WorldWideScience

Sample records for high energetic materials

  1. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials

    Science.gov (United States)

    Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.

    2017-10-01

    One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.

  2. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  3. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  4. Safer energetic materials by a nanotechnological approach

    Science.gov (United States)

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity. Electronic supplementary information (ESI) available: Experimental details for the preparation of the V2O5@CNF/Al nanothermite; X-ray diffractogram of the V2O5@CNF/Al combustion residue; installation instructions and source code for the nt-timeline program. See DOI: 10.1039/c1nr10292c

  5. Segregation and redistribution of end-of-process energetic materials

    International Nuclear Information System (INIS)

    McCabe, R.A.; Cummins, B.; Gonzalez, M.A.

    1993-03-01

    A system recovering then recycling or reusing end-of-process energetic materials has been developed at the Lawrence Livermore National Laboratory (LLNL). The system promotes separating energetic materials with high potential for reuse or recycling from those that have no further value. A feature of the system is a computerized electronic bulletin board for advertising the availability of surplus and recovered energetic materials and process chemicals to LLNL researchers, and for posting energetic materials, ''want ads.'' The system was developed and implemented to promote waste minimization and pollution prevention at LLNL

  6. Photoactive energetic materials

    Science.gov (United States)

    Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield

    2018-02-27

    Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.

  7. Modeling of high energy laser ignition of energetic materials

    International Nuclear Information System (INIS)

    Lee, Kyung-cheol; Kim, Ki-hong; Yoh, Jack J.

    2008-01-01

    We present a model for simulating high energy laser heating and ignition of confined energetic materials. The model considers the effect of irradiating a steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultrashort (femto- and picosecond) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of cyclotrimethylenetrinitramine, triaminotrinitrobenzene, and octahydrotetranitrotetrazine are compared to experimental results. The experimental and numerical results are in good agreement

  8. Theoretical study of energetic interactions between high temperature molten materials and a low temperature fluid

    International Nuclear Information System (INIS)

    Chen, S.H.H.

    1984-01-01

    Analytical models are developed to predict the hydrodynamical transients resulting from the energetic interactions between a high temperature molten material and a low temperature liquid coolant. Initially, the molten material at high temperature and pressure is separated from the low temperature fluid by a solid metal barrier. Upon contact between the molten material and solid barrier, thermal attack occurs eventually resulting in a loss of barrier integrity. Subsequently, the molten material is injected into the liquid pool resulting in energetic interactions. The analytical models integrate a wide variety of potentially mutually-interacting transport phenomena which dominate the transient process into a deterministic scheme to predict the hydrodynamic transient process into a deterministic scheme to predict the hydrodynamic transient process. The model calculations are compared with the existing experimental results to show its engineering accuracy and adequacy in predicting such energetic interactions. Two models are formulated to bracket the transport of molten material to the rupture site for the reactor system. The stratified model minimized the rate of transport of material to the break location while the dispersed model maximized such transport. These two models are applied to a reference pressure tube reactor to evaluate the pressure transients and the potential structural damages as a result of a postulated severe primary coolant blockage in a power channel

  9. Cutting and machining energetic materials with a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, Frank; Benterou, Jerry; Lee, Ronald; Roos, Edward [Energetic Materials Center, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550 (United States)

    2003-04-01

    A femtosecond (fs) laser has been used as a tool for solving many problems involving access, machining, disassembly, inspection and avoidance of undesirable hazardous waste streams in systems containing energetic materials. Because of the unique properties of the interaction of ultrashort laser pulses with matter, the femtosecond laser can be used to safely cut these energetic materials in a precise manner without creating an unacceptable waste stream. Many types of secondary high explosives (HE) and propellants have been cut with the laser for a variety of applications ranging from disassembly of aging conventional weapons (demilitarization), inspection of energetic components of aging systems to creating unique shapes of HE for purposes of initiation and detonation physics studies. Hundreds of samples of energetic materials have been cut with the fs laser without ignition and, in most cases, without changing the surface morphology of the cut surfaces. The laser has also been useful in cutting nonenergetic components in close proximity to energetic materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  10. Erosion tests of materials by energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

  11. Nanostructured energetic materials derived from sol-gel chemistry

    International Nuclear Information System (INIS)

    Simpson, R L; Tillotson, T M; Hrubesh, L W; Gash, A E

    2000-01-01

    Initiation and detonation properties are dramatically affected by an energetic material's microstructural properties. Sol-gel chemistry allows intimacy of mixing to be controlled and dramatically improved over existing methodologies. One material goal is to create very high power energetic materials which also have high energy densities. Using sol-gel chemistry we have made a nanostructured composite energetic material. Here a solid skeleton of fuel, based on resorcinol-formaldehyde, has nanocrystalline ammonium perchlorate, the oxidizer, trapped within its pores. At optimum stoichiometry it has approximately the energy density of HMX. Transmission electron microscopy indicated no ammonium perchlorate crystallites larger than 20 nm while near-edge soft x-ray absorption microscopy showed that nitrogen was uniformly distributed, at least on the scale of less than 80 nm. Small-angle neutron scattering studies were conducted on the material. Those results were consistent with historical ones for this class of nanostructured materials. The average skeletal primary particle size was on the order of 2.7 nm, while the nanocomposite showed the growth of small 1 nm size crystals of ammonium perchlorate with some clustering to form particles greater than 10 nm

  12. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe2O3/multi-walled carbon nanotube (MWCNT)

    International Nuclear Information System (INIS)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun

    2016-01-01

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe 2 O 3 /MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe 2 O 3 (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe 2 O 3 (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe 2 O 3 /MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe 2 O 3 nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe 2 O 3 (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This strategy can be applied into other nanostructured

  13. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang

    2015-11-01

    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  14. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe{sub 2}O{sub 3}/multi-walled carbon nanotube (MWCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun, E-mail: yjluo@bit.edu.cn

    2016-05-15

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe{sub 2}O{sub 3} nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This

  15. Energetic materials: crystallization, characterization and insensitive plastic bonded explosives

    Energy Technology Data Exchange (ETDEWEB)

    Heijden, Antoine E.D.M. van der; Creyghton, Yves L.M.; Marino, Emanuela; Bouma, Richard H.B.; Scholtes, Gert J.H.G.; Duvalois, Willem [TNO Defence, Security and Safety, P. O. Box 45, 2280 AA Rijswijk (Netherlands); Roelands, Marc C.P.M. [TNO Science and Industry, P. O. Box 342, 7300 AH Apeldoorn (Netherlands)

    2008-02-15

    The product quality of energetic materials is predominantly determined by the crystallization process applied to produce these materials. It has been demonstrated in the past that the higher the product quality of the solid energetic ingredients, the less sensitive a plastic bonded explosive containing these energetic materials becomes. The application of submicron or nanometric energetic materials is generally considered to further decrease the sensitiveness of explosives. In order to assess the product quality of energetic materials, a range of analytical techniques is available. Recent attempts within the Reduced-sensitivity RDX Round Robin (R4) have provided the EM community a better insight into these analytical techniques and in some cases a correlation between product quality and shock initiation of plastic bonded explosives containing (RS-)RDX was identified, which would provide a possibility to discriminate between conventional and reduced sensitivity grades. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  16. Energetic Materials Effects on Essential Soil Processes: Decomposition of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials

    Science.gov (United States)

    2014-02-01

    availabilities of their respective food sources (bacteria and fungi ), were also unaffected-or-increasing in soil with CL-20 treatments. This is...ENERGETIC MATERIALS EFFECTS ON ESSENTIAL SOIL PROCESSES: DECOMPOSITION OF ORCHARD...GRASS (DACTYLIS GLOMERATA) LITTER IN SOIL CONTAMINATED WITH ENERGETIC MATERIALS ECBC-TR-1199 Roman G. Kuperman Ronald T. Checkai Michael Simini

  17. Probing the Dynamics of Ultra-Fast Condensed State Reactions in Energetic Materials

    Science.gov (United States)

    Piekiel, Nicholas William

    2012-01-01

    Energetic materials (EMs) are substances with a high amount of stored energy and the ability to release that energy at a rapid rate. Nanothermites and green organic energetics are two classes of EMs which have gained significant interest as they each have desirable properties over traditional explosives. These systems also possess downfalls, which…

  18. Modeling Thermal Ignition of Energetic Materials

    National Research Council Canada - National Science Library

    Gerri, Norman J; Berning, Ellen

    2004-01-01

    This report documents an attempt to computationally simulate the mechanics and thermal regimes created when a threat perforates an armor envelope and comes in contact with stowed energetic material...

  19. Synthesis and evaluation of energetic materials

    Science.gov (United States)

    Santhosh, G.

    Over the years new generations of propellants and explosives are being developed. High performance and pollution prevention issues have become the subject of interest in recent years. Desired properties of these materials are a halogen-free, nitrogen and oxygen rich molecular composition with high density and a positive heat of formation. The dinitramide anion is a new oxy anion of nitrogen and forms salts with variety of metal, organic and inorganic cations. Particular interest is in ammonium dinitramide (ADN, NH4N(NO 2)2) which is a potentially useful energetic oxidizer. ADN is considered as one of the most promising substitutes for ammonium perchlorate (AP, NH4ClO4) in currently used composite propellants. It is unique among energetic materials in that it has no carbon or chlorine; its combustion products are not detrimental to the atmosphere. Unquestionable advantage of ADN over AP is the significant improvement in the performance of solid rocket motors by 5-15%. The present thesis is centered on the experimental results along with discussion of some of the most pertinent aspects related to the synthesis and characterization of few dinitramide salts. The chemistry, mechanism and kinetics of the formation of dinitramide salts by nitration of deactivated amines are investigated. The evaluation of the thermal and spectral properties along with the adsorption and thermal decomposition characteristics of the dinitramide salts are also explored in this thesis.

  20. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    Science.gov (United States)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  1. Reactive thermal waves in energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Larry G [Los Alamos National Laboratory

    2009-01-01

    Reactive thermal waves (RTWs) arise in several energetic material applications, including self-propagating high-temperature synthesis (SHS), high explosive cookoff, and the detonation of heterogeneous explosives. In this paper I exmaine ideal RTWs, by which I mean that (1) material motion is neglected, (2) the state dependence of reaction is Arrhenius in the temperature, and (3) the reaction rate is modulated by an arbitrary mass-fraction-based reaction progress function. Numerical simulations demonstrate that one's natural intuition, which is based mainly upon experience with inert materials and which leads one to expect diffusion processes to become relatively slow after a short time period, is invalid for high energy, state-sensitive reactive systems. Instead, theory predicts that RTWs can propagate at very high speeds. This result agrees with estimates for detonating heterogeneous explosives, which indicate that RTWs must spread from hot-spot nucleation sites at rates comparable to the detonation speed in order to produce experimentally-observed reaction zone thicknesses. Using dimensionless scaling and further invoking the high activation energy approximation, I obtain an analytic formula for the steady plane RTW speed from numerical calculations. I then compute the RTW speed for real explosives, and discuss aspects of their behavior.

  2. Energetic materials under high pressures and temperatures: stability, polymorphism and decomposition of RDX

    International Nuclear Information System (INIS)

    Dreger, Z A

    2012-01-01

    A recent progress in understanding the response of energetic crystal of cyclotrimethylene trinitramine (RDX) to high pressures and temperatures is summarized. The optical spectroscopy and imaging studies under static compression and high temperatures provided new insight into phase diagram, polymorphism and decomposition mechanisms at pressures and temperatures relevant to those under shock compression. These results have been used to aid the understanding of processes under shock compression, including the shock-induced phase transition and identification of the crystal phase at decomposition. This work demonstrates that studies under static compression and high temperatures provide important complementary route for elucidating the physical and chemical processes in shocked energetic crystals.

  3. Energetic materials standards – Chemical compatibility

    NARCIS (Netherlands)

    Tuukkanen, I.M.; Bouma, R.H.B.

    2014-01-01

    Subgroup A Energetic Materials Team, SG/A (EMT), develops and maintains standards that are relevant to all life-cycle phases of ammunition/weapon systems. STANAG 4147 is the standard regarding chemical compatibility of explosives with munition components, and is a document of prime importance.

  4. Effects of void anisotropy on the ignition and growth rates of energetic materials

    Science.gov (United States)

    Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    Initiation of heterogeneous energetic materials is thought to occur at hot spots; reaction fronts propagate from sites of such hot spots into the surrounding material resulting in complete consumption of the material. Heterogeneous materials, such as plastic bonded explosives (PBXs) and pressed materials contain numerous voids, defects and interfaces at which hot spots can occur. Amongst the various mechanisms of hot spot formation, void collapse is considered to be the predominant one in the high strain rate loading conditions. It is established in the past the shape of the voids has a significant effect on the initiation behavior of energetic materials. In particular, void aspect ratio and orientations play an important role in this regard. This work aims to quantify the effects of void aspect ratio and orientation on the ignition and growth rates of chemical reaction from the hot spot. A wide range of aspect ratio and orientations is considered to establish a correlation between the ignition and growth rates and the void morphology. The ignition and growth rates are obtained from high fidelity reactive meso-scale simulations. The energetic material considered in this work is HMX and Tarver McGuire HMX decomposition model is considered to capture the reaction mechanism of HMX. The meso-scale simulations are performed using a Cartesian grid based Eulerian solver SCIMITAR3D. The void morphology is shown to have a significant effect on the ignition and growth rates of HMX.

