WorldWideScience

Sample records for high energy large

  1. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    Science.gov (United States)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  2. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  3. Search for new physics in final states with a high energy electron and large missing transverse energy

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00345099

    The most successful and comprehensive theory describing the microcosm is the Standard Model of particle physics (SM). It comprises all known elementary particles and describes in high precision the basic processes of three of the four fundamental interactions. But still, not all experimental observations and theoretical challenges are covered. Many models exist that take the SM as a good approximation of natural phenomena in already discovered energy regions, but extend it in various ways. The Large Hadron Collider (LHC) provides the opportunity to look into these high energy regions using proton-proton collisions at significantly higher center-of-mass energies than previous experiments. This dissertation searches for physics beyond the SM especially in final states with one highly energetic electron (respectively positron) and large missing transverse energy. With the data set recorded in 2012 by the ATLAS detector, a large multi-purpose detector making use of the LHC, the spectrum of the related combined ...

  4. Large-angle hadron scattering at high energies

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Kudinov, A.V.; Kuleshov, S.P.

    1981-01-01

    Basing on the quasipotential Logunov-Tavkhelidze approach, corrections to the amplitude of high-energy large-angle meson-nucleon scattering are estimated. The estimates are compared with the available experimental data on pp- and π +- p-scattering, so as to check the adequacy of the suggested scheme to account for the preasymptotic deffects. The compared results are presented in the form of tables and graphs. The following conclusions are drawn: 1. the account for corrections, due to the long-range interaction, to the amplituda gives a good aghreee main asymptotic termment between the theoretical and experimental data. 2. in the case of π +- p- scattering the corrections prove to be comparable with the main asymptotic term up to the values of transferred pulses psub(lambdac)=50 GeV/c, which results in a noticeable deviation form the quark counting rules at such energies. Nevertheless, the preasymptotic formulae do well, beginning with psub(lambdac) approximately 6 GeV/c. In case of pp-scattering the corrections are mutually compensated to a considerable degree, and the deviation from the quark counting rules is negligible

  5. High-Energy Physics Strategies and Future Large-Scale Projects

    CERN Document Server

    Zimmermann, F

    2015-01-01

    We sketch the actual European and international strategies and possible future facilities. In the near term the High Energy Physics (HEP) community will fully exploit the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). Post-LHC options include a linear e+e- collider in Japan (ILC) or at CERN (CLIC), as well as circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with linear and circular acceleration approaches based on crystals, and some perspectives for the far future of accelerator-based particle physics.

  6. Large high current density superconducting solenoids for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.; Eberhard, P.H.; Taylor, J.D.

    1976-05-01

    Very often the study of high energy physics in colliding beam storage-rings requires a large magnetic field volume in order to detect and analyze charged particles which are created from the collision of two particle beams. Large superconducting solenoids which are greater than 1 meter in diameter are required for this kind of physics. In many cases, interesting physics can be done outside the magnet coil, and this often requires that the amount of material in the magnet coil be minimized. As a result, these solenoids should have high current density (up to 10 9 A m -2 ) superconducting windings. The methods commonly used to stabilize large superconducting magnets cannot be employed because of this need to minimize the amount of material in the coils. A description is given of the Lawrence Berkeley Laboratory program for building and testing prototype solenoid magnets which are designed to operate at coil current densities in excess of 10 9 A m -2 with magnetic stored energies which are as high as 1.5 Megajoules per meter of solenoid length. The coils use intrinsically stable multifilament Nb--Ti superconductors. Control of the magnetic field quench is achieved by using a low resistance aluminum bore tube which is inductively coupled to the coil. The inner cryostat is replaced by a tubular cooling system which carries two phase liquid helium. The magnet coil, the cooling tubes, and aluminum bore tube are cast in epoxy to form a single unified magnet and cryogenic system which is about 2 centimeters thick. The results of the magnet coil tests are discussed

  7. Inclusive spectra of mesons with large transverse momenta in proton-nuclear collisions at high energies

    International Nuclear Information System (INIS)

    Lykasov, G.I.; Sherkhonov, B.Kh.

    1982-01-01

    Basing on the proposed earlier quark model of hadron-nucleus processes with large transverse momenta psub(perpendicular) the spectra of π +- , K +- meson production with large psub(perpendicular) in proton-nucleus collisions at high energies are calculated. The performed comparison of their dependence of the nucleus-target atomic number A with experimental data shows a good agreement. Theoretical and experimental ratios of inclusive spectra of K +- and π +- mesons in the are compared. Results of calculations show a rather good description of experimental data on large psub(perpendicular) meson production at high energies

  8. High Energy Performance Tests of Large Volume LaBr{sub 3}:Ce Detector

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A.; Gondal, M.A.; Khiari, F.Z.; Dastageer, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M.M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2015-07-01

    High energy prompt gamma ray tests of a large volume cylindrical 100 mm x 100 mm (height x diameter) LaBr{sub 3}:Ce detector were carried out using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. In this study prompt gamma-rays yield were measured from water samples contaminated with toxic elements such nickel, chromium and mercury compounds with gamma ray energies up to 10 MeV. The experimental yield of prompt gamma-rays from toxic elements were compared with the results of Monte Carlo calculations. In spite of its higher intrinsic background due to its larger volume, an excellent agreement between the experimental and calculated yields of high energy gamma-rays from Ni, Cr and Hg samples has been achieved for the large volume LaBr{sub 3}:Ce detector. (authors)

  9. Large-angle theory for pion-nucleus scattering at high energies

    International Nuclear Information System (INIS)

    Hoock, D.W. Jr.

    1978-01-01

    An approximate solution for high-energy, projectile-nucleus, multiple scattering is developed from the exact Watson series and applied to pion scattering for 12 C and 4 He. Agreement with measured differential cross sections available from the literature for the range 150 to 260 MeV pion laboratory energies is surprisingly good. The approximation method expands the propagators of the Watson series about the transverse component of the momentum transfer. Contributions of each of the first two terms to double scattering from a Gaussian potential are compared to the exact solution. The purely plane-wave propagation produces a scattering amplitude that agrees to order (k 0 a) -1 with the exact solution at the forward and backward directions at high energies. The second (off-axis) propagation term produces an amplitude that is one order smaller at forward angles and two orders smaller at 180 0 than the exact amplitude. At intermediate angles it is of the same order. The general multiple-scattering series is approximated with selection of plane-wave propagation as the fundamental process at large and small angles. This model suggests that a single nucleon accepts most of the momentum transfer for backward scattering. The resulting multiple-scattering formula agrees with the well-known high-energy eikonal theory at small angles and the backward-angle scattering formula of Chen at exactly 180 0 . A lowest-order formula that includes off-axis propagation is also derived. Predicted differential cross sections are found to be sensitive to nucleon motion and binding. For 4 He the effect of the nuclear potential on the pion kinetic energy is also examined and found to produce significant changes in the predicted cross sections

  10. Regulatory taxation of large energy users reconsidered

    International Nuclear Information System (INIS)

    Mannaerts, H.

    2002-01-01

    Energy policy in the Netherlands with respect to the basic industries has been restrained. National energy taxation is considered to be unsuitable for large energy users because of its international reallocation effects. However, alternative measures such as energy restrictions and marginal taxation induce low average and high marginal energy costs and consequently generate small displacement effects, together with large energy savings. A system of tradable permits not only has the advantage of low average and high marginal costs, but also keeps one firm from investing in relatively expensive energy-saving options while other firms refrain from exploiting their relatively cheap saving options

  11. Search for new physics in final states with a high energy electron and large missing transverse energy

    Energy Technology Data Exchange (ETDEWEB)

    Schuh, Natascha

    2017-01-13

    The most successful and comprehensive theory describing the microcosm is the Standard Model of particle physics (SM). It comprises all known elementary particles and describes in high precision the basic processes of three of the four fundamental interactions. But still, not all experimental observations and theoretical challenges are covered. Many models exist that take the SM as a good approximation of natural phenomena in already discovered energy regions, but extend it in various ways. The Large Hadron Collider (LHC) provides the opportunity to look into these high energy regions using proton-proton collisions at significantly higher center-of-mass energies than previous experiments. This dissertation searches for physics beyond the SM especially in final states with one highly energetic electron (respectively positron) and large missing transverse energy. With the data set recorded in 2012 by the ATLAS detector, a large multi-purpose detector making use of the LHC, the spectrum of the related combined transverse mass can be measured up to the TeV scale. To find any evidence to the existence of new physics beyond the SM, it was searched for significant deviations between the observed data and the expectations due to SM processes. Unfortunately, no significant excess could be observed and exclusion limits in the context of three different new physics scenarios are provided. Besides a so-called Sequential Standard Model (SSM) predicting additional vector gauge bosons, also the possible existence of (charged) chiral bosons is analyzed. Also inferences about dark matter candidates called ''weakly interacting massive particles (WIMP)'' are drawn. With the aid of a Bayesian ansatz, the observed (expected) exclusion limit on the boson pole mass is set to 3.13 TeV(3.13 TeV) for a SSM W' boson and to 3.08 TeV(3.08 TeV) for charged chiral W{sup *} bosons (at 95% C.L.).

  12. Confinement characteristics of high-energy ions produced by ICRF heating in the large helical device

    International Nuclear Information System (INIS)

    Kumazawa, R; Saito, K; Torii, Y; Mutoh, T; Seki, T; Watari, T; Osakabe, M; Murakami, S; Sasao, M; Watanabe, T; Yamamoto, T; Notake, T; Takeuchi, N; Saida, T; Shimpo, F; Nomura, G; Yokota, M; Kato, A; Zao, Y; Okada, H; Isobe, M; Ozaki, T; Narihara, K; Nagayama, Y; Inagaki, S; Morita, S; Krasilnikov, A V; Idei, H; Kubo, S; Ohkubo, K; Sato, M; Shimozuma, T; Yoshimura, Y; Ikeda, K; Nagaoka, K; Oka, Y; Takeiri, Y; Tsumori, K; Ashikawa, N; Emoto, M; Funaba, H; Goto, M; Ida, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Muto, S; Nakamura, Y; Nakanishi, H; Nishimura, K; Noda, N; Ohdachi, S; Peterson, B J; Sagara, A; Sakakibara, S; Sakamoto, R; Sato, K; Shoji, M; Suzuki, H; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K Y; Yamada, I; Yamamoto, S; Yoshinuma, M; Yokoyama, M; Watanabe, K-Y; Kaneko, O; Kawahata, K; Komori, A; Ohyabu, N; Yamada, H; Yamazaki, K; Sudo, S; Matsuoka, K; Hamada, Y; Motojima, O; Fujiwara, M

    2003-01-01

    The behaviour of high-energy ions accelerated by an ion cyclotron range of frequency (ICRF) electric field in the large helical device (LHD) is discussed. A better confinement performance of high-energy ions in the inward-shifted magnetic axis configuration was experimentally verified by measuring their energy spectrum and comparing it with the effective temperature determined by an electron slowing down process. In the standard magnetic axis configuration a saturation of the measured tail temperature was observed as the effective temperature was increased. The ratio between these two quantities is a measure of the quality of transfer efficiency from high-energy ions to a bulk plasma; when this efficiency was compared with Monte Carlo simulations the results agreed fairly well. The ratio of the stored energy of the high-energy ions to that of the bulk plasma was measured using an ICRF heating power modulation method; it was deduced from phase differences between total and bulk plasma stored energies and the modulated ICRF heating power. The measured high energy fraction agreed with that calculated using the injected ICRF heating power, the transfer efficiency determined in the experiment and the confinement scaling of the LHD plasma

  13. Properties of a large NaI(Tl) spectrometer for the energy measurement of high-energy gamma rays on the Gamma Ray Observatory

    International Nuclear Information System (INIS)

    Hughes, E.B.; Finman, L.C.; Hofstadter, R.; Lepetich, J.E.; Lin, Y.C.; Mattox, J.R.; Nolan, P.L.; Parks, R.; Walker, A.H.

    1986-01-01

    A large NaI(T1) spectrometer is expected to play a crucial role in the measurement of the energy spectra from an all-sky survey of high-energy celestial gamma rays on the Gamma Ray Observatory. The crystal size and requirements of space flight have resulted in a novel crystal-packaging and optics combination. The structure of this spectrometer and the operating characteristics determined in a test program using high energy positrons are described

  14. High-energy, large-momentum-transfer processes: Ladder diagrams in φ3 theory. Pt. 1

    International Nuclear Information System (INIS)

    Osland, P.; Wu, T.T.; Harvard Univ., Cambridge, MA

    1987-01-01

    Relativistic quantum field theories may give us useful guidance to understanding high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, we study the ladder diagrams in φ 3 theory. In this paper, some of the necessary techniques are developed and applied to the simplest cases of the fourth- and sixth-order ladder diagrams. (orig.)

  15. Superconducting magnets in high energy physics

    International Nuclear Information System (INIS)

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  16. Mechanism and models for collisional energy transfer in highly excited large polyatomic molecules

    International Nuclear Information System (INIS)

    Gilbert, R. G.

    1995-01-01

    Collisional energy transfer in highly excited molecules (say, 200-500 kJ mol -1 above the zero-point energy of reactant, or of product, for a recombination reaction) is reviewed. An understanding of this energy transfer is important in predicting and interpreting the pressure dependence of gas-phase rate coefficients for unimolecular and recombination reactions. For many years it was thought that this pressure dependence could be calculated from a single energy-transfer quantity, such as the average energy transferred per collision. However, the discovery of 'super collisions' (a small but significant fraction of collisions which transfer abnormally large amounts of energy) means that this simplistic approach needs some revision. The 'ordinary' (non-super) component of the distribution function for collisional energy transfer can be quantified either by empirical models (e.g., an exponential-down functional form) or by models with a physical basis, such as biased random walk (applicable to monatomic or diatomic collision partners) or ergodic (for polyatomic collision partners) treatments. The latter two models enable approximate expressions for the average energy transfer to be estimated from readily available molecular parameters. Rotational energy transfer, important for finding the pressure dependence for recombination reactions, can for these purposes usually be taken as transferring sufficient energy so that the explicit functional form is not required to predict the pressure dependence. The mechanism of 'ordinary' energy transfer seems to be dominated by low-frequency modes of the substrate, whereby there is sufficient time during a vibrational period for significant energy flow between the collision partners. Super collisions may involve sudden energy flow as an outer atom of the substrate is squashed between the substrate and the bath gas, and then is moved away from the interaction by large-amplitude motion such as a ring vibration or a rotation; improved

  17. Large Scale Computing and Storage Requirements for High Energy Physics

    International Nuclear Information System (INIS)

    Gerber, Richard A.; Wasserman, Harvey

    2010-01-01

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes

  18. The vertex and large angle detectors of a spectrometer system for high energy muon physics

    International Nuclear Information System (INIS)

    Davis, A.; Dobinson, R.W.; Dosselli, U.; Edwards, A.; Gabathuler, E.; Kellner, G.; Montgomery, H.E.; Mueller, H.; Osborne, A.M.; Scaramelli, A.; Watson, E.; Brasse, F.W.; Falley, G.; Flauger, W.; Gayler, J.; Goessling, C.; Koll, J.; Korbel, V.; Nassalski, J.; Singer, G.; Thiele, K.; Zank, P.; Figiel, J.; Janata, F.; Rondio, E.; Studt, M.; Torre, A. de la; Bernaudin, B.; Blum, D.; Heusse, P.; Jaffre, M.; Noppe, J.M.; Pascaud, C.; Bertsch, Y.; Bouard, X. de; Broll, C.; Coignet, G.; Favier, J.; Jansco, G.; Lebeau, M.; Maire, M.; Minssieux, H.; Montanet, F.; Moynot, M.; Nagy, E.; Payre, P.; Perrot, G.; Pessard, H.; Ribarics, P.; Schneegans, M.; Thenard, J.M.; Botterill, D.; Carr, J.; Clifft, R.; Edwards, M.; Norton, P.R.; Rousseau, M.D.; Sproston, M.; Thompson, J.C.; Albanese, J.P.; Allkofer, O.C.; Arneodo, M.; Aubert, J.J.; Becks, K.H.; Bee, C.; Benchouk, C.; Bianchi, F.; Bibby, J.; Bird, I.; Boehm, E.; Braun, H.; Brown, S.; Brueck, H.; Callebaut, D.; Cobb, J.H.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G.R.; D'Agostini, G.; Dau, W.D.; Davies, J.K.; Dengler, F.; Derado, I.; Drees, J.; Dumont, J.J.; Eckardt, V.; Ferrero, M.I.; Gamet, R.; Gebauer, H.J.; Haas, J.; Hasert, F.J.; Hayman, P.; Johnson, A.S.; Kabuss, E.M.; Kahl, T.; Krueger, J.; Landgraf, U.; Lanske, D.; Loken, J.; Manz, A.; Mermet-Guyennet, M.; Mohr, W.; Moser, K.; Mount, R.P.; Paul, L.; Peroni, C.; Pettingale, J.; Poetsch, M.; Preissner, H.; Renton, P.; Rith, K.; Roehner, F.; Schlagboehmer, A.; Schmitz, N.; Schultze, K.; Shiers, J.; Sloan, T.; Smith, R.; Stier, H.E.; Stockhausen, W.; Wahlen, H.; Wallucks, W.; Whalley, M.; Williams, D.A.; Williams, W.S.C.; Wimpenny, S.; Windmolders, R.; Winkmueller, G.; Wolf, G.

    1983-01-01

    A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons. (orig.)

  19. Large-area atmospheric Cherenkov detectors for high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Ong, R.A.

    1996-01-01

    This paper describes the development of new ground-based gamma-ray detectors to explore the energy region between 20 and 200 GeV. This region in energy is interesting because it is currently unexplored by any experiment. The proposed detectors use the atmospheric Cherenkov technique, in which Cherenkov radiation produced in the gamma-ray air showers is detected using mirrors and light-sensitive devices. The important feature of the proposed experiments is the use of large mirror collection areas, which should allow for a significant improvement (i.e. reduction) in energy threshold over existing experiments. Large mirror areas are available for relatively low cost at central tower solar power plants, and there are two groups developing gamma-ray experiments using solar heliostat arrays. This paper summarizes the progress in the design of experiments using this novel approach

  20. Prototype drift chamber for high energy heavy ions with a large dynamic range

    International Nuclear Information System (INIS)

    Kobayashi, T.; Bieser, F.; Crawford, H.; Lindstrom, P.; Baumgartner, M.; Greiner, D.

    1985-01-01

    The authors have constructed and tested a small prototype drift chamber designed for high energy heavy ions. When a drift chamber is used as a tracking detector for heavy projectile fragments from high energy nucleus-nucleus reactions, the major problem comes from the many spurious hits due to delta-rays. Three methods have been developed to solve this problem. The first one is to use a constant fraction discriminator to pick up the timing signal from the core ionization under the large background of delta-rays. The second one is to use pulse height information from the drift chamber to find the cell hit by the heavy ion. The last one is the idea of distributed planes. Modular planes (12 in this case) are distributed 10 cm apart on a rigid base plate to provide accurate relative positioning of the wires. The performance of the prototype chamber has been measured as a function of the high voltage bias and of the charge of the heavy ion from protons up to uranium at around 1 GeV/nucleon

  1. Large Hadron Collider at CERN: Beams generating high-energy-density matter.

    Science.gov (United States)

    Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-04-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has

  2. Large Scale Computing and Storage Requirements for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years

  3. The CERN Large Hadron Collider as a tool to study high-energy density matter.

    Science.gov (United States)

    Tahir, N A; Kain, V; Schmidt, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Temporal, M; Hoffmann, D H H; Fortov, V E

    2005-04-08

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15x10(11) protons so that the total number of protons in one beam will be about 3x10(14) and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma=0.2 mm. The total duration of the beam will be about 89 mus. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  4. The CERN Large Hadron Collider as a tool to study high-energy density matter

    CERN Document Server

    Tahir, N A; Gryaznov, V; Hoffmann, Dieter H H; Kain, V; Lomonosov, I V; Piriz, A R; Schmidt, R; Shutov, A; Temporal, M

    2005-01-01

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15*10/sup 11/ protons so that the total number of protons in one beam will be about 3*10/sup 14/ and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma =0.2 mm. The total duration of the beam will be about 89 mu s. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  5. Analytic calculation of depolarization due to large energy spread in high-energy electron storage rings

    International Nuclear Information System (INIS)

    Buon, J.

    1989-08-01

    A new semiclassical and stochastic model of spin diffusion is used to obtain numerical predictions for depolarization enhancement due to beam energy spread. It confirms the results of previous models for the synchrotron sidebands of spin resonances. A satisfactory agreement is obtained with the width of a synchrotron satellite observed at SPEAR. For HERA, TRISTAN, and LEP at Z 0 energy, the depolarization enhancement is of the order of a few units and increases very rapidly with the energy spread. Large reduction of polarization degree is expected in these rings

  6. The high energy galaxy

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  7. High-energy, large-momentum-transfer processes: Ladder diagrams in var-phi 3 theory

    International Nuclear Information System (INIS)

    Newton, C.L.J.

    1990-01-01

    Relativistic quantum field theories may help one to understand high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, the author studies ladder diagrams in var-phi 3 theory. He shows that in the limit s much-gt |t| much-gt m 2 , the scattering amplitude for the N-rung ladder diagram takes the form s -1 |t| -N+1 times a homogeneous polynomial of degree 2N - 2 and ln s and ln |t|. This polynomial takes different forms depending on the relation of ln |t| to ln s. More precisely, the asymptotic formula for the N-rung ladder diagram has points of non-analytically when ln |t| = γ ln s for γ = 1/2, 1/3, hor-ellipsis, 1/N-2

  8. Large-scale wind energy application. Transporting wind energy over long distances using an HVDC transmission line, in combination with hydro energy or biomass energy

    International Nuclear Information System (INIS)

    Coelingh, J.P.; Van Wijk, A.J.M.; Betcke, J.W.H.; Geuzendam, C.; Gilijamse, W.; Westra, C.A.; Curvers, A.P.W.M.; Beurskens, H.J.M.

    1995-08-01

    The main objective of the study on the title subject is to assess the long-term prospects for large-scale application of wind energy, in combination with hydro energy in Norway and in combination with biomass energy in Scotland. These countries have high wind resource areas, however they are located far away from load centres. The development of new transmission technologies as High Voltage Direct Current (HVDC) transmission lines, in combination with highly suitable places for wind energy in Norway and Scotland, forms the driving force behind this study. The following two cases are being considered: (1) a large-scale wind farm (1,000 MW) in Norway from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with hydro energy. Hydro energy already makes a large contribution to the energy supply of Norway. Wind farms can contribute to the electricity production and save hydro energy generated electricity and make the export of electricity profitable; and (2) a large-scale wind farm (1,000 MW) in Scotland from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with biomass energy. Scotland has a large potential for biomass production such as energy crops and forestry. Poplars and willows cultivated on set-aside land can be gasified and fed into modern combined-cycle plants to generate electricity. In Scotland the usable potential of wind energy may be limited in the short and medium term by the capacity of the grid. New connections can overcome this constraint and allow wind energy to be treated as a European Union resource rather than as a national resource. Thus, the concept of this study is to look at the possibilities of making a 1,000 MW link from The Netherlands to Norway or to Scotland, in order to supply electricity at competitive costs generated with renewable energy sources. 16 figs., 24 tabs., 80 refs

  9. CERN and the high energy frontier

    Directory of Open Access Journals (Sweden)

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  10. Large-area imaging micro-well detectors for high-energy astrophysics

    CERN Document Server

    Deines-Jones, P; Hunter, S D; Jahoda, K; Owens, S M

    2002-01-01

    Micro-well detectors are pixelized imaging sensors that can be inexpensively fabricated in very large arrays. Owing to their intrinsic gain and operation at room temperature, they can be instrumented at very low power, per unit area, making them valuable for a variety of space-flight applications where wide-angle X-ray imaging or large-area particle tracking is required. For example, micro-well detectors have been chosen as the focal plane imager for Lobster-ISS, a proposed soft X-ray all-sky monitor. We have fabricated detectors which image X-rays with 200 mu m FWHM resolution at 3 keV. In agreement with other groups using similar geometries, we find nominal proportional counter energy resolution (20% at 6 keV in P-10), and stable operation at gas gains up to 30,000.

  11. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  12. High energy physics advisory panel's subpanel on vision for the future of high-energy physics

    International Nuclear Information System (INIS)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report's own origins and development

  13. High-energy fibered amplification for large-scale laser facilities

    International Nuclear Information System (INIS)

    Lago, L.

    2011-01-01

    This work concerns the development of a double-clad ytterbium-doped single-mode micro-structured flexible fiber-based amplifier, in the nanosecond, multi-kilohertz and milli-Joule regime, for large-scale laser facilities seeding. We have used a multi-stage master oscillator power amplifier fibered architecture. A numerical model of ytterbium-doped double-clad fiber-based amplification, including amplified spontaneous emission, was developed in order to study the behaviour of such amplifier and to correctly design the experimental set-up. This model was completed by a feed-back algorithm to numerically predict the optimal temporal shape to compensate the gain saturation process. We demonstrated experimental results in good agreement with numerical simulations, with the following performances: 0.5 mJ pulse energy, at a frequency repetition from 1 kHz to 10 kHz, with a narrow bandwidth spectrum centred at 1053 nm wavelength, with 10 ns pulse duration on a perfect super-Gaussian temporal profile, an optical signal-to-noise ratio better than 50 dB and a polarization extinction ratio of 20 dB. We checked that the beam quality was diffraction limited, with an M 2 measurement of 1.1. Moreover, the system can deliver energies up to 1.5 mJ. Then, we took the advantage of such results to amplify chirped pulses. We demonstrated 0.7 mJ pulse energy, with 570 fs duration at 10 kHz repetition frequency. (author) [fr

  14. High energy physics computing in Japan

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1989-01-01

    A brief overview of the computing provision for high energy physics in Japan is presented. Most of the computing power for high energy physics is concentrated in KEK. Here there are two large scale systems: one providing a general computing service including vector processing and the other dedicated to TRISTAN experiments. Each university group has a smaller sized mainframe or VAX system to facilitate both their local computing needs and the remote use of the KEK computers through a network. The large computer system for the TRISTAN experiments is described. An overview of a prospective future large facility is also given. (orig.)

  15. Large Hadron Collider at CERN: Beams Generating High-Energy-Density Matter

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, IV; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-01-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. This data has been used as input to a sophisticated two--dimensional hydrodynamic computer code, BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1~m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy de...

  16. Thermal and hydrodynamic studies for micro-channel cooling for large area silicon sensors in high energy physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Flaschel, Nils; Ariza, Dario; Diez, Sergio; Gregor, Ingrid-Maria; Tackmann, Kerstin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gerboles, Marta; Jorda, Xavier; Mas, Roser; Quirion, David; Ullan, Miguel [Centro Nacional de Microelectronica, Barcelona (Spain)

    2017-01-15

    Micro-channel cooling initially aiming at small-sized high-power integrated circuits is being transferred to the field of high energy physics. Today's prospects of micro-fabricating silicon opens a door to a more direct cooling of detector modules. The challenge in high energy physics is to save material in the detector construction and to cool large areas. In this paper, we are investigating micro-channel cooling as a candidate for a future cooling system for silicon detectors in a generic research and development approach. The work presented in this paper includes the production and the hydrodynamic and thermal testing of a micro-channel equipped prototype optimized to achieve a homogeneous flow distribution. Furthermore, the device was simulated using finite element methods.

  17. Thermal and hydrodynamic studies for micro-channel cooling for large area silicon sensors in high energy physics experiments

    International Nuclear Information System (INIS)

    Flaschel, Nils; Ariza, Dario; Diez, Sergio; Gregor, Ingrid-Maria; Tackmann, Kerstin; Gerboles, Marta; Jorda, Xavier; Mas, Roser; Quirion, David; Ullan, Miguel

    2017-01-01

    Micro-channel cooling initially aiming at small-sized high-power integrated circuits is being transferred to the field of high energy physics. Today's prospects of micro-fabricating silicon opens a door to a more direct cooling of detector modules. The challenge in high energy physics is to save material in the detector construction and to cool large areas. In this paper, we are investigating micro-channel cooling as a candidate for a future cooling system for silicon detectors in a generic research and development approach. The work presented in this paper includes the production and the hydrodynamic and thermal testing of a micro-channel equipped prototype optimized to achieve a homogeneous flow distribution. Furthermore, the device was simulated using finite element methods.

  18. Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.

    Science.gov (United States)

    Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong

    2017-10-11

    The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.

  19. Interfacing Detectors and Collecting Data for Large-Scale Experiments in High Energy Physics Using COTS Technology

    CERN Document Server

    Schumacher, Jorn; Wandelli, Wainer

    Data-acquisition systems for high-energy physics experiments like the ATLAS experiment at the European particle-physics research institute CERN are used to record experimental physics data and are essential for the effective operation of an experiment. Located in underground facilities with limited space, power, cooling, and exposed to ionizing radiation and strong magnetic fields, data-acquisition systems have unique requirements and are challenging to design and build. Traditionally, these systems have been composed of custom-designed electronic components to be able to cope with the large data volumes that high-energy physics experiments generate and at the same time meet technological and environmental requirements. Custom-designed electronics is costly to develop, effortful to maintain and typically not very flexible. This thesis explores an alternative architecture for data-acquisition systems based on commercial off-the-shelf (COTS) components. A COTS-based data distribution device called FELIX that w...

  20. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    International Nuclear Information System (INIS)

    O'Brien, James E.

    2010-01-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a 'hydrogen economy.' The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  1. High energy physics advisory panel`s subpanel on vision for the future of high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report`s own origins and development.

  2. High-energy, large-momentum-transfer processes: Ladder diagrams in φ3 theory. Pt. 2

    International Nuclear Information System (INIS)

    Osland, P.; Wu, T.T.; Harvard Univ., Cambridge, MA

    1987-01-01

    The scattering amplitude for the four-rung ladder diagram in φ 3 theory is evaluated at high energies and for large momentum transfers. The result takes the form of s -1 vertical stroketvertical stroke -3 multiplied by a homogeneous sixth-order polynomial in ln s and 1nvertical stroketvertical stroke. The novel and unexpected feature is that this polynomial is different depending on whether 1n vertical stroketvertical stroke is larger or less than 1/2 1n s. Thus the asymptotic formula is not analytic at 1n vertical stroketvertical stroke=1/2 1n s, although the first five derivatives are continuous. (orig.)

  3. High energy hadron spin-flip amplitude

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    2016-01-01

    The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru

  4. Large superconducting detector magnets with ultra thin coils for use in high energy accelerators and storage rings

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-08-01

    The development of a new class of large superconducting solenoid magnets is described. High energy physics on colliding beam machines sometimes require the use of thin coil solenoid magnets. The development of these magnets has proceeded with the substitution of light materials for heavy materials and by increasing the current density in the coils. The Lawrence Berkeley Laboratory has developed a radical approach to the problem by having the coil operate at very high current densities. This approach and its implications are described in detail

  5. Economic Model Predictive Control for Large-Scale and Distributed Energy Systems

    DEFF Research Database (Denmark)

    Standardi, Laura

    Sources (RESs) in the smart grids is increasing. These energy sources bring uncertainty to the production due to their fluctuations. Hence,smart grids need suitable control systems that are able to continuously balance power production and consumption.  We apply the Economic Model Predictive Control (EMPC......) strategy to optimise the economic performances of the energy systems and to balance the power production and consumption. In the case of large-scale energy systems, the electrical grid connects a high number of power units. Because of this, the related control problem involves a high number of variables......In this thesis, we consider control strategies for large and distributed energy systems that are important for the implementation of smart grid technologies.  An electrical grid has to ensure reliability and avoid long-term interruptions in the power supply. Moreover, the share of Renewable Energy...

  6. Unitarity corrections and high field strengths in high energy hard collisions

    International Nuclear Information System (INIS)

    Kovchegov, Y.V.; Mueller, A.H.

    1997-01-01

    Unitarity corrections to the BFKL description of high energy hard scattering are viewed in large N c QCD in light-cone quantization. In a center of mass frame unitarity corrections to high energy hard scattering are manifestly perturbatively calculable and unrelated to questions of parton saturation. In a frame where one of the hadrons is initially at rest unitarity corrections are related to parton saturation effects and involve potential strengths A μ ∝1/g. In such a frame we describe the high energy scattering in terms of the expectation value of a Wilson loop. The large potentials A μ ∝1/g are shown to be pure gauge terms allowing perturbation theory to again describe unitarity corrections and parton saturation effects. Genuine nonperturbative effects only come in at energies well beyond those energies where unitarity constraints first become important. (orig.)

  7. Global climate change: Mitigation opportunities high efficiency large chiller technology

    Energy Technology Data Exchange (ETDEWEB)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  8. Study of the high energy Cosmic Rays large scale anisotropies with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Illuminati, Giulia

    2016-01-01

    We present the analysis method used to search for an anisotropy in the high energy Cosmic Rays arrival distribution using data collected by the ANTARES telescope. ANTARES is a neutrino detector, where the collected data are dominated by a large background of cosmic ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the Northern sky. The main challenge for this analysis is accounting for those effects which can mimic an apparent anisotropy in the muon arrival direction: the detector exposure asymmetries, non-uniform time coverage, diurnal and seasonal variation of the atmospheric temperature. Once all these effects have been corrected, a study of the anisotropy profiles along the right ascension can be performed. (paper)

  9. High-Energy Physics: Exit America?

    CERN Multimedia

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  10. The Very Large Hadron Collider: The farthest energy frontier

    International Nuclear Information System (INIS)

    Barletta, William A.

    2001-01-01

    The Very Large Hadron Collider (or Eloisatron) represents what may well be the final step on the energy frontier of accelerator-based high energy physics. While an extremely high luminosity proton collider at 100-200 TeV center of mass energy can probably be built in one step with LHC technology, that machine would cost more than what is presently politically acceptable. This talk summarizes the strategies of collider design including staged deployment, comparison with electron-positron colliders, opportunities for major innovation, and the technical challenges of reducing costs to manageable proportions. It also presents the priorities for relevant R and D for the next few years

  11. Cross-sectional imaging of large and dense materials by high energy X-ray CT using linear accelerator

    International Nuclear Information System (INIS)

    Kanamori, Takahiro; Kamata, Shouji; Ito, Shinichi.

    1989-01-01

    A prototype high energy X-ray CT (computed tomography) system has been developed which employs a linear accelerator as the X-ray source (max. photon energy: 12 MeV). One problem encountered in development of this CT system was to reduce the scattered photons from adjacent detectors, i.e. crosstalk, due to high energy X-rays. This crosstalk was reduced to 2% by means of detector shields using tungsten spacers. Spatial resolution was not affected by such small crosstalk as confirmed by numerical simulations. A second problem was to reduce the scattered photons from the test object. This was done using collimators. A third concern was to realize a wide dynamic range data processing which would allow applications to large and dense objects. This problem was solved by using a sample and hold data acquisition method to reduce the dark current of the photo detectors. The dynamic range of this system was experimentally confirmed over 60 dB. It was demonstrated that slits (width: 2 mm) in an iron object (diameter: 25 cm) could be imaged by this prototype CT system. (author)

  12. CAMAC high energy physics electronics hardware

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  13. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  14. Interferometry of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Padula, S.S.

    1990-01-01

    The interferometry is used for determining large space time dimensions of the Quark Gluon Plasma formed in high energy nuclear collisions or in high multiplicity fluctuations in p-barp collisions. (M.C.K.)

  15. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muniz, Jaime [Department de Fisica de PartIculas, University de Santiago de Compostela, 15782 Santiago, SPAIN (Spain); Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States)

    2006-10-15

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 10{sup 18} to 10{sup 19}eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  16. Photodisintegration of the deuteron at high energy

    International Nuclear Information System (INIS)

    Holt, R.J.

    1992-01-01

    Measurements of the angular distribution for the γd→+pn reaction were performed at SLAC for photon energies between 0.7 and 1.8 GeV (experiment NE8) and between 1.6 and 4.4. GeV (experiment NE17). The final results for experiment NE8 will be presented, but only preliminary results for NE17 will be discussed. The data at θ cm = 90 degrees appear to follow the constituent counting rules. The angular distribution at high photon energies exhibit large values of the cross section at forward angles. There is evidence that the cross section may also be large at backward angles and high energies

  17. Large-scale nuclear energy from the thorium cycle

    International Nuclear Information System (INIS)

    Lewis, W.B.; Duret, M.F.; Craig, D.S.; Veeder, J.I.; Bain, A.S.

    1973-02-01

    The thorium fuel cycle in CANDU (Canada Deuterium Uranium) reactors challenges breeders and fusion as the simplest means of meeting the world's large-scale demands for energy for centuries. Thorium oxide fuel allows high power density with excellent neutron economy. The combination of thorium fuel with organic caloporteur promises easy maintenance and high availability of the whole plant. The total fuelling cost including charges on the inventory is estimated to be attractively low. (author) [fr

  18. GRID computing for experimental high energy physics

    International Nuclear Information System (INIS)

    Moloney, G.R.; Martin, L.; Seviour, E.; Taylor, G.N.; Moorhead, G.F.

    2002-01-01

    Full text: The Large Hadron Collider (LHC), to be completed at the CERN laboratory in 2006, will generate 11 petabytes of data per year. The processing of this large data stream requires a large, distributed computing infrastructure. A recent innovation in high performance distributed computing, the GRID, has been identified as an important tool in data analysis for the LHC. GRID computing has actual and potential application in many fields which require computationally intensive analysis of large, shared data sets. The Australian experimental High Energy Physics community has formed partnerships with the High Performance Computing community to establish a GRID node at the University of Melbourne. Through Australian membership of the ATLAS experiment at the LHC, Australian researchers have an opportunity to be involved in the European DataGRID project. This presentation will include an introduction to the GRID, and it's application to experimental High Energy Physics. We will present the results of our studies, including participation in the first LHC data challenge

  19. Large-scale digitizer system (LSD) for charge and time digitization in high-energy physics experiments

    International Nuclear Information System (INIS)

    Althaus, R.F.; Kirsten, F.A.; Lee, K.L.; Olson, S.R.; Wagner, L.J.; Wolverton, J.M.

    1976-10-01

    A large-scale digitizer (LSD) system for acquiring charge and time-of-arrival particle data from high-energy-physics experiments has been developed at the Lawrence Berkeley Laboratory. The objective in this development was to significantly reduce the cost of instrumenting large-detector arrays which, for the 4π-geometry of colliding-beam experiments, are proposed with an order of magnitude increase in channel count over previous detectors. In order to achieve the desired economy (approximately $65 per channel), a system was designed in which a number of control signals for conversion, for digitization, and for readout are shared in common by all the channels in each 128-channel bin. The overall-system concept and the distribution of control signals that are critical to the 10-bit charge resolution and to the 12-bit time resolution are described. Also described is the bit-serial transfer scheme, chosen for its low component and cabling costs

  20. Multiprocessors for high energy physics

    International Nuclear Information System (INIS)

    Pohl, M.

    1987-01-01

    I review the role, status and progress of multiprocessor projects relevant to high energy physics. A short overview of the large variety of multiprocessors architectures is given, with special emphasis on machines suitable for experimental data reconstruction. A lot of progress has been made in the attempt to make the use of multiprocessors less painful by creating a ''Parallel Programming Environment'' supporting the non-expert user. A high degree of usability has been reached for coarse grain (event level) parallelism. The program development tools available on various systems (subroutine packages, preprocessors and parallelizing compilers) are discussed in some detail. Tools for execution control and debugging are also developing, thus opening the path from dedicated systems for large scale, stable production towards support of a more general job mix. At medium term, multiprocessors will thus cover a growing fraction of the typical high energy physics computing task. (orig.)

  1. High energy particles from {gamma}-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Waxman, E [Weizmann Institute of Science, Rehovot (Israel)

    2001-11-15

    A review is presented of the fireball model of {gamma}-ray bursts (GRBs), and of the production in GRB fireballs of high energy protons and neutrinos. Constraints imposed on the model by recent afterglow observations, which support the association of GRB and ultra-high energy cosmic-ray (UHECR) sources, are discussed. Predictions of the GRB model for UHECR production, which can be tested with planned large area UHECR detectors and with planned high energy neutrino telescopes, are reviewed. (author)

  2. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  3. Measurements of the Suitability of Large Rock Salt Formations for Radio Detection of High-Energy Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Odian, Allen C.

    2001-09-14

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant (WIPP), located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors.

  4. Measurements of the suitability of large rock salt formations for radio detection of high-energy neutrinos

    International Nuclear Information System (INIS)

    Gorham, Peter; Saltzberg, David; Odian, Allen; Williams, Dawn; Besson, David; Frichter, George; Tantawi, Sami

    2002-01-01

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant, located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors

  5. Interfacing detectors and collecting data for large-scale experiments in high energy physics using COTS technology

    International Nuclear Information System (INIS)

    Schumacher, Joern

    2017-01-01

    Data-acquisition systems for high-energy physics experiments like the ATLAS experiment at the European particle-physics research institute CERN are used to record experimental physics data and are essential for the effective operation of an experiment. Located in underground facilities with limited space, power, cooling, and exposed to ionizing radiation and strong magnetic fields, data-acquisition systems have unique requirements and are challenging to design and build. Traditionally, these systems have been composed of custom-designed electronic components to be able to cope with the large data volumes that high-energy physics experiments generate and at the same time meet technological and environmental requirements. Custom-designed electronics is costly to develop,effortful to maintain and typically not very flexible. This thesis explores an alternative architecture for data-acquisition systems based on commercial off-the-shelf (COTS) components. A COTS-based data distribution device called FELIX that will be integrated in ATLAS is presented. The hardware and software implementation of this device is discussed, with a specific focus on performance, heterogenity of systems and traffic patterns. The COTS-based readout approach is evaluated in the context of the future requirements of the ATLAS experiment. The main contributions of the thesis are an analysis of the ATLAS data-acquisition system with a focus on the readout system, a software architecture for the main application on FELIX hosts, a performance analysis and tuning based on computer science methods for central FELIX software components with respect to the requirements of the ATLAS experiment, a network communication library with a high-level software interface to utilize high-performance computing network technology for the purpose of data-acquisition systems, and an evaluation and discussion of ATLAS data-acquisition using FELIX systems as a case study for COTS-based data-acquisition in high-energy

  6. Interfacing detectors and collecting data for large-scale experiments in high energy physics using COTS technology

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Joern

    2017-07-01

    Data-acquisition systems for high-energy physics experiments like the ATLAS experiment at the European particle-physics research institute CERN are used to record experimental physics data and are essential for the effective operation of an experiment. Located in underground facilities with limited space, power, cooling, and exposed to ionizing radiation and strong magnetic fields, data-acquisition systems have unique requirements and are challenging to design and build. Traditionally, these systems have been composed of custom-designed electronic components to be able to cope with the large data volumes that high-energy physics experiments generate and at the same time meet technological and environmental requirements. Custom-designed electronics is costly to develop,effortful to maintain and typically not very flexible. This thesis explores an alternative architecture for data-acquisition systems based on commercial off-the-shelf (COTS) components. A COTS-based data distribution device called FELIX that will be integrated in ATLAS is presented. The hardware and software implementation of this device is discussed, with a specific focus on performance, heterogenity of systems and traffic patterns. The COTS-based readout approach is evaluated in the context of the future requirements of the ATLAS experiment. The main contributions of the thesis are an analysis of the ATLAS data-acquisition system with a focus on the readout system, a software architecture for the main application on FELIX hosts, a performance analysis and tuning based on computer science methods for central FELIX software components with respect to the requirements of the ATLAS experiment, a network communication library with a high-level software interface to utilize high-performance computing network technology for the purpose of data-acquisition systems, and an evaluation and discussion of ATLAS data-acquisition using FELIX systems as a case study for COTS-based data-acquisition in high-energy

  7. Energy Analysis of Cascade Heating with High Back-Pressure Large-Scale Steam Turbine

    Directory of Open Access Journals (Sweden)

    Zhihua Ge

    2018-01-01

    Full Text Available To reduce the exergy loss that is caused by the high-grade extraction steam of traditional heating mode of combined heat and power (CHP generating unit, a high back-pressure cascade heating technology for two jointly constructed large-scale steam turbine power generating units is proposed. The Unit 1 makes full use of the exhaust steam heat from high back-pressure turbine, and the Unit 2 uses the original heating mode of extracting steam condensation, which significantly reduces the flow rate of high-grade extraction steam. The typical 2 × 350 MW supercritical CHP units in northern China were selected as object. The boundary conditions for heating were determined based on the actual climatic conditions and heating demands. A model to analyze the performance of the high back-pressure cascade heating supply units for off-design operating conditions was developed. The load distributions between high back-pressure exhaust steam direct supply and extraction steam heating supply were described under various conditions, based on which, the heating efficiency of the CHP units with the high back-pressure cascade heating system was analyzed. The design heating load and maximum heating supply load were determined as well. The results indicate that the average coal consumption rate during the heating season is 205.46 g/kWh for the design heating load after the retrofit, which is about 51.99 g/kWh lower than that of the traditional heating mode. The coal consumption rate of 199.07 g/kWh can be achieved for the maximum heating load. Significant energy saving and CO2 emission reduction are obtained.

