especially Li-S and Li-air systems. After falling into oblivion for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the opportunities and possible directions for future development of Li anodes in applications.

  11. The structural design of electrode materials for high energy lithium batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, M.; Chemical Sciences and Engineering Division

    2007-01-01

    Lithium batteries are used to power a diverse range of applications from small compact devices, such as smart cards and cellular telephones to large heavy duty devices such as uninterrupted power supply units and electric- and hybrid-electric vehicles. This paper briefly reviews the approaches to design advanced materials to replace the lithiated graphite and LiCoO{sub 2} electrodes that dominate today's lithium-ion batteries in order to increase their energy and safety. The technological advantages of lithium batteries are placed in the context of water-based- and high-temperature battery systems.

  12. High Energy Density Lithium Air Batteries for Oxygen Concentrators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....

  13. Technologies for High-Energy and Long Cycle Life Lithium-Sulfur Pouch-Cell Batteries

    Science.gov (United States)

    Bruckner, Jan; Thieme, Soren; Bauer, Ingolf; Thummler, Philipp; Althues, Holger; Kaskel, Stefan

    2014-08-01

    The current lithium-ion battery technology is limited to about 250 Wh kg-1. In contrast the lithium-sulfur battery is expected to achieve more than 400 Wh kg-1 on cell level.[1,2] To date the biggest drawback of lithium- sulfur is its limited cycle stability of less than 200 cycles. Further, high energy densities can only be achieved if no excess of lithium and electrolyte is used and the areal loading of sulfur is high.[3]Here we demonstrate how the cycle stability can be extended to 1000 cycles using alternative silicon-carbon and all-carbon anodes instead of metallic lithium.[4] We also present a dry-processing technology for the sulfur cathode preparation. Besides no drying step and no toxic solvents, our process enables also twice the areal capacity (4-5 mAh cm-2) of slurry based technologies.[5] In addition we give results on the cycle stability and energy density of our lithium-sulfur pouch- cells (2.5+ Ah).

  14. Directing the Lithium-Sulfur Reaction Pathway via Sparingly Solvating Electrolytes for High Energy Density Batteries.

    Science.gov (United States)

    Lee, Chang-Wook; Pang, Quan; Ha, Seungbum; Cheng, Lei; Han, Sang-Don; Zavadil, Kevin R; Gallagher, Kevin G; Nazar, Linda F; Balasubramanian, Mahalingam

    2017-06-28

    The lithium-sulfur battery has long been seen as a potential next generation battery chemistry for electric vehicles owing to the high theoretical specific energy and low cost of sulfur. However, even state-of-the-art lithium-sulfur batteries suffer from short lifetimes due to the migration of highly soluble polysulfide intermediates and exhibit less than desired energy density due to the required excess electrolyte. The use of sparingly solvating electrolytes in lithium-sulfur batteries is a promising approach to decouple electrolyte quantity from reaction mechanism, thus creating a pathway toward high energy density that deviates from the current catholyte approach. Herein, we demonstrate that sparingly solvating electrolytes based on compact, polar molecules with a 2:1 ratio of a functional group to lithium salt can fundamentally redirect the lithium-sulfur reaction pathway by inhibiting the traditional mechanism that is based on fully solvated intermediates. In contrast to the standard catholyte sulfur electrochemistry, sparingly solvating electrolytes promote intermediate- and short-chain polysulfide formation during the first third of discharge, before disproportionation results in crystalline lithium sulfide and a restricted fraction of soluble polysulfides which are further reduced during the remaining discharge. Moreover, operation at intermediate temperatures ca. 50 °C allows for minimal overpotentials and high utilization of sulfur at practical rates. This discovery opens the door to a new wave of scientific inquiry based on modifying the electrolyte local structure to tune and control the reaction pathway of many precipitation-dissolution chemistries, lithium-sulfur and beyond.

  15. Nanocatalysis for Primary and Secondary High Energy Lithium Oxygen Cells

    Science.gov (United States)

    2011-04-01

    DEGME-DMFA PC-DEGME-DMFA AC BDEFGH A B C D E F G H 1.5 2.0 2.5 3.0 0 100 200 300 400 500 600 700 C el l V ol ta ge , V Capacity, mAh/g, Carbon Imide/LiBOB...cells. A Celgard 2400 propylene microporous film (facing the lithium side) in contact with a nonwoven glass fiber paper and soaked with the

  16. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    Science.gov (United States)

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-12-01

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm-2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Curtiss, Larry A.; Zavadil, Kevin R.; Gewirth, Andrew A.; Shao, Yuyan; Gallagher, Kevin

    2016-07-11

    Moving to lighter and less expensive battery chemistries compared to lithium-ion requires the control of energy storage mechanisms based on chemical transformations rather than intercalation. Lithium sulfur (Li/S) has tremendous theoretical specific energy, but contemporary approaches to control this solution-mediated, precipitation-dissolution chemistry requires using large excesses of electrolyte to fully solubilize the polysulfide intermediate. Achieving reversible electrochemistry under lean electrolyte operation is the only path for Li/S to move beyond niche applications to potentially transformational performance. An emerging topic for Li/S research is the use of sparingly solvating electrolytes and the creation of design rules for discovering new electrolyte systems that fundamentally decouple electrolyte volume from reaction mechanism. This perspective presents an outlook for sparingly solvating electrolytes as the key path forward for longer-lived, high-energy density Li/S batteries including an overview of this promising new concept and some strategies for accomplishing it.

  18. High specific energy Lithium Sulfur cell for space application

    Directory of Open Access Journals (Sweden)

    Samaniego Bruno

    2017-01-01

    Airbus DS has been testing and characterizing prototype Li-S cells manufactured by OXIS Energy Ltd. since 2014, demonstrating the potential and fast evolution of the cells performance. This paper presents the last test results on a set of different batches provided by OXIS and performed at Airbus DS premises in the frame of an ESA Innovation Triangle Initiative (ITI.

  19. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  20. Conductive Polymer Binder-Enabled SiO-SnxCoyCz Anode for High-Energy Lithium-Ion Batteries.

    Science.gov (United States)

    Zhao, Hui; Fu, Yanbao; Ling, Min; Jia, Zhe; Song, Xiangyun; Chen, Zonghai; Lu, Jun; Amine, Khalil; Liu, Gao

    2016-06-01

    A SiOSnCoC composite anode is assembled using a conductive polymer binder for the application in next-generation high energy density lithium-ion batteries. A specific capacity of 700 mAh/g is achieved at a 1C (900 mA/g) rate. A high active material loading anode with an areal capacity of 3.5 mAh/cm(2) is demonstrated by mixing SiOSnCoC with graphite. To compensate for the lithium loss in the first cycle, stabilized lithium metal powder (SLMP) is used for prelithiation; when paired with a commercial cathode, a stable full cell cycling performance with a 86% first cycle efficiency is realized. By achieving these important metrics toward a practical application, this conductive polymer binder/SiOSnCoC anode system presents great promise to enable the next generation of high-energy lithium-ion batteries.

  1. High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Zheng, Jianming; Li, Qiuyan; Xie, Xi; Ferrara, Seth A.; Nie, Zimin; Mehdi, Beata L.; Browning, Nigel D.; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Xiao, Jie

    2015-08-19

    High energy and cost-effective lithium sulfur (Li-S) battery technology has been vigorously revisited in recent years due to the urgent need of advanced energy storage technologies for transportation and large-scale energy storage applications. However, the market penetration of Li-S batteries has been plagued due to the gap in scientific knowledge between the fundamental research and the real application need. Herein, we focus on the cathode part of the Li-S system and discuss 1) the progress and issues of literature-reported sulfur cathode; 2) how to employ materials chemistry/science to address the challenges to thicken sulfur cathode; 3) the factors that affect the electrochemical performances of Li-S cells constructed at a relevant scale. This progress report attempts to tie the fundamental understanding closely to the practical application of Li-S batteries so that it may provide new insights for the research efforts of Li-S battery technology.

  2. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    Science.gov (United States)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  3. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.

    Science.gov (United States)

    Reyes Jiménez, Antonia; Klöpsch, Richard; Wagner, Ralf; Rodehorst, Uta C; Kolek, Martin; Nölle, Roman; Winter, Martin; Placke, Tobias

    2017-05-23

    The next generation of lithium ion batteries (LIBs) with increased energy density for large-scale applications, such as electric mobility, and also for small electronic devices, such as microbatteries and on-chip batteries, requires advanced electrode active materials with enhanced specific and volumetric capacities. In this regard, silicon as anode material has attracted much attention due to its high specific capacity. However, the enormous volume changes during lithiation/delithiation are still a main obstacle avoiding the broad commercial use of Si-based electrodes. In this work, Si-based thin film electrodes, prepared by magnetron sputtering, are studied. Herein, we present a sophisticated surface design and electrode structure modification by amorphous carbon layers to increase the mechanical integrity and, thus, the electrochemical performance. Therefore, the influence of amorphous C thin film layers, either deposited on top (C/Si) or incorporated between the amorphous Si thin film layers (Si/C/Si), was characterized according to their physical and electrochemical properties. The thin film electrodes were thoroughly studied by means of electrochemical impedance spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. We can show that the silicon thin film electrodes with an amorphous C layer showed a remarkably improved electrochemical performance in terms of capacity retention and Coulombic efficiency. The C layer is able to mitigate the mechanical stress during lithiation of the Si thin film by buffering the volume changes and to reduce the loss of active lithium during solid electrolyte interphase formation and cycling.

  4. Pie-like electrode design for high-energy density lithium-sulfur batteries

    Science.gov (United States)

    Li, Zhen; Zhang, Jin Tao; Chen, Yu Ming; Li, Ju; Lou, Xiong Wen (David)

    2015-11-01

    Owing to the overwhelming advantage in energy density, lithium-sulfur (Li-S) battery is a promising next-generation electrochemical energy storage system. Despite many efforts in pursuing long cycle life, relatively little emphasis has been placed on increasing the areal energy density. Herein, we have designed and developed a `pie' structured electrode, which provides an excellent balance between gravimetric and areal energy densities. Combining lotus root-like multichannel carbon nanofibers `filling' and amino-functionalized graphene `crust', the free-standing paper electrode (S mass loading: 3.6 mg cm-2) delivers high specific capacity of 1,314 mAh g-1 (4.7 mAh cm-2) at 0.1 C (0.6 mA cm-2) accompanied with good cycling stability. Moreover, the areal capacity can be further boosted to more than 8 mAh cm-2 by stacking three layers of paper electrodes with S mass loading of 10.8 mg cm-2.

  5. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    Science.gov (United States)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe

  6. Graphene-based lithium ion capacitor with high gravimetric energy and power densities

    Science.gov (United States)

    Ajuria, Jon; Arnaiz, Maria; Botas, Cristina; Carriazo, Daniel; Mysyk, Roman; Rojo, Teofilo; Talyzin, Alexandr V.; Goikolea, Eider

    2017-09-01

    Hybrid capacitor configurations are now of increasing interest to overcome the current energy limitations of supercapacitors. In this work, we report a lithium ion capacitor (LIC) entirely based on graphene. On the one hand, the negative -battery-type- electrode consists of a self-standing, binder-free 3D macroporous foam formed by reduced graphene oxide and decorated with tin oxide nanoparticles (SnO2-rGO). On the other hand, the positive -capacitor-type- electrode is based on a thermally expanded and physically activated reduced graphene oxide (a-TEGO). For comparison purposes, a symmetric electrical double layer capacitor (EDLC) using the same activated graphene in 1.5 M Et4NBF4/ACN electrolyte is also assembled. Built in 1 M LiPF6 EC:DMC, the graphene-based LIC shows an outstanding, 10-fold increase in energy density with respect to its EDLC counterpart at low discharge rates (up to 200 Wh kg-1). Furthermore, it is still capable to deliver double the energy in the high power region, within a discharge time of few seconds.

  7. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O2 battery is lower than that of the lithium-oxygen (Li-O2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O2 and Na-O2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Li-S Redox Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Huilin [Joint Center for Energy Storage Research, USA; Pacific Northwest National Laboratory, Richland WA 99352 USA; Wei, Xiaoliang [Joint Center for Energy Storage Research, USA; Pacific Northwest National Laboratory, Richland WA 99352 USA; Henderson, Wesley A. [Pacific Northwest National Laboratory, Richland WA 99352 USA; Shao, Yuyan [Joint Center for Energy Storage Research, USA; Pacific Northwest National Laboratory, Richland WA 99352 USA; Chen, Junzheng [Joint Center for Energy Storage Research, USA; Pacific Northwest National Laboratory, Richland WA 99352 USA; Bhattacharya, Priyanka [Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Jie [Joint Center for Energy Storage Research, USA; Pacific Northwest National Laboratory, Richland WA 99352 USA; Liu, Jun [Joint Center for Energy Storage Research, USA; Pacific Northwest National Laboratory, Richland WA 99352 USA

    2015-04-27

    Lithium sulfur (Li-S) redox flow battery (RFB) is a promising candidate for high energy large-scale energy storage application due to good solubility of long-chain polysulfide species and low cost of sulfur. In this report, recent progress and new concepts for Li-S redox flow batteries are discussed with an emphasis on the fundamental understanding and control of lithium polysulfide chemistry to enable the development of liquid phase Li-S redox flow prototype cells. These differ significantly from conventional static Li-S batteries targeting for vehicle electrification. A high solubility of the different lithium polysulfides generated at different depths of discharge and states of charge is required for a flow battery in order to take full advantage of the multiple electron transitions between elemental sulfur and Li2S. A new DMSO-based electrolyte is proposed for Li-S redox flow batteries, which not only enables the high solubility of lithium polysulfide species, especially for the short-chain species, but also results in excellent cycling with a high Coulombic efficiency. The challenges and opportunities for the Li-S redox flow concept have also been discussed in depth.

  9. Interface modifications by anion receptors for high energy lithium ion batteries

    Science.gov (United States)

    Zheng, Jianming; Xiao, Jie; Gu, Meng; Zuo, Pengjian; Wang, Chongmin; Zhang, Ji-Guang

    2014-03-01

    Li-rich, Mn-rich (LMR) layered composite has attracted extensive interests because of its highest energy density among all cathode candidates for lithium ion batteries (LIB). However, capacity degradation and voltage fading remain the major challenges for LMR cathodes prior to their practical applications. Here, we demonstrate that anion receptor, tris(pentafluorophenyl)borane ((C6F5)3B, TPFPB), substantially enhances the stability of electrode/electrolyte interface and thus improves the cycling stability of LMR cathode Li[Li0.2Ni0.2Mn0.6]O2. In the presence of 0.2 M TPFPB, Li[Li0.2Ni0.2Mn0.6]O2 shows an improved capacity retention of 76.8% after 500 cycles. It is proposed that TPFPB effectively confines the highly active oxygen species released from structural lattice through its strong coordination ability and high oxygen solubility. The electrolyte decomposition caused by the oxygen species attack is therefore largely mitigated, forming reduced amount of byproducts on the cathode surface. Additionally, other salts such as insulating LiF derived from electrolyte decomposition are also soluble in the presence of TPFPB. The collective effects of TPFPB mitigate the accumulation of parasitic reaction products and stabilize the interfacial resistances between cathode and electrolyte during extended cycling, thus significantly improving the cycling performance of Li[Li0.2Ni0.2Mn0.6]O2.

  10. A Robust, Water-Based, Functional Binder Framework for High-Energy Lithium-Sulfur Batteries.

    Science.gov (United States)

    Lacey, Matthew J; Österlund, Viking; Bergfelt, Andreas; Jeschull, Fabian; Bowden, Tim; Brandell, Daniel

    2017-07-10

    We report here a water-based functional binder framework for the lithium-sulfur battery systems, based on the general combination of a polyether and an amide-containing polymer. These binders are applied to positive electrodes optimised towards high-energy electrochemical performance based only on commercially available materials. Electrodes with up to 4 mAh cm-2 capacity and 97-98 % coulombic efficiency are achievable in electrodes with a 65 % total sulfur content and a poly(ethylene oxide):poly(vinylpyrrolidone) (PEO:PVP) binder system. Exchange of either binder component for a different polymer with similar functionality preserves the high capacity and coulombic efficiency. The improvement in coulombic efficiency from the inclusion of the coordinating amide group was also observed in electrodes where pyrrolidone moieties were covalently grafted to the carbon black, indicating the role of this functionality in facilitating polysulfide adsorption to the electrode surface. The mechanical properties of the electrodes appear not to significantly influence sulfur utilisation or coulombic efficiency in the short term but rather determine retention of these properties over extended cycling. These results demonstrate the robustness of this very straightforward approach, as well as the considerable scope for designing binder materials with targeted properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Designing and Thermal Analysis of Safe Lithium Ion Cathode Materials for High Energy Applications

    Science.gov (United States)

    Hu, Enyuan

    Safety is one of the most critical issues facing lithium-ion battery application in vehicles. Addressing this issue requires the integration of several aspects, especially the material chemistry and the battery thermal management. First, thermal stability investigation was carried out on an attractive high energy density material LiNi0.5Mn1.5O4. New findings on the thermal-stability and thermal-decomposition-pathways related to the oxygen-release are discovered for the high-voltage spinel Li xNi0.5Mn1.5O4 (LNMO) with ordered (o-) and disordered (d-) structures at fully delithiated (charged) state using a combination of in situ time-resolved x-ray diffraction (TR-XRD) coupled with mass spectroscopy (MS) and x-ray absorption spectroscopy (XAS). Both fully charged o--LixNi0.5Mn1.5O 4 and d-LixNi0.5Mn1.5O 4 start oxygen-releasing structural changes at temperatures below 300 °C, which is in sharp contrast to the good thermal stability of the 4V-spinel LixMn2O4 with no oxygen being released up to 375 °C. This is mainly caused by the presence of Ni4+ in LNMO, which undergoes dramatic reduction during the thermal decomposition. In addition, charged o-LNMO shows better thermal stability than the d-LNMO counterpart, due to the Ni/Mn ordering and smaller amount of the rock-salt impurity phase in o-LNMO. Newly identified two thermal-decomposition-pathways from the initial LixNi0.5Mn1.5O 4 spinel to the final NiMn2O4-type spinel structure with and without the intermediate phases (NiMnO3 and alpha-Mn 2O3) are found to play key roles in thermal stability and oxygen release of LNMO during thermal decomposition. In addressing the safety issue associated with LNMO, Fe is selected to partially substitute Ni and Mn simultaneously utilizing the electrochemical activity and structure-stabilizing high spin Fe3+. The synthesized LiNi1/3Mn4/3Fe1/3O4 showed superior thermal stability and satisfactory electrochemical performance. At charged state, it is able to withstand the temperature as

  12. High energy density, thin-film, rechargeable lithium batteries for marine field operations

    Science.gov (United States)

    Huang, Biying; Cook, Christopher C.; Mui, Simon; Soo, Philip P.; Staelin, David H.; Mayes, Anne M.; Sadoway, Donald R.

    All solid state, thin-film batteries with the cell configuration of VO x/block copolymer electrolyte/Li have been designed, constructed, and tested. The additive-free (no carbon, no binder) cathode consisted of a dense film of vanadium oxide (˜200 nm thick), deposited on aluminum foil and prepared by laser assisted vapor deposition of vanadium metal in an oxygen atmosphere of controlled chemical potential. The electrolyte was a block copolymer of poly[oligo(oxy-ethylene) methacrylate]- b-poly-(methyl methacrylate) [hence forth denoted as POEM- b-PMMA] containing LiCF 3SO 3. The anode was metallic lithium. At room temperature, cathode capacities of ˜395 mAh/g were measured at a current rate of 0.5 C ( C=400 mA/g) over an operating voltage ranging from 1.5 to 4.0 V. The cathode proved to be resistant to capacity fade as evidenced by the small loss of discharge capacity during the extended cycling (over 200 cycles). It was possible to draw substantial currents. Routine testing was conducted at 0.5 C; however, discharge rates as high as 1.6 C were achieved. Based upon these results, cells designed with these materials in optimal dimensions are projected to have energy densities exceeding ˜350 Wh/kg and power densities exceeding 560 W/kg at 1.6 C.

  13. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium-sulfur batteries

    Science.gov (United States)

    Liu, Ya; Guo, Jinxin; Zhang, Jun; Su, Qingmei; Du, Gaohui

    2015-01-01

    Lithium-sulfur (Li-S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li-S battery. The sulfur nanospheres with diameter of 400-500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g-1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li-S batteries.

  14. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries

    Science.gov (United States)

    Albertus, Paul; Babinec, Susan; Litzelman, Scott; Newman, Aron

    2018-01-01

    Enabling the reversible lithium metal electrode is essential for surpassing the energy content of today's lithium-ion cells. Although lithium metal cells for niche applications have been developed already, efforts are underway to create rechargeable lithium metal batteries that can significantly advance vehicle electrification and grid energy storage. In this Perspective, we focus on three tasks to guide and further advance the reversible lithium metal electrode. First, we summarize the state of research and commercial efforts in terms of four key performance parameters, and identify additional performance parameters of interest. We then advocate for the use of limited lithium (≤30 μm) to ensure early identification of technical challenges associated with stable and dendrite-free cycling and a more rapid transition to commercially relevant designs. Finally, we provide a cost target and outline material costs and manufacturing methods that could allow lithium metal cells to reach 100 US kWh-1.

  15. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries.

    Science.gov (United States)

    Pan, Huilin; Han, Kee Sung; Vijayakumar, M; Xiao, Jie; Cao, Ruiguo; Chen, Junzheng; Zhang, Jiguang; Mueller, Karl T; Shao, Yuyan; Liu, Jun

    2017-02-08

    In rechargeable Li-S batteries, the uncontrollable passivation of electrodes by highly insulating Li2S limits sulfur utilization, increases polarization, and decreases cycling stability. Dissolving Li2S in organic electrolyte is a facile solution to maintain the active reaction interface between electrolyte and sulfur cathode, and thus address the above issues. Herein, ammonium salts are demonstrated as effective additives to promote the dissolution of Li2S to 1.25 M in DMSO solvent at room temperature. NMR measurements show that the strong hydrogen binding effect of N-H groups plays a critical role in dissolving Li2S by forming complex ligands with S2- anions coupled with the solvent's solvating surrounding. Ammonium additives in electrolyte can also significantly improve the oxidation kinetics of Li2S, and therefore enable the direct use of Li2S as cathode material in Li-S battery system in the future. This provides a new approach to manage the solubility of lithium sulfides through cation coordination with sulfide anion.

  16. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.

    Science.gov (United States)

    Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing

    2015-11-01

    Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.

  17. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    Energy Technology Data Exchange (ETDEWEB)

    Jung, S., E-mail: jung73@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Christenson, M.; Curreli, D. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Bryniarski, C. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Andruczyk, D.; Ruzic, D.N. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States)

    2014-12-15

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m{sup 2} and 0.43 ± 0.01 GW/m{sup 2}. A few ways to further increase the plasma heat flux for LiMIT experiments are discussed.

  18. Regenerative Polysulfide-Scavenging Layers Enabling Lithium-Sulfur Batteries with High Energy Density and Prolonged Cycling Life.

    Science.gov (United States)

    Liu, Fang; Xiao, Qiangfeng; Wu, Hao Bin; Sun, Fei; Liu, Xiaoyan; Li, Fan; Le, Zaiyuan; Shen, Li; Wang, Ge; Cai, Mei; Lu, Yunfeng

    2017-03-28

    Lithium-sulfur batteries, notable for high theoretical energy density, environmental benignity, and low cost, hold great potential for next-generation energy storage. Polysulfides, the intermediates generated during cycling, may shuttle between electrodes, compromising the energy density and cycling life. We report herein a class of regenerative polysulfide-scavenging layers (RSL), which effectively immobilize and regenerate polysulfides, especially for electrodes with high sulfur loadings (e.g., 6 mg cm-2). The resulting cells exhibit high gravimetric energy density of 365 Wh kg-1, initial areal capacity of 7.94 mAh cm-2, low self-discharge rate of 2.45% after resting for 3 days, and dramatically prolonged cycling life. Such blocking effects have been thoroughly investigated and correlated with the work functions of the oxides as well as their bond energies with polysulfides. This work offers not only a class of RSL to mitigate shuttling effect but also a quantified design framework for advanced lithium-sulfur batteries.

  19. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Donghai [Pennsylvania State Univ., University Park, PA (United States); Manthiram, Arumugam [Univ. of Texas, Austin, TX (United States); Wang, Chao-Yang [EC Power LLC, State College, PA (United States); Liu, Gao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Zhengcheng [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-15

    High-loading and high quality PSU Si anode has been optimized and fabricated. The electrochemical performance has been utilized. The PSU Si-graphite anode exhibits the mass loading of 5.8 mg/cm2, charge capacity of 850 mAh/ g and good cycling performance. This optimized electrode has been used for full-cell fabrication. The performance enhancement of Ni-rich materials can be achieved by a diversity of strategies. Higher Mn content and a small amount of Al doping can improve the electrochemical performance by suppressing interfacial side reactions with electrolytes, thus greatly benefiting the cyclability of the samples. Also, surface coatings of Li-rich materials and AlF3 are able to improve the performance stability of Ni-rich cathodes. One kilogram of optimized concentration-gradient LiNi0.76Co0.10Mn0.14O2 (CG) with careful control of composition, morphology and electrochemical performance was delivered to our collaborators. The sample achieved an initial specific capacity close to 190 mA h g-1 at C/10 rate and 180 mA h g-1 at C/3 rate as well as good cyclability in pouch full cells with a 4.4 V upper cut-off voltage at room temperature. Electrolyte additive with Si-N skeleton forms a less resistant SEI on the surface of silicon anode (from PSU) as evidenced by the evolution of the impedance at various lithiation/de-lithiation stages and the cycling data The prelithiation result demonstrates a solution processing method to achieve large area, uniform SLMP coating on well-made anode surface for the prelithiation of lithium-ion batteries. The prelithiation effect with this method is applied both in graphite half cells, graphite/NMC full cells, SiO half cells, SiO/NMC full cells, Si-Graphite half cells and Si-Graphite/NMC full cells with improvements in cycle performance and higher first cycle coulombic efficiency than their corresponding cells without SLMP prelithiation. As to the full

  20. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua

    2015-11-21

    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  1. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  2. Promise and reality of post-lithium-ion batteries with high energy densities

    Science.gov (United States)

    Choi, Jang Wook; Aurbach, Doron

    2016-04-01

    Energy density is the main property of rechargeable batteries that has driven the entire technology forward in past decades. Lithium-ion batteries (LIBs) now surpass other, previously competitive battery types (for example, lead-acid and nickel metal hydride) but still require extensive further improvement to, in particular, extend the operation hours of mobile IT devices and the driving mileages of all-electric vehicles. In this Review, we present a critical overview of a wide range of post-LIB materials and systems that could have a pivotal role in meeting such demands. We divide battery systems into two categories: near-term and long-term technologies. To provide a realistic and balanced perspective, we describe the operating principles and remaining issues of each post-LIB technology, and also evaluate these materials under commercial cell configurations.

  3. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    Science.gov (United States)

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  4. A Dendrite-Free Lithium Metal Battery Model Based on Nanoporous Polymer/Ceramic Composite Electrolytes and High-Energy Electrodes.

    Science.gov (United States)

    Tu, Zhengyuan; Lu, Yingying; Archer, Lynden

    2015-06-10

    Nanoporous polymer/ceramic composite electrolytes that suppress dendrite growth in full-cell, high-energy secondary lithium metal batteries are reported. The battery cathode design used in the study is energetically balanced with the metallic lithium anode. The results reported show that such batteries can stably operate for over 1000 h without signs of short circuit. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density.

    Science.gov (United States)

    Dong, Xiaoli; Chen, Long; Su, Xiuli; Wang, Yonggang; Xia, Yongyao

    2016-06-20

    A flexible and wearable aqueous lithium-ion battery is introduced based on spinel Li1.1 Mn2 O4 cathode and a carbon-coated NASICON-type LiTi2 (PO4 )3 anode (NASICON=sodium-ion super ionic conductor). Energy densities of 63 Wh kg(-1) or 124 mWh cm(-3) and power densities of 3 275 W kg(-1) or 11.1 W cm(-3) can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li-ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self-chargeable unit is realized by integrating a single flexible aqueous Li-ion battery with a commercial flexible solar cell, which may facilitate the long-time outdoor operation of flexible and wearable electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fabrication and characterization of silicon-based 3D electrodes for high-energy lithium-ion batteries

    Science.gov (United States)

    Zheng, Y.; Smyrek, P.; Rakebrandt, J.-H.; Kübel, Ch.; Seifert, H. J.; Pfleging, W.

    2017-02-01

    For next generation of high energy lithium-ion batteries, silicon as anode material is of great interest due to its higher specific capacity (3579 mAh/g). However, the volume change during de-/intercalation of lithium-ions can reach values up to 300 % causing particle pulverization, loss of electrical contact and even delimitation of the composite electrode from the current collector. In order to overcome these drawbacks for silicon anodes we are developing new 3D electrode architectures. Laser nano-structuring of the current collectors is developed for improving the electrode adhesion and laser micro-structuring of thick film composite electrodes is applied for generating of freestanding structures. Freestanding structures could be attributed to sustain high volume changes during electrochemical cycling and to improve the capacity retention at high C-rates (> 0.5 C). Thick film composite Si and Si/graphite anode materials with different silicon content were deposited on current collectors by tape-casting. Film adhesion on structured current collectors was investigated by applying the 90° peel-off test. Electrochemical properties of cells with structured and unstructured electrodes were characterized. The impact of 3D electrode architectures regarding cycle stability, capacity retention and cell life-time will be discussed in detail.

  7. Novel Anodes for Rapid Recharge High Energy Density Lithium-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TIAX proposes to develop as a novel negative electrode active material for rechargeable lithium-ion batteries. This material will fill the gap between the...

  8. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  9. Advanced Nanostructured Cathode for Ultra High Specific Energy Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode materials for use in Li-ion batteries while maintaining a high level of...

  10. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries.

    Science.gov (United States)

    Mattelaer, Felix; Geryl, Kobe; Rampelberg, Geert; Dendooven, Jolien; Detavernier, Christophe

    2017-04-19

    Flexible wearable electronics and on-chip energy storage for wireless sensors drive rechargeable batteries toward thin-film lithium ion batteries. To enable more charge storage on a given surface, higher energy density materials are required, while faster energy storage and release can be obtained by going to thinner films. Vanadium oxides have been examined as cathodes in classical and thin-film lithium ion batteries for decades, but amorphous vanadium oxide thin films have been mostly discarded. Here, we investigate the use of atomic layer deposition, which enables electrode deposition on complex three-dimensional (3D) battery architectures, to obtain both amorphous and crystalline VO2 and V2O5, and we evaluate their thin-film cathode performance. Very high volumetric capacities are found, alongside excellent kinetics and good cycling stability. Better kinetics and higher volumetric capacities were observed for the amorphous vanadium oxides compared to their crystalline counterparts. The conformal deposition of these vanadium oxides on silicon micropillar structures is demonstrated. This study shows the promising potential of these atomic layer deposited vanadium oxides as cathodes for 3D all-solid-state thin-film lithium ion batteries.

  11. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.

    Science.gov (United States)

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    2017-11-21

    conductive polymer gel binders with 3D framework nanostructures. These gel binders provide multiple functions owing to their structure derived properties. The gel framework facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. The polymer coating formed on every particle acts as surface modification and prevents particle aggregation. The mechanically strong and ductile gel framework also sustains long-term stability of electrodes. In addition, the structures and properties of gel binders can be facilely tuned. We further introduce the development of multifunctional binders by hybridizing conductive polymers with other functional materials. Meanwhile mechanistic understanding on the roles that novel binders play in the electrochemical processes of batteries is also reviewed to reveal general design rules for future binder systems. We conclude with perspectives on their future development with novel multifunctionalities involved. Highly efficient binder systems with well-tailored molecular and nanostructures are critical to reach the entire volume of the battery and maximize energy use for high-energy and high-power lithium batteries. We hope this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of multifunctional binder materials.

  12. Advanced separators based on aromatic polymer for high energy density lithium batteries

    Science.gov (United States)

    Zhang, Zhengcheng; Woo, Jung-Je; Amine, Khalil

    2017-03-21

    A process includes casting a solution including poly(phenylene oxide), inorganic nanoparticles, a solvent, and a non-solvent on a substrate; and removing the solvent to form a porous film; wherein: the porous film is configured for use as a porous separator for a lithium ion battery.

  13. Constructing Dense SiO x @Carbon Nanotubes versus Spinel Cathode for Advanced High-Energy Lithium-Ion Batteries

    KAUST Repository

    Ming, Hai

    2017-02-09

    A newly designed dense SiOx@carbon nanotubes (CNTs) composite with a high conductivity of 3.5 S cm−1 and tap density of 1.13 g cm−3 was prepared, in which the CNTs were stripped by physical energy crushing and then coated on SiOx nanoparticles. The composite exhibits high capacities of 835 and 687 mAh g−1 at current densities of 100 and 200 mA g−1, which can be finely persevered over 100 cycles. Benefiting from this promising anode, two new full cells of SiOx@CNTs/LiMn2O4 and SiOx@CNTs/LiNi0.5Mn1.5O4 with high energy densities of 2273 and 2747 Wh kganode−1 (i. e. 413 and 500 Wh kgcathode−1), respectively, were successfully assembled and can cycle more than 400 cycles. Even with further cycling at the elevated temperature of 45 °C, the cells can still deliver relatively high capacities of 568 and 465 mAh ganode−1, respectively, over 100 cycles. Such desired high-energy lithium-ion batteries with working voltages over 4.0 V can be widely developed for diverse applications (e. g. in handheld devices, electric vehicles, and hybrid electric vehicles). The easy extension of the presented synthetic strategy and the configuration of high-energy battery system would be significant in materials synthesis and energy-storage devices.

  14. Lithium: for harnessing renewable energy

    Science.gov (United States)

    Bradley, Dwight; Jaskula, Brian W.

    2014-01-01

    Lithium, which has the chemical symbol Li and an atomic number of 3, is the first metal in the periodic table. Lithium has many uses, the most prominent being in batteries for cell phones, laptops, and electric and hybrid vehicles. Worldwide sources of lithium are broken down by ore-deposit type as follows: closed-basin brines, 58%; pegmatites and related granites, 26%; lithium-enriched clays, 7%; oilfield brines, 3%; geothermal brines, 3%; and lithium-enriched zeolites, 3% (2013 statistics). There are over 39 million tons of lithium resources worldwide. Of this resource, the USGS estimates there to be approximately 13 million tons of current economically recoverable lithium reserves. To help predict where future lithium supplies might be located, USGS scientists study how and where identified resources are concentrated in the Earth’s crust, and they use that knowledge to assess the likelihood that undiscovered resources also exist.

  15. Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene.

    Science.gov (United States)

    Zhao, Yunlong; Feng, Jiangang; Liu, Xue; Wang, Fengchao; Wang, Lifen; Shi, Changwei; Huang, Lei; Feng, Xi; Chen, Xiyuan; Xu, Lin; Yan, Mengyu; Zhang, Qingjie; Bai, Xuedong; Wu, Hengan; Mai, Liqiang

    2014-08-01

    High-energy lithium battery materials based on conversion/alloying reactions have tremendous potential applications in new generation energy storage devices. However, these applications are limited by inherent large volume variations and sluggish kinetics. Here we report a self-adaptive strain-relaxed electrode through crumpling of graphene to serve as high-stretchy protective shells on metal framework, to overcome these limitations. The graphene sheets are self-assembled and deeply crumpled into pinecone-like structure through a contraction-strain-driven crumpling method. The as-prepared electrode exhibits high specific capacity (2,165 mAh g(-1)), fast charge-discharge rate (20 A g(-1)) with no capacity fading in 1,000 cycles. This kind of crumpled graphene has self-adaptive behaviour of spontaneous unfolding-folding synchronized with cyclic expansion-contraction volumetric variation of core materials, which can release strain and maintain good electric contact simultaneously. It is expected that such findings will facilitate the applications of crumpled graphene and the self-adaptive materials.

  16. Advanced Lithium-ion Batteries with High Specific Energy and Improved Safety for Nasa's Missions

    Science.gov (United States)

    West, William; Smart, Marshall; Soler, Jess; Krause, Charlie; Hwang, Constanza; Bugga, Ratnakumar

    2012-01-01

    High Energy Materials ( Cathodes, anodes and high voltage and safe electrolyte are required to meet the needs of the future space missions. A. Cathodes: The layered layered composites of of Li2MnO3 and LiMO2 are promising Power capability of the materials, however requires further improvement. Suitable morphology is critical for good performance and high tap (packing) density. Surface coatings help in the interfacial kinetics and stability. B. Electrolytes: Small additions of Flame Retardant Additives improves flammability without affecting performance (Rate and cycle life). 1.0 M in EC+EMC+TPP was shown to have good performance against the high voltage cathode; Performance demonstrated in large capacity prototype MCMB- LiNiCoO2 Cells. Formulations with higher proportions are looking promising. Still requires further validation through abuse tests (e.g., on 18650 cells).

  17. Effect of Porosity on the Thick Electrodes for High Energy Density Lithium Ion Batteries for Stationary Applications

    Directory of Open Access Journals (Sweden)

    Madhav Singh

    2016-11-01

    Full Text Available A series of 250–350 μ m-thick single-sided lithium ion cell graphite anodes and lithium nickel manganese cobalt oxide (NMC cathodes with constant area weight, but varying porosity were prepared. Over this wide thickness range, micron-sized carbon fibers were used to stabilize the electrode structure and to improve electrode kinetics. By choosing the proper porosities for the anode and cathode, kinetic limitations and aging losses during cell cycling could be minimized and energy density improved. The cell (C38%-A48% exhibits the highest energy density, 441 Wh/L at the C/10 rate, upon cycling at elevated temperature and different C-rates. The cell (C38%-A48% showed 9% higher gravimetric energy density at C/10 in comparison to the cell with as-coated electrodes.

  18. A new oxyfluorinated titanium phosphate anode for a high-energy lithium-ion battery.

    Science.gov (United States)

    Ma, Zhaohui; Sun, Chunwen; Lyu, Yingchun; Wang, Yuesheng; Kim, Youngsik; Chen, Liquan

    2015-01-21

    Na3[Ti2P2O10F] was synthesized by a hydrothermal method. It has an open framework structure consisting of TiFO5 octahedra and PO4 tetrahedra. The feasibility of Na3[Ti2P2O10F] as an anode material for lithium-ion batteries was first studied. Na3[Ti2P2O10F] exhibits a reversible capacity of more than 200 mAh g(-1) at a discharge/charge current rate of 20 mA g(-1) (∼0.1 C) and 105 mA g(-1) at a discharge/charge current rate of 400 mA g(-1) (∼2 C) with a lower intercalation voltage. The result of in situ X-ray diffraction test shows the structural evolution during the first discharge/charge cycle. The structure of Na3[Ti2P2O10F] was kept during discharge/charge with a slight change of the lattice parameters, which indicates a lithium solid solution behavior.

  19. Strings of Porous Carbon Polyhedrons as Self-Standing Cathode Host for High-Energy-Density Lithium-Sulfur Batteries.

    Science.gov (United States)

    Liu, Yazhi; Li, Gaoran; Fu, Jing; Chen, Zhongwei; Peng, Xinsheng

    2017-05-22

    Rational design of cathode hosts with high electrical conductivity and strong sulfur confinement is a great need for high-performance lithium-sulfur batteries. Herein, we report a self-standing, hybrid-nanostructured cathode host comprised of metal-organic framework (MOF)-derived porous carbon polyhedrons and carbon nanotubes (CNTs) for the significant improvement of both the electrode cyclability and energy density. The strong coupling of the intertwined CNTs and strung porous carbon polyhedrons as a binder-free thin film significantly enhances the long-range electronic conductivity and provides abundant active interfaces as well as robust electrode integrity for sulfur electrochemistry. Attributed to the synergistic combination of the CNTs and carbon polyhedrons, the obtained sulfur electrodes exhibit outstanding cyclability, an excellent high-rate response up to 10 C, and an ultra-high volumetric capacity of 960 Ah L(-1) . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design.

    Science.gov (United States)

    Zhao, Hui; Wang, Zhihui; Lu, Peng; Jiang, Meng; Shi, Feifei; Song, Xiangyun; Zheng, Ziyan; Zhou, Xin; Fu, Yanbao; Abdelbast, Guerfi; Xiao, Xingcheng; Liu, Zhi; Battaglia, Vincent S; Zaghib, Karim; Liu, Gao

    2014-11-12

    Silicon alloys have the highest specific capacity when used as anode material for lithium-ion batteries; however, the drastic volume change inherent in their use causes formidable challenges toward achieving stable cycling performance. Large quantities of binders and conductive additives are typically necessary to maintain good cell performance. In this report, only 2% (by weight) functional conductive polymer binder without any conductive additives was successfully used with a micron-size silicon monoxide (SiO) anode material, demonstrating stable and high gravimetric capacity (>1000 mAh/g) for ∼500 cycles and more than 90% capacity retention. Prelithiation of this anode using stabilized lithium metal powder (SLMP) improves the first cycle Coulombic efficiency of a SiO/NMC full cell from ∼48% to ∼90%. The combination enables good capacity retention of more than 80% after 100 cycles at C/3 in a lithium-ion full cell.

  1. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries

    Science.gov (United States)

    Ko, Minseong; Chae, Sujong; Ma, Jiyoung; Kim, Namhyung; Lee, Hyun-Wook; Cui, Yi; Cho, Jaephil

    2016-09-01

    Existing anode technologies are approaching their limits, and silicon is recognized as a potential alternative due to its high specific capacity and abundance. However, to date the commercial use of silicon has not satisfied electrode calendering with limited binder content comparable to commercial graphite anodes for high energy density. Here we demonstrate the feasibility of a next-generation hybrid anode using silicon-nanolayer-embedded graphite/carbon. This architecture allows compatibility between silicon and natural graphite and addresses the issues of severe side reactions caused by structural failure of crumbled graphite dust and uncombined residue of silicon particles by conventional mechanical milling. This structure shows a high first-cycle Coulombic efficiency (92%) and a rapid increase of the Coulombic efficiency to 99.5% after only 6 cycles with a capacity retention of 96% after 100 cycles, with an industrial electrode density of >1.6 g cm-3, areal capacity loading of >3.3 mAh cm-2, and <4 wt% binding materials in a slurry. As a result, a full cell using LiCoO2 has demonstrated a higher energy density (1,043 Wh l-1) than with standard commercial graphite electrodes.

  2. Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries.

    Science.gov (United States)

    Nam, Young Jin; Cho, Sung-Ju; Oh, Dae Yang; Lim, Jun-Muk; Kim, Sung Youb; Song, Jun Ho; Lee, Young-Gi; Lee, Sang-Young; Jung, Yoon Seok

    2015-05-13

    Bulk-type all-solid-state lithium batteries (ASLBs) are considered a promising candidate to outperform the conventional lithium-ion batteries. Unfortunately, the current technology level of ASLBs is in a stage of infancy in terms of cell-based (not electrode-material-based) energy densities and scalable fabrication. Here, we report on the first ever bendable and thin sulfide solid electrolyte films reinforced with a mechanically compliant poly(paraphenylene terephthalamide) nonwoven (NW) scaffold, which enables the fabrication of free-standing and stackable ASLBs with high energy density and high rate capabilities. The ASLB, using a thin (∼70 μm) NW-reinforced SE film, exhibits a 3-fold increase of the cell-energy-density compared to that of a conventional cell without the NW scaffold.

  3. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries.

    Science.gov (United States)

    Pei, Fei; Lin, Lele; Ou, Daohui; Zheng, Zongmin; Mo, Shiguang; Fang, Xiaoliang; Zheng, Nanfeng

    2017-09-07

    How to exert the energy density advantage is a key link in the development of lithium-sulfur batteries. Therefore, the performance degradation of high-sulfur-loading cathodes becomes an urgent problem to be solved at present. In addition, the volumetric capacities of high-sulfur-loading cathodes are still at a low level compared with their areal capacities. Aiming at these issues, two-dimensional carbon yolk-shell nanosheet is developed herein to construct a novel self-supporting sulfur cathode. The cathode with high-sulfur loading of 5 mg cm-2 and sulfur content of 73 wt% not only delivers an excellent rate performance and cycling stability, but also provides a favorable balance between the areal (5.7 mAh cm-2) and volumetric (1330 mAh cm-3) capacities. Remarkably, an areal capacity of 11.4 mAh cm-2 can be further achieved by increasing the sulfur loading from 5 to 10 mg cm-2. This work provides a promising direction for high-energy-density lithium-sulfur batteries.One of the challenges facing lithium-sulfur batteries is to develop cathodes with high mass and high volume loading. Here the authors show that two-dimensional carbon yolk-shell nanosheets are promising sulfur host materials, enabling stable battery cells with high energy density.

  4. High specific power lithium polymer rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M.Y.; De Jonghe, L.; Visco, S. [PolyPlus Battery Co., Berkeley, CA (United States)

    1996-11-01

    PolyPlus Battery Company (PPBC) is developing an advanced lithium polymer rechargeable battery based on its proprietary positive electrode. This battery offers high steady-state (> 250 W/kg) and peak power densities (3,000 W/kg), in a low cost and environmentally benign format. This PolyPlus lithium polymer battery also delivers high specific energy. The first generation battery has an energy density of 100 Wh/kg (120 Wh/l) and subsequent generations increases the performance in excess of 500 Wh/kg (600 Wh/l). The high power and energy densities, along with the low toxicity and low cost of materials used in the PolyPlus solid-state cell makes this battery exceptionally attractive for both hybrid and electric vehicle applications.

  5. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits

    Science.gov (United States)

    Ajuria, Jon; Redondo, Edurne; Arnaiz, Maria; Mysyk, Roman; Rojo, Teófilo; Goikolea, Eider

    2017-08-01

    In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li- and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded.

  6. High Specific Energy Lithium-ion Batteries with Novel Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energy Storage is a critical component of space-based platforms across the full spectrum of exploration, scientific experimentation, defense, communications and...

  7. Composite Conducting Polymer Cathodes For High Energy Density Lithium-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA planetary exploration missions require secondary (rechargeable) batteries that can operate at extreme temperatures (-60oC to 60oC) yet deliver high...

  8. Silicon Nanoparticle/Nanowire and Graphite Composite Anode with Increased Binder for Lithium-Ion Coin Cells Aimed at High Energy Density Battery Applications

    Science.gov (United States)

    Qureshi, Muhammad Ali

    Silicon and graphite composite anode materials were prepared for a lithium ion half-cell with lithium metal as the reference electrode. All silicon/graphite composite anodes were prepared in the lab with mixing of slurry using ball milling technique. Battery grade copper foil was used as the current collector for the anode. The anode was coated using the doctor blade technique with thickness of 100μm and further calendared to provide higher energy densities for active material per cubic volume. The ratio of binder used was significantly higher than previously tested to show silicon material takes longer to detach from current collector with increased cycle life. Galvanostatic cycling show lithiation and de-lithiation of silicon anode with respect to lithium metal. Impedance measurements were taken for coin cells prior to cycle life tests. Silicon anode half-cell was charged/discharged for many cycles showing improved cycle life with great capacity retention. Charts show silicon expansion of material after cycle life however due to increased amount of binder material less silicon separates from the copper current collector initially. The coin cells made provide reproducible results which can be used for practical applications and have the ability for large volume production of high energy Li-ion batteries.

  9. Lithium

    Science.gov (United States)

    Bradley, Dwight C.; Stillings, Lisa L.; Jaskula, Brian W.; Munk, LeeAnn; McCauley, Andrew D.; Schulz, Klaus J.; DeYoung, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Lithium, the lightest of all metals, is used in air treatment, batteries, ceramics, glass, metallurgy, pharmaceuticals, and polymers. Rechargeable lithium-ion batteries are particularly important in efforts to reduce global warming because they make it possible to power cars and trucks from renewable sources of energy (for example, hydroelectric, solar, or wind) instead of by burning fossil fuels. Today, lithium is extracted from brines that are pumped from beneath arid sedimentary basins and extracted from granitic pegmatite ores. The leading producer of lithium from brine is Chile, and the leading producer of lithium from pegmatites is Australia. Other potential sources of lithium include clays, geothermal brines, oilfield brines, and zeolites. Worldwide resources of lithium are estimated to be more than 39 million metric tons, which is enough to meet projected demand to the year 2100. The United States is not a major producer at present but has significant lithium resources.

  10. A Metal-Free, Free-Standing, Macroporous Graphene@g-C₃N₄ Composite Air Electrode for High-Energy Lithium Oxygen Batteries.

    Science.gov (United States)

    Luo, Wen-Bin; Chou, Shu-Lei; Wang, Jia-Zhao; Zhai, Yu-Chun; Liu, Hua-Kun

    2015-06-01

    The nonaqueous lithium oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg(-1)), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high energy density, long cycling stability, and low cost, the air electrode structure and the electrocatalysts play important roles. Here, a metal-free, free-standing macroporous graphene@graphitic carbon nitride (g-C3N4) composite air cathode is first reported, in which the g-C3N4 nanosheets can act as efficient electrocatalysts, and the macroporous graphene nanosheets can provide space for Li2O2 to deposit and also promote the electron transfer. The electrochemical results on the graphene@g-C3N4 composite air electrode show a 0.48 V lower charging plateau and a 0.13 V higher discharging plateau than those of pure graphene air electrode, with a discharge capacity of nearly 17300 mA h g(-1)(composite) . Excellent cycling performance, with terminal voltage higher than 2.4 V after 105 cycles at 1000 mA h g(-1)(composite) capacity, can also be achieved. Therefore, this hybrid material is a promising candidate for use as a high energy, long-cycle-life, and low-cost cathode material for lithium oxygen batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  12. High Energy Density Lithium Battery System with an Integrated Low Cost Heater Sub-System for Missions on Titan. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project seeks to develop a 500 Wh/kg Lithium primary battery for intended application as the primary power source on landers and probes for future...

  13. High-energy Few-cycle Pulses Directly Generated from Strongly Phase-mismatched Lithium Niobate Crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Chong, A.; Wise, F.W.