  5. Ultrafast Vibrational Spectrometer for Engineered Nanometric Energetic Materials

    National Research Council Canada - National Science Library

    Dlott, Dana

    2002-01-01

    The proposer requested funding for laser equipment that would be used to study engineered nanometric energetic materials consisting of nanometer metal particles, passivation layers and oxidizing binders...

  6. The quest for greater chemical energy storage in energetic materials: Grounding expectations

    Science.gov (United States)

    Lindsay, C. Michael; Fajardo, Mario E.

    2017-01-01

    It is well known that the performance of modern energetic materials based on organic chemistry has plateaued, with only ˜ 40% improvements realized over the past half century. This fact has stimulated research on alternative chemical energy storage schemes in various U.S. government funded "High Energy Density Materials" (HEDM) programs since the 1950's. These efforts have examined a wide range of phenomena such as free radical stabilization, metallic hydrogen, metastable helium, polynitrogens, extended molecular solids, nanothermites, and others. In spite of the substantial research investments, significant improvements in energetic material performance have not been forthcoming. This paper discusses the lessons learned in the various HEDM programs, the different degrees of freedom in which to store energy in materials, and the fundamental limitations and orders of magnitude of the energies involved. The discussion focuses almost exclusively on the topic of energy density and only mentions in passing other equally important properties of explosives and propellants such as gas generation and reaction rate.

  7. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  8. Some new high energy materials and their formulations for specialized applications

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Jai Prakash [Directorate of Materials, DRDO HQrs, ' B' Wing, Sena Bhavan, New Delhi - 110 011 (India)

    2005-10-01

    Energetic materials form an integral part of most weapon systems and a large number of new high-energy materials: thermally stable explosives, high-performance explosives, melt-castable explosives, insensitive high explosives and energetic binders have been reported in the literature in recent years. Some explosive formulations based on these new energetic materials are also vaguely reported. This paper examines these materials and their formulations from the point of view of stability, reliability, safety and specific applications. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  9. Chemistry of high-energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Ludwig-Maximilians-Univ., Muenchen (Germany). Dept. of Chemistry; Maryland Univ., College Park, MD (US). Center of Energetic Concepts Development (CECD)

    2011-07-01

    The graduate-level textbook Chemistry of High-Energy Materials provides an introduction to and an overview of primary and secondary (high) explosives as well as propellant charges, rocket propellants and pyrotechnics. After a brief historical overview, the main classes of energetic materials are discussed systematically. Thermodynamic aspects, as far as relevant to energetic materials, are discussed, as well as modern computational approaches to predict performance and sensitivity parameters. The most important performance criteria such as detonation velocity, detonation pressure and heat of explosion, as well as the relevant sensitivity parameters suc as impact and friction sensitivity and electrostatic discharge sensitivity are explored in detail. Modern aspects of chemical synthesis including lead-free primary explosives and high-nitrogen compounds are also included in this book together with a discussion of high-energy materials for future defense needs. The most important goal of this book, based on a lecture course which has now been held at LMU Munich for over 12 years, is to increase knowledge and know-how in the synthesis and safe handling of high-energy materials. Society needs now as much as ever advanced explosives, propellant charges, rocket propellants and pyrotechnics to meet the demands in defense and engineering. This book is first and foremost aimed at advanced students in chemistry, engineering and materials sciences. However, it is also intended to provide a good introduction to the chemistry of energetic materials and chemical defense technology for scientists in the defense industry and government-run defense organizations. (orig.)

  10. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-11-01

    Full Text Available Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature.

  11. Report for MaRIE Drivers Workshop on needs for energetic material's studies.

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Paul Elliott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    Energetic materials (i.e. explosives, propellants, and pyrotechnics) have complex mesoscale features that influence their dynamic response. Direct measurement of the complex mechanical, thermal, and chemical response of energetic materials is critical for improving computational models and enabling predictive capabilities. Many of the physical phenomena of interest in energetic materials cover time and length scales spanning several orders of magnitude. Examples include chemical interactions in the reaction zone, the distribution and evolution of temperature fields, mesoscale deformation in heterogeneous systems, and phase transitions. This is particularly true for spontaneous phenomena, like thermal cook-off. The ability for MaRIE to capture multiple length scales and stochastic phenomena can significantly advance our understanding of energetic materials and yield more realistic, predictive models.

  12. Prospective Symbiosis of Green Chemistry and Energetic Materials.

    Science.gov (United States)

    Kuchurov, Ilya V; Zharkov, Mikhail N; Fershtat, Leonid L; Makhova, Nina N; Zlotin, Sergey G

    2017-10-23

    A global increase in environmental pollution demands the development of new "cleaner" chemical processes. Among urgent improvements, the replacement of traditional hydrocarbon-derived toxic organic solvents with neoteric solvents less harmful for the environment is one of the most vital issues. As a result of the favorable combination of their unique properties, ionic liquids (ILs), dense gases, and supercritical fluids (SCFs) have gained considerable attention as suitable green chemistry media for the preparation and modification of important chemical compounds and materials. In particular, they have a significant potential in a specific and very important area of research associated with the manufacture and processing of high-energy materials (HEMs). These large-scale manufacturing processes, in which hazardous chemicals and extreme conditions are used, produce a huge amount of hard-to-dispose-of waste. Furthermore, they are risky to staff, and any improvements that would reduce the fire and explosion risks of the corresponding processes are highly desirable. In this Review, useful applications of almost nonflammable ILs, dense gases, and SCFs (first of all, CO 2 ) for nitration and other reactions used for manufacturing HEMs are considered. Recent advances in the field of energetic (oxygen-balanced and hypergolic) ILs are summarized. Significant attention is paid to the SCF-based micronization techniques, which improve the energetic performance of HEMs through an efficient control of the morphology and particle size distribution of the HEM fine particles, and to useful applications of SCFs in HEM processing that makes them less hazardous. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Papers of 5. Scientific-Technical Seminar: Material Study for Electric Power Stations and Energetics

    International Nuclear Information System (INIS)

    1998-01-01

    The review of material research designed for energetic use has been done. The special emphasis have been put on the steels and alloys with desirable mechanical and corrosion properties in high temperature and pressure conditions. The methods for testing and non-destructive diagnostics of materials and welded joints have been also presented and discussed

  14. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity

    Science.gov (United States)

    Wang, Jun; Zheng, Bo; Qiao, Zhiqiang; Chen, Jin; Zhang, Liyuan; Zhang, Long; Li, Zhaoqian; Zhang, Xingquan; Yang, Guangcheng

    2018-06-01

    High energy density and rapid reactivity are the future trend for nano-energetic materials. Energetic performance of nano-energetic materials depends on the interfacial diffusion and mass transfer during the reacted process. However, the development of desired structure to significantly enhance reactivity still remains challenging. Here we focused on the design and preparation of 3D porous hollow Co3O4 micro-spheres, in which gas-blowing agents (air) and maximize interfacial interactions were introduced to enhance mass transport and reduce the diffusion distance between the oxidizer and fuel (Aluminum). The 3D hierarchical Co3O4/Al based nano-energetic materials show a low-onset decomposition temperature (423 °C), and high heat output (3118 J g-1) resulting from porous and hollow nano-structure of Co3O4 micro-spheres. Furthermore, 3D hierarchical Co3O4/Al arrays were directly fabricated on the silicon substrate, which was fully compatible with silicon-based microelectromechanical systems to achieve functional nanoenergetics-on-a-chip. This approach provides a simple and efficient way to fabricate 3D ordered nano-energetic arrays with superior reactivity and the potential on the application in micro-energetic devices.

  15. Flexible energetic materials and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Heaps, Ronald J.

    2018-03-06

    Energetic compositions and methods of forming components from the compositions are provided. In one embodiment, a composition includes aluminum, molybdenum trioxide, potassium perchlorate, and a binder. In one embodiment, the binder may include a silicone material. The materials may be mixed with a solvent, such as xylene, de-aired, shaped and cured to provide a self-supporting structure. In one embodiment, one or more reinforcement members may be added to provide additional strength to the structure. For example, a weave or mat of carbon fiber material may be added to the mixture prior to curing. In one embodiment, blade casting techniques may be used to form a structure. In another embodiment, a structure may be formed using 3-dimensional printing techniques.

  16. Unreacted equation of states of typical energetic materials under static compression: A review

    International Nuclear Information System (INIS)

    Zheng Zhaoyang; Zhao Jijun

    2016-01-01

    The unreacted equation of state (EOS) of energetic materials is an important thermodynamic relationship to characterize their high pressure behaviors and has practical importance. The previous experimental and theoretical works on the equation of state of several energetic materials including nitromethane, 1,3,5-trinitrohexahydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), hexanitrostilbene (HNS), hexanitrohexaazaisowurtzitane (HNIW or CL-20), pentaerythritol tetranitrate (PETN), 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), triamino-trinitrobenzene (TATB), 1,1-diamino-2,2-dinitroethene (DADNE or FOX-7), and trinitrotoluene (TNT) are reviewed in this paper. The EOS determined from hydrostatic and non-hydrostatic compressions are discussed and compared. The theoretical results based on ab initio calculations are summarized and compared with the experimental data. (topical review)

  17. Enzymes for Degradation of Energetic Materials and Demilitarization of Explosives Stockpiles - SERDP Annual (Interim) Report, 12/98

    Energy Technology Data Exchange (ETDEWEB)

    Shah, M.M.

    1999-01-18

    The current stockpile of energetic materials requiring disposal contains about half a million tons. Through 2001, over 2.1 million tons are expected to pass through the stockpile for disposal. Safe and environmentally acceptable methods for disposing of these materials are needed. This project is developing safe, economical, and environmentally sound processes using biocatalyst (enzymes) to degrade energetic materials and to convert them into economically valuable products. Alternative methods for destroying these materials are hazardous, environmentally unacceptable, and expensive. These methods include burning, detonation, land and sea burial, treatment at high temperature and pressure, and treatment with harsh chemicals. Enzyme treatment operates at room temperature and atmospheric pressure in a water solution.

  18. Very High Performance High Nitrogen Energetic Ingredients and Energetic Polymers for Structural Components

    Science.gov (United States)

    2011-12-31

    13. SUPPLEMENTARY NOTES SoUoWtoo^ 14. ABSTRACT This project investigated new energetic materials for use with a triazole cured binder system ...The reaction was repeated using two equivalents of KH. An even more insoluble product was obtained. Figure 8 and 9 show the C-13 and N-15 CP/MAS...Sonnenberg, M. Hada, M. Ehara, K. Toyota , R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda , O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr

  19. Computational Chemistry Toolkit for Energetic Materials Design

    Science.gov (United States)

    2006-11-01

    industry are aggressively engaged in efforts to develop multiscale modeling and simulation methodologies to model and analyze complex phenomena across...energetic materials design. It is hoped that this toolkit will evolve into a collection of well-integrated multiscale modeling methodologies...Experimenta Theoreticala This Work 1-5-Diamino-4- methyl- tetrazolium nitrate 8.4 41.7 47.5 1-5-Diamino-4- methyl- tetrazolium azide 138.1 161.6

  20. Ultrafast Vibrational Spectrometer for Engineered Nanometric Energetic Materials

    National Research Council Canada - National Science Library

    Dlott, Dana

    2002-01-01

    .... The needed equipment was ordered and installed, and assembled into a working SFG set up that has been tested on a model system consisting of a self assembled monolayer of alkane on gold. The next step will be to finish integrating the carbon dioxide laser system and to begin looking at aluminum based energetic materials.

  1. Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field

    National Research Council Canada - National Science Library

    Bunte, Steven

    2000-01-01

    To investigate the mechanical and other condensed phase properties of energetic materials using atomistic simulation techniques, the COMPASS force field has been expanded to include high-energy nitro functional groups...

  2. New fluidized bed reactor for coating of energetic materials

    NARCIS (Netherlands)

    Abadjieva, E.; Huijser, T.; Creyghton, Y.L.M.; Heijden, A.E.D.M. van der

    2009-01-01

    The process of altering and changing the properties of the energetic materials by coating has been studied extensively by several scientific groups. According to the desired application different coating techniques have been developed and applied to achieve satisfactory results. Among the already

  3. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds

    Science.gov (United States)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.

  4. Study of thermal sensitivity and thermal explosion violence of energetic materials in the LLNL ODTX system

    International Nuclear Information System (INIS)

    Hsu, P C; Hust, G; Zhang, M X; Lorenz, T K; Reynolds, J G; Fried, L; Springer, H K; Maienschein, J L

    2014-01-01

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 °C) and the violence from thermal explosion may cause significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. Recent ODTX experimental data are reported in the paper.

  5. Environmentally benign destruction of waste energetic materials (EMs)

    International Nuclear Information System (INIS)

    Schneider, R. L.; Donahue, B. A.

    1998-01-01

    Studies by the U. S. Army Corps of Engineers during 1991-1997 involving various methods for the destruction of waste generated by pyrotechnic, explosive and propellant materials are described. The methods assessed and evaluated include controlled incineration (CI), wet air oxidation (WAO), and hydrothermal oxidation (HTO), using a U.S. Army triple-base propellant as the initial common standard for all destructor comparative testing. All three of these methods has special feed line restrictions requiring mechanical diminution and comminution of the energetic material which, for safety reasons, cannot be used with contaminated heterogeneous production wastes. Supercritical fluid extraction with carbon dioxide, alkaline hydrolysis, electrolysis and fluid cutting with very high pressure water jets and liquid nitrogen are alternate technologies that were evaluated as pre-treatment for production wastes. Wet air oxidation and electrochemical reduction studies were conducted using the U.S. Navy double propellant NOSIH-AA2, which contains a lead-based ballistic modifier. Wet air oxidation and hydrothermal oxidation studies were done using potassium dinitramide phase-stabilized nitrate as an oxidizer. All of these technologies are considered to be suitable for the environmentally benign destruction of pyrotechnic materials, including fireworks. 17 refs., 8 tabs., 4 figs

  6. Use of energetic ion beams in materials synthesis and processing

    International Nuclear Information System (INIS)

    Appleton, B.R.