  8. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  9. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  10. Energy-efficiency supervision systems for energy management in large public buildings: Necessary choice for China

    International Nuclear Information System (INIS)

    Feng Yanping; Wu Yong; Liu Changbin

    2009-01-01

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized.

  11. Energy-efficiency supervision systems for energy management in large public buildings. Necessary choice for China

    Energy Technology Data Exchange (ETDEWEB)

    Yan-ping, Feng [Beijing Jiaotong University, School of Economics and Management, Jiaoda Donglu18, 5-803, Beijing 100044 (China); Yong, Wu [Ministry of Housing and Urban-Rural Development, Beijing 100835 (China); Chang-bin, Liu [Beijing Institute of Civil Engineering and Architecture, Beijing 100044 (China)

    2009-06-15

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized. (author)

  12. Energy-efficiency supervision systems for energy management in large public buildings: Necessary choice for China

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yanping [Beijing Jiaotong University, School of Economics and Management, Jiaoda Donglu18, 5-803, Beijing 100044 (China)], E-mail: fengyanping10@sohu.com; Wu Yong [Ministry of Housing and Urban-Rural Development, Beijing 100835 (China); Liu Changbin [Beijing Institute of Civil Engineering and Architecture, Beijing 100044 (China)

    2009-06-15

    Buildings are important contributors to total energy consumption accounting for around 30% of all energy consumed in China. Of this, around two-fifths are consumed within urban homes, one-fifth within public buildings, and two-fifths within rural area. Government office buildings and large-scale public buildings are the dominant energy consumers in cities but their consumption can be largely cut back through improving efficiency. At present, energy management in the large public sector is a particular priority in China. Firstly, this paper discusses how the large public building is defined, and then energy performance in large public buildings is studied. The paper also describes barriers to improving energy efficiency of large public buildings in China and examines the energy-efficiency policies and programs adopted in United States and European Union. The energy-efficiency supervision (EES) systems developed to improve operation and maintenance practices and promote energy efficiency in large public sector are described. The benefits of the EES systems are finally summarized.

  13. Spectra of gamma-ray bursts at high energies

    International Nuclear Information System (INIS)

    Matz, S.M.

    1986-01-01

    Between 1980 February and 1983 August the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) observed 71 gamma-ray bursts. These events form a representative subset of the class of classical gamma-ray bursts. Since their discovery more than 15 years ago, hundreds of gamma-ray bursts have been detected; however, most observations have been limited to an energy range of roughly 30 keV-1 MeV. The large sensitive area and spectral range of the GRS allow, for the first time, an investigation of the high energy (>1 MeV) behavior of a substantial number of gamma-ray bursts. It is found that high-energy emission is seen in a large fraction of all events and that the data are consistent with all bursts emitting to at least 5 MeV with no cut-offs. Further, no burst spectrum measured by GRS has a clear high-energy cut-off. The high-energy emission can be a significant part of the total burst energy on the average about 30% of the observed energy above 30 keV is contained in the >1 MeV photons. The fact that the observations are consistent with the presence of high-energy emission in all events implies a limit on the preferential beaming of high-energy photons, from any mechanism. Single-photon pair-production in a strong magnetic field produces such beaming; assuming that the low-energy emission is isotropic, the data imply an upper limit of 1 x 10 12 G on the typical magnetic field at burst radiation sites

  14. Electro-optical equivalent calibration technology for high-energy laser energy meters

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ji Feng, E-mail: wjfcom2000@163.com [State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084 (China); Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Graduate School of China Academy of Engineering Physics, Beijing 100088 (China); Key Laboratory of Laser Science and Technology, China Academy of Engineering Physics, Mianyang 621900 (China); Chang, Yan; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Key Laboratory of Laser Science and Technology, China Academy of Engineering Physics, Mianyang 621900 (China); Sun, Li Qun [State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084 (China)

    2016-04-15

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  15. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    International Nuclear Information System (INIS)

    Lai, Z N; Wu, P; Wu, D Z; Wang, L Q

    2013-01-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m 3 /h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result

  16. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    Science.gov (United States)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  17. Postulated weather modification effects of large energy releases

    Energy Technology Data Exchange (ETDEWEB)

    Ramsdell, J.V.; Scott, B.C.; Orgill, M.M.; Renne, D.S.; Hubbard, J.E.; McGinnis, K.A.

    1977-02-01

    Postulated impacts of large energy releases were examined in the light of existing technical information. The magnitudes of direct atmospheric modifications were estimated, and the ecological and economic implications of the modifications were explored. Energy releases from energy centers (10 to 40 power plants at a single site) and individual power plant clusters (1 to 4 power plants) were considered. In the atmosphere the energy will exist initially as increased temperature (sensible heat), moisture (latent heat), and air motion (kinetic energy). Addition of energy could result in increased cloudiness and fog, and changed precipitation patterns. A framework for economic analysis of the impacts of the postulated atmospheric modifications was established on the basis of costs and benefits. Willingness-to-pay was selected as the appropriate measure for valuing each impact. The primary and secondary atmospheric modifications may affect recreation, transportation, and aesthetics as well as agriculture and forestry. Economic values can be placed on some of the effects. However, the willingness of people to pay to gain benefits and avoid damages in many cases can only be determined through extensive surveys. The economic consequences of a given energy release would be highly site specific.

  18. Postulated weather modification effects of large energy releases

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Scott, B.C.; Orgill, M.M.; Renne, D.S.; Hubbard, J.E.; McGinnis, K.A.

    1977-02-01

    Postulated impacts of large energy releases were examined in the light of existing technical information. The magnitudes of direct atmospheric modifications were estimated, and the ecological and economic implications of the modifications were explored. Energy releases from energy centers (10 to 40 power plants at a single site) and individual power plant clusters (1 to 4 power plants) were considered. In the atmosphere the energy will exist initially as increased temperature (sensible heat), moisture (latent heat), and air motion (kinetic energy). Addition of energy could result in increased cloudiness and fog, and changed precipitation patterns. A framework for economic analysis of the impacts of the postulated atmospheric modifications was established on the basis of costs and benefits. Willingness-to-pay was selected as the appropriate measure for valuing each impact. The primary and secondary atmospheric modifications may affect recreation, transportation, and aesthetics as well as agriculture and forestry. Economic values can be placed on some of the effects. However, the willingness of people to pay to gain benefits and avoid damages in many cases can only be determined through extensive surveys. The economic consequences of a given energy release would be highly site specific

  19. Performance Limitations in High-Energy Ion Colliders

    CERN Document Server

    Fischer, Wolfram

    2005-01-01

    High-energy ion colliders (hadron colliders operating with species other than protons) are premier research tools for nuclear physics. The collision energy and high luminosity are important design and operations considerations. However, the experiments also expect flexibility with frequent changes in the collision energy, lattice configuration, and ion species, including asymmetric collisions. For the creation, acceleration, and storage of bright intense ion beams, attention must be paid to space charge, charge exchange, and intra-beam scattering effects. The latter leads to luminosity lifetimes of only a few hours for heavy ions. Ultimately cooling at full energy is needed to overcome this effect. Currently, the Relativistic Heavy Ion Collider at BNL is the only operating high-energy ion collider. The Large Hadron Collider, under construction at CERN, will also run with heavy ions.

  20. Nuclear response functions at large energy and momentum transfer

    International Nuclear Information System (INIS)

    Bertozzi, W.; Moniz, E.J.; Lourie, R.W.

    1991-01-01

    Quasifree nucleon processes are expected to dominate the nuclear electromagnetic response function for large energy and momentum transfers, i.e., for energy transfers large compared with nuclear single particle energies and momentum transfers large compared with typical nuclear momenta. Despite the evident success of the quasifree picture in providing the basic frame work for discussing and understanding the large energy, large momentum nuclear response, the limits of this picture have also become quite clear. In this article a selected set of inclusive and coincidence data are presented in order to define the limits of the quasifree picture more quantitatively. Specific dynamical mechanisms thought to be important in going beyond the quasifree picture are discussed as well. 75 refs, 37 figs

  1. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  2. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  3. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  4. A method of simulation of large air showers of cosmic radiation. Application to High Energy Physics and to Astrophysics (10"1"3 - 10"2"1 eV)

    International Nuclear Information System (INIS)

    Capdevielle, Jean-Noel

    1972-01-01

    This research thesis addresses the study of large air showers and the field of high energy physics and of astrophysics. The author discusses fluctuations undergone by large showers, and reports the development of a simulation method which is used for the determination of the morphology of these large air showers, that is their longitudinal and lateral development. Simulation results are compared with experimental results, and the influence of fluctuations is discussed. The author reports the application of the simulation method to high energy physics and to astrophysics, notably through an example of use of the simulation method in application to the Kiel Group experiment performed at the Pic du Midi. Possible developments are then discussed [fr

  5. Highly Enhanced Electromechanical Stability of Large-Area Graphene with Increased Interfacial Adhesion Energy by Electrothermal-Direct Transfer for Transparent Electrodes.

    Science.gov (United States)

    Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk

    2016-09-07

    Graphene, a two-dimensional sheet of carbon atoms in a hexagonal lattice structure, has been extensively investigated for research and industrial applications as a promising material with outstanding electrical, mechanical, and chemical properties. To fabricate graphene-based devices, graphene transfer to the target substrate with a clean and minimally defective surface is the first step. However, graphene transfer technologies require improvement in terms of uniform transfer with a clean, nonfolded and nontorn area, amount of defects, and electromechanical reliability of the transferred graphene. More specifically, uniform transfer of a large area is a key challenge when graphene is repetitively transferred onto pretransferred layers because the adhesion energy between graphene layers is too low to ensure uniform transfer, although uniform multilayers of graphene have exhibited enhanced electrical and optical properties. In this work, we developed a newly suggested electrothermal-direct (ETD) transfer method for large-area high quality monolayer graphene with less defects and an absence of folding or tearing of the area at the surface. This method delivers uniform multilayer transfer of graphene by repetitive monolayer transfer steps based on high adhesion energy between graphene layers and the target substrate. To investigate the highly enhanced electromechanical stability, we conducted mechanical elastic bending experiments and reliability tests in a highly humid environment. This ETD-transferred graphene is expected to replace commercial transparent electrodes with ETD graphene-based transparent electrodes and devices such as a touch panels with outstanding electromechanical stability.

  6. New energy levels of praseodymium with large angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shamim; Siddiqui, Imran; Gamper, Bettina; Syed, Tanweer Iqbal; Guthoehrlein, Guenter H.; Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)

    2011-07-01

    The electronic ground state configuration of praseodymium {sup 59}Pr{sub 141} is [Xe] 4f{sup 3}6s{sup 2}, with ground state level {sup 4}I{sub 9/2}. Our research is mainly devoted to find previously unknown energy levels by the investigation of spectral lines and their hyperfine structures. In a hollow cathode discharge lamp praseodymium atoms and ions in ground and excited states are excited to high lying states by laser light. The excitation source is a tunable ring-dye laser system, operated with R6G, Kiton Red, DCM and LD700. A high resolution Fourier transform spectrum is used for selecting promising excitation wavelengths. Then the laser wavelength is tuned to a strong hyperfine component of the spectral line to be investigated, and a search for fluorescence from excited levels is performed. From the observed hyperfine structure we determine J-values and hyperfine constants A of the combining levels. This information, together with excitation and fluorescence wavelengths, allows us to find the energies of involved new levels. Up to now we have discovered large number of previously unknown energy levels with various angular momentum values. We present here the data (energies, parities, angular momenta J, magnetic hyperfine constants A) of ca. 40 new, until now unknown energy levels with high angular momentum values: 15/2, 17/2, 19/2, 21/2.

  7. Treatment of foods with high-energy X rays

    International Nuclear Information System (INIS)

    Cleland, M.R.; Meissner, J.; Herer, A.S.; Beers, E.W.

    2001-01-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper

  8. Treatment of foods with high-energy X rays

    Science.gov (United States)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  9. Energy Efficiency of large Cryogenic Systems: the LHC Case and Beyond

    CERN Document Server

    Claudet, S; Ferlin, G; Lebrun, P; Tavian, L; Wagner, U

    2013-01-01

    Research infrastructures for high-energy and nuclear physics, nuclear fusion and production of high magnetic fields are increasingly based on applied superconductivity and associated cryogenics in their quest for scientific breakthroughs at affordable capital and operation costs, a condition for their acceptance and sustained funding by society. The thermodynamic penalty for operating at low temperature makes energy efficiency a key requirement for their large cryogenic systems, from conceptual design to procurement, construction and operation. Meeting this requirement takes a combined approach on several fronts in parallel: management of heat loads and sizing of cooling duties, distribution of cooling power matching the needs of the superconducting devices, efficient production of refrigeration, optimal control resting on precise instrumentation and diagnostics, as well as a targeted industrial procurement policy. The case of the Large Hadron Collider (LHC) at CERN is presented. Potential improvements for fu...

  10. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1985-05-01

    The conclusions are relatively simple, but represent a considerable challenge to the machine builder. High luminosity is essential. We may in the future discover some new kind of high cross section physics, but all we know now indicates that the luminosity has to increase as the square of the center of mass energy. A reasonable luminosity to scale from for electron machines would be 10 33 cm -2 s -1 at a center of mass energy of 3 TeV. The required emittances in very high energy machines are small. It will be a real challenge to produce these small emittances and to maintain them during acceleration. The small emittances probably make acceleration by laser techniques easier, if such techniques will be practical at all. The beam spot sizes are very small indeed. It will be a challenge to design beam transport systems with the necessary freedom from aberration required for these small spot sizes. It would of course help if the beta functions at the collision points could be reduced. Beam power will be large - to paraphrase the old saying, ''power is money'' - and efficient acceleration systems will be required

  11. Observation of an energy threshold for large ΔE collisional relaxation of highly vibrationally excited pyrazine (Evib=31 000-41 000 cm-1) by CO2

    Science.gov (United States)

    Elioff, Michael S.; Wall, Mark C.; Lemoff, Andrew S.; Mullin, Amy S.

    1999-03-01

    Energy dependent studies of the collisional relaxation of highly vibrationally excited pyrazine through collisions with CO2 were performed for initial pyrazine energies Evib=31 000-35 000 cm-1. These studies are presented along with earlier results for pyrazine with Evib=36 000-41 000 cm-1. High-resolution transient IR laser absorption of individual CO2 (0000) rotational states (J=56-80) was used to investigate the magnitude and partitioning of energy gain into CO2 rotation and translation, which comprises the high energy tail of the energy transfer distribution function. Highly vibrationally excited pyrazine was prepared by absorption of pulsed UV light at seven wavelengths in the range λ=281-324 nm, followed by radiationless decay to pyrazine's ground electronic state. Nascent CO2 (0000) rotational populations were measured for each UV excitation wavelength and distributions of nascent recoil velocities for individual rotational states of CO2 (0000) were obtained from Doppler-broadened transient linewidth measurements. Measurements of energy transfer rate constants at each UV wavelength yield energy-dependent probabilities for collisions involving large ΔE values. These results reveal that the magnitude of large ΔE collisional energy gain in CO2 (0000) is fairly insensitive to the amount of vibrational energy in pyrazine for Evib=31 000-35 000 cm-1. A comparison with earlier studies on pyrazine with Evib=36 000-41 000 cm-1 indicates that the V→RT energy transfer increases both in magnitude and probability for Evib>36 000 cm-1. Implications of incomplete intramolecular vibrational relaxation, electronic state coupling, and isomerization barriers are discussed in light of these results.

  12. Modeling the impact of large-scale energy conversion systems on global climate

    International Nuclear Information System (INIS)

    Williams, J.

    There are three energy options which could satisfy a projected energy requirement of about 30 TW and these are the solar, nuclear and (to a lesser extent) coal options. Climate models can be used to assess the impact of large scale deployment of these options. The impact of waste heat has been assessed using energy balance models and general circulation models (GCMs). Results suggest that the impacts are significant when the heat imput is very high and studies of more realistic scenarios are required. Energy balance models, radiative-convective models and a GCM have been used to study the impact of doubling the atmospheric CO 2 concentration. State-of-the-art models estimate a surface temperature increase of 1.5-3.0 0 C with large amplification near the poles, but much uncertainty remains. Very few model studies have been made of the impact of particles on global climate, more information on the characteristics of particle input are required. The impact of large-scale deployment of solar energy conversion systems has received little attention but model studies suggest that large scale changes in surface characteristics associated with such systems (surface heat balance, roughness and hydrological characteristics and ocean surface temperature) could have significant global climatic effects. (Auth.)

  13. Confinement Can Violate Momentum Sum Rule in QCD at High Energy Colliders

    OpenAIRE

    Nayak, Gouranga C

    2018-01-01

    Momentum sum rule in QCD is widely used at high energy colliders. Although the exact form of the confinement potential energy is not known but the confinement potential energy at large distance $r$ can not rise slower than ${\\rm ln}(r)$. In this paper we find that if the confinement potential energy at large distance $r$ rises linearly with $r$ (or faster) then the momentum sum rule in QCD is violated at the high energy colliders.

  14. Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms

    Science.gov (United States)

    VerHulst, Claire; Meneveau, Charles

    2014-02-01

    In this study, we address the question of how kinetic energy is entrained into large wind turbine arrays and, in particular, how large-scale flow structures contribute to such entrainment. Previous research has shown this entrainment to be an important limiting factor in the performance of very large arrays where the flow becomes fully developed and there is a balance between the forcing of the atmospheric boundary layer and the resistance of the wind turbines. Given the high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled large eddy simulation (LES) to simulate turbulent flow within the wind farm. Three-dimensional proper orthogonal decomposition (POD) analysis is then used to identify the most energetic flow structures present in the LES data. We quantify the contribution of each POD mode to the kinetic energy entrainment and its dependence on the layout of the wind turbine array. The primary large-scale structures are found to be streamwise, counter-rotating vortices located above the height of the wind turbines. While the flow is periodic, the geometry is not invariant to all horizontal translations due to the presence of the wind turbines and thus POD modes need not be Fourier modes. Differences of the obtained modes with Fourier modes are documented. Some of the modes are responsible for a large fraction of the kinetic energy flux to the wind turbine region. Surprisingly, more flow structures (POD modes) are needed to capture at least 40% of the turbulent kinetic energy, for which the POD analysis is optimal, than are needed to capture at least 40% of the kinetic energy flux to the turbines. For comparison, we consider the cases of aligned and staggered wind turbine arrays in a neutral atmospheric boundary layer as well as a reference case without wind turbines. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the presence and relative

  15. Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators

    CERN Document Server

    Blanco Sancho, Juan; Schmidt, R

    The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

  16. Thermal System Analysis and Optimization of Large-Scale Compressed Air Energy Storage (CAES

    Directory of Open Access Journals (Sweden)

    Zhongguang Fu

    2015-08-01

    Full Text Available As an important solution to issues regarding peak load and renewable energy resources on grids, large-scale compressed air energy storage (CAES power generation technology has recently become a popular research topic in the area of large-scale industrial energy storage. At present, the combination of high-expansion ratio turbines with advanced gas turbine technology is an important breakthrough in energy storage technology. In this study, a new gas turbine power generation system is coupled with current CAES technology. Moreover, a thermodynamic cycle system is optimized by calculating for the parameters of a thermodynamic system. Results show that the thermal efficiency of the new system increases by at least 5% over that of the existing system.

  17. High-Energy Beam Transport in the Hanford FMIT Linear Accelerator

    International Nuclear Information System (INIS)

    Melson, K.E.; Potter, R.C.; Liska, D.J.; Giles, P.M.; Wilson, M.T.; Cole, T.R.; Caldwell, C.J. Jr.

    1979-01-01

    The High-Energy Beam Transport (HEBT) for the Hanford Fusion Materials Irradiation Test (FMIT) Facility's Linear Accelerator must transport a large emittance, high-current, high-power continuous duty deuteron beam with a large energy spread. Both periodic and nonperiodic systems have been designed to transport and shape the beam as required by the liquid lithium target. An energy spreader system distributes the Bragg Peak within the lithium. A beam spreader and a beam stop have been provided for tune-up purposes. Characterizing the beam will require extensions of beam diagnostics techniques and non-interceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports

  18. Individual Dosimetry for High Energy Radiation Fields

    International Nuclear Information System (INIS)

    Spurny, F.

    1999-01-01

    The exposure of individuals on board aircraft increased interest in individual dosimetry in high energy radiation fields. These fields, both in the case of cosmic rays as primary radiation and at high energy particle accelerators are complex, with a large diversity of particle types, their energies, and linear energy transfer (LET). Several already existing individual dosemeters have been tested in such fields. For the component with high LET (mostly neutrons) etched track detectors were tested with and without fissile radiators, nuclear emulsions, bubble detectors for both types available and an albedo dosemeter. Individual dosimetry for the low LET component has been performed with thermoluminescent detectors (TLDs), photographic film dosemeters and two types of electronic individual dosemeters. It was found that individual dosimetry for the low LET component was satisfactory with the dosemeters tested. As far as the high LET component is concerned, there are problems with both the sensitivity and the energy response. (author)

  19. Particles colliders at the Large High Energy Laboratories

    International Nuclear Information System (INIS)

    Aguilar, M.

    1996-01-01

    In this work we present an elementary introduction to particle accelerators, a basic guide of existing colliders and a description of the large european laboratories devoted to Elementary Particle Physics. This work is a large, corrected and updated version of an article published in: Ciencia-Tecnologia-Medio Ambiente Annual report 1996 Edition el Pais (Author)

  20. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    2000-01-01

    the academic community in Cracow at M.Sc. and Ph.D. level. Joint research, teaching and academic training in high energy physics are carried out within the M. Miesowicz Inter Institute Centre for High Energy Physics, which was formed by an agreement between the University of Mining and Metallurgy, the Jagiellonian University and our Institute to honour the late Prof. Marian Miesowicz, the founder and the long-time leader of the high energy physics community in Cracow. Since the modern high energy physics experiments require enormous technical, man-power and financial efforts, our research is mainly carried out in large international collaborations. These are listed at proper places in the following text. They were formed at the leading laboratories where large accelerators have been or will be constructed: the European Laboratory for Particle Physics CERN in Geneva (SPS, LEP, LHC), DESY in Hamburg (HERA, TESLA), Brookhaven National Laboratory (RHIC), Fermilab in Batavia, USA (TEVATRON) and KEK in Tsukuba, Japan (KEK- B). Our Institute also participates in the international Pierre Auger Project aimed at the study of extremely high energy cosmic rays. Our work in 1999 resulted in the publication of very interesting results from the e + e - experiment DELPHI at LEP, the e ± p experiments H1 and ZEUS at HERA, and on heavy ion collisions from BNL and CERN. Short reviews of some of these can be found in the following pages together with results obtained in other experiments, like e.g., the cosmic ray experiment JACEE, and also with those published by our theorists. Our computing facilities allow the application of the most advanced Monte-Carlo methods both for solving theoretical problems and for modelling the conditions of experiments. A good computer link permits e.g. a nearly on-line control of data quality in running experiments. Close research contacts in some projects such as the DELPHI, ZEUS, NA49 and LHC experiments are being maintained with the A. Soltan Institute

  1. Outlook and application analysis of energy storage in power system with high renewable energy penetration

    Science.gov (United States)

    Feng, Junshu; Zhang, Fuqiang

    2018-02-01

    To realize low-emission and low-carbon energy production and consumption, large-scale development and utilization of renewable energy has been put into practice in China. And it has been recognized that power system of future high renewable energy shares can operate more reliably with the participation of energy storage. Considering the significant role of storage playing in the future power system, this paper focuses on the application of energy storage with high renewable energy penetration. Firstly, two application modes are given, including demand side application mode and centralized renewable energy farm application mode. Afterwards, a high renewable energy penetration scenario of northwest region in China is designed, and its production simulation with application of energy storage in 2050 has been calculated and analysed. Finally, a development path and outlook of energy storage is given.

  2. Grid computing in high-energy physics

    International Nuclear Information System (INIS)

    Bischof, R.; Kuhn, D.; Kneringer, E.

    2003-01-01

    Full text: The future high energy physics experiments are characterized by an enormous amount of data delivered by the large detectors presently under construction e.g. at the Large Hadron Collider and by a large number of scientists (several thousands) requiring simultaneous access to the resulting experimental data. Since it seems unrealistic to provide the necessary computing and storage resources at one single place, (e.g. CERN), the concept of grid computing i.e. the use of distributed resources, will be chosen. The DataGrid project (under the leadership of CERN) develops, based on the Globus toolkit, the software necessary for computation and analysis of shared large-scale databases in a grid structure. The high energy physics group Innsbruck participates with several resources in the DataGrid test bed. In this presentation our experience as grid users and resource provider is summarized. In cooperation with the local IT-center (ZID) we installed a flexible grid system which uses PCs (at the moment 162) in student's labs during nights, weekends and holidays, which is especially used to compare different systems (local resource managers, other grid software e.g. from the Nordugrid project) and to supply a test bed for the future Austrian Grid (AGrid). (author)

  3. A Large Aperture, High Energy Laser System for Optics and Optical Component Testing

    International Nuclear Information System (INIS)

    Nostrand, M.C.; Weiland, T.L.; Luthi, R.L.; Vickers, J.L.; Sell, W.D.; Stanley, J.A.; Honig, J.; Auerbach, J.; Hackel, R.P.; Wegner, P.J.

    2003-01-01

    A large aperture, kJ-class, multi-wavelength Nd-glass laser system has been constructed at Lawrence Livermore National Lab which has unique capabilities for studying a wide variety of optical phenomena. The master-oscillator, power-amplifier (MOPA) configuration of this ''Optical Sciences Laser'' (OSL) produces 1053 nm radiation with shaped pulse lengths which are variable from 0.1-100 ns. The output can be frequency doubled or tripled with high conversion efficiency with a resultant 100 cm 2 high quality output beam. This facility can accommodate prototype hardware for large-scale inertial confinement fusion lasers allowing for investigation of integrated system issues such as optical lifetime at high fluence, optics contamination, compatibility of non-optical materials, and laser diagnostics

  4. Heavy ion fragmentation in high energy

    International Nuclear Information System (INIS)

    Nemes, M.C.

    1985-01-01

    A review is made on the theoretical aspects of heavy ion collisions at high energies. A comparison with several experimental data obtained in a large variety of experiments is present. An emphasis is given on the basis of Glauber's theory of scattering. (L.C.) [pt

  5. Green energy and large commercial users

    International Nuclear Information System (INIS)

    Capage, Adam

    2000-01-01

    The difficulties faced in selling green energy to large commercial users are reviewed in this article. Four steps are identified in helping energy service suppliers (ESP) focus on opportunities for maximising revenue, namely, targeting the best prospects, identifying the right contact person, appealing to the primary contact, and helping contacts to make the sale internally. Companies with environmentally conscious customers and well defined environmental policies and led by those that promote environmental stewardship are recognised as commercial customers most likely to sign a deal for green energy

  6. Unexpectedly large cross sections of high-energy electrons ejected from water vapor by 6.0-10.0 MeV/u He2+ ions

    International Nuclear Information System (INIS)

    Ohsawa, D.; Sato, Y.; Okada, Y.; Shevelko, V.P.; Soga, F.

    2005-01-01

    We present absolute doubly differential cross sections (DDCS) of electron emission (= 2+ ions with water vapor, in which unexpectedly large DDCS values were observed at the backward angles, particularly in the high-energy region, as well as singly differential cross sections larger than the Rudd model by a factor of 2-3 at ∼10 keV. The experimental results imply that these high-energy electrons are accelerated through the Fermi-shuttle acceleration. We evaluated the partial cross sections, which contribute to this acceleration, to be 7.1 and 4.5x10 -19 cm 2 , respectively, leading to ∼0.7% of the total ionization cross sections

  7. A detector for high-energy neutrino interactions

    International Nuclear Information System (INIS)

    Holder, M.; Knobloch, J.; Lacourt, A.; Laverriere, G.; May, J.; Paar, H.; Palazzi, P.; Ranjard, F.; Schilly, P.; Schlatter, D.; Steinberger, J.; Suter, H.; Wahl, H.; Williams, E.G.H.; Eisele, F.; Geweniger, G.; Kleinknecht, K.; Pollmann, O.; Spahn, G.; Willutzki, H.J.; Navarria, F.L.

    1978-01-01

    The authors describe the design, construction and performance of a large mass detector used at CERN to study high-energy neutrino interactions in iron. This detector combines magnetic spectrometry and hadron calorimetry techniques. (Auth.)

  8. Large Hospital 50% Energy Savings: Technical Support Document

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Studer, D.; Parker, A.; Pless, S.; Torcellini, P.

    2010-09-01

    This Technical Support Document documents the technical analysis and design guidance for large hospitals to achieve whole-building energy savings of at least 50% over ANSI/ASHRAE/IESNA Standard 90.1-2004 and represents a step toward determining how to provide design guidance for aggressive energy savings targets. This report documents the modeling methods used to demonstrate that the design recommendations meet or exceed the 50% goal. EnergyPlus was used to model the predicted energy performance of the baseline and low-energy buildings to verify that 50% energy savings are achievable. Percent energy savings are based on a nominal minimally code-compliant building and whole-building, net site energy use intensity. The report defines architectural-program characteristics for typical large hospitals, thereby defining a prototype model; creates baseline energy models for each climate zone that are elaborations of the prototype models and are minimally compliant with Standard 90.1-2004; creates a list of energy design measures that can be applied to the prototype model to create low-energy models; uses industry feedback to strengthen inputs for baseline energy models and energy design measures; and simulates low-energy models for each climate zone to show that when the energy design measures are applied to the prototype model, 50% energy savings (or more) are achieved.

  9. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    Channell, P.J.

    1986-01-01

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  10. Numerical Analysis of a Large Floating Wave Energy Converter with Adjustable Structural Geometry

    DEFF Research Database (Denmark)

    Ferri, Francesco; Pecher, Arthur Francois Serge; Kofoed, Jens Peter

    2015-01-01

    by the structural loads in extreme conditions. TheWeptos is a large floating WEC, with multiple absorbers, which has proven to be a serious candidate for the renewable energy market, due to both relevant power performance and reduced cost if compared with other WECs. The scope of this article is to compare two......The current cost of energy (CoE) from wave energy converters (WECs) is still significantly higher than other renewable energy resources, thus the sector has not yet reached a competitive level. WECs have a relative small turnover compared to the high capital cost, which to a large extent is driven...... different configurations of the Weptos machine, using the cost of energy (CoE) as a base of comparison. The numerical results are obtained via a multi-body analysis carried out in frequency domain....

  11. A novel iron-lead redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Ren, Y. X.

    2017-04-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies for the massive utilization of intermittent renewables especially wind and solar energy. This work presents a novel redox flow battery that utilizes inexpensive and abundant Fe(II)/Fe(III) and Pb/Pb(II) redox couples as redox materials. Experimental results show that both the Fe(II)/Fe(III) and Pb/Pb(II) redox couples have fast electrochemical kinetics in methanesulfonic acid, and that the coulombic efficiency and energy efficiency of the battery are, respectively, as high as 96.2% and 86.2% at 40 mA cm-2. Furthermore, the battery exhibits stable performance in terms of efficiencies and discharge capacities during the cycle test. The inexpensive redox materials, fast electrochemical kinetics and stable cycle performance make the present battery a promising candidate for large-scale energy storage applications.

  12. Low energy neutrino astrophysics with the large liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Undagoitia, T. Marrodan; Oberauer, L.; Potzel, W.; Winter, J.

    2007-01-01

    The large-volume liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) will cover a broad field of physics. Apart from the detection of terrestrial and artificial neutrinos, and the search for proton decay, important contributions can be made to the astrophysics of stars by high-precision spectroscopy of low-energetic solar neutrinos and by the observation of neutrinos emitted by a galactic supernova. Moreover, the detection of the diffuse supernova neutrino background in LENA will offer the opportunity of studying both supernova core-collapse models and the supernova rate on cosmological timescales (z e events in an almost background-free energy window from ∼10 to 25 MeV. The search for such rare low-energetic events takes advantage of the high energy resolution and excellent background rejection possible in the LENA detector

  13. Reducing the market impact of large shares of intermittent energy in Denmark

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Zvingilaite, Erika

    2010-01-01

    The increasing prevalence of renewable and intermittent energy sources in the electricity system is creating new challenges for the interaction of the system. In Denmark, high renewable shares have been achieved without great difficulty, mainly due to the flexibility of the nearby Nordic hydro......-power dominated system. Further increases in the share of renewable energy sources require that additional options are considered to facilitate integration with the lowest possible cost. With large shares of intermittent energy, the impact can be observed on wholesale prices, giving both lower prices and higher...... and the attractiveness of additional interconnection capacity. This paper also analyses options for increasing the flexibility of heat generation involving large and decentralized CHP plants and heat generation based on electricity. The incentives that the market provides for shifting demand and using electricity...

  14. Quench protection and design of large high-current-density superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.

    1981-03-01

    Although most large superconducting magnets have been designed using the concept of cryostability, there is increased need for large magnets which operate at current densities above the cryostable limit (greater than 10 8 Am -2 ). Large high current density superconducting magnets are chosen for the following reasons: reduced mass, reduced coil thickness or size, and reduced cost. The design of large high current density, adiabatically stable, superconducting magnets requires a very different set of design rules than either large cryostable superconducting magnets or small self-protected high current density magnets. The problems associated with large high current density superconducting magnets fall into three categories; (a) quench protection, (b) stress and training, and (c) cryogenic design. The three categories must be considered simultaneously. The paper discusses quench protection and its implication for magnets of large stored energies (this includes strings of smaller magnets). Training and its relationship to quench protection and magnetic strain are discussed. Examples of magnets, built at the Lawrence Berkeley Laboratory and elsewhere using the design guidelines given in this report, are presented

  15. Large Aperture "Photon Bucket" Optical Receiver Performance in High Background Environments

    Science.gov (United States)

    Vilnrotter, Victor A.; Hoppe, D.

    2011-01-01

    The potential development of large aperture groundbased "photon bucket" optical receivers for deep space communications, with acceptable performance even when pointing close to the sun, is receiving considerable attention. Sunlight scattered by the atmosphere becomes significant at micron wavelengths when pointing to a few degrees from the sun, even with the narrowest bandwidth optical filters. In addition, high quality optical apertures in the 10-30 meter range are costly and difficult to build with accurate surfaces to ensure narrow fields-of-view (FOV). One approach currently under consideration is to polish the aluminum reflector panels of large 34-meter microwave antennas to high reflectance, and accept the relatively large FOV generated by state-of-the-art polished aluminum panels with rms surface accuracies on the order of a few microns, corresponding to several-hundred micro-radian FOV, hence generating centimeter-diameter focused spots at the Cassegrain focus of 34-meter antennas. Assuming pulse-position modulation (PPM) and Poisson-distributed photon-counting detection, a "polished panel" photon-bucket receiver with large FOV will collect hundreds of background photons per PPM slot, along with comparable signal photons due to its large aperture. It is demonstrated that communications performance in terms of PPM symbol-error probability in high-background high-signal environments depends more strongly on signal than on background photons, implying that large increases in background energy can be compensated by a disproportionally small increase in signal energy. This surprising result suggests that large optical apertures with relatively poor surface quality may nevertheless provide acceptable performance for deep-space optical communications, potentially enabling the construction of cost-effective hybrid RF/optical receivers in the future.

  16. Simulated Performances of a Very High Energy Tomograph for Non-Destructive Characterization of large objects

    Science.gov (United States)

    Kistler, Marc; Estre, Nicolas; Merle, Elsa

    2018-01-01

    As part of its R&D activities on high-energy X-ray imaging for non-destructive characterization, the Nuclear Measurement Laboratory has started an upgrade of its imaging system currently implemented at the CEA-Cadarache center. The goals are to achieve a sub-millimeter spatial resolution and the ability to perform tomographies on very large objects (more than 100-cm standard concrete or 40-cm steel). This paper presentsresults on the detection part of the imaging system. The upgrade of the detection part needs a thorough study of the performance of two detectors: a series of CdTe semiconductor sensors and two arrays of segmented CdWO4 scintillators with different pixel sizes. This study consists in a Quantum Accounting Diagram (QAD) analysis coupled with Monte-Carlo simulations. The scintillator arrays are able to detect millimeter details through 140 cm of concrete, but are limited to 120 cm for smaller ones. CdTe sensors have lower but more stable performance, with a 0.5 mm resolution for 90 cm of concrete. The choice of the detector then depends on the preferred characteristic: the spatial resolution or the use on large volumes. The combination of the features of the source and the studies on the detectors gives the expected performance of the whole equipment, in terms of signal-over-noise ratio (SNR), spatial resolution and acquisition time.

  17. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    International Nuclear Information System (INIS)

    Jin Zhenxing; Wu Yong; Li Baizhan; Gao Yafeng

    2009-01-01

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  18. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenxing; Li, Baizhan; Gao, Yafeng [The Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China); Wu, Yong [The Department of Science and Technology, Ministry of Construction, Beijing 100835 (China)

    2009-06-15

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China. (author)

  19. Energy efficiency supervision strategy selection of Chinese large-scale public buildings

    Energy Technology Data Exchange (ETDEWEB)

    Jin Zhenxing [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China)], E-mail: jinzhenxing33@sina.com; Wu Yong [Department of Science and Technology, Ministry of Construction, Beijing 100835 (China); Li Baizhan; Gao Yafeng [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing (China); Key Laboratory of the Three Gorges Reservoir Region' s Eco-Environment, Ministry of Education, Chongqing 400045 (China)

    2009-06-15

    This paper discusses energy consumption, building development and building energy consumption in China, and points that energy efficiency management and maintenance of large-scale public buildings is the breakthrough point of building energy saving in China. Three obstacles are lack of basic statistics data, lack of service market for building energy saving, and lack of effective management measures account for the necessity of energy efficiency supervision for large-scale public buildings. And then the paper introduces the supervision aims, the supervision system and the five basic systems' role in the supervision system, and analyzes the working mechanism of the five basic systems. The energy efficiency supervision system of large-scale public buildings takes energy consumption statistics as a data basis, Energy auditing as a technical support, energy consumption ration as a benchmark of energy saving and price increase beyond ration as a price lever, and energy efficiency public-noticing as an amplifier. The supervision system promotes energy efficiency operation and maintenance of large-scale public building, and drives a comprehensive building energy saving in China.

  20. [Reflection on developing bio-energy industry of large oil company].

    Science.gov (United States)

    Sun, Haiyang; Su, Haijia; Tan, Tianwei; Liu, Shumin; Wang, Hui

    2013-03-01

    China's energy supply becomes more serious nowadays and the development of bio-energy becomes a major trend. Large oil companies have superb technology, rich experience and outstanding talent, as well as better sales channels for energy products, which can make full use of their own advantages to achieve the efficient complementary of exist energy and bio-energy. Therefore, large oil companies have the advantages of developing bio-energy. Bio-energy development in China is in the initial stage. There exist some problems such as available land, raw material supply, conversion technologies and policy guarantee, which restrict bio-energy from industrialized development. According to the above key issues, this article proposes suggestions and methods, such as planting energy plant in the marginal barren land to guarantee the supply of bio-energy raw materials, cultivation of professional personnel, building market for bio-energy counting on large oil companies' rich experience and market resources about oil industry, etc, aimed to speed up the industrialized process of bio-energy development in China.

  1. Elevated temperature and high pressure large helium gas loop

    International Nuclear Information System (INIS)

    Sakasai, Minoru; Midoriyama, Shigeru; Miyata, Toyohiko; Nakase, Tsuyoshi; Izaki, Makoto

    1979-01-01

    The development of high temperature gas-cooled reactors especially aiming at the multi-purpose utilization of nuclear heat energy is carried out actively in Japan and West Germany. In Japan, the experimental HTGR of 50 MWt and 1000 deg C outlet temperature is being developed by Japan Atomic Energy Research Institute and others since 1969, and the development of direct iron-making technology utilizing high temperature reducing gas was started in 1973 as the large project of Ministry of Internalional Trade and Industry. Kawasaki Heavy Industries, Ltd., Has taken part in these development projects, and has developed many softwares for nuclear heat design, system design and safety design of nuclear reactor system and heat utilization system. In hardwares also, efforts have been exerted to develop the technologies of design and manufacture of high temperature machinery and equipments. The high temperature, high pressure, large helium gas loop is under construction in the technical research institute of the company, and it is expected to be completed in December, 1979. The tests planned are that of proving the dynamic performances of the loop and its machinery and equipments and the verification of analysis codes. The loop is composed of the main circulation system, the objects of testing, the helium gas purifying system, the helium supplying and evacuating system, instruments and others. (Kako, I.)

  2. Non-critical strings at high energy

    CERN Document Server

    Aoki, Kenichiro; Aoki, Kenichiro; Hoker, Eric D'

    1996-01-01

    We consider scattering amplitudes in non-critical string theory of $N$ external states in the limit where the energy of all external states is large compared to the string tension. We argue that the amplitudes are naturally complex analytic in the matter central charge $c$ and we propose to define the amplitudes for arbitrary value of $c$ by analytic continuation. We show that the high energy limit is dominated by a saddle point that can be mapped onto an equilibrium electro-static energy configuration of an assembly of $N$ pointlike (Minkowskian) charges, together with a density of charges arising from the Liouville field. We argue that the Liouville charges accumulate on segments of curves, and produce quadratic branch cuts on the worldsheet. The electro-statics problem is solved for string tree level in terms of hyper-elliptic integrals and is given explicitly for 3- and 4-point functions. We show that the high energy limit should behave in a string-like fashion with exponential dependence on the energy sc...