    2012-01-01

    We show that effective soliton compression can be realized in strongly phase-mismatched quadratic media. Sub-15 fs pulses are experimentally generated directly from 10-mm-long bulk lithium niobate crystal by 120-fs input pulses at 1300 nm.......We show that effective soliton compression can be realized in strongly phase-mismatched quadratic media. Sub-15 fs pulses are experimentally generated directly from 10-mm-long bulk lithium niobate crystal by 120-fs input pulses at 1300 nm....

  14. High security ion-lithium batteries with rapid recharge for the terrestrial transport and energy storage; Batteries de type ion-lithium de haute securite a recharge rapide pour le transport terrestre et le stockage d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, Karim; Dontigny, M.; Charest, P.; Guerfi, A.; Trotier, J.; Mathieu, M.C.; Zhu, W.; Petitclerc, M.; Veillette, R.; Serventi, A.; Hovington, P.; Lagace, M.; Trudeau, M.; Vijh, A.

    2010-09-15

    Electrical terrestrial transport is today a hub of innovation and growth for Hydro-Quebec. In the perspective of electrification of terrestrial transports, battery remains the critical factor of future success of rechargeable electrical vehicles. For nearly 20 years, Hydro-Quebec, via its research institute, has worked at developing battery material for the lithium-ion technology. Two types of Li-ion batteries have been developed: the energy battery and the power battery. [French] Le transport terrestre electrique est aujourd'hui un pole d'innovation et de croissance pour Hydro-Quebec. Dans la perspective de l'electrification des transports terrestres, la batterie demeure le facteur critique du succes futur des vehicules electriques rechargeables. Depuis pres de 20 ans, Hydro-Quebec, par le biais de son Institut de recherche, travaille au developpement de materiaux de batteries destinees a la technologie lithium-ion. Deux types de batteries Li-ion ont ete mises au point : la batterie d'energie et la batterie de puissance.

  15. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Huilin; Han, Kee Sung; Vijayakumar, M.; Xiao, Jie; Cao, Ruiguo; Chen, Junzheng; Zhang, Jiguang; Mueller, Karl T.; Shao, Yuyan; Liu, Jun

    2016-07-01

    In rechargeable Li-S batteries, the uncontrollable passivation of electrodes by highly insulating Li2S limits sulfur utilization, increases polarization and decreases cycling stability. Dissolving Li2S in organic electrolyte is a facile solution to maintain the active reaction interface between electrolyte and sulfur cathode, and thus address the above issues. Herein, ammonium salts are demonstrated as effective additives to promote the dissolution of Li2S to 1.25 M in DMSO solvent at room temperature. NMR measurements show that the strong hydrogen binding effect of N-H groups plays a critical role in dissolving Li2S by forming complex ligands with S2- anions coupled with the solvent’s solvating surrounding. Ammonium additives in electrolyte can also significantly improve the oxidation kinetics of Li2S, therefore enables the direct use of Li2S as cathode material in Li-S battery system in the future. This provides a new approach to manage the solubility of lithium sulfides through cation coordination with sulfide anion.

  16. Experimental study of lithium target under high power load

    Energy Technology Data Exchange (ETDEWEB)

    Khripunov, B.I. E-mail: boris@nfi.kiae.ru; Petrov, V.B.; Shapkin, V.V.; Pleshakov, A.S.; Rupyshev, A.S.; Antonov, N.V.; Litnovsky, A.M.; Romanov, P.V.; Shpansky, Yu.S.; Evtikhin, V.A.; Lyublinsky, I.E.; Vertkov, A.V

    2001-03-01

    This paper presents experimental research on simulation of a free liquid lithium surface under high heat flux impact for divertor application. Capillary porous structure (CPS) was taken to form the free liquid metal surface imitating divertor target plate. Experiments were performed in the SPRUT-4 linear plasma device with electron beam as power source. Lithium-filled targets were investigated at 1-50 MW/m{sup 2} heat loads in steady state. Lithium evaporation, energy and mass balance, surface temperature, vapor ionization, lithium plasma parameters and radiation were studied. Detailed thermal analysis was made to study heat flows in the target and their correspondence with experimental observations. Durable operation of the setup was possible in the range 1-20 MW/m{sup 2} without damage of the structure. The relevance of the experimental performance to divertor condition is analyzed.

  17. Performance Degradation of Thermal Parameters during Cycle Ageing of High Energy Density Ni-Mn-Co based Lithium-Ion Battery Cells

    DEFF Research Database (Denmark)

    Stanciu, Tiberiu; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2016-01-01

    The accelerated demand for electrifying the transportation sector, coupled with the continuous improvement of rechargeable batteries’ characteristics, have made modern high-energy Lithium-ion (Li-ion) batteries the standard choice for hybrid and electric vehicles (EVs). Consequently, Li......-ion batteries’ electrochemical and thermal characteristics are very important topics, putting them at the forefront of the research. Along with the electrical performance of Li-ion battery cells, their thermal behavior needs to be accurately predicted during operation and over the lifespan of the application...... as well, since the thermal management of the battery is crucial for the safety of the EV driver. Moreover, the thermal management system can significantly lower the degradation rate of the battery pack and thus reduce costs. In this paper, the thermal characterization of a commercially available Nickel...

  18. A new, high energy Sn-C/Li[Li(0.2)Ni(0.4)/3Co(0.4)/3Mn(1.6/3)]O2 lithium-ion battery.

    Science.gov (United States)

    Elia, Giuseppe Antonio; Wang, Jun; Bresser, Dominic; Li, Jie; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2014-08-13

    In this paper we report a new, high performance lithium-ion battery comprising a nanostructured Sn-C anode and Li[Li0.2Ni0.4/3Co0.4/3Mn1.6/3]O2 (lithium-rich) cathode. This battery shows highly promising long-term cycling stability for up to 500 cycles, excellent rate capability, and a practical energy density, which is expected to be as high as 220 Wh kg(-1) at the packaged cell level. Considering the overall performance of this new chemistry basically related to the optimized structure, morphology, and composition of the utilized active materials as demonstrated by XRD, TEM, and SEM, respectively, the system studied herein is proposed as a suitable candidate for application in the lithium-ion battery field.

  19. An improved high-performance lithium-air battery

    Science.gov (United States)

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-07-01

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh gcarbon-1 and 3 A gcarbon-1, respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

  20. An improved high-performance lithium-air battery.

    Science.gov (United States)

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-06-10

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g(carbon)(-1), respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

  1. A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery

    Science.gov (United States)

    Zhu, Yuewu; Li, Jie; Liu, Jin

    2017-05-01

    A bifunctional ion-electron conducting layer is designed for all-solid-state lithium-sulfur battery. This layer consists of electronic conductor and solid polymer electrolyte that is intercalated between the cathode and electrolyte. By forming a gradient of electrons and lithium ions, the electrochemical performance and interfacial compatibility of the battery are obviously enhanced. When a pure sulfur powder is directly used as an active material of the cathode, the battery with the interlayer delivers the initial discharge capacity of 1457 mAh g-1 and the discharge capacity of 792.8 mAh g-1 after 50 cycles at 0.5 C and 80 °C, while the battery with the same cathode and without the interlayer only has the discharge capacity of 291.9 mAh g-1 after the same number of cycles.

  2. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes

    Science.gov (United States)

    Nam, Young Jin; Oh, Dae Yang; Jung, Sung Hoo; Jung, Yoon Seok

    2018-01-01

    Owing to their potential for greater safety, higher energy density, and scalable fabrication, bulk-type all-solid-state lithium-ion batteries (ASLBs) employing deformable sulfide superionic conductors are considered highly promising for applications in battery electric vehicles. While fabrication of sheet-type electrodes is imperative from the practical point of view, reports on relevant research are scarce. This might be attributable to issues that complicate the slurry-based fabrication process and/or issues with ionic contacts and percolation. In this work, we systematically investigate the electrochemical performance of conventional dry-mixed electrodes and wet-slurry fabricated electrodes for ASLBs, by varying the different fractions of solid electrolytes and the mass loading. This information calls for a need to develop well-designed electrodes with better ionic contacts and to improve the ionic conductivity of solid electrolytes. As a scalable proof-of-concept to achieve better ionic contacts, a premixing process for active materials and solid electrolytes is demonstrated to significantly improve electrochemical performance. Pouch-type 80 × 60 mm2 all-solid-state LiNi0·6Co0·2Mn0·2O2/graphite full-cells fabricated by the slurry process show high cell-based energy density (184 W h kg-1 and 432 W h L-1). For the first time, their excellent safety is also demonstrated by simple tests (cutting with scissors and heating at 110 °C).

  3. A highly efficient polysulfide mediator for lithium-sulfur batteries

    National Research Council Canada - National Science Library

    Liang, Xiao; Hart, Connor; Pang, Quan; Garsuch, Arnd; Weiss, Thomas; Nazar, Linda F

    2015-01-01

    The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered...

  4. In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes.

    Science.gov (United States)

    Sun, Yongming; Lee, Hyun-Wook; Zheng, Guangyuan; Seh, Zhi Wei; Sun, Jie; Li, Yanbin; Cui, Yi

    2016-02-10

    The initial lithium loss during the formation stage is a critical issue that significantly reduces the specific capacity and energy density of current rechargeable lithium-ion batteries (LIBs). An effective strategy to solve this problem is using electrode prelithiation additives that can work as a secondary lithium source and compensate the initial lithium loss. Herein we show that nanocomposites of lithium fluoride and metal (e.g., LiF/Co and LiF/Fe) can be efficient cathode prelithiation materials. The thorough mixing of ultrafine lithium fluoride and metal particles (∼5 nm) allows lithium to be easily extracted from the nanocomposites via an inverse conversion reaction. The LiF/Co nanocomposite exhibits an open circuit voltage (OCV, 1.5 V) with good compatibility with that of existing cathode materials and delivers a high first-cycle "donor" lithium-ion capacity (516 mA h g(-1)). When used as an additive to a LiFePO4 cathode, the LiF/Co nanocomposite provides high lithium compensation efficiency. Importantly, the as-formed LiF/metal nanocomposites possess high stability and good compatibility with the regular solvent, binder, and existing battery processing conditions, in contrast with the anode prelithiation materials that usually suffer from issues of high chemical reactivity and instability. The facile synthesis route, high stability in ambient and battery processing conditions, and high "donor" lithium-ion capacity make the LiF/metal nanocomposites ideal cathode prelithiation materials for LIBs.

  5. High capacity and high density functional conductive polymer and SiO anode for high-energy lithium-ion batteries.

    Science.gov (United States)

    Zhao, Hui; Yuca, Neslihan; Zheng, Ziyan; Fu, Yanbao; Battaglia, Vincent S; Abdelbast, Guerfi; Zaghib, Karim; Liu, Gao

    2015-01-14

    High capacity and high density functional conductive polymer binder/SiO electrodes are fabricated and calendered to various porosities. The effect of calendering is investigated in the reduction of thickness and porosity, as well as the increase of density. SiO particle size remains unchanged after calendering. When compressed to an appropriate density, an improved cycling performance and increased energy density are shown compared to the uncalendered electrode and overcalendered electrode. The calendered electrode has a high-density of ∼1.2 g/cm(3). A high loading electrode with an areal capacity of ∼3.5 mAh/cm(2) at a C/10 rate is achieved using functional conductive polymer binder and simple and effective calendering method.

  6. Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes

    Science.gov (United States)

    Croy, Jason R.; Park, Joong Sun; Shin, Youngho; Yonemoto, Bryan T.; Balasubramanian, Mahalingam; Long, Brandon R.; Ren, Yang; Thackeray, Michael M.

    2016-12-01

    Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich "layered-layered-spinel" (LLS) material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (∼200 mAh g-1) and good energy densities (>700 Wh kgoxide-1) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials.

  7. Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium-Air Battery Electrode.

    Science.gov (United States)

    Yang, Wenge; Kim, Duck Young; Yang, Liuxiang; Li, Nana; Tang, Lingyun; Amine, Khalil; Mao, Ho-Kwang

    2017-09-01

    The lithium-air battery has great potential of achieving specific energy density comparable to that of gasoline. Several lithium oxide phases involved in the charge-discharge process greatly affect the overall performance of lithium-air batteries. One of the key issues is linked to the environmental oxygen-rich conditions during battery cycling. Here, the theoretical prediction and experimental confirmation of new stable oxygen-rich lithium oxides under high pressure conditions are reported. Three new high pressure oxide phases that form at high temperature and pressure are identified: Li2O3, LiO2, and LiO4. The LiO2 and LiO4 consist of a lithium layer sandwiched by an oxygen ring structure inherited from high pressure ε-O8 phase, while Li2O3 inherits the local arrangements from ambient LiO2 and Li2O2 phases. These novel lithium oxides beyond the ambient Li2O, Li2O2, and LiO2 phases show great potential in improving battery design and performance in large battery applications under extreme conditions.

  8. High-throughput theoretical design of lithium battery materials

    Science.gov (United States)

    Shi-Gang, Ling; Jian, Gao; Rui-Juan, Xiao; Li-Quan, Chen

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11234013 and 51172274) and the National High Technology Research and Development Program of China (Grant No. 2015AA034201).

  9. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth.

    Science.gov (United States)

    Li, Weiyang; Yao, Hongbin; Yan, Kai; Zheng, Guangyuan; Liang, Zheng; Chiang, Yet-Ming; Cui, Yi

    2015-06-17

    Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium and lithium polysulfide, which has long been considered as a critical flaw in lithium-sulfur batteries. We show that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition. Our findings allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes.

  10. High-efficiency and high-power rechargeable lithium-sulfur dioxide batteries exploiting conventional carbonate-based electrolytes

    National Research Council Canada - National Science Library

    Hyeokjun Park; Hee-dae Lim; Hyung-kyu Lim; Won Mo Seong; Sehwan Moon; Youngmin Ko; Byungju Lee; Youngjoon Bae; Hyungjun Kim; Kisuk Kang

    2017-01-01

    .... Recently, the primary lithium-sulfur dioxide battery, which offers a high energy density and long shelf-life, is successfully renewed as a promising rechargeable system exhibiting small polarization...

  11. Synthesis and characterization of advanced Li3V2(PO4)3 nanocrystals@conducting polymer PEDOT for high energy lithium-ion batteries

    Science.gov (United States)

    Yan, Haiyan; Zhang, Gai; Li, Yongfei

    2017-01-01

    Monoclinic Li3V2(PO4)3 compound is gathering significant interest as cathode material for lithium-ion batteries at the moment because of its high theoretical capacity, good safety and low cost. However, it suffers from bad rate capability and short cycling performance duo to the intrinsic low electronic conductivity. Herein, we report a design of Li3V2(PO4)3 particles coated by conducting polymer PEDOT through a facile method. When the cell is tested between 3.0 and 4.3 V, the core-shell Li3V2(PO4)3@PEDOT electrode delivers a capacity of 128.5 mAh g-1 at 0.1C which is about 96.6% of the theoretical capacity. At a high rate of 8C, it can still maintain a capacity of 108.6 mAh g-1 for over 15 cycles with capacity decay rate of only 0.049% per cycle. The impressive electrochemical performance could be attributed to the coated PEDOT layer which can provide a fast electronic connection. Therefore, it can be make a conclusion that the core-shell Li3V2(PO4)3@PEDOT composite is a promising cathode material for next-generation lithium-ion batteries.

  12. 75 FR 1302 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-01-11

    ... battery size and chemistry. The high energy density (i.e., high energy to weight ratio) of lithium... known as primary lithium batteries), and lithium ion, including lithium ion polymer (also known as... that packages of lithium batteries are placed into a well- established and high-functioning cargo...

  13. Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    Lithium ion (Li-ion) batteries have been extensively used in consumer electronics because of their characteristics, such as high efficiency, long life, and high gravimetric and volumetric energy. In addition, Li-ion batteries are becoming the most attractive candidate as electrochemical storage...

  14. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Babinec, Susan [A123 Systems, Inc., Waltham, MA (United States)

    2012-02-08

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge

  15. Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage.

    Science.gov (United States)

    Jin, Yang; Zhou, Guangmin; Shi, Feifei; Zhuo, Denys; Zhao, Jie; Liu, Kai; Liu, Yayuan; Zu, Chenxi; Chen, Wei; Zhang, Rufan; Huang, Xuanyi; Cui, Yi

    2017-09-06

    Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called "dead" sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm-3, 2 g sulfur in a single cell), high volumetric energy density (135 Wh L-1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.Lithium polysulfide batteries suffer from the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium. Here the authors show a reactivation strategy by a reaction with cheap sulfur powder under stirring and heating to recover the cell capacity.

  16. Lithium rich cathode/graphite anode combination for lithium ion cells with high tolerance to near zero volt storage

    Science.gov (United States)

    Crompton, K. R.; Staub, J. W.; Hladky, M. P.; Landi, B. J.

    2017-03-01

    Management of reversible lithium is an advantageous approach to design lithium ion cells that are tolerant to near zero volt (NZV) storage under fixed resistive load towards highly controllable, enhanced user-inactive safety. Presently, the first cycle loss from a high energy density Li-rich HE5050 cathode is used to provide excess reversible lithium when paired with an appropriately capacity matched mesocarbon microbead (MCMB) anode. Cells utilizing 1.2 M LiPF6 3:7 v/v ethylene carbonate:ethyl methyl carbonate electrolyte and a lithium reference were used for 3-electrode testing. After conditioning, a fixed resistive load was applied to 3-electrode cells for 72 or 168-h during which the anode potential and electrode asymptotic potential (EAP) remained less than the copper dissolution potential. After multiple storage cycles (room temperature or 40 °C), the NZV coulombic efficiency (cell reversibility) exceeded 97% and the discharge capacity retention was >98%. Conventional 2-electrode HE5050/MCMB pouch cells stored at NZV or open circuit for 3 days had nearly identical rate capability (up to 5C) and discharge performance stability (for 500 cycles under a 30% depth of discharge low-earth-orbit regime). Thus, lithium ion cells with appropriately capacity matched HE5050/MCMB electrodes have excellent tolerance to prolonged NZV storage, which can lead to enhanced user-inactive safety.

  17. A simple approach for making a viable, safe, and high-performances lithium-sulfur battery

    Science.gov (United States)

    Carbone, Lorenzo; Coneglian, Thomas; Gobet, Mallory; Munoz, Stephen; Devany, Matthew; Greenbaum, Steve; Hassoun, Jusef

    2018-02-01

    We report an electrolyte with low flammability, based on diethylene glycol dimethyl ether (DEGDME) dissolving lithium bis-trifluoromethane sulfonimidate (LiTFSI), and lithium nitrate (LiNO3) for high-performances lithium/sulfur battery. Self-diffusion coefficients, conductivity, and lithium transport number of the electrolyte are obtained by nuclear magnetic resonance and electrochemical impedance spectroscopy. Interface stability, lithium stripping/deposition ability, and the electrochemical stability window of the electrolyte are determined by voltammetry and impedance spectroscopy. The tests suggest conductivity higher than 10-2 S cm-1, lithium transport number of about 0.5, electrochemical stability extending from 0 V to 4.6 V, and excellent compatibility with lithium metal. A composite cathode using sulfur and multi walled carbon nanotubes (MWCNTs) is characterized in terms of structure and morphology by X-ray diffraction and scanning electron microscopy. The study shows spherical flakes in which the carbon nanotubes protect the crystalline sulfur from excessive dissolution, and create the optimal host for allowing the proper cell operation. The Li/S cell reveals highly reversible process during charge/discharge cycles, fast kinetic, and lithium diffusion coefficient in the sulfur electrode ranging from 10-12 to 10-10 cm2 s-1. The cell evidences a coulombic efficiency approaching 100%, capacity from 1300 mAh g-1 to 900 mAh g-1 and practical energy density higher than 400 Wh kg-1.

  18. High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries

    Science.gov (United States)

    2015-04-24

    Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries Siu on Tung, Krista L. Hawthorne, Yi Ding, James Mainero, and Levi T. Thompson...Automotive Research Development and Engineering Center, Warren, MI 48387, USA Keywords: nanostructured materials, lithium ion batteries , cathode...2014 to 00-00-2015 4. TITLE AND SUBTITLE High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries 5a. CONTRACT NUMBER 5b. GRANT

  19. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.

    Science.gov (United States)

    Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng

    2018-02-01

    Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery.

    Science.gov (United States)

    Zhang, Jie; Lu, Qingwen; Fang, Jianhua; Wang, Jiulin; Yang, Jun; NuLi, Yanna

    2014-10-22

    Lithium-rich materials represented by xLi2MnO3·(1 - x)LiMO2 (M = Mn, Co, Ni) are attractive cathode materials for lithium-ion battery due to their high specific energy and low cost. However, some drawbacks of these materials such as poor cycle and rate capability remain to be addressed before applications. In this study, a thin polyimide (PI) layer is coated on the surface of Li1.2Ni0.13Mn0.54Co0.13O2 (LNMCO) by a polyamic acid (PAA) precursor with subsequently thermal imidization process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM) results confirm the successful formation of a PI layer (∼3 nm) on the surface of LNMCO without destruction of its main structure. X-ray photoelectron spectroscopy (XPS) spectra show a slight shift of the Mn valence state from Mn(IV) to Mn(III) in the PI-LNMCO treated at 450 °C, elucidating that charge transfer takes place between the PI layer and LNMCO surface. Electrochemical performances of LNMCO including cyclic stability and rate capability are evidently improved by coating a PI nanolayer, which effectively separates the cathode material from the electrolyte and stabilizes their interface at high voltage.

  1. Functionalized graphene for high performance lithium ion capacitors.

    Science.gov (United States)

    Lee, Ji Hoon; Shin, Weon Ho; Ryou, Myung-Hyun; Jin, Jae Kyu; Kim, Junhyung; Choi, Jang Wook

    2012-12-01

    Lithium ion capacitors (LICs) have recently drawn considerable attention because they utilize the advantages of supercapacitors (high power) and lithium ion batteries (high energy). However, the energy densities of conventional LICs, which consist of a pair of graphite and activated carbon electrodes, are limited by the small capacities of the activated carbon cathodes. To overcome this limitation, we have engaged urea-reduced graphene oxide. The amide functional groups generated during the urea reduction facilitate the enolization processes for reversible Li binding, which improves the specific capacity by 37 % compared to those of conventional systems such as activated carbon and hydrazine-reduced graphene oxide. Utilizing the increased Li binding capability, when evaluated based on the mass of the active materials on both sides, the LICs based on urea-reduced graphene oxide deliver a specific energy density of approximately 106 Wh kg(total) (-1) and a specific power density of approximately 4200 W kg(total) (-1) with perfect capacity retention up to 1000 cycles. These values are far superior to those of previously reported LICs and supercapacitors, which suggests that appropriately treated graphene can be a promising electrode material for LICs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High Temperature Solid State Lithium Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  3. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.

    Science.gov (United States)

    Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng

    2016-03-24

    The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultra High Energy Solid-State Batteries for Next Generation Space Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of lithium (Li) metal as an anode material has emerged as one highly attractive option for achieving high specific energy due to lithium having the highest...

  5. Facile green synthesis of a Co3V2O8 nanoparticle electrode for high energy lithium-ion battery applications.

    Science.gov (United States)

    Soundharrajan, Vaiyapuri; Sambandam, Balaji; Song, Jinju; Kim, Sungjin; Jo, Jeonggeun; Duong, Pham Tung; Kim, Seokhun; Mathew, Vinod; Kim, Jaekook

    2017-09-01

    In the present study, a metal-organic framework (MOF) derived from a facile water-assisted green precipitation technique is employed to synthesize phase-pure cobalt vanadate (Co3V2O8, CVO) anode for lithium-ion battery (LIB) application. The material obtained by this eco-friendly method is systematically characterized using various techniques such as powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption measurements. By using as an anode, an initial discharge capacity of 1640mAhg-1 and a reversible capacity of 1194mAhg-1 are obtained at the applied current densities after the 240th cycle (2Ag-1 for 200 cycles followed by 0.2Ag-1 for 40 cycles). Moreover, a reversible capacity as high as 962mAhg-1 is retained at high current densities even after 240 cycles (4Ag-1 for 200 cycles followed by 2Ag-1 for 40 cycles), revealing the long life stability of the electrode. Significantly, CVO anode composed of fine nanoparticles (NPs) registered a substantial rate performance and reversible specific capacities of 275, 390, 543 and 699mAhg-1 at high reversibly altered current densities of 10, 5, 2, and 1Ag-1, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Lithium

    Science.gov (United States)

    Lithium is used to treat and prevent episodes of mania (frenzied, abnormally excited mood) in people with ... depression, episodes of mania, and other abnormal moods). Lithium is in a class of medications called antimanic ...

  7. Grid Inertial Response with Lithium-ion Battery Energy Storage Systems

    DEFF Research Database (Denmark)

    Knap, Vaclav; Sinha, Rakesh; Swierczynski, Maciej Jozef

    2014-01-01

    of this paper is to evaluate the technical viability of utilizing energy storage systems based on Lithium-ion batteries for providing inertial response in grids with high penetration levels of wind power. In order to perform this evaluation, the 12-bus system grid model was used; the inertia of the grid...... was varied by decreasing the number of conventional power plants in the studied grid model while in the same time increasing the load and the wind power penetration levels. Moreover, in order to perform a realistic investigation, a dynamic model of the Lithium-ion battery was considered and parameterized...

  8. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    KAUST Repository

    Choudhury, Snehashis

    2015-12-04

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  9. Robust, High Capacity, High Power Lithium Ion Batteries for Space Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium ion battery technology provides the highest energy density of all rechargeable battery technologies available today. However, the majority of the research...

  10. High capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  11. Scanning ion microscopy with low energy lithium ions

    Energy Technology Data Exchange (ETDEWEB)

    Twedt, Kevin A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Maryland NanoCenter, University of Maryland, College Park, MD 20742 (United States); Chen, Lei [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); McClelland, Jabez J., E-mail: jabez.mcclelland@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2014-07-01

    Using an ion source based on photoionization of laser-cooled lithium atoms, we have developed a scanning ion microscope with probe sizes of a few tens of nanometers and beam energies from 500 eV to 5 keV. These beam energies are much lower than the typical operating energies of the helium ion microscope or gallium focused ion beam systems. We demonstrate how low energy can be advantageous in ion microscopy when detecting backscattered ions, due to a decreased interaction volume and the potential for surface sensitive composition analysis. As an example application that demonstrates these advantages, we non-destructively image the removal of a thin residual resist layer during plasma etching in a nano-imprint lithography process. - Highlights: • We use an ion source based on photoionization of laser-cooled lithium atoms. • The ion source makes possible a low energy (500 eV to 5 keV) scanning ion microscope. • Low energy is preferred for ion microscopy with backscattered ions. • We use the microscope to image a thin resist used in nano-imprint lithography.

  12. Lithium-Catalyzed Carbon Aerogel and Its Possible Application in Energy Storage Materials

    Science.gov (United States)

    Ciszewski, Mateusz; Szatkowska, Elżbieta; Koszorek, Andrzej

    2017-07-01

    A lithium-based catalyst for carbon aerogel compounds and carbon nanotubes synthesis was used. Lithium hydroxide-catalyzed and CNT-modified carbon aerogel was compared to traditionally synthesized sodium carbonate-catalyzed carbon aerogel, as well as to the same material modified with CNT to evaluate the real effect of lithium hydroxide addition. Enhancement in the specific surface area from 498 m2/g to 786 m2/g and significant change in pore size distribution were observed. Low temperature, supercritical drying in carbon dioxide was used to prepare an organic aerogel with subsequent pyrolysis in an inert gas flow to convert it into carbon aerogel. The as-obtained material was examined with respect to energy storage applications, i.e. symmetric hybrid supercapacitors. It was shown that lithium hydroxide was responsible for shorter gelation time, increased specific surface area, and a greater number of micropores within the structure. For both reference materials prepared using sodium carbonate, quite different data were recorded. It was presented that the proper choice of carbon matrix should combine both high specific surface area and appropriate pore size distribution. High surface area and a relatively large number of micropores were responsible for specific capacity loss.

  13. Silicon-Nanowire Based Lithium Ion Batteries for Vehicles With Double the Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, Ionel [Amprius, Inc., Sunnyvale, CA (United States); Cohen, Yehonathan [Amprius, Inc., Sunnyvale, CA (United States)

    2015-03-31

    Amprius researched and developed silicon nanowire anodes. Amprius then built and delivered high-energy lithium-ion cells that met the project’s specific energy goal and exceeded the project’s energy density goal. But Amprius’ cells did not meet the project’s cycle life goal, suggesting additional manufacturing process development is required. With DOE support, Amprius developed a new anode material, silicon, and a new anode structure, nanowire. During the project, Amprius also began to develop a new multi-step manufacturing process that does not involve traditional anode production processes (e.g. mixing, drying and calendaring).

  14. Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery.

    Science.gov (United States)

    Lu, Yang; Gu, Sui; Guo, Jing; Rui, Kun; Chen, Chunhua; Zhang, Sanpei; Jin, Jun; Yang, Jianhua; Wen, Zhaoyin

    2017-05-03

    The lithium-sulfur battery is one of the most prospective chemistries in secondary energy storage field due to its high energy density and high theoretical capacity. However, the dissolution of polysulfides in liquid electrolytes causes the shuttle effect, and the rapid decay of lithium sulfur battery has greatly hindered its practical application. Herein, combination of sulfonated reduced graphene oxide (SRGO) interlayer on the separator is adopted to suppress the shuttle effect. We speculate that this SRGO layer plays two roles: physically blocking the migration of polysulfide as ion selective layer and anchoring lithium polysulfide by the electronegative sulfonic group. Lewis acid-base theory and density functional theory (DFT) calculations indicate that sulfonic groups have a strong tendency to interact with lithium ions in the lithium polysulfide. Hence, the synergic effect involved by the sulfonic group contributes to the enhancement of the battery performance. Furthermore, the uniformly distributed sulfonic groups working as active sites which could induce the uniform distribution of sulfur, alleviating the excessive growth of sulfur and enhancing the utilization of active sulfur. With this interlayer, the prototype battery exhibits a high reversible discharge capacity of more than 1300 mAh g-1 and good capacity retention of 802 mAh g-1 after 250 cycles at 0.5 C rate. After 60 cycles at different rates from 0.2 to 4 C, the cell with this functional separator still recovered a high specific capacity of 1100 mAh g-1 at 0.2 C. The results demonstrate a promising interlayer design toward high performance lithium-sulfur battery with longer cycling life, high specific capacity, and rate capability.

  15. Lithium polymer batteries and proton exchange membrane fuel cells as energy sources in hydrogen electric vehicles

    Science.gov (United States)

    Corbo, P.; Migliardini, F.; Veneri, O.

    This paper deals with the application of lithium ion polymer batteries as electric energy storage systems for hydrogen fuel cell power trains. The experimental study was firstly effected in steady state conditions, to evidence the basic features of these systems in view of their application in the automotive field, in particular charge-discharge experiments were carried at different rates (varying the current between 8 and 100 A). A comparison with conventional lead acid batteries evidenced the superior features of lithium systems in terms of both higher discharge rate capability and minor resistance in charge mode. Dynamic experiments were carried out on the overall power train equipped with PEM fuel cell stack (2 kW) and lithium batteries (47.5 V, 40 Ah) on the European R47 driving cycle. The usage of lithium ion polymer batteries permitted to follow the high dynamic requirement of this cycle in hard hybrid configuration, with a hydrogen consumption reduction of about 6% with respect to the same power train equipped with lead acid batteries.

  16. Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes

    CERN Document Server

    Bai, Peng

    2016-01-01

    Lithium-air batteries have been considered as ultimate solutions for the power source of long-range electrified transportation, but state-of-the-art prototypes still suffer from short cycle life, low efficiency and poor power output. Here, a lithium-bromine rechargeable fuel cell using highly concentrated bromine catholytes is demonstrated with comparable specific energy, improved power density, and higher efficiency. The cell is similar in structure to a hybrid-electrolyte Li-air battery, where a lithium metal anode in nonaqueous electrolyte is separated from aqueous bromine catholytes by a lithium-ion conducting ceramic plate. The cell with a flat graphite electrode can discharge at a peak power density around 9mW cm-2 and in principle could provide a specific energy of 791.8 Wh kg-1, superior to most existing cathode materials and catholytes. It can also run in regenerative mode to recover the lithium metal anode and free bromine with 80-90% voltage efficiency, without any catalysts. Degradation of the sol...

  17. Nanodiamonds suppress the growth of lithium dendrites

    OpenAIRE

    Cheng, Xin-Bing; Zhao, Meng-Qiang; Chen, Chi; Pentecost, Amanda; Maleski, Kathleen; Mathis, Tyler; Zhang, Xue-Qiang; ZHANG, QIANG; Jiang, Jianjun; Gogotsi, Yury

    2017-01-01

    Lithium metal has been regarded as the future anode material for high-energy-density rechargeable batteries due to its favorable combination of negative electrochemical potential and high theoretical capacity. However, uncontrolled lithium deposition during lithium plating/stripping results in low Coulombic efficiency and severe safety hazards. Herein, we report that nanodiamonds work as an electrolyte additive to co-deposit with lithium ions and produce dendrite-free lithium deposits. First-...

  18. High-discharge-rate lithium ion battery

    Science.gov (United States)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  19. Recycling rice husks for high-capacity lithium battery anodes.

    Science.gov (United States)

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

  20. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    Science.gov (United States)

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-12-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  1. High Energy $\

    CERN Multimedia

    2002-01-01

    This experiment is a high statistics exposure of BEBC filled with hydrogen to both @n and &bar.@n beams. The principal physics aims are : \\item a) The study of the production of charmed mesons and baryons using fully constrained events. \\end{enumerate} b) The study of neutral current interactions on the free proton. \\item c) Measurement of the cross-sections for production of exclusive final state N* and @D resonances. \\item d) Studies of hadronic final states in charged and neutral current reactions. \\item e) Measurement of inclusive charged current cross-sections and structure functions. \\end{enumerate}\\\\ \\\\ The neutrino flux is determined by monitoring the flux of muons in the neutrino shield. The Internal Picket Fence and External Muon Identifier of BEBC are essential parts of the experiment. High resolution cameras are used to search for visible decays of short-lived particles.

  2. Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage

    Science.gov (United States)

    Manthiram, Arumugam

    2011-03-01

    Electrical energy storage has emerged as a topic of national and global importance with respect to establishing a cleaner environment and reducing the dependence on foreign oil. Batteries are the prime candidates for electrical energy storage. They are the most viable near-term option for vehicle applications and the efficient utilization of intermittent energy sources like solar and wind. Lithium-ion batteries are attractive for these applications as they offer much higher energy density than other rechargeable battery systems. However, the adoption of lithium-ion battery technology for vehicle and stationary storage applications is hampered by high cost, safety concerns, and limitations in energy, power, and cycle life, which are in turn linked to severe materials challenges. This presentation, after providing an overview of the current status, will focus on the physics and chemistry of new materials that can address these challenges. Specifically, it will focus on the design and development of (i) high-capacity, high-voltage layered oxide cathodes, (ii) high-voltage, high-power spinel oxide cathodes, (iii) high-capacity silicate cathodes, and (iv) nano-engineered, high-capacity alloy anodes. With high-voltage cathodes, a critical issue is the instability of the electrolyte in contact with the highly oxidized cathode surface and the formation of solid-electrolyte interfacial (SEI) layers that degrade the performance. Accordingly, surface modification of cathodes with nanostructured materials and self-surface segregation during the synthesis process to suppress SEI layer formation and enhance the energy, power, and cycle life will be emphasized. With the high-capacity alloy anodes, a critical issue is the huge volume change occurring during the charge-discharge process and the consequent poor cycle life. Dispersion of the active alloy nanoparticles in an inactive metal oxide-carbon matrix to mitigate this problem and realize long cycle life will be presented.

  3. High temperature flow behaviour of SiC reinforced lithium ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to β spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of.

  4. High-efficiency and high-power rechargeable lithium-sulfur dioxide batteries exploiting conventional carbonate-based electrolytes

    Science.gov (United States)

    Park, Hyeokjun; Lim, Hee-Dae; Lim, Hyung-Kyu; Seong, Won Mo; Moon, Sehwan; Ko, Youngmin; Lee, Byungju; Bae, Youngjoon; Kim, Hyungjun; Kang, Kisuk

    2017-05-01

    Shedding new light on conventional batteries sometimes inspires a chemistry adoptable for rechargeable batteries. Recently, the primary lithium-sulfur dioxide battery, which offers a high energy density and long shelf-life, is successfully renewed as a promising rechargeable system exhibiting small polarization and good reversibility. Here, we demonstrate for the first time that reversible operation of the lithium-sulfur dioxide battery is also possible by exploiting conventional carbonate-based electrolytes. Theoretical and experimental studies reveal that the sulfur dioxide electrochemistry is highly stable in carbonate-based electrolytes, enabling the reversible formation of lithium dithionite. The use of the carbonate-based electrolyte leads to a remarkable enhancement of power and reversibility; furthermore, the optimized lithium-sulfur dioxide battery with catalysts achieves outstanding cycle stability for over 450 cycles with 0.2 V polarization. This study highlights the potential promise of lithium-sulfur dioxide chemistry along with the viability of conventional carbonate-based electrolytes in metal-gas rechargeable systems.

  5. High-efficiency and high-power rechargeable lithium-sulfur dioxide batteries exploiting conventional carbonate-based electrolytes.

    Science.gov (United States)

    Park, Hyeokjun; Lim, Hee-Dae; Lim, Hyung-Kyu; Seong, Won Mo; Moon, Sehwan; Ko, Youngmin; Lee, Byungju; Bae, Youngjoon; Kim, Hyungjun; Kang, Kisuk

    2017-05-11

    Shedding new light on conventional batteries sometimes inspires a chemistry adoptable for rechargeable batteries. Recently, the primary lithium-sulfur dioxide battery, which offers a high energy density and long shelf-life, is successfully renewed as a promising rechargeable system exhibiting small polarization and good reversibility. Here, we demonstrate for the first time that reversible operation of the lithium-sulfur dioxide battery is also possible by exploiting conventional carbonate-based electrolytes. Theoretical and experimental studies reveal that the sulfur dioxide electrochemistry is highly stable in carbonate-based electrolytes, enabling the reversible formation of lithium dithionite. The use of the carbonate-based electrolyte leads to a remarkable enhancement of power and reversibility; furthermore, the optimized lithium-sulfur dioxide battery with catalysts achieves outstanding cycle stability for over 450 cycles with 0.2 V polarization. This study highlights the potential promise of lithium-sulfur dioxide chemistry along with the viability of conventional carbonate-based electrolytes in metal-gas rechargeable systems.

  6. Nanodiamonds suppress the growth of lithium dendrites.

    Science.gov (United States)

    Cheng, Xin-Bing; Zhao, Meng-Qiang; Chen, Chi; Pentecost, Amanda; Maleski, Kathleen; Mathis, Tyler; Zhang, Xue-Qiang; Zhang, Qiang; Jiang, Jianjun; Gogotsi, Yury

    2017-08-25

    Lithium metal has been regarded as the future anode material for high-energy-density rechargeable batteries due to its favorable combination of negative electrochemical potential and high theoretical capacity. However, uncontrolled lithium deposition during lithium plating/stripping results in low Coulombic efficiency and severe safety hazards. Herein, we report that nanodiamonds work as an electrolyte additive to co-deposit with lithium ions and produce dendrite-free lithium deposits. First-principles calculations indicate that lithium prefers to adsorb onto nanodiamond surfaces with a low diffusion energy barrier, leading to uniformly deposited lithium arrays. The uniform lithium deposition morphology renders enhanced electrochemical cycling performance. The nanodiamond-modified electrolyte can lead to a stable cycling of lithium | lithium symmetrical cells up to 150 and 200 h at 2.0 and 1.0 mA cm-2, respectively. The nanodiamond co-deposition can significantly alter the lithium plating behavior, affording a promising route to suppress lithium dendrite growth in lithium metal-based batteries.Lithium metal is an ideal anode material for rechargeable batteries but suffer from the growth of lithium dendrites and low Coulombic efficiency. Here the authors show that nanodiamonds serve as an electrolyte additive to co-deposit with lithium metal and suppress the formation of dendrites.

  7. High-power liquid-lithium jet target for neutron production.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Berkovits, D; Eliyahu, I; Feinberg, G; Friedman, M; Hazenshprung, N; Mardor, I; Nagler, A; Shimel, G; Tessler, M; Silverman, I

    2013-12-01

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the (7)Li(p,n)(7)Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm(3)) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the (7)Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ~200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm(2) and volume power density of ~2 MW/cm(3) at a lithium flow of ~4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91-2.5 MeV, 1-2 mA) at SARAF.

  8. High-power liquid-lithium jet target for neutron production

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S.; Feinberg, G. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Arenshtam, A.; Kijel, D.; Berkovits, D.; Eliyahu, I.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Silverman, I. [Soreq NRC, Yavne 81800 (Israel); Paul, M.; Friedman, M.; Tessler, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2013-12-15

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ∼200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ∼2 MW/cm{sup 3} at a lithium flow of ∼4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.

  9. Nano-Composite Cathodes for High Performance Lithium Ion Microbatteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TPL Inc. proposes to develop a novel, high performance, nanostructured cathode material for lithium ion (Li-ion) batteries. The proposed approach will modify lithium...

  10. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte.

    Science.gov (United States)

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-02-22

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known "polysulfide shuttle" effect. Here, we report a novel cell design by sandwiching a sp(3) boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates.

  11. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    Science.gov (United States)

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  12. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  13. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    Future large Wind Power Plants (WPP) will be intended to function like today's conventional power plants seen from the transmission system point of view, by complying with future, more stringent, grid codes and providing ancillary services. This is possible to achieve by integrating WPPs...... with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... to their characteristics such as high power, high efficiency, low self-discharge, and long lifetime. The family of the Li-ion batteries is wide and the selection of the most appropriate Liion chemistries for VPPs is one of the topics of this thesis, where different chemistries are compared and the most suitable ones...

  14. Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R., E-mail: rmaingi@pppl.gov [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bell, R.E. [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Boyle, D.P. [Princeton University, Princeton, NJ (United States); Diallo, A.; Kaita, R.; Kaye, S.M.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Sabbagh, S.A. [Columbia University, New York, NY (United States); Scotti, F.; Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2017-04-15

    A sequence of H-mode discharges with increasing levels of pre-discharge lithium evaporation (‘dose’) was conducted in high triangularity and elongation boundary shape in NSTX. Energy confinement increased, and recycling decreased with increasing lithium dose, similar to a previous lithium dose scan in medium triangularity and elongation plasmas. Data-constrained SOLPS interpretive modeling quantified the edge transport change: the electron particle diffusivity decreased by 10–30x. The electron thermal diffusivity decreased by 4x just inside the top of the pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline expectation for lithium benefits in NSTX-U, which is optimized for a boundary shape similar to the one in this experiment.

  15. Control of Internal and External Short Circuits in Lithium Ion and Lithium Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified needs for compact high-energy-density primary and secondary batteries. Lithium and Lithium Ion cells, respectively, are meeting these needs for...

  16. Suggested Operation Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2015-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  17. Operation of Grid -Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Knap, Vaclav; Swierczynski, Maciej Jozef

    2017-01-01

    Because of their characteristics, which have been continuously improved during the last years, Lithium ion batteries were proposed as an alternative viable solution to present fast-reacting conventional generating units to deliver the primary frequency regulation service. However, even though...... there are worldwide demonstration projects where energy storage systems based on Lithium-ion batteries are evaluated for such applications, the field experience is still very limited. In consequence, at present there are no very clear requirements on how the Lithium-ion battery energy storage systems should...... be operated while providing frequency regulation service and how the system has to re-establish its SOC once the frequency event has passed. Therefore, this paper aims to investigate the effect on the lifetime of the Lithium-ion batteries energy storage system of various strategies for re...

  18. Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect

    KAUST Repository

    Zhang, Qianfan

    2011-05-19

    Silicon nanowires (SiNWs) have recently been shown to be promising as high capacity lithium battery anodes. SiNWs can be grown with their long axis along several different crystallographic directions. Due to distinct atomic configuration and electronic structure of SiNWs with different axial orientations, their lithium insertion behavior could be different. This paper focuses on the characteristics of single Li defects, including binding energy, diffusion barriers, and dependence on uniaxial strain in [110], [100], [111], and [112] SiNWs. Our systematic ab initio study suggests that the Si-Li interaction is weaker when the Si-Li bond direction is aligned close to the SiNW long axis. This results in the [110] and [111] SiNWs having the highest and lowest Li binding energy, respectively, and it makes the diffusion barrier along the SiNW axis lower than other pathways. Under external strain, it was found that [110] and [001] SiNWs are the most and least sensitive, respectively. For diffusion along the axial direction, the barrier increases (decreases) under tension (compression). This feature results in a considerable difference in the magnitude of the energy barrier along different diffusion pathways. © 2011 American Chemical Society.

  19. High conducting oxide--sulfide composite lithium superionic conductor

    Science.gov (United States)

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  20. [Treatment of acute lithium intoxication with high-flux haemodialysis membranes].

    Science.gov (United States)

    Peces, R; Fernández, E J; Regidor, D; Peces, C; Sánchez, R; Montero, A; Selgas, R

    2006-01-01

    Lithium carbonate is commonly prescribed for the treatment of bipolar (manic-depressive) disorders. However, because of its narrow therapeutic index an excessive elevation of serum lithium concentration, either during chronic maintenance therapy or after an acute overdose, can result in serious toxicity. In addition to supportive care, the established treatment of severe lithium toxicity is haemodialysis. Conventional haemodialysis can reduce serum lithium rapidly, but post-dialysis rebound elevations with recurrent toxicity have been documented in old publications. High-flux membranes should be capable of removing more lithium per hour of haemodialysis, but published values are not available. We report here three patients with acute lithium intoxication who were treated successfully with bicarbonate and high-flux haemodialysis membranes. Our patients presented with a severe degree of intoxication, based on the amount of drug ingested, the initial serum lithium level, the severity of neurologic symptoms and systemic manifestations. Two patients developed acute renal failure probably as a result of volume depletion since it was rapidly reversible by haemodialysis and infusion therapy. In addition, consecutive haemodialysis sessions and improvement of renal function allowed a rapid decrease in serum lithium levels without haemodynamic instability or rebound elevations in lithium concentration. The effectiveness of the procedure in these cases can be attributed to the use of bicarbonate dialysate and high-efficiency dialysers. This is the first report describing the effect of high-efficiency dialysers on lithium pharmacokinetic. Using this technique the elimination rate of lithium was found to be greater than previously reported with haemodialysis.

  1. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.

    2013-03-26

    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  2. A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jinhyuk; Seo, Dong-Hwa; Balasubramanian, Mahalingam; Twu, Nancy; Li, Xin; Ceder, Gerbrand

    2015-01-01

    We present a new class of high capacity cation-disordered materials, lithium-excess nickel titanium molybdenum oxides, which deliver a capacity up to 250 mAh/g. These materials were designed from percolation theory which predicts lithium diffusion to become facile in cation-disordered oxides as the lithium-excess level (x > 0 in Li1+xTM1-xO2) increases. The reversible capacity and rate capability in these compounds are shown to considerably improve with lithium excess. In particular, Li1.2Ni1/3Ti1/3Mo2/15O2 delivers up to 250 mAh/g and 750Wh/kg (~3080 Wh/l) at 10 mA/g. Combining in situ X-ray diffraction, electron energy loss spectroscopy, and X-ray absorption near edge spectroscopy, we propose that first charging Li1.2Ni1/3Ti1/3Mo2/15O2 to 4.8 V occurs with Ni2+/Ni~3+ oxidation, oxygen loss, and oxygen oxidation in this sequence, after which Mo6+ and Ti4+ can be reduced upon discharge. Furthermore, we discuss how oxygen loss with lattice densification can affect lithium diffusion in the material by decreasing the Li-excess level. From this understanding, strategies for further improvements are proposed, setting new guidelines for the design of high performance cation-disordered oxides for rechargeable lithium batteries.

  3. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement.

    Science.gov (United States)

    Yu, Xingwen; Manthiram, Arumugam

    2015-01-21

    Liquid-phase polysulfide catholytes are attracting much attention in lithium-sulfur (Li-S) batteries as they provide a facile dispersion and homogeneous distribution of the sulfur active material in the conductive matrix. However, the organic solvents used in lithium-polysulfide (Li-PS) batteries play an important role and have an impact on the physico-chemical characteristics of polysulfides. For instance, significantly higher voltages (∼2.7 V) of the S/S(n)(2-) (4 ≤n≤ 8) redox couple are observed in Li-PS batteries with dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) solvents. Accordingly, high power Li-PS batteries are presented here with the catholyte prepared with NMP solvent and operated with the highly reversible sulfur/long-chain polysulfide redox couple. On the other hand, a remarkable cyclability enhancement of the Li-PS battery is observed with the long-chain, ether-based tetraglyme (TEGDME) solvent. The voltage enhancement and the cyclability enhancement of the Li-PS batteries are attributed to the solvation effect, viscosity, and volatility of the solvents. Finally, highly concentrated polysulfide catholytes are successfully synthesized, with which high energy density Li-PS batteries are demonstrated by employing a multi-walled carbon nanotube (MWCNT) fabric electrode.

  4. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Yu, XW; Manthiram, A

    2015-01-01

    Liquid-phase polysulfide catholytes are attracting much attention in lithium-sulfur (Li-S) batteries as they provide a facile dispersion and homogeneous distribution of the sulfur active material in the conductive matrix. However, the organic solvents used in lithium-polysulfide (Li-PS) batteries play an important role and have an impact on the physico-chemical characteristics of polysulfides. For instance, significantly higher voltages (similar to 2.7 V) of the S/S-n(2-) (4 <= n <= 8) redox couple are observed in Li-PS batteries with dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) solvents. Accordingly, high power Li-PS batteries are presented here with the catholyte prepared with NMP solvent and operated with the highly reversible sulfur/long-chain polysulfide redox couple. On the other hand, a remarkable cyclability enhancement of the Li-PS battery is observed with the long-chain, ether-based tetraglyme (TEGDME) solvent. The voltage enhancement and the cyclability enhancement of the Li-PS batteries are attributed to the solvation effect, viscosity, and volatility of the solvents. Finally, highly concentrated polysulfide catholytes are successfully synthesized, with which high energy density Li-PS batteries are demonstrated by employing a multi-walled carbon nanotube (MWCNT) fabric electrode.