    1992-01-01

    A brief review of the use energetic ion beams and related techniques for the synthesis, processing, and characterization of materials is presented. Selected opportunity areas are emphasized with examples, and references are provided for more extensive coverage. (author)

  7. Enhancing Reactivity in Structural Energetic Materials

    Science.gov (United States)

    Glumac, Nick

    2017-06-01

    In many structural energetic materials, only a small fraction of the metal oxidizes, and yet this provides a significant boost in the overall energy release of the system. Different methodologies to enhance this reactivity include alloying and geometric modifications of microstructure of the reactive material (RM). In this presentation, we present the results of several years of systematic study of both chemical (alloy) and mechanical (geometry) effects on reactivity for systems with typical charge to case mass ratios. Alloys of aluminum with magnesium and lithium are considered, as these are common alloys in aerospace applications. In terms of geometric modifications, we consider surface texturing, inclusion of dense additives, and inclusion of voids. In all modifications, a measurable influence on output is observed, and this influence is related to the fragment size distribution measured from the observed residue. Support from DTRA is gratefully acknowledged.

  8. Thermal Energetic Reactor with High Reproduction of Fission Materials

    International Nuclear Information System (INIS)

    Kotov, V.M.

    2012-01-01

    Existing thermal reactors are energy production scale limited because of low portion of raw uranium usage. Fast reactors are limited by reprocessing need of huge mass of raw uranium at the initial stage of development. The possibility of development of thermal reactors with high fission materials reproduction, which solves the problem, is discussed here. Neutron losses are decreased, uranium-thorium fuel with artificial fission materials equilibrium regime is used, additional in-core and out-core neutron sources are used for supplying of high fission materials reproduction. Liquid salt reactors can use dynamic loading regime for this purpose. Preferable construction is channel type reactor with heavy water moderator. Good materials for fuel element shells and channel walls are zirconium alloys enriched by 90Zr. Water cooled reactors with usage 12% of raw uranium and liquid metal cooled reactors with usage 25% of raw uranium are discussed. Reactors with additional neutron sources obtain full usage of raw uranium with small additional energy expenses. On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  9. 2007 Insensitive Munitions and Energetic Materials Technology Symposium

    Science.gov (United States)

    2007-10-18

    Assessment – EIPT chair rotates each calendar year between NAVAIR and NAVSEA Page 9 Networks for collaboration Technology Oriented: Energetic Materials...Analysis IM Explosive Fill for 120mm and/or 155mm Arena Test & Qualificationr t lifi ti Must Show Improvement Review of Filter 1 Data for 3...Arena Test & Qualificationr t lifi ti Must Show Improvement PM-CAS Common Low-cost IM Explosives Program “Funnel” framework to progressively screen

  10. Sensitivity Characterization of Pressed Energetic Materials using Flyer Plate Mesoscale Simulations

    Science.gov (United States)

    Rai, Nirmal; Udaykumar, H. S.

    Heterogeneous energetic materials like pressed explosives have complicated microstructure and contain various forms of heterogeneities such as pores, micro-cracks, energetic crystals etc. It is widely accepted that the presence of these heterogeneities can affect the sensitivity of these materials under shock load. The interaction of shock load with the microstructural heterogeneities may leads to the formation of local heated regions known as ``hot spots''. Chemical reaction may trigger at the hot spot regions depending on the hot spot temperature and the duration over which the temperature can be maintained before phenomenon like heat conduction, rarefaction waves withdraws energy from it. There are different mechanisms which can lead to the formation of hot spots including void collapse. The current work is focused towards the sensitivity characterization of two HMX based pressed energetic materials using flyer plate mesoscale simulations. The aim of the current work is to develop mesoscale numerical framework which can perform simulations by replicating the laboratory based flyer plate experiments. The current numerical framework uses an image processing approach to represent the microstructural heterogeneities incorporated in a massively parallel Eulerian code SCIMITAR3D. The chemical decomposition of HMX is modeled using Henson-Smilowitz reaction mechanism. The sensitivity characterization is aimed towards obtaining James initiation threshold curve and comparing it with the experimental results.

  11. Theoretical Studies of Small-System Thermodynamics in Energetic Materials

    Science.gov (United States)

    2016-01-06

    SECURITY CLASSIFICATION OF: This is a comprehensive theoretical research program to investigate the fundamental principles of small-system thermodynamics ...a.k.a. nanothermodynamics). The proposed work is motivated by our desire to better understand the fundamental dynamics and thermodynamics of...for Public Release; Distribution Unlimited Final Report: Theoretical Studies of Small-System Thermodynamics in Energetic Materials The views, opinions

  12. A multi-scale methodology to model damage, deformation and ignition of highly-filled energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivier, G. [Paris Univ., Paris (France). LMT Cachan; CEA Le Ripault, Monts (France); Trumel, H. [CEA Le Ripault, Monts (France); Hild, F. [Paris Univ., Paris (France). LMT Cachan

    2009-07-01

    The kinetic energy that occurs when energetic materials are impacted can be converted to heat through dissipative deformation processes while the macroscopic temperature remains unaffected. In this study, a thermodynamics-based approach was used to model the elasto-plastic behaviour that occurs during the deformation process of microstructures. Macroscopic material was modelled as a statistical distribution of unit cells containing a crack grain embedded in an elastic mortar-like matrix. A mesoscopic unit cell model was also developed under confined shear. The study demonstrated that stored energy is a non-negligible part of the total energy of the system, and that stored energy can be released during the unloading process. It was concluded that the mesoscopic analysis of the cracked cell demonstrates that continuum thermodynamics can be used to predict hot spots induced by friction. 7 refs., 7 figs.

  13. Shock interactions with heterogeneous energetic materials

    Science.gov (United States)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-01

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.

  14. Study on Energetic Ions Behavior in Plasma Facing Materials at Lower Temperature

    International Nuclear Information System (INIS)

    Morimoto, Y.; Sugiyama, T.; Akahori, S.; Kodama, H.; Tega, E.; Sasaki, M.; Oyaidu, M.; Kimura, H.; Okuno, K.

    2003-01-01

    An apparatus equipped with X-ray Photoelectron Spectroscopy (XPS) and Thermal Desorption Spectroscopy (TDS) was constructed to study interactions of energetic hydrogen isotopes with plasma facing materials. It is a remarkable feature of the apparatus that energetic ion implantation is carried out at around 150K to study reactions of energetic ions with matrix by suppressing the reactions of thermalized ions. Using this apparatus, TDS experiments for pyrolytic graphite implanted with energetic D 2 ions at 173 and 373K were carried out. The experimental results suggest that the deuterium implanted was released through a four-step release processes, involving three D 2 and one CD x (x = 2, 3 and 4) desorption processes. Two deuterium and CD x desorption processes were observed in the temperature range from 700 to 1200 K. In addition, a new deuterium desorption process was observed for the deuterium-implanted sample at 173 K. This has never been observed for deuterium-implanted graphite implanted at temperatures higher than room temperature

  15. Experimental flame speed in multi-layered nano-energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Manesh, Navid Amini; Basu, Saptarshi; Kumar, Ranganathan [Department of Mechanical, Material and Aerospace Engineering, University of Central Florida, Orlando, FL (United States)

    2010-03-15

    This paper deals with the reaction of dense Metastable Intermolecular Composite (MIC) materials, which have a higher density than conventional energetic materials. The reaction of a multilayer thin film of aluminum and copper oxide has been studied by varying the substrate material and thicknesses. The in-plane speed of propagation of the reaction was experimentally determined using a time of- flight technique. The experiment shows that the reaction is completely quenched for a silicon substrate having an intervening silica layer of less than 200 nm. The speed of reaction seems to be constant at 40 m/s for silica layers with a thickness greater than 1 {mu}m. Different substrate materials such as glass and photoresist were also used. (author)

  16. The viability and performance characterization of nano scale energetic materials on a semiconductor bridge (SCB)

    Science.gov (United States)

    Strohm, Gianna Sophia

    The move from conventional energetic composites to nano scale energetic mixtures (nano energetics) has shown dramatic improvement in energy release rate and sensitivity to ignition. A possible application of nano energetics is on a semiconductor bridge (SCB). An SCB typically requires a tenth of the energy input as compared to a bridge wire design with the same no-fire and is capable of igniting in tens of microseconds. For very low energy applications, SCBs can be manufactured to extremely small sizes and it is necessary to find materials with particle sizes that are even smaller to function. Reactive particles of comparable size to the bridge can lead to problems with ignition reliability for small bridges. Nano-energetic composites and the use of SCBs have been significantly studied individually, however, the process of combining nano energetics with an SCB has not been investigated extensively and is the focus of this work. Goals of this study are to determine if nano energetics can be used with SCBs to further reduce the minimum energy required and improve reliability. The performance of nano-scale aluminum (nAl) and bismuth oxide (Bi2O3) with nitrocellulose (NC), Fluorel(TM) FC 2175 (chemically equivalent to VitonRTM) and Glycidyl Azide Polymer (GAP) as binders where quantified initially using the SenTest(TM) algorithm at three weight fractions (5, 7, and 9%) of binder. The threshold energy was calculated and compared to previous data using conventional materials such as zirconium potassium chlorate (ZPC), mercuric 5-Nitrotetrazol (DXN-1) and titanium sub-hydride potassium per-chlorate (TSPP). It was found that even though there where only slight differences in performance between the binders with nAl/Bi2O 3 at any of the three binder weight fractions, the results show that these nano energetic materials require about half of the threshold energy compared to conventional materials using an SCB with an 84x42 mum bridge. Binder limit testing was conducted to

  17. Amorphous chalcogenide semiconductors for solid state dosimetric systems of high-energetic ionizing radiation

    International Nuclear Information System (INIS)

    Shpotyuk, O.

    1997-01-01

    The application possibilities of amorphous chalcogenide semiconductors use as radiation-sensitive elements of high-energetic (E > 1 MeV) dosimetric systems are analysed. It is shown that investigated materials are characterized by more wide region of registered absorbed doses and low temperature threshold of radiation information bleaching in comparison with well-known analogies based on coloring oxide glasses. (author)

  18. Investigation of structural materials of reactors using high-energy heavy-ion irradiations

    International Nuclear Information System (INIS)

    Wang Zhiguang

    2007-01-01

    Radiation damage in structural materials of fission/fusion reactors is mainly attributed to the evolution of intensive atom displacement damage induced by energetic particles (n, α and/or fission fragments) and high-rate helium doping by direct α particle bombardments and/or (n, α) reactions. It can cause severe degradation of reactor structural materials such as surface blistering, bulk void swelling, deformation, fatigue, embrittlement, stress erosion corrosion and so on that will significantly affect the operation safety of reactors. However, up to now, behavior of structural materials at the end of their service can hardly be fully tested in a real reactor. In the present work, damage process in reactor structural materials is briefly introduced, then the advantages of energetic ion implantation/irradiation especially high-energy heavy ion irradiation are discussed, and several typical examples on simulation of radiation effects in reactor candidate structural materials using high-energy heavy ion irradiations are pronounced. Experimental results and theoretical analysis suggested that irradiation with energetic particles especially high-energy heavy ions is very useful technique for simulating the evolution of microstructures and macro-properties of reactor structural materials. Furthermore, an on-going plan of material irradiation experiments using high energy H- and He-ions based on the Heavy Ion Research Facilities in Lanzhou (HIRFL) is also briefly interpreted. (authors)

  19. Molten salt destruction as an alternative to open burning of energetic material wastes

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.; Brummond, W.A.

    1994-01-01

    LLNL has built a small-scale (about 1 kg/hr throughput unit to test the destruction of energetic materials using the Molten Salt Destruction (MSD) process. We have modified the unit described in the earlier references to inject energetic waste material continuously into the unit. In addition to the HMX, other explosives we have destroyed include RDX, PETN, ammonium picrate, TNT, nitroguanadine, and TATB. We have also destroyed a liquid gun propellant comprising hydroxyl ammonium nitrate, triethanolammonium nitrate and water. In addition to these pure components, we have destroyed a number of commonly used formulations, such as LX-10 (HMX/Viton), LX-16 (PETN/FPC461, LX-17 (TATB/Kel F), and PBX-9404 (HMX)/CEF/Nitro cellulose). Our experiments have demonstrated that energetic materials can be safely and effectively treated by MSD.We have also investigated the issue of steam explosions in molten salt units, both experimentally and theoretically, and concluded that steam explosions can be avoided under proper design and operating conditions. We are currently building a larger unit (nominal capacity 5 kg/hr,) to investigate the relationship between residence time, temperature, feed concentration and throughputs, avoidance of back-burn, a;nd determination of the products of combustion under different operating conditions

  20. Amorphous chalcogenide semiconductors for solid state dosimetric systems of high-energetic ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Pedagogical University, Czestochowa (Poland)]|[Institute of Materials, Lvov (Ukraine)

    1997-12-31

    The application possibilities of amorphous chalcogenide semiconductors use as radiation-sensitive elements of high-energetic (E > 1 MeV) dosimetric systems are analysed. It is shown that investigated materials are characterized by more wide region of registered absorbed doses and low temperature threshold of radiation information bleaching in comparison with well-known analogies based on coloring oxide glasses. (author). 16 refs, 1 tab.