  3. Radiation processing with high-energy X-rays

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Stichelbaut, Frederic

    2009-01-01

    The physical, chemical or biological characteristics of selected commercial products and materials can be improved by radiation processing. The ionizing energy can be provided by accelerated electrons with energies between 75 keV and 10 MeV, gamma rays from cobalt-60 with average energies of 1.25 MeV or X-rays with maximum energies up to 7.5 MeV. Electron beams are preferred for thin products, which are processed at high speeds. Gamma rays are used for products that are too thick for treatment with electron beams. High-energy X-rays can also be used for these purposes because their penetration in solid materials is similar to or even slightly greater than that of gamma rays. Previously, the use of X-rays had been inhibited by their slower processing rates and higher costs when compared with gamma rays. Since then, the price of cobalt-60 sources has been increased and the radiation intensity from high-energy, high-power X-ray generators has also increased. For facilities requiring at least 2 MCi of cobalt-60, the capital and operating costs of X-ray facilities with equivalent processing rates can be less than that of gamma-ray irradiators. Several high-energy electron beam facilities have been equipped with removable X-ray targets so that irradiation processes can be done with either type of ionizing energy. A new facility is now being built which will be used exclusively in the X-ray mode to sterilize medical products. Operation of this facility will show that high-energy, high-power X-ray generators are practical alternatives to large gamma-ray sources. (author)

  4. Color sextet quarks and new high-energy interactions

    International Nuclear Information System (INIS)

    White, A.R.; Kang, Kyungsik

    1992-01-01

    We review the implications of adding a flavor doublet of color sextet quarks to QCD. Theoretical attractions include -- ''minimal'' dynamical symmetry breaking of the electroweak interaction, solution of the Strong CP problem via the ''heavy axion'' η 6 , and Critical Pomeron Scaling at asymptotic energies. Related experimental phenomena, which there may be evidence for, include -- production of the η 6 at LEP, large cross-sections for W + W - and Z o Z o pairs and very high energy jets in hadron colliders, and a hadronic threshold above which high-energy ''exotic'' diffractive processes appear in Cosmic Ray events

  5. High energy behaviour of particles and unified statistics

    International Nuclear Information System (INIS)

    Chang, Y.

    1984-01-01

    Theories and experiments suggest that particles at high energy appear to possess a new statistics unifying Bose-Einstein and Fermi-Dirac statistics via the GAMMA distribution. This hypothesis can be obtained from many models, and agrees quantitatively with scaling, the multiplicty, large transverse momentum, the mass spectrum, and other data. It may be applied to scatterings at high energy, and agrees with experiments and known QED's results. The Veneziano model and other theories have implied new statistics, such as, the B distribution and the Polya distribution. They revert to the GAMMA distribution at high energy. The possible inapplicability of Pauli's exclusion principle within the unified statistics is considered and associated to the quark constituents

  6. Large temporal scale and capacity subsurface bulk energy storage with CO2

    Science.gov (United States)

    Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.

    2017-12-01

    Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.

  7. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    N. A. Tahir

    2012-05-01

    Full Text Available The Large Hadron Collider (LHC is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%–20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect. It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials at CERN using the proton beam from the Super Proton Synchrotron (SPS, to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle

  8. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Science.gov (United States)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  9. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    CERN Document Server

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  10. Large solar energy systems within IEA task 14

    NARCIS (Netherlands)

    Geus, A.C. de; Isakson, P.; Bokhoven, T.P.; Vanoli, K.; Tepe, R.

    1996-01-01

    Within IEA Task 14 (Advanced Solar Systems) a working group was established dealing with large advanced solar energy systems (the Large Systems Working group). The goal of this working group was to generate a common base of experiences for the design and construction of advanced large solar systems.

  11. Computing in high energy physics

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Hoogland, W.

    1986-01-01

    This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume

  12. Perspective in high energy physics instrumentation

    International Nuclear Information System (INIS)

    Rossi, L.

    1995-10-01

    The discovery potential of the next generation of particle accelerators, and in particular of the large hadron collider (LHC), can only be fully exploited by very sophisticated particle detectors. The basics of detectors for momentum and energy measurement is here presented together with a recollection of recent developments which are relevant for use at high luminosity accelerators

  13. High-Energy X-Ray Imaging Applied to Nondestructive Characterization of Large Nuclear Waste Drums

    Science.gov (United States)

    Estre, Nicolas; Eck, Daniel; Pettier, Jean-Luc; Payan, Emmanuel; Roure, Christophe; Simon, Eric

    2015-12-01

    As part of its R&D programs on non-destructive testing of nuclear waste drums, CEA is commissioning an irradiation cell named CINPHONIE, at Cadarache. This cell allows high-energy imaging (radiography and tomography) on large volumes (up to 5 m3) and heavy weights (up to 5 tons). A demonstrator has been finalized, based on existing components. The X-ray source is a 9 MeV LINAC which produces Bremsstrahlung X-rays (up to 23 Gy/min at 1 meter in the beam axis). The mechanical bench is digitally controlled on three axes (translation, rotation, elevation) and can handle objects up to 2 t. This bench performs trajectories necessary for acquisition of projections (sinograms) according to different geometries: Translation-Rotation, Fan-Beam and Cone-Beam. Two detection systems both developed by CEA-Leti are available. The first one is a large GADOX scintillating screen ( 800 ×600 mm2) coupled to a low-noise pixelated camera. The second one is a multi-CdTe semiconductor detector, offering measurements up to 5 decades of attenuation (equivalent to 25 cm of lead or 180 cm of standard concrete). At the end of the acquisition, a Filtered Back Projection-based algorithm is performed. Then, a density slice (fan-beam tomography) or a density volume (cone-beam tomography or helical tomography) is produced and used to examine the waste. Characterization of LINAC, associated detectors as well as the full acquisition chain, are presented. Experimental performances on phantoms and real drum are discussed and expected limits on defect detectability are evaluated by simulation. The final system, designed to handle objects up to 5 tons is then presented.

  14. Energy storage device with large charge separation

    Science.gov (United States)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.

    2018-04-03

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  15. Energy Dissipation and Dynamics in Large Guide Field Turbulence Driven Reconnection at the Magnetopause

    Science.gov (United States)

    TenBarge, J. M.; Shay, M. A.; Sharma, P.; Juno, J.; Haggerty, C. C.; Drake, J. F.; Bhattacharjee, A.; Hakim, A.

    2017-12-01

    Turbulence and magnetic reconnection are the primary mechanisms responsible for the conversion of stored magnetic energy into particle energy in many space and astrophysical plasmas. The magnetospheric multiscale mission (MMS) has given us unprecedented access to high cadence particle and field data of turbulence and magnetic reconnection at earth's magnetopause. The observations include large guide field reconnection events generated within the turbulent magnetopause. Motivated by these observations, we present a study of large guide reconnection using the fully kinetic Eulerian Vlasov-Maxwell component of the Gkeyll simulation framework, and we also employ and compare with gyrokinetics to explore the asymptotically large guide field limit. In addition to studying the configuration space dynamics, we leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other energy dissipation measures.

  16. Use of a low energy proton accelerator for calibrating a large NaI(Tl) array in a high energy physics experiment

    International Nuclear Information System (INIS)

    Kirkbride, G.I.; O'Reilly, J.G.; Tompkins, J.C.

    1978-01-01

    The use of a 500 keV Van de Graaff proton accelerator to produce γ-rays in the range 4 - 18 MeV via nuclear reactions for the purpose of calibrating a large NaI(Tl) crystal array is reported. Data analysis indicates an energy calibration to approx. 1% over this range

  17. The application of AFS in the high energy physics computing system

    International Nuclear Information System (INIS)

    Xu Dong; Yan Xiaofei; Chen Yaodong; Chen Gang; Yu Chuansong

    2010-01-01

    With the development of high energy physics, physics experiments are producing large amount of data. The workload of data analysis is very large, and the analysis work needs to be finished by many scientists together. So, the computing system must provide more secure user manage function and higher level of data-sharing ability. The article introduces a solution based on AFS in the high energy physics computing system, which not only make user management safer, but also make data-sharing easier. (authors)

  18. LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY

    International Nuclear Information System (INIS)

    SCHULTZ, K.R.; BROWN, L.C.; BESENBRUCH, G.E.; HAMILTON, C.J.

    2003-01-01

    OAK B202 LARGE-SCALE PRODUCTION OF HYDROGEN BY NUCLEAR ENERGY FOR THE HYDROGEN ECONOMY. The ''Hydrogen Economy'' will reduce petroleum imports and greenhouse gas emissions. However, current commercial hydrogen production processes use fossil fuels and releases carbon dioxide. Hydrogen produced from nuclear energy could avoid these concerns. The authors have recently completed a three-year project for the US Department of Energy whose objective was to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the energy source''. Thermochemical water-splitting, a chemical process that accomplishes the decomposition of water into hydrogen and oxygen, met this objective. The goal of the first phase of this study was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen and to select one for further detailed consideration. The authors selected the Sulfur-Iodine cycle, In the second phase, they reviewed all the basic reactor types for suitability to provide the high temperature heat needed by the selected thermochemical water splitting cycle and chose the helium gas-cooled reactor. In the third phase they designed the chemical flowsheet for the thermochemical process and estimated the efficiency and cost of the process and the projected cost of producing hydrogen. These results are summarized in this paper

  19. Report of the Subpanel on High Energy Physics Manpower of the High Energy Physics Advisory Panel

    International Nuclear Information System (INIS)

    1978-06-01

    A report of a study by a Subpanel which was appointed by the High Energy Physics Advisory Panel (HEPAP) to examine the production in recent years of new researchers in high energy physics and the rate at which they have moved into short term and permanent positions in the field. The Subpanel made use of the 1973 and 1975 ERDA Census data, statistics collected by others, as well as a number of surveys conducted by the Subpanel itself. Even though many uncertainties and gaps exist in the available data, several important points are presented. (1) New Ph.D. production in high energy physics has decreased in recent years even more rapidly than in physics as a whole. (2) New Ph.D.'s in experimental and theoretical high energy physics have been produced for many years in roughly equal numbers in spite of the fact that employment in the field at all levels shows a ratio of experiment-to-theory approaching two-to-one. (3) A very large fraction of the approximately 1700 Ph.D.'s in high energy physics (employed at 78 universities and 5 national laboratories) hold tenured positions (383 theorists and 640 experimentalists). (4) The age distribution of those in the tenured ranks reveals that the number of retirements will be extremely small during the next decade but will then start to have a significant impact on the opportunities for those who are seeking careers in the field. (5) Promotions to tenure at the universities during the 4 year interval AY72/73-AY76/77 have averaged about 10 per year in experiment and 10 per year in theory

  20. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  1. Application of radix sorting in high energy physics experiment

    International Nuclear Information System (INIS)

    Chen Xuan; Gu Minhao; Zhu Kejun

    2012-01-01

    In the high energy physics experiments, there are always requirements to sort the large scale of experiment data. To meet the demand, this paper introduces one radix sorting algorithms, whose sub-sort is counting sorting and time complex is O (n), based on the characteristic of high energy physics experiment data that is marked by time stamp. This paper gives the description, analysis, implementation and experimental result of the sorting algorithms. (authors)

  2. Large solid angle detectors (low energy)

    International Nuclear Information System (INIS)

    L'Hote, D.

    1988-01-01

    This lecture deals with large solid angle detectors used in low energy experiments (mainly in Nuclear Physics). The reasons for using such detectors are discussed, and several basic principles of their design are presented. Finally, two examples of data analysis from such detectors are given [fr

  3. Protein homology model refinement by large-scale energy optimization.

    Science.gov (United States)

    Park, Hahnbeom; Ovchinnikov, Sergey; Kim, David E; DiMaio, Frank; Baker, David

    2018-03-20

    Proteins fold to their lowest free-energy structures, and hence the most straightforward way to increase the accuracy of a partially incorrect protein structure model is to search for the lowest-energy nearby structure. This direct approach has met with little success for two reasons: first, energy function inaccuracies can lead to false energy minima, resulting in model degradation rather than improvement; and second, even with an accurate energy function, the search problem is formidable because the energy only drops considerably in the immediate vicinity of the global minimum, and there are a very large number of degrees of freedom. Here we describe a large-scale energy optimization-based refinement method that incorporates advances in both search and energy function accuracy that can substantially improve the accuracy of low-resolution homology models. The method refined low-resolution homology models into correct folds for 50 of 84 diverse protein families and generated improved models in recent blind structure prediction experiments. Analyses of the basis for these improvements reveal contributions from both the improvements in conformational sampling techniques and the energy function.

  4. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Inter-Institute Centre for High Energy Physics, which was formed by an agreement between the UMM, the JU and the INP to honour the late Prof. Marian Miesowicz, the founder and the long-time leader of the high energy physics community in Cracow. Since the modern high energy physics experiments require enormous technical, man-power and financial efforts, the research is mainly carried out in large international collaborations. These are listed at proper places in the following text. They were formed at the leading laboratories: the European CERN in Geneva (SPS, LEP, LHC), DESY in Hamburg (HERA), Brookhaven RHIC, Fermilab TEVATRON, and KEK B-Factory in Tsukuba. The work in 1998 resulted in the publication of interesting results from the e + e - experiment DELPHI at LEP, the e + /e - p experiments H1 and ZEUS at HERA, and on heavy ion collisions from BNL and CERN. Short reviews of some of these can be found in the following pages together with important results obtained in other experiments, like e.g. the cosmic ray experiment JACEE, and also with those published by theorists. Close research contacts in some projects such as the DELPHI, ZEUS, NA49 and LHC experiments are being maintained with the A. Soltan Institute of Nuclear Studies in Warsaw and the Institute of Experimental Physics of the Warsaw University. In 1998 the division organized the Cracow Epiphany Conference on Spin Effects in Particle Physics. The titles of Honorary Professors of the Institute were bestowed on two outstanding high-energy physicists from DESY: Prof. Johann Bienlein and Prof. Bjorn Wiik

  5. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  6. Study on the behaviour of high energy electrons in REPUTE-1 ULQ plasmas

    International Nuclear Information System (INIS)

    Ogawa, Y.; Morikawa, J.; Nihei, H.; Nakajima, T.; Ozawa, D.; Ohno, M.; Suzuki, T.; Himura, H.; Yoshida, Z.; Morita, S.; Shirai, Y.

    2001-01-01

    In REPUTE-1 Ultra-Low-q (ULQ) plasmas, behaviors of high energy electrons have been studied through a low-Z pellet injection experiment, in addition to the measurements of soft-X ray PHA and Electron Energy Analyzer (EEA). The high energy tail has been measured in the soft-X ray spectrum, and EEA signal has shown a strong anisotropy of the electron distribution function (i.e., the electron flux to the electron drift side is dominant). To study temporal and spatial information on these high energy electrons, a low-Z pellet injection experiment has been conducted. A small piece of plastic pellet is injected from the top of the REPUTE-1 device, and the trajectory of the pellet inside the plasma is measured by CCD camera. We have observed a large deflection of the pellet trajectory to the toroidal direction opposite to the plasma current (i.e., the electron drift side). This suggests that a pellet is ablated selectively only from one side due to the high energy electrons with a large heat flux. We have calculated the heat flux carried by high energy electrons. Since the repulsion force to the pellet can be calculated with the 2 nd derivative of the pellet trajectory, we have estimated the heat flux of high energy electrons to be a few tens MW/m 2 around the plasma center. Experimental data by EEA measurement and low-Z pellet ablation show the large population of the high energy electrons at the core region in comparison with the edge region, suggesting a MHD dynamo mechanism for the production of the high energy electrons. (author)

  7. UNIX at high energy physics Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, Alan

    1994-03-15

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide.

  8. Rare earth magnets with high energy products

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  9. The high energy X-ray spectra of supernova remnants

    Science.gov (United States)

    Pravdo, S. H.; Nugent, J. J.

    The results of fitting an ionization-nonequilibrium (INE) model to the high-energy (above 5-keV) X-ray spectra of the young supernova remnants Cas A and Tycho are presented. As an additional constraint, the models must simultaneously fit lower-energy, higher-resolution data. For Cas A, a single INE component cannot adequately reproduce the features for the entire X-ray spectrum because the ionization structure of iron ions responsible for the K emission is inconsistent with that of the ions responsible for the lower-energy lines, and the flux of the highest-energy X-rays is underestimated. The iron K line and the high-energy continuum could arise from the same INE component, but the identification of this component with either the blast wave or the ejecta in the standard model is difficult. In Tycho, the high-energy data rule out a class of models for the lower-energy data which have too large a continuum contribution.

  10. Decontamination Strategy for Large Area and/or Equipment Contaminated with Chemical and Biological Agents using a High Energy Arc Lamp (HEAL)

    Energy Technology Data Exchange (ETDEWEB)

    Schoske, Richard [ORNL; Kennedy, Patrick [ORNL; Duty, Chad E [ORNL; Smith, Rob R [ORNL; Huxford, Theodore J [ORNL; Bonavita, Angelo M [ORNL; Engleman, Greg [ORNL; Vass, Arpad Alexander [ORNL; Griest, Wayne H [ORNL; Ilgner, Ralph H [ORNL; Brown, Gilbert M [ORNL

    2009-04-01

    A strategy for the decontamination of large areas and or equipment contaminated with Biological Warfare Agents (BWAs) and Chemical Warfare Agents (CWAs) was demonstrated using a High Energy Arc Lamp (HEAL) photolysis system. This strategy offers an alternative that is potentially quicker, less hazardous, generates far less waste, and is easier to deploy than those currently fielded by the Department of Defense (DoD). For example, for large frame aircraft the United States Air Force still relies on the combination of weathering (stand alone in environment), air washing (fly aircraft) and finally washing the aircraft with Hot Soapy Water (HSW) in an attempt to remove any remaining contamination. This method is laborious, time consuming (upwards of 12+ hours not including decontamination site preparation), and requires large amounts of water (e.g., 1,600+ gallons for a single large frame aircraft), and generates large amounts of hazardous waste requiring disposal. The efficacy of the HEAL system was demonstrated using diisopropyl methyl phosphonate (DIMP) a G series CWA simulant, and Bacillus globigii (BG) a simulant of Bacillus anthracis. Experiments were designed to simulate the energy flux of a field deployable lamp system that could stand-off 17 meters from a 12m2 target area and uniformly expose a surface at 1360 W/m2. The HEAL system in the absence of a catalyst reduced the amount of B. globigii by five orders of magnitude at a starting concentration of 1.63 x 107 spores. In the case of CWA simulants, the HEAL system in the presence of the catalyst TiO2 effectively degraded DIMP sprayed onto a 100mm diameter Petri dish in 5 minutes.

  11. A low-cost iron-cadmium redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Jiang, H. R.

    2016-10-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies that offer a potential solution to the intermittency of renewable sources such as wind and solar. The prerequisite for widespread utilization of RFBs is low capital cost. In this work, an iron-cadmium redox flow battery (Fe/Cd RFB) with a premixed iron and cadmium solution is developed and tested. It is demonstrated that the coulombic efficiency and energy efficiency of the Fe/Cd RFB reach 98.7% and 80.2% at 120 mA cm-2, respectively. The Fe/Cd RFB exhibits stable efficiencies with capacity retention of 99.87% per cycle during the cycle test. Moreover, the Fe/Cd RFB is estimated to have a low capital cost of 108 kWh-1 for 8-h energy storage. Intrinsically low-cost active materials, high cell performance and excellent capacity retention equip the Fe/Cd RFB to be a promising solution for large-scale energy storage systems.

  12. Spin effects in high energy quark-quark scattering

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Selyugin, O.V.

    1993-01-01

    The spin amplitudes in high-energy quark-quark scattering at /t/>1 GeV 2 are analyzed. It is shown that the gluon contributions in the QCDα s 3 order lead to the spin-flip amplitude growing as s. This means the existence of the spin-flip part in pomeron exchange. The resulting T f is about few per cent of the spin-non-flip contribution. The factorization of the large-distance and high-energy effects in the spin-flip amplitude is obtained. 13 refs.; 2 figs.; 1 tab

  13. Evaluation of high-energy electron detectors for probing the inner magnetosphere under high-counting condition

    International Nuclear Information System (INIS)

    Tamada, Yukihiro; Takashima, Takeshi; Mitani, Takefumi; Miyake, Wataru

    2013-01-01

    An ERG (Energization and Radiation in Geospace) satellite will be launched to study the acceleration processes of energetic particles in the radiation belt surrounding the earth. It is very important to reveal the acceleration process of high-energy particles for both science and the application to space weather forecast. Drastic increases of high-energy electrons in the radiation belt is sometimes observed during a geomagnetic storm. When a large magnetic storm occurs, energetic electron count rates may exceed flux limits expected in the nominal design and large number of incident electrons leading to detection loss. The purpose of this study is to demonstrate that the count rate range of a single detection on board ERG satellite can be expanded by means of reading circuit operations to decrease an area of detection. In our ground experiment, we also found an unexpected result that count peaks shift to the higher energy side under high counting conditions. (author)

  14. Hadron-nucleus interactions at high energy

    International Nuclear Information System (INIS)

    Gomez, R.; Dauwe, L.; Haggerty, H.

    1986-05-01

    Properties of energetic secondaries produced at large angles using 800 GeV incident protons are presented. H 2 , Be, C, Al, Cu and Pb targets were used for the study. The yields for producing such secondaries vary as A/sup α/ where A is the atomic mass number of the target and α attains values as large as 1.6. There is evidence that jet-like events have α values approaching unity, indicating a hard scattering mechanism may be occurring. Events with large values of target-fragmentation energy have, on average, large values of energy in the central region and small values of forward-going energy. Energy flows and number of secondaries are independent of the target when events with similar amounts of energy in the central region are studied

  15. Collaborative Technologies for Distributed Science - Fusion Energy and High-Energy Physics

    International Nuclear Information System (INIS)

    Schissel, D.P.; Abla, G.; Burruss, J.R.; Gottschalk, E.

    2006-01-01

    The large-scale experiments, needed for fusion energy sciences (FES) and high-energy physics (HEP) research, are staffed by correspondingly large, geographically dispersed teams. At the same time, theoretical work has come to rely increasingly on complex numerical simulations developed by distributed teams of scientists and applied mathematicians and run on massively parallel computers. These trends will only accelerate. Operation of the most powerful accelerator ever built, the Large Hadron Collider at CERN, will begin next year and will dominate experimental high-energy physics. The fusion program will be increasingly oriented toward the ITER where even now, a decade before operation begins, a large portion of national programs efforts are organized around coordinated efforts to develop promising operational scenarios. While both FES and HEP have a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of the tools available. These challenges are being addressed by the creation and deployment of advanced collaborative software and hardware tools. Grid computing, to provide secure on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. Utilizing public-key based security that is recognized worldwide, numerous analysis and simulation codes are securely available worldwide in a service-oriented approach. Traditional audio teleconferencing is being augmented by more advanced capabilities including videoconferencing, instant messaging, presentation sharing, applications sharing, large display walls, and the virtual-presence capabilities of Access Grid and VRVS. With these advances, remote real-time experimental participation has begun as well as remote seminars, working meetings, and design review meetings. Work continues to focus on reducing the

  16. Operation of the LHC with Protons at High Luminosity and High Energy

    CERN Document Server

    Papotti, Giulia; Alemany-Fernandez, Reyes; Crockford, Guy; Fuchsberger, Kajetan; Giachino, Rossano; Giovannozzi, Massimo; Hemelsoet, Georges-Henry; Höfle, Wolfgang; Jacquet, Delphine; Lamont, Mike; Nisbet, David; Normann, Lasse; Pojer, Mirko; Ponce, Laurette; Redaelli, Stefano; Salvachua, Belen; Solfaroli Camillocci, Matteo; Suykerbuyk, Ronaldus; Uythoven, Jan; Wenninger, Jorg

    2016-01-01

    In 2015 the Large Hadron Collider (LHC) entered the first year in its second long Run, after a 2-year shutdown that prepared it for high energy. The first two months of beam operation were dedicated to setting up the nominal cycle for proton-proton operation at 6.5 TeV/beam, and culminated with the first physics with 3 nominal bunches/ring at 13 TeV CoM on 3 June. The year continued with a stepwise intensity ramp up that allowed reaching 2244 bunches/ring for a peak luminosity of ~5·10³³ cm⁻²s^{−1} and a total of just above 4 fb-1 delivered to the high luminosity experiments. Beam operation was shaped by the high intensity effects, e.g. electron cloud and macroparticle-induced fast losses (UFOs), which on a few occasions caused the first beam induced quenches at high energy. This paper describes the operational experience with high intensity and high energy at the LHC, together with the issues that had to be tackled along the way.

  17. Technical Support Document: Strategies for 50% Energy Savings in Large Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Leach, M.; Lobato, C.; Hirsch, A.; Pless, S.; Torcellini, P.

    2010-09-01

    This Technical Support Document (TSD) documents technical analysis that informs design guidance for designing and constructing large office buildings that achieve 50% net site energy savings over baseline buildings defined by minimal compliance with respect to ANSI/ASHRAE/IESNA Standard 90.1-2004. This report also represents a step toward developing a methodology for using energy modeling in the design process to achieve aggressive energy savings targets. This report documents the modeling and analysis methods used to identify design recommendations for six climate zones that capture the range of U.S. climate variability; demonstrates how energy savings change between ASHRAE Standard 90.1-2007 and Standard 90.1-2004 to determine baseline energy use; uses a four-story 'low-rise' prototype to analyze the effect of building aspect ratio on energy use intensity; explores comparisons between baseline and low-energy building energy use for alternate energy metrics (net source energy, energy emissions, and energy cost); and examines the extent to which glass curtain construction limits achieve energy savings by using a 12-story 'high-rise' prototype.

  18. Reducing the market impact of large shares of intermittent energy in Denmark

    International Nuclear Information System (INIS)

    Klinge Jacobsen, Henrik; Zvingilaite, Erika

    2010-01-01

    The increasing prevalence of renewable and intermittent energy sources in the electricity system is creating new challenges for the interaction of the system. In Denmark, high renewable shares have been achieved without great difficulty, mainly due to the flexibility of the nearby Nordic hydro-power dominated system. Further increases in the share of renewable energy sources require that additional options are considered to facilitate integration with the lowest possible cost. With large shares of intermittent energy, the impact can be observed on wholesale prices, giving both lower prices and higher volatility. A lack of wind that causes high prices is rarely seen because long periods without wind are uncommon. Therefore we focus on the low price effects and the increased value of flexible demand options. On the supply side, there is an increase in the value of other flexible generation technologies and the attractiveness of additional interconnection capacity. This paper also analyses options for increasing the flexibility of heat generation involving large and decentralized CHP plants and heat generation based on electricity. The incentives that the market provides for shifting demand and using electricity for heat production are discussed based on the variability of prices observed from 2006 to 2008.

  19. Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy

    Directory of Open Access Journals (Sweden)

    Leandros Perivolaropoulos

    2014-01-01

    Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.

  20. Energy System Analysis of Large-Scale Integration of Wind Power

    International Nuclear Information System (INIS)

    Lund, Henrik

    2003-11-01

    The paper presents the results of two research projects conducted by Aalborg University and financed by the Danish Energy Research Programme. Both projects include the development of models and system analysis with focus on large-scale integration of wind power into different energy systems. Market reactions and ability to exploit exchange on the international market for electricity by locating exports in hours of high prices are included in the analyses. This paper focuses on results which are valid for energy systems in general. The paper presents the ability of different energy systems and regulation strategies to integrate wind power, The ability is expressed by three factors: One factor is the degree of electricity excess production caused by fluctuations in wind and CHP heat demands. The other factor is the ability to utilise wind power to reduce CO 2 emission in the system. And the third factor is the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50 per cent of the electricity demand is produced in CHP, a number of future energy systems with CO 2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and grid stability and investments in electric heating, heat pumps and heat storage capacity. Also the potential of energy management has been analysed. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power

  1. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    CERN Document Server

    AUTHOR|(CDS)2067931

    2017-01-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices – magnets and high-frequency cavities – distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic flu...

  2. Abnormally large energy spread of electron beams extracted from plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1976-07-01

    Intense electron beams extracted from DUOPLASMATRON-plasma cathodes show a high degree of modulation in intensity and an abnormally large energy spread; these facts cannot be explained simply by the temperature of the plasma electrons and the discharge structure. However, an analysis of the discharge stability behaviour and the interaction of source- and extracted beam-plasma leads to an explanation for the observed effects.

  3. UNIX at high energy physics Laboratories

    International Nuclear Information System (INIS)

    Silverman, Alan

    1994-01-01

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide

  4. Computing the universe: how large-scale simulations illuminate galaxies and dark energy

    Science.gov (United States)

    O'Shea, Brian

    2015-04-01

    High-performance and large-scale computing is absolutely to understanding astronomical objects such as stars, galaxies, and the cosmic web. This is because these are structures that operate on physical, temporal, and energy scales that cannot be reasonably approximated in the laboratory, and whose complexity and nonlinearity often defies analytic modeling. In this talk, I show how the growth of computing platforms over time has facilitated our understanding of astrophysical and cosmological phenomena, focusing primarily on galaxies and large-scale structure in the Universe.

  5. Low-energy physics of high-temperature superconductors

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ''universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter

  6. Statistical issues in searches for new phenomena in High Energy Physics

    Science.gov (United States)

    Lyons, Louis; Wardle, Nicholas

    2018-03-01

    Many analyses of data in High Energy Physics are concerned with searches for New Physics. We review the statistical issues that arise in such searches, and then illustrate these using the specific example of the recent successful search for the Higgs boson, produced in collisions between high energy protons at CERN’s Large Hadron Collider.

  7. A polymer, random walk model for the size-distribution of large DNA fragments after high linear energy transfer radiation

    Science.gov (United States)

    Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.

    2000-01-01

    DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to simulations and analytic equations. A random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.

  8. On Mooring Solutions for Large Wave Energy Converters

    DEFF Research Database (Denmark)

    Thomsen, Jonas Bjerg; Kofoed, Jens Peter; Ferri, Francesco

    2017-01-01

    The present paper describes the work carried out in the project ’Mooring Solutions for Large Wave Energy Converters’, which is a Danish research project carried out in a period of three years from September 2014, with the aim of reducing cost of the moorings for four wave energy converters...

  9. The interactions of high-energy, highly charged Xe ions with buckyballs

    International Nuclear Information System (INIS)

    Ali, R.; Berry, H.G.; Cheng, S.

    1994-01-01

    Ionization and fragmentation have been measured for C 60 molecules bombarded by highly charged (up to 35+) xenon ions with energies ranging up to 625 MeV. The observed mass distribution of positively charged fragments is explained in terms of a theoretical model indicating that the total interaction cross section contains roughly equal contributions from (a) excitation of the giant plasmon resonance, and (b) large-energy-transfer processes that lead to multiple fragmentation of the molecule. Preliminary results of measurements on VUV photons emitted in these interactions are also presented

  10. A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents

    Science.gov (United States)

    McShane, Ryan R.; Driscoll, Katelyn P.; Sando, Roy

    2017-09-27

    Many approaches have been developed for measuring or estimating actual evapotranspiration (ETa), and research over many years has led to the development of remote sensing methods that are reliably reproducible and effective in estimating ETa. Several remote sensing methods can be used to estimate ETa at the high spatial resolution of agricultural fields and the large extent of river basins. More complex remote sensing methods apply an analytical approach to ETa estimation using physically based models of varied complexity that require a combination of ground-based and remote sensing data, and are grounded in the theory behind the surface energy balance model. This report, funded through cooperation with the International Joint Commission, provides an overview of selected remote sensing methods used for estimating water consumed through ETa and focuses on Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) and Operational Simplified Surface Energy Balance (SSEBop), two energy balance models for estimating ETa that are currently applied successfully in the United States. The METRIC model can produce maps of ETa at high spatial resolution (30 meters using Landsat data) for specific areas smaller than several hundred square kilometers in extent, an improvement in practice over methods used more generally at larger scales. Many studies validating METRIC estimates of ETa against measurements from lysimeters have shown model accuracies on daily to seasonal time scales ranging from 85 to 95 percent. The METRIC model is accurate, but the greater complexity of METRIC results in greater data requirements, and the internalized calibration of METRIC leads to greater skill required for implementation. In contrast, SSEBop is a simpler model, having reduced data requirements and greater ease of implementation without a substantial loss of accuracy in estimating ETa. The SSEBop model has been used to produce maps of ETa over very large extents (the

  11. Parallel computing for event reconstruction in high-energy physics

    International Nuclear Information System (INIS)

    Wolbers, S.

    1993-01-01

    Parallel computing has been recognized as a solution to large computing problems. In High Energy Physics offline event reconstruction of detector data is a very large computing problem that has been solved with parallel computing techniques. A review of the parallel programming package CPS (Cooperative Processes Software) developed and used at Fermilab for offline reconstruction of Terabytes of data requiring the delivery of hundreds of Vax-Years per experiment is given. The Fermilab UNIX farms, consisting of 180 Silicon Graphics workstations and 144 IBM RS6000 workstations, are used to provide the computing power for the experiments. Fermilab has had a long history of providing production parallel computing starting with the ACP (Advanced Computer Project) Farms in 1986. The Fermilab UNIX Farms have been in production for over 2 years with 24 hour/day service to experimental user groups. Additional tools for management, control and monitoring these large systems will be described. Possible future directions for parallel computing in High Energy Physics will be given

  12. Towards a large scale high energy cosmic neutrino undersea detector

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, R.; Berthier, R. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere; Arpesella, C. [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France). Centre de Physique Theorique] [and others

    1997-06-01

    ANTARES collaboration proposes to study high energy cosmic neutrinos by using a deep sea Cherenkov detector. The potential interest of such a study for astrophysicists and particle physicists is developed. The different origins of cosmic neutrinos are reviewed. In order to observe with relevant statistic the flux of neutrinos from extra-galactic sources, a km-scale detector is necessary. The feasibility of such a detector is studied. A variety of technical problems have been solved. Some of them are standard for particle physicists: choice of photo-multipliers, monitoring, trigger, electronics, data acquisition, detector optimization. Others are more specific of sea science engineering particularly: detector deployment in deep sea, data transmission through optical cables, bio-fouling, effect of sea current. The solutions are presented and the sea engineering part involving detector installation will be tested near French coasts. It is scheduled to build a reduced-scale demonstrator within the next 2 years. (A.C.) 50 refs.

  13. Towards a large scale high energy cosmic neutrino undersea detector

    International Nuclear Information System (INIS)

    Azoulay, R.; Berthier, R.; Arpesella, C.

    1997-06-01

    ANTARES collaboration proposes to study high energy cosmic neutrinos by using a deep sea Cherenkov detector. The potential interest of such a study for astrophysicists and particle physicists is developed. The different origins of cosmic neutrinos are reviewed. In order to observe with relevant statistic the flux of neutrinos from extra-galactic sources, a km-scale detector is necessary. The feasibility of such a detector is studied. A variety of technical problems have been solved. Some of them are standard for particle physicists: choice of photo-multipliers, monitoring, trigger, electronics, data acquisition, detector optimization. Others are more specific of sea science engineering particularly: detector deployment in deep sea, data transmission through optical cables, bio-fouling, effect of sea current. The solutions are presented and the sea engineering part involving detector installation will be tested near French coasts. It is scheduled to build a reduced-scale demonstrator within the next 2 years. (A.C.)

  14. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case

  15. Energy Dynamics of an Infinitely Large Offshore Wind Farm

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs; Barthelmie, R.J.; Pryor, S.C.

    , particularly in the near-term, can be expected in the higher resource, moderate water depths of the North Sea rather than the Mediterranean. There should therefore be significant interest in understanding the energy dynamics of the infinitely large wind farm – how wakes behave and whether the extraction...... of energy by wind turbines over a large area has a significant and lasting impact on the atmospheric boundary layer. Here we focus on developing understanding of the infinite wind farm through a combination of theoretical considerations, data analysis and modeling. Initial evaluation of power losses due...... is of about the same magnitude as for the infinitely large wind farm. We will examine whether this can be proved theoretically or is indicated by data currently available. We will also evaluate whether energy extraction at the likely scale of development in European Seas can be expected to modulate...

  16. Energy compensation after sprint- and high-intensity interval training.

    Directory of Open Access Journals (Sweden)

    Matthew M Schubert

    Full Text Available Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE. This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI and decreases in non-exercise physical activity (NEPA. We examined the degree of energy compensation in healthy young men and women in response to interval training.Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1 completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100% and low (< 100% levels of energy compensation were assessed. Linear regressions were utilized to determine associations between energy compensation and ΔVO2max, ΔEI, ΔNEPA, and Δresting metabolic rate.Very large individual differences in energy compensation were noted. In comparison to individuals with low levels of compensation, individuals with high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p < 0.001 and ΔNEPA (p < 0.001.Considerable variation exists in response to short-term, low dose interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  17. High-Energy X-ray imaging applied to non destructive characterization of large nuclear waste drums

    International Nuclear Information System (INIS)

    Estre, Nicolas; Eck, Daniel; Pettier, Jean-Luc; Payan, Emmanuel; Roure, Christophe; Simon, Eric

    2013-06-01

    As part of its R and D programs on non-destructive testing of nuclear waste drums, CEA is commissioning an irradiation cell named CINPHONIE, at Cadarache. This cell allows high-energy imaging (radiography and tomography) on large volumes (up to 5 m 3 ) and heavy weights (up to 5 tons). A demonstrator has been finalized, based on existing components. The X-ray source is a 9 MeV LINAC which produces Bremsstrahlung X-rays (up to 23 Gy/min at 1 meter in the beam axis). The mechanical bench is digitally controlled on three axes (translation, rotation, elevation) and can handle objects up to 2 t. This bench performs trajectories necessary for acquisition of projections (sinograms) according to different geometries: Translation-Rotation, Fan-Beam and Cone-Beam. Two detection systems both developed by CEA-Leti are available. The first one is a large GADOX scintillating screen (800*600 mm 2 ) coupled to a low-noise pixelated camera. The second one is a multi- CdTe semiconductor detector, offering measurements up to 5 decades of attenuation (equivalent to 25 cm of lead or 180 cm of standard concrete). At the end of the acquisition, a Filtered Back Projection-based algorithm is performed. Then, a density slice (fan-beam tomography) or a density volume (cone-beam tomography or helical tomography) is produced and used to examine the waste. Characterization of LINAC, associated detectors as well as the full acquisition chain, are presented. Experimental performances on phantoms and real drum are discussed and expected limits on defect detectability are evaluated by simulation. The final system, designed to handle objects up to 5 tons is then presented. (authors)

  18. A Beam Interlock System for CERN High Energy Accelerators

    CERN Document Server

    Todd, Benjamin; Schmidt, R

    2006-01-01

    The Large Hadron Collider (LHC) at CERN (The European Organisation for Nuclear Research) is one of the largest and most complicated machines envisaged to date. The LHC has been conceived and designed over the course of the last 25 years and represents the cutting edge of accelerator technology with a collision energy of 14TeV, having a stored beam energy over 100 times more powerful than the nearest competitor. Commissioning of the machine is already nderway and operation with beam is intended for Autumn 2007, with 7TeV operation expected in 2008. The LHC is set to answer some of the fundemental questions in theoretical physics, colliding particles with such high energy that the inner workings of the quantum world can be revealed. Colliding particles together at such high energy makes very high demands on machine operation and protection. The specified beam energy requires strong magnetic fields that are made in superconducting dipole magnets, these magnets are kept only around two degrees above absolute zero...

  19. Large-scale building energy efficiency retrofit: Concept, model and control

    International Nuclear Information System (INIS)

    Wu, Zhou; Wang, Bo; Xia, Xiaohua

    2016-01-01

    BEER (Building energy efficiency retrofit) projects are initiated in many nations and regions over the world. Existing studies of BEER focus on modeling and planning based on one building and one year period of retrofitting, which cannot be applied to certain large BEER projects with multiple buildings and multi-year retrofit. In this paper, the large-scale BEER problem is defined in a general TBT (time-building-technology) framework, which fits essential requirements of real-world projects. The large-scale BEER is newly studied in the control approach rather than the optimization approach commonly used before. Optimal control is proposed to design optimal retrofitting strategy in terms of maximal energy savings and maximal NPV (net present value). The designed strategy is dynamically changing on dimensions of time, building and technology. The TBT framework and the optimal control approach are verified in a large BEER project, and results indicate that promising performance of energy and cost savings can be achieved in the general TBT framework. - Highlights: • Energy efficiency retrofit of many buildings is studied. • A TBT (time-building-technology) framework is proposed. • The control system of the large-scale BEER is modeled. • The optimal retrofitting strategy is obtained.

  20. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  1. Structure of proton-proton events at high center-of-mass energy with an identified particle of large transverse momentum

    International Nuclear Information System (INIS)

    Hanke, P.

    1977-01-01

    At the CERN-ISR events of pp-collisions, in which particles of large transverse momentum psub(T) are produced, were studied at √S = 52 GeV center-of-mass energy, using the 'Split-Field'-magnetspectrometer. The lorentz-invariant production cross-section of positive particles with high psub(T) was measured in the fragmentation region (average* approximately 20 0 ). In the same kinematical region the pion-fraction of produced particles for both charges was determined. In these events the effect of 'strangeness'-conservation on the dynamics of additionally produced particles was investigated. The comparison of events with negative pions and events with heavier particles - mainly kaons - at high psub(T) indicates, that the compensation of transverse momentum does not depend on the 'strangeness' of the particle at high psub(T). The quantum-number conservation rather influences the particle-content from the hadronic rest inside longitudinal phase-space. This was shown by reconstruction of decay-vertices of neutral kaons. The results obtained can be interpreted by 'constituent'-models of the proton-structure. (orig.) [de

  2. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; An, L.; Zhou, X. L.; Wei, L.

    2015-12-01

    The promise of redox flow batteries (RFBs) utilizing soluble redox couples, such as all vanadium ions as well as iron and chromium ions, is becoming increasingly recognized for large-scale energy storage of renewables such as wind and solar, owing to their unique advantages including scalability, intrinsic safety, and long cycle life. An ongoing question associated with these two RFBs is determining whether the vanadium redox flow battery (VRFB) or iron-chromium redox flow battery (ICRFB) is more suitable and competitive for large-scale energy storage. To address this concern, a comparative study has been conducted for the two types of battery based on their charge-discharge performance, cycle performance, and capital cost. It is found that: i) the two batteries have similar energy efficiencies at high current densities; ii) the ICRFB exhibits a higher capacity decay rate than does the VRFB; and iii) the ICRFB is much less expensive in capital costs when operated at high power densities or at large capacities.

  3. Future Accelerator Challenges in Support of High-Energy Physics

    International Nuclear Information System (INIS)

    Zisman, Michael S.; Zisman, M.S.

    2008-01-01

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision

  4. Future Accelerator Challenges in Support of High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  5. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  6. Large-area and highly crystalline MoSe2 for optical modulator

    Science.gov (United States)

    Yin, Jinde; Chen, Hao; Lu, Wei; Liu, Mengli; Li, Irene Ling; Zhang, Min; Zhang, Wenfei; Wang, Jinzhang; Xu, Zihan; Yan, Peiguang; Liu, Wenjun; Ruan, Shuangchen

    2017-12-01

    Transition metal dichalcogenides (TMDs) have been successfully used as broadband optical modulator materials for pulsed fiber laser systems. However, the nonlinear optical absorptions of exfoliated TMDs are strongly limited by their nanoflakes morphology with uncontrollable lateral size and thickness. In this work, we provide an effective method to fully explore the nonlinear optical properties of MoSe2. Large-area and high quality lattice MoSe2 grown by chemical vapor deposition method was adopted as an optical modulator for the first time. The large-area MoSe2 shows excellent nonlinear optical absorption with a large modulation depth of 21.7% and small saturable intensity of 9.4 MW cm-2. After incorporating the MoSe2 optical modulator into fiber laser cavity as a saturable absorber, a highly stable Q-switching operation with single pulse energy of 224 nJ is achieved. The large-area MoSe2 possessing superior nonlinear optical properties compared to exfoliated nanoflakes affords possibility for the larger-area two-dimensional materials family as high performance optical devices.