  5. Flexible Carbon Nanotube Modified Separator for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Liu, Bin; Wu, Xiaomeng; Wang, Shan; Tang, Zhen; Yang, Quanling; Hu, Guo-Hua; Xiong, Chuanxi

    2017-07-26

    Lithium-sulfur (Li-S) batteries have become promising candidates for electrical energy storage systems due to their high theoretical specific energy density, low cost and environmental friendliness. However, there are some technical obstacles of lithium-sulfur batteries to be addressed, such as the shuttle effect of polysulfides. Here, we introduced organically modified carbon nanotubes (CNTs) as a coating layer for the separator to optimize structure and enhance the performance of the Li-S battery. The results showed that the cell with a CNTs-coated separator exhibited an excellent cycling performance. Compared to the blank separator, the initial discharge capacity and the capacity after 100 cycles for the CNTs-coated separator was increased by 115% and 161%, respectively. Besides, according to the rate capability test cycling from 0.1C to 2C, the battery with a CNTs-coated separator still released a capacity amounting to 90.2% of the initial capacity, when the current density returned back to 0.1C. It is believed that the organically modified CNTs coating effectively suppresses the shuttle effect during the cycling. The employment of a CNTs-coated separator provides a promising approach for high-performance lithium-sulfur batteries.

  6. Flexible Lithium-Ion Batteries with High Areal Capacity Enabled by Smart Conductive Textiles.

    Science.gov (United States)

    Ha, Sung Hoon; Shin, Kyu Hang; Park, Hae Won; Lee, Yun Jung

    2018-02-05

    Increasing demand for flexible devices in various applications, such as smart watches, healthcare, and military applications, requires the development of flexible energy-storage devices, such as lithium-ion batteries (LIBs) with high flexibility and capacity. However, it is difficult to ensure high capacity and high flexibility simultaneously through conventional electrode preparation processes. Herein, smart conductive textiles are employed as current collectors for flexible LIBs owing to their inherent flexibility, fibrous network, rough surface for better adhesion, and electrical conductivity. Conductivity and flexibility are further enhanced by nanosizing lithium titanate oxide (LTO) and lithium iron phosphate (LFP) active materials, and hybridizing them with a flexible 2D graphene template. The resulting LTO/LFP full cells demonstrate high areal capacity and flexibility with tolerance to mechanical fatigue. The battery achieves a capacity of 1.2 mA h cm-2 while showing excellent flexibility. The cells demonstrate stable open circuit voltage retention under repeated flexing for 1000 times at a bending radius of 10 mm. The discharge capacity of the unflexed battery is retained in cells subjected to bending for 100 times at bending radii of 30, 20, and 10 mm, respectively, confirming that the suggested electrode configuration successfully prevents structural damage (delamination or cracking) upon repeated deformation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High throughput materials research and development for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Parker Liu

    2017-09-01

    Full Text Available Development of next generation batteries requires a breakthrough in materials. Traditional one-by-one method, which is suitable for synthesizing large number of sing-composition material, is time-consuming and costly. High throughput and combinatorial experimentation, is an effective method to synthesize and characterize huge amount of materials over a broader compositional region in a short time, which enables to greatly speed up the discovery and optimization of materials with lower cost. In this work, high throughput and combinatorial materials synthesis technologies for lithium ion battery research are discussed, and our efforts on developing such instrumentations are introduced.

  8. High temperature lithium cells with solid polymer electrolytes

    Science.gov (United States)

    Yang, Jin; Eitouni, Hany Basam; Singh, Mohit

    2017-03-07

    Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.

  9. High-Performance Lithium-Oxygen Battery Electrolyte Derived from Optimum Combination of Solvent and Lithium Salt.

    Science.gov (United States)

    Ahn, Su Mi; Suk, Jungdon; Kim, Do Youb; Kang, Yongku; Kim, Hwan Kyu; Kim, Dong Wook

    2017-10-01

    To fabricate a sustainable lithium-oxygen (Li-O2) battery, it is crucial to identify an optimum electrolyte. Herein, it is found that tetramethylene sulfone (TMS) and lithium nitrate (LiNO3) form the optimum electrolyte, which greatly reduces the overpotential at charge, exhibits superior oxygen efficiency, and allows stable cycling for 100 cycles. Linear sweep voltammetry (LSV) and differential electrochemical mass spectrometry (DEMS) analyses reveal that neat TMS is stable to oxidative decomposition and exhibit good compatibility with a lithium metal. But, when TMS is combined with typical lithium salts, its performance is far from satisfactory. However, the TMS electrolyte containing LiNO3 exhibits a very low overpotential, which minimizes the side reactions and shows high oxygen efficiency. LSV-DEMS study confirms that the TMS-LiNO3 electrolyte efficiently produces NO2-, which initiates a redox shuttle reaction. Interestingly, this NO2-/NO2 redox reaction derived from the LiNO3 salt is not very effective in solvents other than TMS. Compared with other common Li-O2 solvents, TMS seems optimum solvent for the efficient use of LiNO3 salt. Good compatibility with lithium metal, high dielectric constant, and low donicity of TMS are considered to be highly favorable to an efficient NO2-/NO2 redox reaction, which results in a high-performance Li-O2 battery.

  10. Stable high-order molecular sandwiches: Hydrocarbon polyanion pairs with multiple lithium ions inside and out

    Energy Technology Data Exchange (ETDEWEB)

    Ayalon, A.; Rabinovitz, M. (Hebrew Univ. of Jerusalem (Israel)); Sygula, A.; Rabideau, P.W. (Louisiana State Univ., Baton Rouge, LA (United States)); Cheng, P.C.; Scott, L.T. (Boston College, Chestnut Hill, MA (United States))

    1994-08-19

    Stable ten-component sandwich compounds have been characterized in which four lithium ions reside between two tetraanions derived from corannulene or its alkyl-substituted derivatives and four additional lithium ions decorate the exterior. In tetrahydrofuran solution, the four lithium ions inside the sandwich can exchange environments with the four external lithium atoms, but the two tetraanion decks of the sandwich never separate from one another on the time scale of nuclear magnetic resonance. Theoretical calculations point to a [open quotes]stacked bowl[close quotes] conformation and a low energy barrier for synchronous double inversion of the tetraanion bowls in the solvated sandwich compounds.

  11. Ambient temperature high-rate lithium/organosulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, S.J.; Liu, M.; DeJonghe, L.C. (Lawrence Berkeley Lab., CA (USA). Materials and Chemical Sciences Div.)

    1990-04-01

    This paper describes the study of ambient temperature lithium/organosulfer systems. Many organosulfur electrodes are inexpensive, biodegradable, relatively nontoxic, and fairly unreactive to molten sodium, implying safety risks may be minimal for these systems. Early tests showed that lithium metal was passivated by a number of electroactive organosulfur solutions; similar to the behavior of lithium metal in oxychloride catholytes. The results outline the behavior of one of many possible Li/RSSR cells, the lithium/(tetraethyl thiuram disulfide) battery.

  12. High velocity proton collision with liquid lithium: a time dependent density functional theory study.

    Science.gov (United States)

    Bi, Gang; Kang, Jun; Wang, Lin-Wang

    2017-03-29

    Liquid lithium is often used as a coating material in fusion reaction chambers, where it is under constant bombardment from high speed neutrons and protons. However, numerous fundamental questions are unanswered, for example whether a single proton impact can cause Li atom sputtering, and what is the electron excitation energy profile after a collision particularly for extremely high energy projectiles. Herein, we use a real-time dependent density functional method to study these questions for proton energies in the range of 30 eV to 1 MeV. The calculated stopping power agrees well with experiment, and it is found that the stopping power cannot be described by the single electron exciting spectrum based on the adiabatic eigen energies, and Li atom sputtering is not observed within our simulation time.

  13. Synthesis and characterization of advanced Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} nanocrystals@conducting polymer PEDOT for high energy lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Haiyan, E-mail: hyyan1979@163.com; Zhang, Gai; Li, Yongfei

    2017-01-30

    Highlights: • Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}@PEDOT composite is explored as cathode material for Lithium-ion batteries. • The introduce of PEDOT is effectively way to enhance the electron condcutivity of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}. • The Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}@PEDOT hybrids exhibit superior rate capability and cycling stability. - Abstract: Monoclinic Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} compound is gathering significant interest as cathode material for lithium-ion batteries at the moment because of its high theoretical capacity, good safety and low cost. However, it suffers from bad rate capability and short cycling performance duo to the intrinsic low electronic conductivity. Herein, we report a design of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} particles coated by conducting polymer PEDOT through a facile method. When the cell is tested between 3.0 and 4.3 V, the core-shell Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}@PEDOT electrode delivers a capacity of 128.5 mAh g{sup −1} at 0.1C which is about 96.6% of the theoretical capacity. At a high rate of 8C, it can still maintain a capacity of 108.6 mAh g{sup −1} for over 15 cycles with capacity decay rate of only 0.049% per cycle. The impressive electrochemical performance could be attributed to the coated PEDOT layer which can provide a fast electronic connection. Therefore, it can be make a conclusion that the core-shell Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}@PEDOT composite is a promising cathode material for next-generation lithium-ion batteries.

  14. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure.

    Science.gov (United States)

    Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu; Shiiba, Hiromasa; Ogawa, Masahiro; Nakayama, Keisuke; Ohta, Toshiaki; Endo, Daisuke; Ozaki, Tetsuya; Inamasu, Tokuo; Sato, Kei; Komaba, Shinichi

    2015-06-23

    Rechargeable lithium batteries have rapidly risen to prominence as fundamental devices for green and sustainable energy development. Lithium batteries are now used as power sources for electric vehicles. However, materials innovations are still needed to satisfy the growing demand for increasing energy density of lithium batteries. In the past decade, lithium-excess compounds, Li2MeO3 (Me = Mn(4+), Ru(4+), etc.), have been extensively studied as high-capacity positive electrode materials. Although the origin as the high reversible capacity has been a debatable subject for a long time, recently it has been confirmed that charge compensation is partly achieved by solid-state redox of nonmetal anions (i.e., oxide ions), coupled with solid-state redox of transition metals, which is the basic theory used for classic lithium insertion materials, such as LiMeO2 (Me = Co(3+), Ni(3+), etc.). Herein, as a compound with further excess lithium contents, a cation-ordered rocksalt phase with lithium and pentavalent niobium ions, Li3NbO4, is first examined as the host structure of a new series of high-capacity positive electrode materials for rechargeable lithium batteries. Approximately 300 mAh ⋅ g(-1) of high-reversible capacity at 50 °C is experimentally observed, which partly originates from charge compensation by solid-state redox of oxide ions. It is proposed that such a charge compensation process by oxide ions is effectively stabilized by the presence of electrochemically inactive niobium ions. These results will contribute to the development of a new class of high-capacity electrode materials, potentially with further lithium enrichment (and fewer transition metals) in the close-packed framework structure with oxide ions.

  15. Porous graphene current collectors filled with silicon as high-performance lithium battery anode

    Science.gov (United States)

    Ababtain, Khalid; Babu, Ganguli; Susarla, Sandhya; Gullapalli, Hemtej; Masurkar, Nirul; Ajayan, Pulickel M.; Mohana Reddy Arava, Leela

    2018-01-01

    Despite the massive success for high energy density, the charge–discharge current rate performance of the lithium-ion batteries are still a major concern owing to inherent sluggish Li-ion kinetics. Herein, we demonstrate three-dimensional porous electrodes engineered on highly conductive graphene current collectors to enhance the Li-ion conductivity, thereby c-rate performance. Such high-quality graphene provides surface area for loading a large amount of electrochemically active material and strong adhesion with the electrode. The synergism of porous structure and conductive current collector enables us to realize high-performance new-generation silicon anodes with a high energy density of 1.8 mAh cm‑2. Further, silicon electrodes revealed with excellent current rates up to 5C with a capacity of 0.37 mAh cm‑2 for 500 nm planar thickness.

  16. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode.

    Science.gov (United States)

    Zhao, Yu; Wang, Lina; Byon, Hye Ryung

    2013-01-01

    Development of promising battery systems is being intensified to fulfil the needs of long-driving-ranged electric vehicles. The successful candidates for new generation batteries should have higher energy densities than those of currently used batteries and reasonable rechargeability. Here we report that aqueous lithium-iodine batteries based on the triiodide/iodide redox reaction show a high battery performance. By using iodine transformed to triiodide in an aqueous iodide, an aqueous cathode involving the triiodide/iodide redox reaction in a stable potential window avoiding water electrolysis is demonstrated for lithium-iodine batteries. The high solubility of triiodide/iodide redox couples results in an energy density of ~ 0.33 kWh kg(-1), approximately twice that of lithium-ion batteries. The reversible redox reaction without the formation of resistive solid products promotes rechargeability, demonstrating 100 cycles with negligible capacity fading. A low cost, non-flammable and heavy-metal-free aqueous cathode can contribute to the feasibility of scale-up of lithium-iodine batteries for practical energy storage.

  17. An online model-based method for state of energy estimation of lithium-ion batteries using dual filters

    Science.gov (United States)

    Dong, Guangzhong; Chen, Zonghai; Wei, Jingwen; Zhang, Chenbin; Wang, Peng

    2016-01-01

    The state-of-energy of lithium-ion batteries is an important evaluation index for energy storage systems in electric vehicles and smart grids. To improve the battery state-of-energy estimation accuracy and reliability, an online model-based estimation approach is proposed against uncertain dynamic load currents and environment temperatures. Firstly, a three-dimensional response surface open-circuit-voltage model is built up to improve the battery state-of-energy estimation accuracy, taking various temperatures into account. Secondly, a total-available-energy-capacity model that involves temperatures and discharge rates is reconstructed to improve the accuracy of the battery model. An extended-Kalman-filter and particle-filter based dual filters algorithm is then developed to establish an online model-based estimator for the battery state-of-energy. The extended-Kalman-filter is employed to update parameters of the battery model using real-time battery current and voltage at each sampling interval, while the particle-filter is applied to estimate the battery state-of-energy. Finally, the proposed approach is verified by experiments conducted on a LiFePO4 lithium-ion battery under different operating currents and temperatures. Experimental results indicate that the battery model simulates battery dynamics robustly with high accuracy, and the estimates of the dual filters converge to the real state-of-energy within an error of ±4%.

  18. High sulfur-containing carbon polysulfide polymer as a novel cathode material for lithium-sulfur battery.

    Science.gov (United States)

    Zhang, Yiyong; Peng, Yueying; Wang, Yunhui; Li, Jiyang; Li, He; Zeng, Jing; Wang, Jing; Hwang, Bing Joe; Zhao, Jinbao

    2017-09-12

    The lithium-sulfur battery, which offers a high energy density and is environmental friendly, is a promising next generation of rechargeable energy storage system. However, despite these attractive attributes, the commercialization of lithium-sulfur battery is primarily hindered by the parasitic reactions between the Li metal anode and dissolved polysulfide species from the cathode during the cycling process. Herein, we synthesize the sulfur-rich carbon polysulfide polymer and demonstrate that it is a promising cathode material for high performance lithium-sulfur battery. The electrochemical studies reveal that the carbon polysulfide polymer exhibits superb reversibility and cycle stability. This is due to that the well-designed structure of the carbon polysulfide polymer has several advantages, especially, the strong chemical interaction between sulfur and the carbon framework (C-S bonds) inhibits the shuttle effect and the π electrons of the carbon polysulfide compound enhance the transfer of electrons and Li+. Furthermore, as-prepared carbon polysulfide polymer-graphene hybrid cathode achieves outstanding cycle stability and relatively high capacity. This work highlights the potential promise of the carbon polysulfide polymer as the cathode material for high performance lithium-sulfur battery.

  19. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.

    Science.gov (United States)

    Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie

    2017-07-25

    Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.

  20. Lithium-antimony-lead liquid metal battery for grid-level energy storage.

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J; Boysen, Dane A; Bradwell, David J; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R

    2014-10-16

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this

  1. Nanostructured Networks for Energy Storage: Vertically Aligned Carbon Nanotubes (VACNT as Current Collectors for High-Power Li4Ti5O12(LTO//LiMn2O4(LMO Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Fabian Pawlitzek

    2017-11-01

    Full Text Available As a concept for electrode architecture in high power lithium ion batteries, self-supported nanoarrays enable ultra-high power densities as a result of their open pore geometry, which results in short and direct Li+-ion and electron pathways. Vertically aligned carbon nanotubes (VACNT on metallic current collectors with low interface resistance are used as current collectors for the chemical solution infiltration of electroactive oxides to produce vertically aligned carbon nanotubes decorated with in situ grown LiMn2O4 (LMO and Li4Ti5O12 (LTO nanoparticles. The production processes steps (catalyst coating, VACNT chemical vapor deposition (CVD, infiltration, and thermal transformation are all scalable, continuous, and suitable for niche market production to achieve high oxide loadings up to 70 wt %. Due to their unique transport structure, as-prepared nanoarrays achieve remarkably high power densities up to 2.58 kW kg−1, which is based on the total electrode mass at 80 C for LiMn2O4//Li4Ti5O12 full cells. The tailoring of LTO and LMO nanoparticle size (~20–100 nm and VACNT length (array height: 60–200 µm gives insights into the rate-limiting steps at high current for these kinds of nanoarray electrodes at very high C-rates of up to 200 C. The results reveal the critical structural parameters for achieving high power densities in VACNT nanoarray full cells.

  2. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  3. Two-stage energy storage equalization system for lithium-ion battery pack

    Science.gov (United States)

    Chen, W.; Yang, Z. X.; Dong, G. Q.; Li, Y. B.; He, Q. Y.

    2017-11-01

    How to raise the efficiency of energy storage and maximize storage capacity is a core problem in current energy storage management. For that, two-stage energy storage equalization system which contains two-stage equalization topology and control strategy based on a symmetric multi-winding transformer and DC-DC (direct current-direct current) converter is proposed with bidirectional active equalization theory, in order to realize the objectives of consistent lithium-ion battery packs voltages and cells voltages inside packs by using a method of the Range. Modeling analysis demonstrates that the voltage dispersion of lithium-ion battery packs and cells inside packs can be kept within 2 percent during charging and discharging. Equalization time was 0.5 ms, which shortened equalization time of 33.3 percent compared with DC-DC converter. Therefore, the proposed two-stage lithium-ion battery equalization system can achieve maximum storage capacity between lithium-ion battery packs and cells inside packs, meanwhile efficiency of energy storage is significantly improved.

  4. Optimal Sizing of a Lithium Battery Energy Storage System for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Dulout, Jeremy; Anvari-Moghaddam, Amjad; Hernández, Adriana Carolina Luna

    2017-01-01

    This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC micro...

  5. Green Energy Generation Using FLC Based WECS With Lithium Ion Polymer Batteries

    Directory of Open Access Journals (Sweden)

    Baskar M

    Full Text Available ABSTRACT Green Energy Generation Using Wind energy conversion system is achieved using Lithium Ion Polymer Batteries and Fuzzy logic controller. Presented scheme also provides the constant output power for the stand alone loads like Island, Hills Stations, Ships and Remote locations etc. A fuzzy-logic controller based Wind energy conversion system with permanent magnet synchronous machine is simulated using MATLAB Simulink. The controller provides the constant output voltage in Buck Boost Converter with the wind fluctuations. The SPWM based inverter can be used to produce the constant output voltage with constant frequency. Also a thin and light weight Lithium Ion Polymer Batteries provides the energy back to the Wind energy conversion system , when the wind speed decreases below the base wind velocity. Simulation results are provided to demonstrate the validity of the proposed fuzzy-logic-based controller and comply with the theoretical results. The performance of the system is compared using various controllers.

  6. A reversible dendrite-free high-areal-capacity lithium metal electrode

    Science.gov (United States)

    Wang, Hui; Matsui, Masaki; Kuwata, Hiroko; Sonoki, Hidetoshi; Matsuda, Yasuaki; Shang, Xuefu; Takeda, Yasuo; Yamamoto, Osamu; Imanishi, Nobuyuki

    2017-04-01

    Reversible dendrite-free low-areal-capacity lithium metal electrodes have recently been revived, because of their pivotal role in developing beyond lithium ion batteries. However, there have been no reports of reversible dendrite-free high-areal-capacity lithium metal electrodes. Here we report on a strategy to realize unprecedented stable cycling of lithium electrodeposition/stripping with a highly desirable areal-capacity (12 mAh cm-2) and exceptional Coulombic efficiency (>99.98%) at high current densities (>5 mA cm-2) and ambient temperature using a diluted solvate ionic liquid. The essence of this strategy, that can drastically improve lithium electrodeposition kinetics by cyclic voltammetry premodulation, lies in the tailoring of the top solid-electrolyte interphase layer in a diluted solvate ionic liquid to facilitate a two-dimensional growth mode. We anticipate that this discovery could pave the way for developing reversible dendrite-free metal anodes for sustainable battery chemistries.

  7. Synergistic effect of 3D electrode architecture and fluorine doping of Li1.2Ni0.15Mn0.55Co0.1O2 for high energy density lithium-ion batteries

    Science.gov (United States)

    Krishna Kumar, S.; Ghosh, Sourav; Ghosal, Partha; Martha, Surendra K.

    2017-07-01

    Li1.2Ni0.15Mn0.55Co0.1O2 (LMR NMC) is synthesized by solution combustion method followed by LiF coating onto LMR NMC by solid state synthesis. The electrochemical performance of the pristine LMR NMC and corresponding F-doped samples as cathodes for Lithium ion Batteries (LIBs) are investigated by galvanostatic charge-discharge cycling and impedance spectroscopy. The fluorine doped cathodes deliver high capacity of ∼300 mAh g-1 at C/10 rate (10-20% greater than the pristine LMR NMC cathodes), have high discharge voltage plateau (>0.25 V) and low charge voltage plateau (0.2-0.4 V) compared to pristine LMR NMC cathodes. Beside, irreversible capacity, voltage fade, capacity loss are significantly reduced in-relation to the pristine LMR NMC electrodes. LiF coating onto LMR NMC, partially replaces Msbnd O bonds of the material by Msbnd F bonds, thus increasing the interfacial and structural stability. Besides, the manuscript describes possible replacement of aluminium current collector with 3D carbon fiber current collector which delivers high capacity of >200 mAh g-1 at 1C rate, good capacity retentions for over 200 cycles. The study opens a possibility for LMR NMC cathode material which has almost double the capacity of currently used cathodes, can be a possible substitute cathode for LIBs used in electric vehicles.

  8. On-chip high power porous silicon lithium ion batteries with stable capacity over 10,000 cycles.

    Science.gov (United States)

    Westover, Andrew S; Freudiger, Daniel; Gani, Zarif S; Share, Keith; Oakes, Landon; Carter, Rachel E; Pint, Cary L

    2015-01-07

    We demonstrate the operation of a graphene-passivated on-chip porous silicon material as a high rate lithium battery anode with over 50 X power density, and 100 X energy density improvement compared to identically prepared on-chip supercapacitors. We demonstrate this Faradaic storage behavior to occur at fast charging rates (1-10 mA cm(-2)) where lithium locally intercalates into the nanoporous silicon, preventing the degradation and poor cycling performance attributed to deep storage in the bulk silicon. This device exhibits cycling performance that exceeds 10,000 cycles with capacity above 0.1 mA h cm(-2) without notable capacity fade. This demonstrates a practical route toward high power, high energy, and long lifetime all-silicon on-chip storage systems relevant toward integration into electronics, photovoltaics, and other silicon-based platforms.

  9. Oxygen‐Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium–Air Battery Electrode

    Science.gov (United States)

    Yang, Liuxiang; Li, Nana; Tang, Lingyun; Amine, Khalil; Mao, Ho‐Kwang

    2017-01-01

    The lithium–air battery has great potential of achieving specific energy density comparable to that of gasoline. Several lithium oxide phases involved in the charge–discharge process greatly affect the overall performance of lithium–air batteries. One of the key issues is linked to the environmental oxygen‐rich conditions during battery cycling. Here, the theoretical prediction and experimental confirmation of new stable oxygen‐rich lithium oxides under high pressure conditions are reported. Three new high pressure oxide phases that form at high temperature and pressure are identified: Li2O3, LiO2, and LiO4. The LiO2 and LiO4 consist of a lithium layer sandwiched by an oxygen ring structure inherited from high pressure ε‐O8 phase, while Li2O3 inherits the local arrangements from ambient LiO2 and Li2O2 phases. These novel lithium oxides beyond the ambient Li2O, Li2O2, and LiO2 phases show great potential in improving battery design and performance in large battery applications under extreme conditions. PMID:28932656

  10. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  11. High-pressure study of lithium amidoborane using Raman spectroscopy and insight into dihydrogen bonding absence.

    Science.gov (United States)

    Najiba, Shah; Chen, Jiuhua

    2012-11-20

    One of the major obstacles to the use of hydrogen as an energy carrier is the lack of proper hydrogen storage material. Lithium amidoborane has attracted significant attention as hydrogen storage material. It releases ∼10.9 wt% hydrogen, which is beyond the Department of Energy target, at remarkably low temperature (∼90 °C) without borazine emission. It is essential to study the bonding behavior of this potential material to improve its dehydrogenation behavior further and also to make rehydrogenation possible. We have studied the high-pressure behavior of lithium amidoborane in a diamond anvil cell using in situ Raman spectroscopy. We have discovered that there is no dihydrogen bonding in this material, as the N-H stretching modes do not show redshift with pressure. The absence of the dihydrogen bonding in this material is an interesting phenomenon, as the dihydrogen bonding is the dominant bonding feature in its parent compound ammonia borane. This observation may provide guidance to the improvement of the hydrogen storage properties of this potential material and to design new material for hydrogen storage application. Also two phase transitions were found at high pressure at 3.9 and 12.7 GPa, which are characterized by sequential changes of Raman modes.

  12. Review on anionic redox for high-capacity lithium- and sodium-ion batteries

    Science.gov (United States)

    Zhao, Chenglong; Wang, Qidi; Lu, Yaxiang; Hu, Yong-Sheng; Li, Baohua; Chen, Liquan

    2017-05-01

    Rechargeable batteries, especially lithium-ion batteries, are now widely used as power sources for portable electronics and electric vehicles, but material innovations are still needed to satisfy the increasing demand for larger energy density. Recently, lithium- and sodium-rich electrode materials, including the A2MO3-family layered compounds (A  =  Li, Na; M  =  Mn4+, Ru4+, etc), have been extensively studied as potential high-capacity electrode materials for a cumulative cationic and anionic redox activity. Negatively charged oxide ions can potentially donate electrons to compensate for the absence of oxidable transition metals as a redox center to further increase the reversible capacity. Understanding and controlling the state-of-the-art anionic redox processes is pivotal for the design of advanced energy materials, highlighted in rechargeable batteries. Hence, experimental and theoretical approaches have been developed to consecutively study the diverting processes, states, and structures involved. In this review, we attempt to present a literature overview and provide insight into the reaction mechanism with respect to the anionic redox processes, proposing some opinions as target oriented. It is hoped that, through this discussion, the search for anionic redox electrode materials with high-capacity rechargeable batteries can be advanced, and practical applications realized as soon as possible.

  13. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Brian D.; Carino, Emily V.; Connell, Justin G.; Han, Kee Sung; Cao, Ruiguo; Chen, Junzheng; Zheng, Jianming; Li, Qiuyan; Mueller, Karl T.; Henderson, Wesley A.; Zhang, Ji-Guang

    2017-10-01

    The lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg(-1)). However, low Coulombic efficiency (CE) during repeated Li metal plating/stripping has severely limited the practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on a high concentration of LiNO3 in diglyme (G2) solvent is developed which enables an exceptionally high CE for Li metal plating/stripping and thus high stability of the Li anode in the sulfur-containing electrolyte. The tailoring of electrolyte properties for the Li anode has proven to be a highly successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE of greater than 99% for over 200 cycles of Li plating/stripping. In contrast, the Li anode cycles for less than 35 cycles (with a high CE) in the state-of-the-art 1 M LiTFSI + 0.3 M LiNO3 in 1,3-dioxolane: 1,2-dimethoxyethane (DOL:DME) electrolyte under the same conditions. The stable Li anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.

  14. Secondary electron emission of tin and tin-lithium under low energy helium plasma exposure

    NARCIS (Netherlands)

    Kvon, V.; Oyarzabal, E.; Zoethout, E.; Martin-Rojo, A. B.; Morgan, T. W.; Tabares, F. L.

    2017-01-01

    Secondary electron emission (SEE) yields of tin (Sn) and tin-lithium (SnLi) eutectic (20 at.% Li) samples were measured in He-plasma at a mean incoming electron energy up to 120 eV. SnLi shows a maximum yield of about 1.45 at 110 eV electron energy while the yield of the Sn surface was measured to

  15. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Brian DG; Carino, Emily V.; Connell, Justin G.; Han, Kee Sung; Cao, Ruiguo; Chen, Junzheng; Zheng, Jianming; Li, Qiuyan; Mueller, Karl T.; Henderson, Wesley A.; Zhang, Jiguang

    2017-10-01

    Lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg-1). However, the low coulombic efficiency (CE) during repeated Li plating/stripping of these processes have limited practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on high concentration of LiNO3 in diglyme solvent is developed which enables high CE of Li metal plating/stripping and high stability of Li anode in the sulfur containing electrolyte. Tailoring of electrolyte properties for the Li negative electrode has proven to be a successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE for Li plating/stripping of greater than 99% for over 200 cycles. In contrast, Li metal cycles for only less than 35 cycles at high CE in the standard 1 M LiTFSI + 2wt% LiNO3 in DOL:DME electrolyte under the same conditions. The stable Li metal anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.

  16. Trimethylsilylcyclopentadiene as a novel electrolyte additive for high temperature application of lithium nickel manganese oxide cathode

    Science.gov (United States)

    Tu, Wenqiang; Ye, Changchun; Yang, Xuerui; Xing, Lidan; Liao, Youhao; Liu, Xiang; Li, Weishan

    2017-10-01

    Electrolyte additives are necessary for the application of high potential cathode in high energy density lithium ion batteries, especially at elevated temperature. However, the electrolyte additives that can effectively suppress the dissolution of transition metal ions from cathode have seldom been developed up to date. In this work, we propose a novel electrolyte additive, trimethylsilylcyclopentadiene (SE), for high temperature application of a representative high potential cathode, lithium nickel manganese oxide (LiNi0.5Mn1.5O4). It is found that the dissolution of Mn and Ni from LiNi0.5Mn1.5O4 can be effectively suppressed by applying SE. With applying 0.25% SE, the dissolved amount of Mn and Ni is decreased by 97.4% and 98%, respectively, after 100 cycles at 55 °C. Correspondingly, the cyclic performance of LiNi0.5Mn1.5O4 is significantly improved. Physical characterizations and electrochemical measurements show that SE can be preferentially oxidized and generate a protective film on LiNi0.5Mn1.5O4. The resulting film inhibits the electrolyte decomposition and the transition metal ion dissolution.

  17. A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries.

    Science.gov (United States)

    Zhong, Hai; Wang, Chunhua; Xu, Zhibin; Ding, Fei; Liu, Xinjiang

    2016-05-05

    Polymer solid state electrolytes are actively sought for their potential application in energy storage devices, particularly lithium metal rechargeable batteries. Herein, we report a polymer with high concentration salts as a quasi-solid state electrolyte used for lithium-sulfur cells, which shows an ionic conductivity of 1.6 mS cm(-1) at room temperature. The cycling performance of Li-S battery with this electrolyte shows a long cycle life (300 cycles) and high coulombic efficiency (>98%), without any consuming additives in the electrolyte. Moreover, it also shows a remarkably decreased self-discharge (only 0.2%) after storage for two weeks at room temperature. The reason can be attributed to that the electrolyte can suppress polysulfide anions diffusion, due to the high ratio oxygen atoms with negative charges which induce an electrical repulsion to the polysulfide anions, and their relatively long chains which can provide additional steric hindrance. Thus, the polysulfide anions can be located around carbon particles, which result in remarkably improved overall electrochemical performance, and also the electrolyte have a function of suppress the formation of lithium dendrites on the lithium anode surface.

  18. A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries

    Science.gov (United States)

    Zhong, Hai; Wang, Chunhua; Xu, Zhibin; Ding, Fei; Liu, Xinjiang

    2016-01-01

    Polymer solid state electrolytes are actively sought for their potential application in energy storage devices, particularly lithium metal rechargeable batteries. Herein, we report a polymer with high concentration salts as a quasi-solid state electrolyte used for lithium-sulfur cells, which shows an ionic conductivity of 1.6 mS cm−1 at room temperature. The cycling performance of Li-S battery with this electrolyte shows a long cycle life (300 cycles) and high coulombic efficiency (>98%), without any consuming additives in the electrolyte. Moreover, it also shows a remarkably decreased self-discharge (only 0.2%) after storage for two weeks at room temperature. The reason can be attributed to that the electrolyte can suppress polysulfide anions diffusion, due to the high ratio oxygen atoms with negative charges which induce an electrical repulsion to the polysulfide anions, and their relatively long chains which can provide additional steric hindrance. Thus, the polysulfide anions can be located around carbon particles, which result in remarkably improved overall electrochemical performance, and also the electrolyte have a function of suppress the formation of lithium dendrites on the lithium anode surface. PMID:27146645

  19. Electrical resistance measurement in lithium under high pressure and low temperature

    CERN Document Server

    Shimizu, K; Amaya, K

    2002-01-01

    Lithium is known as a 'simple metal' and the lightest alkaline metal in the periodic table. At ambient pressure lithium forms a body-centred-cubic structure and the conduction electrons are considered to be almost free from interaction with the atomic core. However, Neaton and Ashcroft (Neaton J B and Ashcroft N W 1999 Nature 400 141) predicted that dense lithium at around 100 GPa will be found to transform to a low-symmetry phase and show a semi-metallic behaviour, in their calculation. Recently Hanfland et al (Hanfland M, Syassen K, Christensen N E and Novikov D L 2000 Nature 408 174) reported the experimental behaviour of the existence of new high-pressure phase of lithium above 40 GPa which tends towards symmetry-breaking transitions. Here we report electrical resistance measurements on lithium performed at pressures up to 35 GPa at the temperature of 80 K.

  20. Electrical resistance measurement in lithium under high pressure and low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Ishikawa, H [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Amaya, K [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2002-11-11

    Lithium is known as a 'simple metal' and the lightest alkaline metal in the periodic table. At ambient pressure lithium forms a body-centred-cubic structure and the conduction electrons are considered to be almost free from interaction with the atomic core. However, Neaton and Ashcroft (Neaton J B and Ashcroft N W 1999 Nature 400 141) predicted that dense lithium at around 100 GPa will be found to transform to a low-symmetry phase and show a semi-metallic behaviour, in their calculation. Recently Hanfland et al (Hanfland M, Syassen K, Christensen N E and Novikov D L 2000 Nature 408 174) reported the experimental behaviour of the existence of new high-pressure phase of lithium above 40 GPa which tends towards symmetry-breaking transitions. Here we report electrical resistance measurements on lithium performed at pressures up to 35 GPa at the temperature of 80 K.

  1. Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries

    Science.gov (United States)

    Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; Susarla, Naresh; Dees, Dennis W.

    2017-02-01

    The price of the cathode active materials in lithium ion batteries is a key cost driver and thus significantly impacts consumer adoption of devices that utilize large energy storage contents (e.g. electric vehicles). A process model has been developed and used to study the production process of a common lithium-ion cathode material, lithiated nickel manganese cobalt oxide, using the co-precipitation method. The process was simulated for a plant producing 6500 kg day-1. The results indicate that the process will consume approximately 4 kWh kgNMC-1 of energy, 15 L kgNMC-1 of process water, and cost 23 to produce a kg of Li-NMC333. The calculations were extended to compare the production cost using two co-precipitation reactions (with Na2CO3 and NaOH), and similar cathode active materials such as lithium manganese oxide and lithium nickel cobalt aluminum oxide. A combination of cost saving opportunities show the possibility to reduce the cost of the cathode material by 19%.

  2. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Tianyue Zheng

    2017-11-01

    Full Text Available Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in the electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.

  3. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); James, Christine [Michigan State Univ., East Lansing, MI (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Gallagher, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  4. Free energy for protonation reaction in lithium-ion battery cathode materials.

    Energy Technology Data Exchange (ETDEWEB)

    Benedek, R.; Thackeray, M. M.; van de Walle, A.; Chemical Sciences and Engineering Division; California Inst. of Tech.

    2008-09-09

    Calculations are performed of free energies for proton-for-lithium-ion exchange reactions in lithium-ion battery cathode materials. First-principles calculations are employed for the solid phases and tabulated ionization potential and hydration energy data for aqueous ions. Layered structures, spinel LiMn{sub 2}O{sub 4}, and olivine LiFePO{sub 4} are considered. Protonation is most favorable energetically in layered systems, such as Li{sub 2} MnO{sub 3} and LiCoO{sub 2}. Less favorable are ion-exchange in spinel LiMn{sub 2}O{sub 4} and LiV{sub 3}O{sub 8}. Unfavorable is the substitution of protons for Li in olivine LiFePO{sub 4}, because of the large distortion of the Fe and P coordination polyhedra. The reaction free energy scales roughly linearly with the volume change in the reaction.

  5. Energy removal and MHD performance of lithium capillary-pore systems for divertor target application

    Energy Technology Data Exchange (ETDEWEB)

    Evtikhin, V.A. E-mail: evtikhin@protein.bio.msu.ru; Lyublinski, I.E.; Vertkov, A.V.; Yezhov, N.I.; Khripunov, B.I.; Sotnikov, S.M.; Mirnov, S.V.; Petrov, V.B

    2000-11-01

    Experimental results of complex studies of lithium capillary-pore systems (CPS) for application as a plasma facing structure in divertor and on the first wall of a fusion reactor are reported. The ability of CPS to accept and to remove high heat fluxes (up to 30 MW m{sup -2}) in steady-state conditions (tens of minutes) has been evaluated on target plate imitator mock-ups supplied with cooling and lithium feed systems under electron beam power load in a linear plasma facility. Experimental study of lithium flow up to 2.5 m s{sup -1} in CPS made of material with final conductivity for various mesh sizes and of the effect of cross magnetic field up to 1.6 T on its parameters has been made. The results of successful experiments on the T-11M tokamak helium and hydrogen plasma interaction with a CPS-based lithium limiter and lithium puff influence on the plasma performances are presented and analysed.

  6. High-capacity electrode materials for electrochemical energy ...

    Indian Academy of Sciences (India)

    2015-06-02

    Jun 2, 2015 ... This review summarizes the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application.

  7. DeLIZ - production-technical demonstration centre for lithium ion cells. Final report of the interlaboratory project 'Development of novel automatic production processes for economically efficient mass production of high-energy lithium ion cells'; DeLIZ - Produktionstechnisches Demonstrationszentrum fuer Lithium-Ionen-Zellen. Ergebnisbericht zum Verbundvorhaben ''Entwicklung neuer automatisierter Produktionsverfahren zur wirtschaftlichen Massenfertigung von hochenergetischen Lithium-Ionen-Zellen''

    Energy Technology Data Exchange (ETDEWEB)

    Techel, Anja (ed.)

    2011-07-01

    The partners in the DeLIZ project cooperated in the evaluation and further development of processes and systems for mass production of large-scale lithium ion cells and in the identification of short-term cost reduction potentials. The iwb of TU Munich university focused on the development of an automation solution for confectioning, handling, stacking and fixation of foils in the drying room and, in cooperation with Fraunhofer RMF, also on interprocess quality assurance. The ILK and IWM of TU Dresden university worked on the evaluation of automation solutions for cells of undefined geometries.The IOF of TU Dresden university and the Fraunhofer IWS focused on confectioning using pulsed and continuous lasers and the construction of material Al-Cu contacts (cell connections). The Fraunhofer IWS also worked on the coating process for electrode production, the connection between Al and Cu foils and between these foils and the conductor, the sealing of foil stacks, and the design and construction of a plant for producing Al-Cu cell connections via laser induction roller plating. The research work was accompanied by interprocess quality assurance concepts for a stable fabrication chain and resources-minded production. (orig./AKB)

  8. High Capacity Anodes for Advanced Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion batteries are slowly being introduced into satellite power systems, but their life still presents concerns for longer duration missions. Future NASA...

  9. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    Science.gov (United States)

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  10. TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery.

    Science.gov (United States)

    Huang, Hui; Feng, Tong; Gan, Yongping; Fang, Mingyu; Xia, Yang; Liang, Chu; Tao, Xinyong; Zhang, Wenkui

    2015-06-10

    The further development of electrode materials with high capacity and excellent rate capability presents a great challenge for advanced lithium-ion batteries. Herein, we demonstrate a battery-capacitive synchronous lithium storage mechanism based on a scrupulous design of TiC/NiO core/shell nanoarchitecture, in which the TiC nanowire core exhibits a typical double-layer capacitive behavior, and the NiO nanosheet shell acts as active materials for Li(+) storage. The as-constructed TiC/NiO (32 wt % NiO) core/shell nanoarchitecture offers high overall capacity and excellent cycling ability, retaining above 507.5 mAh g(-1) throughout 60 cycles at a current density of 200 mA g(-1) (much higher than theoretical value of the TiC/NiO composite). Most importantly, the high rate capability is far superior to that of NiO or other metal oxide electrode materials, owing to its double-layer capacitive characteristics of TiC nanowire and intrinsic high electrical conductivity for facile electron transport during Li(+) storage process. Our work offers a promising approach via a rational hybridization of two electrochemical energy storage materials for harvesting high capacity and good rate performance.

  11. High energy semiconductor switch

    Science.gov (United States)

    Risberg, R. L.

    1989-02-01

    The objective was a controller for electric motors. By operating standard Nema B induction motors at variable speed a great deal of energy is saved. This is especially true in pumping and air conditioning applications. To allow wider use of variable speed AC drives, and to provide improved performance, a better semiconductor switch was sought. This was termed the High Energy Semiconductor Switch.

  12. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.

    Science.gov (United States)

    Li, Na; Wang, Yarong; Tang, Daiming; Zhou, Haoshen

    2015-08-03

    Direct capture and storage of abundant but intermittent solar energy in electrical energy-storage devices such as rechargeable lithium batteries is of great importance, and could provide a promising solution to the challenges of energy shortage and environment pollution. Here we report a new prototype of a solar-driven chargeable lithium-sulfur (Li-S) battery, in which the capture and storage of solar energy was realized by oxidizing S(2-) ions to polysulfide ions in aqueous solution with a Pt-modified CdS photocatalyst. The battery can deliver a specific capacity of 792 mAh g(-1) during 2 h photocharging process with a discharge potential of around 2.53 V versus Li(+)/Li. A specific capacity of 199 mAh g(-1), reaching the level of conventional lithium-ion batteries, can be achieved within 10 min photocharging. Moreover, the charging process of the battery can proceed under natural sunlight irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan; Li, Xing; Engelhard, Mark H.; Cao, Ruiguo; Zhang, Ji-Guang; Xu, Wu

    2018-01-01

    Lithium (Li) metal batteries (LMBs) are regarded as the most promising power sources for electric vehicles. Besides the Li dendrite growth and low Li Coulombic efficiency, how to well match Li metal anode with a high loading (normally over 3.0 mAh cm-2) cathode is another key challenge to achieve the real high energy density battery. In this work, we systematically investigate the effects of the Li metal capacity usage in each cycle, manipulated by varying the cathode areal loading, on the stability of Li metal anode and the cycling performance of LMBs using the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and an additive-containing dual-salt/carbonate-solvent electrolyte. It is demonstrated that the Li||NMC cells show decent long-term cycling performance even with NMC areal capacity loading up to ca. 4.0 mAh cm-2 and at a charge current density of 1.0 mA cm-2. The increase of the Li capacity usage in each cycle causes variation in the components of the solid electrolyte interphase (SEI) layer on Li metal anode and generates more ionic conductive species from this electrolyte. Further study reveals for the first time that the degradation of Li metal anode and the thickness of SEI layer on Li anode show linear relationship with the areal capacity of NMC cathode. Meanwhile, the expansion rate of consumed Li and the ratio of SEI thickness to NMC areal loading are kept almost the same value with increasing cathode loading, respectively. These fundamental findings provide new perspectives on the rational evaluation of Li metal anode stability for the development of rechargeable LMBs.

  14. Double carbon decorated lithium titanate as anode material with high rate performance for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Haifang Ni

    2016-06-01

    Full Text Available Spinel lithium titanate (Li4Ti5O12 has the advantages of structural stability, however it suffers the disadvantages of low lithium-ion diffusion coefficient as well as low conductivity. In order to solve issues, we reported a simple method to prepare carbon-coated Li4Ti5O12/CNTs (C@Li4Ti5O12/CNTs using stearic acid as surfactant and carbon source to prepare carbon coated nanosized particles. The obtained Li4Ti5O12 particles of 100 nm in size are coated with the carbon layers pyrolyzed from stearic acid and dispersed in CNTs matrix homogeneously. These results show that the synthesized C@Li4Ti5O12/CNTs material used as anode materials for lithium ion batteries, presenting a better high-rate performance (147 mA h g−1 at 20 C. The key factors affecting the high-rate properties of the C@Li4Ti5O12/CNTs composite may be related to the synergistic effects of the CNTs matrix and the carbon- coating layers with conductivity enhancement. Additionally, the amorphous carbon coating is an effective route to ameliorate the rate capability of Li4Ti5O12/CNTs.

  15. Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery.

    Science.gov (United States)

    Liu, Jie; Qian, Tao; Wang, Mengfan; Liu, Xuejun; Xu, Na; You, Yizhou; Yan, Chenglin

    2017-08-09

    Using molecularly imprinted polymer to recognize various target molecules emerges as a fascinating research field. Herein, we applied this strategy for the first time to efficiently recognize and trap long-chain polysulfides (Li2Sx, x = 6-8) in lithium sulfur battery to minimize the polysulfide shuttling between anode and cathode, which enables us to achieve remarkable electrochemical performance including a high specific capacity of 1262 mAh g-1 at 0.2 C and superior capacity retention of over 82.5% after 400 cycles at 1 C. The outstanding performance is attributed to the significantly reduced concentration of long-chain polysulfides in electrolyte as evidenced by in situ UV/vis spectroscopy and Li2S nucleation tests, which were further confirmed by density functional theory calculations. The molecular imprinting is demonstrated as a promising approach to effectively prevent the free diffusion of long-chain polysulfides, providing a new avenue to efficiently recognize and trap lithium polysulfides for high-performance lithium sulfur battery with greatly suppressed shuttle effect.

  16. Polyhedral magnetite nanocrystals with multiple facets: facile synthesis, structural modelling, magnetic properties and application for high capacity lithium storage.

    Science.gov (United States)

    Su, Dawei; Horvat, Josip; Munroe, Paul; Ahn, Hyojun; Ranjbartoreh, Ali R; Wang, Guoxiu

    2012-01-09

    Polyhedral magnetite nanocrystals with multiple facets were synthesised by a low temperature hydrothermal method. Atomistic simulation and calculations on surface attachment energy successfully predicted the polyhedral structure of magnetite nanocrystals with multiple facets. X-ray diffraction, field emission scanning electron microscopy, and high resolution transmission microscopy confirmed the crystal structure of magnetite, which is consistent with the theoretical modelling. The magnetic property measurements show the superspin glass state of the polyhedral nanocrystals, which could originate from the nanometer size of individual single crystals. When applied as an anode material in lithium ion cells, magnetite nanocrystals demonstrated an outstanding electrochemical performance with a high lithium storage capacity, a satisfactory cyclability, and an excellent high rate capacity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optical Properties of Lithium Terbium Fluoride and Implications for Performance in High Power Lasers (Postprint)

    Science.gov (United States)

    2016-02-01

    AFRL-RX-WP-JA-2016-0323 OPTICAL PROPERTIES OF LITHIUM TERBIUM FLUORIDE AND IMPLICATIONS FOR PERFORMANCE IN HIGH POWER LASERS... AMERICA (STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR...OPTICAL PROPERTIES OF LITHIUM TERBIUM FLUORIDE AND IMPLICATIONS FOR PERFORMANCE IN HIGH POWER LASERS (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b

  18. Durable polydopamine-coated porous sulfur core-shell cathode for high performance lithium-sulfur batteries

    Science.gov (United States)

    Deng, Yuanfu; Xu, Hui; Bai, Zhaowen; Huang, Baoling; Su, Jingyang; Chen, Guohua

    2015-12-01

    Lithium-sulfur batteries show fascinating potential for advanced energy system due to their high specific capacity, low-cost, and environmental benignity. However, their wide applications have been plagued by low coulombic efficiency, fast capacity fading and poor rate performance. Herein, a facile method for preparation of S@PDA (PDA = polydopamine) composites with core-shell structure and good electrochemical performance as well as the First-Principles calculations on the interactions of PDA and polysulfides are reported. Taking the advantages of the core-shell structure with porous sulfur core, the high mechanical flexibility of PDA for accommodating the volumetric variation during the discharge/charge processes, the good lithium ion conductivity and the strong chemical interactions between the nitrogen/oxygen atoms with lone electron pair and lithium polysulfides for alleviating their dissolution, the S@PDA composites exhibit high discharge capacities at different current densities (1048 and 869 mAh g-1 at 0.2 and 0.8 A g-1, respectively) and excellent capacity retention capability. A capacity decay as low as 0.021% per cycle and an average coulombic efficiency of 98.5% is observed over a long-term cycling of 890 cycles at 0.8 A g-1. The S@PDA electrode has great potential as a low-cost cathode in high energy Li-S batteries.

  19. Modeling Lithium Ion Battery Safety: Venting of Pouch Cells; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram.; Yang, Chuanbo.; Pesaran, Ahmad

    2013-07-01

    This report documents the successful completion of the NREL July milestone entitled “Modeling Lithium-Ion Battery Safety - Complete Case-Studies on Pouch Cell Venting,” as part of the 2013 Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy (DOE). This work aims to bridge the gap between materials modeling, usually carried out at the sub-continuum scale, and the

  20. Performance Model for High-Power Lithium Titanate Oxide Batteries based on Extended Characterization Tests

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2015-01-01

    Lithium-ion (Li-ion) batteries are found nowadays not only in portable/consumer electronics but also in more power demanding applications, such as stationary renewable energy storage, automotive and back-up power supply, because of their superior characteristics in comparison to other energy...