  1. Chemical physics of decomposition of energetic materials. Problems and prospects

    International Nuclear Information System (INIS)

    Smirnov, Lev P

    2004-01-01

    The review is concerned with analysis of the results obtained in the kinetic and mechanistic studies on decomposition of energetic materials (explosives, powders and solid propellants). It is shown that the state-of-the art in this field is inadequate to the potential of modern chemical kinetics and chemical physics. Unsolved problems are outlined and ways of their solution are proposed.

  2. Multiphase Combustion of Metalized Nanocomposite Energetic Materials

    Science.gov (United States)

    2014-12-19

    on thermal conductivity and absorption coefficient for consolidated aluminum nanoparticles, International Journal of Heat and Mass Transfer, (06...28. Stacy, S.C., Zhang, X., Pantoya, M.L., Weeks, B., Effect of Density on Thermal Conductivity and Absorption Coefficient for Consolidated Aluminum...energetic powder to ESD stimuli generated from a piezo electric crystal ( PZT ). Results show that a high PZT dielectric strength leads to faster

  3. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  4. Surface Thermometry of Energetic Materials by Laser-Induced Fluorescence

    Science.gov (United States)

    1989-09-01

    at 34 yttrium- aluminum -garnet (Dy:YAG). The simplified energy diagram of Dy:YAG is shown in Fig. 1. Absorbed laser light (at 355 nrm) can 5 excite the...the thermometric technique on a surface similar to that of an energetic material, a thermal-setting plastic supplied by Buehler, Ltd., was employed...temperature over the temperature range of interest. The rare-earth ion dysprosium (Dy) doped into a yttrium- aluminum -garnet (YAG) crystal was I determined

  5. Three-dimensional simulations of void collapse in energetic materials

    Science.gov (United States)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  6. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  7. Simulation of Metal Particulates in High Energetic Materials

    Science.gov (United States)

    2015-05-28

    temperatures and pressures disintegrate the carbon- fiber casing, thus not producing any fragments. These carbon-fiber casing warheads are a solution...Polymer-Bonded Explosive (PBX) and Livermore’s High-Energy Explosive (LX) are examples of ex- plosives that use “ plastic ” as a binder material. Other...simulation data to empirical data does not provide any benefit to this research due to the complexity of plastically bonded explosives like PBX9501. The

  8. GAP pre-polymer, as an energetic binder and high performance additive for propellants and explosives: A review

    Directory of Open Access Journals (Sweden)

    Mehmet S. Eroglu

    2017-08-01

    Full Text Available In preparation of energetic composite formulations, functionally terminated pre-polymers have been used as binder. After physically mixing the pre-polymers with oxidizing components, metallic fuel, burning rate modifier and other minor ingredients, they are cured with a suitable curing agent to provide physical and chemical stability. These pre-polymers could be functionalized with carboxyl, epoxide or hydroxyl groups at varying average chain functionalities. For carboxyl-terminated pre-polymers, an epoxy functional curing agents could be used. If the pre-polymer possesses hydroxyl groups, isocyanate functional curing agents are the most suitable curing agents in terms of easy and efficient processing. Glycidyl azide polymer (GAP is one of the well-known low-molecular weight energetic liquid pre-polymer, which was developed to use as energetic binder, high performance additive and gas generator for high performance smokeless composite propellant and explosive formulations. Linear or branched GAP can be synthesized by nucleophilic substitution reaction of corresponding poly(epichlorohydrin (PECH with sodium azide through replacement of chloromethyl groups of PECH with pendant energetic azido-methyl groups on the polyether main chain. Positive heat of formation (+957 kJ/kg enables exothermic and rapid decomposition of GAP producing fuel rich gases. Its polyether main chain provides GAP with relatively low glass transition temperature (Tg= - 48 oC and presence of hydroxyl functional groups allows it to have easy processing in curing with isocyanate curing agents to form covalently crosslinked polyurethane structure. These outstanding properties of GAP enable it to be used as energetic polymeric binder and high performance additive in preparation of energetic materials and low vulnerable explosives.

  9. Synthesis and Investigation of Advanced Energetic Materials Based on Bispyrazolylmethanes.

    Science.gov (United States)

    Fischer, Dennis; Gottfried, Jennifer L; Klapötke, Thomas M; Karaghiosoff, Konstantin; Stierstorfer, Jörg; Witkowski, Tomasz G

    2016-12-23

    Herein we present the preparation and characterization of three new bispyrazolyl-based energetic compounds with great potential as explosive materials. The reaction of sodium 4-amino-3,5-dinitropyrazolate (5) with dimethyl iodide yielded bis(4-amino-3,5-dinitropyrazolyl)methane (6), which is a secondary explosive with high heat resistance (T dec =310 °C). The oxidation of this compound afforded bis(3,4,5-trinitropyrazolyl)methane (7), which is a combined nitrogen- and oxygen-rich secondary explosive with very high theoretical and estimated experimental detonation performance (V det (theor)=9304 m s -1 versus V det (exp)=9910 m s -1 ) in the range of that of CL-20. Also, the thermal stability (T dec =205 °C) and sensitivities of 7 are auspicious. The reaction of 6 with in situ generated nitrous acid yielded the primary explosive bis(4-diazo-5-nitro-3-oxopyrazolyl)methane (8), which showed superior properties to those of currently used diazodinitrophenol (DDNP). © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The HZE radiation problem. [highly-charged energetic galactic cosmic rays

    Science.gov (United States)

    Schimmerling, Walter

    1990-01-01

    Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.

  11. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    International Nuclear Information System (INIS)

    Ali, A.N.; Son, S.F.; Asay, B.W.; Sander, R.K.

    2005-01-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6 mm±0.4 mm exists below which ignition by CO 2 laser is not possible at the tested irradiances of 29 W/cm 2 and 38 W/cm 2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials

  12. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    Science.gov (United States)

    Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.

    2005-03-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

  13. Investigations on deflagration to detonation transition in porous energetic materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States)

    1999-07-01

    The research carried out by this contract was part of a larger effort funded by LANL in the areas of deflagration to detonation in porous energetic materials (DDT) and detonation shock dynamics in high explosives (DSD). In the first three years of the contract the major focus was on DDT. However, some researchers were carried out on DSD theory and numerical implementation. In the last two years the principal focus of the contract was on DSD theory and numerical implementation. However, during the second period some work was also carried out on DDT. The paper discusses DDT modeling and DSD modeling. Abstracts are included on the following topics: modeling deflagration to detonation; DSD theory; DSD wave front tracking; and DSD program burn implementation.

  14. Recent advances in the molten salt technology for the destruction of energetic materials

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.

    1995-11-01

    The DOE has thousands of pounds of energetic materials which result from dismantlement operations at the Pantex Plant. The authors have demonstrated the Molten Salt Destruction (MSD) Process for the treatment of explosives and explosive-containing wastes on a 1.5 kilogram of explosive per hour scale and are currently building a 5 kilogram per hour unit. MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. Any inorganic constituents of the waste, such as binders and metallic particles, are retained in the molten salt. The destruction of energetic material waste is accomplished by introducing it, together with air, into a crucible containing a molten salt, in this case a eutectic mixture of Na, K, and Li carbonates. The following pure component DOE and DoD explosives have been destroyed in LLNL's experimental unit at their High Explosives Applications Facility (HEAF): ammonium picrate, HMX, K-6, NQ, NTO, PETN, RDX, TATB, and TNT. In addition, the following formulations were also destroyed: Comp B, LX-10, LX-16, LX-17, PBX-9404, and XM46, a US Army liquid gun propellant. In this 1.5 kg/hr unit, the fractions of carbon converted to CO and of chemically bound nitrogen converted to NOx were found to be well below 1T. In addition to destroying explosive powders and molding powders the authors have also destroyed materials that are typical of real world wastes. These include shavings from machined pressed parts of plastic bonded explosives and sump waste containing both explosives and non-explosive debris. Based on the information obtained on the smaller unit, the authors have constructed a 5 kg/hr MSD unit, incorporating LLNL's advanced chimney design. This unit is currently under shakedown tests and evaluation

  15. Papers of 4. Scientific-Technical Seminar: Material Study for Electric Power Stations and Energetics

    International Nuclear Information System (INIS)

    1997-01-01

    The research on the materials commonly used in electric power stations and energetics have been summarized in the course of the seminar. Especially a different kinds of steels have been investigated from the view point of their desirable mechanical and corrosion properties

  16. A Coupled Damage and Reaction Model for Simulating Energetic Material Response to Impact Hazards

    International Nuclear Information System (INIS)

    BAER, MELVIN R.; DRUMHELLER, D.S.; MATHESON, E.R.

    1999-01-01

    The Baer-Nunziato multiphase reactive theory for a granulated bed of energetic material is extended to allow for dynamic damage processes, that generate new surfaces as well as porosity. The Second Law of Thermodynamics is employed to constrain the constitutive forms of the mass, momentum, and energy exchange functions as well as those for the mechanical damage model ensuring that the models will be dissipative. The focus here is on the constitutive forms of the exchange functions. The mechanical constitutive modeling is discussed in a companion paper. The mechanical damage model provides dynamic surface area and porosity information needed by the exchange functions to compute combustion rates and interphase momentum and energy exchange rates. The models are implemented in the CTH shock physics code and used to simulate delayed detonations due to impacts in a bed of granulated energetic material and an undamaged cylindrical sample

  17. Reaction path of energetic materials using THOR code

    Science.gov (United States)

    Durães, L.; Campos, J.; Portugal, A.

    1998-07-01

    The method of predicting reaction path, using THOR code, allows for isobar and isochor adiabatic combustion and CJ detonation regimes, the calculation of the composition and thermodynamic properties of reaction products of energetic materials. THOR code assumes the thermodynamic equilibria of all possible products, for the minimum Gibbs free energy, using HL EoS. The code allows the possibility of estimating various sets of reaction products, obtained successively by the decomposition of the original reacting compound, as a function of the released energy. Two case studies of thermal decomposition procedure were selected, calculated and discussed—pure Ammonium Nitrate and its based explosive ANFO, and Nitromethane—because their equivalence ratio is respectively lower, near and greater than the stoicheiometry. Predictions of reaction path are in good correlation with experimental values, proving the validity of proposed method.

  18. Trapping and re-emission of energetic hydrogen and helium ions in materials

    International Nuclear Information System (INIS)

    Yamaguchi, Sadae

    1981-01-01

    The experimental results on the trapping and re-emission of energetic hydrogen and helium ions in materials are explained. The trapping of deuterium and helium in graphite saturates at the concentration of 10 18 ions/cm 2 . The trapping rate of hydrogen depends on the kinds of target materials. In the case of the implantation in Mo over 3 x 10 16 H/cm 2 , hydrogen is hardly trapped. On the other hand, the trapping of hydrogen in Ti, Zr and Ta which form solid solution is easily made. The hydrogen in these metals can diffuse toward the inside of metals. The deuterium retained in 316 SS decreased with time. The trapping rate reached saturation more rapidly at higher implantation temperature. The effective diffusion constant for the explanation of the re-emission process is 1/100 as small as the ordinary value. The radiation damage due to helium irradiation affects on the trapping of deuterium in Mo. The temperature dependence of the trapping rate can be explained by the diffusion model based on the Sievert's law. The re-emission of helium was measured at various temperature. At low temperature, the re-emission was low at first, then the rate increased. At high temperature, the re-emission rate was high from the beginning. (Kato, T.)

  19. Study on penetration-induced initiation of energetic fragment

    Science.gov (United States)

    Qiao, Xiangxin; Xu, Heyang

    2017-09-01

    In order to investigate penetration-induced initiation of energetic fragment penetrating target, PTFE/Al (mass ratio 73.5/26.5) pressed and sintered into a Ф8mm × 8mm cylinder. To form energetic fragment, the cylinder was put into a closed container made by 35CrMnSiA. The container is 12mm long, 2mm thick. Energetic fragments were launched by a 14.5mm ballistic gun with a series of velocities and the penetrate process was simulated by AUTODYN-3D. The results show that the stress peak of energetic material exceed the initiation threshold, and energetic material will deflagrate, when energetic fragments impact velocity more than 800 m/s. The research results can provide reference for designs of energetic warhead.

  20. Real time in-situ sensing of damage evolution in nanocomposite bonded surrogate energetic materials

    Science.gov (United States)

    Sengezer, Engin C.; Seidel, Gary D.

    2016-04-01

    The current work aims to explore the potential for in-situ structural health monitoring in polymer bonded energetic materials through the introduction of carbon nanotubes (CNTs) into the binder phase as a means to establish a significant piezoresistive response through the resulting nanocomposite binder. The experimental effort herein is focused towards electro-mechanical characterization of surrogate materials in place of actual energetic (explosive) materials in order to provide proof of concept for the strain and damage sensing. The electrical conductivity and the piezoresistive behavior of samples containing randomly oriented MWCNTs introduced into the epoxy (EPON 862) binder of 70 wt% ammonium perchlorate-epoxy hybrid composites are quantitatively and qualitatively evaluated. Brittle failure going through linear elastic behavior, formation of microcracks leading to reduction in composite load carrying capacity and finally macrocracks resulting in eventual failure are observed in the mechanical response of MWNT-ammonium perchlorateepoxy hybrid composites. Incorporating MWNTs into local polymer binder improves the effective stiffness about 40% compared to neat ammonium perchlorate-polymer samples. The real time in-situ relative change in resistance for MWNT hybrid composites was detected with the applied strains through piezoresistive response.