  7. Hadron interactions at high energy in QCD

    International Nuclear Information System (INIS)

    Levin, E.M.; Ryskin, M.G.

    1988-01-01

    Well known the typical hadronic interactions at high energy are soft processes occurring at large distances where the mysterious confinement forces should be essential. Due to this fact, discussing these processes at first sight the authors are to use and really use some models that incorporate their educated guess about the confinement and utilize the QCD degrees of freedom. But really these models use the QCD terminology rather than the explicit form of the QCD interaction. Up to now the multiparticle dynamics had been the dynamics of reggeons with some detailization coming from their hypothesis about confinement. It is the Reggeon Calculus or the reggeon phenomenology that allows them to describe the main properties of exclusive and inclusive reactions at high energy in agreement with experiment. This paper discusses this problem at this Symposium in many details. However, such pure phenomenological understanding cannot satisfy all of us at the moment. The authors would like to understand the multiparticle production and other soft processes at high energy in more microscopic way using directly the form of the QCD Lagrangian

  8. Dynamics of high energy reactions

    International Nuclear Information System (INIS)

    Field, R.D.

    1979-01-01

    During last several years, a new framework to describe strong interaction physics has emerged, i.e. quantum chromodynamics (QCD). It is the simplest field theory which incorporates color-dependent force among quarks. This force is generated by the exchange of colored vector gluons coupled to the quarks in gauge-invariant manner. The theory is closely related to the most successful quantum field theory, QED, and the only but very important difference is the gauge group involved. Although the theory is well defined, precisely what it predicts is not yet clearly known. However, at very high energy or momentum transfer Q, the effective coupling between quarks and gluons decreases toward zero with increasing Q 2 , and the calculation of a process involving high Q 2 is possible by the use of perturbation theory. In this paper, many applications of QCD to the processes involving high momentum transfer are examined. The effective coupling resulting from strong interaction between quarks and gluons, the scale violation in deep inelastic lepton scattering, large mass muon pair production, quark and gluon fragmentation functions, large transverse momentum meson and jet production in hadron-hadron collision, and the search for three-jet events are discussed. (Kako, I.)

  9. Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio

    International Nuclear Information System (INIS)

    Foley, A.; Díaz Lobera, I.

    2013-01-01

    Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio

  10. A swimming pool array for ultra high energy showers

    Science.gov (United States)

    Yodh, Gaurang B.; Shoup, Anthony; Barwick, Steve; Goodman, Jordan A.

    1992-11-01

    A very preliminary design concept for an array using water Cherenkov counters, built out of commercially available backyard swimming pools, to sample the electromagnetic and muonic components of ultra high energy showers at large lateral distances is presented. The expected performance of the pools is estimated using the observed lateral distributions by scintillator and water Cherenkov arrays at energies above 1019 eV and simulations.

  11. The evolution of high energy accelerators

    International Nuclear Information System (INIS)

    Courant, E.D.

    1994-01-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet

  12. Crystal Ball: On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-20

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of accelerator-based particle physics.

  13. Electroweak precision tests in high-energy diboson processes

    Science.gov (United States)

    Franceschini, Roberto; Panico, Giuliano; Pomarol, Alex; Riva, Francesco; Wulzer, Andrea

    2018-02-01

    A promising avenue to perform precision tests of the SM at the LHC is to measure differential cross-sections at high invariant mass, exploiting in this way the growth with the energy of the corrections induced by heavy new physics. We classify the leading growing-with-energy effects in longitudinal diboson and in associated Higgs production processes, showing that they can be encapsulated in four real "high-energy primary" parameters. We assess the reach on these parameters at the LHC and at future hadronic colliders, focusing in particular on the fully leptonic W Z channel that appears particularly promising. The reach is found to be superior to existing constraints by one order of magnitude, providing a test of the SM electroweak sector at the per-mille level, in competition with LEP bounds. Unlike LHC run-1 bounds, which only apply to new physics effects that are much larger than the SM in the high-energy tail of the distributions, the probe we study applies to a wider class of new physics scenarios where such large departures are not expected.

  14. Development of high purity large forgings for nuclear power plants

    International Nuclear Information System (INIS)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-01-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  15. Development of high purity large forgings for nuclear power plants

    Science.gov (United States)

    Tanaka, Yasuhiko; Sato, Ikuo

    2011-10-01

    The recent increase in the size of energy plants has been supported by the development of manufacturing technology for high purity large forgings for the key components of the plant. To assure the reliability and performance of the large forgings, refining technology to make high purity steels, casting technology for gigantic ingots, forging technology to homogenize the material and consolidate porosity are essential, together with the required heat treatment and machining technologies. To meet these needs, the double degassing method to reduce impurities, multi-pouring methods to cast the gigantic ingots, vacuum carbon deoxidization, the warm forging process and related technologies have been developed and further improved. Furthermore, melting facilities including vacuum induction melting and electro slag re-melting furnaces have been installed. By using these technologies and equipment, large forgings have been manufactured and shipped to customers. These technologies have also been applied to the manufacture of austenitic steel vessel components of the fast breeder reactors and components for fusion experiments.

  16. Technical Support Document: Development of the Advanced Energy Design Guide for Large Hospitals - 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a 'standard' mid- to large-size hospital, typically at least 100,000 ft2, but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicable to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).

  17. High energy radiation in cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    Certain basic recommendations on the use of supervoltage radiation and radioisotope teletherapy in the treatment of malignant growths have been made by an expert study group which met in Vienna in August this y ear. The group, convened jointly by the International Atomic Energy Agency and the World Health Organization, was composed of 20 radiotherapists and radiation physicists from 12 countries. High energy radiation, used in the treatment of malignant tumours, can be either in the form of gamma- or X-rays or in the form of beams of accelerated electrons. The source of radiation is kept at a certain distance from the patient. The study group was agreed on the value of supervoltage radiotherapy, including gamma-ray and high voltage x-ray therapy as well as electron beam therapy. The required gamma radiation can be obtained from large sources of radioactive materials like cobalt 60 or caesium 137, while electron beams are produced by high voltage accelerators. The experts considered the sources in four broad categories: large supervoltage units, intermediate units, small isotope units and units of electron beams or very high energy x-rays. Each group of source was described including its usage. The experts made it clear that while supervoltage radiation should be a part of an organized radiotherapy department, the radiation facilities at any particular establishment should not be of the supervoltage type alone. The high energy facilities could be fruitfully used only when there was a background of general radiotherapy. The group emphasized that supervoltage radiotherapy, in common with other forms of radiotherapy, should be conducted only by adequately trained and qualified personnel, including radiation physicists, and specified the training and qualifications required of such personnel. It was felt that specialized training was one of the main requirements at the present stage and the training programmes of IAEA and WHO should be utilized extensively for this

  18. High energy radiation in cancer treatment

    International Nuclear Information System (INIS)

    1959-01-01

    Certain basic recommendations on the use of supervoltage radiation and radioisotope teletherapy in the treatment of malignant growths have been made by an expert study group which met in Vienna in August this y ear. The group, convened jointly by the International Atomic Energy Agency and the World Health Organization, was composed of 20 radiotherapists and radiation physicists from 12 countries. High energy radiation, used in the treatment of malignant tumours, can be either in the form of gamma- or X-rays or in the form of beams of accelerated electrons. The source of radiation is kept at a certain distance from the patient. The study group was agreed on the value of supervoltage radiotherapy, including gamma-ray and high voltage x-ray therapy as well as electron beam therapy. The required gamma radiation can be obtained from large sources of radioactive materials like cobalt 60 or caesium 137, while electron beams are produced by high voltage accelerators. The experts considered the sources in four broad categories: large supervoltage units, intermediate units, small isotope units and units of electron beams or very high energy x-rays. Each group of source was described including its usage. The experts made it clear that while supervoltage radiation should be a part of an organized radiotherapy department, the radiation facilities at any particular establishment should not be of the supervoltage type alone. The high energy facilities could be fruitfully used only when there was a background of general radiotherapy. The group emphasized that supervoltage radiotherapy, in common with other forms of radiotherapy, should be conducted only by adequately trained and qualified personnel, including radiation physicists, and specified the training and qualifications required of such personnel. It was felt that specialized training was one of the main requirements at the present stage and the training programmes of IAEA and WHO should be utilized extensively for this

  19. The production of photons with large transverse momentum in proton-proton interaction at high energy in the center of mass, at the ISR of CERN

    International Nuclear Information System (INIS)

    Riedinger, Michel.

    1977-01-01

    The production of photons with large transverse momentun emitted in pp interactions at high energy, at the ISR of CERN, is studied. The inclusive distributions of photons were measured in the interval 0.7 2 sigma sub(γ)/dpdΩ=Aexp(Bpsub(t)+Cpsub(t) 2 ). The π 0 cross sections were deduced from these photon cross sections. At psub(t)( 2 at 3GeV /c), than the approximately exp(-6psub(t)) decrease, as well as an increase with the energy √s. A fit of the π 0 cross-sections, compatible with a power-law behaviour is given [fr

  20. Applications of the Los Alamos High Energy Transport code

    International Nuclear Information System (INIS)

    Waters, L.; Gavron, A.; Prael, R.E.

    1992-01-01

    Simulation codes reliable through a large range of energies are essential to analyze the environment of vehicles and habitats proposed for space exploration. The LAHET monte carlo code has recently been expanded to track high energy hadrons with FLUKA, while retaining the original Los Alamos version of HETC at lower energies. Electrons and photons are transported with EGS4, and an interface to the MCNP monte carlo code is provided to analyze neutrons with kinetic energies less than 20 MeV. These codes are benchmarked by comparison of LAHET/MCNP calculations to data from the Brookhaven experiment E814 participant calorimeter

  1. Progress in high energy physics and nuclear safety : Proceedings of the NATO Advanced Research Workshop on Safe Nuclear Energy

    CERN Document Server

    Polański, Aleksander; Begun, Viktor

    2009-01-01

    The book contains recent results on the progress in high-energy physics, accelerator, detection and nuclear technologies, as well as nuclear safety in high-energy experimentation and in nuclear industry, covered by leading experts in the field. The forthcoming experiments at the Large Hadron Collider (LHC) at CERN and cosmic-ray experiments are highlighted. Most of the current high-energy experiments and their physical motivation are analyzed. Various nuclear energy safety aspects, including progress in the production of new radiation-resistant materials, new and safe nuclear reactor designs, such as the slowly-burning reactor, as well as the use of coal-nuclear symbiotic methods of energy production can be found in the book.

  2. Classical convective energy transport in large gradient regions

    International Nuclear Information System (INIS)

    Hinton, F.L.

    1996-01-01

    Large gradients in density and temperature occur near the edge in H-mode plasmas and in the core of tokamak plasmas with negative central shear. Transport in these regions may be comparable to neoclassical. Standard neoclassical theory does not apply when the gradient lengths are comparable to an ion orbit excursion, or banana width. A basic question for neoclassical transport in large gradient regions is: do ion-ion collisions drive particle transport? Near the plasma edge in H-mode, where ion orbit loss requires that the ion energy transport be convective, neoclassical particle transport due to ion-ion collisions may play an important role. In negative central shear plasmas, where transport is inferred to be near neoclassical, it is important to have accurate predictions for the neoclassical rate of energy and particle transport. A simple 2-D slab model has been used, with a momentum-conserving collision operator, to show that ion-ion collisions do drive particle transport. When the gradients are large, the open-quotes field particleclose quotes contribution to the particle flux is non-local, and does not cancel the open-quotes test particleclose quotes contribution, which is local. Solutions of the kinetic equation are found which show that the steepness of the density profile, for increasing particle flux, is limited by orbit averaging. The gradient length is limited by the thermal gyroradius, and the convective energy flux is independent of ion temperature. This will allow an ion thermal runaway to occur, if there are no other ion energy loss mechanisms

  3. Energy cascading in large district heating systems

    International Nuclear Information System (INIS)

    Mayer, F.W.

    1978-01-01

    District heat transfer is the most economical utilization of the waste heat of power plants. Optimum utilization and heat transfer over large distances are possible because of a new energy distribution system, the ''energy cascading system,'' in which heat is transferred to several consumer regions at different temperature ranges. It is made more profitable by the use of heat pumps. The optimum flow-line temperature is 368 0 K, and the optimum return-line temperature is 288 0 K, resulting in an approximately 50% reduction of electric power loss at the power plant

  4. Full energy peak efficiency of composite detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, Ritesh

    2015-01-01

    Experiments involving radioactive beams demand high detection efficiencies. One of the ways to obtain high detection efficiency without deteriorating the energy resolution or timing characteristics is the use of composite detectors which are composed of standard HPGe crystals arranged in a compact way. Two simplest composite detectors are the clover and cluster detectors. The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) comprises of 16 large volume, 32-fold segmented HPGe clover detectors, where each detector is shielded by a 20-fold segmented escape suppression shield (ESS)

  5. Quantitative Study of the Geographical Distribution of the Authorship of High-Energy Physics Journals

    CERN Document Server

    Krause, Jan; Mele, S

    2007-01-01

    The recent debate on Open Access publishing in High-Energy Physics has exposed the problem of assessing the scienti c production of every country where scholars are active in this discipline. This assessment is complicated by the highly-collaborative cross-border tradition of High-Energy Physics research. We present the results of a quantitative study of the geographical distribution of authors of High-Energy Physics articles, which takes into account cross-border co-authorship by attributing articles to countries on a pro-rata basis. Aggregated data on the share of scienti c results published by each country are presented together with a breakdown for the most popular journals in the eld, and a separation for articles by small groups or large collaborations. Collaborative patterns across large geographic areas are also investigated. Finally, the High-Energy Physics production of each country is compared with some economic indicators.

  6. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  7. Water-energy-food nexus in Large Asian River Basins

    OpenAIRE

    Keskinen, Marko; Varis, Olli

    2016-01-01

    The water-energy-food nexus ("nexus") is promoted as an approach to look at the linkages between water, energy and food. The articles of Water's Special Issue "Water-Energy-Food Nexus in Large Asian River Basins" look at the applicability of the nexus approach in different regions and rivers basins in Asia. The articles provide practical examples of the various roles and importance of water-energy-food linkages, but also discuss the theoretical aspects related to the nexus. While it is eviden...

  8. Solder bond requirement for large, built-up, high-performance conductors

    International Nuclear Information System (INIS)

    Willig, R.L.

    1981-01-01

    Some large built-up conductors fabricated for large superconducting magnets are designed to operate above the maximum recovery current. Because the stability of these conductors is sensitive to the quality of the solder bond joining the composite superconductor to the high-conductivity substrate, a minimum bond requirement is necessary. The present analysis finds that the superconductor is unstable and becomes abruptly resistive when there are temperature excursions into the current sharing region of a poorly bonded conductor. This abrupt transition, produces eddy current heating in the vicinity of the superconducting filaments and causes a sharp reduction in the minimum propagating zone (MPZ) energy. This sensitivity of the MPZ energy to the solder bond contact area is used to specify a minimum bond requirement. For the superconducting MHD magnet built for the Component Development Integration Facility (CDIF), the minimum bonded surface area is .68 cm/sup 2//cm which is 44% of the composite perimeter. 5 refs

  9. High energy, low inductance, high current fiberglass energy storage capacitor for the Atlas Machine Marx modules

    CERN Document Server

    Cooper, R A; Ennis, J B; Cochrane, J C; Reass, W A; Parsons, W M

    1999-01-01

    The Los Alamos National Laboratory's Atlas Marx design team envisioned a double ended plastic case 60 kV, 15 nH, 650 kA, energy storage capacitor. A design specification was established and submitted to various vendors. Maxwell Energy Products drew from its development of large fiberglass case, high voltage, low inductance "FASTCAP" capacitors manufactured for Maxwell Technologies' ACE II, ACE III and ACE IV machines. This paper discusses the LANL specification and Maxwell Energy Products' successful design, Model No. 39232, 34.1 mu F, 60 kV, 13*29*27", the only capacitor qualified by LANL for the 23 Mega Joule Atlas application. Maxwell's past experience in this type of capacitor is covered. The performance data is reviewed and the life test data compared to the original calculated design life. Challenges included Maxwell's "keep it simple " design goal which was maintained to minimize the effort required to create and manufacture a nearly 600 pound capacitor. (1 refs).

  10. Some problems of high-energy elementary particle physics

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1995-01-01

    The problems of high-energy elementary particle physics are discussed. It is pointed out that the modern theory of elementary-particle physics has no solutions of some large physical problems: origin of the mass, electric charge, identity of particle masses, change of the mass of elementary particles in time and others. 7 refs

  11. Search for large extra dimensions in the exclusive photon + missing energy channel in p$\\bar{p}$ collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lazoflores, Jose A. [Florida State Univ., Tallahassee, FL (United States)

    2006-01-01

    A search was conducted for evidence of large extra dimensions (LED) at Fermi National Accelerator Laboratory's Tevatron using the D0 detector. The Tevatron is a p$\\bar{p}$ collider at a center of mass energy of 1.96 TeV. Events with particles escaping into extra dimensions will have large missing energy. The search was carried out using data from a total luminosity of 197 ± 13 pb-1 with an observable high transverse momentum photon and a large transverse missing energy. The 70 observed events are consistent with photons produced by standard known reactions plus other background processes produced by cosmic muons. The mass limits on the fundamental mass scale at 95% confidence level for large extra dimensions of 2, 4, 6 and 8 are 500 GeV, 581 GeV, 630 GeV, and 668 GeV respectively.

  12. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    CERN Document Server

    Masetti, Lorenzo; Fischer, Peter

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a significant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specific requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specific design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper configuration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations...

  13. Cosmic-ray ultra high-energy multijet family event

    International Nuclear Information System (INIS)

    Zou Bao-tang; Wang Cheng-rui; Ren Jing-ru

    1987-01-01

    A cosmic-ray ultra-high-energy multijet family event with visible energy of about 1500 TeV and five large cores is reported. This event was found in the 1980-1981 exposure of the Mt. Kambala (5500 M a.s.l.) emulsion-chamber experiment. The family characteristics are analyzed and compared with other cosmic ray events in the same energy range. The production and fragmentation characteristics of the five jets are studied and compared with the experimental results of accelerators and emulsion chamber C-jets as well as with QCD predictions above the TeV range. Some features on hadronic interactions in the TeV range are discussed

  14. Characteristics of large thermal energy storage systems in Poland

    Science.gov (United States)

    Zwierzchowski, Ryszard

    2017-11-01

    In District Heating Systems (DHS) there are significant fluctuations in demand for heat by consumers during both the heating and the summer seasons. These variations are considered primarily in the 24-hour time horizon. These problems are aggravated further if the DHS is supplied by a CHP plant, because fluctuations in heat demand adversely affect to a significant degree the stable production of electricity at high overall efficiency. Therefore, introducing Thermal Energy Storage (TES) would be highly recommended on these grounds alone. The characteristics of Large (i.e. over 10 000 m3) TES in operation in Poland are presented. Information is given regarding new projects (currently in design or construction) that apply TES technology in DHS in Poland. The paper looks at the methodology used in Poland to select the TES system for a particular DHS, i.e., procedure for calculating capacity of the TES tank and the system to prevent water stored in the tank from absorbing oxygen from atmospheric air. Implementation of TES in DHS is treated as a recommended technology in the Polish District Heating sector. This technology offers great opportunities to improve the operating conditions of DHS, cutting energy production costs and emissions of pollutants to the atmosphere.

  15. FY 2000 report on the survey on energy conservation technology of large plant using ultra high corrosion resistant materials; 2000 nendo chokotaishokusei zairyo wo mochiita ogata plant no sho energy gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of achieving remarkable energy conservation/resource conservation in large plants, the paper carried out an investigational survey of effects obtained in case of applying amorphous super metal which is the newest corrosion resistant material. Amorphous alloys as an ultra high corrosion resistant material are a peculiar material which shows the extremely excellent corrosion resistance even in much strong acid by containing passivated elements with the needed concentration. The corrosion resistant amorphous alloy applied to large plants need the thickness and diameter of more than several millimeters as a bulk material. The subjects are scaling-up of bulk materials and stabilization of characteristics. Even under the tough dew point corrosion environment of the waste power plant, etc., heat recovery from exhaust gas is made possible by heat exchanger applied with ultra high corrosion resistant materials. Effects of the annual heat recovery from the nationwide refuse incinerators and coal thermal power plants are estimated to be approximately 5.2 million kL toe, that is, to be equal to energy conservation of 6 x a million kW class power plant. (NEDO)

  16. Neutrino fluxes produced by high energy solar flare particles

    International Nuclear Information System (INIS)

    Kolomeets, E.V.; Shmonin, V.L.

    1975-01-01

    In this work the calculated differential energy spectra of neutrinos poduced by high energy protons accelerated during 'small' solar flares are presented. The muon flux produced by neutrino interactions with the matter at large depths under the ground is calculated. The obtained flux of muons for the total number of solar flare accelerated protons of 10 28 - 10 32 is within 10 9 - 10 13 particles/cm 2 X s x ster. (orig.) [de

  17. Deuteron-deuteron elastic scattering at high energies

    International Nuclear Information System (INIS)

    Fazal-e-Aleem; Ali, S.

    1991-01-01

    The eikonal picture which has theoretical foundations in some areas of physics has been successful in explaining various aspects of elastic scattering at high energies. Chou and Yang first proposed a preliminary version of the eikonal model for hadron-hadron elastic scattering. The model is based on geometrical considerations in which hadrons are treated as extended objects. Elastic scattering then results from the propagation of attenuated wave function. By assuming that at high energies the scattering amplitude is purely imaginary and that the hadronic matter distribution is proportional to the charge distribution on protons, Durand and Lipes studied high energy pp scattering on the basis of this prestine model. Later on, the model was extended to other elastic reactions. However, a survey of literature shows that it has been successful only in the diffraction peak region. It has been shown that the pristine Chou-Yange model can explain the differential cross section for deuteron-deuteron elastic scattering at √s = 53 GeV in the diffraction peak region. In order to fit the large momentum transfer data, the generalized Chou-Yang model is used

  18. QCD and high-energy nuclear collisions

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Six years ago, Relativistic Heavy Ion Collider at Brookhaven started colliding heavy nuclei at record center-of-mass energies of up to 200 GeV/nucleon. Very soon, the Large Hadron Collider at CERN will push the energy of the ions to an astounding 5 TeV/nucleon. What can be learnt from the experiments at these machines? What do we know about the physics of super--dense matter already? I will argue that heavy ion accelerators bring us to the new frontiers of physical knowledge by creating strong color fields and very high densities of partons, at which qualitatively new phenomena emerge. I will also discuss the cross-disciplinary implications for cosmology, astrophysics, and connections to condensed matter physics.

  19. How fast is the growth of Total Cross Section at High Energies?

    CERN Document Server

    Fazal-e-Aleem, M; Sohail-Afzal, Tahir; Ayub-Faridi, M; Qadee-Afzal, M

    2003-01-01

    Relativistic Heavy Ion Collider and Large Hadron Colliders have special agenda for the measurements of the total cross sections at high energies giving us an opportunity to touch cosmic ray energies. Recent analyses of the cosmic ray data together with earlier experimental measurements at ISR and SPS gives us an insight about the behaviour of this important parameter at asymptotic energies. We will study the growth of total cross section at high energies in the light of various theoretical approaches with special reference to measurements at RHIC and LHC.

  20. Impacts of Large Scale Wind Penetration on Energy Supply Industry

    Directory of Open Access Journals (Sweden)

    John Kabouris

    2009-11-01

    Full Text Available Large penetration of Renewable Energy Sources (RES impacts Energy Supply Industry (ESI in many aspects leading to a fundamental change in electric power systems. It raises a number of technical challenges to the Transmission System Operators (TSOs, Distribution System Operators (DSOs and Wind Turbine Generators (WTG constructors. This paper aims to present in a thorough and coherent way the redrawn picture for Energy Systems under these conditions. Topics related to emergent technical challenges, technical solutions required and finally the impact on ESI due to large wind power penetration, are analyzed. Finally, general conclusions are extracted about the ESI current and future state and general directions are recommended.

  1. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  2. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Photons; dileptons; Relativistic Heavy Ion Collider; Large Hadron Collider; quark ... the collisions produces relatively high pT photons, often referred to ..... energy have been found for identified charged hadrons at RHIC [25].

  3. The Strain Energy, Seismic Moment and Magnitudes of Large Earthquakes

    Science.gov (United States)

    Purcaru, G.

    2004-12-01

    The strain energy Est, as potential energy, released by an earthquake and the seismic moment Mo are two fundamental physical earthquake parameters. The earthquake rupture process ``represents'' the release of the accumulated Est. The moment Mo, first obtained in 1966 by Aki, revolutioned the quantification of earthquake size and led to the elimination of the limitations of the conventional magnitudes (originally ML, Richter, 1930) mb, Ms, m, MGR. Both Mo and Est, not in a 1-to-1 correspondence, are uniform measures of the size, although Est is presently less accurate than Mo. Est is partitioned in seismic- (Es), fracture- (Eg) and frictional-energy Ef, and Ef is lost as frictional heat energy. The available Est = Es + Eg (Aki and Richards (1980), Kostrov and Das, (1988) for fundamentals on Mo and Est). Related to Mo, Est and Es, several modern magnitudes were defined under various assumptions: the moment magnitude Mw (Kanamori, 1977), strain energy magnitude ME (Purcaru and Berckhemer, 1978), tsunami magnitude Mt (Abe, 1979), mantle magnitude Mm (Okal and Talandier, 1987), seismic energy magnitude Me (Choy and Boatright, 1995, Yanovskaya et al, 1996), body-wave magnitude Mpw (Tsuboi et al, 1998). The available Est = (1/2μ )Δ σ Mo, Δ σ ~=~average stress drop, and ME is % \\[M_E = 2/3(\\log M_o + \\log(\\Delta\\sigma/\\mu)-12.1) ,\\] % and log Est = 11.8 + 1.5 ME. The estimation of Est was modified to include Mo, Δ and μ of predominant high slip zones (asperities) to account for multiple events (Purcaru, 1997): % \\[E_{st} = \\frac{1}{2} \\sum_i {\\frac{1}{\\mu_i} M_{o,i} \\Delta\\sigma_i} , \\sum_i M_{o,i} = M_o \\] % We derived the energy balance of Est, Es and Eg as: % \\[ E_{st}/M_o = (1+e(g,s)) E_s/M_o , e(g,s) = E_g/E_s \\] % We analyzed a set of about 90 large earthquakes and found that, depending on the goal these magnitudes quantify differently the rupture process, thus providing complementary means of earthquake characterization. Results for some

  4. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.

    1991-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics of the evolution of the early universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including studies of the nature of dark matter and the signature of annihilations in the galactic halo, where the resulting γ-ray fluxes are potentially observable, and in stars, where stellar evolution may be affects. We will develop constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon, examining the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in both flat and curved cosmological models, and implications for observations of large-scale galaxy clustering and structure formation theories. We will also study spectral distortions in the microwave background radiation that are produced by exotic particle decays in the very early universe. We expect such astrophysical considerations to provide fruitful insights both into high-energy particle physics and into possible cosmological for the early universe

  5. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  6. Surface studies with high-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stensgaard, Ivan [Aarhus Univ. (Denmark). Inst. of Physics

    1992-07-01

    High-energy ion scattering is an extremely useful technique for surface studies. Three methods for surface composition analysis (Rutherford backscattering, nuclear-reaction analysis and elastic recoil detection) are discussed. Directional effects in ion-beam surface interactions (shadowing and blocking) form the basis for surface structure analysis with high-energy ion beams and these phenomena are addressed in some detail. It is shown how surface relaxation and reconstruction, as well as positions of adsorbed atoms, can be determined by comparison with computer simulations. A special technique called transmission channelling is introduced and shown to be particularly well suited for studies of adsorption positions, even of hydrogen. Recent developments in the field are demonstrated by discussing a large number of important (experimental) applications which also include surface dynamics and melting, as well as epitaxy and interface structure. (author).

  7. High-pressure 3He-Xe gas scintillators for simultaneous detection of neutrons and gamma rays over a large energy range

    International Nuclear Information System (INIS)

    Tornow, W.; Esterline, J.H.; Leckey, C.A.; Weisel, G.J.

    2011-01-01

    We report on features of high-pressure 3 He-Xe gas scintillators which have not been sufficiently addressed in the past. Such gas scintillators can be used not only for the efficient detection of low-energy neutrons but at the same time for the detection and identification of γ-rays as well. Furthermore, 3 He-Xe gas scintillators are also very convenient detectors for fast neutrons in the 1-10 MeV energy range and for high-energy γ-rays in the 7-15 MeV energy range. Due to their linear pulse-height response and self calibration via the 3 He(n,p) 3 H reaction, neutron and γ-ray energies can easily be determined in this high-energy regime.

  8. Nuclear interactions of super high energy cosmic-rays observed by mountain emulsion chambers

    International Nuclear Information System (INIS)

    1981-01-01

    Here is presented a summary of joint discussions on the results of three mountain experiments with large-scale emulsion chambers, at Pamir, Mt. Fuji and Chacaltaya. The observation covers gamma-quanta, hadrons and their clusters (called ''families''). Following topics are covered concerning on characteristics of nuclear interactions in energy region of 10 14 - 10 16 eV: 1) rapid dissipation seen in atmospheric diffusion of high energy cosmic-rays, 2) multiplicity and p sub(t) increase in produced pimesons in the fragmentation region, 3) existence of large p sub(t) jets, 4) extremely-hadron-rich family of Centauro type, 5) exotic phenomena at extremely high energy region beyond 10 16 eV. (author)

  9. Environmental orientation of large energy companies? The large four and their contribution to environmental protection

    International Nuclear Information System (INIS)

    Kiyar, Dagmar

    2014-01-01

    The project is aimed to study the motivation and willingness for environmental engagement of the four large German energy companies RWE, E.ON, Vattenfall and EnBW. The two changes of political appraisal of nuclear energy by the German government occurred during the project. The work covers the following issues: Governance and climate policy, multi-level governance, corporate governance; climate topics in the management practice, energy policy and climate policy, national and international aspects, initiatives and engagement; research design and empirical investigations.

  10. Biomass energy - large potential in North-West Russia

    International Nuclear Information System (INIS)

    Borchsenius, Hans

    2000-01-01

    Changing from oil or coal to bio fuel is a high priority in all European countries. The potential for such a transition is largest in North-West Russia, where several factors point to biomass energy: large bio fuel resources, large need for heating because of the cold climate, and almost 100% coverage of district heating. Here, the largest continuous coniferous forest in Europe supplies the raw material for a considerable forest industry, including some of the biggest sawmills and paper- and cellulose factories in the world. The fraction of the timber that cannot go into this production is suitable as bio fuel. About 15% of the raw material in this industry is bark and sawdust which can be used for energy production. In addition, 10% of the biomass of the trees remains on the forest floor as twigs, treetops etc. If all this sawdust and felling waste was used to replace heating oil, the corresponding reduction of CO2 emission would amount to 25 mill m3 per year. The forest industry in Russia is currently in full production, and an increasing mass of sawdust and wood waste is accumulating in depositories that cover larger and larger areas. Depositories are often set on fire to keep down the masses; at the same time, the district heating plants are fired with expensive oil or coal. This paradoxical situation is due to the economical crises in the 1990s. Neither private companies nor the local governments could invest in bio fueled boilers. Bio fuel projects are cost-effective and easy to document and perfectly suitable for joint implementations under the Kyoto Protocol

  11. High to ultra-high power electrical energy storage.

    Science.gov (United States)

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  12. Temperature and doping dependence of the high-energy kink in cuprates.

    Science.gov (United States)

    Zemljic, M M; Prelovsek, P; Tohyama, T

    2008-01-25

    It is shown that spectral functions within the extended t-J model, evaluated using the finite-temperature diagonalization of small clusters, exhibit the high-energy kink in single-particle dispersion consistent with recent angle-resolved photoemission results on hole-doped cuprates. The kink and waterfall-like features persist up to large doping and to temperatures beyond J; hence, the origin can be generally attributed to strong correlations and incoherent hole propagation at large binding energies. In contrast, our analysis predicts that electron-doped cuprates do not exhibit these phenomena in photoemission.

  13. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  14. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  15. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    International Nuclear Information System (INIS)

    Zhao Jing; Wu Yong; Zhu Neng

    2009-01-01

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end.

  16. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jing [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)], E-mail: zhaojing@tju.edu.cn; Wu Yong [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China); Zhu Neng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2009-06-15

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end.

  17. Implementing effect of energy efficiency supervision system for government office buildings and large-scale public buildings in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Zhu, Neng [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Wu, Yong [Department of Science and Technology, Ministry of Housing and Urban-Rural Development of the People' s Republic of China, Beijing 100835 (China)

    2009-06-15

    The Chinese central government released a document to initiate a task of energy efficiency supervision system construction for government office buildings and large-scale public buildings in 2007, which marks the overall start of existing buildings energy efficiency management in China with the government office buildings and large-scale public buildings as a breakthrough. This paper focused on the implementing effect in the demonstration region all over China for less than one year, firstly introduced the target and path of energy efficiency supervision system, then described the achievements and problems during the implementing process in the first demonstration provinces and cities. A certain data from the energy efficiency public notice in some typical demonstration provinces and cities were analyzed statistically. It can be concluded that different functional buildings have different energy consumption and the average energy consumption of large-scale public buildings is too high in China compared with the common public buildings and residential buildings. The obstacles need to be overcome afterward were summarized and the prospects for the future work were also put forward in the end. (author)

  18. ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    David Wenzhong Gao

    2012-09-30

    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An

  19. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  20. Composition variations of low energy heavy ions during large solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Ho, George C., E-mail: George.Ho@jhuapl.edu; Mason, Glenn M., E-mail: Glenn.Mason@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2016-03-25

    The time-intensity profile of large solar energetic particle (SEP) event is well organized by solar longitude as observed at Earth orbit. This is mostly due to different magnetic connection to the shock that is associated with large SEP event propagates from the Sun to the heliosphere. Earlier studies have shown event averaged heavy ion abundance ratios can also vary as a function of solar longitude. It was found that the Fe/O ratio for high energy particle (>10 MeV/nucleon) is higher for those western magnetically well connected events compare to the eastern events as observed at L1 by the Advanced Composition Explorer (ACE) spacecraft. In this paper, we examined the low energy (∼1 MeV/nucleon) heavy ions in 110 isolated SEP events from 2009 to the end of 2014. In addition, the optical and radio signatures for all of our events are identified and when data are available we also located the associated coronal mass ejection (CME) data. Our survey shows a higher Fe/O ratio at events in the well-connected region, while there are no corrections between the event averaged elemental composition with the associated coronal mass ejection speed. This is inconsistent with the higher energy results, but inline with other recent low-energy measurements.

  1. Summing the strokes: energy economy in northern elephant seals during large-scale foraging migrations.

    Science.gov (United States)

    Maresh, J L; Adachi, T; Takahashi, A; Naito, Y; Crocker, D E; Horning, M; Williams, T M; Costa, D P

    2015-01-01

    The energy requirements of free-ranging marine mammals are challenging to measure due to cryptic and far-ranging feeding habits, but are important to quantify given the potential impacts of high-level predators on ecosystems. Given their large body size and carnivorous lifestyle, we would predict that northern elephant seals (Mirounga angustirostris) have elevated field metabolic rates (FMRs) that require high prey intake rates, especially during pregnancy. Disturbance associated with climate change or human activity is predicted to further elevate energy requirements due to an increase in locomotor costs required to accommodate a reduction in prey or time available to forage. In this study, we determined the FMRs, total energy requirements, and energy budgets of adult, female northern elephant seals. We also examined the impact of increased locomotor costs on foraging success in this species. Body size, time spent at sea and reproductive status strongly influenced FMR. During the short foraging migration, FMR averaged 90.1 (SE = 1.7) kJ kg(-1)d(-1) - only 36 % greater than predicted basal metabolic rate. During the long migration, when seals were pregnant, FMRs averaged 69.4 (±3.0) kJ kg(-1)d(-1) - values approaching those predicted to be necessary to support basal metabolism in mammals of this size. Low FMRs in pregnant seals were driven by hypometabolism coupled with a positive feedback loop between improving body condition and reduced flipper stroking frequency. In contrast, three additional seals carrying large, non-streamlined instrumentation saw a four-fold increase in energy partitioned toward locomotion, resulting in elevated FMRs and only half the mass gain of normally-swimming study animals. These results highlight the importance of keeping locomotion costs low for successful foraging in this species. In preparation for lactation and two fasting periods with high demands on energy reserves, migrating elephant seals utilize an economical foraging

  2. Energy self-supply of large abattoir by sustainable waste utilization based on anaerobic mono-digestion

    International Nuclear Information System (INIS)

    Ortner, Markus; Wöss, David; Schumergruber, Alexander; Pröll, Tobias; Fuchs, Werner

    2015-01-01

    Highlights: • Successful implementation of a new waste and energy concept to large size abattoir. • 85% of slaughterhouse waste accumulated converted to energy by anaerobic digestion. • Coverage of abattoirs’ electrical and thermal energy demand between 50% and 60%. • Reduction of main energy and disposal cost by 63%. • Reduction of greenhouse gas emissions by 79%. - Abstract: Abattoirs have a large number of energy intensive processes. Beside energy supply, disposal costs of animal by-products (ABP) are the main relevant cost drivers. In this study, successful implementation of a new waste and energy management system based on anaerobic digestion is described. Several limitations and technical challenges regarding the anaerobic digestion of the protein rich waste material had to be overcome. The most significant problems were process imbalances such as foaming and floatation as well as high accumulation of volatile fatty acids and low biogas yields caused by lack of essential microelements, high ammonia concentrations and fluctuation in operation temperature. Ultimately, 85% of the waste accumulated during the slaughter process is converted into 2700 MW h thermal and 3200 MW h electrical energy in a biogas combined heat and power (CHP) plant. The thermal energy is optimally integrated into the production process by means of a stratified heat buffer. The energy generated by the biogas CHP-plant can cover a significant share of the energy requirement of the abattoir corresponding to 50% of heat and 60% of electric demand, respectively. In terms of annual cost for energy supply and waste disposal a reduction of 63% from 1.4 Mio € to about 0.5 Mio € could be achieved with the new system. The payback period of the whole investment is approximately 9 years. Beside the economic benefits also the positive environmental impact should be highlighted: a 79% reduction of greenhouse gas emissions from 4.5 Mio kg CO 2 to 0.9 Mio kg CO 2 annually was achieved

  3. Low Li+ Insertion Barrier Carbon for High Energy Efficient Lithium-Ion Capacitor.

    Science.gov (United States)

    Lee, Wee Siang Vincent; Huang, Xiaolei; Tan, Teck Leong; Xue, Jun Min

    2018-01-17

    Lithium-ion capacitor (LIC) is an attractive energy-storage device (ESD) that promises high energy density at moderate power density. However, the key challenge in its design is the low energy efficient negative electrode, which barred the realization of such research system in fulfilling the current ESD technological inadequacy due to its poor overall energy efficiency. Large voltage hysteresis is the main issue behind high energy density alloying/conversion-type materials, which reduces the electrode energy efficiency. Insertion-type material though averted in most research due to the low capacity remains to be highly favorable in commercial application due to its lower voltage hysteresis. To further reduce voltage hysteresis and increase capacity, amorphous carbon with wider interlayer spacing has been demonstrated in the simulation result to significantly reduce Li + insertion barrier. Hence, by employing such amorphous carbon, together with disordered carbon positive electrode, a high energy efficient LIC with round-trip energy efficiency of 84.3% with a maximum energy density of 133 Wh kg -1 at low power density of 210 W kg -1 can be achieved.

  4. Particle physics experiments at high energy colliders

    International Nuclear Information System (INIS)

    Hauptman, John

    2011-01-01

    Written by one of the detector developers for the International Linear Collider, this is the first textbook for graduate students dedicated to the complexities and the simplicities of high energy collider detectors. It is intended as a specialized reference for a standard course in particle physics, and as a principal text for a special topics course focused on large collider experiments. Equally useful as a general guide for physicists designing big detectors. (orig.)

  5. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  6. TPCs in high-energy astronomical polarimetry

    International Nuclear Information System (INIS)

    Black, J K

    2007-01-01

    High-energy astrophysics has yet to exploit the unique and important information that polarimetry could provide, largely due to the limited sensitivity of previously available polarimeters. In recent years, numerous efforts have been initiated to develop instruments with the sensitivity required for astronomical polarimetry over the 100 eV to 10 GeV band. Time projection chambers (TPCs), with their high-resolution event imaging capability, are an integral part of some of these efforts. After a brief overview of current astronomical polarimeter development efforts, the role of TPCs will be described in more detail. These include TPCs as photoelectric X-ray polarimeters and TPCs as components of polarizationsensitive Compton and pair-production telescopes

  7. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  8. Design and Optimization of Large Accelerator Systems through High-Fidelity Electromagnetic Simulations

    International Nuclear Information System (INIS)

    Ng, Cho; Akcelik, Volkan; Candel, Arno; Chen, Sheng; Ge, Lixin; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Prudencio, Ernesto; Schussman, Greg; Uplenchwar1, Ravi; Xiao1, Liling; Ko1, Kwok; Austin, T.; Cary, J.R.; Ovtchinnikov, S.; Smith, D.N.; Werner, G.R.; Bellantoni, L.; TechX Corp.; Fermilab

    2008-01-01

    SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES)

  9. Design and optimization of large accelerator systems through high-fidelity electromagnetic simulations

    International Nuclear Information System (INIS)

    Ng, C; Akcelik, V; Candel, A; Chen, S; Ge, L; Kabel, A; Lee, Lie-Quan; Li, Z; Prudencio, E; Schussman, G; Uplenchwar, R; Xiao, L; Ko, K; Austin, T; Cary, J R; Ovtchinnikov, S; Smith, D N; Werner, G R; Bellantoni, L

    2008-01-01

    SciDAC-1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC Centers and Insitutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider and the Large Hadron Collider in high energy physics, the JLab 12-GeV Upgrade in nuclear physics, and the Spallation Neutron Source and the Linac Coherent Light Source in basic energy sciences

  10. Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries

    Science.gov (United States)

    Yu, Ruimin; Fan, Wugang; Guo, Xiangxin; Dong, Shaoming

    2016-02-01

    Carbonaceous air cathodes with rational architecture are vital for the nonaqueous Li-O2 batteries to achieve large energy density, high energy efficiency and long cycle life. In this work, we report the cathodes made of highly ordered and vertically aligned carbon nanotubes grown on permeable Ta foil substrates (VACNTs-Ta) via thermal chemical vapour deposition. The VACNTs-Ta, composed of uniform carbon nanotubes with approximately 240 μm in superficial height, has the super large surface area. Meanwhile, the oriented carbon nanotubes provide extremely outstanding passageways for Li ions and oxygen species. Electrochemistry tests of VACNTs-Ta air cathodes show enhancement in discharge capacity and cycle life compared to those made from short-range oriented and disordered carbon nanotubes. By further combining with the LiI redox mediator that is dissolved in the tetraethylene dimethyl glycol based electrolytes, the batteries exhibit more than 200 cycles at the current density of 200 mA g-1 with a cut-off discharge capacity of 1000 mAh g-1, and their energy efficiencies increase from 50% to 82%. The results here demonstrate the importance of cathode construction for high-energy-efficiency and long-life Li-O2 batteries.