  1. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  2. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries.

    Science.gov (United States)

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-29

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12,441 mAh g(-1) at a current density of 100 mA g(-1). When they were cycled at a limited capacity of 800 mAh g(-1) at current densities of 200 or 400 mA g(-1), these cathodes showed stable charge voltages of ∼3.65 or 3.90 V, corresponding to energy efficiencies of ∼71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  3. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-08-11

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of "closed" pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  4. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-01-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices. PMID:27510357

  5. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-08-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices.

  6. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  7. Enhanced energy capacity of lithium-oxygen batteries with ionic liquid electrolytes by addition of ammonium ions

    Science.gov (United States)

    Matsuda, Shoichi; Uosaki, Kohei; Nakanishi, Shuji

    2017-07-01

    Lithium-oxygen (Li-O2) batteries with ionic liquid-based electrolytes have attracted much attention because of their superior battery performance and high safety. However, the practical energy capacities achieved to date are markedly lower than those of Li-ion batteries. A dominant factor that limits the energy capacities of Li-O2 batteries is the insulating characteristics and insolubility of lithium peroxide (Li2O2), which gradually accumulates on the positive electrode as a discharge product. Herein, we report that ammonium ions function as a promoter for the solution-route formation of Li2O2, which results in a significant improvement of the energy capacity of Li-O2 cells. Scanning electron microscopy analyses revealed that the structure of Li2O2 changed from spherical particles to toroidal particles with an increase in the ammonium ions concentration. Ionic additives that have been reported to function as promoters the solution-route formation of Li2O2 in ether-based electrolyte systems do not exhibit a promoting effect in ionic liquid-based electrolytes.

  8. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage.

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar Satija

    Full Text Available Human mesenchymal stem cells (hMSCs present in the bone marrow are the precursors of osteoblasts, chondrocytes and adipocytes, and hold tremendous potential for osteoregenerative therapy. However, achieving directed differentiation into osteoblasts has been a major concern. The use of lithium for enhancing osteogenic differentiation has been documented in animal models but its effect in humans is not clear. We, therefore, performed high throughput transcriptome analysis of lithium-treated hMSCs to identify altered gene expression and its relevance to osteogenic differentiation. Our results show suppression of proliferation and enhancement of alkaline phosphatase (ALP activity upon lithium treatment of hMSCs under non-osteogenic conditions. Microarray profiling of lithium-stimulated hMSC revealed decreased expression of adipogenic genes (CEBPA, CMKLR1, HSD11B1 and genes involved in lipid biosynthesis. Interestingly, osteoclastogenic factors and immune responsive genes (IL7, IL8, CXCL1, CXCL12, CCL20 were also downregulated. Negative transcriptional regulators of the osteogenic program (TWIST1 and PBX1 were suppressed while genes involved in mineralization like CLEC3B and ATF4 were induced. Gene ontology analysis revealed enrichment of upregulated genes related to mesenchymal cell differentiation and signal transduction. Lithium priming led to enhanced collagen 1 synthesis and osteogenic induction of lithium pretreated MSCs resulted in enhanced expression of Runx2, ALP and bone sialoprotein. However, siRNA-mediated knockdown of RRAD, CLEC3B and ATF4 attenuated lithium-induced osteogenic priming, identifying a role for RRAD, a member of small GTP binding protein family, in osteoblast differentiation. In conclusion, our data highlight the transcriptome reprogramming potential of lithium resulting in higher propensity of lithium "primed" MSCs for osteoblastic differentiation.

  9. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage.

    Science.gov (United States)

    Satija, Neeraj Kumar; Sharma, Deepa; Afrin, Farhat; Tripathi, Rajendra P; Gangenahalli, Gurudutta

    2013-01-01

    Human mesenchymal stem cells (hMSCs) present in the bone marrow are the precursors of osteoblasts, chondrocytes and adipocytes, and hold tremendous potential for osteoregenerative therapy. However, achieving directed differentiation into osteoblasts has been a major concern. The use of lithium for enhancing osteogenic differentiation has been documented in animal models but its effect in humans is not clear. We, therefore, performed high throughput transcriptome analysis of lithium-treated hMSCs to identify altered gene expression and its relevance to osteogenic differentiation. Our results show suppression of proliferation and enhancement of alkaline phosphatase (ALP) activity upon lithium treatment of hMSCs under non-osteogenic conditions. Microarray profiling of lithium-stimulated hMSC revealed decreased expression of adipogenic genes (CEBPA, CMKLR1, HSD11B1) and genes involved in lipid biosynthesis. Interestingly, osteoclastogenic factors and immune responsive genes (IL7, IL8, CXCL1, CXCL12, CCL20) were also downregulated. Negative transcriptional regulators of the osteogenic program (TWIST1 and PBX1) were suppressed while genes involved in mineralization like CLEC3B and ATF4 were induced. Gene ontology analysis revealed enrichment of upregulated genes related to mesenchymal cell differentiation and signal transduction. Lithium priming led to enhanced collagen 1 synthesis and osteogenic induction of lithium pretreated MSCs resulted in enhanced expression of Runx2, ALP and bone sialoprotein. However, siRNA-mediated knockdown of RRAD, CLEC3B and ATF4 attenuated lithium-induced osteogenic priming, identifying a role for RRAD, a member of small GTP binding protein family, in osteoblast differentiation. In conclusion, our data highlight the transcriptome reprogramming potential of lithium resulting in higher propensity of lithium "primed" MSCs for osteoblastic differentiation.

  10. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; James, Christine [Michigan State Univ., East Lansing, MI (United States). Chemical Engineering and Materials Science Dept.; Gaines, Linda G. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Gallagher, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division

    2014-09-30

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  11. High-flux neutron source based on a liquid-lithium target

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Feinberg, G. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I. [Soreq NRC, Yavne, 81800 (Israel)

    2013-04-19

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  12. Silicon oxide based high capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  13. Acute High Dose Lithium-Induced Exacerbation of Obsessive Compulsive Symptoms

    OpenAIRE

    Umesh, Shreekantiah; Sinha, Vinod Kumar

    2014-01-01

    Obsessive compulsive disorder (OCD) is a chronic neuropsychiatric disorder whose pathophysiology is linked to serotonergic dysfunction. More recently, the role of glutamate has also been posited. Lithium is used as an adjunctive for the treatment of OCD which is found to enhance serotonergic transmission. We present a case of OCD who was on stable dose of sertraline developed exacerbation of obsessive compulsive symptoms with acute high dose of lithium but improved after dose reduction.

  14. High-Capacity Micrometer-Sized Li 2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    KAUST Repository

    Yang, Yuan

    2012-09-19

    Li 2S is a high-capacity cathode material for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 order of magnitude higher than traditional metal oxides/phosphates cathodes. However, Li 2S is usually considered to be electrochemically inactive due to its high electronic resistivity and low lithium-ion diffusivity. In this paper, we discover that a large potential barrier (∼1 V) exists at the beginning of charging for Li 2S. By applying a higher voltage cutoff, this barrier can be overcome and Li 2S becomes active. Moreover, this barrier does not appear again in the following cycling. Subsequent cycling shows that the material behaves similar to common sulfur cathodes with high energy efficiency. The initial discharge capacity is greater than 800 mAh/g for even 10 μm Li 2S particles. Moreover, after 10 cycles, the capacity is stabilized around 500-550 mAh/g with a capacity decay rate of only ∼0.25% per cycle. The origin of the initial barrier is found to be the phase nucleation of polysulfides, but the amplitude of barrier is mainly due to two factors: (a) charge transfer directly between Li 2S and electrolyte without polysulfide and (b) lithium-ion diffusion in Li 2S. These results demonstrate a simple and scalable approach to utilizing Li 2S as the cathode material for rechargeable lithium-ion batteries with high specific energy. © 2012 American Chemical Society.

  15. Lithium-ion Energy Storage at Very Low Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Li-ion batteries with specific energy >180 Wh/kg, calendar life (>15years), and a wide operating temperature range (-60oC to 60oC) are crucial for the...

  16. Study of Stable Cathodes and Electrolytes for High Specific Density Lithium-Air Battery

    Science.gov (United States)

    Hernandez-Lugo, Dionne M.; Wu, James; Bennett, William; Ming, Yu; Zhu, Yu

    2015-01-01

    Future NASA missions require high specific energy battery technologies, greater than 400 Wh/kg. Current NASA missions are using "state-of-the-art" (SOA) Li-ion batteries (LIB), which consist of a metal oxide cathode, a graphite anode and an organic electrolyte. NASA Glenn Research Center is currently studying the physical and electrochemical properties of the anode-electrolyte interface for ionic liquid based Li-air batteries. The voltage-time profiles for Pyr13FSI and Pyr14TFSI ionic liquids electrolytes studies on symmetric cells show low over-potentials and no dendritic lithium morphology. Cyclic voltammetry measurements indicate that these ionic liquids have a wide electrochemical window. As a continuation of this work, sp2 carbon cathode and these low flammability electrolytes were paired and the physical and electrochemical properties were studied in a Li-air battery system under an oxygen environment.

  17. A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries.

    Science.gov (United States)

    Shi, Ye; Zhang, Jun; Bruck, Andrea M; Zhang, Yiman; Li, Jing; Stach, Eric A; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S; Yu, Guihua

    2017-06-01

    This study develops a tunable 3D nanostructured conductive gel framework as both binder and conductive framework for lithium ion batteries. A 3D nanostructured gel framework with continuous electron pathways can provide hierarchical pores for ion transport and form uniform coatings on each active particle against aggregation. The hybrid gel electrodes based on a polypyrrole gel framework and Fe3 O4 nanoparticles as a model system in this study demonstrate the best rate performance, the highest achieved mass ratio of active materials, and the highest achieved specific capacities when considering total electrode mass, compared to current literature. This 3D nanostructured gel-based framework represents a powerful platform for various electrochemically active materials to enable the next-generation high-energy batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mapping the Free Energy of Lithium Solvation in the Protic Ionic Liquid Ethylammonuim Nitrate: A Metadynamics Study.

    Science.gov (United States)

    Kachmar, Ali; Carignano, Marcelo; Laino, Teodoro; Iannuzzi, Marcella; Hutter, Jürg

    2017-08-10

    Understanding lithium solvation and transport in ionic liquids is important due to their possible application in electrochemical devices. Using first-principles simulations aided by a metadynamics approach we study the free-energy landscape for lithium ions at infinite dilution in ethylammonium nitrate, a protic ionic liquid. We analyze the local structure of the liquid around the lithium cation and obtain a quantitative picture in agreement with experimental findings. Our simulations show that the lowest two free energy minima correspond to conformations with the lithium ion being solvated either by three or four nitrate ions with a transition barrier between them of 0.2 eV. Other less probable conformations having different solvation pattern are also investigated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  20. Optimal Sizing of a Lithium Battery Energy Storage System for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Dulout, Jeremy; Jammes, Bruno; Alonso, Corinne

    2017-01-01

    This paper proposes a system analysis focused on finding the optimal operating conditions (nominal capacity, cycle depth, current rate, state of charge level) of a lithium battery energy storage system. The purpose of this work is to minimize the cost of the storage system in a renewable DC...... microgrid. Thus, main stress factors influencing both battery lifetime (calendar and cycling) and performances are described and modelled. Power and energy requirements are also discussed through a probabilistic analysis on some years of real data from the ADREAM photovoltaic building of the LAAS...

  1. Beads-Milling of Waste Si Sawdust into High-Performance Nanoflakes for Lithium-Ion Batteries

    OpenAIRE

    Kasukabe, Takatoshi; Nishihara, Hirotomo; Kimura, Katsuya; Matsumoto, Taketoshi; Kobayashi, Hikaru; Okai, Makoto; Kyotani, Takashi

    2017-01-01

    Nowadays, ca. 176,640 tons/year of silicon (Si) (>4N) is manufactured for Si wafers used for semiconductor industry. The production of the highly pure Si wafers inevitably includes very high-temperature steps at 1400?2000??C, which is energy-consuming and environmentally unfriendly. Inefficiently, ca. 45?55% of such costly Si is lost simply as sawdust in the cutting process. In this work, we develop a cost-effective way to recycle Si sawdust as a high-performance anode material for lithium-io...

  2. Experimental high energy physics

    CERN Document Server

    De Paula, L

    2004-01-01

    A summary of the contributions on experimental high energy physics to the XXIV Brazilian National Meeting on Particle and Fields is presented. There were 5 invited talks and 32 submitted contributions. The active Brazilian groups are involved in several interesting projects but suffer from the lack of funding and interaction with Brazilian theorists.

  3. High Energy Exoplanet Transits

    Science.gov (United States)

    Llama, Joe; Shkolnik, Evgenya L.

    2017-10-01

    X-ray and ultraviolet transits of exoplanets allow us to probe the atmospheres of these worlds. High energy transits have been shown to be deeper but also more variable than in the optical. By simulating exoplanet transits using high-energy observations of the Sun, we can test the limits of our ability to accurately measure the properties of these planets in the presence of stellar activity. We use both disk-resolved images of the Solar disk spanning soft X-rays, the ultraviolet, and the optical and also disk-integrated Sun-as-a-star observations of the Lyα irradiance to simulate transits over a wide wavelength range. We find that for stars with activity levels similar to the Sun, the planet-to-star radius ratio can be overestimated by up to 50% if the planet occults an active region at high energies. We also compare our simulations to high energy transits of WASP-12b, HD 189733, 55 Cnc b, and GJ 436b.

  4. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  5. High energy particle astronomy.

    Science.gov (United States)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  6. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  7. Modification of SnO2 Anodes by Atomic Layer Deposition for High Performance Lithium Ion Batteries

    KAUST Repository

    Yesibolati, Nulati

    2013-05-01

    Tin dioxide (SnO2) is considered one of the most promising anode materials for Lithium ion batteries (LIBs), due to its large theoretical capacity and natural abundance. However, its low electronic/ionic conductivities, large volume change during lithiation/delithiation and agglomeration prevent it from further commercial applications. In this thesis, we investigate modified SnO2 as a high energy density anode material for LIBs. Specifically two approaches are presented to improve battery performances. Firstly, SnO2 electrochemical performances were improved by surface modification using Atomic Layer Deposition (ALD). Ultrathin Al2O3 or HfO2 were coated on SnO2 electrodes. It was found that electrochemical performances had been enhanced after ALD deposition. In a second approach, we implemented a layer-by-layer (LBL) assembled graphene/carbon-coated hollow SnO2 spheres as anode material for LIBs. Our results indicated that the LBL assembled electrodes had high reversible lithium storage capacities even at high current densities. These superior electrochemical performances are attributed to the enhanced electronic conductivity and effective lithium diffusion, because of the interconnected graphene/carbon networks among nanoparticles of the hollow SnO2 spheres.

  8. A Novel and Generalized Lithium-Ion-Battery Configuration utilizing Al Foil as Both Anode and Current Collector for Enhanced Energy Density.

    Science.gov (United States)

    Ji, Bifa; Zhang, Fan; Sheng, Maohua; Tong, Xuefeng; Tang, Yongbing

    2017-02-01

    A novel battery configuration based on an aluminum foil anode and a conventional cathode is developed. The aluminum foil plays a dual role as both the active anode material and the current collector, which enhances the energy density of the packaged battery, and reduces the production cost. This generalized battery configuration has high potential for application in next-generation lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High Energy Particle Accelerators

    CERN Multimedia

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  10. Janus Separator of Polypropylene-Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Peng, Hong-Jie; Wang, Dai-Wei; Huang, Jia-Qi; Cheng, Xin-Bing; Yuan, Zhe; Wei, Fei; Zhang, Qiang

    2016-01-01

    Owing to the conversion chemistry of the sulfur cathode, the lithium-sulfur (Li-S) batteries exhibit high theoretical energy density. However, the intrinsic mobile redox centers during the sulfur/Li2S-to-lithium polysulfides solid-to-liquid phase transition induce low sulfur utilization and poor cycling life. Herein, the Janus separator of mesoporous cellular graphene framework (CGF)/polypropylene membrane to promote the utilization of sulfur cathode is introduced. The porous polypropylene membrane serves as an insulating substrate in contact with lithium anode while CGFs that possess high electrical conductivity of 100 S cm-1, a large mesopore volume of 3.1 cm3 g-1, and a huge surface area of 2120 m2 g-1 are adhered on cathode side to reactivate the shuttling-back polysulfides and to preserve the ion channels. Therefore, the Li-S cell with the "two-face" CGF Janus separator exhibit a high initial capacity of 1109 mAh g-1 and superior capacity preserved upon 800 mAh g-1 after 250 cycles at 0.2 C, which is 40% higher on sulfur utilization efficiency than the corresponding results with routine polypropylene separators. There are significant improvements on capacity as well as electrochemical kinetics. A very high areal capacity of 5.5 mAh cm-2 combined with high sulfur content of 80% and areal loading amount of 5.3 mg cm-2 is achieved for such advanced configuration. The negative impact of shuttle mechanism on lowering the utilization of sulfur and overall energy density of a Li-S battery is well eliminated by applying CGF separators. Consequently, employing carbonaceous materials as Janus face of separators enlightens new opportunities for improving the utilization of active materials and energy density of devices that involve complex phase evolution and conversion electrochemistry.

  11. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S., E-mail: halfon@phys.huji.ac.il [Soreq NRC, Yavne, Israel 81800 (Israel)] [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Arenshtam, A.; Berkovits, D.; Bisyakoev, M.; Eliyahu, I. [Soreq NRC, Yavne, 81800 (Israel); Feinberg, G. [Soreq NRC, Yavne, Israel 81800 (Israel)] [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Hazenshprung, N.; Kijel, D.; Nagler, A.; Silverman, I. [Soreq NRC, Yavne, 81800 (Israel)

    2011-12-15

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the {sup 7}Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  13. Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2013-12-01

    Full Text Available Liquid electrolyte lithium/sulfur (Li/S batteries cannot come into practical applications because of many problems such as low energy efficiency, short cycle life, and fast self-discharge. All these problems are related to the dissolution of lithium polysulfide, a series of sulfur reduction intermediates, in the liquid electrolyte, and resulting parasitic reactions with the Li anode. Covalently binding sulfur onto carbon surface is a solution to completely eliminate the dissolution of lithium polysulfide and make the Li/S battery viable for practical applications. This can be achieved by replacing elemental sulfur with sulfurized carbon as the cathode material. This article reviews the current efforts on this subject and discusses the syntheses, electrochemical properties, and prospects of the sulfurized carbon as a cathode material in the rechargeable Li/S batteries.

  14. A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery.

    Science.gov (United States)

    Ma, Ting; Zhao, Qing; Wang, Jianbin; Pan, Zeng; Chen, Jun

    2016-05-23

    We report a rational design of a sulfur heterocyclic quinone (dibenzo[b,i]thianthrene-5,7,12,14-tetraone=DTT) used as a cathode (uptake of four lithium ions to form Li4 DTT) and a conductive polymer [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)= PSS) used as a binder for a high-performance rechargeable lithium-ion battery. Because of the reduced energy level of the lowest unoccupied molecular orbital (LUMO) caused by the introduced S atoms, the initial Li-ion intercalation potential of DTT is 2.89 V, which is 0.3 V higher than that of its carbon analog. Meanwhile, there is a noncovalent interaction between DTT and PSS, which remarkably suppressed the dissolution and enhanced the conductivity of DTT, thus leading to the great improvement of the electrochemical performance. The DTT cathode with the PSS binder displays a long-term cycling stability (292 mAh g(-1) for the first cycle, 266 mAh g(-1) after 200 cycles at 0.1 C) and a high rate capability (220 mAh g(-1) at 1 C). This design strategy based on a noncovalent interaction is very effective for the application of small organic molecules as the cathode of rechargeable lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries.

    Science.gov (United States)

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-04-08

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.

  16. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications

    Science.gov (United States)

    Wang, Ying; Guo, Jiahui; Li, Li; Ge, Yali; Li, Baojun; Zhang, Yingjiu; Shang, Yuanyuan; Cao, Anyuan

    2017-08-01

    Single-walled carbon nanotube (SWNT) films are a potential candidate as porous conductive electrodes for energy conversion and storage; tailoring the loading and distribution of active materials grafted on SWNTs is critical for achieving maximum performance. Here, we show that as-synthesized SWNT samples containing residual Fe catalyst can be directly converted to Fe2O3/SWNT composite films by thermal annealing in air. The mass loading of Fe2O3 nanoparticles is tunable from 63 wt% up to 96 wt%, depending on the annealing temperature (from 450 °C to 600 °C), while maintaining the porous network structure. Interconnected SWNT networks containing high-loading active oxides lead to synergistic effect as an anode material for lithium ion batteries. The performance is improved consistently with increasing Fe2O3 loading. As a result, our Fe2O3/SWNT composite films exhibit a high reversible capacity (1007.1 mA h g-1 at a current density of 200 mA g-1), excellent rate capability (384.9 mA h g-1 at 5 A g-1) and stable cycling performance with the discharge capacity up to 567.1 mA h g-1 after 600 cycles at 2 A g-1. The high-loading Fe2O3/SWNT composite films have potential applications as nanostructured electrodes for various energy devices such as supercapacitors and Li-ion batteries.

  17. Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing

    Science.gov (United States)

    Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; Dees, Dennis W.

    2016-08-01

    Successful deployment of electric vehicles requires maturity of the manufacturing process to reduce the cost of the lithium ion battery (LIB) pack. Drying the coated cathode layer and subsequent recovery of the solvent for recycle is a vital step in the lithium ion battery manufacturing plant and offers significant potential for cost reduction. A spreadsheet model of the drying and recovery of the solvent, is used to study the energy demand of this step and its contribution towards the cost of the battery pack. The base case scenario indicates that the drying and recovery process imposes an energy demand of ∼10 kWh per kg of the solvent n-methyl pyrrolidone (NMP), and is almost 45 times the heat needed to vaporize the NMP. For a plant producing 100 K battery packs per year for 10 kWh plug-in hybrid vehicles (PHEV), the energy demand is ∼5900 kW and the process contributes 107 or 3.4% to the cost of the battery pack. The cost of drying and recovery is equivalent to 1.12 per kg of NMP recovered, saving 2.08 per kg in replacement purchase.

  18. Binder Free Hierarchical Mesoporous Carbon Foam for High Performance Lithium Ion Battery.

    Science.gov (United States)

    Zhou, Zhengping; Zhang, Hua; Zhou, Yan; Qiao, Hui; Gurung, Ashim; Naderi, Roya; Elbohy, Hytham; Smirnova, Alevtina L; Lu, Huitian; Chen, Shuiliang; Qiao, Qiquan

    2017-05-03

    A hierarchical mesoporous carbon foam (ECF) with an interconnected micro-/mesoporous architecture was prepared and used as a binder-free, low-cost, high-performance anode for lithium ion batteries. Due to its high specific surface area (980.6 m2/g), high porosity (99.6%), light weight (5 mg/cm3) and narrow pore size distribution (~2 to 5 nm), the ECF anode exhibited a high reversible specific capacity of 455 mAh/g. Experimental results also demonstrated that the anode thickness significantly influence the specific capacity of the battery. Meanwhile, the ECF anode retained a high rate performance and an excellent cycling performance approaching 100% of its initial capacity over 300 cycles at 0.1 A/g. In addition, no binders, carbon additives or current collectors are added to the ECF based cells that will increase the total weight of devices. The high electrochemical performance was mainly attributed to the combined favorable hierarchical structures which can facilitate the Li+ accessibility and also enable the fast diffusion of electron into the electrode during the charge and discharge process. The synthesis process used to make this elastic carbon foam is readily scalable to industrial applications in energy storage devices such as li-ion battery and supercapacitor.

  19. A safe, high-power-density lithium battery

    Science.gov (United States)

    Walsh, F.

    1985-03-01

    The Li/SOCl2 battery has received attention because of its high theoretical energy/power density. However, practical Li/SOCl2 cells have not provided the desired power density and have suffered from concerns with cell safety on discharge. In previous work, ECO has shown that the use of a TAA-type catalyst significantly improves the safety of the Li/S0Cl2 cell at high rate. The objective of this Phase 1 program was to determine whether a stacked disk electrode configuration with TAA-catalyzed cathodes would meet a high power-density design goal. Under the program, the effects of cathode thickness, preparation pressure, electrolyte gap and solute concentration on stacked-electrode cell performance and capacity were measured. The results of the Phase 1 program included the demonstration of stacked-electrode cell performance and capacity at levels suitable to meet a design goal of 400 W/kg with high energy density. Further work in a Phase 2 program will be required to demonstrate in laser-sealed fully-packaged cells that the results of Phase 1 can be practically applied to provide a safe high-rate, energy-dense power source for military applications.

  20. Free energy changes in denaturation of ribonuclease A by mixed denaturants. Effects of combinations of guanidine hydrochloride and one of the denaturants lithium bromide, lithium chloride, and sodium bromide.

    Science.gov (United States)

    Ahmad, F

    1984-04-10

    The denaturation of ribonuclease A by guanidine hydrochloride, lithium bromide, and lithium chloride and by mixed denaturants consisting of guanidine hydrochloride and one of the denaturants lithium chloride, lithium bromide, and sodium bromide was followed by difference spectral measurements at pH 4.8 and 25 degrees C. Both components of mixed denaturant systems enhance each other's effect in unfolding the protein. The effect of lithium bromide on the midpoint of guanidine hydrochloride denaturation transition is approximately the sum of the effects of the constituent ions. For all the mixed denaturants tested, the dependence of the free energy change on denaturation is linear. The conformational free energy associated with the guanidine hydrochloride denaturation transition in water is 7.5 +/- 0.1 kcal mol-1, and it is unchanged in the presence of low concentrations of lithium bromide, lithium chloride, and sodium bromide which by themselves are not concentrated enough to unfold the protein. The conformational free energy associated with the lithium bromide denaturation transition in water is 11.7 +/- 0.3 kcal mol-1, and it is not affected by the presence of low concentrations of guanidine hydrochloride which by themselves do not disrupt the structure of native ribonuclease A.

  1. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries.

    Science.gov (United States)

    Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei; Bondarchuk, Oleksandr; Rodriguez-Martinez, Lide M; Zhang, Heng; Armand, Michel

    2017-11-27

    Of the various beyond-lithium-ion battery technologies, lithium-sulfur (Li-S) batteries have an appealing theoretical energy density and are being intensely investigated as next-generation rechargeable lithium-metal batteries. However, the stability of the lithium-metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long-term stability of Li-S batteries. Herein, we report lithium azide (LiN3 ) as a novel electrolyte additive for all-solid-state Li-S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state-of-the-art additive lithium nitrate (LiNO3 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Shielding high energy accelerators

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    After introducing the subject of shielding high energy accelerators, point source, line-of-sight models, and in particular the Moyer model. are discussed. Their use in the shielding of proton and electron accelerators is demonstrated and their limitations noted. especially in relation to shielding in the forward direction provided by large, flat walls. The limitations of reducing problems to those using it cylindrical geometry description are stressed. Finally the use of different estimators for predicting dose is discussed. It is suggested that dose calculated from track-length estimators will generally give the most satisfactory estimate. (9 refs).

  3. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  4. High performance nickel-metal hydride and lithium-ion batteries

    Science.gov (United States)

    Köhler, U.; Kümpers, J.; Ullrich, M.

    In comparison to pure electric vehicles (EV) the opportunities for hybrid electric vehicles (HEV) are much better, since range restrictions no longer apply and the interaction of the internal combustion engine and electrical drive bring increased energy efficiency and environmental friendliness. The batteries used in such applications must meet very high standards in terms of performance and service life. Although the battery capacity is smaller than for a purely EV, it needs to be able to generate far higher levels of power. The technical challenges of hybrid applications have led to the development of high-performance batteries. At the forefront of these is the nickel-metal hydride system (NiMH). With specific power and energy data in the range from 300 to 900 W/kg, 55 to 37 Wh/kg, respectively (based on cell weight), excellent charge efficiency and energy throughput levels of more than 10,000 times the nominal energy, the NiMH system comes very close to satisfying the needs of the HEV. Parallel developments with the lithium-ion system based on manganese spinel as cathode material show that, with specific power and energy levels above 1000 W/kg, 50 Wh/kg, respectively, this technology will also be able to play an important role in the future. Service life figures in terms of calendar life have been improved tremendously to about three years, but there is still a need for further improvement in order to meet the specifications of car manufacturers. For this reason, an increase of life span is the subject of intensive development work.

  5. Carbon nanotubes-bridged molybdenum trioxide nanosheets as high performance anode for lithium ion batteries

    Science.gov (United States)

    Sun, Haiyan; Hanlon, Damien; Dinh, Duc Anh; Boland, John B.; Esau Del Rio Castillo, Antonio; Di Giovanni, Carlo; Ansaldo, Alberto; Pellegrini, Vittorio; Coleman, Jonathan N.; Bonaccorso, Francesco

    2018-01-01

    The search for novel nanomaterials driving the development of high-performance electrodes in lithium ion batteries (LIBs) is at the cutting edge of research in the field of energy storage. Here, we report on the synthesis of single wall carbon nanotube (SWNT)-bridged molybdenum trioxide (MoO3) nanosheets as anode material for LIBs. We exploit liquid phase exfoliation of layered MoO3 crystallites to produce multilayer MoO3 nanosheets dispersed in isopropanol, which are then mixed with solution processed SWNTs in the same solvent. The addition of SWNTs to the MoO3 nanosheets provides the conductive framework for electron transport, as well as a bridge structure, which buffers the volume expansion upon lithiation/de-lithiation. We demonstrate that the hybrid SWNT-bridged MoO3 structure is beneficial for both the mechanical stability and the electrochemical characteristics of the anodes leading to a specific capacity of 865 mAh g‑1 at 100 mA g‑1 after 100 cycles, with a columbic efficiency approaching 100% and a capacity fading of 0.02% per cycle. The low-cost, non-toxic, binder-free hybrid MoO3/SWNT here developed represents a step forward for the applicability of exfoliated MoO3 in LIB anodes, delivering high energy and power densities as well as long lifetime.

  6. Phosphorene as a Polysulfide Immobilizer and Catalyst in High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Li, Lu; Chen, Long; Mukherjee, Sankha; Gao, Jian; Sun, Hao; Liu, Zhibo; Ma, Xiuliang; Gupta, Tushar; Singh, Chandra Veer; Ren, Wencai; Cheng, Hui-Ming; Koratkar, Nikhil

    2017-01-01

    Theoretical and experimental studies together show phosphorene as a highly potent polysulfide immobilizer for lithium-sulfur batteries, enabling a high capacity, good rate capability, and excellent cycling stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Suppressed gross erosion of high-temperature lithium via rapid deuterium implantation

    NARCIS (Netherlands)

    Abrams, T.; Jaworski, M. A.; Chen, M.; Carter, E. A.; Kaita, R.; Stotler, D. P.; De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.

    2016-01-01

    Lithium-coated high- Z substrates are planned for use in the NSTX-U divertor and are a candidate plasma facing component (PFC) for reactors, but it remains necessary to characterize the gross Li erosion rate under high plasma fluxes (>10 23 m −2 s −1 ), typical for the divertor region. In this

  8. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  9. Transition metal alloy-modulated lithium manganese oxide nanosystem for energy storage in lithium-ion battery cathodes

    CSIR Research Space (South Africa)

    West, N

    2013-07-01

    Full Text Available This paper explores the synergistic and catalytic properties of a newly developed lithium ion battery (LIB) composite cathode of LiMn(sub2)O(Sub4) modified with bimetallic (Au–Fe) nanoparticle. Spinel phase LiMn(sub)2O(sub4) was doped...

  10. High voltage cathode compositions for lithium-ion batteries

    Science.gov (United States)

    Lu, Zhonghua; Eberman, Kevin W

    2017-03-21

    A lithium transition metal oxide composition. The composition has the formula Li.sub.a[Li.sub.bNi.sub.cMn.sub.dCo.sub.e]O.sub.2, where a.gtoreq.0.9, b.gtoreq.0, c>0, d>0, e>0, b+c+d+e=1, 1.05.ltoreq.c/d.ltoreq.1.4, 0.05.ltoreq.e.ltoreq.0.30, 0.9.ltoreq.(a+b)/M.ltoreq.1.06, and M=c+d+e. The composition has an O3 type structure.

  11. Energy evaluation of low-level control in UAVs powered by lithium polymer battery.

    Science.gov (United States)

    Gandolfo, Daniel C; Salinas, Lucio R; Serrano, Mario E; Toibero, Juan M

    2017-11-01

    Nowadays, the energetic cost of flying in electric-powered UAVs is one of the key challenges. The continuous evolution of electrical energy storage sources is overcome by the great amount of energy required by the propulsion system. Therefore, the on-board energy is a crucial factor that needs to be further analyzed. In this work, different control strategies applied to a generic UAV propulsion system are considered and a lithium polymer battery dynamic model is included as the propulsion system energy source. Several simulations are carried out for each control strategy, and a quantitative evaluation of the influence of each control law over the actual energy consumed by the propulsion system is reported. This energy, which is delivery by the battery, is next compared against a well-known control-effort-based index. The results and analysis suggest that conclusions regarding energy savings based on control effort signals should be drawn carefully, because they do not directly represent the actual consumed energy. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells

    Science.gov (United States)

    Wu, James Jianjun; Hong, Haiping

    2014-01-01

    NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.

  13. High performance lithium insertion negative electrode materials for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Channu, V.S. Reddy, E-mail: chinares02@gmail.com [SMC Corporation, College Station, TX 77845 (United States); Rambabu, B. [Solid State Ionics and Surface Sciences Lab, Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States); Kumari, Kusum [Department of Physics, National Institute of Technology, Warangal (India); Kalluru, Rajmohan R. [The University of Southern Mississippi, College of Science and Technology, 730 E Beach Blvd, Long Beach, MS 39560 (United States); Holze, Rudolf [Institut für Chemie, AG Elektrochemie, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-11-30

    Highlights: • LiCrTiO{sub 4} nanostructures were synthesized for electrochemical applications by soft chemical synthesis followed by annealing. • The presence of Cr and Ti elements are confirmed from the EDS spectrum. • Oxalic acid assisted LiCrTiO{sub 4} electrode shows higher specific capacity (mAh/g). - Abstract: Spinel LiCrTiO{sub 4} oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50–10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO{sub 4} electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO{sub 4} shows higher specific capacity.This LiCrTiO{sub 4} is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm{sup 2}. The specific capacity decreases with increasing current densities.

  14. In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    Science.gov (United States)

    Finegan, Donal P.; Scheel, Mario; Robinson, James B.; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J.; Millichamp, Jason; Di Michiel, Marco; Offer, Gregory J.; Hinds, Gareth; Brett, Dan J.L.; Shearing, Paul R.

    2015-01-01

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features. PMID:25919582

  15. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Science.gov (United States)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  16. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-12-26

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  17. Designing Polymer Electrolytes for Safe and High Capacity Rechargeable Lithium Batteries.

    Science.gov (United States)

    Miller, Thomas F; Wang, Zhen-Gang; Coates, Geoffrey W; Balsara, Nitash P

    2017-03-21

    The development of solid polymer electrolytes for lithium battery applications is a challenge of profound technological significance. We have established a collaboration with the aim of understanding and designing improved polymer electrolytes that combines theoretical modeling, polymer synthesis, and experimental characterization. By studying diverse polymer chemistries, we have discovered that ion-solvation-site connectivity is an important feature of polymer electrolytes that is necessary for high lithium-ion conductance. We are employing this insight into search for improved polymer electrolytes, with promising early-stage results.

  18. A review of atomic layer deposition providing high performance lithium sulfur batteries

    Science.gov (United States)

    Yan, Bo; Li, Xifei; Bai, Zhimin; Song, Xiaosheng; Xiong, Dongbin; Zhao, Mengli; Li, Dejun; Lu, Shigang

    2017-01-01

    With the significant obstacles that have been conquered in lithium-sulfur (Li-S) batteries, it is urgent to impel accelerating development of room-temperature Li-S batteries with high energy density and long-term stability. In view of the unique solid-liquid-solid conversion processes of Li-S batteries, however, designing effective strategies to address the insulativity and volume effect of cathode, shuttle of soluble polysulfides, and/or safety hazard of Li metal anode has been challenging. An atomic layer deposition (ALD) is a representative thin film technology with exceptional capabilities in developing atomic-precisely conformal films. It has been demonstrated to be a promise strategy of solving emerging issues in advanced electrical energy storage (EES) devices via the surface modification and/or the fabrication of complex nanostructured materials. In this review, the recent developments and significances on how ALD improves the performance of Li-S batteries were discussed in detail. Significant attention mainly focused on the various strategies with the use of ALD to refine the electrochemical interfaces and cell configurations. Furthermore, the novel opportunities and perspective associated with ALD for future research directions were summarized. This review may boost the development and application of advanced Li-S batteries using ALD.

  19. S-matrix Calculations of Energy Levels of the Lithium Isoelectronic Sequence

    Energy Technology Data Exchange (ETDEWEB)

    sapirstein, J; Cheng, K T

    2010-11-02

    A QED approach to the calculation of the spectra of the lithium isoelectronic sequence is implemented. A modified Furry representation based on the Kohn-Sham potential is used to evaluate all one- and two-photon diagrams with the exception of the two-loop Lamb shift. Three-photon diagrams are estimated with Hamiltonian methods. After incorporating recent calculations of the two-loop Lamb shift and recoil corrections a comprehensive tabulation of the 2s, 2p{sub 1/2} and 2p{sub 3/2} energy levels as well as the 2s - 2p{sub 1/2} and 2s - 2p{sub 3/2} transition energies for Z = 10 - 100 is presented.

  20. Hydrides as High Capacity Anodes in Lithium Cells: An Italian “Futuro in Ricerca di Base FIRB-2010” Project

    Directory of Open Access Journals (Sweden)

    Sergio Brutti

    2017-03-01

    Full Text Available Automotive and stationary energy storage are among the most recently-proposed and still unfulfilled applications for lithium ion devices. Higher energy, power and superior safety standards, well beyond the present state of the art, are actually required to extend the Li-ion battery market to these challenging fields, but such a goal can only be achieved by the development of new materials with improved performances. Focusing on the negative electrode materials, alloying and conversion chemistries have been widely explored in the last decade to circumvent the main weakness of the intercalation processes: the limitation in capacity to one or at most two lithium atoms per host formula unit. Among all of the many proposed conversion chemistries, hydrides have been proposed and investigated since 2008. In lithium cells, these materials undergo a conversion reaction that gives metallic nanoparticles surrounded by an amorphous matrix of LiH. Among all of the reported conversion materials, hydrides have outstanding theoretical properties and have been only marginally explored, thus making this class of materials an interesting playground for both fundamental and applied research. In this review, we illustrate the most relevant results achieved in the frame of the Italian National Research Project FIRB 2010 Futuro in Ricerca “Hydrides as high capacity anodes in lithium cells” and possible future perspectives of research for this class of materials in electrochemical energy storage devices.

  1. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  2. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  3. Suppressing Polysulfide Dissolution via Cohesive Forces by Interwoven Carbon Nanofibers for High-Areal-Capacity Lithium-Sulfur Batteries.

    Science.gov (United States)

    Yun, Jong Hyuk; Kim, Joo-Hyung; Kim, Do Kyung; Lee, Hyun-Wook

    2017-12-15

    Nanostructural design renders several breakthroughs for the construction of high-performance materials and devices including energy-storage systems. Although attempts made toward electrode engineering have improved the existing drawbacks, nanoengineering is still hindered by some issues. To achieve practical applications of lithium-sulfur (Li-S) batteries, it is difficult to attain a high areal capacity with stable cycling. Physical encapsulation via nanostructural design not only can resolve the issue of lithium polysulfide dissolution during the electrochemical cycling, but also can offer significant contact resistance, which in turn can decrease the kinetics, particularly at a high sulfur loading. Thus, we demonstrate an electrospun carbon nanofiber (CNF) matrix for a sulfur cathode. This simple design enables a high mass loading of 10.5 mg cm-2 with a high specific capacity and stable cycling. The CNF-sulfur complex can deliver a high areal capacity of greater than 7 mAh cm-2, which is related to the excellent electrical conductivity of one-dimensional species. Moreover, we have observed that the reacted sulfur species have adhered well to the junction of the CNF network with specific wetting angles, which are induced by the cohesive force between the narrow gaps in the matrix that trapped the viscous polysulfides during cycling. The results of this study open new avenues for the design of high-areal-capacity Li-S batteries.

  4. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries

    Science.gov (United States)

    Mandal, Braja K.; Padhi, Akshaya K.; Shi, Zhong; Chakraborty, Sudipto; Filler, Robert

    This paper describes a low temperature electrolyte system for lithium-ion rechargeable batteries. The electrolyte exhibits high ionic conductivity, good electrochemical stability and no exothermic reaction in the presence of lithium metal. The system features a low lattice energy lithium salt in a specific mixture of carbonate solvents and a novel thermal runaway inhibitor.

  5. SnO2 nanocrystals anchored on N-doped graphene for high-performance lithium storage.

    Science.gov (United States)

    Zhou, Wei; Wang, Jinxian; Zhang, Feifei; Liu, Shumin; Wang, Jianwei; Yin, Dongming; Wang, Limin

    2015-02-28

    A SnO2-N-doped graphene (SnO2-NG) composite is synthesized by a rapid, facile, one-step microwave-assisted solvothermal method. The composite exhibits excellent lithium storage capability and high durability, and is a promising anode material for lithium ion batteries.

  6. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.

    Science.gov (United States)

    Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying

    2015-07-08

    Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.

  7. High lithium ionic conductivity in the lithium halide hydrates Li3-n(OHn)Cl (0.83 < or = n < or = 2) and Li3-n(OHn)Br (1 < or = n < or = 2) at ambient temperatures.

    Science.gov (United States)

    Schwering, Georg; Hönnerscheid, Andreas; van Wüllen, Leo; Jansen, Martin

    2003-04-14

    Lithium ionic conductivity and phase transitions in a series of lithium halides hydrates and hydroxides with general formula Li3-n(OHn)X (0.83 antiperovskite structure or are closely related to this structure type. With the exception of LiCl. H2O, all compounds with integer lithium content exhibit good lithium ionic conductivity in their high temperature cubic phases above T = 33 degrees C. Lithium doping of samples LiX.H2O and Li2(OH)X leads to a suppression of the phase transition into the noncubic phases and the good ionic conductivity is extended down to lower temperatures (T < 0 degree C). Thus, lithium doping of the lithium halide hydrates provides a promising tool for tailoring the ionic conductivity at ambient temperatures to its optimum value.

  8. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA?s future space science missions cannot be realized without the state of the art energy storage devices which require high energy density, high reliability, and...

  9. Novel Polyethers Doped with Nanoscale Insulating oxides for Lithium Battery Elec Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Novel polyethers doped with insulating oxides are used to prepare solid polymer electrolytes for high energy density lithium batteries. The electrolytes are...

  10. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong

    2016-12-29

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery. The prelithiation of lithium metal onto or into the anode reduces hazardous risk, is cost effective, and improves the overall capacity. The battery containing such an anode exhibits remarkably high specific capacity and a long cycle life with excellent reversibility.

  11. Energy storage in hybrid organic-inorganic materials hexacyanoferrate-doped polypyrrole as cathode in reversible lithium cells

    DEFF Research Database (Denmark)

    Torres-Gomez, G,; Skaarup, Steen; West, Keld

    2000-01-01

    A study of the hybrid oganic-inorganic hexacyanoferrate-polypyrrole material as a cathode in rechargeable lithium cells is reported as part of a series of functional hybrid materials that represent a new concept in energy storage. The effect of synthesis temperatures of the hybrid in the specific...

  12. New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO₄ versus nano Li1.2V₃O₈.

    Science.gov (United States)

    Hovington, P; Lagacé, M; Guerfi, A; Bouchard, P; Mauger, A; Julien, C M; Armand, M; Zaghib, K

    2015-04-08

    Novel lithium metal polymer solid state batteries with nano C-LiFePO4 and nano Li1.2V3O8 counter-electrodes (average particle size 200 nm) were studied for the first time by in situ SEM and impedance during cycling. The kinetics of Li-motion during cycling is analyzed self-consistently together with the electrochemical properties. We show that the cycling life of the nano Li1.2V3O8 is limited by the dissolution of the vanadium in the electrolyte, which explains the choice of nano C-LiFePO4 (1300 cycles at 100% DOD): with this olivine, no dissolution is observed. In combination with lithium metal, at high loading and with a stable SEI an ultrahigh energy density battery was thus newly developed in our laboratory.

  13. High-capacity, low-tortuosity, and channel-guided lithium metal anode

    Science.gov (United States)

    Zhang, Ying; Luo, Wei; Wang, Chengwei; Li, Yiju; Chen, Chaoji; Song, Jianwei; Dai, Jiaqi; Hitz, Emily M.; Xu, Shaomao; Yang, Chunpeng; Wang, Yanbin; Hu, Liangbing

    2017-04-01

    Lithium metal anode with the highest capacity and lowest anode potential is extremely attractive to battery technologies, but infinite volume change during the Li stripping/plating process results in cracks and fractures of the solid electrolyte interphase, low Coulombic efficiency, and dendritic growth of Li. Here, we use a carbonized wood (C-wood) as a 3D, highly porous (73% porosity) conductive framework with well-aligned channels as Li host material. We discovered that molten Li metal can infuse into the straight channels of C-wood to form a Li/C-wood electrode after surface treatment. The C-wood channels function as excellent guides in which the Li stripping/plating process can take place and effectively confine the volume change that occurs. Moreover, the local current density can be minimized due to the 3D C-wood framework. Therefore, in symmetric cells, the as-prepared Li/C-wood electrode presents a lower overpotential (90 mV at 3 mAṡcm-2), more-stable stripping/plating profiles, and better cycling performance (˜150 h at 3 mAṡcm-2) compared with bare Li metal electrode. Our findings may open up a solution for fabricating stable Li metal anode, which further facilitates future application of high-energy-density Li metal batteries.

  14. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  15. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.

    Science.gov (United States)

    Li, Yiju; Fu, Kun Kelvin; Chen, Chaoji; Luo, Wei; Gao, Tingting; Xu, Shaomao; Dai, Jiaqi; Pastel, Glenn; Wang, Yanbin; Liu, Boyang; Song, Jianwei; Chen, Yanan; Yang, Chunpeng; Hu, Liangbing

    2017-05-23

    Lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical energy density in comparison to conventional state-of-the-art lithium-ion batteries. However, low sulfur mass loading in the cathode results in low areal capacity and impedes the practical use of Li-S cells. Inspired by wood, a cathode architecture with natural, three-dimensionally (3D) aligned microchannels filled with reduced graphene oxide (RGO) were developed as an ideal structure for high sulfur mass loading. Compared with other carbon materials, the 3D porous carbon matrix has several advantages including low tortuosity, high electrical conductivity, and good structural stability, which make it an excellent 3D lightweight current collector. The Li-S battery assembled with the wood-based sulfur electrode can deliver a high areal capacity of 15.2 mAh cm(-2) with a sulfur mass loading of 21.3 mg cm(-2). This work provides a facile but effective strategy to develop 3D porous electrodes for Li-S batteries, which can also be applied to other cathode materials to achieve a high areal capacity with uncompromised rate and cycling performance.

  16. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10{sup 5} Z`s by the end of 1989 and 10{sup 6} in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry.

  17. Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries.

    Science.gov (United States)

    Dash, Ranjan; Pannala, Sreekanth

    2016-06-17

    Silicon (Si) is under consideration as a potential next-generation anode material for the lithium ion battery (LIB). Experimental reports of up to 40% increase in energy density of Si anode based LIBs (Si-LIBs) have been reported in literature. However, this increase in energy density is achieved when the Si-LIB is allowed to swell (volumetrically expand) more than graphite based LIB (graphite-LIB) and beyond practical limits. The volume expansion of LIB electrodes should be negligible for applications such as automotive or mobile devices. We determine the theoretical bounds of Si composition in a Si-carbon composite (SCC) based anode to maximize the volumetric energy density of a LIB by constraining the external dimensions of the anode during charging. The porosity of the SCC anode is adjusted to accommodate the volume expansion during lithiation. The calculated threshold value of Si was then used to determine the possible volumetric energy densities of LIBs with SCC anode (SCC-LIBs) and the potential improvement over graphite-LIBs. The level of improvement in volumetric and gravimetric energy density of SCC-LIBs with constrained volume is predicted to be less than 10% to ensure the battery has similar power characteristics of graphite-LIBs.

  18. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  19. Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage.

    Science.gov (United States)

    Ma, Lianbo; Chen, Renpeng; Hu, Yi; Zhu, Guoyin; Chen, Tao; Lu, Hongling; Liang, Jia; Tie, Zuoxiu; Jin, Zhong; Liu, Jie

    2016-10-20

    To improve the energy storage performance of carbon-based materials, considerable attention has been paid to the design and fabrication of novel carbon architectures with structural and chemical modifications. Herein, we report that hierarchical porous nitrogen-rich carbon (HPNC) nanospheres originating from acidic etching of metal carbide/carbon hybrid nanoarchitectures can be employed as high-performance anode materials for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The structural advantages of HPNC nanospheres are that the exceptionally-high content of nitrogen (17.4 wt%) can provide abundant electroactive sites and enlarge the interlayer distance (∼3.5 Å) to improve the capacity, and the large amount of micropores and mesopores can serve as reservoirs for storing lithium/sodium ions. In LIBs, HPNC based anodes deliver a high reversible capacity of 1187 mA h g-1 after 100 cycles at 100 mA g-1, a great rate performance of 470 mA h g-1 at 5000 mA g-1, and outstanding cycling stabilities with a capacity of 788 mA h g-1 after 500 cycles at 1000 mA g-1. In SIBs, HPNC based anodes exhibit a remarkable reversible capacity of 357 mA h g-1 at 100 mA g-1 and high long-term stability with a capacity of 136 mA h g-1 after 500 cycles at 1000 mA g-1.