  1. Computational Study on Substituted s-Triazine Derivatives as Energetic Materials

    Directory of Open Access Journals (Sweden)

    Vikas D. Ghule

    2012-01-01

    Full Text Available s-Triazine is the essential candidate of many energetic compounds due to its high nitrogen content, enthalpy of formation and thermal stability. The present study explores s-triazine derivatives in which different -NO2, -NH2 and -N3 substituted azoles are attached to the triazine ring via C-N linkage. The density functional theory is used to predict geometries, heats of formation and other energetic properties. Among the designed compounds, -N3 derivatives show very high heats of formation. The densities for designed compounds were predicted by using the crystal packing calculations. Introduction of -NO2 group improves density as compared to -NH2 and -N3, their order of increasing density can be given as NO2>N3>NH2. Analysis of the bond dissociation energies for C-NO2, C-NH2 and C-N3 bonds indicates that substitutions of the -N3 and -NH2 group are favorable for enhancing the thermal stability of s-triazine derivatives. The nitro and azido derivatives of triazine are found to be promising candidates for the synthetic studies.

  2. Coating and Characterization of Mock and Explosive Materials

    Directory of Open Access Journals (Sweden)

    Emily M. Hunt

    2012-01-01

    Full Text Available This project develops a method of manufacturing plastic-bonded explosives by using use precision control of agglomeration and coating of energetic powders. The energetic material coating process entails suspending either wet or dry energetic powders in a stream of inert gas and contacting the energetic powder with atomized droplets of a lacquer composed of binder and organic solvent. By using a high-velocity air stream to pneumatically convey the energetic powders and droplets of lacquer, the energetic powders are efficiently wetted while agglomerate drying begins almost immediately. The result is an energetic powder uniformly coated with binder, that is, a PBX, with a high bulk density suitable for pressing. Experiments have been conducted using mock explosive materials to examine coating effectiveness and density. Energetic materials are now being coated and will be tested both mechanically and thermally. This allows for a comprehensive comparison of the morphology and reactivity of the newly coated materials to previously manufactured materials.

  3. Energetic Particles at High Latitudes of the Heliosphere

    International Nuclear Information System (INIS)

    Zhang Ming

    2004-01-01

    Ulysses has by now made two complete out-of-ecliptic orbits around the sun. The first encounter of the solar poles occurred in 1994-1995, when the sun was near the minimum of its activity cycle, while the second one was in 2000-2001, when the sun was at solar maximum. To our surprise, energetic particles of all origins at high latitude are not much different from those we observe near the ecliptic for at least these two phases of solar cycle. The latitude gradients of galactic and anomalous cosmic rays are positive but small at the 1994-1995 solar minimum and almost zero at the 2000-2001 solar maximum, while temporal solar cycle variation dominates their flux variation at all latitudes. Solar energetic particles from all large gradual events can be seen at both Ulysses and Earth no matter how large their spatial separations from the solar event are, and the particle flux often reaches a uniform level in the entire inner heliosphere within a few days after event onset and remains so throughout the decay phase that can sometimes last over a month. Energetic particles accelerated by low-latitude CIRs can appear at high latitudes, far beyond the latitudinal range of CIRs. All these observations suggest that latitudinal transport of energetic particles is quite easy. In addition, because the average magnetic field is radial at the pole, The Ulysses observations indicate that parallel diffusion and drift in the radial direction need to be reduced at the poles relative to their equatorial values. To achieve such behaviors of particle transport, the heliospheric magnetic field needs a significant latitudinal component at the poles. A non-zero latitudinal magnetic field component can be produced by latitudinal motion of the magnetic field line in solar corona, which can be in form of either random walk suggested by Jokipii or large scale systematic motion suggested by Fisk

  4. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    Science.gov (United States)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we

  5. High frequency fishbone driven by passing energetic ions in tokamak plasmas

    Science.gov (United States)

    Wang, Feng; Yu, L. M.; Fu, G. Y.; Shen, Wei

    2017-05-01

    High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835-8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energy δ {{W}k} is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work (Wang 2001 Phys. Rev. Lett. 86 5286-8). For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. Numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold {βc} for instability and decrease mode frequency.

  6. Data on trapping and re-emission of energetic hydrogen isotopes and helium in materials, supplement 1

    International Nuclear Information System (INIS)

    Yamaguchi, Sadae; Sugizaki, Yasuaki; Ozawa, Kunio; Nakai, Yohta.

    1984-05-01

    This is the supplement to the data on trapping and re-emission of energetic hydrogen isotopes and helium in materials (JAERI-M 82-118). It contains 32 data up to end of 1982, dividing it into following 6 sections: 1) Dose Dependence, 2) Target Material Dependence, 3) Target Temperature Dependence, 4) Incident Energy Dependence, 5) Damage Effects and 6) Ion-Induced Release. (author)

  7. Experimental Investigation of the Role of Defects in Detonation Sensitivity of Energetic Materials: Development of Techniques for Characterization

    Science.gov (United States)

    2009-12-31

    materials. The initial work was focused on design and construction of an apparatus for injecting defects into the crystals using PZT ceramics ...in the energy partitioning (Table 2), which offers some insight into the nature of the energetic texture of crystalline materials not apparent in

  8. Nano-Aluminum Reaction with Nitrogen in the Burn Front of Oxygen-Free Energetic Materials

    International Nuclear Information System (INIS)

    Tappan, B. C.; Son, S. F.; Moore, D. S.

    2006-01-01

    Nano-particulate aluminum metal was added to the high nitrogen energetic material triaminoguanidium azotetrazolate (TAGzT) in order to determine the effects on decomposition behavior. Standard safety testing (sensitivity to impact, spark and friction) are reported and show that the addition of nano-Al actually decreases the sensitivity of the pure TAGzT. Thermo-equilibrium calculations (Cheetah) indicate that the all of the Al reacts to form AlN in TAGzT decomposition, and the calculated specific impulses are reported. T-Jump/FTIR spectroscopy was performed on the neat TAGzT. Emission spectra were collected to determine the temperature of AlN formation in combustion. Burning rates were also collected, and the effects of nano-Al on rates are discussed

  9. Europa Lander Material Selection Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heller, Mellisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-10

    Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input from the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.

  10. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  11. Ignition and Reaction Analysis of High Loading Nano-Al/Fluoropolymer Energetic Composite Films

    Science.gov (United States)

    2014-01-01

    A novel hybrid binder system for extrudable composite propellant,” International Journal of Energetic Materials and Chemical Propulsion, Vol. 11...Vol. 27, No. 5, 2002, pp. 262-266. 6 Wang, Y., Travas-Sejdic, J., Steiner, R., “Polymer gel electrolyte supported with microporous polyolefin

  12. Computational studies on energetic properties of nitrogen-rich ...

    Indian Academy of Sciences (India)

    Computational studies on energetic properties of nitrogen-rich energetic materials with ditetrazoles. LI XIAO-HONGa,b,∗ and ZHANG RUI-ZHOUa. aCollege of Physics and Engineering, Henan University of Science and Technology, Luoyang 471 003, China. bLuoyang Key Laboratory of Photoelectric Functional Materials, ...

  13. A population of highly energetic transient events in the centres of active galaxies

    Science.gov (United States)

    Kankare, E.; Kotak, R.; Mattila, S.; Lundqvist, P.; Ward, M. J.; Fraser, M.; Lawrence, A.; Smartt, S. J.; Meikle, W. P. S.; Bruce, A.; Harmanen, J.; Hutton, S. J.; Inserra, C.; Kangas, T.; Pastorello, A.; Reynolds, T.; Romero-Cañizales, C.; Smith, K. W.; Valenti, S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2017-12-01

    Recent all-sky surveys have led to the discovery of new types of transients. These include stars disrupted by the central supermassive black hole, and supernovae that are 10-100 times more energetic than typical ones. However, the nature of even more energetic transients that apparently occur in the innermost regions of their host galaxies is hotly debated1-3. Here we report the discovery of the most energetic of these to date: PS1-10adi, with a total radiated energy of 2.3 × 1052 erg. The slow evolution of its light curve and persistently narrow spectral lines over ˜ 3 yr are inconsistent with known types of recurring black hole variability. The observed properties imply powering by shock interaction between expanding material and large quantities of surrounding dense matter. Plausible sources of this expanding material are a star that has been tidally disrupted by the central black hole, or a supernova. Both could satisfy the energy budget. For the former, we would be forced to invoke a new and hitherto unseen variant of a tidally disrupted star, while a supernova origin relies principally on environmental effects resulting from its nuclear location. Remarkably, we also discover that PS1-10adi is not an isolated case. We therefore surmise that this new population of transients has previously been overlooked due to incorrect association with underlying central black hole activity.

  14. Structure and Stability of Deflagrations in Porous Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    stephen B. Margolis; Forman A. Williams

    1999-03-01

    Theoretical two-phase-flow analyses have recently been developed to describe the structure and stability of multi-phase deflagrations in porous energetic materials, in both confined and unconfined geometries. The results of these studies are reviewed, with an emphasis on the fundamental differences that emerge with respect to the two types of geometries. In particular, pressure gradients are usually negligible in unconfined systems, whereas the confined problem is generally characterized by a significant gas-phase pressure difference, or overpressure, between the burned and unburned regions. The latter leads to a strong convective influence on the burning rate arising from the pressure-driven permeation of hot gases into the solid/gas region and the consequent preheating of the unburned material. It is also shown how asymptotic models that are suitable for analyzing stability may be derived based on the largeness of an overall activation-energy parameter. From an analysis of such models, it is shown that the effects of porosity and two-phase flow are generally destabilizing, suggesting that degraded propellants, which exhibit greater porosity than their pristine counterparts, may be more readily subject to combustion instability and nonsteady deflagration.

  15. Seeded Reaction Waves in Composites: Fast Structure Transforming Materials that Respond to Energetic Stimuli

    Science.gov (United States)

    2016-10-21

    change in the structure of the capsule system . The temperatures at which the capsules undergo transformation are in accordance with the results in DSC...Structure- Transforming Materials that Respond to Energetic Stimuli Sb. GRANT NUMBER N00014-13-1-0170 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd...encapsulated super- cooled fluids into a polymer matrix allows for rapid changes in mechanical properties. Frontal polymerization within a microvascular

  16. Delay in solar energetic particle onsets at high heliographic latitudes

    Directory of Open Access Journals (Sweden)

    S. Dalla

    2003-06-01

    Full Text Available Ulysses observations have shown that solar energetic particles (SEPs can easily reach high heliographic latitudes. To obtain information on the release and propagation of SEPs prior to their arrival at Ulysses, we analyse the onsets of nine large high-latitude particle events. We measure the onset times in several energy channels, and plot them versus inverse particle speed. This allows us to derive an experimental path length and time of release from the solar atmosphere. We repeat the procedure for near-Earth observations by Wind and SOHO. We find that the derived path lengths at Ulysses are 1.06 to 2.45 times the length of a Parker spiral magnetic field line connecting the spacecraft to the Sun. The time of particle release from the Sun is between 100 and 350 min later than the release time derived from in-ecliptic measurements. We find no evidence of correlation between the delay in release and the inverse of the speed of the CME associated with the event, or the inverse of the speed of the corresponding interplanetary shock. The main parameter determining the magnitude of the delay appears to be the difference in latitude between the flare and the footpoint of the spacecraft.Key words. Interplanetary physics (energetic particles – Solar physics, astrophysics and astronomy (energetic particles, flares and mass ejections

  17. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials.

    Science.gov (United States)

    Tsyshevsky, Roman V; Sharia, Onise; Kuklja, Maija M

    2016-02-19

    This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.

  18. Study of the degradation process of polyimide induced by high energetic ion irradiation

    International Nuclear Information System (INIS)

    Severin, Daniel

    2008-01-01

    The dissertation focuses on the radiation hardness of Kapton under extreme radiation environment conditions. To study ion-beam induced modifications, Kapton foils were irradiated at the GSI linear accelerator UNILAC using several projectiles (e.g. Ti, Mo, Au, and U) within a large fluence regime (1 x 10 10 -5 x 10 12 ions/cm 2 ). The irradiated Kapton foils were analysed by means of infrared and UV/Vis spectroscopy, tensile strength measurement, mass loss analysis, and dielectric relaxation spectroscopy. For testing the radiation stability of Kapton at the cryogenic operation temperature (5-10 K) of the superconducting magnets, additional irradiation experiments were performed at the Grand Accelerateur National d' Ions Lourds (GANIL, France) focusing on the online analysis of the outgassing process of small volatile degradation fragments. The investigations of the electrical properties analysed by dielectric relaxation spectroscopy exhibit a different trend: high fluence irradiations with light ions (e.g. Ti) lead to a slight increase of the conductivity, whereas heavy ions (e.g. Sm, Au) cause a drastic change already in the fluence regime of nonoverlapping tracks (5 x 10 10 ions/cm 2 ). Online analysis of the outgassing process during irradiation at cryogenic temperatures shows the release of a variety of small gaseous molecules (e.g. CO, CO 2 , and short hydro carbons). Also a small amount of large polymer fragments is identified. The results allow the following conclusions which are of special interest for the application of Kapton as insulating material in a high-energetic particle radiation environment. a) The material degradation measured with the optical spectroscopy and tensile strength tests are scalable with the dose deposited by the ions. The high correlation of the results allows the prediction of the mechanical degradation with the simple and non-destructive infrared spectroscopy. The degradation curve points to a critical material degradation which

  19. Study of the degradation process of polyimide induced by high energetic ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Severin, Daniel