  11. XXI and XXII SERC Main School in Theoretical High Energy Physics

    CERN Document Server

    Sivakumar, M; Surveys in theoretical high energy physics 2 : lecture notes from SERC Schools

    2016-01-01

    The book presents pedagogical reviews of important topics on high energy physics to the students and researchers in particle physics. The book also discusses topics on the Quark–Gluon plasma, thermal field theory, perturbative quantum chromodynamics, anomalies and cosmology. Students of particle physics need to be well-equipped with basic understanding of many concepts underlying the standard models of particle physics and cosmology. This is particularly true today when experimental results from colliders, such as large hadron collider (LHC) and relativistic heavy ion collider (RHIC), as well as inferences from cosmological observations, are expected to further expand our understanding of particle physics at high energies. This volume is the second in the Surveys in Theoretical High Energy Physics Series (SThEP). Topics covered in this book are based on lectures delivered at the SERC Schools in Theoretical High Energy Physics at the Physical Research Laboratory, Ahmedabad, and the University of Hyderabad.

  12. Large low-energy M1 strength for ^{56,57}Fe within the nuclear shell model.

    Science.gov (United States)

    Brown, B Alex; Larsen, A C

    2014-12-19

    A strong enhancement at low γ-ray energies has recently been discovered in the γ-ray strength function of ^{56,57}Fe. In this work, we have for the first time obtained theoretical γ decay spectra for states up to ≈8  MeV in excitation for ^{56,57}Fe. We find large B(M1) values for low γ-ray energies that provide an explanation for the experimental observations. The role of mixed E2 transitions for the low-energy enhancement is addressed theoretically for the first time, and it is found that they contribute a rather small fraction. Our calculations clearly show that the high-ℓ(=f) diagonal terms are most important for the strong low-energy M1 transitions. As such types of 0ℏω transitions are expected for all nuclei, our results indicate that a low-energy M1 enhancement should be present throughout the nuclear chart. This could have far-reaching consequences for our understanding of the M1 strength function at high excitation energies, with profound implications for astrophysical reaction rates.

  13. Study of high energy ion loss during hydrogen minority heating in TFTR

    International Nuclear Information System (INIS)

    Park, J.; Zweben, S.J.

    1994-03-01

    High energy ion loss during hydrogen minority ICRF heating is measured and compared with the loss of the D-D fusion products. During H minority heating a relatively large loss of high energy ions is observed at 45 degrees below the outer midplane, with or without simultaneous NBI heating. This increase is most likely due to a loss of the minority tail protons, a possible model for this process is described

  14. High energy particle transport code NMTC/JAM

    International Nuclear Information System (INIS)

    Niita, Koji; Meigo, Shin-ichiro; Takada, Hiroshi; Ikeda, Yujiro

    2001-03-01

    We have developed a high energy particle transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI97. The applicable energy range of NMTC/JAM is extended in principle up to 200 GeV for nucleons and mesons by introducing the high energy nuclear reaction code JAM for the intra-nuclear cascade part. For the evaporation and fission process, we have also implemented a new model, GEM, by which the light nucleus production from the excited residual nucleus can be described. According to the extension of the applicable energy, we have upgraded the nucleon-nucleus non-elastic, elastic and differential elastic cross section data by employing new systematics. In addition, the particle transport in a magnetic field has been implemented for the beam transport calculations. In this upgrade, some new tally functions are added and the format of input of data has been improved very much in a user friendly manner. Due to the implementation of these new calculation functions and utilities, consequently, NMTC/JAM enables us to carry out reliable neutronics study of a large scale target system with complex geometry more accurately and easily than before. This report serves as a user manual of the code. (author)

  15. Channeling and dechanneling at high energy

    International Nuclear Information System (INIS)

    Carrigan, R.A. Jr.

    1987-01-01

    The possibility of using channeling as a tool for high energy particle physics has now been extensively investigated. Bent crystals have been used as an accelerator extraction element and for particle deflection. Applications as accelerating devices have been discussed but appear remote. The major advantage in using a bent crystal rather than a magnet is the large deflection that can be achieved in a short length. The major disadvantage is the low transmission. A good understanding of dechanneling is important for applications. 43 refs., 1 fig., 3 tabs

  16. Improvements in high energy computed tomography

    International Nuclear Information System (INIS)

    Burstein, P.; Krieger, A.; Annis, M.

    1984-01-01

    In computerized axial tomography employed with large relatively dense objects such as a solid fuel rocket engine, using high energy x-rays, such as a 15 MeV source, a collimator is employed with an acceptance angle substantially less than 1 0 , in a preferred embodiment 7 minutes of a degree. In a preferred embodiment, the collimator may be located between the object and the detector, although in other embodiments, a pre-collimator may also be used, that is between the x-ray source and the object being illuminated. (author)

  17. Z/γ{sup ∗} plus multiple hard jets in high energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jeppe R. [Institute for Particle Physics Phenomenology, University of Durham,South Road, Durham DH1 3LE (United Kingdom); Medley, Jack J.; Smillie, Jennifer M. [Higgs Centre for Theoretical Physics, University of Edinburgh,Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)

    2016-05-23

    We present a description of the production of di-lepton pair production (through Z boson and virtual photon) in association with at least two jets. This calculation adds to the fixed-order accuracy the dominant logarithms in the limit of large partonic centre-of-mass energy to all orders in the strong coupling α{sub s}. This is achieved within the framework of High Energy Jets. This calculation is made possible by extending the high energy treatment to take into account the multiple t-channel exchanges arising from Z and γ{sup ∗}-emissions off several quark lines. The correct description of the interference effects from the various t-channel exchanges requires an extension of the subtraction terms in the all-order calculation. We describe this construction and compare the resulting predictions to a number of recent analyses of LHC data. The description of a wide range of observables is good, and, as expected, stands out from other approaches in particular in the regions of large dijet invariant mass and large dijet rapidity spans.

  18. High energy nuclear collisions: theory review

    International Nuclear Information System (INIS)

    Fries, Rainer J.

    2009-01-01

    Full text: High Energy Nuclear Collisions are studied at the Relativistic Heavy Ion Collider (RHIC) and, starting next year, also at the Large Hadron Collider (LHC) to study the formation and properties of quark gluon plasma (QGP). This effort is driven by the prediction that above a certain critical temperature quarks and gluons are deconfined. For the past ten years of running RHIC has performed marvelously. Data from RHIC has answered many initial questions, but it has also provided new, more challenging problems to understand the nature of quark gluon plasma and the dynamics of heavy ion collisions. In this talk I review some of the basic concepts of high energy nuclear collisions and quark gluon plasma formation. We also discuss some of the novel and open questions that we are faced with. We discuss recent predictions on properties of hot quantum chromodynamics, emerging signatures for the color glass condensate, the fascinating idea of local P and CP violation in QCD, as well as ongoing research on hard probes and electromagnetic signatures

  19. Combining high-scale inflation with low-energy SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Basel Univ. (Switzerland). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Dutta, Koushik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Halter, Sebastian [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut

    2011-12-15

    We propose a general scenario for moduli stabilization where low-energy supersymmetry can be accommodated with a high scale of inflation. The key ingredient is that the stabilization of the modulus field during and after inflation is not associated with a single, common scale, but relies on two different mechanisms. We illustrate this general scenario in a simple example, where during inflation the modulus is stabilized with a large mass by a Kaehler potential coupling to the field which provides the inflationary vacuum energy via its F-term. After inflation, the modulus is stabilized, for instance, by a KKLT superpotential. (orig.)

  20. Proceedings of the symposium on high energy detectors

    International Nuclear Information System (INIS)

    1980-02-01

    Since the study meeting on measuring instruments held three years ago, large change has arisen. Valuable experiences have been accumulated by the successful conclusion of the first term experiments in the National Laboratory for High Energy Physics. The improvement of detectors and the development of new detectors are strongly desired just before starting the future plans. In low energy field also, the steady advance has been accomplished. This symposium was held in such situation on September 18 and 19, 1979, at KEK, and aimed at clarifying the present status and accomplishment of high energy detectors, and setting forth the future prospect. On the first day, the review of recent topics concerning position detectors and particle-identifying detectors, and the reports on drift chambers, liquid wire chambers and the single wire chambers using charge division method were mainly presented. On the second day, the reports on the electronics related to position detectors, particle-identifying detectors, calorimeters, and the development of new detectors, the consideration on multiple tracks as the future plan, and the review of transition radiation detectors were presented. The results of this symposium will surely be utilized for the high energy experiments hereafter. The 26 papers presented are outlined. (Kako, I.)

  1. Superconducting magnets in nuclear and high energy physics

    International Nuclear Information System (INIS)

    Hamelin, J.; Parain, J.; Perot, J.; Lesmond, C.

    1976-01-01

    A few examples of superconducting magnets developped at Saclay for high energy physics are presented. The OGA doublet is a large acceptance optical system consisting of two quadrupoles with maximum field gradients of 35 and 23 teslas per meter giving an increase of the beam acceptance by a factor 4. The ALEC dipole is a synchrotron magnet with a length of 1.5 meter and a field of 5 teslas, operating in pulse made at a frequency of 0.1 Hertz and entirely constructed in industry. The ECO project is a demonstration of electrical energy saving by means of superconductors. It consists in the replacement of conventional copper of a classical beam transport magnet by superconducting windings. The use of superconductors for polarized target magnets allows a large variety of configurations to be obtained in order to satisfy the acceptance and space requirements to the detectors around the targets [fr

  2. Search for new light bosons in high energy astronomy

    International Nuclear Information System (INIS)

    Wouters, Denis

    2014-01-01

    High-Energy astronomy studies the most violent phenomena in the universe with observations in a large spectrum of energies ranging from X rays to very high energy gamma rays (1 keV - 100 TeV). Such phenomena could be for instance supernovae explosions and their remnants, pulsars and pulsar wind nebulae or ultra relativistic jets formation by active galactic nuclei. Understanding these phenomena requires to use well-known particle physics processes. By means of high energy photons, studying such phenomena enables one to search for physics beyond the standard model. Concepts regarding the emission and propagation of high-energy photons are introduced and applied to study their emission by extragalactic sources and to constrain the extragalactic background light which affects their propagation. In this thesis, these high-energy extragalactic emitters are observed in order to search for new light bosons such as axion-like particles (ALPs). The theoretical framework of this family of hypothetical particles is reviewed as well as the associated phenomenology. In particular, because of their coupling to two photons, ALPs oscillate with photons in an external magnetic field. A new signature of such oscillations in turbulent magnetic fields, under the form of stochastic irregularities in the source energy spectrum, is introduced and discussed. A search for ALPs with the HESS telescopes with this new signature is presented, resulting in the first constraints on ALPs parameters coming from high-energy astronomy. Current constraints on ALPs at very low masses are improved by searching for the same signature in X-ray observations. An extension of these constraints to scalar field models for modified gravity in the framework of dark energy is then discussed. The potential of the search for ALPs with CTA, the prospected gamma-ray astronomy instrument, is eventually studied; in particular, a new observable is proposed that relies on the high number of sources that are expected to

  3. Energy compensation after sprint- and high-intensity interval training.

    Science.gov (United States)

    Schubert, Matthew M; Palumbo, Elyse; Seay, Rebekah F; Spain, Katie K; Clarke, Holly E

    2017-01-01

    Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE). This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI) and decreases in non-exercise physical activity (NEPA). We examined the degree of energy compensation in healthy young men and women in response to interval training. Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1) completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography) and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100%) and low (high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  4. Experimental And Theoretical High Energy Physics Research At UCLA

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Robert D. [University of California Los Angeles

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describes frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.

  5. Bench mark spectra for high-energy neutron dosimetry

    International Nuclear Information System (INIS)

    Dierckx, R.

    1986-01-01

    To monitor radiation damage experiments, activation detectors are commonly used. The precision of the results obtained by the multiple foil analysis is largely increased by the intercalibration in bench-mark spectra. This technique is already used in dosimetry measurements for fission reactors. To produce neutron spectra similar to fusion reactor and high-energy high-intensity neutron sources (d-Li or spallation), accelerators can be used. Some possible solutions as p-Be and d-D 2 O neutron sources, useful as bench-mark spectra are described. (author)

  6. Parallel Computing:. Some Activities in High Energy Physics

    Science.gov (United States)

    Willers, Ian

    This paper examines some activities in High Energy Physics that utilise parallel computing. The topic includes all computing from the proposed SIMD front end detectors, the farming applications, high-powered RISC processors and the large machines in the computer centers. We start by looking at the motivation behind using parallelism for general purpose computing. The developments around farming are then described from its simplest form to the more complex system in Fermilab. Finally, there is a list of some developments that are happening close to the experiments.

  7. HIGH ENERGY PHYSICS: CERN Link Breathes Life Into Russian Physics.

    Science.gov (United States)

    Stone, R

    2000-10-13

    Without fanfare, 600 Russian scientists here at CERN, the European particle physics laboratory, are playing key roles in building the Large Hadron Collider (LHC), a machine that will explore fundamental questions such as why particles have mass, as well as search for exotic new particles whose existence would confirm supersymmetry, a popular theory that aims to unify the four forces of nature. In fact, even though Russia is not one of CERN's 20 member states, most top high-energy physicists in Russia are working on the LHC. Some say their work could prove the salvation of high-energy physics back home.

  8. Multi-megajoule heating of large tokamaks with high energy heavy ion beams

    International Nuclear Information System (INIS)

    Dei-Cas, R.

    1981-07-01

    The fast neutral injection heating and RF heating for tokamak like plasmas are now well established. We consider in this paper the use of high energy (approximately 1 GeV) heavy ions (Xe 132 ) to reach ignition in JET or INTOR like tokamaks. The main advantages of such a method will be outlined. The capture and the confinement of heavy ions have been analysed in a particular case and with the described RF linac it seems possible to inject in the order of 50 MJ in 1 sec with a modest increase of the effective charge Zsub(eff)<1.05 in a JET-like plasma for a particle life time of 1 sec and then the additional radiated power should be maintained at a relatively low level in comparison to the injected power

  9. Endogenous magnetic reconnection and associated high energy plasma processes

    Science.gov (United States)

    Coppi, B.; Basu, B.

    2018-02-01

    An endogenous reconnection process involves a driving factor that lays inside the layer where a drastic change of magnetic field topology occurs. A process of this kind is shown to take place when an electron temperature gradient is present in a magnetically confined plasma and the evolving electron temperature fluctuations are anisotropic. The width of the reconnecting layer remains significant even when large macroscopic distances are considered. In view of the fact that there are plasmas in the Universe with considerable electron thermal energy contents this feature can be relied upon in order to produce generation or conversion of magnetic energy, high energy particle populations and momentum and angular momentum transport.

  10. Super High Energy Colliding Beam Accelerators

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    2009-01-01

    This lecture presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evolution of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab and the Large Hadron Collider (LHC) which is now planned as a 14-TeV machine in the 27 kilometer tunnel of the Large Electron Positron (LEP) collider at CERN. Then presentation is given of the Superconducting Supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 kilometers in circumference under the country surrounding Waxahachie in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particle.

  11. Method and apparatus for obtaining very high energy laser pulses: photon cyclotron

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Goldstein, R.

    1975-01-01

    Apparatus is arranged in selected embodiments of several combinations, each sometimes being referred to as a system, and each embodiment establishing a large enclosable chamber containing a laser energy reacting medium through which a laser beam is created. When laser energy pulses of such a beam are created, they are guided in a continuous path using reflectors in this chamber, and they receive supplemental energy units from multiple spaced laser pumps. Each laser pump is effective in respect to its own inverted population laser energy source, and each laser pump is triggered by an overall excitation control system. The laser beam is thereby supplemented to a higher level at each laser pump. Yet at all times the laser energy reacting medium remains at a level below super radiance. A working unit or working pulse of a laser beam is allowed to escape from each large enclosable chamber through an escape exit only when a preselected very high energy level is reached. The escape exit of this chamber may be designed to be destroyed by the exiting high level pulse energy of the laser beam. Also an escape exit may be opened upon the operation of a piezoelectric decoupler. (U.S.)

  12. 1996 European school of high-energy physics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, N; Neubert, M [eds.

    1997-07-02

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, Physics Beyond the Standard Model, Flavour Physics, Neutrino Physics, Collider Physics and Astrophysics, as well as reports on Heavy-Ion Physics, the Large Hadron Collider Project and Physics in JINR/Russia. (orig.)

  13. 1996 European school of high-energy physics. Proceedings

    International Nuclear Information System (INIS)

    Ellis, N.; Neubert, M.

    1997-01-01

    The European School of High-Energy Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on Field Theory, Physics Beyond the Standard Model, Flavour Physics, Neutrino Physics, Collider Physics and Astrophysics, as well as reports on Heavy-Ion Physics, the Large Hadron Collider Project and Physics in JINR/Russia. (orig.)

  14. High Energy Astrophysics with the Fermi Large Area Telescope

    Science.gov (United States)

    Hays, Elizabeth

    2009-01-01

    This slide presentation reviews some of the findings of the Large Area Telescope (LAT) aboard the Fermi Observatory. It includes information about the LAT, and the Gamma-Ray Burst Monitor (GBM), detection of the quiet sun and the moon in gamma rays, Pulsars observed by the observatory, Globular Star Clusters, Active Galactic Nucleus, and Gamma-Ray Bursts, with specific information about GRB 080916C.

  15. Optimal Wind Energy Integration in Large-Scale Electric Grids

    Science.gov (United States)

    Albaijat, Mohammad H.

    profit for investors for renting their transmission capacity, and cheaper electricity for end users. We propose a hybrid method based on a heuristic and deterministic method to attain new transmission lines additions and increase transmission capacity. Renewable energy resources (RES) have zero operating cost, which makes them very attractive for generation companies and market participants. In addition, RES have zero carbon emission, which helps relieve the concerns of environmental impacts of electric generation resources' carbon emission. RES are wind, solar, hydro, biomass, and geothermal. By 2030, the expectation is that more than 30% of electricity in the U.S. will come from RES. One major contributor of RES generation will be from wind energy resources (WES). Furthermore, WES will be an important component of the future generation portfolio. However, the nature of WES is that it experiences a high intermittency and volatility. Because of the great expectation of high WES penetration and the nature of such resources, researchers focus on studying the effects of such resources on the electric grid operation and its adequacy from different aspects. Additionally, current market operations of electric grids add another complication to consider while integrating RES (e.g., specifically WES). Mandates by market rules and long-term analysis of renewable penetration in large-scale electric grid are also the focus of researchers in recent years. We advocate a method for high-wind resources penetration study on large-scale electric grid operations. PMU is a geographical positioning system (GPS) based device, which provides immediate and precise measurements of voltage angle in a high-voltage transmission system. PMUs can update the status of a transmission line and related measurements (e.g., voltage magnitude and voltage phase angle) more frequently. Every second, a PMU can provide 30 samples of measurements compared to traditional systems (e.g., supervisory control and

  16. High-pressure {sup 3}He-Xe gas scintillators for simultaneous detection of neutrons and gamma rays over a large energy range

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W., E-mail: tornow@tunl.duke.edu [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Esterline, J.H. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Leckey, C.A. [Department of Physics, The College of William and Mary, Williamsburg, VA 23187 (United States); Weisel, G.J. [Department of Physics, Penn State Altoona, Altoona, PA 16601 (United States)

    2011-08-11

    We report on features of high-pressure {sup 3}He-Xe gas scintillators which have not been sufficiently addressed in the past. Such gas scintillators can be used not only for the efficient detection of low-energy neutrons but at the same time for the detection and identification of {gamma}-rays as well. Furthermore, {sup 3}He-Xe gas scintillators are also very convenient detectors for fast neutrons in the 1-10 MeV energy range and for high-energy {gamma}-rays in the 7-15 MeV energy range. Due to their linear pulse-height response and self calibration via the {sup 3}He(n,p){sup 3}H reaction, neutron and {gamma}-ray energies can easily be determined in this high-energy regime.

  17. Insights on the cuprate high energy anomaly observed in ARPES

    International Nuclear Information System (INIS)

    Moritz, B.; Johnston, S.; Devereaux, T.P.

    2010-01-01

    Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). The anomaly is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different energy scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the anomaly demarcates a transition, or cross-over, from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character.

  18. Insights on the cuprate high energy anomaly observed in ARPES

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, B., E-mail: moritzb@slac.stanford.ed [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Department of Physics and Astrophysics, University of North Dakota, Grand Forks, ND 58202 (United States); Johnston, S. [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Devereaux, T.P. [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States)

    2010-07-15

    Recently, angle-resolved photoemission spectroscopy has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). The anomaly is present for both hole- and electron-doped cuprates as well as the half-filled parent insulators with different energy scales arising on either side of the phase diagram. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. creating a 'waterfall'-like appearance, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram. We find that the anomaly demarcates a transition, or cross-over, from a quasiparticle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character.

  19. An analysis of Australia's large scale renewable energy target: Restoring market confidence

    International Nuclear Information System (INIS)

    Nelson, Tim; Nelson, James; Ariyaratnam, Jude; Camroux, Simon

    2013-01-01

    In 2001, Australia introduced legislation requiring investment in new renewable electricity generating capacity. The legislation was significantly expanded in 2009 to give effect to a 20% Renewable Energy Target (RET). Importantly, the policy was introduced with bipartisan support and is consistent with global policy trends. In this article, we examine the history of the policy and establish that the ‘stop/start’ nature of renewable policy development has resulted in investors withholding new capital until greater certainty is provided. We utilise the methodology from Simshauser and Nelson (2012) to examine whether capital market efficiency losses would occur under certain policy scenarios. The results show that electricity costs would increase by between $51 million and $119 million if the large-scale RET is abandoned even after accounting for avoided renewable costs. Our conclusions are clear: we find that policymakers should be guided by a high level public policy principle in relation to large-scale renewable energy policy: constant review is not reform. -- Highlights: •We examine the history of Australian renewable energy policy. •We examine whether capital market efficiency losses occur under certain policy scenarios. •We find electricity prices increase by up to $119 million due to renewable policy uncertainty. •We conclude that constant review of policy is not reform and should be avoided

  20. Multiple Jets at the LHC with High Energy Jets

    DEFF Research Database (Denmark)

    Andersen, Jeppe Rosenkrantz; Smillie, Jennifer M.

    2011-01-01

    We present a flexible Monte Carlo implementation of the perturbative framework of High Energy Jets, describing multi-jet events at hadron colliders. The description includes a resummation which ensures leading logarithmic accuracy for large invariant mass between jets, and is matched to tree......-level accuracy for multiplicities up to 4 jets. The resummation includes all-order hard corrections, which become important for increasing centre-of-mass energy of the hadronic collision. We discuss observables relevant for confronting the perturbative framework with 7 TeV data from the LHC, and the impact...

  1. CGC/saturation approach for soft interactions at high energy: long range rapidity correlations

    International Nuclear Information System (INIS)

    Gotsman, E.; Maor, U.; Levin, E.

    2015-01-01

    In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y 1 , y 2 ) ≥ 1, which is independent of y 1 and y 2 . Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)

  2. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  3. Large Eddy Simulation of Turbulent Flows in Wind Energy

    DEFF Research Database (Denmark)

    Chivaee, Hamid Sarlak

    This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite......, should the mesh resolution, numerical discretization scheme, time averaging period, and domain size be chosen wisely. A thorough investigation of the wind turbine wake interactions is also conducted and the simulations are validated against available experimental data from external sources. The effect...... Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number...

  4. Significance of high energy spin effects in constituent pictures

    International Nuclear Information System (INIS)

    Chen, C.K.

    1977-01-01

    The spin information about high energy hadronic reactions is important for further understanding of the nature and the behavior of hadronic constituents. The usefulness of the information is discussed in the cases of dilepton production from hadronic collisions, large P/sub T/ inclusive and elastic scatterings, and small angle elastic scattering and quantum number exchanged reactions

  5. Fermi observations of high-energy gamma-ray emission from GRB 080916C.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, G; Baring, M G; Bastieri, D; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, E D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, T H; Burrows, D; Busetto, G; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, A; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; Deklotz, M; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, J; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hernando Morat, J A; Hoover, A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S-H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Meegan, C; Mészáros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, V; Pinchera, M; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Reyes, L C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Segal, K N; Sgrò, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, J-L; Stecker, F W; Steinle, H; Stephens, T E; Strickman, M S; Suson, D J; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-03-27

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  6. Fermi Observations of high-energy gamma-ray emissions from GRB 080916C

    CERN Document Server

    Abdo, A A; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, Guido; Baring, Matthew G; Bastieri, Denis; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, Elliott D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, Thompson H; Burrows, David N; Busetto, Giovanni; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, Annalisa; Charles, E; Chekhtman, A; Cheung, C.C.Teddy; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, Johann; Cominsky, Lynn R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; DeKlotz, M; Dermer, C D; De Angelis, Alessandro; de Palma, F; Digel, S W; Dingus, B L; do Couto e Silva, Eduardo; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, Justin D; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, Thomas Lynn; Godfrey, Gary L; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M H; Grove, J.Eric; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, Alice K; Hayashida, M; Hays, Elizabeth A; Hernando Morata, J A; Hoover, A; Hughes, R E; Johannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, Tsuneyoshi; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knodlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, Frederick Gabriel Ivar; Kuss, Michael; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, Pasquale; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, Sheila; McEnery, J E; McGlynn, S; Meegan, C; Miszaros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, Igor Vladimirovich; Murgia, Simona; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, Takashi; Okumura, Akira; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, Vahe; Pinchera, M; Piron, F; Porter, Troy A; Preece, R; Rainr, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, Soebur; Rea, N; Reimer, A; Reimer, O; Reposeur, Thierry; Reyes, Luis C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Parkinson, P.M.Saz; Scargle, J D; Schalk, T L; Segal, K N; Sgro, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, Jean-Luc; Stecker, Floyd William; Steinle, H; Stephens, T E; Strickman, M S; Suson, Daniel J; Tagliaferri, G.; Tajima, Hiroyasu; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, Diego F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-01-01

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  7. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael

    2013-08-15

    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  8. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    International Nuclear Information System (INIS)

    Schulz, Michael

    2013-08-01

    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  9. Testing Special Relativity at High Energies with Astrophysical Sources

    Science.gov (United States)

    Stecker, F. W.

    2007-01-01

    Since the group of Lorentz boosts is unbounded, there is a question as to whether Lorentz invariance (LI) holds to infinitely short distances. However, special and general relativity may break down at the Planck scale. Various quantum gravity scenarios such as loop quantum gravity, as well as some forms of string theory and extra dimension models may imply Lorentz violation (LV) at ultrahigh energies. The Gamma-Ray Large Area Space Telescope (GLAST), to be launched in mid-December, will measure the spectra of distant extragalactic sources of high energy gamma-rays, particularly active galactic nuclei and gamma-ray bursts. GLAST can look for energy-dependent gamma-ray propagation effects from such sources as a signal of Lorentz invariance violation. These sources may also exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions with low energy photons having a flux level as determined by various astronomical observations. With LV the threshold for such interactions can be significantly raised, changing the predicted absorption turnover in the observed spectrum of the sources. Stecker and Glashow have shown that the existence such absorption features in the spectra of extragalactic sources puts constraints on LV. Such constraints have important implications for some quantum gravity and large extra dimension models. Future spaceborne detectors dedicated to measuring gamma-ray polarization can look for birefringence effects as a possible signal of loop quantum gravity. A very small LV may also result in the modification or elimination of the GZK effect, thus modifying the spectrum of ultrahigh energy cosmic rays. This possibility can be explored with ground-based arrays such as Auger or with a space based detector system such as the proposed OWL satellite mission.

  10. High energy laser optics manufacturing: a preliminary study

    International Nuclear Information System (INIS)

    Baird, E.D.

    1980-07-01

    This report presents concepts and methods, major conclusions, and major recommendations concerning the fabrication of high energy laser optics (HELO) that are to be machined by the Large Optics Diamond Turning Machine (LODTM) at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of concepts and methods proposed for metrological operations, polishing of reflective surfaces, mounting of optical components, construction of mirror substrates, and applications of coatings are included

  11. Scintillating liquid xenon calorimeter for precise electron/photon/jet physics at high energy high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Chen, M.; Luckey, D.; Pelly, D.; Shotkin, S.; Sumorok, K.; Wadsworth, B.; Yan, X.J.; You, C.; Zhang, X.; Chen, E.G.; Gaudreau, M.P.J.; Montgomery, D.B.; Sullivan, J.D.; Bolozdynya, A.; Chernyshev, V.; Goritchev, P.; Khovansky, V.; Kouchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.A.; Epstein, V.; Zeldovich, S.; Krasnokutsky, R.; Shuvalov, R.; Aprile, E.; Mukherjee, R.; Suzuki, M.; Moulsen, M.; Sugimoto, S.; Okada, K.; Fujino, T.; Matsuda, T.; Miyajima, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Nagasawa, Y.; Ichinose, H.; Ishida, N.; Nakasugi, T.; Ito, T.; Masuda, K.; Shibamura, E.; Wallraff, W.; Vivargent, M.; Mutterer, M.; Chen, H.S.; Tang, H.W.; Tung, K.L.; Ding, H.L.; Takahashi, T.

    1990-01-01

    The authors use αs well as e, π, p, d and heavy ion beams to test prototype scintillating liquid xenon detectors, with large UV photodiodes and fast amplifiers submersed directly in liquid xenon. The data show very large photoelectron yields (10 7 /GeV) and high energy resolution (σ(E)/E 1.6 GeV). The α spectra are stable over long term and can be used to calibrate the detectors. Full size liquid xenon detectors have been constructed, to study cosmic μ's and heavy ions. The authors report the progress on the design and construction of the 5 x 5 and 11 x 11 cell liquid xenon detectors which will be tested in high energy beams to determine the e/π ratio. The authors describe the design and the unique properties of the proposed scintillating LXe calorimeter for the SSC

  12. Development and applications of high energy industrial computed tomography in China

    International Nuclear Information System (INIS)

    Xiao, YongShun; Chen, Zhiqiang

    2016-01-01

    In recent years, China's rapid development of high-end equipment manufacturing industry in the high-speed railway, aircraft, carrier rocket, etc. brings the growing requirements of the high quality assurance of the product. The accelerator based high-energy X-ray Industrial CT has the advantages of strong penetrating power, high sensitivity defect detection and quantitative measurement with image visualization, can meet the needs of the large complicated structure inspection demands. This paper introduces the current research and development status of high energy industrial CT system in China. Research achievements by the Tsinghua University and the Granpect company are discussed, including the ICT system design, high-power LINAC accelerator X-ray source and high detection efficiency detector development, fast and accurate reconstruction algorithms research, etc. This paper also introduces the particularized NDT applications from dozens of industrial CT systems made by Granpect in China, including welding structure nondestructive testing, assembly quality inspection, reverse engineering, scientific research and other applications. Then the future development and application of high energy industrial CT is prospected.

  13. Angular correlations and high energy evolution

    International Nuclear Information System (INIS)

    Kovner, Alex; Lublinsky, Michael

    2011-01-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N c approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  14. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  15. Study on the performance of large area MRPC with high position resolution

    Energy Technology Data Exchange (ETDEWEB)

    Yue Qian, E-mail: yueq@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education (China); Wu Yucheng; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education (China)

    2012-01-01

    Multi-gap resistive plate chamber (MRPC), which is mostly developed in high energy physics domain with excellent time resolution, is also highlighted in imaging applications. A set of 50 cm Multiplication-Sign 50 cm large area MRPC with high position resolution was successfully developed by our group and different experiments have been done to test its performances. Cosmic ray muons were used to do the test and proper high voltage and working gas were chosen. Data analysis indicates its good detection efficiency and good position resolution, which encourages further study of its application in RPC-PET and muon tomography.

  16. CONSTRAINTS ON VERY HIGH ENERGY EMISSION FROM GRB 130427A

    International Nuclear Information System (INIS)

    Aliu, E.; Errando, M.; Aune, T.; Barnacka, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Berger, K.; Biteau, J.; Byrum, K.; Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D.; Chen, X.; Ciupik, L.; Connaughton, V.; Cui, W.; Falcone, A.

    2014-01-01

    Prompt emission from the very fluent and nearby (z = 0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-Ray Space Telescope for ∼70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ∼71 ks (∼20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB 130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst

  17. A Search for High-Energy Counterparts to Fast Radio Bursts

    Science.gov (United States)

    Cunningham, Virginia A.; Cenko, Bradley

    2018-01-01

    We report on a search for high-energy counterparts to Fast Radio Bursts (FRBs) with the Fermi Gamma-ray Burst Monitor (GBM), Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT). We find no significant associations for any of the 14 FRBs in our sample, but report upper limits to the high-energy fluence for each on timescales of ∼0.1, 1, 10, and 100 s. We report lower limits on the radio to high-energy fluence, fr / fγ, for timescales of ∼0.1 and 100 s. The non-detection of high-energy emission is expected if FRBs are analogous to the giant pulses seen from the Crab pulsar, but the observed radio fluences of FRBs are orders of magnitude larger than even the most extreme giant pulses would be at the implied cosmological distances. It has also been proposed that events similar to magnetar hyperflares produce FRBs; this might be a viable model, but our fr / fγ lower limits are in tension with the fr / fγ upper limit for the 2004 superburst of SGR 1806‑20, for 6 out of the 12 FRBs that we study. This demonstrates the utility of analyses of high-energy data for FRBs in tracking down the nature of these elusive sources.

  18. Composite rotor blades for large wind energy installations

    Science.gov (United States)

    Kussmann, A.; Molly, J.; Muser, D.

    1980-01-01

    The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.

  19. Composite rotor blades for large wind energy installations

    Energy Technology Data Exchange (ETDEWEB)

    Kussmann, A; Molly, J P; Muser, D

    1979-06-01

    The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.

  20. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  1. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  2. Local Energies and Energy Fluctuations — Applied to the High Entropy Alloy CrFeCoNi

    Science.gov (United States)

    Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi; Sato, Kazunori; Ogura, Masako; Zeller, Rudolf; Dederichs, Peter H.

    2017-11-01

    High entropy alloys show a variety of fascinating properties like high hardness, wear resistance, corrosion resistance, etc. They are random solid solutions of many components with rather high concentrations. We perform ab-initio calculations for the high entropy alloy CrFeCoNi, which equal concentration of 25% for each element. By the KKRnano program package, which is based on an order-N screened Korringa-Kohn-Rostoker Green's function method, we consider a face-centered cubic (FCC) supercell with 1372 randomly distributed elements, and in addition also smaller supercells with 500 and 256 atoms. It is found from our calculations that the local moments of the Cr atoms show a large environmental variation, ranging from -1.70 μB to +1.01 μB with an average of about -0.51 μB. We present a new method to calculate "local energies" of all atoms. This is based on the partitioning of the whole space into Voronoi cells and allows to calculate the energetic contribution of each atomic cell to the total energy of the supercell. The supercell calculations show very large variations of the local energies, analogous to the variations of the local moments. This shows that the random solid solution is not stable and has a tendency to form an L12-structure with the Cr-atoms ordered at the corner of the cube and the elements Fe, Co, and Ni randomly distributed on the three other FCC sublattices. For this structure the variation of the local moments are much smaller.

  3. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Rutherfoord, John P. [University of Arizona; Johns, Kenneth A. [University of Arizona; Shupe, Michael A. [University of Arizona; Cheu, Elliott C. [University of Arizona; Varnes, Erich W. [University of Arizona; Dienes, Keith [University of Arizona; Su, Shufang [University of Arizona; Toussaint, William Doug [University of Arizona; Sarcevic, Ina [University of Arizona

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  4. High energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  5. High Energy Colliders and Hidden Sectors

    Science.gov (United States)

    Dror, Asaf Jeff

    This thesis explores two dominant frontiers of theoretical physics, high energy colliders and hidden sectors. The Large Hadron Collider (LHC) is just starting to reach its maximum operational capabilities. However, already with the current data, large classes of models are being put under significant pressure. It is crucial to understand whether the (thus far) null results are a consequence of a lack of solution to the hierarchy problem around the weak scale or requires expanding the search strategy employed at the LHC. It is the duty of the current generation of physicists to design new searches to ensure that no stone is left unturned. To this end, we study the sensitivity of the LHC to the couplings in the Standard Model top sector. We find it can significantly improve the measurements on ZtRtR coupling by a novel search strategy, making use of an implied unitarity violation in such models. Analogously, we show that other couplings in the top sector can also be measured with the same technique. Furthermore, we critically analyze a set of anomalies in the LHC data and how they may appear from consistent UV completions. We also propose a technique to measure lifetimes of new colored particles with non-trivial spin. While the high energy frontier will continue to take data, it is likely the only collider of its kind for the next couple decades. On the other hand, low-energy experiments have a promising future with many new proposed experiments to probe the existence of particles well below the weak scale but with small couplings to the Standard Model. In this work we survey the different possibilities, focusingon the constraints as well as possible new hidden sector dynamics. In particular, we show that vector portals which couple to an anomalous current, e.g., baryon number, are significantly constrained from flavor changing meson decays and rare Z decays. Furthermore, we present a new mechanism for dark matter freezeout which depletes the dark sector through an

  6. All 2D materials as electrodes for high power hybrid energy storage applications

    Science.gov (United States)

    Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.

    2018-04-01

    Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.

  7. Grid Computing in High Energy Physics

    International Nuclear Information System (INIS)

    Avery, Paul

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them.Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software resources, regardless of location); (4) collaboration (providing tools that allow members full and fair access to all collaboration resources and enable distributed teams to work effectively, irrespective of location); and (5) education, training and outreach (providing resources and mechanisms for training students and for communicating important information to the public).It is believed that computing infrastructures based on Data Grids and optical networks can meet these challenges and can offer data intensive enterprises in high energy physics and elsewhere a comprehensive, scalable framework for collaboration and resource sharing. A number of Data Grid projects have been underway since 1999. Interestingly, the most exciting and far ranging of these projects are led by collaborations of high energy physicists, computer scientists and scientists from other disciplines in support of experiments with massive, near-term data needs. I review progress in this

  8. High energy synchrotron radiation. A new probe for condensed matter research

    International Nuclear Information System (INIS)

    Schneider, J.R.; Bouchard, R.; Brueckel, T.; Lippert, M.; Neumann, H.B.; Poulsen, H.F.; Ruett, U.; Schmidt, T.; Zimmermann, M. von

    1994-01-01

    The absorption of 150 keV synchrotron radiation in matter is weak and, as normally done with neutrons, bulk properties are studied in large samples. However, the k-space resolution obtained with a Triple Crystal Diffractometer (TCD) for high energy synchrotron radiation is about one order of magnitude better than in high resolution neutron diffraction. The technique has been applied to measure the structure factor S(Q) of amorphous solids up to momentum transfers of the order of 32 A -1 , to study the intermediate range Ortho-II ordering in large, high quality YBa 2 Cu 3 O 6.5 single crystals and for investigations of the defect scattering from annealed Czochralski grown silicon crystals. Magnetic superlattice reflections have been measured in MnF 2 demonstrating the potential of the technique for high resolution studies of ground state bulk antiferromagnetism. Recently the question of two length scales in the critical scattering at the 100 K phase transition in SrTiO 3 was studied. At the PETRA storage ring, which serves as an accumulator for the HERA electron-proton-ring at DESY and which can be operated up to electron energies of 12 GeV, an undulator beam line is currently under construction and should be available in summer 1995. It opens up exciting new research opportunities for photon energies from about 20 to 150 keV. (orig.)

  9. CGC/saturation approach for soft interactions at high energy: long range rapidity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria and Centro Cientifico- Tecnologico de Valparaiso, Departemento de Fisica, Valparaiso (Chile)

    2015-11-15

    In this paper we continue our program to construct a model for high energy soft interactions that is based on the CGC/saturation approach. The main result of this paper is that we have discovered a mechanism that leads to large long range rapidity correlations and results in large values of the correlation function R(y{sub 1}, y{sub 2}) ≥ 1, which is independent of y{sub 1} and y{sub 2}. Such a behavior of the correlation function provides strong support for the idea that at high energies the system of partons that is produced is not only dense but also has strong attractive forces acting between the partons. (orig.)

  10. Principal considerations in large energy-storage capacitor banks

    International Nuclear Information System (INIS)

    Kemp, E.L.

    1976-01-01

    Capacitor banks storing one or more megajoules and costing more than one million dollars have unique problems not often found in smaller systems. Two large banks, Scyllac at Los Alamos and Shiva at Livermore, are used as models of large, complex systems. Scyllac is a 10-MJ, 60-kV theta-pinch system while Shiva is a 20-MJ, 20-kV energy system for laser flash lamps. A number of design principles are emphasized for expediting the design and construction of large banks. The sensitive features of the charge system, the storage system layout, the switching system, the transmission system, and the design of the principal bank components are presented. Project management and planning must involve a PERT chart with certain common features for all the activities. The importance of the budget is emphasized

  11. Non-equilibrium QCD of high-energy multi-gluon dynamics

    International Nuclear Information System (INIS)

    Geiger, K.

    1996-01-01

    A non-equilibrium QCD description of multiparticle dynamics in space-time is of both fundamental and phenomenological interest. Here the authors discusses an attempt to derive from first principles, a real-time formalism to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The ultimate goal (from which one is still far away) is to have a practically applicable description of the space-time evolution of a general initial system of gluons and quarks, characterized by some large energy or momentum scale, that expands, diffuses and dissipates according to the self- and mutual-interactions, and eventually converts dynamically into final state hadrons. For example, the evolution of parton showers in the mechanism of parton-hadron conversion in high-energy hadronic collisions, or, the description of formation, evolution and freezeout of a quark-gluon plasma, in ultra-relativistic heavy-ion collisions

  12. High-energy electron irradiation of NdFeB permanent magnets: Dependence of radiation damage on the electron energy

    Energy Technology Data Exchange (ETDEWEB)

    Bizen, Teruhiko [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)]. E-mail: bizen@spring8.or.jp; Asano, Yoshihiro [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Marechal, Xavier-Marie [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Seike, Takamitsu [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Aoki, Tsuyoshi [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Fukami, Kenji [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hosoda, Naoyasu [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yonehara, Hiroto [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takagi, Tetsuya [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hara, Toru [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Tanaka, Takashi [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kitamura, Hideo [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2007-05-11

    High-energy electron-beam bombardment of Nd{sub 2}Fe{sub 14}B-type permanent magnets induces radiation damage characterized by a drop in the magnetic field. Experiments carried out at the SPring-8 booster synchrotron, with 4, 6, and 8 GeV electrons, show that the drop in magnetic field is energy dependent. Electromagnetic shower simulations suggest that most of the radiation damage happens in a small region around the irradiation axis, and that the contribution of neutrons with large scattering angles or with low energies to the magnetic field change is small.

  13. High-energy electron irradiation of NdFeB permanent magnets: Dependence of radiation damage on the electron energy

    International Nuclear Information System (INIS)

    Bizen, Teruhiko; Asano, Yoshihiro; Marechal, Xavier-Marie; Seike, Takamitsu; Aoki, Tsuyoshi; Fukami, Kenji; Hosoda, Naoyasu; Yonehara, Hiroto; Takagi, Tetsuya; Hara, Toru; Tanaka, Takashi; Kitamura, Hideo

    2007-01-01

    High-energy electron-beam bombardment of Nd 2 Fe 14 B-type permanent magnets induces radiation damage characterized by a drop in the magnetic field. Experiments carried out at the SPring-8 booster synchrotron, with 4, 6, and 8 GeV electrons, show that the drop in magnetic field is energy dependent. Electromagnetic shower simulations suggest that most of the radiation damage happens in a small region around the irradiation axis, and that the contribution of neutrons with large scattering angles or with low energies to the magnetic field change is small

  14. Energy dependence of ulrathin LiF-dosemeters for high energy electrons and high energy X-radiation

    International Nuclear Information System (INIS)

    Kupfer, T.