  20. Enhanced lithium storage in ZnFe2O4-C nanocomposite produced by a low-energy ball milling

    Science.gov (United States)

    Thankachan, Rahul Mundiyaniyil; Rahman, Md Mokhlesur; Sultana, Irin; Glushenkov, Alexey M.; Thomas, Sabu; Kalarikkal, Nandakumar; Chen, Ying

    2015-05-01

    Preparation of novel nanocomposite structure of ZnFe2O4-C is achieved by combining a sol-gel and a low energy ball milling method. The crucial feature of the composite's structure is that sol-gel synthesised ZnFe2O4 nanoparticles are dispersed and attached uniformly along the chains of Super P Li™ carbon black matrix by adopting a low energy ball milling. The composite ZnFe2O4-C electrodes are capable of delivering a very stable reversible capacity of 681 mAh g-1 (96% retention of the calculated theoretical capacity of ∼710 mAh g-1) at 0.1 C after 100 cycles with a remarkable Coulombic efficiency (82%) improvement in the first cycle. The rate capability of the composite is significantly improved and obtained capacity was as high as 702 at 0.1, 648 at 0.5, 582 at 1, 547 at 2 and 469 mAh g-1 at 4 C (2.85 A g-1), respectively. When cell is returned to 0.1 C, the capacity recovery was still ∼98%. Overall, the electrochemical performance (in terms of cycling stability, high rate capability, and capacity retention) is outstanding and much better than those of the related reported works. Therefore, our smart electrode design enables ZnFe2O4-C sample to be a high quality anode material for lithium-ion batteries.

  1. Directly Formed Alucone on Lithium Metal for High Performance Li Batteries and Li-S Batteries with High Sulfur Mass-loading.

    Science.gov (United States)

    Chen, Lin; Huang, Zhennan; Shahbazian-Yassar, Reza; Libera, Joseph A; Klavetter, Kyle; Zavadil, Kevin R; Elam, Jeffrey W

    2018-01-30

    Lithium metal is considered the "holy grail" of next-generation battery anodes. However, severe parasitic reactions at the lithium-electrolyte interface deplete the liquid electrolyte, and the uncontrolled formation of high surface area and dendritic lithium during cycling cause rapid capacity fading and battery failure. Engineering a dendrite-free lithium metal anode is therefore critical for the development of long-life batteries using lithium anodes. In this study, we deposit a conformal, organic/inorganic hybrid coating, for the first time, directly on lithium metal using molecular layer deposition (MLD) to alleviate these problems. This hybrid organic/inorganic film with high cross-linking structure can stabilize lithium against dendrite growth, and minimize side reactions, as indicated by scanning electron microscope. We discovered that the alucone coating yielded several times longer cycle life at high current rates compared to the uncoated lithium, and achieved a steady Coulombic efficiency of 99.5%, demonstrating that the highly cross-linking structured material with great mechanical properties and good flexibility can effectively suppress dendrites formations. The protected Li was further evaluated in lithium-sulfur (Li-S) batteries with high sulfur mass loading of ~5 mg/cm2. After 140 cycles at a high current rate of ~1 mA/cm2, the alucone-coated Li-S batteries delivered the capacity of 657.7 mAh/g, 39.5% better than the bare lithium-sulfur battery. The report originally suggests that the flexible coating with high cross-linking structure by MLD is effective to enable lithium protection and offers a very promising avenue for improved performance in the real applications of Li-S batteries.

  2. Atomic-Layer-Deposition Functionalized Carbonized Mesoporous Wood Fiber for High Sulfur Loading Lithium Sulfur Batteries.

    Science.gov (United States)

    Luo, Chao; Zhu, Hongli; Luo, Wei; Shen, Fei; Fan, Xiulin; Dai, Jiaqi; Liang, Yujia; Wang, Chunsheng; Hu, Liangbing

    2017-05-03

    Lithium-sulfur battery (LSB) as one of the most promising energy storage devices suffers from poor conductivity of sulfur and fast capacity decay triggered by the dissolution of polysulfides. In this work, functionalized carbonized mesoporous wood fiber (f-CMWF) is employed as a host to accommodate sulfur for the first time. Natural wood microfiber has unique hierarchical and mesoporous structure, which is well-maintained after carbonization. With such a hierarchical mesoporous structure, a high sulfur loading of 76 wt % is achieved in CMWF electrodes. The pore size of CMWF is tunable by atomic layer deposition (ALD) of a 5 nm Al 2 O 3 coating to form the f-CMWF. Such a thin layer slightly decreases the sulfur loading to 70%, but it remarkably promotes the cyclic stability of sulfur cathode, which delivers an initial capacity of 1115 mAh g -1 , and maintains a reversible capacity of 859 mAh g -1 for 450 cycles, corresponding to a slow capacity decay rate of 0.046% per cycle. More importantly, natural wood microfiber is first used as a raw material for sulfur encapsulating. This work is also critical for using low cost and mesoporous biomass carbon as bifunctional scaffold for LSB.

  3. Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Kim, Joo Hyun; Seo, Jihoon; Choi, Junghyun; Shin, Donghyeok; Carter, Marcus; Jeon, Yeryung; Wang, Chengwei; Hu, Liangbing; Paik, Ungyu

    2016-08-10

    Lithium-sulfur (Li-S) batteries have been intensively investigated as a next-generation rechargeable battery due to their high energy density of 2600 W·h kg(-1) and low cost. However, the systemic issues of Li-S batteries, such as the polysulfide shuttling effect and low Coulombic efficiency, hinder the practical use in commercial rechargeable batteries. The introduction of a conductive interlayer between the sulfur cathode and separator is a promising approach that has shown the dramatic improvements in Li-S batteries. The previous interlayer work mainly focused on the physical confinement of polysulfides within the cathode part, without considering the further entrapment of the dissolved polysulfides. Here, we designed an ultrathin poly(acrylic acid) coated single-walled carbon nanotube (PAA-SWNT) film as a synergic functional interlayer to address the issues mentioned above. The designed interlayer not only lowers the charge transfer resistance by the support of the upper current collector but also localizes the dissolved polysulfides within the cathode part by the aid of a physical blocking and chemical bonding. With the synergic combination of PAA and SWNT, the sulfur cathode with a PAA-SWNT interlayer maintained higher capacity retention over 200 cycles and achieved better rate retention than the sulfur cathode with a SWNT interlayer. The proposed approach of combining a functional polymer and conductive support material can provide an optimiztic strategy to overcome the fundamental challenges underlying in Li-S batteries.

  4. Novel Ceramic-Grafted Separator with Highly Thermal Stability for Safe Lithium-Ion Batteries.

    Science.gov (United States)

    Jiang, Xiaoyu; Zhu, Xiaoming; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2017-08-09

    The separator is a critical component of lithium-ion batteries (LIBs), which not only allows ionic transport while it prevents electrical contact between electrodes but also plays a key role for thermal safety performance of LIBs. However, commercial separators for LIBs are typically microporous polyolefin membranes that pose challenges for battery safety, due to shrinking and melting at elevated temperature. Here, we demonstrate a strategy to improve the thermal stability and electrolyte affinity of polyethylene (PE) separators. By simply grafting the vinylsilane coupling reagent on the surface of the PE separator by electron beam irradiation method and subsequent hydrolysis reaction into the Al(3+) solution, an ultrathin Al2O3 layer is grafted on the surface of the porous polymer microframework without sacrificing the porous structure and increasing the thickness. The as-synthesized Al2O3 ceramic-grafted separator (Al2O3-CGS) shows almost no shrinkage at 150 °C and decreases the contact angle of the conventional electrolyte compared with the bare PE separator. Notably, the full cells with the Al2O3-CGSs exhibit better cycling performance and rate capability and also provide stable open circuit voltage even at 170 °C, indicating its promising application in LIBs with high safety and energy density.

  5. Building Honeycomb-Like Hollow Microsphere Architecture in a Bubble Template Reaction for High-Performance Lithium-Rich Layered Oxide Cathode Materials.

    Science.gov (United States)

    Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei

    2017-09-13

    In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.

  6. An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles

    Science.gov (United States)

    Wang, Yujie; Zhang, Chenbin; Chen, Zonghai

    2016-02-01

    With the growing number of electric vehicle (EV) applications, the function of the battery management system (BMS) becomes more sophisticated. The accuracy of remaining energy estimation is critical for energy optimization and management in EVs. Therefore the state-of-energy (SoE) is defined to indicate the remaining available energy of the batteries. Considering that there are inevitable accumulated errors caused by current and voltage integral method, an adaptive SoE estimator is first established in this paper. In order to establish a reasonable battery equivalent model, based on the experimental data of the LiFePO4 battery, a data-driven model is established to describe the relationship between the open-circuit voltage (OCV) and the SoE. What is more, the forgetting factor recursive least-square (RLS) method is used for parameter identification to get accurate model parameters. Finally, in order to analyze the robustness and the accuracy of the proposed approach, different types of dynamic current profiles are conducted on the lithium-ion batteries and the performances are calculated and compared. The results indicate that the proposed approach has robust and accurate SoE estimation results under dynamic working conditions.

  7. MEET ISOLDE - High Energy Physics

    CERN Multimedia

    2017-01-01

    Meet ISOLDE - High Energy Physics. ISOLDE is always developing, equipment moves on and off the hall floor, new groups start and end experiments regularly, visiting scientists come and go and experiments evolve. So it was a natural step for ISOLDE to expand from its core low energy science into high-energies.

  8. Nanoconfinement of LiBH4 for High Ionic Conductivity in Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Lefevr, Jessica Emilia Avlina; Das, Supti; Blanchard, Didier

    2016-01-01

    Efficient energy conversion and storage is crucial for development of systems based on renewable energy sources. For electricity storage, Li-ion batteries are commonly used in electronics devices but require many improvements to obtain longer life-time and higher energy densities. The current use...... of organic liquids and gels electrolytes limits these improvements because of lithium dendrites formation, reducing the lifetime of the battery and which can possibly be hazardous due to risks of short circuits.......Efficient energy conversion and storage is crucial for development of systems based on renewable energy sources. For electricity storage, Li-ion batteries are commonly used in electronics devices but require many improvements to obtain longer life-time and higher energy densities. The current use...

  9. Energy peaks: A high energy physics outlook

    Science.gov (United States)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  10. Unleashing the Power and Energy of LiFePO4-Based Redox Flow Lithium Battery with a Bifunctional Redox Mediator.

    Science.gov (United States)

    Zhu, Yun Guang; Du, Yonghua; Jia, Chuankun; Zhou, Mingyue; Fan, Li; Wang, Xingzhu; Wang, Qing

    2017-05-10

    Redox flow batteries, despite great operation flexibility and scalability for large-scale energy storage, suffer from low energy density and relatively high cost as compared to the state-of-the-art Li-ion batteries. Here we report a redox flow lithium battery, which operates via the redox targeting reactions of LiFePO4 with a bifunctional redox mediator, 2,3,5,6-tetramethyl-p-phenylenediamine, and presents superb energy density as the Li-ion battery and system flexibility as the redox flow battery. The battery has achieved a tank energy density as high as 1023 Wh/L, power density of 61 mW/cm2, and voltage efficiency of 91%. Operando X-ray absorption near-edge structure measurements were conducted to monitor the evolution of LiFePO4, which provides insightful information on the redox targeting process, critical to the device operation and optimization.

  11. High Energy High Power Battery Exceeding PHEV40 Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC, Lexington, MA (United States)

    2016-03-31

    TIAX has developed long-life lithium-ion cells that can meet and exceed the energy and power targets (200Wh/kg and 800W/kg pulse power) set out by DOE for PHEV40 batteries. To achieve these targets, we selected and scaled-up a high capacity version of our proprietary high energy and high power CAM-7® cathode material. We paired the cathode with a blended anode containing Si-based anode material capable of delivering high capacity and long life. Furthermore, we optimized the anode blend composition, cathode and anode electrode design, and selected binder and electrolyte compositions to achieve not only the best performance, but also long life. By implementing CAM-7 with a Si-based blended anode, we built and tested prototype 18650 cells that delivered measured specific energy of 198Wh/kg total energy and 845W/kg at 10% SOC (projected to 220Wh/kg in state-of-the-art 18650 cell hardware and 250Wh/kg in 15Ah pouch cells). These program demonstration cells achieved 90% capacity retention after 500 cycles in on-going cycle life testing. Moreover, we also tested the baseline CAM-7/graphite system in 18650 cells showing that 70% capacity retention can be achieved after ~4000 cycles (20 months of on-going testing). Ultimately, by simultaneously meeting the PHEV40 power and energy targets and providing long life, we have developed a Li-ion battery system that is smaller, lighter, and less expensive than current state-of-the-art Li-ion batteries.

  12. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.

    Science.gov (United States)

    Li, Linsen; Meng, Fei; Jin, Song

    2012-11-14

    The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

  13. In Situ High Resolution Synchrotron X-Ray Powder Diffraction Studies of Lithium Batteries

    DEFF Research Database (Denmark)

    Amri, Mahrez; Fitch, Andy; Norby, Poul

    2015-01-01

    Lithium ion battery technology is the heart in operating modern technology devices such as mobile phones and laptops. However, as our society is moving towards the utilization of sustainable energy sources, batteries can be foreseen to become an even more important part of the energy infrastructure...... the obtainable power density and battery life time. A challenging and important task is to obtain in situ information about the formation and evolution of interfaces in an operating battery system. This work addresses these challenges and for this purpose we have developed a special microcapillary battery cell...

  14. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases.

    Science.gov (United States)

    Halfon, S; Paul, M; Steinberg, D; Nagler, A; Arenshtam, A; Kijel, D; Polacheck, I; Srebnik, M

    2009-07-01

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction (7)Li(p,n)(7)Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  15. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  16. Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jiangxuan [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering; Gordin, Mikhail L. [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering; Xu, Terrence [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering; Chen, Shuru [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering; Yu, Zhaoxin [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering; Sohn, Hiesang [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering; Lu, Jun [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Div.; Ren, Yang [Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Div.; Duan, Yuhua [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Wang, Donghai [Pennsylvania State Univ., State College, PA (United States). Dept. of Mechanical and Nuclear Engineering

    2015-03-27

    Despite the high theoretical capacity of lithium–sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAhg-1after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca.6 mAhcm-2) with a high sulfur loading of approximately 5 mgcm-2, which is ideal for practical applications of the lithium–sulfur batteries.

  17. Compressive Sensing Cluster Expansion Studies of Lithium Intercalation and Phase Transformation in MoS2 for Energy Storage

    Science.gov (United States)

    Liu, Chi-Ping; Zhou, Fei; Ozolins, Vidvuds; University of California, Los Angeles Collaboration; Lawrence livermore national laboratory Collaboration

    2015-03-01

    Bulk molybdenum disulfide (MoS2) is a good electrode material candidate for energy storage applications, such as lithium ion batteries and supercapacitors due to its high theoretical energy and power density. First-principles density-functional theory (DFT) calculations combined with cluster expansion are an effective method to study thermodynamic and kinetic properties of electrode materials. In order to construct accurate models for cluster expansion, it is important to effectively choose clusters with significant contributions. In this work, we employ a compressive sensing based technique to select relevant clusters in order to build an accurate Hamiltonian for cluster expansion, enabling the study of Li intercalation in MoS2. We find that the 2H MoS2 structure is only stable at low Li content while 1T MoS2 is the preferred phase at high Li content. The results show that the 2H MoS2 phase transforms into the disordered 1T phase and the disordered 1T structure remains after the first Li insertion/deinsertion cycle suggesting that disordered 1T MoS2 is stable even at dilute Li content. This work also highlights that cluster expansion treated with compressive sensing is an effective and powerful tool for model construction and can be applied to advanced battery and supercapacitor electrode materials.

  18. High Capacity Cathode Materials for Next Generation Energy Storage

    Science.gov (United States)

    Papandrea, Benjamin John

    Energy storage devices are of increasing importance for applications in mobile electronics, hybrid electric vehicles, and can also play a critical role in renewable energy harvesting, conversion and storage. Since its commercial inception in the 1990's, the lithium-ion battery represents the dominant energy storage technology for mobile power supply today. However, the total capacity of lithium-ion batteries is largely limited by the theoretical capacities of the cathode materials such as LiCoO2 (272 mAh g-1), and LiFePO4 (170 mAh g-1), and cannot satisfy the increasing consumer demand, thus new cathode materials with higher capacities must be explored. Two of the most promising cathode materials with significantly larger theoretical capacities are sulfur (1675 mAh g-1) and air, specifically the oxygen (3840 mAh g-1). However, the usage of either of these cathodic materials is plagued with numerous issues that must be overcome before their commercialization. In the first part of my dissertation, we investigated the usage of a three-dimensional graphene membrane for a high energy density lithium-air (Li-Air) battery in ambient condition. One of the issues with Li-Air batteries is the many side reaction that can occur during discharge in ambient condition, especially with water vapor. Using a hydrophobic tortuous three-dimensional graphene membrane we are able to inhibit the diffusion of water vapor and create a lithium-air battery that cycles over 2000 times with a capacity limited at 140 mAh g-1, over 100 cycles with a capacity limited at 1425 mAh g-1, and over 20 cycles at the high capacity of 5700 mAh g-1. In the second part of my dissertation, we investigate the usage of a three-dimensional graphene aerogel to maximize the loading of sulfur to create a freestanding electrode with high capacity for a lithium-sulfur (Li-S) battery. We demonstrated that our three-dimensional graphene aerogel could sustain a loading of 95% by weight, and we achieved a capacity of

  19. Characterization of rechargeable lithium cells. Part 1. Lithium/niobium triselenide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.C.; Cason-Smith, D.M.; Smith, P.H.; James, S.D.

    1994-08-16

    The Naval Surface Warfare Center is evaluating industry's emerging lithium rechargeable battery technology for use in underwater vehicle applications. The battery industry typically characterizes cells for consumer applications requiring low rate cycling at room temperature and rarely provides high rate, low temperature data. High rate and low temperature performance of ATT's lithium/niobium triselenide(Li/NbSe3)AA cells is reported here. At 25 deg C and 1O mA/sq cm (approximately the 3C rate), delivered energy densities were as high as 30 Wh/lb. However, these lithium cells proved vulnerable to performance loss in low temperature (O deg C), high discharge rate cycling. Lithium/niobium triselenide, NbSe3, Lithium batteries, Rechargeable AA cells.

  20. High Energy Materials

    Indian Academy of Sciences (India)

    IAS Admin

    sition giving out heat, light, sound and large volumes of gases. The amount of energy released varies with the ... Explosives are classified according to applications either for. 2 Pyrotechnics is the art of manu- facturing or .... rockets are based on Newton's Third Law: an action will always have an equal and opposite reaction.

  1. The characterization of secondary lithium-ion battery degradation when operating complex, ultra-high power pulsed loads

    Science.gov (United States)

    Wong, Derek N.

    The US Navy is actively developing all electric fleets, raising serious questions about what is required of onboard power supplies in order to properly power the ship's electrical systems. This is especially relevant when choosing a viable power source to drive high power propulsion and electric weapon systems in addition to the conventional loads deployed aboard these types of vessels. Especially when high pulsed power loads are supplied, the issue of maintaining power quality becomes important and increasingly complex. Conventionally, a vessel's electrical power is generated using gas turbine or diesel driven motor-generator sets that are very inefficient when they are used outside of their most efficient load condition. What this means is that if the generator is not being utilized continuously at its most efficient load capacity, the quality of the output power may also be effected and fall outside of the acceptable power quality limits imposed through military standards. As a solution to this potential problem, the Navy has proposed using electrochemical storage devices since they are able to buffer conventional generators when the load is operating below the generator's most efficient power level or able to efficiently augment a generator when the load is operating in excess of the generator's most efficient power rating. Specifically, the US Navy is interested in using commercial off-the-shelf (COTS) lithium-ion batteries within an intelligently controlled energy storage module that could act as either a prime power supply for on-board pulsed power systems or as a backup generator to other shipboard power systems. Due to the unique load profile of high-rate pulsed power systems, the implementation of lithium-ion batteries within these complex systems requires them to be operated at very high rates and the effects these things have on cell degradation has been an area of focus. There is very little published research into the effects that high power transient

  2. Study on novel functional materials carboxymethyl cellulose lithium (CMC-Li) improve high-performance lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Xiang, Pan; Wang, Daxiong; Zhou, Zhenwen; Wang, Feijun; Wang, Wenjun; Wang, Jianquan

    2014-09-22

    Novel cellulose derivative CMC-Li was synthesized by cotton as raw material. The mechanism of the CMC-Li modified electrode materials by electrospinning was reported. CMC-Li/lithium iron phosphate (LiFePO4, LFP) composite fiber coated with LFP and CMC-Li nanofibers was successfully obtained by electrospinning. Then, CMC-Li/LFP nano-composite fiber was carbonized under nitrogen at a high temperature formed CNF/LFP/Li (CLL) composite nanofibers as cathode material. It can increase the contents of Li+, and improving the diffusion efficiency and specific capacity. The battery with CLL as cathode material retained close to 100% of initial reversible capacity after 200 cycles at 168 mAh g(-1), which was nearly the theoretical specific capacity of LFP. The cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscope (SEM) were characterizing material performance. The batteries have good electrochemical property, outstanding pollution-free, excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. High energy neutrinos from GRBs

    CERN Document Server

    De Paolis, F; Orlando, D; Perrone, L

    2001-01-01

    It is by now recognized that GRBs can accelerate protons to relativistic energies and that high density media may be present nearby the source. We compute the high-energy gamma-ray and neutrino fluxes from the decay of pions produced through the interaction of accelerated protons with nucleons in the surrounding medium. Then, we estimate the flux of high-energy muons induced on a detector by upward-going neutrinos interacting through charge current processes with the surrounding matter.

  4. Cu-SnO2 nanostructures obtained via galvanic replacement control as high performance anodes for lithium-ion storage

    Science.gov (United States)

    Nguyen, Tuan Loi; Park, Duckshin; Hur, Jaehyun; Son, Hyung Bin; Park, Min Sang; Lee, Seung Geol; Kim, Ji Hyeon; Kim, Il Tae

    2018-01-01

    SnO2 has been considered as a promising anode material for lithium ion batteries (LIBs) because of its high theoretical capacity (782 mAh g-1). However, the reaction between lithium ions and Sn causes a large volume change, resulting in the pulverization of the anode, a loss of contact with the current collector, and a deterioration in electrochemical performance. Several strategies have been proposed to mitigate the drastic volume changes to extend the cyclic life of SnO2 materials. Herein, novel composites consisting of Cu and SnO2 were developed via the galvanic replacement reaction. The reaction was carried out at 180 °C for different durations and triethylene glycol was used as the medium solvent. The structure, morphology, and composition of the composites were analyzed by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The reaction time affected the particle size, which in turn affected the reaction kinetics. Furthermore, the novel nanostructures contained an inactive metal phase (Cu), which acted both as the buffer space against the volume change of Sn during the alloying reaction and as the electron conductor, resulting in a lower impedance of the composites. When evaluated as potential anodes for LIBs, the composite electrodes displayed extraordinary electrochemical performance with a high capacity and Coulombic efficiency, an excellent cycling stability, and a superior rate capability compared to a Sn electrode.

  5. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.

    Science.gov (United States)

    Ren, Jian-Guo; Wang, Chundong; Wu, Qi-Hui; Liu, Xiang; Yang, Yang; He, Lifang; Zhang, Wenjun

    2014-03-21

    Toward the increasing demands of portable energy storage and electric vehicle applications, silicon has been emerging as a promising anode material for lithium-ion batteries (LIBs) owing to its high specific capacity. However, serious pulverization of bulk silicon during cycling limits its cycle life. Herein, we report a novel hierarchical Si nanowire (Si NW)-reduced graphene oxide (rGO) composite fabricated using a solvothermal method followed by a chemical vapor deposition process. In the composite, the uniform-sized [111]-oriented Si NWs are well dispersed on the rGO surface and in between rGO sheets. The flexible rGO enables us to maintain the structural integrity and to provide a continuous conductive network of the electrode, which results in over 100 cycles serving as an anode in half cells at a high lithium storage capacity of 2300 mA h g(-1). Due to its [111] growth direction and the large contact area with rGO, the Si NWs in the composite show substantially enhanced reaction kinetics compared with other Si NWs or Si particles.

  6. Superconcentrated electrolytes for a high-voltage lithium-ion battery

    Science.gov (United States)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-01-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety. PMID:27354162

  7. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance.

    Science.gov (United States)

    Ren, Jing; Zhang, Ye; Bai, Wenyu; Chen, Xuli; Zhang, Zhitao; Fang, Xin; Weng, Wei; Wang, Yonggang; Peng, Huisheng

    2014-07-21

    A stretchable wire-shaped lithium-ion battery is produced from two aligned multi-walled carbon nanotube/lithium oxide composite yarns as the anode and cathode without extra current collectors and binders. The two composite yarns can be well paired to obtain a safe battery with superior electrochemical properties, such as energy densities of 27 Wh kg(-1) or 17.7 mWh cm(-3) and power densities of 880 W kg(-1) or 0.56 W cm(-3), which are an order of magnitude higher than the densities reported for lithium thin-film batteries. These wire-shaped batteries are flexible and light, and 97 % of their capacity was maintained after 1000 bending cycles. They are also very elastic as they are based on a modified spring structure, and 84 % of the capacity was maintained after stretching for 200 cycles at a strain of 100 %. Furthermore, these novel wire-shaped batteries have been woven into lightweight, flexible, and stretchable battery textiles, which reveals possible large-scale applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. La2O3 hollow nanospheres for high performance lithium-ion rechargeable batteries.

    Science.gov (United States)

    Sasidharan, Manickam; Gunawardhana, Nanda; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Nakashima, Kenichi

    2012-03-28

    An efficient and simple protocol for synthesis of novel La(2)O(3) hollow nanospheres of size about 30 ± 2 nm using polymeric micelles is reported. The La(2)O(3) hollow nanospheres exhibit high charge capacity and cycling performance in lithium-ion rechargeable batteries (LIBs), which was scrutinized for the first time among the rare-earth oxides. This journal is © The Royal Society of Chemistry 2012

  9. State of charge estimation of high power lithium iron phosphate cells

    Science.gov (United States)

    Huria, T.; Ludovici, G.; Lutzemberger, G.

    2014-03-01

    This paper describes a state of charge (SOC) evaluation algorithm for high power lithium iron phosphate cells characterized by voltage hysteresis. The algorithm is based on evaluating the parameters of an equivalent electric circuit model of the cell and then using a hybrid technique with adequate treatment of errors, through an additional extended Kalman filter (EKF). The model algorithm has been validated in terms of effectiveness and robustness by several experimental tests.

  10. Rechargeable Lithium Sulfur (Li-S) Battery with Specific Energy 400 Wh/kg and Operating Temperature Range -60?C to 60?C Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sion Power is developing a rechargeable lithium sulfur (Li-S) battery with a demonstrated specific energy exceeding 350 Wh/kg and the range of operating temperatures...

  11. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    Science.gov (United States)

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-07

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  12. Lithium metal protection enabled by in-situ olefin polymerization for high-performance secondary lithium sulfur batteries

    Science.gov (United States)

    An, Yongling; Zhang, Zhen; Fei, Huifang; Xu, Xiaoyan; Xiong, Shenglin; Feng, Jinkui; Ci, Lijie

    2017-09-01

    Lithium metal is considered to be the optimal choice of next-generation anode materials due to its ultrahigh theoretical capacity and the lowest redox potential. However, the growth of dendritic and mossy lithium for rechargeable Li metal batteries lead to the possible short circuiting and subsequently serious safety issues during charge/discharge cycles. For the further practical applications of Li anode, here we report a facile method for fabricating robust interfacial layer via in-situ olefin polymerization. The resulting polymer layer effectively suppresses the formation of Li dendrites and enables the long-term operation of Li metal batteries. Using Li-S cells as a test system, we also demonstrate an improved capacity retention with the protection of tetramethylethylene-polymer. Our results indicate that this method could be a promising strategy to tackle the intrinsic problems of lithium metal anodes and promote the development of Li metal batteries.

  13. Lithium triborate laser vaporization of the prostate using the 120 W, high performance system laser: high performance all the way?

    Science.gov (United States)

    Hermanns, Thomas; Strebel, Daniel D; Hefermehl, Lukas J; Gross, Oliver; Mortezavi, Ashkan; Müller, Alexander; Eberli, Daniel; Müntener, Michael; Michel, Maurice S; Meier, Alexander H; Sulser, Tullio; Seifert, Hans-Helge

    2011-06-01

    Technical modifications of the 120 W lithium-triborate laser have been implemented to increase power output, and prevent laser fiber degradation and loss of power output during laser vaporization of the prostate. However, visible alterations at the fiber tip and the subjective impression of decreasing ablative effectiveness during lithium-triborate laser vaporization indicate that delivering constantly high laser power remains a relevant problem. Thus, we evaluated the extent of laser fiber degradation and loss of power output during 120 W lithium-triborate laser vaporization of the prostate. We investigated 46 laser fibers during routine 120 W lithium-triborate laser vaporization in 35 patients with prostatic bladder outflow obstruction. Laser beam power was measured at baseline and after the application of each 25 kJ during laser vaporization. Fiber tips were microscopically examined after the procedure. Mild to moderate degradation at the emission window occurred in all fibers, associated with a loss of power output. A steep decrease to a median power output of 57.3% of baseline was detected after applying the first 25 kJ. Median power output at the end of the defined 275 kJ lifespan of the fibers was 48.8%. Despite technical refinements of the 120 W lithium-triborate laser fiber degradation and significantly decreased power output are still detectable during the procedure. Laser fibers are not fully appropriate for the high power delivery of the new system. There is still potential for further improvement in the laser performance. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Secondary electron emission of tin and tin-lithium under low energy helium plasma exposure

    Directory of Open Access Journals (Sweden)

    V. Kvon

    2017-12-01

    Full Text Available Secondary electron emission (SEE yields of tin (Sn and tin-lithium (SnLi eutectic (20 at.% Li samples were measured in He-plasma at a mean incoming electron energy up to 120 eV. SnLi shows a maximum yield of about 1.45 at 110 eV electron energy while the yield of the Sn surface was measured to be maximally 1.05 at 120 eV. X-ray photoelectron spectroscopy (XPS analysis demonstrated the segregation effect of Li to the surface of the eutectic, both after melting in the argon atmosphere and in molten state with simultaneous He-plasma exposure. At least the top 10 nm of the SnLi samples were heavily enriched with Li, and Sn/Li ratios varied in the range 0.8–5% depending on eutectic treatment conditions. After the plasma exposure Sn3d is detected predominantly in the oxidized state while after extended atmospheric oxidation there was still a significant amount of Sn3d detected in the metallic state. The liquid surface of SnLi indicated a possible decrease of SEE yield. All measurements gave values of SEE yield close to or above unity. Such values can lead to significant plasma sheath disturbances and subsequent additional heat flux from electrons on such a plasma-facing material, thus, should be accounted for in designing fusion reactors using these components.

  15. Biomass Waste Inspired Highly Porous Carbon for High Performance Lithium/Sulfur Batteries.

    Science.gov (United States)

    Zhao, Yan; Ren, Jun; Tan, Taizhe; Babaa, Moulay-Rachid; Bakenov, Zhumabay; Liu, Ning; Zhang, Yongguang

    2017-09-06

    The synthesis of highly porous carbon (HPC) materials from poplar catkin by KOH chemical activation and hydrothermal carbonization as a conductive additive to a lithium-sulfur cathode is reported. Elemental sulfur was composited with as-prepared HPC through a melt diffusion method to form a S/HPC nanocomposite. Structure and morphology characterization revealed a hierarchically sponge-like structure of HPC with high pore volume (0.62 cm³∙g −1 ) and large specific surface area (1261.7 m²∙g −1 ). When tested in Li/S batteries, the resulting compound demonstrated excellent cycling stability, delivering a second-specific capacity of 1154 mAh∙g −1 as well as presenting 74% retention of value after 100 cycles at 0.1 C. Therefore, the porous structure of HPC plays an important role in enhancing electrochemical properties, which provides conditions for effective charge transfer and effective trapping of soluble polysulfide intermediates, and remarkably improves the electrochemical performance of S/HPC composite cathodes.

  16. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction.

    Science.gov (United States)

    Zhou, Sa; Simpson, Zachary I; Yang, Xiaogang; Wang, Dunwei

    2012-09-25

    The discovery of new materials has played an important role in battery technology development. Among the newly discovered materials, those with layered structures are often of particular interest because many have been found to permit highly repeatable ionic insertion and extraction. Examples include graphite and LiCoO(2) as anode and cathode materials, respectively. Here we report C49 titanium disilicide (TiSi(2)) as a new layered anode material, within which lithium ions can react with the Si-only layers. This result is enabled by the strategy of coating a thin (lithium-ion storage capacity of TiSi(2) is a result of its layered structure is expected to have major fundamental and practical implications.

  17. Fabricating high-energy quantum dots in ultra-thin LiFePO4 nanosheets using a multifunctional high-energy biomolecule-ATP

    DEFF Research Database (Denmark)

    Zhang, X.D.; Bi, Z.Y.; He, W.

    2014-01-01

    By using a multifunctional high-energy biomolecule—adenosine triphosphate (ATP)—we fabricated highenergy quantum dots (HEQDs) with a feature size of less than 10 nm and used them in high-power lithium-ion batteries. We introduced high-energy phosphate bonds into the crystal structure of LiFePO4 n...... coating network structures. This work is instructive for fabrication and design of new types of electrochemical energy conversion and storage devices with extraordinary properties and functions.......By using a multifunctional high-energy biomolecule—adenosine triphosphate (ATP)—we fabricated highenergy quantum dots (HEQDs) with a feature size of less than 10 nm and used them in high-power lithium-ion batteries. We introduced high-energy phosphate bonds into the crystal structure of LiFePO4...... nanowire network structure was coated on the surface of the nanosheet. In LiFePO4 nanoparticles, HEQDs result in more storage sites of Li+ ions and easier transfer kinetics of electrons and lithium ions, where the kinetic transformation path between LiFePO4 and FePO4 is rather different from the path...

  18. Coaxial Carbon/MnO2 Hollow Nanofibers as Sulfur Hosts for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ni, Lubin; Zhao, Gangjin; Wang, Yanting; Wu, Zhen; Wang, Wei; Liao, Yunyun; Yang, Guang; Diao, Guowang

    2017-12-14

    Lithium-sulfur (Li-S) batteries have recently attracted a large amount of attention as promising candidates for next-generation high-power energy storage devices because of their high theoretical capacity and energy density. However, the shuttle effect of polysulfides and poor conductivity of sulfur are still vital issues that constrain their specific capacity and cyclic stability. Here, we design coaxial MnO2 -graphitic carbon hollow nanofibers as sulfur hosts for high-performance lithium-sulfur batteries. The hollow C/MnO2 coaxial nanofibers are synthesized via electrospinning and carbonization of the carbon nanofibers (CNFs), followed by an in situ redox reaction to grow MnO2 nanosheets on the surface of CNFs. The inner graphitic carbon layer not only maintains intimate contact with sulfur and outer MnO2 shell to significantly increase the overall electrical conductivity but also acts as a protective layer to prevent dissolution of polysulfides. The outer MnO2 nanosheets restrain the shuttle effect greatly through chemisorption and redox reaction. Therefore, the robust S@C/MnO2 nanofiber cathode delivers an extraordinary rate capability and excellent cycling stability with a capacity decay rate of 0.044 and 0.051 % per cycle after 1000 cycles at 1.0 C and 2.0 C, respectively. Our present work brings forward a new facile and efficient strategy for the functionalization of inorganic metal oxide on graphitic carbons as sulfur hosts for high performance Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly Conductive Solvent-Free Polymer Electrolytes for Lithium Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Robert Filler, Zhong Shi and Braja Mandal

    2004-10-21

    In order to obviate the deficiencies of currently used electrolytes in lithium rechargeable batteries, there is a compelling need for the development of solvent-free, highly conducting solid polymer electrolytes (SPEs). The problem will be addressed by synthesizing a new class of block copolymers and plasticizers, which will be used in the formulation of highly conducting electrolytes for lithium-ion batteries. The main objective of this Phase-I effort is to determine the efficacy and commercial prospects of new specifically designed SPEs for use in electric and hybrid electric vehicle (EV/HEV) batteries. This goal will be achieved by preparing the SPEs on a small scale with thorough analyses of their physical, chemical, thermal, mechanical and electrochemical properties. SPEs will play a key role in the formulation of next generation lithium-ion batteries and will have a major impact on the future development of EVs/HEVs and a broad range of consumer products, e.g., computers, camcorders, cell phones, cameras, and power tools.

  20. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.

    Science.gov (United States)

    Carbone, Lorenzo; Gobet, Mallory; Peng, Jing; Devany, Matthew; Scrosati, Bruno; Greenbaum, Steve; Hassoun, Jusef

    2015-07-01

    Herein, we report the characteristics of electrolytes using various ether-solvents with molecular composition CH3O[CH2CH2O]nCH3, differing by chain length, and LiCF3SO3 as the lithium salt. The electrolytes, considered as suitable media for lithium-sulfur batteries, are characterized in terms of thermal properties (TGA, DSC), lithium ion conductivity, lithium interface stability, cyclic voltammetry, self-diffusion properties of the various components, and lithium transference number measured by NMR. Furthermore, the electrolytes are characterized in lithium cells using a sulfur-carbon composite cathode by galvanostatic charge-discharge tests. The results clearly evidence the influence of the solvent chain length on the species mobility within the electrolytes that directly affects the behavior in lithium sulfur cell. The results may effectively contribute to the progress of an efficient, high-energy lithium-sulfur battery.

  1. Activation energy of proton migration in Mn- and Fe-doped lithium niobate obtained by holographic methods

    Science.gov (United States)

    Mandula, G.; Ellabban, M. A.; Rupp, R. A.; Fally, M.; Hartmann, E.; Kovacs, L.; Polgar, K.

    2003-01-01

    The activation energy of thermal fixing of photorefractive gratings is determined in congruent and nearly stoichiometric lithium niobate crystals, both doped with iron or manganese. The novel technique called holographic scattering method is compared with the standard two-wave mixing method. A measurement of the angular distribution of the self scattered intensity and its possible-analytical function is presented. The mathematical problems of the holographic scattering method are discussed applying the angular distribution functions.

  2. Ultradispersed Nanoarchitecture of LiV3O8 Nanoparticle/Reduced Graphene Oxide with High-Capacity and Long-Life Lithium-Ion Battery Cathodes.

    Science.gov (United States)

    Mo, Runwei; Du, Ying; Rooney, David; Ding, Guqiao; Sun, Kening

    2016-01-28

    Lack of high-performance cathode materials has become the major barriers to lithium-ion battery applications in advanced communication equipment and electric vehicles. In this paper, we report a versatile interfacial reaction strategy, which is based on the idea of space confinement, for the synthesis of ultradispersed LiV3O8 nanoparticles (~10 nm) on graphene (denoted as LVO NPs-GNs) with an unprecedented degree of control on the separation and manipulation of the nucleation, growth, anchoring, and crystallization of nanoparticles in a water-in-oil emulsion system over free growth in solution. The prepared LVO NPs-GNs composites displayed high performance as an cathode material for lithium-ion battery, including high reversible lithium storage capacity (237 mA h g(-1) after 200 cycles), high Coulombic efficiency (about 98%), excellent cycling stability and high rate capability (as high as 176 mA h g(-1) at 0.9 A g(-1), 128 mA h g(-1) at 1.5 A g(-1), 91 mA h g(-1) at 3 A g(-1) and 59 mA h g(-1) at 6 A g(-1), respectively). Very significantly, the preparation method employed can be easily adapted and may opens the door to complex hybrid materials design and engineering with graphene for advanced energy storage.

  3. Ultradispersed Nanoarchitecture of LiV3O8 Nanoparticle/Reduced Graphene Oxide with High-Capacity and Long-Life Lithium-Ion Battery Cathodes

    Science.gov (United States)

    Mo, Runwei; Du, Ying; Rooney, David; Ding, Guqiao; Sun, Kening

    2016-01-01

    Lack of high-performance cathode materials has become the major barriers to lithium-ion battery applications in advanced communication equipment and electric vehicles. In this paper, we report a versatile interfacial reaction strategy, which is based on the idea of space confinement, for the synthesis of ultradispersed LiV3O8 nanoparticles (~10 nm) on graphene (denoted as LVO NPs-GNs) with an unprecedented degree of control on the separation and manipulation of the nucleation, growth, anchoring, and crystallization of nanoparticles in a water-in-oil emulsion system over free growth in solution. The prepared LVO NPs-GNs composites displayed high performance as an cathode material for lithium-ion battery, including high reversible lithium storage capacity (237 mA h g-1 after 200 cycles), high Coulombic efficiency (about 98%), excellent cycling stability and high rate capability (as high as 176 mA h g-1 at 0.9 A g-1, 128 mA h g-1 at 1.5 A g-1, 91 mA h g-1 at 3 A g-1 and 59 mA h g-1 at 6 A g-1, respectively). Very significantly, the preparation method employed can be easily adapted and may opens the door to complex hybrid materials design and engineering with graphene for advanced energy storage.

  4. High-energy communication

    CERN Multimedia

    CERN Communication Group

    2015-01-01

    On Wednesday at 10.40 a.m., the LHC operators declared “stable beams” after two years of technical stop and a few months of commissioning. It was an exciting day for all the teams involved, including those who worked on communicating the news to the public and the media on multiple platforms.   CERN’s most successful tweet on 3 June featured collision images from ALICE, ATLAS, CMS and LHCb and was shared 800 times by the Twitter audience. Live blogging, social media posts, a live webcast, and a constant outpouring of photos and videos: Wednesday morning was a crazy time for the communication teams from CERN, the experiments and various institutes around the world. Even though the event started very early in the morning (the live CCC blog started at 7 a.m. and the live webcast at 8.20 a.m.), the public and the media tuned in to follow and generously cover the start of the LHC’s physics run at an unprecedented energy of 13 TeV. The statistics showed th...

  5. Reduced pulse energy for frequency comb offset stabilization with a dual-pitch periodically poled lithium niobate ridge waveguide

    Science.gov (United States)

    Hitachi, K.; Hara, K.; Tadanaga, O.; Ishizawa, A.; Nishikawa, T.; Gotoh, H.

    2017-06-01

    The pulse energy for stabilizing the carrier-envelop offset frequency of an Er-doped fiber laser was reduced by a dual-pitch (DP-) periodically poled lithium niobate (PPLN) ridge waveguide implemented in a 2f-to-3f self-referencing interferometer (SRI). The pulse energy requirement was less than half that for a single-pitch PPLN ridge waveguide implemented in an f-to-2f SRI. We also found that environmental noise could be reduced by adjusting the pulse energy for frequency stabilization with the DP-PPLN ridge waveguide, as estimated from the phase noise of an out-of-loop interferometer.

  6. Three-Dimensional Interconnected Vanadium Pentoxide Nanonetwork Cathode for High-Rate Long-Life Lithium Batteries.

    Science.gov (United States)

    An, Qinyou; Wei, Qiulong; Zhang, Pengfei; Sheng, Jinzhi; Hercule, Kalele Mulonda; Lv, Fan; Wang, Qinqin; Wei, Xiujuan; Mai, Liqiang

    2015-06-10

    Three-dimensional interconnected vanadium pentoxide nanonetworks as cathodes for rechargable lithium batteries are successfully synthesized via a quick gelation followed by annealing. The interconnected structure ensures the electron transport of each unit. And their inner porous structure buffer the volume change over long-term repeated lithium ion insertion/extraction cycles, leading to the high-rate long-life cycling performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Charge Localization in the Lithium Iron Phosphate Li3Fe2(PO4)3at High Voltages in Lithium-Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Loftager, Simon

    2015-01-01

    Possible changes in the oxidation state of the oxygen ion in the lithium iron phosphate Li3Fe2(PO4)3 at high voltages in lithium-ion (Li-ion) batteries are studied using experimental and computational analysis. Results obtained from synchrotron-based hard X-ray photoelectron spectroscopy and dens...

  8. High temperature flow behaviour of SiC reinforced lithium ...

    Indian Academy of Sciences (India)

    The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of crystalline phase. Further, with the addition of 40 vol.% SiC additions, the strain rate sensitivity of flow stress decreased. While the activation energy for flow in LAS was 300 kJ/mole, it increased to 995 kJ/mole with the ...

  9. Morphology control of ordered mesoporous carbons for high capacity lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Joerg David

    2011-06-07

    The focus of this thesis concerns the morphology control of ordered mesoporous carbon (OMC) materials. Ordered mesoporous carbons with diverse morphologies, that are thin films, fibers - embedded in anodic alumina membranes and free-standing - or spherical nanoparticles, have been successfully prepared by soft-templating procedures. The mechanisms of structure formation and processing were investigated with in-situ SAXS measurements and their application in high capacity lithium-sulfur batteries was successfully tested in cooperation with Guang He and Linda Nazar from the University of Waterloo in Canada. The Li-S batteries receive increasing attention due to their high theoretical energy density which is 3 to 5 times higher than from lithium-ion batteries. For this type of battery the specific pore volume is crucial for the content of the active component (sulfur) in the cathode and therefore correlates with the capacity and gravimetric energy density of the battery. At first, mesoporous thin films with 2D-hexagonal structure were obtained through organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer template Pluronic P123. The formation of a condensed-wall material through thermopolymerization of the precursor oligomers resulted in mesostructured phenolic resin films. Subsequent decomposition of the surfactant and partial carbonization were achieved through thermal treatment in inert atmosphere. The films were crack-free with tunable homogenous thicknesses, and showed either 2D-hexagonal or lamellar mesostructure. An additional, yet unknown 3D-mesostructure was also found. In the second part, cubic and circular hexagonal mesoporous carbon phases in the confined environment of tubular anodic alumina membrane (AAM) pores were obtained by self-assembly of the mentioned resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent-evaporation were also followed by

  10. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  11. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate

    Science.gov (United States)

    Nataf, G. F.; Grysan, P.; Guennou, M.; Kreisel, J.; Martinotti, D.; Rountree, C. L.; Mathieu, C.; Barrett, N.

    2016-09-01

    The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM - electrons reflected) to Low Energy Electron Microscopy (LEEM - electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field.

  12. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate.

    Science.gov (United States)

    Nataf, G F; Grysan, P; Guennou, M; Kreisel, J; Martinotti, D; Rountree, C L; Mathieu, C; Barrett, N

    2016-09-09

    The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM - electrons reflected) to Low Energy Electron Microscopy (LEEM - electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field.

  13. Conjugated polymer energy level shifts in lithium-ion battery electrolytes.

    Science.gov (United States)

    Song, Charles Kiseok; Eckstein, Brian J; Tam, Teck Lip Dexter; Trahey, Lynn; Marks, Tobin J

    2014-11-12

    The ionization potentials (IPs) and electron affinities (EAs) of widely used conjugated polymers are evaluated by cyclic voltammetry (CV) in conventional electrochemical and lithium-ion battery media, and also by ultraviolet photoelectron spectroscopy (UPS) in vacuo. By comparing the data obtained in the different systems, it is found that the IPs of the conjugated polymer films determined by conventional CV (IPC) can be correlated with UPS-measured HOMO energy levels (EH,UPS) by the relationship EH,UPS = (1.14 ± 0.23) × qIPC + (4.62 ± 0.10) eV, where q is the electron charge. It is also found that the EAs of the conjugated polymer films measured via CV in conventional (EAC) and Li(+) battery (EAB) media can be linearly correlated by the relationship EAB = (1.07 ± 0.13) × EAC + (2.84 ± 0.22) V. The slopes and intercepts of these equations can be correlated with the dielectric constants of the polymer film environments and the redox potentials of the reference electrodes, as modified by the surrounding electrolyte, respectively.

  14. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z[degrees] resonance include (a) a measurement of the strong coupling constant [alpha][sub s] for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e[sup +]e[sup [minus

  15. High energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z{degrees} resonance include (a) a measurement of the strong coupling constant {alpha}{sub s} for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e{sup +}e{sup {minus}} {yields} {nu}{bar {nu}}{gamma}. We also began a major upgrade of the L3 luminosity monitor by replacing PWC chamber by a Si strip system in front of the BGO calorimeters. Finally we have continued our SSC R&D work on BaF{sub 2} by joining the GEM collaboration.

  16. Monoclinic ZIF-8 Nanosheet-Derived 2D Carbon Nanosheets as Sulfur Immobilizer for High-Performance Lithium Sulfur Batteries.

    Science.gov (United States)

    Jiang, Yi; Liu, Haiqiang; Tan, Xinghua; Guo, Limin; Zhang, Jiangtao; Liu, Shengnan; Guo, Yanjun; Zhang, Juan; Wang, Hanfu; Chu, Weiguo

    2017-08-02

    2D hierarchically porous carbon (2D-HPC) nanosheets with unique advantages are highly desired as host materials for lithium sulfur (Li-S) batteries and other energy storage devices. Herein, we propose a self-template and organic solvent-free approach to synthesize nanosheets of monoclinic ZIF-8 at room temperature from which 2D-HPC nanosheets (ZIF-8 nanosheets carbon denoted as ZIF-8-NS-C) are derived to be an efficient sulfur immobilizer for Li-S batteries for the first time. The anisotropic nanosheets are believed to relate to the symmetry of the monoclinic structure. The 2D ZIF-8-NS-C nanosheets with embedded hierarchical pores construct an effective conductive network through "plane-to-plane" modes to endow superior electron transfer and fast electrochemical kinetics. Moreover, the nitrogen-rich feature of ZIF-8-NS-C can increase the affinity/interaction of carbon host with lithium polysulfides, favoring the cyclic performance. The sulfur/ZIF-8-NS-C (S/ZIF-8-NS-C) cathode shows a superior rate capability with high capacities of 1226 mA h g-1 at 0.2 C and 785 mA h g-1 at 2 C, and a sustainable cycling stability with a capacity attenuation of 0.12% per cycle at 0.5 C for 300 cycles. The approach proposed here pioneers the controllable design of MOF-based structures to inspire the exploration of more variable MOF-derived porous materials for energy storage applications.

  17. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries.

    Science.gov (United States)

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-09-03

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10(-4) S cm(-1)) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety.

  18. Developments in high energy theory

    Indian Academy of Sciences (India)

    It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the Standard Model, and proposals – including the radical ...

  19. Rational Design of Statically and Dynamically Stable Lithium-Sulfur Batteries with High Sulfur Loading and Low Electrolyte/Sulfur Ratio.