    2008-09-19

    The dissertation focuses on the radiation hardness of Kapton under extreme radiation environment conditions. To study ion-beam induced modifications, Kapton foils were irradiated at the GSI linear accelerator UNILAC using several projectiles (e.g. Ti, Mo, Au, and U) within a large fluence regime (1 x 10{sup 10}-5 x 10{sup 12} ions/cm{sup 2}). The irradiated Kapton foils were analysed by means of infrared and UV/Vis spectroscopy, tensile strength measurement, mass loss analysis, and dielectric relaxation spectroscopy. For testing the radiation stability of Kapton at the cryogenic operation temperature (5-10 K) of the superconducting magnets, additional irradiation experiments were performed at the Grand Accelerateur National d' Ions Lourds (GANIL, France) focusing on the online analysis of the outgassing process of small volatile degradation fragments. The investigations of the electrical properties analysed by dielectric relaxation spectroscopy exhibit a different trend: high fluence irradiations with light ions (e.g. Ti) lead to a slight increase of the conductivity, whereas heavy ions (e.g. Sm, Au) cause a drastic change already in the fluence regime of nonoverlapping tracks (5 x 10{sup 10} ions/cm{sup 2}). Online analysis of the outgassing process during irradiation at cryogenic temperatures shows the release of a variety of small gaseous molecules (e.g. CO, CO{sub 2}, and short hydro carbons). Also a small amount of large polymer fragments is identified. The results allow the following conclusions which are of special interest for the application of Kapton as insulating material in a high-energetic particle radiation environment. a) The material degradation measured with the optical spectroscopy and tensile strength tests are scalable with the dose deposited by the ions. The high correlation of the results allows the prediction of the mechanical degradation with the simple and non-destructive infrared spectroscopy. The degradation curve points to a

  20. Investigation of the imaging properties of inorganic scintillation screens using high energetic ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice [TU Darmstadt (Germany); JWG Universitaet Frankfurt/Main (Germany); Forck, Peter; Sieber, Thomas [GSI Darmstadt (Germany); Ensinger, Wolfgang; Lederer, Stephan [TU Darmstadt (Germany); Kester, Oliver [JWG Universitaet Frankfurt/Main (Germany)

    2016-07-01

    Inorganic scintillation screens are a common diagnostics tool in heavy ion accelerators. In order to investigate the imaging properties of various screen materials, four different material compositions were irradiated at GSI, using protons up to Uranium ions as projectiles. Beams were extracted from SIS18 with high energy (300 MeV/u) in slow and fast extraction mode. During irradiation the scintillation response of the screens was simultaneously recorded by two different optical setups to investigate light output, profile characteristics and emission spectra. It was observed, that fast extracted beams induce in general lower light output than slow extracted beams, while the light output per deposited energy decreases with atomic number. The analysis of the spectral emission as well as investigations with classical optical methods showed no significant defect-building in all materials, not even under irradiation with increasing beam intensity or over long time periods. The investigated scintillation screens can be considered as stable under irradiation with high energetic heavy ion pulses and are appropriate for beam diagnostics applications in future accelerator facilities like FAIR. Characteristic properties and application areas of the screens are presented in the poster.

  1. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials

    Directory of Open Access Journals (Sweden)

    Roman V. Tsyshevsky

    2016-02-01

    Full Text Available This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.

  2. Active interrogation using energetic protons

    International Nuclear Information System (INIS)

    Morris, Christopher L.; Chung, Kiwhan; Greene, Steven J.; Hogan, Gary E.; Makela, Mark; Mariam, Fesseha; Milner, Edward C.; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  3. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  4. Source Characterization Model (SCM): A Predictive Capability for the Source Terms of Residual Energetic Materials from Burning and/or Detonation Activities

    National Research Council Canada - National Science Library

    Brown, Robert C; Kolb, Charles E; Conant, John A; Zhang, John; Dussault, David M; Rush, Tamera L; Conway, Brooke E; Morris, James W; Touma, Joe

    2004-01-01

    .... Detonation of energetic materials produces a wide range of air and surface pollutants, including carbon monoxide, nitrogen oxides, volatile organic compounds, acid gases, and particulate matter...

  5. New high-nitrogen materials based on nitroguanyl-tetrazines: explosive properties, thermal decomposition and combustion studies

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E.; Tappan, Bryce C.; Hiskey, Michael A.; Son, Steve F.; Harry, Herbert; Montoya, Dennis; Hagelberg, Stephanie [Dynamic Experimentation Division, DX-2 Materials Dynamics Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-12-01

    This paper describes the explosive sensitivity and performance properties of two novel high-nitrogen materials, 3,6-bis-nitroguanyl-1,2,4,5-tetrazine (1, (NQ{sub 2}Tz)) and its corresponding bis-triaminoguanidinium salt (2, (TAG){sub 2}(NQ){sub 2}Tz). These materials exhibit very low pressure dependence in burning rate. Flash pyrolysis/FTIR spectroscopy was performed, and insight into this interesting burning behavior was obtained. Our studies indicate that 1 and 2 exhibit highly promising energetic materials properties. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  6. Criticality conditions of heterogeneous energetic materials under shock loading

    Science.gov (United States)

    Nassar, Anas; Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    Shock interaction with the microstructural heterogeneities of energetic materials can lead to the formation of locally heated regions known as hot spots. These hot spots are the potential sites where chemical reaction may be initiated. However, the ability of a hot spot to initiate chemical reaction depends on its size, shape and strength (temperature). Previous study by Tarver et al. has shown that there exists a critical size and temperature for a given shape (spherical, cylindrical, and planar) of the hot spot above which reaction initiation is imminent. Tarver et al. assumed a constant temperature variation in the hot spot. However, the meso-scale simulations show that the temperature distribution within a hot spot formed from processes such as void collapse is seldom constant. Also, the shape of a hot spot can be arbitrary. This work is an attempt towards development of a critical hot spot curve which is a function of loading strength, duration and void morphology. To achieve the aforementioned goal, mesoscale simulations are conducted on porous HMX material. The process is repeated for different loading conditions and void sizes. The hot spots formed in the process are examined for criticality depending on whether they will ignite or not. The metamodel is used to obtain criticality curves and is compared with the critical hot spot curve of Tarver et al.

  7. Stability of quasi-steady deflagrations in confined porous energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Alexander M. Telengator; Stephen B. Margolis; Forman A. Williams

    2000-03-01

    Previous analyses have shown that unconfined deflagrations propagating through both porous and nonporous energetic materials can exhibit a thermal/diffusive instability that corresponds to the onset of various oscillatory modes of combustion. For porous materials, two-phase-flow effects, associated with the motion of the gas products relative to the condensed material, play a significant role that can shift stability boundaries with respect to those associated with the nonporous problem. In the present work, additional significant effects are shown to be associated with confinement, which produces an overpressure in the burned-gas region that leads to reversal of the gas flow and hence partial permeation of the hot gases into the unburned porous material. This results in a superadiabatic effect that increases the combustion temperature and, consequently, the burning rate. Under the assumption of gas-phase quasi-steadiness, an asymptotic model is presented that facilitates a perturbation analysis of both the basic solution, corresponding to a steadily propagating planar combustion wave, and its stability. The neutral stability boundaries collapse to the previous results in the absence of confinement, but different trends arising from the presence of the gas-permeation layer are predicted for the confined problem. Whereas two-phase-flow effects are generally destabilizing in the unconfined geometry, the effects of increasing overpressure and hence combustion temperature associated with confinement are shown to be generally stabilizing with respect to thermal/diffusive instability, analogous to the effects of decreasing heat losses on combustion temperature and stability in single-phase deflagrations.

  8. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    Energy Technology Data Exchange (ETDEWEB)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  9. Pressure Dependent Decomposition Kinetics of the Energetic Material HMX up to 3.6 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E A; Zaug, J M; Burnham, A K

    2009-05-29

    The effect of pressure on the thermal decomposition rate of the energetic material HMX was studied. HMX was precompressed in a diamond anvil cell (DAC) and heated at various rates. The parent species population was monitored as a function of time and temperature using Fourier transform infrared (FTIR) spectroscopy. Decomposition rates were determined by fitting the fraction reacted to the extended-Prout-Tompkins nucleation-growth model and the Friedman isoconversional method. The results of these experiments and analysis indicate that pressure accelerates the decomposition at low to moderate pressures (i.e. between ambient pressure and 1 GPa) and decelerates the decomposition at higher pressures. The decomposition acceleration is attributed to pressure enhanced autocatalysis whereas the deceleration at high pressures is attributed pressure inhibiting bond homolysis step(s), which would result in an increase in volume. These results indicate that both {beta} and {delta} phase HMX are sensitive to pressure in the thermally induced decomposition kinetics.

  10. Toxicity Determinations for Five Energetic Materials, Weathered and Aged in Soil, to the Collembolan Folsomia Candida

    Science.gov (United States)

    2015-03-01

    obtained from the Soil Fauna and Ecotoxicology Research Unit, Department of Terrestrial Ecology, National Environmental Research Institute (Silkeborg...AND AGED IN SOIL , TO THE COLLEMBOLAN FOLSOMIA CANDIDA ECBC-TR-1273 Carlton T. Phillips Ronald T. Checkai Roman G. Kuperman Michael Simini...for Five Energetic Materials, Weathered and Aged in Soil , to the Collembolan Folsomia candida 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  11. High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide

    Energy Technology Data Exchange (ETDEWEB)

    Laniel, Dominique; Desgreniers, Serge [Laboratoire de physique des solides denses, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Downie, Laura E. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Smith, Jesse S. [High Pressure Collaborative Access Team, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Savard, Didier; Murugesu, Muralee [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2014-12-21

    Cyanuric triazide (CTA), a nitrogen-rich energetic material, was compressed in a diamond anvil cell up to 63.2 GPa. Samples were characterized by x-ray diffraction, Raman, and infrared spectroscopy. A phase transition occurring between 29.8 and 30.7 GPa was found by all three techniques. The bulk modulus and its pressure derivative of the low pressure phase were determined by fitting the 300 K isothermal compression data to the Birch-Murnaghan equation of state. Due to the strong photosensitivity of CTA, synchrotron generated x-rays and visible laser radiation both lead to the progressive conversion of CTA into a two dimensional amorphous C=N network, starting from 9.2 GPa. As a result of the conversion, increasingly weak and broad x-ray diffraction lines were recorded from crystalline CTA as a function of pressure. Hence, a definite structure could not be obtained for the high pressure phase of CTA. Results from infrared spectroscopy carried out to 40.5 GPa suggest the high pressure formation of a lattice built of tri-tetrazole molecular units. The decompression study showed stability of the high pressure phase down to 13.9 GPa. Finally, two CTA samples, one loaded with neon and the other with nitrogen, used as pressure transmitting media, were laser-heated to approximately 1100 K and 1500 K while compressed at 37.7 GPa and 42.0 GPa, respectively. In both cases CTA decomposed resulting in amorphous compounds, as recovered at ambient conditions.

  12. Prediction of detonation and JWL eos parameters of energetic materials using EXPLO5 computer code

    CSIR Research Space (South Africa)

    Peter, Xolani

    2016-09-01

    Full Text Available Ballistic Organization Cape Town, South Africa 27-29 September 2016 1 PREDICTION OF DETONATION AND JWL EOS PARAMETERS OF ENERGETIC MATERIALS USING EXPLO5 COMPUTER CODE X. Peter*, Z. Jiba, M. Olivier, I.M. Snyman, F.J. Mostert and T.J. Sono.... Nowadays many numerical methods and programs are being used for carrying out thermodynamic calculations of the detonation parameters of condensed explosives, for example a BKW Fortran (Mader, 1967), Ruby (Cowperthwaite and Zwisler, 1974) TIGER...

  13. Material-related issues at high-power and high-energy ion beam facilities

    CERN Document Server

    Bender, M.; Tomut, M.; Trautmann, C.

    2015-01-01

    When solids are exposed to energetic ions (MeV-GeV), their physical and chemical structure can be severely modified. The change is governed by ultrafast dynamical processes starting from the deposition of large energy densities, electronic excitation and ionization processes, and finally damage creation in the atomic lattice system. In many materials, each projectile creates a cylindrical track with a few nanometers in diameter and up to many μm in length. To study and monitor the creation of damage, the GSI irradiation facility dedicated to materials science provides different in-situ and on-line techniques such as high resolution microscopy, X-ray diffraction, optical absorption spectroscopy, thermal imaging and residual gas analysis. The irradiation experiments can be performed under various gas atmospheres and under cryogenic or elevated temperature.

  14. Energetic optimization of regenerative braking for high speed railway systems

    International Nuclear Information System (INIS)

    Frilli, Amedeo; Meli, Enrico; Nocciolini, Daniele; Pugi, Luca; Rindi, Andrea

    2016-01-01

    Highlights: • A model of longitudinal dynamics of the High-speed train ETR1000 is presented. • The model includes on board traction and braking subsystems. • Interactions between overhead line and power line are modelled. • The model is validated on real experimental data. • An energy storage strategy for a high-speed line is proposed. - Abstract: The current development trend in the railway field has led to an ever increasing interest for the energetic optimization of railway systems (especially considering the braking phases), with a strong attention to the mutual interactions between the loads represented by railway vehicles and the electrical infrastructure, including all the sub-systems related to distribution and smart energy management such as energy storage systems. In this research work, the authors developed an innovative coupled modelling approach suitable for the analysis of the energetic optimization of railway systems and based on the use of the new object oriented language Matlab-Simscape™, which presents several advantages with respect to conventional modelling tools. The proposed model has been validated considering an Italian Direct Current High-speed line and the High-speed train ETR 1000. Furthermore, the model has been used to perform an efficiency analysis, considering the use of energy storage devices. The results obtained with the developed model show that the use of energy recovery systems in high-speed railway can provide great opportunities of energy savings.