    1977-02-01

    The energy dependence of ultrathin LiF-dosemeters for high energy electrons (5-40 MeV) and high energy X-radiation (6 MV, 42 MV) is experimentally determined. The experimental values are compared to values calculted earlier by other authors. The influence of the thickness of the dosemeters have been considered by comparison of experimental values for 0.03 mm thick dosemeters and theoretical values for 0.13 mm and 0.38 mm thick ones. Also different commersially available dosemeters have been compared by experiments. It is difficult to draw any other conclutions about the energy dependence than that the variation of the relative responce is within +- 3 percent (2S). However the results seems to be sulficient for clinical applications

  15. Particle accelerator physics and technology for high energy density physics research

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Ni, P.; Roth, M.; Udrea, S.; Varentsov, D. [Darmstadt Univ., Institut fur Kernphysik, Technische Schlobgartenstr. 9 (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Kain, V.; Schmidt, R.; Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Zioutas, K. [Patras Univ., Dept. of Physics (Greece); Mintsev, V.; Fortov, V.E. [Russian Academy of Sciences, Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2007-08-15

    Interaction phenomena of intense ion- and laser radiation with matter have a large range of application in different fields of science, extending from basic research of plasma properties to applications in energy science, especially in inertial fusion. The heavy ion synchrotron at GSI now routinely delivers intense uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Our simulations show that the new accelerator complex FAIR (Facility for Antiproton and Ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. A natural example of hot dense plasma is provided by our neighbouring star the sun, and allows a deep insight into the physics of fusion, the properties of matter at high energy density, and is moreover an excellent laboratory for astro-particle physics. As such the sun's interior plasma can even be used to probe the existence of novel particles and dark matter candidates. We present an overview on recent results and developments of dense plasma physics addressed with heavy ion and laser beams combined with accelerator- and nuclear physics technology. (authors)

  16. Proactive control for solar energy exploitation: A german high-inertia building case study

    International Nuclear Information System (INIS)

    Michailidis, Iakovos T.; Baldi, Simone; Pichler, Martin F.; Kosmatopoulos, Elias B.; Santiago, Juan R.

    2015-01-01

    Highlights: • Solar gains exploitation by utilizing large glass facades and concrete core thermal energy storing capacity. • Efficient Building Energy Management in a well-insulated modern building construction. • Energy consumption reduction by maintaining user comfort. • High inertia large scale office building test case, located in Germany. - Abstract: Energy efficient passive designs and constructions have been extensively studied in the last decades as a way to improve the ability of a building to store thermal energy, increase its thermal mass, increase passive insulation and reduce heat losses. However, many studies show that passive thermal designs alone are not enough to fully exploit the potential for energy efficiency in buildings: in fact, harmonizing the active elements for indoor thermal comfort with the passive design of the building can lead to further improvements in both energy efficiency and comfort. These improvements can be achieved via the design of appropriate Building Optimization and Control (BOC) systems, a task which is more complex in high-inertia buildings than in conventional ones. This is because high thermal mass implies a high memory, so that wrong control decisions will have negative repercussions over long time horizons. The design of proactive control strategies with the capability of acting in advance of a future situation, rather than just reacting to current conditions, is of crucial importance for a full exploitation of the capabilities of a high-inertia building. This paper applies a simulation-assisted control methodology to a high-inertia building in Kassel, Germany. A simulation model of the building is used to proactively optimize, using both current and future information about the external weather condition and the building state, a combined criterion composed of the energy consumption and the thermal comfort index. Both extensive simulation as well as real-life experiments performed during the unstable German

  17. High-energy neutrinos from FR0 radio galaxies?

    Science.gov (United States)

    Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G.

    2018-04-01

    The sources responsible for the emission of high-energy (≳100 TeV) neutrinos detected by IceCube are still unknown. Among the possible candidates, active galactic nuclei with relativistic jets are often examined, since the outflowing plasma seems to offer the ideal environment to accelerate the required parent high-energy cosmic rays. The non-detection of single-point sources or - almost equivalently - the absence, in the IceCube events, of multiplets originating from the same sky position - constrains the cosmic density and the neutrino output of these sources, pointing to a numerous population of faint sources. Here we explore the possibility that FR0 radio galaxies, the population of compact sources recently identified in large radio and optical surveys and representing the bulk of radio-loud AGN population, can represent suitable candidates for neutrino emission. Modelling the spectral energy distribution of an FR0 radio galaxy recently associated with a γ-ray source detected by the Large Area Telescope onboard Fermi, we derive the physical parameters of its jet, in particular the power carried by it. We consider the possible mechanisms of neutrino production, concluding that pγ reactions in the jet between protons and ambient radiation is too inefficient to sustain the required output. We propose an alternative scenario, in which protons, accelerated in the jet, escape from it and diffuse in the host galaxy, producing neutrinos as a result of pp scattering with the interstellar gas, in strict analogy with the processes taking place in star-forming galaxies.

  18. Cleanroom energy benchmarking in high-tech and biotech industries

    International Nuclear Information System (INIS)

    Tschudi, William; Benschine, Kathleen; Fok, Stephen; Rumsey, Peter

    2001-01-01

    Cleanrooms, critical to a wide range of industries, universities, and government facilities, are extremely energy intensive. Consequently, energy represents a significant operating cost for these facilities. Improving energy efficiency in cleanrooms will yield dramatic productivity improvement. But more importantly to the industries which rely on cleanrooms, base load reduction will also improve reliability. The number of cleanrooms in the US is growing and the cleanroom environmental systems' energy use is increasing due to increases in total square footage and trends toward more energy intensive, higher cleanliness applications. In California, many industries important to the State's economy utilize cleanrooms. In California these industries utilize over 150 cleanrooms with a total of 4.2 million sq. ft. (McIlvaine). Energy intensive high tech buildings offer an attractive incentive for large base load energy reduction. Opportunities for energy efficiency improvement exist in virtually all operating cleanrooms as well as in new designs. To understand the opportunities and their potential impact, Pacific Gas and Electric Company sponsored a project to benchmark energy use in cleanrooms in the electronics (high-tech) and biotechnology industries. Both of these industries are heavily dependent intensive cleanroom environments for research and manufacturing. In California these two industries account for approximately 3.6 million sq. ft. of cleanroom (McIlvaine, 1996) and 4349 GWh/yr. (Sartor et al. 1999). Little comparative energy information on cleanroom environmental systems was previously available. Benchmarking energy use allows direct comparisons leading to identification of best practices, efficiency innovations, and highlighting previously masked design or operational problems

  19. High Energy Physics at the University of Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Tony M. [University of Illinois; Thaler, Jon J. [University of Illinois

    2013-07-26

    This is the final report for DOE award DE-FG02-91ER40677 (“High Energy Physics at the University of Illinois”), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

  20. Experimental High Energy Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  1. Large-amplitude superexchange of high-spin fermions in optical lattices

    International Nuclear Information System (INIS)

    Jürgensen, Ole; Heinze, Jannes; Lühmann, Dirk-Sören

    2013-01-01

    We show that fermionic high-spin systems with spin-changing collisions allow one to monitor superexchange processes in optical superlattices with large amplitudes and strong spin fluctuations. By investigating the non-equilibrium dynamics, we find a superexchange dominated regime at weak interactions. The underlying mechanism is driven by an emerging tunneling-energy gap in shallow few-well potentials. As a consequence, the interaction-energy gap that is expected to occur only for strong interactions in deep lattices is re-established. By tuning the optical lattice depth, a crossover between two regimes with negligible particle number fluctuations is found: firstly, the common regime with vanishing spin-fluctuations in deep lattices and, secondly, a novel regime with strong spin fluctuations in shallow lattices. We discuss the possible experimental realization with ultracold 40 K atoms and observable quantities in double wells and two-dimensional plaquettes. (paper)

  2. No speed limits in medical imaging and high-energy physics

    CERN Multimedia

    Rita Giuffredi & Tom Meyer

    2015-01-01

    Speed, or high time resolution, is becoming increasingly important, if not crucial, in the high-energy physics domain, both for particle acceleration and detection systems. Medical-imaging technology also vitally depends on high time resolution detection techniques, often the offspring of today’s large particle physics experiments. The four-year FP7 Marie Curie Training Project “PicoSEC-MCNet”, which draws to a close at the end of November, was designed to develop ultra-fast photon detectors for applications in both domains. The project has achieved important results that promise to trigger further developments in the years to come.   The PicoSEC-MCNet project participants. “New requirements in high-energy physics force us to push the limits of photon detection speed, as future high-luminosity accelerators will force us to cope with the unprecedentedly short bunch crossing intervals needed to produce sufficient luminosity,” explains Tom M...

  3. US-USSR collaboration in high energy physics

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1989-01-01

    High-energy physics is the study of the basic structure of matter and the forces involved between the constituents. It is pure fundamental research with no immediate military or commercial significance; results are published in the open scientific literature. Because of this, it is an ideal field for international collaboration. At Fermilab, for example, there are typically about 1300 physicists and graduate students on our approved experiments at any time, of which some 400 are from institutions outside the US, from about 20 countries. High-energy physics experiments are carried out at accelerators, large central facilities at government funded national laboratories. There are a limited number of such facilities, due to their large cost-- Fermilab cost about one quarter of a billion dollars twenty years ago. The research is carried out largely by professors and their students from universities. The size of research groups varies from one or two people to about 300 scientists, together with engineers and technicians, on a $100 million detector, with the experiment lasting a total of about ten years. A research group is composed of up to 30 university subgroups, each responsible for a piece of the detector or software, with all subgroups sharing in the physics results. The subgroups get together to carry out an experiment because of a common interest in the physics goals; this leads to collaborations with physicists from many countries. The experiment is carried out at the accelerator that best suits the experiment, in whichever country it is located. Some years ago the directors of the major laboratories issued a statement that the criteria for acceptance of a research proposal are the scientific merit and technical competence of the proposal; note that there is no mention of the country of origin of experimenters

  4. High Performance Numerical Computing for High Energy Physics: A New Challenge for Big Data Science

    International Nuclear Information System (INIS)

    Pop, Florin

    2014-01-01

    Modern physics is based on both theoretical analysis and experimental validation. Complex scenarios like subatomic dimensions, high energy, and lower absolute temperature are frontiers for many theoretical models. Simulation with stable numerical methods represents an excellent instrument for high accuracy analysis, experimental validation, and visualization. High performance computing support offers possibility to make simulations at large scale, in parallel, but the volume of data generated by these experiments creates a new challenge for Big Data Science. This paper presents existing computational methods for high energy physics (HEP) analyzed from two perspectives: numerical methods and high performance computing. The computational methods presented are Monte Carlo methods and simulations of HEP processes, Markovian Monte Carlo, unfolding methods in particle physics, kernel estimation in HEP, and Random Matrix Theory used in analysis of particles spectrum. All of these methods produce data-intensive applications, which introduce new challenges and requirements for ICT systems architecture, programming paradigms, and storage capabilities.

  5. Value of spatial planning for large mining and energy complexes. [Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Matko, Z; Spasic, N

    1982-01-01

    In the example of the Kosovo complex (Socialist Federated Republic of Yugoslovia) an examination is made of the value of developing a spatial plan for the territory of large mining-energy complexes. The goals and expected results of spatial planning are discussed. The open method of working lignite, fuel shale and other fossil energy raw material fields at the modern level of development of technology, in addition to large-volume physical interferences in space, causes considerable structural changes of functional-economic, socioeconomic and psychological-sociological nature in the direct zone of influence of the mining-energy complex. Improvement in technology of working a lignite field does not guarantee in the near future any solutions in developing the mining-energy complexes, and therefore it is necessary to count on considerable volume of degradation of space which is governed by the existing technology. Under these conditions detailed planning and regulation of space is especially important, if one views them as a component part of long term policy for development of the mining energy complex and the zones of its influence.

  6. High-energy redox-flow batteries with hybrid metal foam electrodes.

    Science.gov (United States)

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  7. 6th CERN - Latin-American School of High-Energy Physics

    CERN Document Server

    Mulders, M; Spiropulu, M; CLASHEP 2011; CLASHEP2011

    2013-01-01

    The CERN–Latin-American School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on quantum field theory, quantum chromodynamics, flavour physics and CP-violation, physics beyond the Standard Model, neutrino physics, particle cosmology, ultrahigh-energy cosmic rays and heavy-ion physics, as well as a presentation of recent results from the Large Hadron Collider (LHC) and a short introduction to the principles of particle physics instrumentation.

  8. Large scale scenario analysis of future low carbon energy options

    International Nuclear Information System (INIS)

    Olaleye, Olaitan; Baker, Erin

    2015-01-01

    In this study, we use a multi-model framework to examine a set of possible future energy scenarios resulting from R&D investments in Solar, Nuclear, Carbon Capture and Storage (CCS), Bio-fuels, Bio-electricity, and Batteries for Electric Transportation. Based on a global scenario analysis, we examine the impact on the economy of advancement in energy technologies, considering both individual technologies and the interactions between pairs of technologies, with a focus on the role of uncertainty. Nuclear and CCS have the most impact on abatement costs, with CCS mostly important at high levels of abatement. We show that CCS and Bio-electricity are complements, while most of the other energy technology pairs are substitutes. We also examine for stochastic dominance between R&D portfolios: given the uncertainty in R&D outcomes, we examine which portfolios would be preferred by all decision-makers, regardless of their attitude toward risk. We observe that portfolios with CCS tend to stochastically dominate those without CCS; and portfolios lacking CCS and Nuclear tend to be stochastically dominated by others. We find that the dominance of CCS becomes even stronger as uncertainty in climate damages increases. Finally, we show that there is significant value in carefully choosing a portfolio, as relatively small portfolios can dominate large portfolios. - Highlights: • We examine future energy scenarios in the face of R&D and climate uncertainty. • We examine the impact of advancement in energy technologies and pairs of technologies. • CCS complements Bio-electricity while most technology pairs are substitutes. • R&D portfolios without CCS are stochastically dominated by portfolios with CCS. • Higher damage uncertainty favors R&D development of CCS and Bio-electricity

  9. High energy physics at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Samios, N.P.

    1982-01-01

    The high energy plans at BNL are centered around the AGS and ISABELLE, or a variant thereof. At present the AGS is maintaining a strong and varied program. This last year a total of 4 x 10 19 protons were delivered on target in a period of approximately 20 weeks. Physics interest is very strong, half of the submitted proposals are rejected (thereby maintaining high quality experiments) and the program is full over the next two years. The future colliding beam facility will utilize the AGS as an injector and will be a dedicated facility. It will have six intersection regions, run > 10 7 sec/year, and explore a new domain of energy and luminosity. Common to all the considered alternatives is a large aperture proton ring. These possible choices involve pp, ep, and heavy ion variants. The long term philosophy is to run the AGS as much as possible, continuously to upgrade it in performance and reliability, and then to phase it down as the new collider begins operation

  10. High energy physics and grid computing

    International Nuclear Information System (INIS)

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  11. A facility for the test of large area muon chambers at high rates

    CERN Document Server

    Agosteo, S; Belli, G; Bonifas, A; Carabelli, V; Gatignon, L; Hessey, N P; Maggi, M; Peigneux, J P; Reithler, H; Silari, Marco; Vitulo, P; Wegner, M

    2000-01-01

    Operation of large area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz/\\scm. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate.

  12. A facility for the test of large-area muon chambers at high rates

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S.; Altieri, S.; Belli, G.; Bonifas, A.; Carabelli, V.; Gatignon, L.; Hessey, N.; Maggi, M.; Peigneux, J.-P.; Reithler, H. E-mail: hans.reithler@cern.ch; Silari, M.; Vitulo, P.; Wegner, M

    2000-09-21

    Operation of large-area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz cm{sup -2}. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high-energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate. (authors)

  13. The first interdisciplinary experiments at the IMP high energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Du, Guanghua; Guo, Jinlong; Wu, Ruqun; Guo, Na; Liu, Wenjing; Ye, Fei; Sheng, Lina; Li, Qiang [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou (China); Li, Huiyun [Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen (China)

    2015-04-01

    The high energy beam of tens to hundred MeV/u ions possesses mm-to-cm penetration depth in materials and can be easily extracted into air without significant energy loss and beam scattering. Combination of high energy ions and microbeam technology facilitates the microprobe application to many practical studies in large scale samples. The IMP heavy ion microbeam facility has recently been integrated with microscopic positioning and targeting irradiation system. This paper introduced the first interdisciplinary experiments performed at the IMP microbeam facility using the beam of 80.5 MeV/u carbon ions. Bystander effect induction via medium transferring was not found in the micro-irradiation study using HeLa cells. The mouse irradiation experiment demonstrated that carbon irradiation of 10 Gy dose to its tuberomammillary nucleus did not impair the sleep nerve system. The fault injection attack on RSA (Rivest–Shamir–Adleman) decryption proved that the commercial field-programmable gate array chip is vulnerable in single event effect to low linear-energy-transfer carbon irradiation, and the attack can cause the leakage of RSA private key. This work demonstrates the potential of high energy microbeam in its application to biology, biomedical, radiation hardness, and information security studies.

  14. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  15. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The recent results on direct photons and dileptons in high-energy heavy-ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the ...

  16. The quality of high-energy X-ray beams

    International Nuclear Information System (INIS)

    LaRiviere, P.D.

    1989-01-01

    Supplement 17 of the British Journal of Radiology is a survey of central-axis depth doses for radiotherapy machines, patterned largely on BJR Supplement 11 (1972). Inspection of high-energy X-ray depth doses for a 10 x 10 cm field at an SSD of 100 cm disclosed large differences between the two sets of data, especially for qualities above 8 MV, e.g. a depth dose of 80% at 10 cm is rated at about 19 MV according to BJR Supplement 11, and 23 MV according to BJR Supplement 17. It was found that Supplement 17 depth-dose data above 8 MV were erratic, but Supplement 11 data could be represented by an analytical expression, providing a unique means of assigning MV quality. It was also found that dose-weighted average energy of the filtered beam plotted smoothly against depth dose. For dosimetric purposes, it is suggested that this parameter be used as a true measure of beam quality, removing discrepancies introduced by the use of nominal MV for this purpose. (author)

  17. Enhanced Energy Density in Permanent Magnets using Controlled High Magnetic Field during Processing

    Energy Technology Data Exchange (ETDEWEB)

    Carter, William G [ORNL; Rios, Orlando [ORNL; Constantinides, Steven [ORNL

    2016-05-05

    This ORNL Manufacturing Demonstraction Facility (MDF) technical collaboration focused on the use of high magnetic field processing (>2Tesla) using energy efficient large bore superconducting magnet technology and high frequency electromagnetics to improve magnet performance and reduce the energy budget associated with Alnico thermal processing. Alnico, alloys containing Al, Ni, Co and Fe, represent a class of functional nanostructured alloys, and show the greatest potential for supplementing or replacing commercial Nd-based rare-earth alloy magnets.

  18. Grid computing in high energy physics

    CERN Document Server

    Avery, P

    2004-01-01

    Over the next two decades, major high energy physics (HEP) experiments, particularly at the Large Hadron Collider, will face unprecedented challenges to achieving their scientific potential. These challenges arise primarily from the rapidly increasing size and complexity of HEP datasets that will be collected and the enormous computational, storage and networking resources that will be deployed by global collaborations in order to process, distribute and analyze them. Coupling such vast information technology resources to globally distributed collaborations of several thousand physicists requires extremely capable computing infrastructures supporting several key areas: (1) computing (providing sufficient computational and storage resources for all processing, simulation and analysis tasks undertaken by the collaborations); (2) networking (deploying high speed networks to transport data quickly between institutions around the world); (3) software (supporting simple and transparent access to data and software r...

  19. QCD in high-energy proton-proton and proton-antiproton collisions

    International Nuclear Information System (INIS)

    Baier, R.

    1985-01-01

    The experimental and theoretical investigation of nucleon-nucleon collisions at high energies allows to explore the structure of the nucleon by large momentum transfer (deep-inelastic) processes. In these lectures the structure of the nucleon from momentum scales Q > 1 GeV/c ( -16 cm) is discussed. In the first lecture the basic concepts of the parton model and of perturbative quantum chromodynamics (QCD) are introduced, and applied to deep inelastic lepton-nucleon scattering. The following lectures cover large transverse momentum, psub(T), hadronic processes, massive dilepton production and production of prompt real photons at large psub(T). The present status of the theoretical understanding of these processes is summarized. (Auth.)

  20. Performance of large electron energy filter in large volume plasma device

    International Nuclear Information System (INIS)

    Singh, S. K.; Srivastava, P. K.; Awasthi, L. M.; Mattoo, S. K.; Sanyasi, A. K.; Kaw, P. K.; Singh, R.

    2014-01-01

    This paper describes an in-house designed large Electron Energy Filter (EEF) utilized in the Large Volume Plasma Device (LVPD) [S. K. Mattoo, V. P. Anita, L. M. Awasthi, and G. Ravi, Rev. Sci. Instrum. 72, 3864 (2001)] to secure objectives of (a) removing the presence of remnant primary ionizing energetic electrons and the non-thermal electrons, (b) introducing a radial gradient in plasma electron temperature without greatly affecting the radial profile of plasma density, and (c) providing a control on the scale length of gradient in electron temperature. A set of 19 independent coils of EEF make a variable aspect ratio, rectangular solenoid producing a magnetic field (B x ) of 100 G along its axis and transverse to the ambient axial field (B z ∼ 6.2 G) of LVPD, when all its coils are used. Outside the EEF, magnetic field reduces rapidly to 1 G at a distance of 20 cm from the center of the solenoid on either side of target and source plasma. The EEF divides LVPD plasma into three distinct regions of source, EEF and target plasma. We report that the target plasma (n e ∼ 2 × 10 11  cm −3 and T e ∼ 2 eV) has no detectable energetic electrons and the radial gradients in its electron temperature can be established with scale length between 50 and 600 cm by controlling EEF magnetic field. Our observations reveal that the role of the EEF magnetic field is manifested by the energy dependence of transverse electron transport and enhanced transport caused by the plasma turbulence in the EEF plasma

  1. Future of high energy physics

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  2. International Requirements for Large Integration of Renewable Energy Sources

    DEFF Research Database (Denmark)

    Molina-Garcia, Angel; Hansen, Anca Daniela; Muljadi, Ed

    2017-01-01

    Most European countries have concerns about the integration of large amounts of renewable energy sources (RES) into electric power systems, and this is currently a topic of growing interest. In January 2008, the European Commission published the 2020 package, which proposes committing the European...... Union to a 20% reduction in greenhouse gas emissions, to achieve a target of deriving 20% of the European Union's final energy consumption from renewable sources, and to achieve 20% improvement in energy efficiency both by the year 2020 [1]. Member states have different individual goals to meet...... these overall objectives, and they each need to provide a detailed roadmap describing how they will meet these legally binding targets [2]. At this time, RES are an indispensable part of the global energy mix, which has been partially motivated by the continuous increases in hydropower as well as the rapid...

  3. Large capacity, high-speed multiparameter multichannel analysis system

    International Nuclear Information System (INIS)

    Hendricks, R.W.; Seeger, P.A.; Scheer, J.W.; Suehiro, S.

    1980-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK8600 2048K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron x-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources

  4. High resolution imaging of particle interactions in a large bubble chamber using holographic techniques

    International Nuclear Information System (INIS)

    Akbari, Homaira.

    1988-01-01

    Particle interactions were recorded holographically in a large volume of the 15-foot Bubble Chamber at Fermilab. This cryogenic bubble chamber was filled with a heavy Neon-Hydrogen mixture and was exposed to a wideband neutrino beam with mean energy of 150 GeV. The use of holography in combination with conventional photography provides a powerful tool for direct detection of short-lived particles. Holography gives a high resolution over a large depth of field which can not be achieved with conventional photography. A high-power pulsed ruby laser was used as the holographic light source. Since short pulses of some 50 ns duration at the required energy were found to give rise to boiling during the chamber's expansion, a reduction of the instantaneous power at a given energy was required to suppress this unwanted after-effect. This was achieved by developing a unique technique for stretching the pulses using an electro-optic feedback loop. One hundred thousand holograms were produced during a wide-band neutrino experiment (E-632, 1985) using a dark-field holographic system. Analysis of a sample of holograms shows a resolution of 150 μm was achieved in an ovoidal shape fiducial volume of 0.48 m 3 % of the 14 m 3 total fiducial volume of the chamber

  5. A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Hitoshi [Univ. of Tsukuba (Japan)

    1984-09-01

    High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower.

  6. A hybrid, broadband, low noise charge preamplifier for simultaneous high resolution energy and time information with large capacitance semiconductor detector

    International Nuclear Information System (INIS)

    Goyot, M.

    1975-05-01

    A broadband and low noise charge preamplifier was developed in hybrid form, for a recoil spectrometer requiring large capacitance semiconductor detectors. This new hybrid and low cost preamplifier permits good timing information without compromising energy resolution. With a 500 pF external input capacity, it provides two simultaneous outputs: (i) the faster, current sensitive, with a rise time of 9 nsec and 2 mV/MeV on 50 ohms load, (ii) the lower, charge sensitive, with an energy resolution of 14 keV (FWHM Si) using a RC-CR ungated filter of 2 μsec and a FET input protection [fr

  7. Treatment Protocol for High Velocity/High Energy Gunshot Injuries to the Face

    Science.gov (United States)

    Peled, Micha; Leiser, Yoav; Emodi, Omri; Krausz, Amir

    2011-01-01

    Major causes of facial combat injuries include blasts, high-velocity/high-energy missiles, and low-velocity missiles. High-velocity bullets fired from assault rifles encompass special ballistic properties, creating a transient cavitation space with a small entrance wound and a much larger exit wound. There is no dispute regarding the fact that primary emergency treatment of ballistic injuries to the face commences in accordance with the current advanced trauma life support (ATLS) recommendations; the main areas in which disputes do exist concern the question of the timing, sequence, and modes of surgical treatment. The aim of the present study is to present the treatment outcome of high-velocity/high-energy gunshot injuries to the face, using a protocol based on the experience of a single level I trauma center. A group of 23 injured combat soldiers who sustained bullet and shrapnel injuries to the maxillofacial region during a 3-week regional military conflict were evaluated in this study. Nine patients met the inclusion criteria (high-velocity/high-energy injuries) and were included in the study. According to our protocol, upon arrival patients underwent endotracheal intubation and were hemodynamically stabilized in the shock-trauma unit and underwent total-body computed tomography with 3-D reconstruction of the head and neck and computed tomography angiography. All patients underwent maxillofacial surgery upon the day of arrival according to the protocol we present. In view of our treatment outcomes, results, and low complication rates, we conclude that strict adherence to a well-founded and structured treatment protocol based on clinical experience is mandatory in providing efficient, appropriate, and successful treatment to a relatively large group of patients who sustain various degrees of maxillofacial injuries during a short period of time. PMID:23449809

  8. Assessment of renewable energy resources potential for large scale and standalone applications in Ethiopia

    NARCIS (Netherlands)

    Tucho, Gudina Terefe; Weesie, Peter D.M.; Nonhebel, Sanderine

    2014-01-01

    This study aims to determine the contribution of renewable energy to large scale and standalone application in Ethiopia. The assessment starts by determining the present energy system and the available potentials. Subsequently, the contribution of the available potentials for large scale and

  9. High energy hadron-nucleus collision

    International Nuclear Information System (INIS)

    Takagi, Fujio

    1983-02-01

    This is a lecture note concerning high energy hadron-nucleus collision. The lecture gives the inelastic total cross section and the Glanber approximate multiple scattering formula at first. The mechanism of nuclear spallation is described in a cylindrical image. The multiplicity, the one particle distribution and the time-space structure of particle production are discussed. Various models are presented. The attenuation of forward particles and the structure of hadrons are discussed for each model. The atomic number (A) dependence of the production of large transverse momentum particles and jet, and the A dependence of charged multiplicity are presented. The backward production of particles and many body correlation are discussed. Lepton pair production and the initial interaction of constituents, collective interaction, multi quark state and phase transition are described. (Kato, T.)

  10. The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. I. Background and Justification

    Science.gov (United States)

    Wright, J. T.; Mullan, B.; Sigurdsson, S.; Povich, M. S.

    2014-09-01

    We motivate the Ĝ infrared search for extraterrestrial civilizations with large energy supplies. We discuss some philosophical difficulties of the search for extraterrestrial intelligence (SETI), and how communication SETI circumvents them. We review "Dysonian SETI," the search for artifacts of alien civilizations, and find that it is highly complementary to traditional communication SETI; the two together might succeed where either one alone has not. We discuss the argument of Hart that spacefaring life in the Milky Way should be either galaxy-spanning or non-existent, and examine a portion of his argument that we call the "monocultural fallacy." We discuss some rebuttals to Hart that invoke sustainability and predict long Galaxy colonization timescales. We find that the maximum Galaxy colonization timescale is actually much shorter than previous work has found (energy supplies and argue that detectably large energy supplies can plausibly be expected to exist because life has the potential for exponential growth until checked by resources or other limitations, and intelligence implies the ability to overcome such limitations. As such, if Hart's thesis is correct, then searches for large alien civilizations in other galaxies may be fruitful; if it is incorrect, then searches for civilizations within the Milky Way are more likely to succeed than Hart argued. We review some past Dysonian SETI efforts and discuss the promise of new mid-infrared surveys, such as that of WISE.

  11. RF system considerations for large high-duty-factor linacs

    International Nuclear Information System (INIS)

    Lynch, M.T.; Ziomek, C.D.; Tallerico, P.J.; Regan, A.H.; Eaton, L.; Lawrence, G.

    1994-01-01

    RF systems are often a major cost item for linacs, but this is especially true for large high-duty-factor linacs (up to and including CW) such as the Accelerator for Production of Tritium (APT) or the Accelerator for Transmutation of nuclear Waste (ATW). In addition, the high energy and high average beam current of these machines (approximately 1 GeV, 100--200 mA) leads to a need for excellent control of the accelerating fields in order to minimize the possibility of beam loss in the accelerator and the resulting activation. This paper will address the key considerations and limitations in the design of the RF system. These considerations impact the design of both the high power RF components and the RF controls. As might be expected, the two concerns sometimes lead to conflicting design requirements. For example minimum RF operating costs lead to a desire for operation near saturation of the high power RF generators in order to maximize the operating efficiency. Optimal control of the RF fields leads to a desire for maximum overdrive capability in those same generators in order to respond quickly to disturbances of the accelerator fields

  12. Using Magnetic Fields to Create and Control High Energy Density Matter

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Mark [Sandia National Laboratory

    2012-05-09

    The recently refurbished Z facility at Sandia National Laboratories is the world’s largest pulsed power driver. Z can efficiently deliver currents as large as 26 Million Amperes to centimeter scale loads. These large currents create large magnetic fields that, in turn, create very large pressures in conducting materials. These very large pressures have been used to create unique conditions for high energy density science experiments for a variety of applications. Recently, we have been exploring the use of very strong magnetic fields to significantly relax the requirements for achieving inertial confinement fusion self heating1. The magnetized liner inertial fusion (MagLIF) concept relies on a cylindrically imploding liner, an axial magnetic field, and a laser heated fuel region. We hope to achieve significant fusion yield on the Z facility with this concept. Initial experiments assessing the growth of the Magneto-Rayleigh Taylor instability are promising and recent calculational work has identified an approach to achieving high gain with this concept.

  13. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  14. Energy efficient heating and ventilation of large halls

    CERN Document Server

    Hojer, Ondrej; Kabele, Karel; Kotrbaty, Miroslav; Sommer, Klaus; Petras, Dusan

    2011-01-01

    This guidebook is focused on modern methods for design, control and operation of energy efficient heating systems in large spaces and industrial halls. The book deals with thermal comfort, light and dark gas radiant heaters, panel radiant heating, floor heating and industrial air heating systems. Various heating systems are illustrated with case studies. Design principles, methods and modeling tools are presented for various systems.

  15. Pulsed power drivers for ICF and high energy density physics

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

    1995-01-01

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates ∼500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed ∼15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed

  16. Testing an MCM for high-energy physics experiments a case study

    CERN Document Server

    Benso, A; Prinetto, P; Giovannetti, S; Mariani, R; Motto, S

    1999-01-01

    This paper presents the test strategy adopted at different hierarchical abstraction levels (from board to die level) during the development of a multichannel data acquisition and signal processing MCM, designed for the new generation experiments of high-energy physics on the Large Hadron Collider accelerator at CERN. (10 refs).

  17. UPR/Mayaguez High Energy Physics

    International Nuclear Information System (INIS)

    Lopez, Angel M.

    2015-01-01

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico's Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group's history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group's leveraging of funds from the Department of Energy's core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group's research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group's work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group's scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass

  18. High energy cosmic ray astronomy

    International Nuclear Information System (INIS)

    Fonseca, V.

    1996-01-01

    A brief introduction to High Energy Cosmic Ray Astronomy is presented. This field covers a 17 decade energy range (2.10 4 -10 20 ) eV. Recent discoveries done with gamma-ray detectors on-board satellites and ground-based Cherenkov devices are pushing for a fast development of new and innovative techniques, specially in the low energy region which includes the overlapping of satellite and ground-based measurements in the yet unexplored energy range 20 keV-250 GeV. Detection of unexpected extremely high energy events have triggered the interest of the international scientific community. (orig.)

  19. Extinction of radiant energy by large atmospheric crystals with different shapes

    International Nuclear Information System (INIS)

    Shefer, Olga

    2016-01-01

    The calculated results of extinction characteristics of visible and infrared radiation for large semi-transparent crystals are obtained by hybrid technique, which is a combination of the geometric optics method and the physical optics method. Energy and polarization characteristics of the radiation extinction in terms of the elements of the extinction matrix for individual large crystals and ensemble of crystals are discussed. Influences of particle shapes, aspect ratios, parameters of size distribution, complex refractive index, orientation of crystals, wavelength, and the polarization state of an incident radiation on the extinction are illustrated. It is shown that the most expressive and stable features of energy and polarization characteristics of the extinction are observed in the midinfrared region, despite the fact that the ice particles significantly absorb the radiant energy of this spectrum. It is demonstrated that the polarized extinction characteristics can reach several tens of percent at IR wavelengths. For the large crystals, the conditions of occurrence of the spectral behavior of the extinction coefficient in the visible, near-IR, and mid-IR wavelength ranges are determined. - Highlights: • Method of physical optics is used at coherent sum of diffracted and refracted fields. • The extinction characteristics in terms of elements of extinction matrix are obtained. • Influence of shapes and sizes of large particles on the extinction is evaluated. • Conditions of occurrence of extinction features are determined.

  20. UTILIZING TYPE Ia SUPERNOVAE IN A LARGE, FAST, IMAGING SURVEY TO CONSTRAIN DARK ENERGY

    International Nuclear Information System (INIS)

    Zentner, Andrew R.; Bhattacharya, Suman

    2009-01-01

    We study the utility of a large sample of Type Ia supernovae (SNe Ia) that might be observed in an imaging survey that rapidly scans a large fraction of the sky for constraining dark energy. We consider both the information contained in the traditional luminosity distance test as well as the spread in Ia SN fluxes at fixed redshift induced by gravitational lensing. As would be required from an imaging survey, we include a treatment of photometric redshift uncertainties in our analysis. Our primary result is that the information contained in the mean distance moduli of SNe Ia and the dispersion of SN Ia distance moduli complement each other, breaking a degeneracy between the present dark energy equation of state and its time variation without the need for a high-redshift (z ∼> 0.8) SN sample. Including lensing information also allows for some internal calibration of photometric redshifts. To address photometric redshift uncertainties, we present dark energy constraints as a function of the size of an external set of spectroscopically observed SNe that may be used for redshift calibration, N spec . Depending upon the details of potentially available, external SN data sets, we find that an imaging survey can constrain the dark energy equation of state at the epoch where it is best constrained w p , with a 1σ error of σ(w p ) ∼ 0.03-0.09. In addition, the marginal improvement in the error σ(w p ) from an increase in the spectroscopic calibration sample drops once N spec ∼ a few x 10 3 . This result is important because it is of the order of the size of calibration samples likely to be compiled in the coming decade and because, for samples of this size, the spectroscopic and imaging surveys individually place comparable constraints on the dark energy equation of state. In all cases, it is best to calibrate photometric redshifts with a set of spectroscopically observed SNe with relatively more objects at high redshift (z ∼> 0.5) than the parent sample of

  1. High-energy synchrotron X-ray radiography of shock-compressed materials

    Science.gov (United States)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  2. High energy dosimetry

    International Nuclear Information System (INIS)

    Ruhm, W.

    2010-01-01

    Full text: Currently, quantification of doses from high-energy radiation fields is a topical issue. This is so because high-energy neutrons play an important role for radiation exposure of air crew members and personnel outside the shielding of ion therapy facilities. In an effort to study air crew exposure from cosmic radiation in detail, two Bonner Sphere Spectrometers (BSSs) have recently been installed to measure secondary neutrons from cosmic radiation, one at the environmental research station 'Schneefernerhaus' at an altitude of 2650 m on the Zugspitze mountain, Germany, the other at the Koldewey station close to the North Pole on Spitsbergen. Based on the measured neutron fluence distributions and on fluence-to-dose conversion coefficients, mean ambient dose equivalent rate values of 75.0 ± 2.9 nSv/h and 8.7 ± 0.6 nSv/h were obtained for October 2008, respectively. Neutrons with energies above about 20 MeV contribute about 50% to dose, at 2650 m. Ambient dose equivalent rates measured by means of a standard rem counter and an extended rem counter at the Schneefernerhaus confirm this result. In order to study the response of state-of-the-art radiation instrumentation in such a high-energy radiation field, a benchmark exercise that included both measurements in and simulation of the stray neutron radiation field at the high-energy particle accelerator at GSI, Germany, were performed. This CONRAD (COordinated Network for RAdiation Dosimetry) project was funded by the European Commission, and the organizational framework was provided by the European Radiation Dosimetry Group, EURADOS. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers suggest the neutron fluence distributions to be very similar to those of secondary neutrons from cosmic radiation. The results of this intercomparison exercise in terms of ambient dose equivalent are also discussed

  3. Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.

    Science.gov (United States)

    Shen, Caiwei; Xie, Yingxi; Sanghadasa, Mohan; Tang, Yong; Lu, Longsheng; Lin, Liwei

    2017-11-15

    Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.7 mW h/cm 3 and 13 W/cm 3 ), as well as excellent mechanical properties. The prototype with the smallest reported overall diameter (∼13 μm) is fabricated by successive coating of functional layers onto a single micro-carbon-fiber via a scalable process. Combining the simulation results via the electrochemical model, we attribute the high performance to the well-controlled thin coatings that make full use of the electrode materials and minimize the ion transport path between electrodes. Moreover, the μCFSC features high bending flexibility and large tensile strength (more than 1 GPa), which make it promising as a building block for various flexible energy storage applications.

  4. Study on reasonable curtailment rate of large scale renewable energy

    Science.gov (United States)

    Li, Nan; Yuan, Bo; Zhang, Fuqiang

    2018-02-01

    Energy curtailment rate of renewable energy generation is an important indicator to measure renewable energy consumption, it is also an important parameters to determine the other power sources and grids arrangement in the planning stage. In general, to consume the spike power of the renewable energy which is just a small proportion, it is necessary to dispatch a large number of peaking resources, which will reduce the safety and stability of the system. In planning aspect, if it is allowed to give up a certain amount of renewable energy, overall peaking demand of the system will be reduced, the peak power supply construction can be put off to avoid the expensive cost of marginal absorption. In this paper, we introduce the reasonable energy curtailment rate into the power system planning, and use the GESP power planning software, conclude that the reasonable energy curtailment rate of the regional grids in China is 3% -10% in 2020.

  5. 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Zhai, Teng; Wang, Fuxin; Yu, Minghao; Xie, Shilei; Liang, Chaolun; Li, Cheng; Xiao, Fangming; Tang, Renheng; Wu, Qixiu; Lu, Xihong; Tong, Yexiang

    2013-07-01

    In this paper, we reported an effective and simple strategy to prepare large areal mass loading of MnO2 on porous graphene gel/Ni foam (denoted as MnO2/G-gel/NF) for supercapacitors (SCs). The MnO2/G-gel/NF (MnO2 mass: 13.6 mg cm-2) delivered a large areal capacitance of 3.18 F cm-2 (234.2 F g-1) and good rate capability. The prominent electrochemical properties of MnO2/G-gel/NF are attributed to the enhanced conductivities and improved accessible area for ions in electrolytes. Moreover, an asymmetric supercapacitor (ASC) based on MnO2/G-gel/NF (MnO2 mass: 6.1 mg cm-2) as the positive electrode and G-gel/NF as the negative electrode achieved a remarkable energy density of 0.72 mW h cm-3. Additionally, the fabricated ASC device also exhibited excellent cycling stability, with less than 1.5% decay after 10 000 cycles. The ability to effectively develop SC electrodes with high mass loading should open up new opportunities for SCs with high areal capacitance and high energy density.In this paper, we reported an effective and simple strategy to prepare large areal mass loading of MnO2 on porous graphene gel/Ni foam (denoted as MnO2/G-gel/NF) for supercapacitors (SCs). The MnO2/G-gel/NF (MnO2 mass: 13.6 mg cm-2) delivered a large areal capacitance of 3.18 F cm-2 (234.2 F g-1) and good rate capability. The prominent electrochemical properties of MnO2/G-gel/NF are attributed to the enhanced conductivities and improved accessible area for ions in electrolytes. Moreover, an asymmetric supercapacitor (ASC) based on MnO2/G-gel/NF (MnO2 mass: 6.1 mg cm-2) as the positive electrode and G-gel/NF as the negative electrode achieved a remarkable energy density of 0.72 mW h cm-3. Additionally, the fabricated ASC device also exhibited excellent cycling stability, with less than 1.5% decay after 10 000 cycles. The ability to effectively develop SC electrodes with high mass loading should open up new opportunities for SCs with high areal capacitance and high energy density. Electronic

  6. Effect of strong correlations on the high energy anomaly in hole- and electron-doped high-Tc superconductors

    International Nuclear Information System (INIS)

    Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P; Schmitt, F; Meevasana, W; Motoyama, E M; Lu, D H; Kim, C; Scalettar, R T

    2009-01-01

    Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.

  7. Transverse-momentum and collision-energy dependence of high-pT hadron suppression in Au+Au collisions at ultrarelativistic energies.

    Science.gov (United States)

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, X; Draper, J E; Drees, K A; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Ganti, M S; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Rykov, V; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, H Y; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2003-10-24

    We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at sqrt[s(NN)]=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5energy dependence of the yields and the centrality and p(T) dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of p(T)-dependent suppression, which may be expected from models incorporating jet attenuation in cold nuclear matter or scattering of fragmentation hadrons.

  8. The BFKL high energy asymptotic in the next-to-leading approximation

    International Nuclear Information System (INIS)

    Levin, Eugene

    1999-01-01

    We discuss the high energy asymptotic in the next-to-leading (NLO) BFKL equation. We find a general solution for the Green functions and consider two properties of the NLO BFKL kernel: running QCD coupling and large NLO corrections to the conformal part of the kernel. Both these effects lead to Regge-BFKL asymptotic only in the limited range of energy (y = ln(s/qq 0 ) ≤ (α S ) ((-5)/(3)) ) and change the energy behaviour of the amplitude for higher values of energy. We confirm the oscillation in the total cross section found by D.A. Ross [SHEP-98-06, hep-ph/9804332] in the NLO BFKL asymptotic, which shows that the NLO BFKL has a serious pathology

  9. High-Capacity Hydrogen-Based Green-Energy Storage Solutions For The Grid Balancing

    Science.gov (United States)

    D'Errico, F.; Screnci, A.