    Science.gov (United States)

    Chung, Sheng-Heng; Manthiram, Arumugam

    2017-12-22

    The primary challenge with lithium-sulfur battery research is the design of sulfur cathodes that exhibit high electrochemical efficiency and stability while keeping the sulfur content and loading high and the electrolyte/sulfur ratio low. With a systematic investigation, a novel graphene/cotton-carbon cathode is presented here that enables sulfur loading and content as high as 46 mg cm-2 and 70 wt% with an electrolyte/sulfur ratio of as low as only 5. The graphene/cotton-carbon cathodes deliver peak capacities of 926 and 765 mA h g-1 , respectively, at C/10 and C/5 rates, which translate into high areal, gravimetric, and volumetric capacities of, respectively, 43 and 35 mA h cm-2 , 648 and 536 mA h g-1 , and 1067 and 881 mA h cm-3 with a stable cyclability. They also exhibit superior cell-storage capability with 95% capacity-retention, a low self-discharge constant of just 0.0012 per day, and stable poststorage cyclability after storing over a long period of six months. This work demonstrates a viable approach to develop lithium-sulfur batteries with practical energy densities exceeding that of lithium-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lithium-ion battery materials and engineering current topics and problems from the manufacturing perspective

    CERN Document Server

    Gulbinska, Malgorzata K

    2014-01-01

    Gaining public attention due, in part,  to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batterie

  1. Band structure and phonon properties of lithium fluoride at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, J. M., E-mail: amitjignesh@yahoo.co.in [Government Engineering College, Gandhinagar 382028, Gujarat (India); Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India); Joshi, Mitesh [Government Polytechnic for Girls, Athwagate, Surat395001, Gujarat (India); Gajjar, P. N., E-mail: pngajjar@rediffmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat (India)

    2016-05-23

    High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.

  2. Implications of NSTX Lithium Results for Magnetic Fusion Research

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono, M.G. Bell, R.E. Bell, R. Kaita, H.W. Kugel, B.P. LeBlanc, J.M. Canik, S. Diem, S.P.. Gerhardt, J. Hosea, S. Kaye, D. Mansfield, R. Maingi, J. Menard, S. F. Paul, R. Raman, S.A. Sabbagh, C.H. Skinner, V. Soukhanovskii, G. Taylor, and the NSTX Research Team

    2010-01-14

    Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ~ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  3. Synthesis of high-quality mesoporous silicon particles for enhanced lithium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chundong, E-mail: apcdwang@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Ren, Jianguo [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Chen, Hao [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Zhang, Yi [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073 (China); Ostrikov, Kostya [School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, QLD (Australia); Manufacturing Flagship, CSIRO, P. O. Box 218, Lindfield, NSW 2070 (Australia); Zhang, Wenjun [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Li, Yi, E-mail: liyi@suda.edu.cn [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China)

    2016-04-15

    Silicon has been considered as one of the most promising anode materials for high-capacity lithium-ion batteries (LIBs) due to its ultrahigh theoretical capacity, abundance, and environmentally benign nature. Nonetheless, the severe break during the prolonged cycling results in poor electrochemical performance, which hinders its practical application. Herein, we report the synthesis of novel mesoporous silicon particles with a facile template method by using a magnesiothermic reduction for LIBs. The obtained silicon nanoparticles are highly porous with densely porous cavities (20–40 nm) on the wall, of which it presents good crystallization. Electrochemical measurements showed that the mesoporous silicon nanoparticles delivered a high reversible specific capacity of 910 mA h g{sup −1} at a high current density of 1200 mA g{sup −1} over 50 cycles. The specific capacity at such high current density is still over twofold than that of commercial graphite anode, suggesting that the nanoporous Si architectures is suitable for high-performance Si-based anodes for lithium ion batteries in terms of capacity, cycle life, and rate capacity. - Highlights: • Silica nanotubes were prepared with a facile template method. • Novel mesoporous silicon particles were obtained by magnesiothermic reduction. • High-Performance LIBs were achieved by using mesoporous Si particle Electrodes.

  4. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.

    Science.gov (United States)

    Dunn, Jennifer B; Gaines, Linda; Sullivan, John; Wang, Michael Q

    2012-11-20

    This paper addresses the environmental burdens (energy consumption and air emissions, including greenhouse gases, GHGs) of the material production, assembly, and recycling of automotive lithium-ion batteries in hybrid electric, plug-in hybrid electric, and battery electric vehicles (BEV) that use LiMn(2)O(4) cathode material. In this analysis, we calculated the energy consumed and air emissions generated when recovering LiMn(2)O(4), aluminum, and copper in three recycling processes (hydrometallurgical, intermediate physical, and direct physical recycling) and examined the effect(s) of closed-loop recycling on environmental impacts of battery production. We aimed to develop a U.S.-specific analysis of lithium-ion battery production and in particular sought to resolve literature discrepancies concerning energy consumed during battery assembly. Our analysis takes a process-level (versus a top-down) approach. For a battery used in a BEV, we estimated cradle-to-gate energy and GHG emissions of 75 MJ/kg battery and 5.1 kg CO(2)e/kg battery, respectively. Battery assembly consumes only 6% of this total energy. These results are significantly less than reported in studies that take a top-down approach. We further estimate that direct physical recycling of LiMn(2)O(4), aluminum, and copper in a closed-loop scenario can reduce energy consumption during material production by up to 48%.

  5. Bipolar and Monopolar Lithium-Ion Battery Technology at Yardney

    Science.gov (United States)

    Russell, P.; Flynn, J.; Reddy, T.

    1996-01-01

    Lithium-ion battery systems offer several advantages: intrinsically safe; long cycle life; environmentally friendly; high energy density; wide operating temperature range; good discharge rate capability; low self-discharge; and no memory effect.

  6. High Capacity Nano-Composite Cathodes for Human-Rated Lithium-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Non-incremental improvements are necessary in lithium-ion batteries order to meet future space applications demands such as NASA's call for lithium-ion battery...

  7. A Polymer Lithium-Oxygen Battery.

    Science.gov (United States)

    Elia, Giuseppe Antonio; Hassoun, Jusef

    2015-08-04

    Herein we report the characteristics of a lithium-oxygen battery using a solid polymer membrane as the electrolyte separator. The polymer electrolyte, fully characterized in terms of electrochemical properties, shows suitable conductivity at room temperature allowing the reversible cycling of the Li-O2 battery with a specific capacity as high as 25,000 mAh gC(-1) reflected in a surface capacity of 12.5 mAh cm(-2). The electrochemical formation and dissolution of the lithium peroxide during Li-O2 polymer cell operation is investigated by electrochemical techniques combined with X-ray diffraction study, demonstrating the process reversibility. The excellent cell performances in terms of delivered capacity, in addition to its solid configuration allowing the safe use of lithium metal as high capacity anode, demonstrate the suitability of the polymer lithium-oxygen as high-energy storage system.

  8. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  9. High-energy astroparticle physics

    CERN Document Server

    Semikoz, A

    2010-01-01

    In these three lectures I discuss the present status of high-energy astroparticle physics including Ultra-High-Energy Cosmic Rays (UHECR), high-energy gamma rays, and neutrinos. The first lecture is devoted to ultra-high-energy cosmic rays. After a brief introduction to UHECR I discuss the acceleration of charged particles to highest energies in the astrophysical objects, their propagation in the intergalactic space, recent observational results by the Auger and HiRes experiments, anisotropies of UHECR arrival directions, and secondary gamma rays produced by UHECR. In the second lecture I review recent results on TeV gamma rays. After a short introduction to detection techniques, I discuss recent exciting results of the H.E.S.S., MAGIC, and Milagro experiments on the point-like and diffuse sources of TeV gamma rays. A special section is devoted to the detection of extragalactic magnetic fields with TeV gammaray measurements. Finally, in the third lecture I discuss Ultra-High-Energy (UHE) neutrinos. I review t...

  10. Lithium literature review: lithium's properties and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jeppson, D.W.; Ballif, J.L.; Yuan, W.W.; Chou, B.E.

    1978-04-01

    The lithium literature has been reviewed to provide a better understanding of the effects of lithium spills that might occur in magnetic fusion energy (MFE) facilities. Lithium may be used as a breeding blanket and reactor coolant in these facilities. Physical and chemical properties of lithium as well as the chemical interactions of lithium with various gases, metals and non-metals have been identified. A preliminary assessment of lithium-concrete reactions has been completed using differential thermal analysis. Suggestions are given for future studies in areas where literature is lacking or limited.

  11. A Sheet-like Carbon Matrix Hosted Sulfur as Cathode for High-performance Lithium-Sulfur Batteries

    Science.gov (United States)

    Lu, Songtao; Chen, Yan; Zhou, Jia; Wang, Zhida; Wu, Xiaohong; Gu, Jian; Zhang, Xiaoping; Pang, Aimin; Jiao, Zilong; Jiang, Lixiang

    2016-02-01

    Lithium-sulfur (Li-S) batteries are a promising candidate of next generation energy storage systems owing to its high theoretical capacity and energy density. However, to date, its commercial application was hindered by the inherent problems of sulfur cathode. Additionally, with the rapid decline of non-renewable resources and active appeal of green chemistry, the intensive research of new electrode materials was conducted worldwide. We have obtained a sheet-like carbon material (shaddock peel carbon sheets SPCS) from organic waste shaddock peel, which can be used as the conductive carbon matrix for sulfur-based cathodes. Furthermore, the raw materials are low-cost, truly green and recyclable. As a result, the sulfur cathode made with SPCS (SPCS-S), can deliver a high reversible capacity of 722.5 mAh g-1 at 0.2 C after 100 cycles with capacity recuperability of ~90%, demonstrating that the SPCS-S hybrid is of great potential as the cathode for rechargeable Li-S batteries. The high electrochemical performance of SPCS-S hybrid could be attributed to the sheet-like carbon network with large surface area and high conductivity of the SPCS, in which the carbon sheets enable the uniform distribution of sulfur, better ability to trap the soluble polysulfides and accommodate volume expansion/shrinkage of sulfur during repeated charge/discharge cycles.

  12. Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guoying; Richardson, Thomas J.

    2010-01-04

    Overcharge protection for 4 V Li{sub 1.05}Mn{sub 1.95}O{sub 4}/lithium cells at charging rates in excess of 1 mA/cm{sup 2} (3C) and at temperatures as low as -20 C was achieved using a bilayer separator coated with two electroactive polymers. High rate and low temperature overcharge protection and discharge performance were improved by employing a design in which the polymer-coated portion of the separator is in parallel with the cell rather than between the electrodes. The effects of different membrane supports for the electroactive polymers are also examined.

  13. Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-rate lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Liu, Minglong; Wang, Jianquan; Li, Pengfa; Zhao, Ming

    2014-02-15

    New cellulose derivative CMC-Li was synthesized, and nanometer CMC-Li fiber was applied to lithium-ion battery and coated with AQ by electrospinning. Under the protection of inert gas, modified AQ/carbon nanofibers (CNF)/Li nanometer composite material was obtained by carbonization in 280 °C as lithium battery anode materials for the first time. The morphologies and structures performance of materials were characterized by using IR, (1)H NMR, SEM, CV and EIS, respectively. Specific capacity was increased from 197 to 226.4 mAhg(-1) after modification for the first discharge at the rate of 2C. Irreversible reduction reaction peaks of modified material appeared between 1.5 and 1.7 V and the lowest oxidation reduction peak of the difference were 0.42 V, the polarization was weaker. Performance of cell with CMC-Li with the high degree of substitution (DS) was superior to that with low DS. Cellulose materials were applied to lithium battery to improve battery performance by electrospinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  15. Research Progress in Improving the Cycling Stability of High-Voltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery

    Science.gov (United States)

    Xu, XiaoLong; Deng, SiXu; Wang, Hao; Liu, JingBing; Yan, Hui

    2017-04-01

    High-voltage lithium-ion batteries (HVLIBs) are considered as promising devices of energy storage for electric vehicle, hybrid electric vehicle, and other high-power equipment. HVLIBs require their own platform voltages to be higher than 4.5 V on charge. Lithium nickel manganese spinel LiNi0.5Mn1.5O4 (LNMO) cathode is the most promising candidate among the 5 V cathode materials for HVLIBs due to its flat plateau at 4.7 V. However, the degradation of cyclic performance is very serious when LNMO cathode operates over 4.2 V. In this review, we summarize some methods for enhancing the cycling stability of LNMO cathodes in lithium-ion batteries, including doping, cathode surface coating, electrolyte modifying, and other methods. We also discuss the advantages and disadvantages of different methods.

  16. Highly Ordered Mesostructured Vanadium Phosphonate toward Electrode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Mei, Peng; Pramanik, Malay; Lee, Jaewoo; Ide, Yusuke; Alothman, Zeid Abdullah; Kim, Jung Ho; Yamauchi, Yusuke

    2017-03-28

    Highly ordered mesostructured vanadium phosphonates (VP) have been synthesized in the presence of cetyltrimethylammonium bromide (CTAB) as a structure-directing agent. Nitrilotris(methylene)triphosphonic acid (NMPA) and (ammonium/sodium) metavanadate (NH4 VO3 /NaVO3 ) have been used for the construction of pore walls. The CTAB templates are removed from the materials by an extraction process without destroying the parent mesostructure. The formation mechanism for the ordered mesoporous structure and its impact on electrochemical application in lithium ion batteries (LIBs) are explained by considering the structural and electrochemical stability of the framework. The results demonstrate that the counter cations (NH4+ /Na+ ) of the metavanadate precursors have a crucial role in stabilizing the mesoporous structure of the mesoporous VP materials. Mesoporous VP materials with highly ordered structure have great applicability as high-performance electrode materials in LIBs due to the advantages of their large contact area with electrolyte and short transport paths for lithium ions. Mesoporous VP electrodes exhibit high reversible specific capacity with superb cycling stability (100 cycles) and excellent retention of capacity (92 %). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2009-09-09

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of ∼2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of ∼4 mAh/cm2, which is comparable to commercial battery values. © 2009 American Chemical Society.

  18. Monolithic Graphene Trees as Anode Material for Lithium Ion Batteries with High C-Rates.

    Science.gov (United States)

    Jeong, Seung Yol; Yang, Sunhye; Jeong, Sooyeon; Kim, Ick Jun; Jeong, Hee Jin; Han, Joong Tark; Baeg, Kang-Jun; Lee, Geon-Woong

    2015-06-01

    Monolithically structured reduced graphene oxide (rGO), prepared from a highly concentrated and conductive rGO paste, is introduced as an anode material for lithium ion batteries with high rate capacities. This is achieved by a mixture of rGO paste and the water-soluble polymer sodium carboxymethylcellulose (SCMC) with freeze drying. Unlike previous 3D graphene porous structures, the monolithic graphene resembles densely branched pine trees and has high mechanical stability with strong adhesion to the metal electrodes. The structures contain numerous large surface area open pores that facilitate lithium ion diffusion, while the strong hydrogen bonding between the graphene layers and SCMC provides high conductivity and reduces the volume changes that occur during cycling. Ultrafast charge/discharge rates are obtained with outstanding cycling stability and the capacities are higher than those reported for other anode materials. The fabrication process is simple and straightforward to adjust and is therefore suitable for mass production of anode electrodes for commercial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Development of Si and Ge-Based Nanomaterials for High Performance Lithium Ion Battery Anodes

    Science.gov (United States)

    Wang, Xiao-Liang; Han, Wei-Qiang

    Silicon and germanium are among the most promising anode materials for high performance lithium ion batteries, due to their unprecedented high capacities. In recent few years, increasingly enormous efforts have been dedicated to these two important anodes, leading to significant improvement in their cycling life, practical capacity, rate capability, and coulombic efficiency. Nanostructuring is playing a crucial role in enabling the improvement and will lead to their widespread use in various battery markets. Nanoscale particles can better tolerate the wild volume change upon cycling and maintain their integrity than micron-sized particles. They can also shorten the diffusion distance of lithium ions and electrons and thus have high capacity. Further, one-dimensional nanowires exhibit superior stress behavior and electron transport. Porous and hierarchical nanostructures can provide extra space to accommodate the volume change. Wisely manipulating these handles have produced impressively better-performing systems. Porous single-crystal silicon nanowires have shown more stable capacity than solid nanowires. Hierarchical porous amorphous GeO_x is another system with very long cycle life and high capacity.

  20. Ab Initio Investigations of High-Pressure Melting of Dense Lithium

    Science.gov (United States)

    Clay, Raymond; Morales, Miguel; Bonev, Stanimir

    Lithium at ambient conditions is the simplest alkali metal and exhibits textbook nearly-free electron behavior. As the density is increased, however, significant core/valence overlap leads to surprisingly complex chemistry. We have systematically investigated the phase diagram of lithium at pressures ranging between two and six million atmospheres. Through a combination of density functional theory based path-integral and classical molecular dynamics simulations, we have investigated the impact of both nuclear quantum effects and anharmonicity on the melting line and solid phase boundaries. We also investigate how the inclusion of nuclear quantum effects and approximations in the treatment of electronic exchange-correlation impact the robustness of previous predictions of tetrahedral clustering in dense liquid Li. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. High flash point electrolyte for use in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Isken, P.; Dippel, C.; Schmitz, R.; Schmitz, R.W.; Kunze, M.; Passerini, S.; Winter, M. [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany); Lex-Balducci, A., E-mail: a.lex-balducci@uni-muenster.de [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany)

    2011-09-01

    Highlights: > Substitution of linear carbonates in conventional electrolytes with adiponitrile allows the realization of high flash point electrolytes. > EC:ADN based electrolytes display a higher anodic stability than a conventional electrolyte based on EC:DEC. > Graphite and NCM electrodes used in combination with the EC:ADN based electrolyte display a performance comparable with that of conventional electrolytes. - Abstract: The high flash point solvent adiponitrile (ADN) was investigated as co-solvent with ethylene carbonate (EC) for use as lithium-ion battery electrolyte. The flash point of this solvent mixture was more than 110 deg. C higher than that of conventional electrolyte solutions involving volatile linear carbonate components, such as diethyl carbonate (DEC) or dimethyl carbonate (DMC). The electrolyte based on EC:ADN (1:1 wt) with lithium tetrafluoroborate (LiBF{sub 4}) displayed a conductivity of 2.6 mS cm{sup -1} and no aluminum corrosion. In addition, it showed higher anodic stability on a Pt electrode than the standard electrolyte 1 M lithium hexafluorophosphate (LiPF{sub 6}) in EC:DEC (3:7 wt). Graphite/Li half cells using this electrolyte showed excellent rate capability up to 5C and good cycling stability (more than 98% capacity retention after 50 cycles at 1C). Additionally, the electrolyte was investigated in NCM/Li half cells. The cells were able to reach a capacity of 104 mAh g{sup -1} at 5C and capacity retention of more than 97% after 50 cycles. These results show that an electrolyte with a considerably increased flash point with respect to common electrolyte systems comprising linear carbonates, could be realized without any negative effects on the electrochemical performance in Li-half cells.

  2. Stability and Rate Capability of Al Substituted Lithium-Rich High-Manganese Content Oxide Materials for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng; Chernova, Natasha A.; Feng, Jijun; Upreti, Shailesh; Omenya, Fredrick; Whittingham, M. Stanley (Binghamton)

    2015-10-15

    The structures, electrochemical properties and thermal stability of Al-substituted lithium-excess oxides, Li{sub 1.2}Ni{sub 0.16} Mn{sub 0.56}Co{sub 0.08-y}Al{sub y}O{sub 2} (y = 0, 0.024, 0.048, 0.08), are reported, and compared to the stoichiometric compounds, LiNi{sub z}Mn{sub z}Co{sub 1-2z}O{sub 2}. A solid solution was found up to at least y = 0.06. Aluminum substitution improves the poor thermal stability while preserving the high energy density of lithium-excess oxides. However, these high manganese compositions are inferior to the lithium stoichiometric materials, LiNi{sub z}Mn{sub z}Co{sub 1-2z}O{sub 2} (z = 0.333, 0.4), in terms of both power and thermal stability.

  3. One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials

    KAUST Repository

    Choi, Nam-Soon

    2011-01-01

    There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si/Sn nanowires (NWs) and nanotubes (NTs) have great potential to achieve high energy density as well as long cycle life for the next generation of advanced energy storage applications. In this feature article, we review recent progress on Si-based NWs and NTs as high capacity anode materials. Fundamental understanding and future challenges on one dimensional nanostructured anode are also discussed. © 2010 The Royal Society of Chemistry.

  4. Lithium-Salt-Containing High-Molecular-Weight Polystyrene-block-Polyethylene Oxide Block Copolymer Films.

    Science.gov (United States)

    Metwalli, Ezzeldin; Rasool, Majid; Brunner, Simon; Müller-Buschbaum, Peter

    2015-08-10

    Ionic conductivity in relation to the morphology of lithium-doped high-molecular-weight polystyrene-block-polyethylene oxide (PS-b-PEO) diblock copolymer films was investigated as solid-state membranes for lithium-ion batteries. The tendency of the polyethylene (PEO) block to crystallize was highly suppressed by increasing both the salt-doping level and the temperature. The PEO crystallites completely vanished at a salt-doping ratio of Li/EO>0.08, at which the PEO segments were hindered from entering the crystalline unit of the PEO chain. A kinetically trapped lamella morphology of PS-b-PEO was observed, due to PEO crystallization. The increase in the lamella spacing with increasing salt concentration was attributed to the conformation of the PEO chain rather than the volume contribution of the salt or the previously reported increase in the effective interaction parameter. Upon loading the salt, the PEO chains changed from a compact/highly folded conformation to an amorphous/expanded-like conformation. The ionic conductivity was enhanced by amorphization of PEO and thereby the mobility of the PEO blocks increased upon increasing the salt-doping level. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-energy scissors mode

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R.; Faessler, A.; Dingfelder, M. [Institut fuer Theoretische Physik, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    1995-05-01

    All the orbital {ital M}1 excitations, at both low and high energies, obtained from a rotationally invariant quasiparticle random-phase approximation, represent the fragmented scissors mode. The high-energy {ital M}1 strength is almost purely orbital and resides in the region of the isovector giant quadrupole resonance. In heavy deformed nuclei the high-energy scissors model is strongly fragmented between 17 and 25 MeV (with uncertainties arising from the poor knowledge of the isovector potential). The coherent scissors motion is hindered by the fragmentation and {ital B}({ital M}1){lt}0.25{mu}{sub {ital N}}{sup 2} for single transitions in this region. The ({ital e},{ital e}{prime}) cross sections for excitations above 17 MeV are one order of magnitude larger for {ital E}2 than for {ital M}1 excitations even at backward angles.

  6. Iron titanium phosphates as high-specific-capacity electrode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Essehli, R., E-mail: essehli.rachid@yahoo.fr [Laboratory of Mineral Solid and Analytical Chemistry (LMSAC), Department of Chemistry, Faculty of Sciences, University Mohamed I, PO. Box 717, 60000 Oujda (Morocco); ESECO SYSTEMS 270 rue Thomas Edison, Atelier Relais No 6, 34400 Lunel (France); El Bali, B. [Laboratory of Mineral Solid and Analytical Chemistry (LMSAC), Department of Chemistry, Faculty of Sciences, University Mohamed I, PO. Box 717, 60000 Oujda (Morocco); Faik, A. [CIC energigune, Parque Tecnológico de Álava, Albert Einstein 48, 01510 Miñano, Álava (Spain); Naji, M. [CNRS, UPR3079 CEMHTI, 1D avenue de la Recherche Scientifique, 45071 Orléans cedex 2 (France); Benmokhtar, S. [LCPGM, Laboratoire de Chimie-Physique Générale des Matériaux, Département de Chimie, Université Hassan II-Mohammedia, Faculté des Sciences Ben M’Sik, Casablanca (Morocco); Zhong, Y.R.; Su, L.W.; Zhou, Z. [Institute of New Energy Material Chemistry, Synergetic Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (China); Kim, J.; Kang, K. [Department of Materials Science and Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Dusek, M. [Institute of Physics of the ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8 (Czech Republic)

    2014-02-05

    Highlights: • Iron Titanium Phosphates as High-Specific-Capacity. • Electrode Materials for Lithium ion Batteries. • During the following cycles, good reversible capacity retention and better cyclabilit. • Ex-situ XRD analysis during the first discharge shows an amorphization of this anode material. -- Abstract: Two iron titanium phosphates, Fe{sub 0.5}TiOPO{sub 4} and Fe{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3}, were prepared, and their crystal structures and electrochemical performances were compared. The electrochemical measurements of Fe{sub 0.5}TiOPO{sub 4} as an anode of a lithium ion cell showed that upon the first discharge down to 0.5 V, the cell delivered a capacity of 560 mA h/g, corresponding to the insertion of 5 Li’s per formula unit Fe{sub 0.5}TiOPO{sub 4}. Ex-situ XRD reveals a gradual evolution of the structure during cycling of the material, with lower crystallinity after the first discharge cycle. By correlating the electrochemical performances with the structural studies, new insights are achieved into the electrochemical behaviour of the Fe{sub 0.5}TiOPO{sub 4} anode material, suggesting a combination of intercalation and conversion reactions. The Nasicon-type Fe{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3} consists of a three-dimensional network made of corners and edges sharing [TiO{sub 6}] and [FeO{sub 6}] octahedra and [PO{sub 4}] tetrahedra leading to the formation of trimmers [FeTi{sub 2}O{sub 12}]. The first discharge of lithium ion cells based on Fe{sub 0.5}Ti{sub 2}(PO{sub 4}){sub 3} materials showed electrochemical activity of Ti{sup 4+}/Ti{sup 3+} and Fe{sup 2+}/Fe{sup 0} couples in the 2.5–1 V region. Below this voltage, the discharge profiles are typical of phosphate systems where Li{sub 3}PO{sub 4} is a product of the electrochemical reaction with lithium; moreover, the electrolyte solvent is reduced. An initial capacities as high as 1100 mA h g{sup −1} can be obtained at deep discharge. However, there is an irreversible capacity

  7. Novel structures and superconductivities of calcium–lithium alloys at high pressures: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying, E-mail: xuying3270@cust.edu.cn; Chen, Changbo; Wang, Sihan; Sun, Xiuping

    2016-06-05

    Exposing a material to high pressures can fundamentally influence its crystal and electronic structure, leading to the formation of new materials with unique physical and chemical properties. Here, we have conducted a systematic search for Ca–Li alloys by using a global minima search based on particle-swarm optimization algorithm in combination with density functional theory calculations. We predict that Calcium and Lithium with a high Ca composition CaLi, Ca{sub 2}Li and Ca{sub 3}Li exist, and a strikingly decomposition-combination-decomposition oscillating behavior with pressure is revealed. All predicted Ca–Li compounds are metallic and good electron–phonon superconductors with transition temperatures (T{sub c}) of around 8–19 K. The superconductivity mainly originates from the low-energy Ca vibrations and the pressure dependence of T{sub c} is dominated by the phonon softening/hardening. - Highlights: • Three high Ca compositions of CaLi, Ca{sub 2}Li, and Ca{sub 3}Li alloys have been predicted. • High superconducting temperatures were predicted for Ca–Li alloys at high pressures. • The origin of the superconductivity is revealed. • The superconducting temperature increases with increasing pressures for Fd-3m CaLi. • The Fd-3m phase of CaLi is a potential high-temperature superconductor.

  8. High-resolution electron spectroscopy and structures of lithium-nucleobase (adenine, uracil, and thymine) complexes.

    Science.gov (United States)

    Krasnokutski, Serge A; Lee, Jung Sup; Yang, Dong-Sheng

    2010-01-28

    Li complexes of adenine, uracil, and thymine were produced by laser vaporization of rods made of Li and nucleobase powders in a metal-cluster beam source and studied by pulsed-field-ionization zero-electron-kinetic-energy (ZEKE) spectroscopy and density functional theory calculations. The ZEKE measurements determined the adiabatic ionization energies of the three neutral complexes and frequencies of several vibrational modes for the metal-adenine and -uracil ions. The measured spectra were compared with spectral simulations to determine the preferred metal binding sites. For adenine, the most stable structure is formed by Li/Li(+) bidentately binding to both the N7 atom of the imidazole ring and the NH(2) group of the pyrimidine ring. For uracil and thymine, the ideal site for Li/Li(+) coordination is the O4 atom. Although it has only a small effect on the geometries of uracil and thymine, lithium coordination forces the rotation of the NH(2) group out of the adenine plane. The adiabatic ionization energies of the three complexes follow the trend of uracil (33910+/-5 cm(-1))>thymine (33386+/-5 cm(-1))>adenine (32240+/-5 cm(-1)), whereas their metal-ligand bond dissociation energies are about the same, (92-97) +/-6 kJ mol(-1). For all three complexes, the neutral bond energies are smaller than those of the corresponding ions due to a weaker electrostatic interaction and stronger electron repulsion.

  9. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  10. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  11. CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Zhao, Jun; Shan, Wanfei; Xia, Xinbei; Xing, Lili; Xue, Xinyu, E-mail: xuexinyu@mail.neu.edu.cn

    2014-03-25

    Highlights: • CuO/GNS nanocomposites are synthesized by a hydrothermal method. • CuO/GNSs as LIB anodes exhibit much higher cyclability and capacity than CuO nanostructures. • Such excellent performances can be attributed to the synergistic effect between CuO and GNSs. -- Abstract: CuO/graphene nanocomposites are synthesized by a hydrothermal method, and their application as anodes of lithium-ion batteries has been investigated. CuO nanorods are uniformly coating on the surface of graphene nanosheets. CuO/graphene nanocomposites exhibit high cyclability and capacity. After 50 cycles, the capacity can maintain at 692.5 mA h g{sup −1} at 0.1 C rate (10 h per half cycle). Such a high performance can be attributed to the synergistic effect between graphene nanosheets and CuO nanorods. The present results indicate that CuO/graphene nanocomposites have potential applications in the anodes of lithium-ion battery.

  12. A mesoporous carbon–sulfur composite as cathode material for high rate lithium sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyunji; Zhao, Xiaohui; Kim, Dul-Sun [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Hyo-Jun; Kim, Ki-Won [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Cho, Kwon-Koo, E-mail: kkcho66@gnu.ac.kr [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2014-10-15

    Highlights: • CMK-3 mesoporous carbon was synthesized as conducting reservoir for housing sulfur. • Sulfur/CMK-3 composites were prepared by two-stage thermal treatment. • The composite at 300 °C for 20 h shows improved electrochemical properties. - Abstract: Sulfur composite was prepared by encapsulating sulfur into CMK-3 mesoporous carbon with different heating times and then used as the cathode material for lithium sulfur batteries. Thermal treatment at 300 °C plays an important role in the sulfur encapsulation process. With 20 h of heating time, a portion of sulfur remained on the surface of carbon, whereas with 60 h of heating time, sulfur is confined deeply in the small pores of carbon that cannot be fully exploited in the redox reaction, thus causing low capacity. The S/CMK-3 composite with thermal treatment for 40 h at 300 °C contained 51.3 wt.% sulfur and delivered a high initial capacity of 1375 mA h g{sup −1} at 0.1 C. Moreover, it showed good capacity retention of 704 mA h g{sup −1} at 0.1 C and 578 mA h g{sup −1} at 2 C even after 100 cycles, which proves its potential as a cathode material for high capability lithium sulfur batteries.

  13. A trilayer separator with dual function for high performance lithium-sulfur batteries

    Science.gov (United States)

    Song, Rensheng; Fang, Ruopian; Wen, Lei; Shi, Ying; Wang, Shaogang; Li, Feng

    2016-01-01

    In this article, we propose a trilayer graphene/polypropylene/Al2O3 (GPA) separator with dual function for high performance lithium-sulfur (Li-S) batteries. Graphene is coated on one side of polypropylene (PP) separator, which functions as a conductive layer and an electrolyte reservoir that allows for rapid electron and ion transport. Then Al2O3 particles are coated on the other side to further enhance thermal stability and safety of the graphene coated polypropylene (GCP) separator, which are touched with lithium metal anode in the Li-S battery. The GPA separator shows good thermal stability after heating at 157 °C for 10 min while both GCP and PP separators showing an obvious shrinkage about 10%. The initial discharge specific capacity of Li-S coin cell with a GPA separator could reach 1067.7 mAh g-1 at 0.2C. After 100 discharge/charge cycles, it can still deliver a reversible capacity of as high as 804.4 mAh g-1 with 75% capacity retention. The pouch cells further confirm that the trilayer design has great promise towards practical applications.

  14. High Areal Capacity and Lithium Utilization in Anodes Made of Covalently Connected Graphite Microtubes.

    Science.gov (United States)

    Jin, Song; Sun, Zhaowei; Guo, Yali; Qi, Zhikai; Guo, Chengkun; Kong, Xianghua; Zhu, Yanwu; Ji, Hengxing

    2017-10-01

    Lithium metal is an attractive anode material for rechargeable batteries because of its high theoretical specific capacity of 3860 mA h g(-1) and the lowest negative electrochemical potential of -3.040 V versus standard hydrogen electrode. Despite extensive research efforts on tackling the safety concern raised by Li dendrites, inhibited Li dendrite growth is accompanied with decreased areal capacity and Li utilization, which are still lower than expectation for practical use. A scaffold made of covalently connected graphite microtubes is reported, which provides a firm and conductive framework with moderate specific surface area to accommodate Li metal for anodes of Li batteries. The anode presents an areal capacity of 10 mA h cm(-2) (practical gravimetric capacity of 913 mA h g(-1) ) at a current density of 10 mA cm(-2) , with Li utilization of 91%, Coulombic efficiencies of ≈97%, and long lifespan of up to 3000 h. The analysis of structure evolution during charge/discharge shows inhibited lithium dendrite growth and a reversible electrode volume change of ≈9%. It is suggested that an optimized microstructure with moderate electrode/electrolyte interface area is critical to accommodate volume change and inhibit the risks of irreversible Li consumption by side reactions and Li dendrite growth for high-performance Li-metal anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Thermoelectric properties of high pressure synthesized lithium and calcium double-filled CoSb3

    Directory of Open Access Journals (Sweden)

    Xiaohui Li

    2017-01-01

    Full Text Available Lithium and calcium are inefficient filling elements of CoSb3 at ambient pressure, but show nice filling behavior under high pressure. In this work, we synthesized Li/Ca double-filled CoSb3 with high pressure synthesis method. The products show the skutterudite structure of Im3¯ symmetry. Thermoelectric properties were effectively enhanced through Li and Ca co-filling. For the optimal Li0.08Ca0.18Co4Sb12 sample, the power factor maintains a relatively high value over the whole measurement temperature range and peaks at 4700μWm−1K−2, meanwhile the lattice thermal conductivity is greatly suppressed, leading to a maximal ZT of 1.18 at 700 K. Current work demonstrates high pressure synthesis as an effective method to produce multiple elemental filled CoSb3 skutterudites.

  16. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering.

    Science.gov (United States)

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun

    2017-08-01

    Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delithiation processes is thus of great fundamental and practical interest for understanding the workings of battery materials. We show that inelastic scattering spectroscopy using high-energy x-ray photons (Compton scattering) can yield faithful momentum space images of the redox orbitals by considering lithium iron phosphate (LiFePO4 or LFP) as an exemplar cathode battery material. Our analysis reveals a new link between voltage and the localization of transition metal 3d orbitals and provides insight into the puzzling mechanism of potential shift and how it is connected to the modification of the bond between the transition metal and oxygen atoms. Our study thus opens a novel spectroscopic pathway for improving the performance of battery materials.

  17. Beads-Milling of Waste Si Sawdust into High-Performance Nanoflakes for Lithium-Ion Batteries

    Science.gov (United States)

    Kasukabe, Takatoshi; Nishihara, Hirotomo; Kimura, Katsuya; Matsumoto, Taketoshi; Kobayashi, Hikaru; Okai, Makoto; Kyotani, Takashi

    2017-02-01

    Nowadays, ca. 176,640 tons/year of silicon (Si) (>4N) is manufactured for Si wafers used for semiconductor industry. The production of the highly pure Si wafers inevitably includes very high-temperature steps at 1400-2000 °C, which is energy-consuming and environmentally unfriendly. Inefficiently, ca. 45-55% of such costly Si is lost simply as sawdust in the cutting process. In this work, we develop a cost-effective way to recycle Si sawdust as a high-performance anode material for lithium-ion batteries. By a beads-milling process, nanoflakes with extremely small thickness (15-17 nm) and large diameter (0.2-1 μm) are obtained. The nanoflake framework is transformed into a high-performance porous structure, named wrinkled structure, through a self-organization induced by lithiation/delithiation cycling. Under capacity restriction up to 1200 mAh g-1, the best sample can retain the constant capacity over 800 cycles with a reasonably high coulombic efficiency (98-99.8%).

  18. Developments in high energy theory

    Indian Academy of Sciences (India)

    High-energy physics; gauge theories; Standard Model; physics beyond the ... elusive goal. The Standard Model describes the electromagnetic, weak and strong interactions, but only unifies the first two. Despite its spectacular success in ex ..... Towards the end of the 1960s, a path-breaking new 'deep inelastic' electron scat-.

  19. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.

    Science.gov (United States)

    Ying, Hangjun; Han, Wei-Qiang

    2017-11-01

    With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g-1) and sodium-ion batteries (847 mA h g-1). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.

  20. Thin film detection of High Energy Materials: Optical Pumping Approach

    CERN Document Server

    Barthwal, Sachin

    2014-01-01

    We present our work on High Energy Material detection based on thin film of Lithium using the phenomenon of Optical Pumping. The Li atoms present in the thin film are optically pumped to one of the ground hyperfine energy levels so that they can no more absorb light from the resonant light source. Now in presence of a RF signal, which quantifies the ambient magnetic field, this polarized atomic system is again randomized thus making it reabsorb the resonant light. This gives a quantified measurement of the magnetic field surrounding the thin film detector. This is then mapped to the presence of magnetic HEM and hence the HEM are detected. Our approach in this regard starts with verifying the stability of Lithium atoms in various solvents so as to get a suitable liquid medium to form a thin film. In this regard, various UV-visible characterization spectra are presented to finally approach a stable system for the detection. We have worked on around 10 polar and non- polar solvents to see the stability criteria....

  1. Bunched akaganeite nanorod arrays: Preparation and high-performance for flexible lithium-ion batteries

    Science.gov (United States)

    Peng, Shaomin; Yu, Lin; Sun, Ming; Cheng, Gao; Lin, Ting; Mo, Yudi; Li, Zishan

    2015-11-01

    Significant effort has been made to explore high-performance anode materials for flexible lithium-ion batteries. We report a facile hydrothermal route to synthesis self-organized bunched akaganeite (β-FeOOH) nanorod arrays directly grown on carbon cloth (CC/β-FeOOH NRAs). Interestingly, the single nanorod is assembled by numerous small nanowires. A possible growth mechanism for this unique structure is proposed. Owning to the essential crystal structure of β-FeOOH (body-centered cubic), porous morphology, high surface area and direct growth on current collector, the prepared CC/β-FeOOH NRAs manifest a very high reversible capacity of ≈2840 mAh g-1 (2.21 mAh cm-2), remarkable rate capability 568 mAh g-1 (0.43 mAh cm-2) at 10C, stable cycling performance and greater mechanical strength.

  2. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Yingying Lv

    2014-11-01

    Full Text Available A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ∼2200 m2/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li+ ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  3. Lithium and sodium batteries with polysulfide electrolyte

    KAUST Repository

    Li, Mengliu

    2017-12-28

    A battery comprising: at least one cathode, at least one anode, at least one battery separator, and at least one electrolyte disposed in the separator, wherein the anode is a lithium metal or lithium alloy anode or an anode adapted for intercalation of lithium ion, wherein the cathode comprises material adapted for reversible lithium extraction from and insertion into the cathode, and wherein the separator comprises at least one porous, electronically conductive layer and at least one insulating layer, and wherein the electrolyte comprises at least one polysulfide anion. The battery provides for high energy density and capacity. A redox species is introduced into the electrolyte which creates a hybrid battery. Sodium metal and sodium-ion batteries also provided.

  4. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  5. Restricted lithium ion dynamics in PEO-based block copolymer electrolytes measured by high-field nuclear magnetic resonance relaxation

    Science.gov (United States)

    Huynh, Tan Vu; Messinger, Robert J.; Sarou-Kanian, Vincent; Fayon, Franck; Bouchet, Renaud; Deschamps, Michaël

    2017-10-01

    The intrinsic ionic conductivity of polyethylene oxide (PEO)-based block copolymer electrolytes is often assumed to be identical to the conductivity of the PEO homopolymer. Here, we use high-field 7Li nuclear magnetic resonance (NMR) relaxation and pulsed-field-gradient (PFG) NMR diffusion measurements to probe lithium ion dynamics over nanosecond and millisecond time scales in PEO and polystyrene (PS)-b-PEO-b-PS electrolytes containing the lithium salt LiTFSI. Variable-temperature longitudinal (T1) and transverse (T2) 7Li NMR relaxation rates were acquired at three magnetic field strengths and quantitatively analyzed for the first time at such fields, enabling us to distinguish two characteristic time scales that describe fluctuations of the 7Li nuclear electric quadrupolar interaction. Fast lithium motions [up to O (ns)] are essentially identical between the two polymer electrolytes, including sub-nanosecond vibrations and local fluctuations of the coordination polyhedra between lithium and nearby oxygen atoms. However, lithium dynamics over longer time scales [O (10 ns) and greater] are slower in the block copolymer compared to the homopolymer, as manifested experimentally by their different transverse 7Li NMR relaxation rates. Restricted dynamics and altered thermodynamic behavior of PEO chains anchored near PS domains likely explain these results.

  6. A Study of Engineering the Cathode Structures for Improved Performance in Lithium Batteries

    Science.gov (United States)

    Kim, Jangwoo

    Lithium batteries are receiving a worldwide attention for applications such as electric vehicles, renewable energy grids for their extraordinarily high energy density. Despite high energy density of lithium-air or lithium-sulfur batteries, there are still a number of technical difficulties that need to be overcome to compete with the state-of-art lithium-ion batteries. Challenges can be narrowed down to the following; poor rechargeability at high areal capacity (> 1mAh/cm2), low areal power density, low energy efficiency, and lithium dendrite formation intimidating both capacity retention and fire safety. The poor electrochemical performance in lithium-air battery is attributed to: 1. diffusion limitation of oxygen, 2. proportions of non-oxygen gases in air, 3. insulating discharge reaction products, 4. parasitic reactions caused by superoxide radical attacks which lead to electrolyte decomposition and carbon surface oxidation, and finally, 5. structural disorder in cathode during the cell operation cycles. Lithium-sulfur battery has its own problems of: 1. intermediate polysulfide dissolution, and 2. structural disorder in cathode due to the volumetric expansion of lithiated sulfur molecules. In this study, we demonstrate that the change in the physical configuration of carbon-based cathode substrates in both lithium-air and lithium-sulfur battery cathodes can offer an effective approach to resolve their major issue of poor rechargeability., and. elucidate the mechanisms that alleviate the rapid loss of capacities over cycles.

  7. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries.

    Science.gov (United States)

    Hu, Chuangang; Xiao, Ying; Zhao, Yang; Chen, Nan; Zhang, Zhipan; Cao, Minhua; Qu, Liangti

    2013-04-07

    Highly nitrogen-doped carbon capsules (hN-CCs) have been successfully prepared by using inexpensive melamine and glyoxal as precursors via solvothermal reaction and carbonization. With a great promise for large scale production, the hN-CCs, having large surface area and high-level nitrogen content (N/C atomic ration of ca. 13%), possess superior crossover resistance, selective activity and catalytic stability towards oxygen reduction reaction for fuel cells in alkaline medium. As a new anode material in lithium-ion battery, hN-CCs also exhibit excellent cycle performance and high rate capacity with a reversible capacity of as high as 1046 mA h g(-1) at a current density of 50 mA g(-1) after 50 cycles. These features make the hN-CCs developed in this study promising as suitable substitutes for the expensive noble metal catalysts in the next generation alkaline fuel cells, and as advanced electrode materials in lithium-ion batteries.

  8. Synthesis of lithium nitride for neutron production target of BNCT by in situ lithium deposition and ion implantation

    Science.gov (United States)

    Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.

    2012-12-01

    To achieve high performance of BNCT (Boron Neutron Capture Therapy) device, Li3N/Li/Pd/Cu four layered Li target was designed and the structures of the synthesized four layered target were characterized by X-ray photoelectron spectroscopy. For the purpose of avoiding the radiation blistering and lithium evaporation, in situ vacuum deposition and nitridation techniques were established for in situ production and repairing maintenance of the lithium target. Following conclusions were derived: Uniform lithium layer of a few hundreds nanometer was formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. Lithium nitrides were formed by in situ nitridation reaction by the implantation of low-energy nitrogen ions on the deposited lithium layer surface. The chemical states of the nitridated zone were close to the stoichiometric lithium nitride, Li3N. This nitridated zone formed on surface of four layered lithium target is stable for a long time in air condition. The in situ nitridation is effective to protect lithium target from degradation by unfavorable reactions.

  9. Synthesis of lithium nitride for neutron production target of BNCT by in situ lithium deposition and ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, S. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Baba, Y., E-mail: baba.yuji@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Fujii, R.; Nakamura, M.; Imahori, Y. [Cancer Intelligence Care Systems, Inc., Ariake 3-5-7, Koutou-ku, Tokyo 135-0063 (Japan)

    2012-12-15

    To achieve high performance of BNCT (Boron Neutron Capture Therapy) device, Li{sub 3}N/Li/Pd/Cu four layered Li target was designed and the structures of the synthesized four layered target were characterized by X-ray photoelectron spectroscopy. For the purpose of avoiding the radiation blistering and lithium evaporation, in situ vacuum deposition and nitridation techniques were established for in situ production and repairing maintenance of the lithium target. Following conclusions were derived: (1)Uniform lithium layer of a few hundreds nanometer was formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. (2)Lithium nitrides were formed by in situ nitridation reaction by the implantation of low-energy nitrogen ions on the deposited lithium layer surface. The chemical states of the nitridated zone were close to the stoichiometric lithium nitride, Li{sub 3}N. (3)This nitridated zone formed on surface of four layered lithium target is stable for a long time in air condition. The in situ nitridation is effective to protect lithium target from degradation by unfavorable reactions.

  10. Inequality of quenched and high temperature structure of lithium deficient LiMn{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Piszora, P. [Laboratory of Magnetochemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60780 Poznan (Poland)]. E-mail: pawel@amu.edu.pl

    2005-09-29

    Structural characterization of the new low temperature polymorph of the lithium-deficient lithium-manganese spinel, synthesized and quenched from 1073 K has been obtained by Rietveld structure refinements of X-ray powder diffraction data recorded using synchrotron radiation. A slight lithium ions deficiency causes formation of the tetragonal phase provided that the samples obtained at high temperature are rapidly quenched in the solid CO{sub 2}. The new phase has a tetragonally distorted spinel structure at 140 K with a space group F4 {sub 1} /ddm, unit cells of a = 8.33180(6) A and c = 8.08617(7) A. On heating, at 280 K, the tetragonal phase transforms to cubic spinel structure (Fd3m) and it remains cubic up to 1163 K.

  11. Toxicity of materials used in the manufacture of lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1994-05-01

    The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in current lithium battery research and development is evaluated and described.

  12. Design and simulation of lithium rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, C.M.

    1995-08-01

    Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

  13. Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Chao Yan

    2017-01-01

    Full Text Available Heavy-phosphorus-doped silicon anodes were fabricated on CuO nanorods for application in high power lithium-ion batteries. Since the conductivity of lithiated CuO is significantly better than that of CuO, after the first discharge, the voltage cut-off window was then set to the range covering only the discharge–charge range of Si. Thus, the CuO core was in situ lithiated and acts merely as the electronic conductor in the following cycles. The Si anode presented herein exhibited a capacity of 990 mAh/g at the rate of 9 A/g after 100 cycles. The anode also presented a stable rate performance even at a current density as high as 20 A/g.

  14. A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer

    Science.gov (United States)

    Jin, Liming; Li, Gaoran; Liu, Binhong; Li, Zhoupeng; Zheng, Junsheng; Zheng, Jim P.

    2017-07-01

    Lithium sulfur (Lisbnd S) batteries are one of the most promising energy storage devices owing to their high energy and power density. However, the shuttle effect as a key barrier hinders its practical application by resulting in low coulombic efficiency and poor cycling performance. Herein, a novel design of in situ formed polysulfide adsorptive-blocking layer (PAL) on the cathode surface was developed to tame the polysulfide shuttling and promote the cycling stability for Lisbnd S batteries. The PAL is consisted of La2S3, which is capable to chemically adsorb polysulfide via the strong interaction of Lasbnd S bond and Ssbnd S bond, and build an effective barrier against sulfur escaping. Moreover, the La2S3 is capable to suppress the crystallization of Li2S and promote the ion transfer, which contributes to the reduced internal resistance of batteries. Furthermore, the by-product LiNO3 simultaneously forms a stable anode solid and electrolyte interface to further inhibit the polysulfide shuttle. By this simple and convenient method, the resultant Lisbnd S batteries achieved exceptional cycling stability with an ultralow decay rate of 0.055% since the 10th cycle.

  15. High Cycle Life, Low Temperature Lithium Ion Battery for Earth Orbiting and Planetary Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires development of advanced rechargeable electrochemical battery systems for lithium ion batteries to support orbiting spacecraft and planetary missions....

  16. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  17. A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance.