  15. Continuous engineering of nano-cocrystals for medical and energetic applications

    Science.gov (United States)

    Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumünzer, M.; Schaefer, M. R.

    2014-10-01

    Cocrystals, solid mixtures of different molecules on molecular scale, are supposed to be tailor made materials with improved employability compared to their pristine individual components in domains such as medicine and explosives. In medicine, cocrystals are obtained by crystallization of active pharmaceutical ingredients with precisely chosen coformers to design medicaments that demonstrate enhanced stability, high solubility, and therefore high bioavailability and optimized drug up-take. Nanoscaling may further advance these characteristica compared to their micronsized counterparts - because of a larger surface to volume ratio of nanoparticles. In the field of energetic materials, cocrystals offer the opportunity to design smart explosives, combining high reactivity with significantly reduced sensitivity, nowadays essential for a safe manipulation and handling. Furthermore, cocrystals are used in ferroelectrics, non-linear material response and electronic organics. However, state of the art batch processes produce low volume of cocrystals of variable quality and only have produced micronsized cocrystals so far, no nano-cocrystals. Here we demonstrate the continuous preparation of pharmaceutical and energetic micro- and nano-cocrystals using the Spray Flash Evaporation process. Our laboratory scale pilot plant continuously prepared up to 8 grams per hour of Caffeine/Oxalic acid 2:1, Caffeine/Glutaric acid 1:1, TNT/CL-20 1:1 and HMX/Cl-20 1:2 nano- and submicronsized cocrystals.

  16. Building energetic material from novel salix leaf-like CuO and nano-Al through electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yan Jun; Li, Xueming [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing (China)

    2016-11-15

    In this study, an energetic material was prepared by depositing nano-Al on CuO arrays via electrophoretic deposition (EPD), which offers a feasible route for nano-Al integration. The morphology and structure of the CuO arrays and Al/CuO composites were characterized by scanning electron microscopy and X-ray diffraction. The CuO arrays were homogenously salix leaf-like structure with a width of ⁓150 to 200 nm. The energy density of Al/CuO composites was approximate to 1454.5 J/g by integrating the differential scanning calorimetry (DSC) plot and the combustion performance was recorded by a high-speed camera. Moreover, the combustion flames were violent and the whole reaction process only lasted 72.2 ms, indicating that the energy of the Al/CuO nanothermite can be released effectively.

  17. Initial mechanisms for the decomposition of electronically excited energetic materials: 1,5′-BT, 5,5′-BT, and AzTT

    International Nuclear Information System (INIS)

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R.

    2015-01-01

    Decomposition of nitrogen-rich energetic materials 1,5′-BT, 5,5′-BT, and AzTT (1,5′-Bistetrazole, 5,5′-Bistetrazole, and 5-(5-azido-(1 or 4)H-1,2,4-triazol-3-yl)tetrazole, respectively), following electronic state excitation, is investigated both experimentally and theoretically. The N 2 molecule is observed as an initial decomposition product from the three materials, subsequent to UV excitation, with a cold rotational temperature (<30 K). Initial decomposition mechanisms for these three electronically excited materials are explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersections play an essential role in the decomposition mechanism. Electronically excited S 1 molecules can non-adiabatically relax to their ground electronic states through (S 1 /S 0 ) CI conical intersections. 1,5′-BT and 5,5′-BT materials have several (S 1 /S 0 ) CI conical intersections between S 1 and S 0 states, related to different tetrazole ring opening positions, all of which lead to N 2 product formation. The N 2 product for AzTT is formed primarily by N–N bond rupture of the –N 3 group. The observed rotational energy distributions for the N 2 products are consistent with the final structures of the respective transition states for each molecule on its S 0 potential energy surface. The theoretically derived vibrational temperature of the N 2 product is high, which is similar to that found for energetic salts and molecules studied previously

  18. Thermal-spectrum recriticality energetics

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.

    1993-12-01

    Large computer codes have been created in the past to predict the energy release in hypothetical core disruptive accidents (CDA), postulated to occur in liquid metal reactors (LMR). These codes, such as SIMMER, are highly specific to LMR designs. More recent attention has focused on thermal-spectrum criticality accidents, such as for fuel storage basins and waste tanks containing fissile material. This paper resents results from recent one-dimensional kinetics simulations, performed for a recriticality accident in a thermal spectrum. Reactivity insertion rates generally are smaller than in LMR CDAs, and the energetics generally are more benign. Parametric variation of input was performed, including reactivity insertion and initial temperature

  19. Novel Method to Characterize and Model the Multiaxial Constitutive and Damage Response of Energetic Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshige, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rabbi, Md Fazle [Univ. of Texas, El Paso, TX (United States); Kaneshige, Michael J. [Univ. of Texas, El Paso, TX (United States); Mach, Robert [Univ. of Texas, El Paso, TX (United States); Catzin, Carlos A. [Univ. of Texas, El Paso, TX (United States); Stewart, Calvin M. [Univ. of Texas, El Paso, TX (United States)

    2017-12-01

    Simulant polymer bonded explosives are widely used to simulate the mechanical response of real energetic materials. In this paper, the fracture resistance of a simulant polymer bo nded explosive (PBX) is experimentally investigated. The simulant is composed of 80 wt.% soda lime glass beads (SLGB) and 20 wt.% high impact Polystyrene 825 (HIPS). Brazilian disk tests are performed to characterize the tensile and compressive properties. Fracture toughness and energy tests are performed in the semi - circular bending (SCB) configuration on 80, 81, 82, and 83 wt % SLGB compositions. Digital image correlation is performed to record the surface displacements and calculate surface strains during testing. The m icromechanical behavior of ductile and brittle fracture are evaluated using digital microscopy and scanning electron microscopy of the fracture surface. It is determined that (i) the manufacturing process produces a credible simulant of PBX properties, and (ii) the SCB test measures fracture resistance with a reasonable coefficient of variation.

  20. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    Science.gov (United States)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  1. Compatibility study of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials

    International Nuclear Information System (INIS)

    Yan Qilong; Li Xiaojiang; Zhang Laying; Li Jizhen; Li Hongli; Liu Ziru

    2008-01-01

    The compatibility of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials of solid propellants was studied by using the pressure DSC method where, cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), 1,4-dinitropiperazine (DNP), 1.25/1-NC/NG mixture, lead 3-nitro-1,2,4-triazol-5-onate (NTO-Pb), aluminum powder (Al, particle size = 13.6 μm) and N-nitrodihydroxyethylaminedinitrate (DINA) were used as energetic components and polyethylene glycol (PEG), polyoxytetramethylene-co-oxyethylene (PET), addition product of hexamethylene diisocyanate and water (N-100), 2-nitrodianiline (2-NDPA), 1,3-dimethyl-1,3-diphenyl urea (C 2 ), carbon black (C.B.), aluminum oxide (Al 2 O 3 ), cupric 2,4-dihydroxy-benzoate (β-Cu), cupric adipate (AD-Cu) and lead phthalate (φ-Pb) were used as inert materials. It was concluded that the binary systems of TNAD with NTO-Pb, RDX, PET and Al powder are compatible, and systems of TNAD with DINA and HMX are slightly sensitive, and with 2-NDPA, φ-Pb, β-Cu, AD-Cu and Al 2 O 3 are sensitive, and with PEG, N-100, C 2 and C.B. are incompatible. The impact and friction sensitivity data of the TNAD and TNAD in combination with the other energetic materials under present study was also obtained, and there was no consequential affiliation between sensitivity and compatibility

  2. Preliminary Hazard Analysis of Supercritical Fluid Separation of Energetic Materials

    National Research Council Canada - National Science Library

    1997-01-01

    .... Army Research Laboratory (ARL) and elsewhere, particularly at the Phasex Corporation, Lawrence, MA, has demonstrated the feasibility of separating the energetic moieties by use of supercritical CO2...

  3. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development.

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, Sean Patrick; Jilek, Brook Anton; Kohl, Ian Thomas; Farrow, Darcie; Urayama, Junji

    2014-11-01

    We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties during shock compression of condensed phase materials at micron spatial scales and picosecond time scales. The report is structured into three main chapters, which each focus on a different diagnostic devel opment effort. Direct picosecond laser drive is used to introduce shock waves into thin films of energetic and inert materials. The resulting laser - driven shock properties are probed via Ultrafast Time Domain Interferometry (UTDI), which can additionally be used to generate shock Hugoniot data in tabletop experiments. Stimulated Raman scattering (SRS) is developed as a temperature diagnostic. A transient absorption spectroscopy setup has been developed to probe shock - induced changes during shock compressio n. UTDI results are presented under dynamic, direct - laser - drive conditions and shock Hugoniots are estimated for inert polystyrene samples and for the explosive hexanitroazobenzene, with results from both Sandia and Lawrence Livermore presented here. SRS a nd transient absorption diagnostics are demonstrated on static thin - film samples, and paths forward to dynamic experiments are presented.

  4. Evidence against the energetic cost hypothesis for the short introns in highly expressed genes

    Directory of Open Access Journals (Sweden)

    Niu Deng-Ke

    2008-05-01

    Full Text Available Abstract Background In animals, the moss Physcomitrella patens and the pollen of Arabidopsis thaliana, highly expressed genes have shorter introns than weakly expressed genes. A popular explanation for this is selection for transcription efficiency, which includes two sub-hypotheses: to minimize the energetic cost or to minimize the time cost. Results In an individual human, different organs may differ up to hundreds of times in cell number (for example, a liver versus a hypothalamus. Considered at the individual level, a gene specifically expressed in a large organ is actually transcribed tens or hundreds of times more than a gene with a similar expression level (a measure of mRNA abundance per cell specifically expressed in a small organ. According to the energetic cost hypothesis, the former should have shorter introns than the latter. However, in humans and mice we have not found significant differences in intron length between large-tissue/organ-specific genes and small-tissue/organ-specific genes with similar expression levels. Qualitative estimation shows that the deleterious effect (that is, the energetic burden of long introns in highly expressed genes is too negligible to be efficiently selected against in mammals. Conclusion The short introns in highly expressed genes should not be attributed to energy constraint. We evaluated evidence for the time cost hypothesis and other alternatives.

  5. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    Science.gov (United States)

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  6. Energetic balance and air pollutant emissions estimates in the Aburra Valley, 1999: A preliminary approximation

    International Nuclear Information System (INIS)

    Molina Perez; Francisco; Saavedra Duque, Marcela; Obregon Cardona Mauricio

    2003-01-01

    Based on the application of Material Fluxes Analysis, this paper presents the composition of the energetic basket in Valle de Aburra during 1999 and the atmospheric emissions caused by the consumption of those energetic materials. Basically, it was found that the daily energetic consumption of the system was 43,2 Tcal that generated 716 ton. by day of atmospheric contaminants as an output. The results show that the main energetic materials that participate in the global metabolism of the system, was those consumed in the transportation sector (gasoline and diesel). Therefore transportation sector contributes with the principal load of contaminants represented by carbon monoxide that overtake the 77,6% of the whole emissions

  7. High-resolution transmission electron microscopy and energetics of flattened carbon nonoshells

    International Nuclear Information System (INIS)

    Bourgeois, L.N.; Bursill, L.A.

    1998-01-01

    When examined under a high-resolution transmission electron microscope, carbon soot produced alongside buckytubes in an arc-discharge is found to contain a small percentage of flattened carbon shells. These objects are shown to be small graphite flakes which eliminated their dangling bonds by terminating their edges with highly curved junctions. Ideal models for these structures are presented, and their energy estimated. The calculations show that the establishment of highly curved junctions is energetically favourable for a graphite flake in an inert atmosphere. Flattened shells also appear more stable than their 'inflated' counterparts (fullerene 'onions' and buckytubes) when the shell dimensions obey specific criteria.(authors)

  8. Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    Directory of Open Access Journals (Sweden)

    D. Lario

    Full Text Available We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996, the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10 of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002, the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20 values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio are able to globally

  9. 1-Amine-1,2,3-triazolium salts with oxidizing anions: A new family of energetic materials with good performance

    Science.gov (United States)

    Zhang, Zhi-Bin; Zhang, Jian-Guo

    2018-04-01

    A series of 1-amino-1,2,3-triazole (ATZ) based energetic nitrogen-rich salts are prepared by using acid-base neutralization reaction (1:1 M ratio), and fully characterized. Structures of the salts are recrystallized and determined by single-crystal X-ray diffraction, which dominated by a strong hydrogen-bond influence with the densities ranging from 1.692 to 1.868 g cm-3. Thermal behaviors have characterized by using the DSC and TG-DTG technologies. The enthalpies of formation have calculated by using Gaussian 03. The detonation parameters of the salts are determined by using the K-J method, and most salts show promising detonation performances (D: 6699-8231 m s-1, P: 19.2-30.7 GPa), among which the salt of 1-amino-1,2,3-triazolium trinitrophloroglucinate has a detonation properties comparable to RDX. The sensitivities results provided the salts as insensitive energetic materials.

  10. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.