    One of the current main challenges in green-power storage and smart grids is the lack of effective solutions for accommodating the unbalance between renewable energy sources, that offer intermittent electricity supply, and a variable electricity demand. Energy management systems have to be foreseen for the near future, while they still represent a major challenge. Integrating intermittent renewable energy sources, by safe and cost-effective energy storage systems based on solid state hydrogen is today achievable thanks to recently some technology breakthroughs. Optimized solid storage method made of magnesium-based hydrides guarantees a very rapid absorption and desorption kinetics. Coupled with electrolyzer technology, high-capacity storage of green-hydrogen is therefore practicable. Besides these aspects, magnesium has been emerging as environmentally friend energy storage method to sustain integration, monitoring and control of large quantity of GWh from high capacity renewable generation in the EU.

  10. Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents

    Science.gov (United States)

    2017-11-28

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0169 TR-2017-0169 ARRAYS OF SYNTHETIC ATOMS: NANOCAPACITOR BATTERIES WITH LARGE ENERGY DENSITY AND SMALL LEAK...1-0247 Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...large dielectric strength to a nanoscale rechargeable battery . We fabricated arrays of one-, two- and three-dimensional synthetic atoms and comparison

  11. Moderate energy ions for high energy density physics experiments

    International Nuclear Information System (INIS)

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  12. Low energy neutrino astronomy with the large liquid-scintillation detector LENA

    International Nuclear Information System (INIS)

    Undagoitia, T Marrodan; Feilitzsch, F von; Goeger-Neff, M; Hochmuth, K A; Oberauer, L; Potzel, W; Wurm, M

    2006-01-01

    The detection of low energy neutrinos in a large liquid scintillation detector may provide further important information on astrophysical processes as supernova physics, solar physics and elementary particle physics as well as geophysics. In this contribution, a new project for Low Energy Neutrino Astronomy (LENA) consisting of a 50 kt scintillation detector is presented

  13. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    Energy Technology Data Exchange (ETDEWEB)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs.

  14. Measurement of energy deposition near high energy, heavy ion tracks. Progress report, December 1982-April 1985

    International Nuclear Information System (INIS)

    Metting, N.F.; Braby, L.A.; Rossi, H.H.; Kliauga, P.J.; Howard, J.; Schimmerling, W.; Wong, M.; Rapkin, M.

    1986-08-01

    The microscopic spatial distribution of energy deposition in irradiated tissue plays a significant role in the final biological effect produced. Therefore, it is important to have accurate microdosimetric spectra of radiation fields used for radiobiology and radiotherapy. The experiments desribed here were designed to measure the distributions of energy deposition around high energy heavy ion tracks generated at Lawrence Berkeley Laboratory's Bevalac Biomedical Facility. A small proportional counter mounted in a large (0.6 by 2.5 m) vacuum chamber was used to measure energy deposition distributions as a function of the distance between detector and primary ion track. The microdosimetric distributions for a homogeneous radiation field were then calculated by integrating over radial distance. This thesis discusses the rationale of the experimental design and the analysis of measurements on 600 MeV/amu iron tracks. 53 refs., 19 figs

  15. Energy-Efficient Office Buildings at High Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lerum, V.

    1996-12-31

    This doctoral thesis describes a method for energy efficient office building design at high latitudes and cold climates. The method combines daylighting, passive solar heating, solar protection, and ventilative cooling. The thesis focuses on optimal design of an equatorial-facing fenestration system. A spreadsheet framework linking existing simplified methods is used. The daylight analysis uses location specific data on frequency distribution of diffuse daylight on vertical surfaces to estimate energy savings from optimal window and room configurations in combination with a daylight-responsive electric lighting system. The passive solar heating analysis is a generalization of a solar load ratio method adapted to cold climates by combining it with the Norwegian standard NS3031 for winter months when the solar savings fraction is negative. The emphasis is on very high computational efficiency to permit rapid and comprehensive examination of a large number of options early in design. The procedure is illustrated for a location in Trondheim, Norway, testing the relative significance of various design improvement options relative to a base case. The method is also tested for two other locations in Norway, at latitudes 58 and 70 degrees North. The band of latitudes between these limits covers cities in Alaska, Canada, Greenland, Iceland, Scandinavia, Finland, Russia, and Northern Japan. A comprehensive study of the ``whole building approach`` shows the impact of integrated daylighting and low-energy design strategies. In general, consumption of lighting electricity may be reduced by 50-80%, even at extremely high latitudes. The reduced internal heat from electric lights is replaced by passive solar heating. 113 refs., 85 figs., 25 tabs.

  16. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  17. Liquid Scintillation Detectors for High Energy Neutrinos

    International Nuclear Information System (INIS)

    Smith, Stefanie N.; Learned, John G.

    2010-01-01

    Large open volume (not segmented) liquid scintillation detectors have been generally dedicated to low energy neutrino measurements, in the MeV energy region. We describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrino interactions, such as cosmic rays and long-baseline experiments. When considering the physics potential of new large instruments the possibility of doing useful measurements with higher energy neutrino interactions has been overlooked. Here we take into account Fermat's principle, which states that the first light to reach each PMT will follow the shortest path between that PMT and the point of origin. We describe the geometry of this process, and the resulting wavefront, which we are calling the 'Fermat surface', and discuss methods of using this surface to extract directional track information and particle identification. This capability may be demonstrated in the new long-baseline neutrino beam from Jaeri accelerator to the KamLAND detector in Japan. Other exciting applications include the use of Hanohano as a movable long-baseline detector in this same beam, and LENA in Europe for future long-baseline neutrino beams from CERN. Also, this methodology opens up the question as to whether a large liquid scintillator detector should be given consideration for use in a future long-baseline experiment from Fermilab to the DUSEL underground laboratory at Homestake.

  18. Characterization of Compton-suppressed TIGRESS detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, R.; Andreoiu, C.; Cross, D.S.; Galinski, N.; Ball, G.C.; Djongolov, M.; Garnsworthy, A.B.; Hackman, G.; Orce, J.N.; Pearson, C.; Triambak, S.; Williams, S.J.; Drake, T.; Smalley, D.; Svensson, C.E.

    2009-01-01

    The TRIUMF-ISAC Gamma-Ray Escape- Suppressed Spectrometer (TIGRESS) will consist of 12 large-volume, 32-fold segmented HPGe clover detectors. Each detector is shielded by a 20-fold segmented Compton suppression shield. For performing discrete gamma-ray spectroscopy of light mass nuclei with TIGRESS, we need information about full energy peak efficiency, resolution and lineshape of full energy peaks for high energy gamma-rays. However, suitable radioactive sources having decay gamma-rays of energies greater than ∼ 3.5 MeV are not easily available. So the characteristics of gamma spectrometers at energies higher than 3.5 MeV are usually determined from simulation data. Predictions from GEANT4 simulations (experimentally validated from 0.3 to 3 MeV) indicate that TIGRESS will be capable for single 10 MeV gamma-rays of absolute detection efficiency of 1.5% for backward configuration of the array. It has been observed experimentally that simulation results work well up to certain energies and might deviate at higher energies. So, it is essential to check the validity of simulation results for energies above 3.3 MeV. We have investigated the high energy performance of seven TIGRESS detectors up to 8 MeV

  19. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  20. University of Arizona High Energy Physics Program at the Cosmic Frontier 2014-2016

    Energy Technology Data Exchange (ETDEWEB)

    abate, alex [Univ. of Arizona, Tucson, AZ (United States); cheu, elliott [Univ. of Arizona, Tucson, AZ (United States)

    2016-10-24

    This is the final technical report from the University of Arizona High Energy Physics program at the Cosmic Frontier covering the period 2014-2016. The work aims to advance the understanding of dark energy using the Large Synoptic Survey Telescope (LSST). Progress on the engineering design of the power supplies for the LSST camera is discussed. A variety of contributions to photometric redshift measurement uncertainties were studied. The effect of the intergalactic medium on the photometric redshift of very distant galaxies was evaluated. Computer code was developed realizing the full chain of calculations needed to accurately and efficiently run large-scale simulations.

  1. University of Arizona High Energy Physics Program at the Cosmic Frontier 2014-2016

    International Nuclear Information System (INIS)

    Abate, Alex; Cheu, Elliott

    2016-01-01

    This is the final technical report from the University of Arizona High Energy Physics program at the Cosmic Frontier covering the period 2014-2016. The work aims to advance the understanding of dark energy using the Large Synoptic Survey Telescope (LSST). Progress on the engineering design of the power supplies for the LSST camera is discussed. A variety of contributions to photometric redshift measurement uncertainties were studied. The effect of the intergalactic medium on the photometric redshift of very distant galaxies was evaluated. Computer code was developed realizing the full chain of calculations needed to accurately and efficiently run large-scale simulations.

  2. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Hector [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2014-10-31

    This year the University of Puerto Rico at Mayaguez (UPRM) High Energy Physics (HEP) group continued with the ongoing research program outlined in the grant proposal. The program is centered on the Compact Muon Solenoid (CMS) experiment at the proton-proton (pp) collisions at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. The main research focus is on data analysis and on the preparation for the High Luminosity (HL) LHC or experiment detector upgrade. The physics data analysis included Higgs Doublet Search and measurement of the (1) Λ0b branching fraction, (2) B meson mass, and (3) hyperon θ-b lifetime. The detector upgrade included work on the preparations for the Forward Pixel (FPIX) detector Silicon Sensor Testing in a production run at Fermilab. In addition, the group has taken responsibilities on the Software Release through our former research associate Dr. Eric Brownson who acted until last December as a Level Two Offline Manager for the CMS Upgrade. In support of the CMS data analysis activities carried out locally, the UPRM group has built and maintains an excellent Tier3 analysis center in Mayaguez. This allowed us to analyze large data samples and to continue the development of algorithms for the upgrade tracking robustness we started several years ago, and we plan to resume in the near future. This project involves computer simulation of the radiation damage to be suffered at the higher luminosities of the upgraded LHC. This year we continued to serve as a source of outstanding students for the field of high energy physics. Three of our graduate students finished their MS work in May, 2014, Their theses research were on data analysis of heavy quark b-physics. All of them are currently enrolled at Ph.D. physics program across the nation. One of them (Hector Moreno) at New Mexico University (Hector Moreno), one at University of New Hampshire (Sandra Santiesteban) and one at University of

  3. Computing in high energy physics

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  4. A hydrophone prototype for ultra high energy neutrino acoustic detection

    International Nuclear Information System (INIS)

    Cotrufo, A.; Plotnikov, A.; Yershova, O.; Anghinolfi, M.; Piombo, D.

    2009-01-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  5. A hydrophone prototype for ultra high energy neutrino acoustic detection

    Energy Technology Data Exchange (ETDEWEB)

    Cotrufo, A. [University of Genoa, Department of Physics, Via Dodecaneso 33, I-16146 (Italy)], E-mail: cotrufo@ge.infn.it; Plotnikov, A.; Yershova, O. [GSI Helmholtz Centre for Heavy Ion Research, GmbH Planckstrasse1, 64291 Darmstadt (Germany); Anghinolfi, M.; Piombo, D. [INFN, University of Genoa, Department of Physics, Via Dodecaneso 33, I-16146 (Italy)

    2009-06-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  6. Experimental Facilities at the High Energy Frontier

    CERN Document Server

    Jenni, P.

    2016-01-01

    The main theme of the lectures covered the experimental work at hadron colliders, with a clear focus on the Large Hadron Collider (LHC) and on the roadmap that led finally to the discovery of the Higgs boson. The lectures were not a systematic course on machine and detector technologies, but rather tried to give a physics-motivated overview of many experimental aspects that were all relevant for making the discovery. The actual lectures covered a much broader scope than what is documented here in this write- up. The successful concepts for the experiments at the LHC have benefitted from the experience gained with previous generations of detectors at lower- energy machines. The lectures included also an outlook to the future experimental programme at the LHC, with its machine and experiments upgrades, as well as a short discussion of possible facilities at the high energy frontier beyond LHC.

  7. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J

    2008-01-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  8. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J [E15 Chair for Astroparticle Physics, Technische Universitat Miinchen, Physik Department, James-Franck-Str., D-85748 Garching (Germany)

    2008-11-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  9. Verification of the DUCT-III for calculation of high energy neutron streaming

    Energy Technology Data Exchange (ETDEWEB)

    Masukawa, Fumihiro; Nakano, Hideo; Nakashima, Hiroshi; Sasamoto, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tayama, Ryu-ichi; Handa, Hiroyuki; Hayashi, Katsumi [Hitachi Engineering Co., Ltd., Hitachi, Ibaraki (Japan); Hirayama, Hideo [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Shin, Kazuo [Kyoto Univ., Kyoto (Japan)

    2003-03-01

    A large number of radiation streaming calculations under a variety of conditions are required as a part of shielding design for a high energy proton accelerator facility. Since sophisticated methods are very time consuming, simplified methods are employed in many cases. For accuracy evaluation of a simplified code DUCT-III for high energy neutron streaming calculations, two kinds of benchmark problems based on the experiments were analyzed. Through comparison of the DUCT-III calculations with both the measurements and the sophisticated Monte Carlo calculations, DUCT-III was seen reliable enough for applying to the shielding design for the Intense Proton Accelerator Facility. (author)

  10. Verification of the DUCT-III for calculation of high energy neutron streaming

    CERN Document Server

    Masukawa, F; Hayashi, K; Hirayama, H; Nakano, H; Nakashima, H; Sasamoto, N; Shin, K; Tayama, R I

    2003-01-01

    A large number of radiation streaming calculations under a variety of conditions are required as a part of shielding design for a high energy proton accelerator facility. Since sophisticated methods are very time consuming, simplified methods are employed in many cases. For accuracy evaluation of a simplified code DUCT-III for high energy neutron streaming calculations, two kinds of benchmark problems based on the experiments were analyzed. Through comparison of the DUCT-III calculations with both the measurements and the sophisticated Monte Carlo calculations, DUCT-III was seen reliable enough for applying to the shielding design for the Intense Proton Accelerator Facility.

  11. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Béjar Alonso, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Brüning, O. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Lamont, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, L. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2015-12-17

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.

  12. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    International Nuclear Information System (INIS)

    Apollinari, G.; Béjar Alonso, I.; Brüning, O.; Lamont, M.; Rossi, L.

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.

  13. Some new high energy materials and their formulations for specialized applications

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Jai Prakash [Directorate of Materials, DRDO HQrs, ' B' Wing, Sena Bhavan, New Delhi - 110 011 (India)

    2005-10-01

    Energetic materials form an integral part of most weapon systems and a large number of new high-energy materials: thermally stable explosives, high-performance explosives, melt-castable explosives, insensitive high explosives and energetic binders have been reported in the literature in recent years. Some explosive formulations based on these new energetic materials are also vaguely reported. This paper examines these materials and their formulations from the point of view of stability, reliability, safety and specific applications. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  14. CVD Diamond Sensors In Detectors For High Energy Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00334150; Trischuk, William

    At the end of the next decade an upgrade of the Large Hadron Collider (LHC) to High Luminosity LHC (HL-LHC) is planned which requires the development of new radiation tolerant sensor technology. Diamond is an interesting material for use as a particle detector in high radiation environments. The large band gap ($5.47\\,\\text{eV}$) and the large displacement energy suggest that diamond is a radiation tolerant detector material. In this Thesis the capability of Chemical Vapor Deposition (CVD) diamond as such a sensor technology is investigated. The radiation damage constant for $800\\,\\text{MeV}$ protons is measured using single crystalline CVD (scCVD) and polycrystalline CVD (pCVD) diamonds irradiated to particle fluences up to $12 \\times 10^{15}\\,\\text{p/cm}^2$. In addition the signal response of a pCVD diamond detector after an irradiation to $12 \\times 10^{15}\\,\\text{p/cm}^2$ is investigated to determine if such a detector can be operated efficiently in the expected HL-LHC environment. By using electrodes em...

  15. Research in High Energy Physics at Duke University

    Energy Technology Data Exchange (ETDEWEB)

    Kotwal, Ashutosh V. [PI; Goshaw, Al [Co-PI; Kruse, Mark [Co-PI; Oh, Seog [Co-PI; Scholberg, Kate [Co-PI; Walter, Chris [Co-PI

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water- lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  16. Research in High Energy Physics at Duke University

    Energy Technology Data Exchange (ETDEWEB)

    Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the {mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  17. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  18. High density energy storage capacitor

    International Nuclear Information System (INIS)

    Whitham, K.; Howland, M.M.; Hutzler, J.R.

    1979-01-01

    The Nova laser system will use 130 MJ of capacitive energy storage and have a peak power capability of 250,000 MW. This capacitor bank is a significant portion of the laser cost and requires a large portion of the physical facilities. In order to reduce the cost and volume required by the bank, the Laser Fusion Program funded contracts with three energy storage capacitor producers: Aerovox, G.E., and Maxwell Laboratories, to develop higher energy density, lower cost energy storage capacitors. This paper describes the designs which resulted from the Aerovox development contract, and specifically addresses the design and initial life testing of a 12.5 kJ, 22 kV capacitor with a density of 4.2 J/in 3 and a projected cost in the range of 5 cents per joule

  19. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    Science.gov (United States)

    Wang, Yang; Chen, Zhi-Hao; Yin, Chun; Ma, Jian-Hua; Li, Di-Jie; Zhao, Fan; Sun, Yu-Long; Hu, Li-Fang; Shang, Peng; Qian, Ai-Rong

    2015-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs) and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84) were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.

  20. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    Directory of Open Access Journals (Sweden)

    Yang Wang

    Full Text Available The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF, which can provide three apparent gravity levels (μ-g, 1-g, and 2-g, was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84 were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.

  1. Low energy microcolumn for large field view inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Chul [Department of Optometry, Eulji University, 212 Yangji-dong, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-713 (Korea, Republic of); Ahn, Seung-Joon; Oh, Tae-Sik; Kim, Dae-Wook [Department of Nanoscience, Sun Moon University 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of); Kim, Ho-Seob, E-mail: hskim3@sunmoon.ac.kr [Department of Nanoscience, Sun Moon University 100 Kalsan-ri, Tangjeong-myun, Asan-si, Chungnam 336-708 (Korea, Republic of); Jang, Won Kweon [Division of Electronic, Computer and Communication Engineering, Hanseo University 360 DaeKook-ri, Haemi-myun, Seosan-si, Chungnam 356-706 (Korea, Republic of)

    2011-12-15

    Since the development of microcolumn system, it attracted much attention because multiple microcolumns can be assembled into arrayed form, which is expected to generate multiple electron beams and overcome the disadvantage of electron beam inspection equipments, low throughput . However, it is not easy to apply a microcolumn to the practical inspection or testing equipment since its scanning area is too small. Even if the arrayed operation using multiple microcolumns can overcome this limit, it requires complicated supporting systems and related technologies to operate a number of microcolumns simultaneously. Therefore, we tried to modify microcolumn design itself so that it can have a large field of view. In this work, two kinds of modified columns will be suggested and the preliminary results showing their performance of scanning large area will be discussed. -- Highlights: Black-Right-Pointing-Pointer Two types of microcolumn designs to achieve a large field of view are fabricated. Black-Right-Pointing-Pointer Field of view of a microcolumn increases linearly with the working distance. Black-Right-Pointing-Pointer New designed microcolumns can be developed as a low energy column system for large view inspections.

  2. High energy physics and cloud computing

    International Nuclear Information System (INIS)

    Cheng Yaodong; Liu Baoxu; Sun Gongxing; Chen Gang

    2011-01-01

    High Energy Physics (HEP) has been a strong promoter of computing technology, for example WWW (World Wide Web) and the grid computing. In the new era of cloud computing, HEP has still a strong demand, and major international high energy physics laboratories have launched a number of projects to research on cloud computing technologies and applications. It describes the current developments in cloud computing and its applications in high energy physics. Some ongoing projects in the institutes of high energy physics, Chinese Academy of Sciences, including cloud storage, virtual computing clusters, and BESⅢ elastic cloud, are also described briefly in the paper. (authors)

  3. High-energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Thomas K. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)]. E-mail: gaisser@bartol.udel.edu; Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2006-10-17

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the knee above 10{sup 15} eV and the ankle above 10{sup 18} eV. An important question is whether the highest-energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  4. Computing in high-energy physics

    International Nuclear Information System (INIS)

    Mount, Richard P.

    2016-01-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software

  5. Computing in high-energy physics

    Science.gov (United States)

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  6. Soft electromagnetic bremsstrahlung in inelastic hadronic collisions at high and intermediate energies

    International Nuclear Information System (INIS)

    Rueckl, R.

    1978-01-01

    Electromagnetic bremsstrahlung in hadronic collisions was studied extensively at low and intermediate energies. It was found that the infrared divergent term of the cross section describes the data well up to surprisingly large photon energies. Using essentially the same soft photon approximation, production of low mass-low energy electron pairs via internal conversion of soft virtual bremsstrahlung accompanying the production of charged hadrons in hadron-hadron collisions at very high and intermediate energies. The resulting electron yields explain, at least in part, the direct electrons with small transverse momenta seen at the ISR, and are in no contradiction to the rates observed at LAMPF

  7. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  8. High energy radiation detector

    International Nuclear Information System (INIS)

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  9. Searching for color sextet quarks at high energy hardon colliders

    International Nuclear Information System (INIS)

    Kantar, M.

    2005-01-01

    We analyze the resonance and pair production of color sextet quarks and their decay modes at very high energy hadron colliders such as VHLC (Very Large Hadron Collider) with the energy of 28 TeV and SSC (Superconducting Super Collider) for two options with energies of 40 TeV and 100 TeV, respectively. The total cross sections of color sextet quark for three different machines are calculated and plotted versus its mass. The distributions of transverse momentum T p and invariant mass jj m of two final state jets are plotted for signals and backgrounds and analyzed the discovery limits of this resonance particle. The observation condition of color sextet quarks are performed by the number of signal events to the number of background events

  10. The structure of nuclear states at low, intermediate and high excitation energies

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed

  11. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  12. High-energy physics software parallelization using database techniques

    International Nuclear Information System (INIS)

    Argante, E.; Van der Stok, P.D.V.; Willers, I.

    1997-01-01

    A programming model for software parallelization, called CoCa, is introduced that copes with problems caused by typical features of high-energy physics software. By basing CoCa on the database transaction paradigm, the complexity induced by the parallelization is for a large part transparent to the programmer, resulting in a higher level of abstraction than the native message passing software. CoCa is implemented on a Meiko CS-2 and on a SUN SPARCcenter 2000 parallel computer. On the CS-2, the performance is comparable with the performance of native PVM and MPI. (orig.)

  13. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    Science.gov (United States)

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  14. Induction and Persistence of Large γH2AX Foci by High Linear Energy Transfer Radiation in DNA-Dependent protein kinase–Deficient Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bracalente, Candelaria; Ibañez, Irene L. [Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Molinari, Beatriz [Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Palmieri, Mónica [Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Kreiner, Andrés [Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); Valda, Alejandro [Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); and others

    2013-11-15

    Purpose: To evaluate the cell response to DNA double-strand breaks induced by low and high linear energy transfer (LET) radiations when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an essential protein of the nonhomologous end-joining repair pathway, lacks kinase activity. Methods and Materials: CHO10B2, a Chinese hamster ovary cell line, and its derived radiosensitive mutant cell line, irs-20, lacking DNA-PKcs activity, were evaluated after 0 to 3 Gy of γ-rays, plateau and Bragg peak protons, and lithium beams by clonogenic assay, and as a measurement of double-strand breaks, phosphorylated H2AX (γH2AX) foci number and size were quantified by immunocytofluorescence. Results: Irs-20 exhibited greater radiosensitivity and a higher amount of γH2AX foci than CHO10B2 at 6 hours after irradiation for all types of radiations. Remarkably, CHO10B2 and irs-20 maintained their difference in radiosensitivity after high-LET radiation. Six hours after low-LET radiations, irs-20 did not reach basal levels of γH2AX at high doses, whereas CHO10B2 recovered basal levels for all doses. After high-LET radiation, only CHO10B2 exhibited a reduction in γH2AX foci, but it never reached basal levels. Persistent foci in irs-20 confirmed a repair deficiency. Interestingly, after 30 minutes of high-LET radiation both cell lines exhibited large foci (size >0.9 μm{sup 2}) related to the damage nature, whereas at 6 hours irs-20 showed a higher amount of large foci than CHO10B2, with a 7-fold increase at 3 Gy, that could also be associated to radiosensitivity. Conclusions: We demonstrated, for the first time, an association between deficient DNA-PKcs activity and not only high levels of H2AX phosphorylation but also persistence and size increase of γH2AX foci after high-LET irradiation.

  15. Induction and Persistence of Large γH2AX Foci by High Linear Energy Transfer Radiation in DNA-Dependent protein kinase–Deficient Cells

    International Nuclear Information System (INIS)

    Bracalente, Candelaria; Ibañez, Irene L.; Molinari, Beatriz; Palmieri, Mónica; Kreiner, Andrés; Valda, Alejandro

    2013-01-01

    Purpose: To evaluate the cell response to DNA double-strand breaks induced by low and high linear energy transfer (LET) radiations when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an essential protein of the nonhomologous end-joining repair pathway, lacks kinase activity. Methods and Materials: CHO10B2, a Chinese hamster ovary cell line, and its derived radiosensitive mutant cell line, irs-20, lacking DNA-PKcs activity, were evaluated after 0 to 3 Gy of γ-rays, plateau and Bragg peak protons, and lithium beams by clonogenic assay, and as a measurement of double-strand breaks, phosphorylated H2AX (γH2AX) foci number and size were quantified by immunocytofluorescence. Results: Irs-20 exhibited greater radiosensitivity and a higher amount of γH2AX foci than CHO10B2 at 6 hours after irradiation for all types of radiations. Remarkably, CHO10B2 and irs-20 maintained their difference in radiosensitivity after high-LET radiation. Six hours after low-LET radiations, irs-20 did not reach basal levels of γH2AX at high doses, whereas CHO10B2 recovered basal levels for all doses. After high-LET radiation, only CHO10B2 exhibited a reduction in γH2AX foci, but it never reached basal levels. Persistent foci in irs-20 confirmed a repair deficiency. Interestingly, after 30 minutes of high-LET radiation both cell lines exhibited large foci (size >0.9 μm 2 ) related to the damage nature, whereas at 6 hours irs-20 showed a higher amount of large foci than CHO10B2, with a 7-fold increase at 3 Gy, that could also be associated to radiosensitivity. Conclusions: We demonstrated, for the first time, an association between deficient DNA-PKcs activity and not only high levels of H2AX phosphorylation but also persistence and size increase of γH2AX foci after high-LET irradiation

  16. High and very high temperature reactor research for multipurpose energy applications

    International Nuclear Information System (INIS)

    Hittner, Dominique; Bogusch, Edgar; Fuetterer, Michael; Groot, Sander de; Ruer, Jacques

    2011-01-01

    Ten years ago, the European High Temperature Reactor (HTR) Technology Network (HTR-TN) launched a programme for developing HTR Technology, which expanded so far through 4 successive Euratom Framework Programmes. Many projects have been performed - in particular the RAPHAEL project in the 6th Euratom Framework Programme and presently ARCHER in the 7th - in line with the Network strategy that identified cogeneration of process heat and power as the main specific mission of HTR. HTR can indeed address the growing energy needs of industry presently fully relying on fossil fuel combustion with a CO 2 -lean generation technology, thanks to its high operating temperature and to its unique flexibility obtained from its large thermal inertia and its low power. Relying on the legacy of the former European leadership in HTR technology, this programme has addressed specific developments required for industrial process heat applications and for increasing HTR performances (higher temperatures and fuel burn-up). Decisive achievements have been obtained concerning fuel manufacturing and irradiation behaviour, key components and their materials, safety, computer code validation and specific HTR waste (fuel and graphite) management. Key experiments have been performed or are still ongoing: irradiation of graphite, fuel and vessel materials and the corresponding post-irradiation examinations, safety tests and isotopic analyses; thermal-hydraulic tests of an Intermediate Heat Exchanger mock-up in helium; air ingress experiments for a block type core, etc. Through Euratom participation in the Generation IV International Forum (GIF), these achievements contribute to international cooperation. HTR-TN strategy has been recently integrated by the 'Sustainable Nuclear Energy Technology Platform' (SNE-TP) as one of the 3 'pillars' of its global nuclear strategy. It is also in line with the orientations and the timing of the 'Strategic Energy Technology Plan (SET-Plan)' for the development

  17. Some health aspects of high-energy society

    International Nuclear Information System (INIS)

    Cook, E.

    1975-01-01

    The intensive use of inanimate energy in industrialized or high-energy society has subsidized research, development, and higher education and has brought about changes in nutrition and life-style that have led to great advances in public health and medicine. The emergence of high-energy society, however, has brought with it a new set of health problems, within which the direct effects of measurable pollution may turn out to be more easily dealt with than some of the indirect and hard-to-calculate consequences of high energy use. High-energy society is critically dependent on energy-intensive transport systems, and these systems in turn are dependent upon a continual supply of petroleum products. In the short-term, the aorta of any industrialized nation is its petroleum-supply network. In the longer run, high-energy society faces the depletion and exhaustion of all the nonrenewable resources on which it has fed. Even if technology provides adequate substitute energy systems, high-energy society may deteriorate socially from inability to cope with affluence

  18. Ultra-High-Energy Cosmic Rays

    CERN Document Server

    Dova, M.T.

    2015-05-22

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  19. Study of energy determination of gamma-ray observed with an emulsion chamber with a large gap

    International Nuclear Information System (INIS)

    Inui, Tamiki; Otsuka, Taeko; Masaoka, Akiko

    1982-01-01

    The development of large size emulsion chambers has been made to study very high energy events. For this purpose, the chambers with exchangeable light sensitive layers are considered. The chambers have large gap for the exchange. In this case, it becomes hard to determine the energy of cascade shower. In this report, the authors describe on the experimental examples observed at Mt. Chacaltaya. The effect of a gap was investigated by these examples, and the simulation method by Okamoto and Shibata was applied to the chamber. The chamber used for the observation consisted of the top chamber of 11 c.u. and the bottom chamber of 15 c.u. There was a large gap of 170 cm between two chambers. Twelve showers in three families observed by this system were analyzed. The difference between the blackness in the top and bottom films was studied quantitatively. The blackness was calibrated for the electron density. Four methods of energy determination were studied. Among them, a method to employ the sum of the maximum blackness of a top film and that of a bottom one was used for the analysis. This method seemed to be more reliable than the old method. It was found by a simulation calculation that the recovery of shower in the bottom chamber was seen not only by hardrons but also by gamma-ray. (Kato, T.)

  20. Progress in high-energy cosmic ray physics

    Science.gov (United States)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  1. CERN-group conceptual design of a fast neutron operated high power energy amplifier

    International Nuclear Information System (INIS)

    Rubbia, C.; Rubio, J.A.; Buono, S.

    1997-01-01

    The practical feasibility of an Energy Amplifier (EA) with power and power density which are comparable to the ones of the present generation of large PWR is discussed in this paper. This is only possible with fast neutrons. Schemes are described which offer a high gain, a large maximum power density and an extended burn-up, well in excess of 100 GW x d/t corresponding to about five years at full power operation with no intervention on the fuel core. The following topics are discussed: physics considerations and parameter definition, the accelerator complex, the energy amplifier unit, computer simulated operation, and fuel cycle closing

  2. CERN-group conceptual design of a fast neutron operated high power energy amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Rubbia, C; Rubio, J A [European Organization for Nuclear Research, CERN, Geneva (Switzerland); Buono, S [Laboratoire du Cyclotron, Nice (France); and others

    1997-11-01

    The practical feasibility of an Energy Amplifier (EA) with power and power density which are comparable to the ones of the present generation of large PWR is discussed in this paper. This is only possible with fast neutrons. Schemes are described which offer a high gain, a large maximum power density and an extended burn-up, well in excess of 100 GW x d/t corresponding to about five years at full power operation with no intervention on the fuel core. The following topics are discussed: physics considerations and parameter definition, the accelerator complex, the energy amplifier unit, computer simulated operation, and fuel cycle closing. 84 refs, figs, tabs.

  3. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  4. Quantum chromodynamics at high energy, theory and phenomenology at hadron colliders; Chromodynamique quantique a haute energie, theorie et phenomenologie appliquee aux collisions de hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Marquet, C

    2006-09-15

    When probing small distances inside a hadron, one can resolve its partonic constituents: quarks and gluons that obey the laws of perturbative Quantum Chromodynamics (QCD). This substructure reveals itself in hadronic collisions characterized by a large momentum transfer: in such collisions, a hadron acts like a collection of partons whose interactions can be described in QCD. In a collision at moderate energy, a hadron looks dilute and the partons interact incoherently. As the collision energy increases, the parton density inside the hadron grows. Eventually, at some energy much bigger than the momentum transfer, one enters the saturation regime of QCD: the gluon density has become so large that collective effects are important. We introduce a formalism suitable to study hadronic collisions in the high-energy limit in QCD, and the transition to the saturation regime. In this framework, we derive known results that are needed to present our personal contributions and we compute different cross-sections in the context of hard diffraction and particle production. We study the transition to the saturation regime as given by the Balitsky-Kovchegov equation. In particular we derive properties of its solutions.We apply our results to deep inelastic scattering and show that, in the energy range of the HERA collider, the predictions of high-energy QCD are in good agreement with the data. We also consider jet production in hadronic collisions and discuss the possibility to test saturation at the Large Hadron Collider. (author)

  5. High-energy gravitational scattering and the general relativistic two-body problem

    Science.gov (United States)

    Damour, Thibault

    2018-02-01

    A technique for translating the classical scattering function of two gravitationally interacting bodies into a corresponding (effective one-body) Hamiltonian description has been recently introduced [Phys. Rev. D 94, 104015 (2016), 10.1103/PhysRevD.94.104015]. Using this technique, we derive, for the first time, to second-order in Newton's constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbitrary (possibly relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian is found to have a tame high-energy structure which we relate both to gravitational self-force studies of large mass-ratio binary systems, and to the ultra high-energy quantum scattering results of Amati, Ciafaloni and Veneziano. We derive several consequences of our second post-Minkowskian Hamiltonian: (i) the need to use special phase-space gauges to get a tame high-energy limit; and (ii) predictions about a (rest-mass independent) linear Regge trajectory behavior of high-angular-momenta, high-energy circular orbits. Ways of testing these predictions by dedicated numerical simulations are indicated. We finally indicate a way to connect our classical results to the quantum gravitational scattering amplitude of two particles, and we urge amplitude experts to use their novel techniques to compute the two-loop scattering amplitude of scalar masses, from which one could deduce the third post-Minkowskian effective one-body Hamiltonian.

  6. Linking high-energy cosmic particles by black-hole jets embedded in large-scale structures

    Science.gov (United States)

    Fang, Ke; Murase, Kohta

    2018-04-01

    The origin of ultrahigh-energy cosmic rays (UHECRs) is a half-century-old enigma1. The mystery has been deepened by an intriguing coincidence: over ten orders of magnitude in energy, the energy generation rates of UHECRs, PeV neutrinos and isotropic sub-TeV γ-rays are comparable, which hints at a grand unified picture2. Here we report that powerful black hole jets in aggregates of galaxies can supply the common origin for all of these phenomena. Once accelerated by a jet, low-energy cosmic rays confined in the radio lobe are adiabatically cooled; higher-energy cosmic rays leaving the source interact with the magnetized cluster environment and produce neutrinos and γ-rays; the highest-energy particles escape from the host cluster and contribute to the observed cosmic rays above 100 PeV. The model is consistent with the spectrum, composition and isotropy of the observed UHECRs, and also explains the IceCube neutrinos and the non-blazar component of the Fermi γ-ray background, assuming a reasonable energy output from black hole jets in clusters.

  7. Statistical homogeneity tests applied to large data sets from high energy physics experiments

    Science.gov (United States)

    Trusina, J.; Franc, J.; Kůs, V.

    2017-12-01

    Homogeneity tests are used in high energy physics for the verification of simulated Monte Carlo samples, it means if they have the same distribution as a measured data from particle detector. Kolmogorov-Smirnov, χ 2, and Anderson-Darling tests are the most used techniques to assess the samples’ homogeneity. Since MC generators produce plenty of entries from different models, each entry has to be re-weighted to obtain the same sample size as the measured data has. One way of the homogeneity testing is through the binning. If we do not want to lose any information, we can apply generalized tests based on weighted empirical distribution functions. In this paper, we propose such generalized weighted homogeneity tests and introduce some of their asymptotic properties. We present the results based on numerical analysis which focuses on estimations of the type-I error and power of the test. Finally, we present application of our homogeneity tests to data from the experiment DØ in Fermilab.

  8. High energy physics progress report, April 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Phillips, G.C.; Roberts, J.B. Jr.

    1976-01-01

    During the contract year progress was attained in the goals of studying the interactions among the elementary particles at high energies. Experiments E-407, E-395, E-418, and E-415 were carried out at the Argonne ZGS. The year was largely devoted to the preparation and execution of experiments, along with the publication of papers

  9. High luminosity operation of large solid angle scintillator arrays in Jefferson Lab Hall A

    International Nuclear Information System (INIS)

    Ran Shneor

    2003-01-01

    This thesis describes selected aspects of high luminosity operation of large solid angle scintillator arrays in Hall A of the CEBAF (Central Electron Beam Accelerator Facility) at TJNAF (Thomas Jefferson National Accelerator Facility ). CEBAF is a high current, high duty factor electron accelerator with a maximum beam energy of about 6 GeV and a maximum current of 200 (micro)A. Operating large solid angle scintillator arrays in high luminosity environment presents several problems such as high singles rates, low signal to noise ratios and shielding requirements. To demonstrate the need for large solid angle and momentum acceptance detectors as a third arm in Hall A, we will give a brief overview of the physics motivating five approved experiments, which utilize scintillator arrays. We will then focus on the design and assembly of these scintillator arrays, with special focus on the two new detector packages built for the Short Range Correlation experiment E01-015. This thesis also contains the description and results of different tests and calibrations which where conducted for these arrays. We also present the description of a number of tests which were done in order to estimate the singles rates, data reconstruction, filtering techniques and shielding required for these counters

  10. FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bhat, P. N.; Briggs, M. S.; Bissaldi, E.; Bonamente, E.; Brigida, M.

    2010-01-01

    The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9σ. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to ∼1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.

  11. Non-aqueous nanoporous gold based supercapacitors with high specific energy

    International Nuclear Information System (INIS)

    Hou, Ying; Chen, Luyang; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    In this study, we report that the supercapacitor performance of polypyrrole (PPy) in non-aqueous electrolytes can be dramatically improved by highly conductive nanoporous gold which acts as both the support of active PPy and the current collector of supercapacitors. The excellent electronic conductivity, rich porous structure and large surface area of the nanoporous electrodes give rise to a high specific capacitance and low internal resistance in non-aqueous electrolytes. Combining with a wide working potential window of ~ 2 V, the non-aqueous PPy-based supercapacitors show an extraordinary energy density and power density.

  12. Experiments and detectors for high energy heavy ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, T.

    1984-01-01

    Problems and possibilities are discussed for experiments at the highest collision energies achievable in man-made accelerators; i.e., colliding beams of heavy nuclei at cm energies greater than or equal to 100 GeV/amu, well beyond the threshold of nuclear transparency. Here the final state consists of two hot, dense, baryon-rich fireballs flying away from each other at large rapidity (the fragmentation regions), and thermally-produced particles with near-zero net baryon number populating the central rapidity range. The matter produced at central rapidity (the lab frame for a collider) may reach extremely high temperatures and energy densities, and it is here that one expects to produce thermodynamic conditions similar to those which existed when the early universe condensed from a plasma of quarks and gluons to a gas of hadrons. The problem of tracking, lepton measurements, and calorimeters are discussed. (WHK)

  13. Modeling and Coordinated Control Strategy of Large Scale Grid-Connected Wind/Photovoltaic/Energy Storage Hybrid Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Lingguo Kong

    2015-01-01

    Full Text Available An AC-linked large scale wind/photovoltaic (PV/energy storage (ES hybrid energy conversion system for grid-connected application was proposed in this paper. Wind energy conversion system (WECS and PV generation system are the primary power sources of the hybrid system. The ES system, including battery and fuel cell (FC, is used as a backup and a power regulation unit to ensure continuous power supply and to take care of the intermittent nature of wind and photovoltaic resources. Static synchronous compensator (STATCOM is employed to support the AC-linked bus voltage and improve low voltage ride through (LVRT capability of the proposed system. An overall power coordinated control strategy is designed to manage real-power and reactive-power flows among the different energy sources, the storage unit, and the STATCOM system in the hybrid system. A simulation case study carried out on Western System Coordinating Council (WSCC 3-machine 9-bus test system for the large scale hybrid energy conversion system has been developed using the DIgSILENT/Power Factory software platform. The hybrid system performance under different scenarios has been verified by simulation studies using practical load demand profiles and real weather data.

  14. Large area high-speed metrology SPM system

    International Nuclear Information System (INIS)

    Klapetek, P; Valtr, M; Martinek, J; Picco, L; Payton, O D; Miles, M; Yacoot, A

    2015-01-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm 2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope. (paper)

  15. Large area high-speed metrology SPM system

    Science.gov (United States)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  16. Direct evaluation of free energy for large system through structure integration approach.

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2015-09-30

    We propose a new approach, 'structure integration', enabling direct evaluation of configurational free energy for large systems. The present approach is based on the statistical information of lattice. Through first-principles-based simulation, we find that the present method evaluates configurational free energy accurately in disorder states above critical temperature.

  17. Relevance of axionlike particles for very-high-energy astrophysics

    International Nuclear Information System (INIS)

    De Angelis, Alessandro; Galanti, Giorgio; Roncadelli, Marco

    2011-01-01

    Several extensions of the standard model and, in particular, superstring theories suggest the existence of axionlike particles (ALPs), which are very light spin-zero bosons with a two-photon coupling. As a consequence, photon-ALP oscillations occur in the presence of an external magnetic field, and ALPs can lead to observable effects on the measured photon spectrum of astrophysical sources. An intriguing situation arises when blazars are observed in the very-high-energy (VHE) band--namely, above 100 GeV--as it is the case with the presently operating Imaging Atmospheric Cherenkov Telescopes H.E.S.S, Major Atmospheric Gamma Imaging Cherenkov telescope, Collaboration of Australia and Nippon for a Gamma Ray Observatory in the Outback III, and VERITAS. The extragalactic background light produced by galaxies during cosmic evolution gives rise to a source dimming which becomes important in the VHE band and increases with energy, since hard photons from a blazar scatter off soft extragalactic background light photons thereby disappearing into e + e - pairs. This dimming can be considerably reduced by photon-ALP oscillations, and since they are energy independent the resulting blazar spectra become harder than expected. We consider throughout a scenario first proposed by De Angelis, Roncadelli, and Mansutti in which the above strategy is implemented with photon-ALP oscillations triggered by large-scale magnetic fields, and we systematically investigate its implications for VHE blazars. We find that for ALPs lighter than 5·10 -10 eV the photon survival probability is larger than predicted by conventional physics above a few hundred GeV. Specifically, a boost factor of 10 can easily occur for sources at large distance and large energy, e.g. at 8 TeV for the blazar 1ES 0347-121 at redshift z=0.188. This is a clear-cut prediction which can be tested with the planned Cherenkov Telescope Array and the High Altitude Water Cherenkov Experiment (HAWC) water Cherenkov

  18. The IEEE 1355 Standard. Developments, performance and application in high energy physics

    International Nuclear Information System (INIS)

    Haas, S.