    Science.gov (United States)

    Song, Min-Kyu; Zhang, Yuegang; Cairns, Elton J

    2013-01-01

    Lithium/sulfur (Li/S) cells are receiving significant attention as an alternative power source for zero-emission vehicles and advanced electronic devices due to the very high theoretical specific capacity (1675 mA·h/g) of the sulfur cathode. However, the poor cycle life and rate capability have remained a grand challenge, preventing the practical application of this attractive technology. Here, we report that a Li/S cell employing a cetyltrimethyl ammonium bromide (CTAB)-modified sulfur-graphene oxide (S-GO) nanocomposite cathode can be discharged at rates as high as 6C (1C = 1.675 A/g of sulfur) and charged at rates as high as 3C while still maintaining high specific capacity (~ 800 mA·h/g of sulfur at 6C), with a long cycle life exceeding 1500 cycles and an extremely low decay rate (0.039% per cycle), perhaps the best performance demonstrated so far for a Li/S cell. The initial estimated cell-level specific energy of our cell was ~ 500 W·h/kg, which is much higher than that of current Li-ion cells (~ 200 W·h/kg). Even after 1500 cycles, we demonstrate a very high specific capacity (~ 740 mA·h/g of sulfur), which corresponds to ~ 414 mA·h/g of electrode: still higher than state-of-the-art Li-ion cells. Moreover, these Li/S cells with lithium metal electrodes can be cycled with an excellent Coulombic efficiency of 96.3% after 1500 cycles, which was enabled by our new formulation of the ionic liquid-based electrolyte. The performance we demonstrate herein suggests that Li/S cells may already be suitable for high-power applications such as power tools. Li/S cells may now provide a substantial opportunity for the development of zero-emission vehicles with a driving range similar to that of gasoline vehicles.

  18. A high energy physics perspective

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.

    1997-01-13

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  19. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  20. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Barnes, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  1. Quantum chromodynamics at high energy

    CERN Document Server

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  2. High Lithium Insertion Voltage Single-Crystal H2 Ti12 O25 Nanorods as a High-Capacity and High-Rate Lithium-Ion Battery Anode Material.

    Science.gov (United States)

    Guo, Qiang; Chen, Li; Shan, Zizhao; Lee, Wee Siang Vincent; Xiao, Wen; Liu, Zhifang; Liang, Jingjing; Yang, Gaoli; Xue, Junmin

    2017-11-04

    H2 Ti12 O25 holds great promise as a high-voltage anode material for advanced lithium-ion battery applications. To enhance its electrochemical performance, control of the crystal orientation and morphology is an effective way to cope with slow Li+ -ion diffusion inside H2 Ti12 O25 with severe anisotropy. In this report, Na2 Ti6 O13 nanorods, prepared from Na2 CO3 and anatase TiO2 in molten NaCl medium, were used as a precursor in the synthesis of long single-crystal H2 Ti12 O25 nanorods with reactive facets. The as-prepared H2 Ti12 O25 nanorods with a diameter of 100-200 nm showed higher charge (extraction) specific capacity and better rate performance than previously reported systems. The reversible capacity of H2 Ti12 O25 was 219.8 mAh g-1 at 1C after 100 cycles, 172.1 mAh g-1 at 10C, and 144.4 mAh g-1 at 20C after 200 cycles; these values are higher than those of H2 Ti12 O25 prepared by the conventional soft-chemical method. Moreover, the as-prepared H2 Ti12 O25 nanorods exhibited superior cycle stability with more than 94 % retention of capacity with nearly 100 % coulombic efficiency after 100 cycles at 1C. On the basis of the above results, long single-crystal H2 Ti12 O25 nanorods synthesized in molten NaCl with outstanding electrochemical characteristics hold a significant amount of promise for hybrid electric vehicles and energy-storage systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Improving reversible capacities of high-surface lithium insertion materials – the case of amorphous TiO2

    NARCIS (Netherlands)

    Ganapathy, S.; Basak, S.; Lefering, A.; Rogers, E.; Zandbergen, H.W.; Wagemaker, M.

    2014-01-01

    Chemisorbed water and solvent molecules and their reactivity with components from the electrolyte in high-surface nano-structured electrodes remains a contributing factor toward capacity diminishment on cycling in lithium ion batteries due to the limit in maximum annealing temperature. Here, we

  4. Current status of environmental, health, and safety issues of lithium polymer electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D; Hammel, C J

    1995-02-01

    Lithium solid polymer electrolyte (SPE) batteries are being investigated by researchers worldwide as a possible energy source for future electric vehicles (EVs). One of the main reasons for interest in lithium SPE battery systems is the potential safety features they offer as compared to lithium battery systems using inorganic and organic liquid electrolytes. However, the development of lithium SPE batteries is still in its infancy, and the technology is not envisioned to be ready for commercialization for several years. Because the research and development (R&D) of lithium SPE battery technology is of a highly competitive nature, with many companies both in the United States and abroad pursuing R&D efforts, much of the information concerning specific developments of lithium SPE battery technology is proprietary. This report is based on information available only through the open literature (i.e., information available through library searches). Furthermore, whereas R&D activities for lithium SPE cells have focused on a number of different chemistries, for both electrodes and electrolytes, this report examines the general environmental, health, and safety (EH&S) issues common to many lithium SPE chemistries. However, EH&S issues for specific lithium SPE cell chemistries are discussed when sufficient information exists. Although lithium batteries that do not have a SPE are also being considered for EV applications, this report focuses only on those lithium battery technologies that utilize the SPE technology. The lithium SPE battery technologies considered in this report may contain metallic lithium or nonmetallic lithium compounds (e.g., lithium intercalated carbons) in the negative electrode.

  5. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.

  6. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    Science.gov (United States)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  7. Raspberry-like Nanostructured Silicon Composite Anode for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Fang, Shan; Tong, Zhenkun; Nie, Ping; Liu, Gao; Zhang, Xiaogang

    2017-06-07

    Adjusting the particle size and nanostructure or applying carbon materials as the coating layers is a promising method to hold the volume expansion of Si for its practical application in lithium-ion batteries (LIBs). Herein, the mild carbon coating combined with a molten salt reduction is precisely designed to synthesize raspberry-like hollow silicon spheres coated with carbon shells (HSi@C) as the anode materials for LIBs. The HSi@C exhibits a remarkable electrochemical performance; a high reversible specific capacity of 886.2 mAh g -1 at a current density of 0.5 A g -1 after 200 cycles is achieved. Moreover, even after 500 cycles at a current density of 2.0 A g -1 , a stable capacity of 516.7 mAh g -1 still can be obtained.

  8. Interfacial reactions in lithium batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil

    2017-08-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.

  9. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  10. Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries

    Science.gov (United States)

    Lee, Jun Seop; Manthiram, Arumugam

    2017-03-01

    Despite the higher energy density than the conventional Li-ion cells at a lower cost, commercialization of Lisbnd S batteries is hindered by the insulating nature of sulfur and the dissolution of intermediate polysulfides (Li2SX, 4 < X ≤ 8) into the electrolyte. We demonstrate here hydroxylated N-doped carbon nanotubes (H-NCNT) as sulfur containers in lithium-sulfur batteries to reduce polysulfide shuttling through an interaction between polysulfides and nitrogen and hydroxyl groups in the H-NCNT. This sulfur-carbon composite electrode with 2.2 mg cm-2 sulfur displays excellent performance with high rate capability (initial capacity of 1341 mAh g-1 at C/5 rate and 849 mAh g-1 at 5C rate), rate stability until 500 cycles (a decay of 0.06% per cycle). Furthermore, a stable reversible capacity of as high as ∼1081 mAh g-1 is realized with a higher sulfur loading of 5.1 mg cm-2.

  11. Synthesis of Si nanosheets by using Sodium Chloride as template for high-performance lithium-ion battery anode material

    Science.gov (United States)

    Wang, P. P.; Zhang, Y. X.; Fan, X. Y.; Zhong, J. X.; Huang, K.

    2018-03-01

    Due to the shorter path length and more channels for lithium ion diffusion and insertion, the two-dimensional (2D) Si nanosheets exhibit superior electrochemical performances in the field of electrochemical energy storage and conversion. Recently, various efforts have been focused on how to synthesize 2D Si nanosheets. However, there are many difficulties to achieve the larger area, high purity of 2D Si nanosheets. Herein, we developed a facile and scalable synthesis strategy to fabricate 2D Si nanosheets, utilizing the unique combination of the water-soluble NaCl particles as the sacrificial template and the hydrolyzed tetraethyl orthosilicate as the silica source, and assisting with the magnesium reduction method. Importantly, the obtained Si nanosheets have a larger area up to 10 μm2. Through combining with reduced graphene oxides (rGO), the Si nanosheets@rGO composite electrode exhibits excellent electrochemical performances. It delivers high reversible capacity about 2500 mAh g-1 at the current density of 0.2 A g-1, as well as an excellent rate capability over 900 mAh g-1 at 2 A g-1 even after 200 cycles.

  12. The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review

    Science.gov (United States)

    Deng, Yuanfu; Fang, Chengcheng; Chen, Guohua

    2016-02-01

    With the increasing energy demands for electronic devices and electrical vehicles, anode materials for lithium ion batteries (LIBs) with high specific capacity, good cyclic and rate performances become one of the focal areas of research. Among the various anode materials, SnO2/graphene nanocomposites have drawn extensive attentions due to their high theoretical specific capacities, low charge potential vs. Li/Li+ and environmental benignity. In this review, the advances, including the synthetic methods and structural optimizations, of the SnO2/graphene nanocomposites as anode materials for LIBs have been reviewed in detail. By providing an in-depth discussion of SnO2/graphene nanocomposites, we aim to demonstrate that the electrochemical performances of SnO2/graphene nanocomposites could be significantly enhanced by rational modifications of morphology and crystal structures, chemical compositions and surface features. Though only focusing on SnO2/graphene-based composites, the concepts and strategies should be referential to other metal oxide/graphene composites.

  13. Solution-combustion synthesized nickel-substituted spinel cathode materials (LiNixMn2-xO4; 0≤x≤0.2) for lithium ion battery: enhancing energy storage, capacity retention, and lithium ion transport

    CSIR Research Space (South Africa)

    Kebede, MA

    2014-01-01

    Full Text Available Spherically shaped Ni-substituted LiNi(subx)Mn(sub2-x)O(sub4) (x=0, 0.1, 0.2) spinel cathode materials for lithium ion battery with high first cycle discharge capacity and remarkable cycling performance were synthesized using the solution...

  14. Molecular structure and stability of dissolved lithium polysulfide species.

    Science.gov (United States)

    Vijayakumar, M; Govind, Niranjan; Walter, Eric; Burton, Sarah D; Shukla, Anil; Devaraj, Arun; Xiao, Jie; Liu, Jun; Wang, Chongmin; Karim, Ayman; Thevuthasan, S

    2014-06-14

    The ability to predict the solubility and stability of lithium polysulfide is vital in realizing longer lasting lithium-sulfur batteries. Herein we report combined experimental and computational analyses to understand the dissolution mechanism of lithium polysulfide species in an aprotic solvent medium. Multinuclear NMR, variable temperature ESR and sulfur K-edge XAS analyses reveal that the lithium exchange between polysulfide species and solvent molecules constitutes the first step in the dissolution process. Lithium exchange leads to de-lithiated polysulfide ions (Sn(2-)) which subsequently form highly reactive free radicals through dissociation reaction (Sn(2-) → 2Sn/2˙(-)). The energy required for the dissociation and possible dimer formation reactions of the polysulfide species is analyzed using density functional theory (DFT) based calculations. Based on these findings, we discuss approaches to optimize the electrolyte in order to control the polysulfide solubility.

  15. Scalable Production of the Silicon-Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Jin, Yan; Tan, Yingling; Hu, Xiaozhen; Zhu, Bin; Zheng, Qinghui; Zhang, Zijiao; Zhu, Guoying; Yu, Qian; Jin, Zhong; Zhu, Jia

    2017-05-10

    Alloy anodes possessed of high theoretical capacity show great potential for next-generation advanced lithium-ion battery. Even though huge volume change during lithium insertion and extraction leads to severe problems, such as pulverization and an unstable solid-electrolyte interphase (SEI), various nanostructures including nanoparticles, nanowires, and porous networks can address related challenges to improve electrochemical performance. However, the complex and expensive fabrication process hinders the widespread application of nanostructured alloy anodes, which generate an urgent demand of low-cost and scalable processes to fabricate building blocks with fine controls of size, morphology, and porosity. Here, we demonstrate a scalable and low-cost process to produce a porous yin-yang hybrid composite anode with graphene coating through high energy ball-milling and selective chemical etching. With void space to buffer the expansion, the produced functional electrodes demonstrate stable cycling performance of 910 mAh g-1 over 600 cycles at a rate of 0.5C for Si-graphene "yin" particles and 750 mAh g-1 over 300 cycles at 0.2C for Sn-graphene "yang" particles. Therefore, we open up a new approach to fabricate alloy anode materials at low-cost, low-energy consumption, and large scale. This type of porous silicon or tin composite with graphene coating can also potentially play a significant role in thermoelectrics and optoelectronics applications.

  16. The Surface Coating of Commercial LiFePO4 by Utilizing ZIF-8 for High Electrochemical Performance Lithium Ion Battery

    Science.gov (United States)

    Xu, XiaoLong; Qi, CongYu; Hao, ZhenDong; Wang, Hao; Jiu, JinTing; Liu, JingBing; Yan, Hui; Suganuma, Katsuaki

    2018-03-01

    The requirement of energy-storage equipment needs to develop the lithium ion battery (LIB) with high electrochemical performance. The surface modification of commercial LiFePO4 (LFP) by utilizing zeolitic imidazolate frameworks-8 (ZIF-8) offers new possibilities for commercial LFP with high electrochemical performances. In this work, the carbonized ZIF-8 (CZIF-8) was coated on the surface of LFP particles by the in situ growth and carbonization of ZIF-8. Transmission electron microscopy indicates that there is an approximate 10 nm coating layer with metal zinc and graphite-like carbon on the surface of LFP/CZIF-8 sample. The N2 adsorption and desorption isotherm suggests that the coating layer has uniform and simple connecting mesopores. As cathode material, LFP/CZIF-8 cathode-active material delivers a discharge specific capacity of 159.3 mAh g-1 at 0.1C and a discharge specific energy of 141.7 mWh g-1 after 200 cycles at 5.0C (the retention rate is approximate 99%). These results are attributed to the synergy improvement of the conductivity, the lithium ion diffusion coefficient, and the degree of freedom for volume change of LFP/CZIF-8 cathode. This work will contribute to the improvement of the cathode materials of commercial LIB.[Figure not available: see fulltext.

  17. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries

    Science.gov (United States)

    Breitung, Ben; Baumann, Peter; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten

    2016-07-01

    Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle size as well as electrode structure and height are visualized with high resolution. Furthermore, the formation and evolution of the solid-electrolyte interphase (SEI) can be followed and its thickness determined by phase imaging and nano-indentation, respectively. Major changes occur in the first lithiation cycle at potentials below 0.6 V with respect to Li/Li+ due to increased SEI formation - which is a dynamic process - and alloying reactions. Overall, these results provide insight into the function of silicon-based composite electrodes and further show that AFM is a powerful technique that can be applied to important battery materials, without restriction to thin film geometries.Silicon is a promising next-generation anode material for high-energy-density lithium-ion batteries. While the alloying of nano- and micron size silicon with lithium is relatively well understood, the knowledge of mechanical degradation and structural rearrangements in practical silicon-based electrodes during operation is limited. Here, we demonstrate, for the first time, in situ and operando atomic force microscopy (AFM) of nano-silicon anodes containing polymer binder and carbon black additive. With the help of this technique, the surface topography is analyzed while electrochemical reactions are occurring. In particular, changes in particle

  18. Duke University high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and {sub {Chi}} meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report.

  19. The lithium superoxide radical: Symmetry breaking phenomena and potential energy surfaces

    Science.gov (United States)

    Allen, Wesley D.; Horner, David A.; Dekock, Roger L.; Remington, Richard B.; Schaefer, Henry F.

    1989-05-01

    The two lowest electronic states of the lithium superoxide radical, LiO 2, have been investigated using ab initio theoretical techniques, including RHF SCF, CISD, Davidson-corrected CISD [CISD + (Q)], UHF SCF, UMP2, UMP3, UMP4(SDTQ), spin-projected UHF and UMP, valence and extravalence CASSCF (CASSCF-v and CASSCF-π), and CISD based on CASSCF natural orbitals (CISD-π). Four basis sets ranging in quality from Li (9s4p/5s2p), O (9s5pld/5s3pld) to Li (10s5pld/6s4pld), O(11s7p2dlf/6s5p2dlf) were employed, these being designated TZP, QZ2P, QZ2P+R, and QZ2P+R+f. The investigation encompassed dissociation energies, relative energies of various conformations, geometrical structures, vibrational frequencies, infrared and Raman intensities, dipole moments, cubic force fields, vibration-rotation interaction constants, and symmetry breaking phenomena. The onset of spatial symmetry breaking in the electronic orbitals of the TZP RHF reference wavefunction for overlineX2A 2 LiO 2 leads to an irremovable singularity in the quadratic force constant for antisymmetric LiO stretching at the isosceles-triangle (C 2v) geometry d(OO) = 1.3266 Å and r(LiO) = 1.7737 Å. This anomalous lowering of spatial symmetry from C 2v to C s, makes the two oxygen atoms inequivalent, and thus it becomes necessary to avert the symmetry dilemma in the reference wavefunction to provide unequivocal evidence for a C 2v geometrical structure of overlineX2A 2 LiO 2 which is consistent with the ionic model. This task is achieved with the CASSCF-π and CISD-π wavefunctions, the latter yielding d(OO) = 1.3405 Å, r(LiO) = 1.7937 Å, ω 1(a 1) = 1263 cm -1, ω 2(a 1) = 740 cm -1, and ω 3(b 2) = 519 cm -1 at the C 2v equilibrium geometry. Final proposals of d(OO) = 1.335 Å, r(LiO) = 1.76 Å, and D0(LiO 2) = 62 kcal/mol are made for overlineX2A 2 LiO 2, as indicated by appurtenant studies of overlineX2Π gO 2-1 and overlineX2Π LiO. Improved predictions are thereby provided for gas

  20. Highly conductive paper for energy-storage devices

    KAUST Repository

    Hu, L.

    2009-12-07

    Paper, invented more than 2,000 years ago and widely used today in our everyday lives, is explored in this study as a platform for energy-storage devices by integration with 1D nanomaterials. Here, we show that commercially available paper can be made highly conductive with a sheet resistance as low as 1 ohm per square (Omega/sq) by using simple solution processes to achieve conformal coating of single-walled carbon nanotube (CNT) and silver nanowire films. Compared with plastics, paper substrates can dramatically improve film adhesion, greatly simplify the coating process, and significantly lower the cost. Supercapacitors based on CNT-conductive paper show excellent performance. When only CNT mass is considered, a specific capacitance of 200 F/g, a specific energy of 30-47 Watt-hour/kilogram (Wh/kg), a specific power of 200,000 W/kg, and a stable cycling life over 40,000 cycles are achieved. These values are much better than those of devices on other flat substrates, such as plastics. Even in a case in which the weight of all of the dead components is considered, a specific energy of 7.5 Wh/kg is achieved. In addition, this conductive paper can be used as an excellent lightweight current collector in lithium-ion batteries to replace the existing metallic counterparts. This work suggests that our conductive paper can be a highly scalable and low-cost solution for high-performance energy storage devices.

  1. Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Kerisit, Sebastien N.; Gin, Stephane; Wang, Zhaoying; Zhu, Zihua; Ryan, Joseph V.

    2014-12-01

    Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other processes occurring simultaneously during corrosion. In this work, an operationally inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting glass coupons relevant to the immobilization of high-level nuclear waste, SON68 and CJ-6, which contained Li in natural isotope abundance, with a non-aqueous solution of 6LiCl dissolved in dimethyl sulfoxide at 90 °C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, DLi, were then calculated based on the measured depth profiles. The results indicate that the penetration of 6Li is rapid in both glasses with the simplified CJ-6 glass (D6Li ≈ 4.0-8.0 × 10-21 m2/s) exhibiting faster exchange than the more complex SON68 glass (DLi ≈ 2.0-4.0 × 10-21 m2/s). Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions; however, different diffusion coefficients were necessary to fit the diffusion profiles of the two alkali ions. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed.

  2. $^7Be(n,\\alpha)^4He$ reaction and the Cosmological Lithium Problem: measurement of the cross section in a wide energy range at n_TOF (CERN)

    CERN Document Server

    Barbagallo, M.; Cosentino, L.; Maugeri, E.; Heinitz, S.; Mengoni, A.; Dressler, R.; Schumann, D.; Käppeler, F.; Colonna, N.; Finocchiaro, P.; Ayranov, M.; Damone, L.; Kivel, N.; Aberle, O.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea-Correa, J.; Barros, S.; Bécares, V.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cortés-Giraldo, M. A.; Cristallo, S.; Diakaki, M.; Domingo-Pardo, C.; Dupont, E.; Duran, I.; Fernandez-Dominguez, B.; Ferrari, A.; Ferreira, P.; Furman, W.; Ganesan, S.; García-Rios, A.; Gawlik, A.; Glodariu, T.; Göbel, K.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heftrich, T.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Katabuchi, T.; Kavrigin, P.; Kimura, A.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lerendegui, J.; Lederer, C.; Leeb, H.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mazzone, A.; Mendoza, E.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Nolte, R.; Oprea, A.; Pappalardo, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Piscopo, M.; Plompen, A.; Porras, I.; Praena, J.; Quesada, J.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P.; Rubbia, C.; Ryan, J.; Sabate-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Vollaire, J.; Wallner, A.; Warren, S.; Weigand, M.; Weiß, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2016-01-01

    The energy-dependent cross section of the 7Be(n,alpha)4He reaction, of interest for the so-called Cosmological Lithium Problem in Big Bang Nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of 7Be and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure 7Be, and a specifically designed experimental setup. Coincidences between the two alpha-particles have been recorded in two Si-7Be-Si arrays placed directly in the neutron beam. The present results are consistent, at thermal neutron energy, with the only previous measurement performed in the 60's at a nuclear reactor. The energy dependence here reported clearly indicates the inadequacy of the cross section estimates currently used in ...

  3. Dual Core-Shell-Structured S@C@MnO2 Nanocomposite for Highly Stable Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ni, Lubin; Zhao, Gangjin; Yang, Guang; Niu, Guosheng; Chen, Ming; Diao, Guowang

    2017-10-11

    Lithium-sulfur (Li-S) batteries have currently excited worldwide academic and industrial interest as a next-generation high-power energy storage system (EES) because of their high energy density and low cost of sulfur. However, the commercialization application is being hindered by capacity decay, mainly attributed to the polysulfide shuttle and poor conductivity of sulfur. Here, we have designed a novel dual core-shell nanostructure of S@C@MnO2 nanosphere hybrid as the sulfur host. The S@C@MnO2 nanosphere is successfully prepared using mesoporous carbon hollow spheres (MCHS) as the template and then in situ MnO2 growth on the surface of MCHS. In comparison with polar bare sulfur hosts materials, the as-prepared robust S@C@MnO2 composite cathode delivers significantly improved electrochemical performances in terms of high specific capacity (1345 mAh g-1 at 0.1 C), remarkable rate capability (465 mA h g-1 at 5.0 C) and excellent cycling stability (capacity decay rate of 0.052% per cycle after 1000 cycles at 3.0 C). Such a structure as cathode in Li-S batteries can not only store sulfur via inner mesoporous carbon layer and outer MnO2 shell, which physically/chemically confine the polysulfides shuttle effect, but also ensure overall good electrical conductivity. Therefore, these synergistic effects are achieved by unique structural characteristics of S@C@MnO2 nanospheres.

  4. Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhang, Xuqing; Xie, Dong; Zhong, Yu; Wang, Donghuang; Wu, Jianbo; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2017-08-04

    Lithium-sulfur batteries (LSBs) are considered to be among the most promising next-generation high-energy batteries. It is a consensus that improving the conductivity of sulfur cathodes and impeding the dissolution of lithium polysulfides are two key accesses to high-performance LSBs. Herein we report a sulfur/carbon black (S/C) cathode modified by self-polymerized polydopamine (pDA) with the assistance of polymerization treatment. The pDA acts as a novel and effective shell on the S/C cathode to stop the shuttle effect of polysulfides. By the synergistic effect of enhanced conductivity and multiple blocking effect for polysulfides, the S/C@pDA electrode exhibits improved electrochemical performances including large specific capacity (1135 mAh g-1 at 0.2 C), high rate capability (533 mAh g-1 at 5 C) and long cyclic life (965 mAh g-1 after 200 cycles). Our smart design strategy may promote the development of high-performance LSBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery.

    Science.gov (United States)

    Jiang, Tiancai; Bu, Fanxing; Feng, Xiaoxiang; Shakir, Imran; Hao, Guolin; Xu, Yuxi

    2017-05-23

    Integrating nanoscale porous metal oxides into three-dimensional graphene (3DG) with encapsulated structure is a promising route but remains challenging to develop high-performance electrodes for lithium-ion battery. Herein, we design 3DG/metal organic framework composite by an excessive metal-ion-induced combination and spatially confined Ostwald ripening strategy, which can be transformed into 3DG/Fe2O3 aerogel with porous Fe2O3 nanoframeworks well encapsulated within graphene. The hierarchical structure offers highly interpenetrated porous conductive network and intimate contact between graphene and porous Fe2O3 as well as abundant stress buffer nanospace for effective charge transport and robust structural stability during electrochemical processes. The obtained free-standing 3DG/Fe2O3 aerogel was directly used as highly flexible anode upon mechanical pressing for lithium-ion battery and showed an ultrahigh capacity of 1129 mAh/g at 0.2 A/g after 130 cycles and outstanding cycling stability with a capacity retention of 98% after 1200 cycles at 5 A/g, which is the best results that have been reported so far. This study offers a promising route to greatly enhance the electrochemical properties of metal oxides and provides suggestive insights for developing high-performance electrode materials for electrochemical energy storage.

  6. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries

    Science.gov (United States)

    Hu, Lin; Chen, Qianwang

    2014-01-01

    Lithium-ion batteries (LIBs), owing to their high energy density, light weight, and long cycle life, have shown considerable promise for storage devices. The successful utilization of LIBs depends strongly on the preparation of nanomaterials with outstanding lithium storage properties. Recent progress has demonstrated that hollow/porous nanostructured oxides are very attractive candidates for LIBs anodes due to their high storage capacities. Here, we aim to provide an overview of nanoscale metal-organic frameworks (NMOFs)-templated synthesis of hollow/porous nanostructured oxides and their LIBs applications. By choosing some typical NMOFs as examples, we present a comprehensive summary of synthetic procedures for nanostructured oxides, such as binary, ternary and composite oxides. Hollow/porous structures are readily obtained due to volume loss and release of internally generated gas molecules during the calcination of NMOFs in air. Interestingly, the NMOFs-derived hollow/porous structures possess several special features: pores generated from gas molecules release will connect to each other, which are distinct from ``dead pores'' pore size often appears to be pore surface is hydrophobic. These structural features are believed to be the most critical factors that determine LIBs' performance. Indeed, it has been shown that these NMOFs-derived hollow/porous oxides exhibit excellent electrochemical performance as anode materials for LIBs, including high storage capacity, good cycle stability, and so on. For example, a high charge capacity of 1465 mA h g-1 at a rate of 300 mA g-1 was observed after 50 cycles for NMOFs-derived Co3O4 porous nanocages, which corresponds to 94.09% of the initial capacity (1557 mA h g-1), indicating excellent stability. The capacity of NMOFs-derived Co3O4 is higher than that of other Co3O4 nanostructures obtained by a conventional two-step route, including nanosheets (1450 mA h g-1 at 50 mA g-1), nanobelts (1400 mA h g-1 at 40 mA g-1) and

  7. Use of the anion gap and intermittent hemodialysis following continuous hemodiafiltration in extremely high dose acute-on-chronic lithium poisoning: A case report.

    Science.gov (United States)

    Komaru, Yohei; Inokuchi, Ryota; Ueda, Yoshihiro; Nangaku, Masaomi; Doi, Kent

    2017-08-10

    A 35-year-old woman intentionally took 40,000 mg of lithium carbonate, and she was transferred to our hospital with nausea, vomiting, and diarrhea. She was diagnosed as having bipolar disorder 10 years ago and was receiving oral lithium therapy. Blood test results on arrival were remarkable for a negative anion gap of -2.1 and later, the serum lithium level turned out to be as high as 15.4 mEq/L. Intubation was required because of disrupted consciousness, and continuous hemodiafiltration (CHDF) was immediately started in the intensive care unit to obtain constant removal of lithium. After adding intermittent hemodialysis (IHD) twice during the daytime to accelerate the lithium clearance, CHDF became unnecessary on day 4, and she was extubated on day 6 with complete recovery of consciousness. Close monitoring of the patient data showed recovery of the decreased anion gap as indicator of the serum lithium level reduction. On day 36, she was discharged without any complication and sequela. The current case highlighted the effective use of CHDF between IHD sessions to prevent the rebound elevation of lithium and the role of the anion gap as a surrogate marker of serum lithium concentration during the treatment. © 2017 International Society for Hemodialysis.

  8. Systematic Optimization of Battery Materials: Key Parameter Optimization for the Scalable Synthesis of Uniform, High-Energy, and High Stability LiNi0.6Mn0.2Co0.2O2 Cathode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Ren, Dong; Shen, Yun; Yang, Yao; Shen, Luxi; Levin, Barnaby D A; Yu, Yingchao; Muller, David A; Abruña, Héctor D

    2017-10-18

    Ni-rich LiNixMnyCo1-x-yO2 (x > 0.5) (NMC) materials have attracted a great deal of interest as promising cathode candidates for Li-ion batteries due to their low cost and high energy density. However, several issues, including sensitivity to moisture, difficulty in reproducibly preparing well-controlled morphology particles and, poor cyclability, have hindered their large scale deployment; especially for electric vehicle (EV) applications. In this work, we have developed a uniform, highly stable, high-energy density, Ni-rich LiNi0.6Mn0.2Co0.2O2 cathode material by systematically optimizing synthesis parameters, including pH, stirring rate, and calcination temperature. The particles exhibit a spherical morphology and uniform size distribution, with a well-defined structure and homogeneous transition-metal distribution, owing to the well-controlled synthesis parameters. The material exhibited superior electrochemical properties, when compared to a commercial sample, with an initial discharge capacity of 205 mAh/g at 0.1 C. It also exhibited a remarkable rate capability with discharge capacities of 157 mAh/g and 137 mAh/g at 10 and 20 C, respectively, as well as high tolerance to air and moisture. In order to demonstrate incorporation into a commercial scale EV, a large-scale 4.7 Ah LiNi0.6Mn0.2Co0.2O2 Al-full pouch cell with a high cathode loading of 21.6 mg/cm2, paired with a graphite anode, was fabricated. It exhibited exceptional cyclability with a capacity retention of 96% after 500 cycles at room temperature. This material, which was obtained by a fully optimized scalable synthesis, delivered combined performance metrics that are among the best for NMC materials reported to date.

  9. Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zainab, Ghazala [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Xianfeng, E-mail: wxf@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China); Yu, Jianyong [Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China); Zhai, Yunyun; Ahmed Babar, Aijaz; Xiao, Ke [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Ding, Bin, E-mail: binding@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China)

    2016-10-01

    Lithium ion batteries (LIBs) for high performance require separators with auspicious reliability and safety. Keeping LIBs reliability and safety in view, microporous polyacrylonitrile (PAN)/polyurethane (PU) nonwoven composite separator have been developed by electrospinning technique. The physical, electrochemical and thermal properties of the PAN/PU separator were characterized. Improved ionic conductivity up to 2.07 S cm{sup −1}, high mechanical strength (10.38 MPa) and good anodic stability up to 5.10 V are key outcomes of resultant membranes. Additionally, high thermal stability displaying only 4% dimensional change after 0.5 h long exposure to 170 °C in an oven, which could be valuable addition towards the safety of LIBs. Comparing to commercialized polypropylene based separators, resulting membranes offered improved internal short-circuit protection function, offering better rate capability and enhanced capacity retention under same observation conditions. These fascinating characteristics endow these renewable composite nonwovens as promising separators for high power LIBs battery. - Highlights: • The PAN/PU based separators were prepared by multi-needle electrospinning technique. • The electrospun separators displays good mechanical properties and thermal stability. • These separators exhibit good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection. • Nanofibrous composite nonwoven possesses stable cyclic performance which give rise to acceptable battery performances.

  10. Reconfiguration of lithium sulphur batteries: "Enhancement of Li-S cell performance by employing a highly porous conductive separator coating"

    Science.gov (United States)

    Stoeck, Ulrich; Balach, Juan; Klose, Markus; Wadewitz, Daniel; Ahrens, Eike; Eckert, Jürgen; Giebeler, Lars

    2016-03-01

    Li-S batteries are an emerging technology and the most promising successor of current lithium ion technology. While there is great perspective in terms of superior theoretical specific capacity and energy density great challenges have to be addressed. One major challenge, severely limiting cycle performance and capacity retention, is the shuttling of polysulphide species. In this contribution we show a reconfiguration of the usual Li-S cell. Instead of generating a carbon/sulphur composite by melt infiltration a highly porous, conductive nitrogen-rich carbon material (TNC) is coated onto a commercial polypropylene separator foil. The thin conductive coating of TNC on the separator enables the application of very simple sulphur/carbon black cathodes. Because the melt infiltration of sulphur in a porous host material becomes unnecessary the electrode processing is significantly simplified. The specific capacity and cycling stability of reconfigurated cells are both improved significantly compared to the performance of a standard cell setup using a pristine separator. At a constant charging rate of C/5 cells with modified separator showed 2.5 times higher residual capacity (1016 mAh g-1) than cells with pristine separator (405 mAh g-1).

  11. Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperatures

    Science.gov (United States)

    Zhu, Jiangong; Sun, Zechang; Wei, Xuezhe; Dai, Haifeng; Gu, Weijun

    2017-11-01

    Effect of the AC (alternating current) pulse heating method on battery SoH (state of health) for large laminated power lithium-ion batteries at low temperature is investigated experimentally. Firstly, excitation current frequencies, amplitudes, and voltage limitations on cell temperature evolution are studied. High current amplitudes facilitate the heat accumulation and temperature rise. Low frequency region serves as a good innovation to heat the battery because of the large impedance. Wide voltage limitations also enjoy better temperature evolution owing to the less current modulation, but the temperature difference originated from various voltage limitations attenuates due to the decrement of impedance resulting from the temperature rise. Experiments with the thermocouple-embedded cell manifest good temperature homogeneity between the battery surface and interior during the AC heating process. Secondly, the cell capacity, Direct Current resistance and Electrochemical Impedance Spectroscopy are all calibrated to assess the battery SoH after the hundreds of AC pulse heating cycles. Also, all cells are disassembled to investigate the battery internal morphology with the employment of Scanning Electron Microscope and Energy-Dispersive x-ray Spectroscopy techniques. The results indicate that the AC heating method does not aggravate the cell degradation even in the low frequency range (0.5 Hz) under the normal voltage protection limitation.

  12. Improving reversible capacities of high surface lithium insertion materials – the case of amorphous TiO2

    Directory of Open Access Journals (Sweden)

    Swapna eGanapathy

    2014-11-01

    Full Text Available Chemisorbed water and solvent molecules and their reactivity with components from the electrolyte in high-surface nanostructured electrodes remains a contributing factor towards capacity diminishment on cycling in lithium ion batteries due to the limit in maximum annealing temperature. Here we report a marked improvement in the capacity retention of amorphous TiO2 by the choice of preparation solvent, control of annealing temperature and the presence of surface functional groups. Careful heating of the amorphous TiO2 sample prepared in acetone under vacuum lead to complete removal of all molecular solvent and an improved capacity retention of 220 mAh/g over 50 cycles at a C/10 rate. Amorphous TiO2 when prepared in ethanol and heated under vacuum showed an even better capacity retention of 240 mAh/g. From FTIR Spectroscopy and Electron Energy Loss Spectroscopy measurements, the improved capacity is attributed to the complete removal of ethanol and the presence of very small fractions of residual functional groups coordinated to oxygen-deficient surface titanium sites. These displace the more reactive chemisorbed hydroxyl groups, limiting reaction with components from the electrolyte and possibly enhancing the integrity of the solid electrolyte interface (SEI. The present research provides a facile strategy to improve the capacity retention of nanostructured electrode materials.

  13. Direct Synthesis of Lithium-Intercalated Graphene for Electrochemical Energy Storage Application

    Science.gov (United States)

    2011-01-01

    walled carbon nanotubes (SWNT/MWNT) dispersed in Li/NH3 form “nanotube salts” that react with alkyl or aryl halides to generate free radicals that add...nanotubes.25 In this paper , we describe a new synthesis method for the preparation of lithium-ion-interca- lated graphene sheets and their suitability as...Preparation and Characterization of Graphene Oxide Paper . Nature 2007, 448, 457–460. 6. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M

  14. Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Chunmei; Wu, Zhuangchun; Dillon, Anne C.

    2017-01-10

    An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110) also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).

  15. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery

    Science.gov (United States)

    Zhang, Weige; Shi, Wei; Ma, Zeyu

    2015-09-01

    Accurate estimations of battery energy and available power capability are of great of importance for realizing an efficient and reliable operation of electric vehicles. To improve the estimation accuracy and reliability for battery state of energy and power capability, a novel model-based joint estimation approach has been proposed against uncertain external operating conditions and internal degradation status of battery cells. Firstly, it proposes a three-dimensional response surface open circuit voltage model to calibrate the estimation inaccuracies of battery state of energy. Secondly, the adaptive unscented Kalman filter (AUKF) is employed to develop a novel model-based joint state estimator for battery state of energy and power capability. The AUKF algorithm utilizes the well-known features of the Kalman filter but employs the method of unscented transform (UT) and adaptive error covariance matching technology to improve the state estimation accuracy. Thirdly, the proposed joint estimator has been verified by a LiFePO4 lithium-ion battery cell under different operating temperatures and aging levels. The result indicates that the estimation errors of battery voltage and state-of-energy are less than 2% even if given a large erroneous initial value, which makes the state of available power capability predict more accurate and reliable for the electric vehicles application.

  16. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Liu, Xue; Huang, Jia-Qi; Zhang, Qiang; Mai, Liqiang

    2017-05-01

    Lithium-sulfur (Li-S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li-S battery systems. The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li-S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li-S batteries are discussed. Nanostructured metal oxides/sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium-metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li-S batteries with nanostructured metal oxides/sulfides are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rutile TiO2 Mesocrystals as Sulfur Host for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Sun, Qingqing; Chen, Kaixiang; Liu, Yubin; Li, Yafeng; Wei, Mingdeng

    2017-11-16

    Although lithium-sulfur (Li-S) batteries are among the most promising rechargeable batteries in the field of energy-storage devices, their poor cycling performance restricts their potential applications. Polar materials can improve the cycling stability owing to their inherent strong chemical interaction with polysulfides. Herein, novel rutile TiO2 mesocrystals (RTMs) are employed as the host for sulfur in Li-S batteries; the RTMs display a stable cycling performance with a capacity retention of 64 % and a small average capacity decay rate of 0.12 % per cycle over 300 cycles at 1 C rate. The good electrochemical properties are attributed to the interior ordered nanopores of the RTMs, which can effectively limit the dissolution of polysulfides, and the ultrafine nanowires in RTMs, which shorten the path for lithium-ion transport effectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  19. Lithium fluoride crystal as a novel high dynamic neutron imaging detector with microns scale spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, Anatoly; Pikuz, Tatiana [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); High Temperatures, Russian Academy of Sciences, Izhorskaja Street 13/19, Moscow (Russian Federation); Matsubayashi, Masahito; Yasuda, Ryo; Iikura, Hiroshi; Nojima, Takehiro; Sakai, Takuro [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Fukuda, Yuji; Kando, Masaki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Shiozawa, Masahiro [Nippon SOKEN, Inc., Iwaya 14, Shimohasumi, Nishio, Aichi 445-0012 (Japan); Kato, Yoshiaki [The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan)

    2012-12-15

    Recently, a new field of application of optically stimulated luminescence of color centers (CCs) in lithium fluoride (LiF) crystals was proposed - using them for high-performance neutron imaging - and promising results were obtained (Matsubayashi et al., Nucl. Instrum. Methods A 622, 637 (2010) and Matsubayashi et al., Nucl. Instrum. Methods A 651, 90 (2011)). Here we present the overview of main findings, which clearly demonstrated that the LiF crystal performs efficiently as neutron imaging detector in areas, where a high spatial resolution with a high image gradation resolution is needed. It was shown that the obtained neutron images are almost free from granular noises, have spatial resolution of {proportional_to} 6 {mu}m, and have practically linear response with the dynamic range of at least 10{sup 3}. It was also found that the LiF crystal detector offers a fairly good sensitivity. Moreover, detailed evaluation using a standard sensitivity indicator for neutron radiography showed that two holes with less than 2% transmittance differences could be distinguished. Additionally, we recently demonstrated that the high resolution neutron imaging with LiF crystals could be useful for quantitative characterizations of neutron sources and electric devices, comprising of low-Z elements, for example, such as fuel cells. All of this gives new opportunity for microns scale spatial resolution imaging by neutrons (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Electrochemical performance of lithium-ion capacitors evaluated under high temperature and high voltage stress using redox stable electrolytes and additives

    Science.gov (United States)

    Boltersdorf, Jonathan; Delp, Samuel A.; Yan, Jin; Cao, Ben; Zheng, Jim P.; Jow, T. Richard; Read, Jeffrey A.

    2018-01-01

    Lithium-ion capacitors (LICs) were investigated for high power, moderate energy density applications for operation in extreme environments with prolonged cycle-life performance. The LICs were assembled as three-layered pouch cells in an asymmetric configuration employing Faradaic pre-lithiated hard carbon anodes and non-Faradaic ion adsorption-desorption activated carbon (AC) cathodes. The capacity retention was measured under high stress conditions, while the design factor explored was electrolyte formulation using a set of carbonates and electrolyte additives, with a focus on their stability. The LIC cells were evaluated using critical performance tests under the following high stress conditions: long-term voltage floating-cycling stability at room temperature (2.2-3.8 V), high temperature storage at 3.8 V, and charge voltages up to 4.4 V. The rate performance of different electrolytes and additives was measured after the initial LIC cell formation for a 1C-10C rate. The presence of vinylene carbonate (VC) and tris (trimethylsilyl) phosphate (TMSP) were found to be essential to the improved electrochemical performance of the LIC cells under all testing conditions.

  1. Aqueous lithium air batteries

    Science.gov (United States)

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  2. Tactical high-energy laser

    Science.gov (United States)

    Shwartz, Josef; Wilson, Gerald T.; Avidor, Joel M.

    2002-06-01

    The Nautilus Project was started in 1995 as a joint US-Israel feasibility study for using laser systems to defend against short-range artillery rockets. It has now matured into a successful laser weapon demonstration program - the Tactical High Energy Laser (THEL) Advanced Concept Technology Demonstration (ACTD) Program. By now the THEL Demonstrator has engaged and destroyed a large number of artillery rockets in mid-flight in an extended series of demonstration tests at the US Army's White Sands Missile Range in New Mexico. The THEL ACTD hardware and development process are described in this paper, as well as the major test results. The paper also describes the operational concept for a deployed THEL weapon system and some possible growth paths for the THEL ACTD Program.

  3. High temperature thermoelectric energy conversion

    Science.gov (United States)

    Wood, Charles

    1987-01-01

    The theory and current status of materials research for high-temperature thermoelectric energy conversion are reviewed. Semiconductors are shown to be the preferred class of materials for this application. Optimization of the figure of merit of both broadband and narrow-band semiconductors is discussed as a function of temperature. Phonon scattering mechanisms are discussed, and basic material guidelines are given for reduction of thermal conductivity. Two general classes of materials show promise for high temperature figure of merit (Z) values, namely the rare earth chalcogenides and the boron-rich borides. The electronic transport properties of the rare earth chalcogenides are explicable on the basis of degenerate or partially degenerate n-type semiconductors. Boron and boron-rich borides exhibit p-type hopping conductivity, with detailed explanations proposed for the transport differing from compound to compound. Some discussion is presented on the reasons for the low thermal conductivities in these materials. Also, ZTs greater than one appear to have been realized at high temperature in many of these compounds.

  4. Review of Reactivity Experiments for Lithium Ternary Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Bolind, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-28

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers high tritium breeding, excellent heat transfer and corrosion properties, and most importantly, it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium related hazards are of primary concern. Reducing chemical reactivity is the primary motivation for the development of new lithium alloys, and it is therefore important to come up with proper ways to conduct experiments that can physically study this phenomenon. This paper will start to explore this area by outlining relevant past experiments conducted with lithium/air reactions and lithium/water reactions. Looking at what was done in the past will then give us a general idea of how we can setup our own experiments to test a variety of lithium alloys.

  5. Nanofiber/ZrO2-based mixed matrix separator for high safety/high-rate lithium-ion batteries

    Science.gov (United States)

    Xiao, Wei; Liu, Jianguo; Yan, Chuanwei

    2017-10-01

    A novel asymmetric separator based on a thin bacterial cellulose nanofiber (BCF)/nano-ZrO2 composite layer and a non-woven support was prepared by paper-making method. Owing to the relatively polar constituents and well-developed, gradient porous structure, the separator exhibited the advantages of higher thermal resistance, electrolyte wettability, and ionic conductivity in comparison to polyethylene separator. Based on these advantages, the Li/LiFePO4 cells assembled from this composite separator showed excellent performance characteristics, including outstanding C-rate capability, high capacity and cycling performance. Production of the composite separator is simple, environmentally benign and economically viable. Therefore, it's a good candidate for creating improved lithium-ion batteries.

  6. Recent developments in anode materials for lithium batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, M. M.; Vaughey, J. T.; Fransson, L. M.; Chemical Engineering; Angstrom Lab.

    2002-03-01

    Lithium-ion batteries, preferred for their high energy and power, also present several challenges. Of particular concern are unsafe conditions that can arise in lithium-ion cells that operate with a fully lithiated graphite electrode. If the cells in those batteries are overcharged, especially in large-scale applications, thermal runaway, venting, fire, and explosion could result. This paper examines research into alternative, intermetallic electrode materials.

  7. High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Lee, Sangkyu; Eom, Wonsik; Park, Hun; Han, Tae Hee

    2017-08-02

    Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO2 crystals. As a result, high-temperature stable anatase TiO2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 °C. Finally, the resulting anatase TiO2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO2 nanofibers, the electrode prepared with anatase TiO2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g-1).

  8. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  9. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes.

    Science.gov (United States)

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A

    2014-10-01

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  10. Significance of the Capacity Recovery Effect in Pouch Lithium-Sulfur Battery Cells

    OpenAIRE

    Knap, Vaclav; Zhang, Teng; Stroe, Daniel Loan; Schaltz, Erik; Teodorescu, Remus; Propp, Karsten

    2016-01-01

    Lithium-Sulfur (Li-S) batteries are an emerging energy storage technology, which is technically-attractive due to its high theoretical limits; practically, it is expected that Li-S batteries will result into lighter energy storage devices with higher capacities than traditional Lithium-ion batteries. One of the actual disadvantages for this technology is the highly pronounced rate capacity effect, which reduces the available capacity to be discharged when high currents are used. This drawback...

  11. Novel high-rate, all solid-state, sodium and lithium/organosulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, S.J.; Liu, Meilin; Armand, M.B.; De Jonghe, L.C.

    1989-08-01

    This paper is an abstract for a talk to be given at the Battery and Electrochemical Contractor's Conference. The paper gives a brief description of sodium and lithium/organosulfur batteries. (JEF)

  12. Non-Flammable, High Voltage Electrolytes for Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrolyte will be demonstrated for lithium ion batteries with increased range of charge and discharge voltages and with improved fire safety. Experimental...

  13. Hybrid Lead-Acid/Lithium-Ion Energy Storage System with Power-Mix Control for Light Electric Vehicles

    Science.gov (United States)

    Chung, Steven

    This work presents a hybrid energy storage system (HESS), using lithium-ion (LI) and lead-acid (PbA) batteries, for light electric vehicles (LEV) that is both cost and performance competitive with single energy storage system (SESS) configurations. A modular HESS architecture with a dc-dc converter and controller is proposed. The power-mix algorithm that minimizes the Peukert effect, and increases the usable energy of the lead-acid battery is presented and verified experimentally. A novel DLL and PLL based off-time control scheme is demonstrated for inductor ripple current interleaving in the multi-phase dc-dc converter. The cost and performance of the HESS are assessed side-by-side with PbA and LI SESS configurations of comparable total energy. The experimental HESS has a total projected cost midway between the SESS PbA cost and the SESS Li cost, while providing 17% range and 23% efficiency increase over the SESS PbA vehicle.

  14. First-Principles Investigations of the Working Mechanism of 2D h-BN as an Interfacial Layer for the Anode of Lithium Metal Batteries.

    Science.gov (United States)

    Shi, Le; Xu, Ao; Zhao, Tianshou

    2017-01-18

    An issue with the use of metallic lithium as an anode material for lithium-based batteries is dendrite growth, causing a periodic breaking and repair of the solid electrolyte interphase (SEI) layer. Adding 2D atomic crystals, such as h-BN, as an interfacial layer between the lithium metal anode and liquid electrolyte has been demonstrated to be effective to mitigate dendrite growth, thereby enhancing the Columbic efficiency of lithium metal batteries. But the underlying mechanism leading to the reduced dendrite growth remains unknown. In this work, with the aid of first-principle calculations, we find that the interaction between the h-BN and lithium metal layers is a weak van der Waals force, and two atomic layers of h-BN are thick enough to block the electron tunneling from lithium metal to electrolyte, thus prohibiting the decomposition of electrolyte. The interlayer spacing between the h-BN and lithium metal layers can provide larger adsorption energies toward lithium atoms than that provided by bare lithium or h-BN, making lithium atoms prefer to intercalate under the cover of h-BN during the plating process. The combined high stiffness of h-BN and the low diffusion energy barriers of lithium at the Li/h-BN interfaces induce a uniform distribution of lithium under h-BN, therefore effectively suppressing dendrite growth.

  15. Binders and Hosts for High-Capacity Lithium-ion Battery Anodes

    Science.gov (United States)

    Dufficy, Martin Kyle

    Lithium-ion batteries (LIBs) are universal electrochemical energy storage devices that have revolutionized our mobile society. Nonetheless, societal and technological advances drive consumer demand for LIBs with enhanced electrochemical performance, such as higher charge capacity and longer life, compared to conventional LIBs. One method to enhance LIB performance is to replace graphite, the industry standard anode since commercialization of LIBs in 1991, with high-charge capacity materials. Implementing high-capacity anode materials such as tin, silicon, and manganese vanadates, to LIBs presents challenges; Li-insertion is destructive to anode framework, and increasing capacity increases structural strains that pulverize anode materials and results in a short-cycle life. This thesis reports on various methods to extended the cycle life of high-capacity materials. Most of the work is conducted on nano-sized anode materials to reduce Li and electron transport pathway length (facilitating charge-transfer) and reduce strains from volume expansions (preserving anode structure). The first method involves encapsulating tin particles into a graphene-containing carbon nanofiber (CNF) matrix. The composite-CNF matrix houses tin particles to assume strains from tin-volume expansions and produces favorable surface-electrolyte chemistries for stable charge-discharge cycling. Before tin addition, graphene-containing CNFs are produced and assessed as anode materials for LIBs. Graphene addition to CNFs improves electronic and mechanical properties of CNFs. Furthermore, the 2-D nature of graphene provides Li-binding sites to enhance composite-CNF both first-cycle and high-rate capacities > 150% when compared to CNFs in the absence of graphene. With addition of Sn, we vary loadings and thermal production temperature to elucidate structure-composition relationships of tin and graphene-containing CNF electrodes that lead to increased capacity retention. Of note, electrodes containing

  16. High-Performance High-Loading Lithium-Sulfur Batteries by Low Temperature Atomic Layer Deposition of Aluminum Oxide on Nanophase S Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangbo [Department of Mechanical Engineering, University of Arkansas, Fayetteville AR 72701 USA; Liu, Yuzi [Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439 USA; Cao, Yanqiang [Energy Systems Division, Argonne National Laboratory, Argonne IL 60439 USA; Ren, Yang [Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Lu, Wenquan [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Elam, Jeffrey W. [Energy Systems Division, Argonne National Laboratory, Argonne IL 60439 USA

    2017-05-18

    This study examines the effects of nanophase S and surface coatings via atomic layer deposition (ALD) on high-loading sulfur cathodes for developing high-performance and high-energy lithium-sulfur (Li-S) batteries. It is first verified that ball milling is an effective and facile route for nanoengineering microsized S powders and the resultant nanoscale S particles exhibit better performance. Using these ball milled nanoscale S cathodes, it is found that ALD Al2O3 performed at 50 degrees C yields deposits that evolve with ALD cycles from dispersed nanoparticles, to porous, connected films, and finally to dense and continuous films. Moreover, this low temperature ALD process suppresses S loss by sublimation. The ALD Al2O3 greatly improves sulfur cathode sustainable capacity and Coulombic efficiency. This study postulates two different mechanisms underlying the effects of ALD Al2O3 surface coatings depending on their morphology. ALD Al2O3 nanoparticles dispersed on the sulfur surface mainly function to adsorb polysulfides, thereby inhibiting S shuttling and improving sustainable capacity and Coulombic efficiency. By contrast, ALD Al2O3 films behave as a physical barrier to prevent polysulfides from contacting the liquid electrolyte and dissolving. The dispersed Al2O3 nanoparticles improve both sustainable capacity and Coulombic efficiency while the closed Al2O3 films improve Coulombic efficiency while decreasing the capacity

  17. Coaxial Three-Layered Carbon/Sulfur/Polymer Nanofibers with High Sulfur Content and High Utilization for Lithium-Sulfur Batteries.

    Science.gov (United States)

    He, Feng; Ye, Jian; Cao, Yuliang; Xiao, Lifen; Yang, Hanxi; Ai, Xinping

    2017-04-05

    Great progress has been made on the cyclability and material utilization in recent development of lithium-sulfur (Li-S) batteries; however, most of the sulfur electrodes reported so far have a considerable low loading of sulfur (60%), which causes a substantial decrease in energy density and is therefore difficult for application in batteries. To deal with this issue, we fabricate a novel sulfur composite with a coaxial three-layered structure, in which sulfur is deposited on carbon fibers and coated with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS), thus enabling a high sulfur loading of 70.8 wt % without the expense of its electrochemical performance. Benefiting from the rigid conductive framework of carbon fibers and flexible buffering matrix of the polymer for blocking the diffusion loss of discharge intermediates, the as-fabricated composite electrode exhibits a high initial reversible capacity of 1272 mA h g-1 (based on the total mass of the composite), a stable cyclability with a retained capacity of 807 mA h g-1 after 200 cycles, and a high Coulombic efficiency of ∼99% upon extended cycling, offering a new selection for practical application in Li-S batteries.

  18. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries

    National Research Council Canada - National Science Library

    Liu, Lilai; An, Maozhong; Yang, Peixia; Zhang, Jinqiu

    2015-01-01

    .... The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries...

  19. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes.

    Science.gov (United States)

    Harry, Katherine J; Hallinan, Daniel T; Parkinson, Dilworth Y; MacDowell, Alastair A; Balsara, Nitash P

    2014-01-01

    Failure caused by dendrite growth in high-energy-density, rechargeable batteries with lithium metal anodes has prevented their widespread use in applications ranging from consumer electronics to electric vehicles. Efforts to solve the lithium dendrite problem have focused on preventing the growth of protrusions from the anode surface. Synchrotron hard X-ray microtomography experiments on symmetric lithium-polymer-lithium cells cycled at 90 °C show that during the early stage of dendrite development, the bulk of the dendritic structure lies within the electrode, underneath the polymer/electrode interface. Furthermore, we observed crystalline impurities, present in the uncycled lithium anodes, at the base of the subsurface dendritic structures. The portion of the dendrite protruding into the electrolyte increases on cycling until it spans the electrolyte thickness, causing a short circuit. Contrary to conventional wisdom, it seems that preventing dendrite formation in polymer electrolytes depends on inhibiting the formation of subsurface structures in the lithium electrode.

  20. Multidimensional Polycation β-Cyclodextrin Polymer as an Effective Aqueous Binder for High Sulfur Loading Cathode in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zeng, Fanglei; Wang, Weikun; Wang, Anbang; Yuan, Keguo; Jin, Zhaoqing; Yang, Yu-sheng

    2015-12-02

    Although the lithium-sulfur battery has attracted significant attention because of its high theoretical energy density and low cost of elemental sulfur, its real application is still hindered by multiple challenges, especially the polysulfides shuttled between the cathode and anode electrodes. By originating from β-cyclodextrin and introducing a quaternary ammonium cation into β-cyclodextrin polymer, a new multifunctional aqueous polycation binder (β-CDp-N(+)) for the sulfur cathode is obtained. The unique hyperbranched network structure of the new binder β-CDp-N(+) as well as its multidimensional noncovalent interactions and the introduced cations endowed β-CDp-N(+) with some new abilities: a sulfur-electrode-stabilized ability, a polysulfides-immobilized ability, and a volume-accommodated ability, which help to ease the primary problems of the lithium-sulfur battery, i.e., the shuttle of polysulfides and the volume change of the sulfur during charge and discharge. It is demonstrated that cycling performance and rate capability of the cathodes can be the improved by using β-CDp-N(+) as the binder compared to other well-known binders. Even with high sulfur loading of 5.5 mg cm(-2), the cathode with β-CDp-N(+) still can deliver an areal capacity of 4.4 mAh cm(-2) at 50 mA g(-1) after 45 cycles, which is much higher than that achieved using the cathode with the conventional binder (0.9 mAh cm(-2)).

  1. Porous SnO2-CuO nanotubes for highly reversible lithium storage

    Science.gov (United States)

    Cheong, Jun Young; Kim, Chanhoon; Jung, Ji-Won; Yoon, Ki Ro; Kim, Il-Doo

    2018-01-01

    Facile synthesis of rationally designed structures is critical to realize a high performance electrode for lithium-ion batteries (LIBs). Among different candidates, tin(IV) oxide (SnO2) is one of the most actively researched electrode materials due to its high theoretical capacity (1493 mAh g-1), abundance, inexpensive costs, and environmental friendliness. However, severe capacity decay from the volume expansion and low conductivity of SnO2 have hampered its use as a feasible electrode for LIBs. Rationally designed SnO2-based nanostructures with conductive materials can be an ideal solution to resolve such limitations. In this work, we have successfully fabricated porous SnO2-CuO composite nanotubes (SnO2-CuO p-NTs) by electrospinning and subsequent calcination step. The porous nanotubular structure is expected to mitigate the volume expansion of SnO2, while the as-formed Cu from CuO upon lithiation allows faster electron transport by improving the low conductivity of SnO2. With a synergistic effect of both Sn and Cu-based oxides, SnO2-CuO p-NTs deliver stable cycling performance (91.3% of capacity retention, ∼538 mAh g-1) even after 350 cycles at a current density of 500 mA g-1, along with enhanced rate capabilities compared with SnO2.

  2. Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system

    Science.gov (United States)

    Kokail, Christian; von der Linden, Wolfgang; Boeri, Lilia

    2017-12-01

    We investigate the superconducting ternary lithium borohydride phase diagram at pressures of 0 and 200 GPa using methods for evolutionary crystal structure prediction and linear-response calculations for the electron-phonon coupling. Our calculations show that the ground state phase at ambient pressure, LiBH4, stays in the P n m a space group and remains a wide band-gap insulator at all pressures investigated. Other phases along the 1 :1 :x Li:B:H line are also insulating. However, a full search of the ternary phase diagram at 200 GPa revealed a metallic Li2BH6 phase, which is thermodynamically stable down to 100 GPa. This superhydride phase, crystallizing in a F m 3 ¯m space group, is characterized by sixfold hydrogen-coordinated boron atoms occupying the fcc sites of the unit cell. Due to strong hydrogen-boron bonding this phase displays a critical temperature of ˜100 K between 100 and 200 GPa. Our investigations confirm that ternary compounds used in hydrogen-storage applications should exhibit high-Tc conventional superconductivity in diamond anvil cell experiments, and suggest a viable route to optimize the superconducting behavior of high-pressure hydrides, exploiting metallic covalent bonds.

  3. A Praline-Like Flexible Interlayer with Highly Mounted Polysulfide Anchors for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhao, Teng; Ye, Yusheng; Lao, Cheng-Yen; Divitini, Giorgio; Coxon, Paul R; Peng, Xiaoyu; He, Xiong; Kim, Hyun-Kyung; Xi, Kai; Ducati, Caterina; Chen, Renjie; Liu, Yingjun; Ramakrishna, Seeram; Kumar, Ramachandran Vasant

    2017-10-01

    The development of lithium-sulfur (Li-S) batteries is dogged by the rapid capacity decay arising from polysulfide dissolution and diffusion in organic electrolytes. To solve this critical issue, a praline-like flexible interlayer consisting of high-loading titanium oxide (TiO2 ) nanoparticles and relatively long carbon nanofibers is fabricated. TiO2 nanoparticles with a size gradient occupy both the external and internal of carbon fiber and serve as anchors that allow the chemical adsorption of polysulfides through a conductive nanoarchitecture. The porous conductive carbon backbone helps in the physical absorption of polysulfides and provides redox reaction sites to allow the polysulfides to be reused. More importantly, it offers enough mechanical strength to support a high load TiO2 nanoparticle (79 wt%) that maximizes their chemical role, and can accommodate the large volume changes. Significant enhancement in cycle stability and rate capability is achieved for a readily available sulfur/multi-walled carbon nanotube composite cathode simply by incorporating this hierarchically nanostructured interlayer. The design and synthesis of interlayers by in situ integration of metal oxides and carbon fibers via a simple route offers the potential to advance Li-S batteries for practical applications in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range.

    Science.gov (United States)

    Leidinger, M; Fieberg, S; Waasem, N; Kühnemann, F; Buse, K; Breunig, I

    2015-08-24

    We employ three highly sensitive spectrometers: a photoacoustic spectrometer, a photothermal common-path interferometer and a whispering-gallery-resonator-based absorption spectrometer, for a comparative study of measuring the absorption coefficient of nominally transparent undoped, congruently grown lithium niobate for ordinarily and extraordinarily polarized light in the wavelength range from 390 to 3800 nm. The absorption coefficient ranges from below 10(-4) cm(-1) up to 2 cm(-1). Furthermore, we measure the absorption at the Urbach tail as well as the multiphonon edge of the material by a standard grating spectrometer and a Fourier-transform infrared spectrometer, providing for the first time an absorption spectrum of the whole transparency window of lithium niobate. The absorption coefficients obtained by the three highly sensitive and independent methods show good agreement.

  5. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xingyuan Zhang

    2017-01-01

    Full Text Available Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode for lithium-ion batteries.

  6. Exceptional effect of glassy lithium fluorophosphate on Mn-rich olivine cathode material for high-performance Li ion batteries

    Science.gov (United States)

    Kim, Jongsoon; Kim, Hyungsub; Myung, Seung-Taek; Yoo, Jung-Keun; Lee, Seongsu

    2018-01-01

    Mn-rich olivine LiFe0.3Mn0.7PO4 is homogenously encapsulated by an ∼3-nm-thick conductive nanolayer composed of the glassy lithium fluorophosphate through simple non-stoichiometric synthesis using additives of small amounts of LiF and a phosphorus source. The coating of the glassy lithium fluorophosphate nanolayer is clearly verified using transmission electron microscopy and X-ray photoelectron spectroscopy. It enables significant decrease in charge transfer resistance of LiFe0.3Mn0.7PO4 and improvement of its sluggish Li diffusion. At a rate of 10C, the LiFe0.3Mn0.7PO4 encapsulated by conductive glassy lithium fluorophosphate (LiFe0.3Mn0.7PO4-GLFP) electrode delivers a capacity of ∼130 mAh g-1, which is ∼77% of its theoretical capacity (∼170 mAh g-1) and ∼1.5 times higher than that of the pristine counterpart at 10C. Furthermore, LiFe0.3Mn0.7PO4-GLFP achieves outstanding cycle stability (∼75% retention of its initial capacity over 500 cycles at 1C). The proposed olivine LiFe0.3Mn0.7PO4-GLFP battery is thus expected to be a promising candidate for large-scale energy storage applications.

  7. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    Science.gov (United States)

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  8. Anode Improvement in Rechargeable Lithium-Sulfur Batteries.

    Science.gov (United States)

    Tao, Tao; Lu, Shengguo; Fan, Ye; Lei, Weiwei; Huang, Shaoming; Chen, Ying

    2017-12-01

    Owing to their theoretical energy density of 2600 Wh kg-1 , lithium-sulfur batteries represent a promising future energy storage device to power electric vehicles. However, the practical applications of lithium-sulfur batteries suffer from poor cycle life and low Coulombic efficiency, which is attributed, in part, to the polysulfide shuttle and Li dendrite formation. Suppressing Li dendrite growth, blocking the unfavorable reaction between soluble polysulfides and Li, and improving the safety of Li-S batteries have become very important for the development of high-performance lithium sulfur batteries. A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Phase I Program to Improve Low Temperature Performance of Lithium-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion (Li-ion) batteries are attractive candidates for use as power sources in aerospace applications because they have high specific energy ( up to 200 Wh/kg)...

  10. Influence of surface treatment of contaminated lithium disilicate and leucite glass ceramics on surface free energy and bond strength of universal adhesives.

    Science.gov (United States)

    Yoshida, Fumi; Tsujimoto, Akimasa; Ishii, Ryo; Nojiri, Kie; Takamizawa, Toshiki; Miyazaki, Masashi; Latta, Mark A

    2015-01-01

    This study investigates the influence of surface treatment of contaminated lithium disilicate and leucite glass ceramic restorations on the bonding efficacy of universal adhesives. Lithium disilicate and leucite glass ceramics were contaminated with saliva, and then cleaned using distilled water (SC), or 37% phosphoric acid (TE), or hydrofluoric acid (CE). Specimens without contamination served as controls. The surface free energy was determined by measuring the contact angles formed when the three test liquids were placed on the specimens. Bond strengths of the universal adhesives were also measured. Saliva contamination and surface treatment of ceramic surfaces significantly influenced the surface free energy. The bond strengths of universal adhesives were also affected by surface treatment and the choice of adhesive materials. Our data suggest that saliva contamination of lithum disilicate and leucite glass ceramics significantly impaired the bonding of the universal adhesives, and reduced the surface free energy of the ceramics.

  11. Vanadium Nitride Nanowire Supported SnS2 Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries.

    Science.gov (United States)

    Balogun, Muhammad-Sadeeq; Qiu, Weitao; Jian, Junhua; Huang, Yongchao; Luo, Yang; Yang, Hao; Liang, Chaolun; Lu, Xihong; Tong, Yexiang

    2015-10-21

    The vulnerable restacking problem of tin disulfide (SnS2) usually leads to poor initial reversible capacity and poor cyclic stability, which hinders its practical application as lithium ion battery anode (LIB). In this work, we demonstrated an effective strategy to improve the first reversible capacity and lithium storage properties of SnS2 by growing SnS2 nanosheets on porous flexible vanadium nitride (VN) substrates. When evaluating lithium-storage properties, the three-dimensional (3D) porous VN coated SnS2 nanosheets (denoted as CC-VN@SnS2) yield a high reversible capacity of 75% with high specific capacity of about 819 mAh g(-1) at a current density of 0.65 A g(-1). Remarkable cyclic stability capacity of 791 mAh g(-1) after 100 cycles with excellent capacity retention of 97% was also achieved. Furthermore, discharge capacity as high as 349 mAh g(-1) is still retained after 70 cycles even at a elevated current density of 13 A g(-1). The excellent performance was due to the conductive flexible VN substrate support, which provides short Li-ion and electron pathways, accommodates large volume variation, contributes to the capacity, and provides mechanical stability, which allows the electrode to maintain its structural stability.

  12. Three-dimensional graphene foam supported Fe₃O₄ lithium battery anodes with long cycle life and high rate capability.

    Science.gov (United States)

    Luo, Jingshan; Liu, Jilei; Zeng, Zhiyuan; Ng, Chi Fan; Ma, Lingjie; Zhang, Hua; Lin, Jianyi; Shen, Zexiang; Fan, Hong Jin

    2013-01-01

    Fe3O4 has long been regarded as a promising anode material for lithium ion battery due to its high theoretical capacity, earth abundance, low cost, and nontoxic properties. However, up to now no effective and scalable method has been realized to overcome the bottleneck of poor cyclability and low rate capability. In this article, we report a bottom-up strategy assisted by atomic layer deposition to graft bicontinuous mesoporous nanostructure Fe3O4 onto three-dimensional graphene foams and directly use the composite as the lithium ion battery anode. This electrode exhibits high reversible capacity and fast charging and discharging capability. A high capacity of 785 mAh/g is achieved at 1C rate and is maintained without decay up to 500 cycles. Moreover, the rate of up to 60C is also demonstrated, rendering a fast discharge potential. To our knowledge, this is the best reported rate performance for Fe3O4 in lithium ion battery to date.

  13. High energy chemical laser system

    Science.gov (United States)

    Gregg, D.W.; Pearson, R.K.

    1975-12-23

    A high energy chemical laser system is described wherein explosive gaseous mixtures of a reducing agent providing hydrogen isotopes and interhalogen compounds are uniformly ignited by means of an electrical discharge, flash- photolysis or an electron beam. The resulting chemical explosion pumps a lasing chemical species, hydrogen fluoride or deuterium fluoride which is formed in the chemical reaction. The generated lasing pulse has light frequencies in the 3- micron range. Suitable interhalogen compounds include bromine trifluoride (BrF$sub 3$), bromine pentafluoride (BrF$sub 5$), chlorine monofluoride (ClF), chlorine trifluoride (ClF$sub 3$), chlorine pentafluoride (ClF$sub 5$), iodine pentafluoride (IF$sub 5$), and iodine heptafluoride (IF$sub 7$); and suitable reducing agents include hydrogen (H$sub 2$), hydrocarbons such as methane (CH$sub 4$), deuterium (D$sub 2$), and diborane (B$sub 2$H$sub 6$), as well as combinations of the gaseous compound and/or molecular mixtures of the reducing agent.

  14. Bending-Tolerant Anodes for Lithium-Metal Batteries.

    Science.gov (United States)

    Wang, Aoxuan; Tang, Shan; Kong, Debin; Liu, Shan; Chiou, Kevin; Zhi, Linjie; Huang, Jiaxing; Xia, Yong-Yao; Luo, Jiayan

    2018-01-01

    Bendable energy-storage systems with high energy density are demanded for conformal electronics. Lithium-metal batteries including lithium-sulfur and lithium-oxygen cells have much higher theoretical energy density than lithium-ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li-dendrite growth can be further aggravated due to bending-induced local plastic deformation and Li-filaments pulverization. Here, the Li-metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r-GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending-tolerant r-GO/Li-metal anode, bendable lithium-sulfur and lithium-oxygen batteries with long cycling stability are realized. A bendable integrated solar cell-battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending-tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The neuroprotective effect of lithium against high dose methylphenidate: Possible role of BDNF.

    Science.gov (United States)

    Motaghinejad, Majid; Seyedjavadein, Zeinab; Motevalian, Manijeh; Asadi, Majid

    2016-09-01

    Methylphenidate (MPH) is a neural stimulant with unclear neurochemical and behavioral effects. Lithium is a neuroprotective agent in use clinically for the management of manic-depressive and other neurodegenerative disorders. This study investigated the protective effect of lithium on MPH-induced oxidative stress, anxiety, depression and cognition impairment. Forty-eight adult male rats were divided randomly and equally into 6 groups. Treatment groups were received MPH (10mg/kg) and various doses of lithium (75, 150 and 300mg/kg) simultaneously and also lithium (150mg/kg) alone for 21 days. Elevated Plus Maze and Forced Swim Test were used to determine the level of anxiety and depression in animals. Morris Water Maze was used to evaluate spatial learning and memory. The hippocampi of rats were isolated and the level and activity of oxidative, anti-oxidant and inflammatory factors were measured. Also brain derived neurotropic factor expression level was measured by RT-PCR and western blotting. MPH (10mg/kg) caused behaviors indicative of anxiety and depression-like phenotypes in EPM and FST and cognition impairment in MWM. While lithium in all mentioned doses inhibited these effects. Treatment with MPH significantly increased lipid peroxidation, mitochondrial GSH content and IL-1β and TNF-α levels in isolated hippocampal cells. Moreover superoxide dismutase and glutathione peroxidase activities and BDNF expression remarkably decreased. Various doses of lithium attenuated these effects and significantly mitigated MPH-induced oxidative damage, inflammation and increased BDNF expression level. Lithium has the potential to act as a neuroprotective agent against MPH induced toxicity in rat brain and this might be mediated by BDNF expression in hippocampus of rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries

    Science.gov (United States)

    Zegeye, Tilahun Awoke; Tsai, Meng-Che; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Chen, Hung-Ming; Rick, John; Su, Wei-Nien; Kuo, Chung-Feng Jeffrey; Hwang, Bing-Joe

    2017-06-01

    High capacity lithium-sulfur batteries with stable cycle performance and sulfur loadings greater than 70 wt% are regarded as promising candidates for energy storage devices. However, it has been challenged to achieving practical application of sulfur cathode because of low loading of active sulfur and poor cycle performance. Herein, we design novel nanocomposite cathode materials consist of sulfur (80 wt%) embedded within nitrogen doped three-dimensional reduced graphene oxide (N-3D-rGO) by controllable sulfur-impregnation method. Nitrogen doping helps increase the surface area by ten times from pristine graphene, and pore volume by seven times. These structural features allow the cathode to hold more sulfur. It also adsorbs polysulfides and prevents their detachment from the host materials; thereby achieving stable cycle performance. The solution drop sulfur-impregnation method provides uniform distribution of nano-sulfur in controlled manner. The material delivers a high initial discharge capacity of 1042 mAhg-1 and 916 mAhg-1 with excellent capacity retention of 94.8% and 81.9% at 0.2 C and 0.5 C respectively after 100 cycles. Thus, the combination of solution drop and nitrogen doping opens a new chapter for resolving capacity fading as well as long cycling problems and creates a new strategy to increase sulfur loading in controlled mechanism.

  17. High throughput methodology for synthesis, screening, and optimization of solid state lithium ion electrolytes.

    Science.gov (United States)

    Beal, Mark S; Hayden, Brian E; Le Gall, Thierry; Lee, Christopher E; Lu, Xiaojuan; Mirsaneh, Mehdi; Mormiche, Claire; Pasero, Denis; Smith, Duncan C A; Weld, Andrew; Yada, Chihiro; Yokoishi, Shoji

    2011-07-11

    A study of the lithium ion conductor Li(3x)La(2/3-x)TiO(3) solid solution and the surrounding composition space was carried out using a high throughput physical vapor deposition system. An optimum total ionic conductivity value of 5.45 × 10(-4) S cm(-1) was obtained for the composition Li(0.17)La(0.29)Ti(0.54) (Li(3x)La(2/3-x)TiO(3)x = 0.11). This optimum value was calculated using an artificial neural network model based on the empirical data. Due to the large scale of the data set produced and the complexity of synthesis, informatics tools were required to analyze the data. Partition analysis was carried out to determine the synthetic parameters of importance and their threshold values. Multivariate curve resolution and principal component analysis were applied to the diffraction data set. This analysis enabled the construction of phase distribution diagrams, illustrating both the phases obtained and the compositional zones in which they occur. The synthetic technique presented has significant advantages over other thin film and bulk methodologies, in terms of both the compositional range covered and the nature of the materials produced.

  18. Novel germanium/polypyrrole composite for high power lithium-ion batteries.

    Science.gov (United States)

    Gao, Xuanwen; Luo, Wenbin; Zhong, Chao; Wexler, David; Chou, Shu-Lei; Liu, Hua-Kun; Shi, Zhicong; Chen, Guohua; Ozawa, Kiyoshi; Wang, Jia-Zhao

    2014-08-29

    Nano-Germanium/polypyrrole composite has been synthesized by chemical reduction method in aqueous solution. The Ge nanoparticles were directly coated on the surface of the polypyrrole. The morphology and structural properties of samples were determined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Thermogravimetric analysis was carried out to determine the polypyrrole content. The electrochemical properties of the samples have been investigated and their suitability as anode materials for the lithium-ion battery was examined. The discharge capacity of the Ge nanoparticles calculated in the Ge-polypyrrole composite is 1014 mAh g(-1) after 50 cycles at 0.2 C rate, which is much higher than that of pristine germanium (439 mAh g(-1)). The composite also demonstrates high specific discharge capacities at different current rates (1318, 1032, 661, and 460 mAh g(-1) at 0.5, 1.0, 2.0, and 4.0 C, respectively). The superior electrochemical performance of Ge-polypyrrole composite could be attributed to the polypyrrole core, which provides an efficient transport pathway for electrons. SEM images of the electrodes have demonstrated that polypyrrole can also act as a conductive binder and alleviate the pulverization of electrode caused by the huge volume changes of the nanosized germanium particles during Li(+) intercalation/de-intercalation.

  19. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Yuan Tian

    2018-01-01

    Full Text Available An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g−1 at 0.1 C. The discharge capacity remained at 828 mAh g−1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites.

  20. Route to sustainable lithium-sulfur batteries with high practical capacity through a fluorine free polysulfide catholyte and self-standing Carbon Nanofiber membranes.

    Science.gov (United States)

    Lim, Du-Hyun; Agostini, Marco; Nitze, Florian; Manuel, James; Ahn, Jou-Hyeon; Matic, Aleksandar

    2017-07-24

    We report on a new strategy to improve the capacity, reduce the manufacturing costs and increase the sustainability of Lithium-Sulfur (LiS) batteries. It is based on a semi-liquid cathode composed of a Li2S8 polysulphide catholyte and a binder-free carbon nanofiber membrane with tailored morphology. The polysulphides in the catholyte have the dual role of active material and providing Li+-conduction, i.e. no traditional Li-salt is used in this cell. The cell is able to deliver an areal capacity as high as 7 mAh cm-2, twice than that of commercial Lithium-ion batteries (LiBs) and 2-4 times higher than that of state-of-the-art LiS cells. In addition, the battery concept has an improved sustainability from a material point of view by being mainly based on sulfur and carbon and being completely fluorine-free, no fluorinated salt or binders are used, and has potential for upscaling and competitive price. The combination of these properties makes the semi-liquid LiS cell here reported a very promising new concept for practical large-scale energy storage applications.

  1. In-situ synthesis of sulfur-TiO2 hollow shell materials for high-performance lithium-sulfur batteries

    Science.gov (United States)

    Hai, Bo; Ma, Litong; Yan, Hui; Wei, Hang

    2017-05-01

    Lithium-sulfur batteries with higher energy density are highly attractive, but the practical applications have been greatly affected by their poor cycle performance. Despite much effort has been devoted to design the structure of sulfur cathode to suppress polysulfide dissolution, relatively little emphasis has been placed on in-situ immobilizing the sulfur atoms. Herein, we demonstrate a new approach of in-situ immobilizing the sulfur atoms into the TiO2 host, in which, the polysulphides can localized in the cathode side and efficiently reused during cycling due to the novel S-TiO2 hollow shell structure. The battery based on the well-designed S-TiO2 cathode can deliver a discharge capacity of 601 mA h g-1 at 0.5 C after 100 cycles. The good electrochemical performance could be attributed to the homogeneous dispersing of sulfur in the TiO2 host in the in-situ formation process, and the hollow structure of the S-TiO2 materials. The economical and simple strategy to overcome the polysulfide dissolution issues provides a commercially feasible way for the construction of lithium-sulfur batteries.

  2. A flexible mesoporous Li4Ti5O12-rGO nanocomposite film as free-standing anode for high rate lithium ion batteries

    Science.gov (United States)

    Zhu, Kunxu; Gao, Hanyang; Hu, Guoxin

    2018-01-01

    Advanced flexible electrode is crucial in the development of flexible energy storage devices for emerging wearable and portable electronics. Herein, a free-standing flexible mesoporous Li4Ti5O12-rGO (LTO-rGO) nanocomposite film is rationally designed and fabricated for lithium ion batteries (LIBs). This efficient synthesis involves the growth of lithium titanate hydrate (LTH) precursors on the graphene oxide (GO) by a hydrothermal reaction, assembly into LTH-GO film by vacuum filtration with some extra GO added, and subsequent conversion into LTO-rGO nanocomposite film through calcination. When rGO content in the LTO-rGO film is set, the addition sequence of GO is found to affect its textural and mechanical properties. The resultant free-standing LTO-rGO electrode, taking advantages of high Li4Ti5O12 loading of 73.9%, mesoporous layer-stacked channels with good electron/ion conductivity, good mechanical strength, and enlarged electrode/electrolyte contact area, delivers excellent electrochemical performance (e.g., specific capacity of 135.4 mAh g-1 at 40 C) over the electrode of conventional configuration. Moreover, no organic but all inorganic reagents are used in the synthesis, offering an eco-friendly, cost-efficient, and easily scalable way to fabricate binder-free flexible electrode for LIBs.

  3. Lithium-Sulfur Capacitors.

    Science.gov (United States)

    Kim, Mok-Hwa; Kim, Hyun-Kyung; Xi, Kai; Kumar, R Vasant; Jung, Dae Soo; Kim, Kwang-Bum; Roh, Kwang Chul

    2017-12-22

    Although many existing hybrid energy storage systems demonstrate promising electrochemical performances, imbalances between the energies and kinetics of the two electrodes must be resolved to allow their widespread commercialization. As such, the development of a new class of energy storage systems is a particular challenge, since future systems will require a single device to provide both a high gravimetric energy and a high power density. In this context, we herein report the design of novel lithium-sulfur capacitors. The resulting asymmetric systems exhibited energy densities of 23.9-236.4 Wh kg-1 and power densities of 72.2-4097.3 W kg-1, which are the highest reported values for an asymmetric system to date. This approach involved the use of a pre-lithiated anode and a hybrid cathode material exhibiting anion adsorption-desorption in addition to the electrochemical reduction and oxidation of sulfur at almost identical rates. This novel strategy yielded both high energy and power densities, and therefore establishes a new benchmark for hybrid systems.

  4. Controllably Designed "Vice-Electrode" Interlayers Harvesting High Performance Lithium Sulfur Batteries.

    Science.gov (United States)

    Hao, Youchen; Xiong, Dongbin; Liu, Wen; Fan, Linlin; Li, Dejun; Li, Xifei

    2017-11-22

    An interlayer has been regarded as a promising mediator to prolong the life span of lithium sulfur batteries because its excellent absorbability to soluble polysulfide efficiently hinders the shuttle effect. Herein, we designed various interlayers and understand the working mechanism of an interlayer for lithium sulfur batteries in detail. It was found that the electrochemical performance of a S electrode for an interlayer located in cathode side is superior to the pristine one without interlayers. Surprisingly, the performance of the S electrode for an interlayer located in anode side is poorer than that of pristine one. For comparison, glass fibers were also studied as a nonconductive interlayer for lithium sulfur batteries. Unlike the two interlayers above, these nonconductive interlayer did displays significant capacity fading because polysulfides were adsorbed onto insulated interlayer. Thus, the nonconductive interlayer function as a "dead zone" upon cycling. Based on our findings, it was for the first time proposed that a controllably optimized interlayer, with electrical conductivity as well as the absorbability of polysulfides, may function as a "vice-electrode" of the anode or cathode upon cycling. Therefore, the cathodic conductive interlayer can enhance lithium sulfur battery performance, and the anodic conductive interlayer may be helpful for the rational design of 3D networks for the protection of lithium metal.

  5. Freeze-Dried Sulfur-Graphene Oxide-Carbon Nanotube Nanocomposite for High Sulfur-Loading Lithium/Sulfur Cells.

    Science.gov (United States)

    Hwa, Yoon; Seo, Hyeon Kook; Yuk, Jong-Min; Cairns, Elton J

    2017-11-08

    The ambient-temperature rechargeable lithium/sulfur (Li/S) cell is a strong candidate for the beyond lithium ion cell since significant progress on developing advanced sulfur electrodes with high sulfur loading has been made. Here we report on a new sulfur electrode active material consisting of a cetyltrimethylammonium bromide-modified sulfur-graphene oxide-carbon nanotube (S-GO-CTA-CNT) nanocomposite prepared by freeze-drying. We show the real-time formation of nanocrystalline lithium sulfide (Li2S) at the interface between the S-GO-CTA-CNT nanocomposite and the liquid electrolyte by in situ TEM observation of the reaction. The combination of GO and CNT helps to maintain the structural integrity of the S-GO-CTA-CNT nanocomposite during lithiation/delithiation. A high S loading (11.1 mgS/cm2, 75% S) S-GO-CTA-CNT electrode was successfully prepared using a three-dimensional structured Al foam as a substrate and showed good S utilization (1128 mAh/g S corresponding to 12.5 mAh/cm2), even with a very low electrolyte to sulfur weight ratio of 4. Moreover, it was demonstrated that the ionic liquid in the electrolyte improves the Coulombic efficiency and stabilizes the morphology of the Li metal anode.

  6. Mn doped FeCO3/reduced graphene composite as anode material for high performance lithium-ion batteries

    Science.gov (United States)

    Zhang, Congcong; Cai, Xin; Xu, Donghui; Chen, Wenyan; Fang, Yueping; Yu, Xiaoyuan

    2018-01-01

    FeCO3 (FCO), FeCO3/rGO (FCOG) and Fe0.8Mn0.2CO3/rGO (MFCOG) nanocomposites are synthesized via a facile and controllable one-step hydrothermal process. XRD, SEM and TEM characterizations show that Mn ions can successfully substitute for partial iron atoms in FeCO3 nanocrystals without any crystal structure changes. Applied as anodes for lithium-ion batteries (LIBs), MFCOG delivers optimal electrochemical performance with a reversible capacity of 1223 mAh g-1 at a current density of 0.2 A g-1 after 120 cycles. Furthermore, MFCOG maintains a specific capacity of 613 mAh g-1 at a high current density of 1.6 A g-1, showing the enhanced rate capabilities and stable cycling performance. It indicates that the excellent lithium storage performance of MFCOG is mainly related to its well-designed nanostructure of doped metal carbonates and rGO nanosheets with high electrical conductivity which can work as effective conductive matrix and restrain the agglomeration of FeCO3, leading to synergistic effects on improving the structural integrity and accommodating the volume changes of MFCOG during the process of lithium intercalation/deintercalation.

  7. CNT Sheet Air Electrode for the Development of Ultra-High Cell Capacity in Lithium-Air Batteries.

    Science.gov (United States)

    Nomura, Akihiro; Ito, Kimihiko; Kubo, Yoshimi

    2017-04-05

    Lithium-air batteries (LABs) are expected to provide a cell with a much higher capacity than ever attained before, but their prototype cells present a limited areal cell capacity of no more than 10 mAh cm(-2), mainly due to the limitation of their air electrodes. Here, we demonstrate the use of flexible carbon nanotube (CNT) sheets as a promising air electrode for developing ultra-high capacity in LAB cells, achieving areal cell capacities of up to 30 mAh cm(-2), which is approximately 15 times higher than the capacity of cells with lithium-ion battery (LiB) technology (~2 mAh cm(-2)). During discharge, the CNT sheet electrode experienced enormous swelling to a thickness of a few millimeters because of the discharge product deposition of lithium peroxide (Li2O2), but the sheet was fully recovered after being fully charged. This behavior results from the CNT sheet characteristics of the flexible and fibrous conductive network and suggests that the CNT sheet is an effective air electrode material for developing a commercially available LAB cell with an ultra-high cell capacity.

  8. CNT Sheet Air Electrode for the Development of Ultra-High Cell Capacity in Lithium-Air Batteries

    Science.gov (United States)

    Nomura, Akihiro; Ito, Kimihiko; Kubo, Yoshimi

    2017-04-01

    Lithium-air batteries (LABs) are expected to provide a cell with a much higher capacity than ever attained before, but their prototype cells present a limited areal cell capacity of no more than 10 mAh cm-2, mainly due to the limitation of their air electrodes. Here, we demonstrate the use of flexible carbon nanotube (CNT) sheets as a promising air electrode for developing ultra-high capacity in LAB cells, achieving areal cell capacities of up to 30 mAh cm-2, which is approximately 15 times higher than the capacity of cells with lithium-ion battery (LiB) technology (~2 mAh cm-2). During discharge, the CNT sheet electrode experienced enormous swelling to a thickness of a few millimeters because of the discharge product deposition of lithium peroxide (Li2O2), but the sheet was fully recovered after being fully charged. This behavior results from the CNT sheet characteristics of the flexible and fibrous conductive network and suggests that the CNT sheet is an effective air electrode material for developing a commercially available LAB cell with an ultra-high cell capacity.

  9. Hierarchical three-dimensional porous SnS{sub 2}/carbon cloth anode for high-performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Junfeng, E-mail: chchjjff@163.com [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China); Zhang, Xiutai [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China); Xing, Shumin [College of Mathematics and Physics, Anyang Institute of Technology, Anyang 455000 (China); Fan, Qiufeng; Yang, Junping; Zhao, Luhua; Li, Xiang [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China)

    2016-08-15

    Graphical abstract: Hierarchical 3D porous SnS{sub 2}/carbon cloth, good electrochemical performance. - Highlights: • Hierarchical 3D porous SnS{sub 2}/carbon cloth has been firstly synthesized. • The SnS{sub 2}/carbon clothes were good candidates for excellent lithium ion batteries. • The SnS{sub 2}/carbon cloth exhibits improved capacity compared to pure SnS{sub 2}. - Abstract: Hierarchical three-dimension (3D) porous SnS{sub 2}/carbon clothes were synthesized via a facile polyol refluxing process. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmet–Teller (BET) and UV–vis diffuse reflectance spectrometer (UV–vis DRS). The 3D porous SnS{sub 2}/carbon clothes-based lithium ion batteries exhibited high reversible capacity and good rate capability as anode materials. The good electrochemical performance for lithium ion storage could be attributed to the special nanostructure, leading to high-rate transportation of electrolyte ion and electrons throughout the electrode matrix.

  10. Materials issues in lithium ion rechargeable battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D.H.

    1995-07-01

    Lithium ion rechargeable batteries are predicted to replace Ni/Cd as the workhorse consumer battery. The pace of development of this battery system is determined in large part by the availability of materials and the understanding of interfacial reactions between materials. Lithium ion technology is based on the use of two lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells and in 1983 for ambient temperature systems, it was not until Sony Energytech announced a new lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these electrochemical cells have the high energy density, high voltage and light weight of metallic lithium, but without the disadvantages of dendrite formation on charge, improving their safety and cycle life.

  11. Effect of particle size on dc conductivity, activation energy and diffusion coefficient of lithium iron phosphate in Li-ion cells

    Directory of Open Access Journals (Sweden)

    T.V.S.L. Satyavani

    2016-03-01

    Full Text Available Cathode materials in nano size improve the performance of batteries due to the increased reaction rate and short diffusion lengths. Lithium Iron Phosphate (LiFePO4 is a promising cathode material for Li-ion batteries. However, it has its own limitations such as low conductivity and low diffusion coefficient which lead to high impedance due to which its application is restricted in batteries. In the present work, increase of conductivity with decreasing particle size of LiFePO4/C is studied. Also, the dependence of conductivity and activation energy for hopping of small polaron in LiFePO4/C on variation of particle size is investigated. The micro sized cathode material is ball milled for different durations to reduce the particle size to nano level. The material is characterized for its structure and particle size. The resistivities/dc conductivities of the pellets are measured using four probe technique at different temperatures, up to 150 °C. The activation energies corresponding to different particle sizes are calculated using Arrhenius equation. CR2032 cells are fabricated and electrochemical characteristics, namely, ac impedance and diffusion coefficients, are studied.

  12. Exploring Lithium Deficiency in Layered Oxide Cathode for Li-Ion Battery

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung-Jin [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro NC 27401 USA; Uddin, Md-Jamal [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro NC 27401 USA; Alaboina, Pankaj K. [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro NC 27401 USA; Han, Sang Sub [Department of Materials Science Engineering, Seoul National University, Seoul 08826 Republic of Korea; Nandasiri, Manjula I. [Imaging and Chemical Analysis Laboratory, Department of Physics, Montana State University, Bozeman MT 59718 USA; Choi, Yong Seok [Department of Materials Science Engineering, Seoul National University, Seoul 08826 Republic of Korea; Hu, Enyuan [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA; Nam, Kyung-Wan [Department of Energy Materials Engineering, Dongguk University, Seoul 04620 Republic of Korea; Schwarz, Ashleigh M. [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Nune, Satish K. [Energy and Environmental Division, Pacific Northwest National Laboratory, Richland WA 99352 USA; Cho, Jong Soo [Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro NC 27401 USA; Oh, Kyu Hwan [Department of Materials Science Engineering, Seoul National University, Seoul 08826 Republic of Korea; Choi, Daiwon [Energy and Environmental Division, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-06-23

    Abstract or short description: The ever-growing demand for high capacity cathode materials is on the rise since the futuristic applications are knocking on the door. Conventional approach to developing such cathode relies on the lithium-excess materials to operate the cathode at high voltage and extract more lithium-ion. Yet, they fail to satiate the needs because of their unresolved issues upon cycling such as, for lithium manganese-rich layered oxides – their voltage fading, and for as nickel-based layered oxides – the structural transition. Here, in contrast, lithium-deficient ratio is demonstrated as a new approach to attain high capacity at high voltage for layered oxide cathodes. Rapid and cost effective lithiation of a porous hydroxide precursor with lithium deficient ratio acted as a driving force to partially convert the layered material to spinel phase yielding in a multiphase structure (MPS) cathode material. Upon cycling, MPS revealed structural stability at high voltage and high temperature and resulted in fast lithium-ion diffusion by providing a distinctive SEI chemistry – MPS displayed minimum lithium loss in SEI and formed a thinner SEI. MPS thus offer high energy and high power applications and provides a new perspective compared to the conventional layered cathode materials denying the focus for lithium excess material.

  13. A Sulfur-Rich Copolymer@CNT Hybrid Cathode with Dual-Confinement of Polysulfides for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Hu, Guangjian; Sun, Zhenhua; Shi, Chao; Fang, Ruopian; Chen, Jing; Hou, Pengxiang; Liu, Chang; Cheng, Hui-Ming; Li, Feng

    2017-03-01

    A sulfur-rich copolymer@carbon nanotubes hybrid cathode is introduced for lithium-sulfur batteries produced by combining the physical and chemical confinement of polysulfides. The binderfree and metal-current-collector-free cathode of dual confinement enables an efficient pathway for the fabrication of high-performance sulfur copolymer carbon matrix electrodes for lithium-sulfur batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte.

    Science.gov (United States)

    Lu, Qingwen; He, Yan-Bing; Yu, Qipeng; Li, Baohua; Kaneti, Yusuf Valentino; Yao, Youwei; Kang, Feiyu; Yang, Quan-Hong

    2017-04-01

    A 3D network gel polymer electrolyte (3D-GPE) is designed for lithium metal batteries and prepared by an initiator-free one-pot ring-opening polymerization technique. This 3D-GPE exhibits an unprecedented combination of mechanical strength, ionic conductivity, and more importantly, effective suppression of Li dendrite growth. The produced lithium-based battery presents long life, high rate, and excellent safety. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Efficient Activation of High-Loading Sulfur by Small CNTs Confined Inside a Large CNT for High-Capacity and High-Rate Lithium-Sulfur Batteries.

    Science.gov (United States)

    Jin, Feiying; Xiao, Suo; Lu, Lijie; Wang, Yong

    2016-01-13

    Sulfur with a high specific capacity of 1673 mAh g(-1) is yet to be used as commercial cathode for lithium batteries because of its low utilization rate and poor cycle stability. In this work, a tube-in-tube carbon structure is demonstrated to relieve the critical problems with sulfur cathode: poor electrical conductivity, dissolution of lithium polysulfides, and large volume change during cycling. A number of small carbon nanotubes (∼20 nm in diameter) and a high loading amount of 85.2 wt % sulfur are both filled completely inside a large amorphous carbon nanotube (∼200 nm in diameter). Owing to the presence of these electrically conductive, highly flexible and structurally robust small CNTs and a large CNT overlayer, sulfur material exhibits a high utilization rate and delivers a large discharge capacity of 1633 mAh g(-1) (based on the mass of sulfur) at 0.1 C, approaching its theoretical capacity (1673 mAh g(-1)). The obtained S-CNTs@CNT electrode demonstrates superior high-rate cycling performances. Large discharge capacities of ∼1146, 1121, and 954 mAh g(-1) are observed after 150 cycles at large current rates of 1, 2, and 5 C, respectively.

  16. A Hierarchical Optimal Operation Strategy of Hybrid Energy Storage System in Distribution Networks with High Photovoltaic Penetration

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2018-02-01

    Full Text Available In this paper, a hierarchical optimal operation strategy for a hybrid energy storage system (HESS is proposed, which is suitable to be utilized in distribution networks (DNs with high photovoltaic (PV penetration to achieve PV power smoothing, voltage regulation and price arbitrage. Firstly, a fuzzy-logic based variable step-size control strategy for an ultracapacitor (UC with the improvement of the lifetime of UC and tracking performance is adopted to smooth PV power fluctuations. The impact of PV forecasting errors is eliminated by adjusting the UC power in real time. Secondly, a coordinated control strategy, which includes centralized and local controls, is proposed for lithium-ion batteries. The centralized control is structured to determine the optimal battery unit for voltage regulation or price arbitrage according to lithium-ion battery performance indices. A modified lithium-ion battery aging model with better accuracy is proposed and the coupling relationship between the lifetime and the effective capacity is also considered. Additionally, the local control of the selected lithium-ion battery unit determines the charging/discharging power. A case study is used to validate the operation strategy and the results show that the lifetime equilibrium among different lithium-ion battery units can be achieved using the proposed strategy.

  17. In Situ Wrapping Si Nanoparticles with 2D Carbon Nanosheets as High-Areal-Capacity Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Yan, Lijing; Liu, Jie; Wang, Qianqian; Sun, Minghao; Jiang, Zhanguo; Liang, Chengdu; Pan, Feng; Lin, Zhan

    2017-11-08

    Silicon (Si) has aroused great interest as the most attractive anode candidate for energy-dense lithium-ion batteries (LIBs) in the past decade because of its significantly high capacity and low discharge potential. However, the large volume change during cycling impedes its practical application, which is more serious in the case of high mass loading. Designing Si anode with high mass loading and high areal capacity by a simple, scalable, and environmentally friendly method is still a big challenge. Herein, we report in situ one-pot synthesis of Si/C composite, where Si nanoparticles are wrapped by graphene-like 2D carbon nanosheets. After 500 cycles at 420 mA g(-1), the Si/C anode displays a gravimetric capacity of 881 mAh g(-1) with 86.4% capacity being retained. More specially, a high areal capacity of 3.13 mAh cm(-2) at 5.00 mg cm(-2) after 100 cycles is achieved. This study demonstrates a novel route for the preparation of the Si/C composite with high material utilization and may expand the possibility of future design Si-based anode with high areal capacity for high energy LIBs.

  18. Study on High Speed Lithium Jet For Neutron Source of Boron Neutron Capture Therapy (BNCT)

    Science.gov (United States)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mák, Michael; Štefanica, Jirí; Dostál, Václav; Zhao, Wei

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively.

  19. High performance lithium sulfur battery with novel separator membrane for space applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's human and robotic mission, the battery with extremely high specific energy (>500 Wh/kg) and long cycle life are urgently sought after in order to...

  20. Electrostatic spray deposition based lithium ion capacitor

    Science.gov (United States)

    Agrawal, Richa; Chen, Chunhui; Wang, Chunlei

    2016-05-01

    Conventional Electrochemical double-layer capacitors (EDLCs) are well suited as power devices that can provide large bursts of energy in short time periods. However, their relatively inferior energy densities as compared to their secondary battery counterparts limit their application in devices that require simultaneous supply of both high energy and high power. In the wake of addressing this shortcoming of EDLCs, the concept of hybridization of lithium-ion batteries (LIBs) and EDLCs has attracted significant scientific interest in recent years. Such a device, generally referred to as the "lithium-ion capacitor" typically utilizes a lithium intercalating electrode along with a fast charging capacitor electrode. Herein we have constructed a lithium hybrid electrochemical capacitor comprising a Li4Ti5O12-TiO2 (LTO-TiO2) anode and a reduced graphene oxide and carbon nanotube (rGO-CNT) composite cathode using electrostatic spray deposition (ESD). The electrodes were characterized using scanning electron microscopy and X-ray diffraction studies. Cyclic voltammetry and galvanostatic charge-discharge measurements were carried out to evaluate the electrochemical performance of the individual electrodes and the full hybrid cells.