    1998-12-01

    The data acquisition systems of the next generation High Energy Physics experiments at the Large Hadron Collider (LHC) at CERN will rely on high-speed point-to-point links and switching networks for their higher level trigger and event building systems. This thesis provides a detailed evaluation of the DS-Link and switch technology, which is based on the IEEE 1355 standard for Heterogeneous Interconnect (HIC). The DS-Link is a bidirectional point-to-point serial interconnect, operating at speeds up to 200 MBaud. The objective of this thesis was to study the performance of the IEEE 1355 link and switch technology and to demonstrate that switching networks using this technology would scale to meet the requirements of the High Energy Physics applications

  19. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    Science.gov (United States)

    Jensen, Tue V.; Pinson, Pierre

    2017-11-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  20. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system.

    Science.gov (United States)

    Jensen, Tue V; Pinson, Pierre

    2017-11-28

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  1. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    Science.gov (United States)

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Potential ceramics processing applications with high-energy electron beams

    International Nuclear Information System (INIS)

    Struve, K.W.; Turman, B.N.

    1993-01-01

    High-energy, high-current electron beams may offer unique features for processing of ceramics that are not available with any other heat source. These include the capability to instantaneously heat to several centimeters in depth, to preferentially deposit energy in dense, high-z materials, to process at atmospheric pressures in air or other gases, to have large control over heating volume and heating rate, and to have efficient energy conversion. At a recent workshop organized by the authors to explore opportunities for electron beam processing of ceramics, several applications were identified for further development. These were ceramic joining, fabrication of ceramic powders, and surface processing of ceramics. It may be possible to join ceramics by either electron-beam brazing or welding. Brazing with refractory metals might also be feasible. The primary concern for brazing is whether the braze material can wet to the ceramic when rapidly heated by an electron beam. Raw ceramic powders, such as silicon nitride and aluminum nitride, which are difficult to produce by conventional techniques, could possibly be produced by vaporizing metals in a nitrogen atmosphere. Experiments need to be done to verify that the vaporized metal can fully react with the nitrogen. By adjusting beam parameters, high-energy beams can be used to remove surface flaws which are often sites of fracture initiation. They can also be used for surface cleaning. The advantage of electron beams rather than ion beams for this application is that the heat deposition can be graded into the material. The authors will discuss the capabilities of beams from existing machines for these applications and discuss planned experiments

  3. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  4. Large scale anisotropy studies of ultra high energy cosmic rays using data taken with the surface detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Grigat, Marius

    2011-06-10

    The distribution of arrival directions of cosmic rays is remarkably uniform over the complete spectrum of energies. At large angular scales only tiny deviations from isotropy have been observed and huge statistics are required to quantify the corresponding amplitudes. The measurement of cosmic rays with energies above 10{sup 15} eV is only feasible with large, earthbound observatories: The cosmic ray primary particles initiate cascades of secondary particles in the Earth's atmosphere. Every aspect of the development of these air showers down to the measurement of the resulting particles at ground level needs to be well understood and controlled in order to precisely reconstruct the properties of the primary particle. The development of air showers is subject to systematic distortions caused by the magnetic field of the Earth. Both this and other local effects are capable of inducing false anisotropy into the distribution of arrival directions. In this thesis, the effect of the geomagnetic field on the energy measurement is modelled and quantified; consequently, a correction of the energy estimator is derived. Furthermore, a method is introduced to fit dipolar patterns to the distribution of arrival directions of cosmic rays as observed from the field of view of the surface detector of the Pierre Auger Observatory. After correcting for all relevant local effects the method is applied to data and the parameters of a potentially underlying dipole are determined and evaluated. (orig.)

  5. Large scale anisotropy studies of ultra high energy cosmic rays using data taken with the surface detector of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Grigat, Marius

    2011-06-10

    The distribution of arrival directions of cosmic rays is remarkably uniform over the complete spectrum of energies. At large angular scales only tiny deviations from isotropy have been observed and huge statistics are required to quantify the corresponding amplitudes. The measurement of cosmic rays with energies above 10{sup 15} eV is only feasible with large, earthbound observatories: The cosmic ray primary particles initiate cascades of secondary particles in the Earth's atmosphere. Every aspect of the development of these air showers down to the measurement of the resulting particles at ground level needs to be well understood and controlled in order to precisely reconstruct the properties of the primary particle. The development of air showers is subject to systematic distortions caused by the magnetic field of the Earth. Both this and other local effects are capable of inducing false anisotropy into the distribution of arrival directions. In this thesis, the effect of the geomagnetic field on the energy measurement is modelled and quantified; consequently, a correction of the energy estimator is derived. Furthermore, a method is introduced to fit dipolar patterns to the distribution of arrival directions of cosmic rays as observed from the field of view of the surface detector of the Pierre Auger Observatory. After correcting for all relevant local effects the method is applied to data and the parameters of a potentially underlying dipole are determined and evaluated. (orig.)

  6. Large scale anisotropy studies of ultra high energy cosmic rays using data taken with the surface detector of the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Grigat, Marius

    2011-01-01

    The distribution of arrival directions of cosmic rays is remarkably uniform over the complete spectrum of energies. At large angular scales only tiny deviations from isotropy have been observed and huge statistics are required to quantify the corresponding amplitudes. The measurement of cosmic rays with energies above 10 15 eV is only feasible with large, earthbound observatories: The cosmic ray primary particles initiate cascades of secondary particles in the Earth's atmosphere. Every aspect of the development of these air showers down to the measurement of the resulting particles at ground level needs to be well understood and controlled in order to precisely reconstruct the properties of the primary particle. The development of air showers is subject to systematic distortions caused by the magnetic field of the Earth. Both this and other local effects are capable of inducing false anisotropy into the distribution of arrival directions. In this thesis, the effect of the geomagnetic field on the energy measurement is modelled and quantified; consequently, a correction of the energy estimator is derived. Furthermore, a method is introduced to fit dipolar patterns to the distribution of arrival directions of cosmic rays as observed from the field of view of the surface detector of the Pierre Auger Observatory. After correcting for all relevant local effects the method is applied to data and the parameters of a potentially underlying dipole are determined and evaluated. (orig.)

  7. UPR/Mayaguez High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    López, Angel M. [Univ. of Puerto Rico, Mayaguez (Puerto Rico)

    2015-10-27

    For the period of sixteen years covered by this report (June 1, 1997 - July 31, 2013) the High Energy Physics Group at the University of Puerto Rico’s Mayaguez Campus (UPRM) carried out an extensive research program that included major experiments at Fermi National Accelerator Laboratory (Fermilab), the Cornell Electron-positron Collider and CERN. In particular, these were E831 (FOCUS) at Fermilab, CLEOc at Cornell and the Compact Muon Solenoid (CMS) at the Large Hadron Collider (LHC) at CERN. The group’s history is one of successful execution and growth. Beginning with one faculty researcher in 1985, it eventually included four faculty researchers, one post-doctoral research associate, two undergraduates and as many as six graduate students at one time working on one of the experiments that discovered the Higgs boson. Some of this expansion was due to the group’s leveraging of funds from the Department of Energy’s core grant to attract funds from National Science Foundation programs not targeted to high energy physics. Besides the group’s research productivity, its other major contribution was the training of a large number of MS students who later went on to successful technical careers in industry as well as academia including many who obtained PhD degrees at US universities. In an attempt to document this history, this final report gives a general description of the Group’s work prior to June 1, 2010, the starting date for the last grant renewal period. Much more detail can, of course, be found in the annual reports submitted up to that date. The work during the last grant period is discussed in detail in a separate section. To summarize the group’s scientific accomplishments, one can point to the results of the experiments. Both FOCUS and CLEOc were designed to carry out precise measurements of processes involving the heavy quarks, charm and bottom. Heavy quarks are particularly interesting because, due to their mass, theoretical calculations

  8. Laboratory Astrophysics Using High Energy Density Photon and Electron Beams

    CERN Document Server

    Bingham, Robert

    2005-01-01

    The development of intense laser and particle beams has opened up new opportunities to study high energy density astrophysical processes in the Laboratory. With even higher laser intensities possible in the near future vacuum polarization processes such as photon - photon scattering with or without large magnetic fields may also be experimentally observed. In this talk I will review the status of laboratory experiments using intense beans to investigate extreme astrophysical phenomena such as supernovae explosions, gamma x-ray bursts, ultra-high energy cosmic accelerators etc. Just as intense photon or electron beams can excite relativistic electron plasma waves or wakefields used in plasma acceleration, intense neutrino beams from type II supernovae can also excite wakefields or plasma waves. Other instabilities driven by intense beams relevant to perhaps x-ray bursts is the Weibel instability. Simulation results of extreme processes will also be presented.

  9. High energy astrophysics

    International Nuclear Information System (INIS)

    Engel, A.R.

    1979-01-01

    High energy astrophysical research carried out at the Blackett Laboratory, Imperial College, London is reviewed. Work considered includes cosmic ray particle detection, x-ray astronomy, gamma-ray astronomy, gamma and x-ray bursts. (U.K.)

  10. The role of the state in sustainable energy transitions: A case study of large smart grid demonstration projects in Japan

    International Nuclear Information System (INIS)

    Mah, Daphne Ngar-yin; Wu, Yun-Ying; Ip, Jasper Chi-man; Hills, Peter Ronald

    2013-01-01

    Smart grids represent one of the most significant evolutionary changes in energy management systems as they enable decentralised energy systems, the use of large-scale renewable energy as well as major improvements in demand-side-management. Japan is one of the pioneers in smart grid deployment. The Japanese model is characterised by a government-led, community-oriented, and business-driven approach with the launch of four large-scale smart-community demonstration projects. Our case study of large smart grid demonstration projects in Japan found that the Japanese government has demonstrated its high governing capacity in terms of leadership, recombinative capacity, institutional capacity, enabling capacity, and inducement capacity. However, the major limitations of the government in introducing some critical regulatory changes have constrained the smart grid deployment from advancing to a higher-order form of smart grid developments. This paper calls for more attention to be given to the importance of regulatory changes that are essential to overcome the technological lock-in, and the complementary roles of non-state actors such as the business sector and consumers to strengthen the governing capacity of the state. - Highlights: • Smart grids introduce evolutionary changes in energy management systems. • The Japanese model is government-led, community-oriented, and business-driven. • The Japanese government has demonstrated its high governing capacity. • But the limitations of the government have constrained the smart grid developments. • More attention needs to be given to regulatory changes and non-state actors

  11. Some aspects of the applications of wire chambers in high energy physics experiments at large accelerators

    International Nuclear Information System (INIS)

    Turala, M.

    1982-01-01

    An application of proportional and drift chambers in four large spectrometers at the accelerators of IHEP Serpukhov and CERN Geneva is described. An operation of wire chambers at high intensities and high multiplicities of particles is discussed. The results of investigations of their efficiencies, spatial resolution (for one and two-dimensional readout) and long term stability are presented. Problems of preselection of a given class of events are discussed. The systems for preselection of defined multiplicities or a scattering angle of particles, in which proportional chambers have been used, are described and the results of their application in the real experiments are presented. (author)

  12. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  13. Electricity network limitations on large-scale deployment of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, R.J.

    1999-07-01

    This report sought to identify limitation on large scale deployment of wind energy in the UK. A description of the existing electricity supply system in England, Scotland and Wales is given, and operational aspects of the integrated electricity networks, licence conditions, types of wind turbine generators, and the scope for deployment of wind energy in the UK are addressed. A review of technical limitations and technical criteria stipulated by the Distribution and Grid Codes, the effects of system losses, and commercial issues are examined. Potential solutions to technical limitations are proposed, and recommendations are outlined.

  14. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    Science.gov (United States)

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  15. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2013-01-01

    originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out...

  16. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  17. Risk Management Challenges in Large-scale Energy PSS

    DEFF Research Database (Denmark)

    Tegeltija, Miroslava; Oehmen, Josef; Kozin, Igor

    2017-01-01

    Probabilistic risk management approaches have a long tradition in engineering. A large variety of tools and techniques based on the probabilistic view of risk is available and applied in PSS practice. However, uncertainties that arise due to lack of knowledge and information are still missing...... adequate representations. We focus on a large-scale energy company in Denmark as one case of current product/servicesystems risk management best practices. We analyze their risk management process and investigate the tools they use in order to support decision making processes within the company. First, we...... identify the following challenges in the current risk management practices that are in line with literature: (1) current methods are not appropriate for the situations dominated by weak knowledge and information; (2) quality of traditional models in such situations is open to debate; (3) quality of input...

  18. High performance computing in power and energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Khaitan, Siddhartha Kumar [Iowa State Univ., Ames, IA (United States); Gupta, Anshul (eds.) [IBM Watson Research Center, Yorktown Heights, NY (United States)

    2013-07-01

    The twin challenge of meeting global energy demands in the face of growing economies and populations and restricting greenhouse gas emissions is one of the most daunting ones that humanity has ever faced. Smart electrical generation and distribution infrastructure will play a crucial role in meeting these challenges. We would need to develop capabilities to handle large volumes of data generated by the power system components like PMUs, DFRs and other data acquisition devices as well as by the capacity to process these data at high resolution via multi-scale and multi-period simulations, cascading and security analysis, interaction between hybrid systems (electric, transport, gas, oil, coal, etc.) and so on, to get meaningful information in real time to ensure a secure, reliable and stable power system grid. Advanced research on development and implementation of market-ready leading-edge high-speed enabling technologies and algorithms for solving real-time, dynamic, resource-critical problems will be required for dynamic security analysis targeted towards successful implementation of Smart Grid initiatives. This books aims to bring together some of the latest research developments as well as thoughts on the future research directions of the high performance computing applications in electric power systems planning, operations, security, markets, and grid integration of alternate sources of energy, etc.

  19. McRunjob: A High Energy Physics Workflow Planner for Grid Production Processing

    OpenAIRE

    Graham, G E; Evans, D; Bertram, I

    2003-01-01

    McRunjob is a powerful grid workflow manager used to manage the generation of large numbers of production processing jobs in High Energy Physics. In use at both the DZero and CMS experiments, McRunjob has been used to manage large Monte Carlo production processing since 1999 and is being extended to uses in regular production processing for analysis and reconstruction. Described at CHEP 2001, McRunjob converts core metadata into jobs submittable in a variety of environments. The powerful core...

  20. Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

    Science.gov (United States)

    KM3NeT Collaboration; Adrián-Martínez, S.; Ageron, M.; Aguilar, J. A.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.; Ameli, F.; Anassontzis, E. G.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A.; Aubert, J.-J.; Bakker, R.; Ball, A. E.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; de Bel, M.; Belias, A.; Bellou, N.; Berbee, E.; Berkien, A.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Bigourdan, B.; Billault, M.; de Boer, R.; Boer Rookhuizen, H.; Bonori, M.; Borghini, M.; Bou-Cabo, M.; Bouhadef, B.; Bourlis, G.; Bouwhuis, M.; Bradbury, S.; Brown, A.; Bruni, F.; Brunner, J.; Brunoldi, M.; Busto, J.; Cacopardo, G.; Caillat, L.; Calvo Díaz-Aldagalán, D.; Calzas, A.; Canals, M.; Capone, A.; Carr, J.; Castorina, E.; Cecchini, S.; Ceres, A.; Cereseto, R.; Chaleil, Th.; Chateau, F.; Chiarusi, T.; Choqueuse, D.; Christopoulou, P. E.; Chronis, G.; Ciaffoni, O.; Circella, M.; Cocimano, R.; Cohen, F.; Colijn, F.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Costa, M.; Coyle, P.; Craig, J.; Creusot, A.; Curtil, C.; D'Amico, A.; Damy, G.; De Asmundis, R.; De Bonis, G.; Decock, G.; Decowski, P.; Delagnes, E.; De Rosa, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drogou, J.; Drouhin, D.; Druillole, F.; Drury, L.; Durand, D.; Durand, G. A.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Espinosa, V.; Etiope, G.; Favali, P.; Felea, D.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fotiou, A.; Fritsch, U.; Gajanana, D.; Garaguso, R.; Gasparini, G. P.; Gasparoni, F.; Gautard, V.; Gensolen, F.; Geyer, K.; Giacomelli, G.; Gialas, I.; Giordano, V.; Giraud, J.; Gizani, N.; Gleixner, A.; Gojak, C.; Gómez-González, J. P.; Graf, K.; Grasso, D.; Grimaldi, A.; Groenewegen, R.; Guédé, Z.; Guillard, G.; Guilloux, F.; Habel, R.; Hallewell, G.; van Haren, H.; van Heerwaarden, J.; Heijboer, A.; Heine, E.; Hernández-Rey, J. J.; Herold, B.; Hillebrand, T.; van de Hoek, M.; Hogenbirk, J.; Hößl, J.; Hsu, C. C.; Imbesi, M.; Jamieson, A.; Jansweijer, P.; de Jong, M.; Jouvenot, F.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karolak, M.; Katz, U. F.; Kavatsyuk, O.; Keller, P.; Kiskiras, Y.; Klein, R.; Kok, H.; Kontoyiannis, H.; Kooijman, P.; Koopstra, J.; Kopper, C.; Korporaal, A.; Koske, P.; Kouchner, A.; Koutsoukos, S.; Kreykenbohm, I.; Kulikovskiy, V.; Laan, M.; La Fratta, C.; Lagier, P.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Leisos, A.; Lenis, D.; Leonora, E.; Le Provost, H.; Lim, G.; Llorens, C. D.; Lloret, J.; Löhner, H.; Lo Presti, D.; Lotrus, P.; Louis, F.; Lucarelli, F.; Lykousis, V.; Malyshev, D.; Mangano, S.; Marcoulaki, E. C.; Margiotta, A.; Marinaro, G.; Marinelli, A.; Mariş, O.; Markopoulos, E.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marvaldi, J.; Masullo, R.; Maurin, G.; Migliozzi, P.; Migneco, E.; Minutoli, S.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Monmarthe, E.; Morganti, M.; Mos, S.; Motz, H.; Moudden, Y.; Mul, G.; Musico, P.; Musumeci, M.; Naumann, Ch.; Neff, M.; Nicolaou, C.; Orlando, A.; Palioselitis, D.; Papageorgiou, K.; Papaikonomou, A.; Papaleo, R.; Papazoglou, I. A.; Păvălaş, G. E.; Peek, H. Z.; Perkin, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Priede, I. G.; Psallidas, A.; Rabouille, C.; Racca, C.; Radu, A.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Reed, C.; Reito, S.; Resvanis, L. K.; Riccobene, G.; Richter, R.; Roensch, K.; Rolin, J.; Rose, J.; Roux, J.; Rovelli, A.; Russo, A.; Russo, G. V.; Salesa, F.; Samtleben, D.; Sapienza, P.; Schmelling, J.-W.; Schmid, J.; Schnabel, J.; Schroeder, K.; Schuller, J.-P.; Schussler, F.; Sciliberto, D.; Sedita, M.; Seitz, T.; Shanidze, R.; Simeone, F.; Siotis, I.; Sipala, V.; Sollima, C.; Sparnocchia, S.; Spies, A.; Spurio, M.; Staller, T.; Stavrakakis, S.; Stavropoulos, G.; Steijger, J.; Stolarczyk, Th.; Stransky, D.; Taiuti, M.; Taylor, A.; Thompson, L.; Timmer, P.; Tonoiu, D.; Toscano, S.; Touramanis, C.; Trasatti, L.; Traverso, P.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Urbano, F.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Viola, S.; Vivolo, D.; Wagner, S.; Werneke, P.; White, R. J.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zhukov, V.; Zonca, E.; Zornoza, J. D.; Zúñiga, J.

    2013-02-01

    A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50° above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km3 neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km3 of instrumented volume. The effect of a possible lower cutoff is also considered.

  1. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  2. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  3. High energy astrophysics an introduction

    CERN Document Server

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  4. Status of networking for high energy physics in the United States

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1985-06-01

    Networks are used extensively for High Energy Physics in the United States. Although the networks have grown in an ad hoc manner with connections typically being made to satisfy the needs of one detector group, they now encompass to large fraction of the US HEP community in one form or another. This paper summarizes the current status and experience with networks

  5. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    Directory of Open Access Journals (Sweden)

    Jaeyoung Park

    2015-06-01

    Full Text Available We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad’s work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β. This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  6. The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies

    Science.gov (United States)

    Wright, Jason Thomas; Povich, Matthew; Griffith, Roger; Maldonado, Jessica; Sigurdsson, Steinn; Star Cartier, Kimberly

    2015-08-01

    The WISE and Spitzer large-area surveys of the mid-infrared sky bring a new opportunity to search for evidence of the energy supplies of very large extraterrestrial civilizations. If these energy supplies rival the output of a civilization's parent star (Kardashev Type II), or if a galaxy-spanning supercivilization's use rivals that of the total galactic luminosity (Type III), they would be detectable as anomolously mid-infrared-bright stars and galaxies, respectively. We have already performed the first search for this emission from Type III civilizations using the WISE all-sky survey, and put the first upper limits on them in the local universe, and discuss ways to improve on these limits. We also discuss some detectable forms of and limits on Type II civilizations in the Mliky Way.

  7. 2006-2007 Academic training programme: QCD and high energy nuclear collision

    CERN Multimedia

    HR Department

    2007-01-01

    LECTURE SERIES 7, 8, 9 May QCD and high energy nuclear collisions D. Kharzeev, Brookhaven National Laboratory, USA 11:00 to 12:00 - Main Auditorium, Bldg. 500 on 7 and 8 May, Council Chamber on 9 May Six years ago, Relativistic Heavy Ion Collider at Brookhaven started colliding heavy nuclei at record center-of-mass energies of up to 200 GeV/nucleon. Very soon, the Large Hadron Collider at CERN will push the energy of the ions to an astounding 5 TeV/nucleon. What can be learnt from the experiments at these machines? What do we know about the physics of super--dense matter already? I will argue that heavy ion accelerators bring us to the new frontiers of physical knowledge by creating strong color fields and very high densities of partons, at which qualitatively new phenomena emerge. I will also discuss the cross-disciplinary implications for cosmology, astrophysics, and connections to condensed matter physics.

  8. 2006-2007 Academic training programme: QCD and high energy nuclear collisions

    CERN Multimedia

    HR Department

    2007-01-01

    LECTURE SERIES 7, 8, 9 May 2007 11:00 to 12:00 - Main Auditorium, Bldg. 500 on 7 and 8 May, Council Chamber on 9 May QCD and high energy nuclear collisions D. Kharzeev, Brookhaven National Laboratory, USA Six years ago, the Relativistic Heavy Ion Collider at Brookhaven started colliding heavy nuclei at record center-of-mass energies of up to 200 GeV/nucleon. Very soon, the Large Hadron Collider at CERN will push the energy of the ions to an astounding 5 TeV/nucleon. What can be learnt from the experiments at these machines? What do we know about the physics of super--dense matter already? I will argue that heavy ion accelerators bring us to the new frontiers of physical knowledge by creating strong color fields and very high densities of partons, at which qualitatively new phenomena emerge. I will also discuss the cross-disciplinary implications for cosmology, astrophysics, and connections to condensed matter physics.

  9. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    Science.gov (United States)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  10. Study of high muon multiplicity cosmic ray events with ALICE at the CERN Large Hadron Collider

    CERN Document Server

    Rodriguez Cahuantzi, Mario

    2015-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider. Located 52 meters undergroundwith 28meters of overburden rock, it has also been used to detect atmosphericmuons produced by cosmic-ray interactions in the upper atmosphere. We present the muon multiplicity distribution of these cosmic-ray events and their comparison with Monte Carlo simulation. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density larger than 5.9 m$^{−2}$. The measured rate of these events shows that they stem from primary cosmic-rays with energies above 10$^{16}$ eV. The frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic-rays in this energy range and using the most recent hadronic interaction models to simulate the development of the resulting air sh...

  11. Safety management of a high energy accelerator used in the production of tritium

    International Nuclear Information System (INIS)

    Stark, R.M.; Brown, N.W.; Allen C.L.

    1997-01-01

    Interest in a high energy accelerator for producing tritium raises considerations regarding facility Safety Management. Accelerator facility hazards require safety analysis to consider factors such as: safe management of a large flux of very high energy neutrons, sustained operation in a very high energy proton and neutron field, neutron irradiation of a variety of materials, and handling and processing of significant quantities of tritium. Safety considerations of support systems and potential effects of magnetic fields must also be included. Existing Safety Management techniques, safety standards, and criteria for operation of high energy accelerators provide considerable guidance. These must, however, be reviewed to determine their appropriate use for safe operation of a very large, tritium-producing accelerator. New or revised safety standards may be required to establish and maintain the safe operating-envelope. The goal will be to develop a set of tailored standards and criteria that provide a reasonable operational envelope and assure adequate public, worker, and environmental safety. The generation of an appropriate set of safety standards and criteria will include several activities. One activity will involve evaluation of proposed facility designs to determine possible hazards. Another activity will involve a detailed review of existing accelerator safety management systems. A third activity will involve the review of operating histories of existing facilities. Facilities approximating the characteristics of the anticipated tritium production facility will be considered. Following completion of these activities a proposed Safety Management System and criteria for application to these facilities will be drafted. The need for new analytical methods and for additional safety standards will be identified. The draft document will then be reviewed and revised to establish the standards and criteria within the appropriate Department of Energy framework

  12. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  13. A large capacity, high-speed multiparameter multichannel analysis system

    International Nuclear Information System (INIS)

    Hendricks, R.W.; Suehiro, S.; Seeger, P.A.; Scheer, J.W.

    1982-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK 8600 2048 K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron X-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources. Modules which have been developed to date include a buffer for two-dimensional position-sensitive detectors, a mapper for high-speed coordinate transformations, a buffered time-of-flight clock, a time-correlator for synchronized diffraction experiments, and a display unit for data bus diagnostics. (orig.)

  14. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats.

    Directory of Open Access Journals (Sweden)

    Fang Xie

    Full Text Available To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD or high-fat, high-sucrose and high-salt diets (HFSSD relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG, insulin, free fatty acids (FFA, homeostasis model assessment-insulin resistance index (HOMA-IR, thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF as well as unmyelinated fibers (UMF in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension and prediabetic conditions (impaired fasting glucose could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals.

  15. High Energy Diets-Induced Metabolic and Prediabetic Painful Polyneuropathy in Rats

    Science.gov (United States)

    Hou, Jun-Feng; Jiao, Kai; Costigan, Michael; Chen, Jun

    2013-01-01

    To establish the role of the metabolic state in the pathogenesis of polyneuropathy, an age- and sex-matched, longitudinal study in rats fed high-fat and high-sucrose diets (HFSD) or high-fat, high-sucrose and high-salt diets (HFSSD) relative to controls was performed. Time courses of body weight, systolic blood pressure, fasting plasma glucose (FPG), insulin, free fatty acids (FFA), homeostasis model assessment-insulin resistance index (HOMA-IR), thermal and mechanical sensitivity and motor coordination were measured in parallel. Finally, large and small myelinated fibers (LMF, SMF) as well as unmyelinated fibers (UMF) in the sciatic nerves and ascending fibers in the spinal dorsal column were quantitatively assessed under electron microscopy. The results showed that early metabolic syndrome (hyperinsulinemia, dyslipidemia, and hypertension) and prediabetic conditions (impaired fasting glucose) could be induced by high energy diet, and these animals later developed painful polyneuropathy characterized by myelin breakdown and LMF loss in both peripheral and central nervous system. In contrast SMF and UMF in the sciatic nerves were changed little, in the same animals. Therefore the phenomenon that high energy diets induce bilateral mechanical, but not thermal, pain hypersensitivity is reflected by severe damage to LMF, but mild damage to SMF and UMF. Moreover, dietary sodium (high-salt) deteriorates the neuropathic pathological process induced by high energy diets, but paradoxically high salt consumption, may reduce, at least temporarily, chronic pain perception in these animals. PMID:23451227

  16. Spot-shadowing optimization to mitigate damage growth in a high-energy-laser amplifier chain.

    Science.gov (United States)

    Bahk, Seung-Whan; Zuegel, Jonathan D; Fienup, James R; Widmayer, C Clay; Heebner, John

    2008-12-10

    A spot-shadowing technique to mitigate damage growth in a high-energy laser is studied. Its goal is to minimize the energy loss and undesirable hot spots in intermediate planes of the laser. A nonlinear optimization algorithm solves for the complex fields required to mitigate damage growth in the National Ignition Facility amplifier chain. The method is generally applicable to any large fusion laser.

  17. The viability of balancing wind generation with large scale energy storage

    International Nuclear Information System (INIS)

    Nyamdash, Batsaikhan; Denny, Eleanor; O'Malley, Mark

    2010-01-01

    This paper studies the impact of combining wind generation and dedicated large scale energy storage on the conventional thermal plant mix and the CO 2 emissions of a power system. Different strategies are proposed here in order to explore the best operational strategy for the wind and storage system in terms of its effect on the net load. Furthermore, the economic viability of combining wind and large scale storage is studied. The empirical application, using data for the Irish power system, shows that combined wind and storage reduces the participation of mid-merit plants and increases the participation of base-load plants. Moreover, storage negates some of the CO 2 emissions reduction of the wind generation. It was also found that the wind and storage output can significantly reduce the variability of the net load under certain operational strategies and the optimal strategy depends on the installed wind capacity. However, in the absence of any supporting mechanism none of the storage devices were economically viable when they were combined with the wind generation on the Irish power system. - Research Highlights: → Energy storage would displace the peaking and mid-merit plants generations by the base-load plants generations. Energy storage may negate the CO 2 emissions reduction that is due to the increased wind generations. →Energy storage reduces the variation of the net load. →Under certain market conditions, merchant type energy storage is not viable.

  18. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  19. Spark and HPC for High Energy Physics Data Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Sehrish, Saba; Kowalkowski, Jim; Paterno, Marc

    2017-05-01

    A full High Energy Physics (HEP) data analysis is divided into multiple data reduction phases. Processing within these phases is extremely time consuming, therefore intermediate results are stored in files held in mass storage systems and referenced as part of large datasets. This processing model limits what can be done with interactive data analytics. Growth in size and complexity of experimental datasets, along with emerging big data tools are beginning to cause changes to the traditional ways of doing data analyses. Use of big data tools for HEP analysis looks promising, mainly because extremely large HEP datasets can be represented and held in memory across a system, and accessed interactively by encoding an analysis using highlevel programming abstractions. The mainstream tools, however, are not designed for scientific computing or for exploiting the available HPC platform features. We use an example from the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) in Geneva, Switzerland. The LHC is the highest energy particle collider in the world. Our use case focuses on searching for new types of elementary particles explaining Dark Matter in the universe. We use HDF5 as our input data format, and Spark to implement the use case. We show the benefits and limitations of using Spark with HDF5 on Edison at NERSC.

  20. Proceedings of the 2011 CERN - Latin American School of High-Energy Physics

    International Nuclear Information System (INIS)

    Grojean, C.; Mulders, M.; Spiropulu

    2011-01-01

    The CERN-Latin-American School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on quantum field theory, quantum chromodynamics, flavour physics and CP-violation, physics beyond the Standard Model, neutrino physics, particle cosmology, ultrahigh-energy cosmic rays and heavy-ion physics, as well as a presentation of recent results form the Large Hadron Collider (LHC) and short introduction to the principles of particle physics instrumentation

  1. Proceedings of the 2011 CERN - Latin American School of High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Grojean, C.; Mulders, M.; Spiropulu, [eds.

    2011-07-01

    The CERN-Latin-American School of High-Energy Physics is intended to give young physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These proceedings contain lectures on quantum field theory, quantum chromodynamics, flavour physics and CP-violation, physics beyond the Standard Model, neutrino physics, particle cosmology, ultrahigh-energy cosmic rays and heavy-ion physics, as well as a presentation of recent results form the Large Hadron Collider (LHC) and short introduction to the principles of particle physics instrumentation.

  2. The role of large scale storage in a GB low carbon energy future: Issues and policy challenges

    International Nuclear Information System (INIS)

    Gruenewald, Philipp; Cockerill, Tim; Contestabile, Marcello; Pearson, Peter

    2011-01-01

    Large scale storage offers the prospect of capturing and using excess electricity within a low carbon energy system, which otherwise might have to be wasted. Incorporating the role of storage into current scenario tools is challenging, because it requires high temporal resolution to reflect the effects of intermittent sources on system balancing. This study draws on results from a model with such resolution. It concludes that large scale storage could become economically viable for scenarios with high penetration of renewables. As the proportion of intermittent sources increases, the optimal type of storage shifts towards solutions with low energy related costs, even at the expense of efficiency. However, a range of uncertainties have been identified, concerning storage technology development, the regulatory environment, alternatives to storage and the stochastic uncertainty of year-on-year revenues. All of these negatively affect the cost of finance and the chances of successful market uptake. We argue, therefore, that, if the possible wider system and social benefits from the presence of storage are to be achieved, stronger and more strategic policy support may be necessary. More work on the social and system benefits of storage is needed to gauge the appropriate extent of support measures. - Highlights: → Time resolved modelling shows future potential for large scale power storage in GB. → The value of storage is highly sensitive to a range of parameters. → Uncertainty over the revenue from storage could pose a barrier to investment. → To realise wider system benefits stronger and more strategic policy support may be necessary.

  3. Quantum Sensing for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Zeeshan; et al.

    2018-03-29

    Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.

  4. High Energy Physics

    Science.gov (United States)

    Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP

  5. Energy peaks: A high energy physics outlook

    Science.gov (United States)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  6. Lasers and future high energy colliders

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    Future high energy colliders, directions for particle physics and relationship to new technology such as lasers are discussed. Experimental approaches to explore New Physics with emphasis on the utility of high energy colliders are also discussed

  7. 76 FR 53119 - High Energy Physics Advisory Panel

    Science.gov (United States)

    2011-08-25

    ... DEPARTMENT OF ENERGY High Energy Physics Advisory Panel AGENCY: Department of Energy. ACTION... hereby given that the High Energy Physics Advisory Panel will be renewed for a two-year period, beginning...-range planning and priorities in the national High Energy Physics program. Additionally, the renewal of...

  8. Incontri di Fisica delle Alte Energie Italian Meeting on High Energy Physics Napoli

    CERN Document Server

    Carlino, Gianpaolo; Merola, Leonardo; Paolucci, Pierluigi; Ricciardi, Giulia; IFAE 2007

    2008-01-01

    This book collects the Proceedings of the Workshop "Incontri di Fisica delle Alte Energie (IFAE) 2007, Napoli, 11-13 April 2007". This is the sixth edition of a series of meetings on fundamental research in particle physics and was attended by about 160 researchers. Presentations, both theoretical and experimental, addressed the status of Physics of the Standard Model and beyond, Flavour phyisc, Neutrino and Astroparticle physics, new technology in high energy physics. Special emphasis was given to the expectations of the forthcoming Large Hadron Collider, due in operation at the end of 2007. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings and of the open questions in this extremely challenging cultural field. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings ...

  9. High energy gravitational scattering: a numerical study

    CERN Document Server

    Marchesini, Giuseppe

    2008-01-01

    The S-matrix in gravitational high energy scattering is computed from the region of large impact parameters b down to the regime where classical gravitational collapse is expected to occur. By solving the equation of an effective action introduced by Amati, Ciafaloni and Veneziano we find that the perturbative expansion around the leading eikonal result diverges at a critical value signalling the onset of a new regime. We then discuss the main features of our explicitly unitary S-matrix down to the Schwarzschild's radius R=2G s^(1/2), where it diverges at a critical value b ~ 2.22 R of the impact parameter. The nature of the singularity is studied with particular attention to the scaling behaviour of various observables at the transition. The numerical approach is validated by reproducing the known exact solution in the axially symmetric case to high accuracy.

  10. Investigation of collimator materials for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(CDS)2085459; Bertarelli, Alessandro; Redaelli, Stefano

    This PhD thesis work has been carried out at the European Organisation for Nuclear Research (CERN), Geneva, Switzerland), in the framework of the High Luminosity (HL) upgrade of the Large Hadron Collider (LHC). The HL-LHC upgrade will bring the accelerator beyond the nominal performance: it is planning to reach higher stored beam energy up to 700 MJ, through more intense proton beams. The present multi-stage LHC collimation system was designed to handle 360 MJ stored beam energy and withstand realistic losses only for this nominal beam. Therefore, the challenging HL-LHC beam parameters pose strong concerns for beam collimation, which call for important upgrades of the present system. The objective of this thesis is to provide solid basis for optimum choices of materials for the different collimators that will be upgraded for the baseline layout of the HL-LHC collimation system. To achieve this goal, material-related limitations of the present system are identified and novel advanced composite materials are se...

  11. Shielding for high energy, high intensity electron accelerator installation

    International Nuclear Information System (INIS)

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  12. Comparison of energy flows in deep inelastic scattering events with and without a large rapidity gap

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1994-07-01

    Energy flows in deep inelastic electron-proton scattering are investigated at a centre-of-mass energy of 296 GeV for the range Q 2 ≥10 GeV 2 using the ZEUS detector. A comparison is made between events with and without a large rapidity gap between the hadronic system and the proton direction. The energy flows, corrected for detector acceptance and resolution, are shown for these two classes of events in both the HERA laboratory frame and the Breit frame. From the differences in the shapes of these energy flows we conclude that QCD radiation is suppressed in the large-rapidity-gap events compared to the events without a large rapidity gap. (orig.)

  13. High energy proton PIXE [HEPP

    International Nuclear Information System (INIS)

    McKee, J.S.C.

    1993-01-01

    Studies of particle induced X-ray emission (PIXE) have been widespread and detailed in recent years and despite the fact that most data obtained are from low energy 1-3 MeV experiments, the value of higher energy proton work with its emphasis on K X-ray emission has become more marked as time has progressed. The purpose of this review paper is to outline the history of analysis using high energy protons and to compare and contrast the results obtained with those from lower energy analysis using more firmly established analytical techniques. The work described will concentrate exclusively on proton induced processes and will attempt to outline the rationale for selecting an energy, greater than 20 and up to 70 MeV protons for initiating particles. The relative ease and accuracy of the measurements obtained will be addressed. Clearly such X-ray studies should be seen as complementing low energy work in many instances rather than competing directly with them. However, it will be demonstrated that above a Z value of approximately 20, K X-ray analysis using high energy protons is the only way to go in this type of analysis. (author)

  14. Ultra-high energy physics and standard basic principles

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres Luis

    2014-04-01

    Full Text Available It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR at energies above ≃ 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHECR data can hopefully be used to test relativity, quantum mechanics, energy and momentum conservation, vacuum properties... as well as the elementariness of standard particles. Data on cosmic rays at energies ≃ 1020 eV may also be sensitive to new physics generated well beyond Planck scale. A typical example is provided by the search for possible signatures of a Lorentz symmetry violation (LSV associated to a privileged local reference frame (the "vacuum rest frame", VRF. If a VRF exists, the internal structure of standard particles at ultra-high energy can undergo substantial modifications. Similarly, the conventional particle symmetries may cease to be valid at such energies instead of heading to a grand unification and the structure of vacuum may no longer be governed by standard quantum field theory. Then, the question whether the notion of Planck scale still makes sense clearly becomes relevant and the very grounds of Cosmology can undergo essential modifications. UHECR studies naturally interact with the interpretation of WMAP and Planck observations. Recent Planck data analyses tend to confirm the possible existence of a privileged space direction. If the observed phenomenon turns out to be a signature of the spinorial space-time (SST we suggested in 1996-97, then conventional Particle Physics may correspond to the local properties of standard matter at low enough energy and large enough distances. This would clearly strengthen the cosmological

  15. High-energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    While high energy collision experiments yield a wealth of complicated patterns, there are a few general and very striking features that stand out. Because of the universality of these features, and because of the dominating influence they have on high energy phenomena, it is the authors opinion that a physical picture of high energy collisions must address itself first of all to these features before going into specific details. In this short talk these general and striking features are stated and a physical picture developed in the last few years to specifically accommodate these features is described. The picture was originally discussed for elastic scattering. But it leads naturally, indeed inevitably as they shall discuss, to conclusions about inelastic processes, resulting in an idea called the hypothesis of limiting fragmentation

  16. Research in Theoretical High-Energy Physics at Southern Methodist University

    International Nuclear Information System (INIS)

    Olness, Fredrick; Nadolsky, Pavel

    2016-01-01

    The SMU Theory group has developed a strong expertise in QCD, PDFs, and incisive comparisons between collider data and theory. The group pursues realistic phenomenological calculations for high-energy processes, the highly demanded research area driven by the LHC physics. Our field has seen major discoveries in recent years from a variety of experiments, large and small, including a number recognized by Nobel Prizes. There is a wealth of novel QCD data to explore. The SMU theory group develops the most advanced and innovative tools for comprehensive analysis in applications ranging from Higgs physics and new physics searches to nuclear scattering.

  17. Research in Theoretical High-Energy Physics at Southern Methodist University

    Energy Technology Data Exchange (ETDEWEB)

    Olness, Fredrick [Southern Methodist Univ., Dallas, TX (United States); Nadolsky, Pavel [Southern Methodist Univ., Dallas, TX (United States)

    2016-08-05

    The SMU Theory group has developed a strong expertise in QCD, PDFs, and incisive comparisons between collider data and theory. The group pursues realistic phenomenological calculations for high-energy processes, the highly demanded research area driven by the LHC physics. Our field has seen major discoveries in recent years from a variety of experiments, large and small, including a number recognized by Nobel Prizes. There is a wealth of novel QCD data to explore. The SMU theory group develops the most advanced and innovative tools for comprehensive analysis in applications ranging from Higgs physics and new physics searches to nuclear scattering.

  18. High energy physics in Poland: the first 50 years

    International Nuclear Information System (INIS)

    Wroblewski, A.K.

    1993-01-01

    High energy physics in Poland started in 1933 when Stanislaw Ziemecki and Konstanty Narkiewicz-Jodko performed measurements of the latitude effect for cosmic rays. Subsequently, experiments with cosmic rays were carried out in balloon flights in a deep salt mine. Other Polish pioneers in this field were Ignacy Adamczewski, Czeslaw Bialobrzeski, Marian Miesowicz, Szczepan Szczeniowski and Jan Wesolowski. The ambitious 'Star of Poland' project of a stratospheric balloon flight to study cosmic rays up to an altitude of 30000 meters was not successful, first because of the fire accident and then of the outbreak of World War II. The destruction of laboratories during the war has slowed down the development of high energy physics in Poland by at least twelve years. However, in the late forties Marian Miesowicz started important cosmic ray studies in Cracow. In 1952 research using nuclear emulsions was initiated in Warsaw by Marian Danysz and Jerzy Pniewski. Two years later Marian Miesowicz and Jerzy Gierula began similar research in Cracow. In the late fifties Aleksander Zawadzki in Lodz started comprehensive studies of extensive air showers. Already in 1963 the number of experimental and theoretical papers on high energy physics published in Poland exceeded 100. Strong experimental and theoretical groups have been established in Cracow, Lodz and Warsaw. To supplement research with emulsions and bubble chambers the construction of electronic detectors for on-line experiments has been instituted. Thus, in the early eighties Polish high energy physicists were ready to participate in large projects such as DELPHI at LEP and ZEUS and H1 at HERA. The discovery of hypernuclei by Danysz and Pniewski in 1952 may be regarded as the most important achievement of physics in post-war Poland. (author). 108 refs, 26 figs, 1 tab

  19. Ultra high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  20. High-Luminosity Large Hadron Collider (HL-LHC) Preliminary Design Report

    CERN Document Server

    Apollinari, G; Béjar Alonso, I; Brüning, O; Lamont, M; Rossi, L

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cav...