    Science.gov (United States)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S; Dlott, Dana D

    2014-02-01

    We have observed and characterized hot spot formation and hot-spot ignition of energetic materials (EM), where hot spots were created by ultrasonic or long-wavelength infrared (LWIR) exposure, and were detected by high-speed thermal microscopy. The microscope had 15-20 μm spatial resolution and 8.3 ms temporal resolution. LWIR was generated by a CO2 laser (tunable near 10.6 μm or 28.3 THz) and ultrasound by a 20 kHz acoustic horn. Both methods of energy input created spatially homogeneous energy fields, allowing hot spots to develop spontaneously due to the microstructure of the sample materials. We observed formation of hot spots which grew and caused the EM to ignite. The EM studied here consisted of composite solids with 1,3,5-trinitroperhydro-1,3,5-triazine crystals and polymer binders. EM simulants based on sucrose crystals in binders were also examined. The mechanisms of hot spot generation were different with LWIR and ultrasound. With LWIR, hot spots were most efficiently generated within the EM crystals at LWIR wavelengths having longer absorption depths of ∼25 μm, suggesting that hot spot generation mechanisms involved localized absorbing defects within the crystals, LWIR focusing in the crystals or LWIR interference in the crystals. With ultrasound, hot spots were primarily generated in regions of the polymer binder immediately adjacent to crystal surfaces, rather than inside the EM crystals.

  11. The role of energetic ions from plasma in the creation of nanostructured materials and stable polymer surface treatments

    International Nuclear Information System (INIS)

    Bilek, M.M.M.; Newton-McGee, K.; McKenzie, D.R.; McCulloch, D.G.

    2006-01-01

    Plasma processes for the synthesis of new materials as thin films have enabled the production of a wide variety of new materials. These include meta-stable phases, which are not readily found in nature, and more recently, materials with structure on the nanoscale. Study of plasma synthesis processes at the fundamental level has revealed that ion energy, depositing flux and growth surface temperature are the critical parameters affecting the microstructure and the properties of the thin film materials formed. In this paper, we focus on the role of ion flux and impact energy in the creation of thin films with nanoscale structure in the form of multilayers. We describe three synthesis strategies, based on the extraction of ions from plasma sources and involving modulation of ion flux and ion energy. The microstructure, intrinsic stress and physical properties of the multilayered samples synthesized are studied and related back to the conditions at the growth surface during deposition. When energetic ions of a non-condensing species are used, it is possible to place active groups on the surfaces of materials such as polymers. These active groups can then be used as bonding sites in subsequent chemical attachment of proteins or other macromolecules. If the energy of the non-condensing ions is increased to a few keV then modified layers buried under the surface can be produced. Here we describe a method by which the aging effect, which is often observed in plasma surface modifications on polymers, can be reduced and even eliminated using high energy ion bombardment

  12. Progress Towards a Benchtop Energetics Capability (BRIEFING CHARTS)

    National Research Council Canada - National Science Library

    Fajardo, Mario E; Lewis, William K

    2006-01-01

    The incorporation of nanometric (sub-micron size) metal fuel and oxidizer particles into energetic materials is a promising approach to increasing significantly the systems-level performance of munitions...

  13. Energetics of dislocation transformations in hcp metals

    International Nuclear Information System (INIS)

    Wu, Zhaoxuan; Yin, Binglun; Curtin, W.A.

    2016-01-01

    Dislocation core structures of hcp metals are highly complex and differ significantly among the hcp family. Some dislocations undergo unconventional transformations that have significant effects on the material plastic flow. Here, the energetics of dislocation dissociations are analyzed in a general anisotropic linear elastic theory framework for transformations in which changes in the partial Burgers vectors are small. Quantitative analyses on various transformations are made using DFT-computed stacking fault energies and partial Burgers vectors. Specifically, possible transformations of the mixed, edge, and screw 〈c+a〉 and screw 〈a〉 dislocations in 6 hcp metals (Mg, Ti, Zr, Re, Zn, Cd) are studied. Climb dissociation of mixed or edge 〈c+a〉 dislocations to the Basal plane is energetically favorable in all 6 metals and thus only limited by thermal activation. The 〈c+a〉 screw dislocation is energetically preferable on Pyramidal I for Ti, Zr, and Re, and on Pyramidal II for Zn and Cd. In Mg, the energy difference between screw 〈c+a〉 on Pyramidal I and II planes is small, suggesting relatively easy cross-slip. For the screw 〈a〉, Basal dissociation is energetically favorable in Mg, Re, Zn and Cd, while Prism dissociation is strongly favorable in Ti and Zr. Only Ti, Zr and Re show a metastable state for dissociation on the Prism plane, and the energy difference between screw 〈a〉 on the Prism and Pyramidal I planes is relatively small in all systems, suggesting relatively easy cross-slip of 〈a〉 in Ti and Zr. The elastic analysis thus provides a single framework able to capture the controlling energetics for different dissociations and slip systems in hcp metals. When the calculated energy differences are very small, the results point to the need for detailed modeling of the atomistic core structure. Moreover, the analyses rationalize broad experimental observations on dominant slip systems and dislocation behaviours, and provide

  14. Hepatic mitochondrial energetics during catch-up fat with high-fat diets rich in lard or safflower oil.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Falcone, Italia; Tsalouhidou, Sofia; Yepuri, Gayathri; Mougios, Vassilis; Dulloo, Abdul G; Liverini, Giovanna; Iossa, Susanna

    2012-09-01

    We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling.

  15. Spontaneous Energy Concentration in Energetic Molecules, Interfaces and Composites: Response to Ultrasound and THz Radiation

    Science.gov (United States)

    2015-12-21

    crystals or crystalline composites. One crystal had a slippery surface coating and the other did not. The coated ammonium nitrate , RDX and PBX...vibrational spectroscopies and time-resolved thermal imaging microscopy. 15. SUBJECT TERMS Ultrasound, THz radiation, energetic materials, hot spots, energy...studying fast processes at interfaces. 3. At the level of bulk materials, we developed a high-speed thermal imaging microscope apparatus.15󈧔

  16. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  17. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere

    Science.gov (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga

    2017-04-01

    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  18. Temperature analysis of laser ignited metalized material using spectroscopic technique

    Science.gov (United States)

    Bassi, Ishaan; Sharma, Pallavi; Daipuriya, Ritu; Singh, Manpreet

    2018-05-01

    The temperature measurement of the laser ignited aluminized Nano energetic mixture using spectroscopy has a great scope in in analysing the material characteristic and combustion analysis. The spectroscopic analysis helps to do in depth study of combustion of materials which is difficult to do using standard pyrometric methods. Laser ignition was used because it consumes less energy as compared to electric ignition but ignited material dissipate the same energy as dissipated by electric ignition and also with the same impact. Here, the presented research is primarily focused on the temperature analysis of energetic material which comprises of explosive material mixed with nano-material and is ignited with the help of laser. Spectroscopy technique is used here to estimate the temperature during the ignition process. The Nano energetic mixture used in the research does not comprise of any material that is sensitive to high impact.

  19. Energetic particle observations at the subsolar magnetopause

    Directory of Open Access Journals (Sweden)

    A. A. Eccles

    Full Text Available The pitch-angle distributions (PAD of energetic particles are examined as the ISEE-1 satellite crosses the Earth’s magnetopause near the subsolar point. The investigation focuses on the possible existence of a particular type of distribution that would be associated with a source of energetic particles in the high-latitude magnetosphere. PADs, demonstrating broad, persistent field-aligned fluxes filling a single hemisphere (upper/northern or lower/southern, were observed just sunward of the magnetopause current layer for an extended period of many minutes. These distributions are a direct prediction of a possible source of energetic particles located in the high altitude dayside cusp and we present five examples in detail of the three-dimensional particle distributions to demonstrate their existence. From these results, other possible causes of such PADs are examined.

    Key words. Magnetospheric physics (energetic particles, precipitating; magnetopause, cusp and boundary layers; magnetospheric configuration and dynamics

  20. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  1. 2016 Energetic Materials Gordon Research Conference and Gordon Research Seminar Research Area 7: Chemical Sciences 7.0 Chemical Sciences (Dr. James K. Parker)

    Science.gov (United States)

    2016-08-10

    Energetic Materials" 8:45 pm - 8:55 pm Discussion 8:55 pm - 9:20 pm Michael Zdilla (Temple University, USA) "Expedition to Breach the CHNO Ceiling by...Introduction by Discussion Leader 9:15 am - 9:45 am Ryan Austin (Lawrence Livermore National Laboratory, USA) "Investigating the Crystal -Level

  2. Achieving a long-lived high-beta plasma state by energetic beam injection

    Science.gov (United States)

    Guo, H. Y.; Binderbauer, M. W.; Tajima, T.; Milroy, R. D.; Steinhauer, L. C.; Yang, X.; Garate, E. G.; Gota, H.; Korepanov, S.; Necas, A.; Roche, T.; Smirnov, A.; Trask, E.

    2015-04-01

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  3. Nitrogen-Rich Energetic Metal-Organic Framework: Synthesis, Structure, Properties, and Thermal Behaviors of Pb(II Complex Based on N,N-Bis(1H-tetrazole-5-yl-Amine

    Directory of Open Access Journals (Sweden)

    Qiangqiang Liu

    2016-08-01

    Full Text Available The focus of energetic materials is on searching for a high-energy, high-density, insensitive material. Previous investigations have shown that 3D energetic metal–organic frameworks (E-MOFs have great potential and advantages in this field. A nitrogen-rich E-MOF, Pb(bta·2H2O [N% = 31.98%, H2bta = N,N-Bis(1H-tetrazole-5-yl-amine], was prepared through a one-step hydrothermal reaction in this study. Its crystal structure was determined through single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, and elemental analysis. The complex has high heat denotation (16.142 kJ·cm−3, high density (3.250 g·cm−3, and good thermostability (Tdec = 614.9 K, 5 K·min−1. The detonation pressure and velocity obtained through theoretical calculations were 43.47 GPa and 8.963 km·s−1, respectively. The sensitivity test showed that the complex is an impact-insensitive material (IS > 40 J. The thermal decomposition process and kinetic parameters of the complex were also investigated through thermogravimetry and differential scanning calorimetry. Non-isothermal kinetic parameters were calculated through the methods of Kissinger and Ozawa-Doyle. Results highlighted the nitrogen-rich MOF as a potential energetic material.

  4. The production of Higgs bosons in high-energetic heavy-ion collisions

    International Nuclear Information System (INIS)

    Vidovic, M.

    1991-09-01

    The aim of this diploma thesis was to produce the Higgs boson in high-energetic, peripheral heavy-ion collisions by purely electromagnetic processes. In order to take only peripheral collisions into consideration and to avoid the strong hadronic background of central collisions the equivalent-photon method for the case of the Higgs boson was extended concerning an impact-parameter study. By this it was possible to exclude the contribution of central collisions by cut in the impact parameter at b=2R, in order to determine thus the production rate for purely peripheral collisions. (orig./HSI) [de

  5. Interchannel interactions in high-energetic radiationless transitions of neon-like ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Zschornack, G.; Musiol, G.; Soff, G.

    1990-07-01

    Relativistic K-LL Auger transition rates in intermediate coupling including interchannel interactions are presented for nine ions in the neon-isoelectronic sequence up to uranium. For neutral neon a comparison with experimental data is given. We demonstrate for the first time, that intercontinuum interactions result in a remarkable redistribution of individual transition rates even in high-energetic transitions. For instance, channel mixing shifts the K-L 1 L 1 rate by about 4% and the K-L 3 L 3 (J = 0) rate by about 11% in neon-like uranium, while total Auger rates are almost not affected. (orig.)

  6. Spectrophotometric and chromatographic determination of insensitive energetic materials: HNS and NTO, in the presence of sensitive nitro-explosives.

    Science.gov (United States)

    Can, Ziya; Uzer, Ayşem; Tekdemir, Yasemin; Erçağ, Erol; Türker, Lemi; Apak, Reşat

    2012-02-15

    As there are no molecular spectroscopic determination methods for the most widely used insensitive energetic materials, 2,2',4,4',6,6'-hexanitrostilbene (HNS) and 3-nitro-1,2,4-triazole-5-one (NTO), in the presence of sensitive nitro-explosives, two novel spectrophotometric methods were developed. For HNS and TNT mixtures, both analytes react with dicyclohexylamine (DCHA) forming different colored charge-transfer complexes, which can be resolved by derivative spectroscopy. The spectrophotometric method for NTO measures the 416-nm absorbance of its yellow-colored Na(+)NTO(-) salt formed with NaOH. TNT, if present, is pre-extracted into IBMK as its Meisenheimer anion forming an ion-pair with the cationic surfactant cetyl pyridinium (CP(+)) in alkaline medium, whereas the unextracted NTO is determined in the aqueous phase. The molar absorptivity (ε, L mol(-1)cm(-1)) and limit of quantification (LOQ, mg L(-1)) are as follows: for HNS, ε=2.75 × 10(4) and LOQ=0.48 (in admixture with TNT); for NTO, ε=6.83 × 10(3) and LOQ=0.73. These methods were not affected from nitramines and nitrate esters in synthetic mixtures or composite explosives. The developed methods were statistically validated against HPLC, and the existing chromatographic method was modified so as to enable NTO determination in the presence of TNT. These simple, low-cost, and versatile methods can be used in criminology, remediation/monitoring of contaminated sites, and kinetic stability modeling of munitions containing desensitized energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Raw material and energetic matrix: a synthetic, generic and attention considerations for the future of the Camacari Industrial pole, Bahia, Brazil; Materias-prima e matriz energetica: uma visao sintetica, generica e de atencao para o futuro do Polo Industrial de Camacari

    Energy Technology Data Exchange (ETDEWEB)

    Lins Neto, Joao Bispo [Braskem S.A., Camacari, BA (Brazil). Gerencia de Energia], e-mail: joao.lins@braskem.com.br; Lima, Alberto Ferreira [Bahia Pulp, Camacari, BA (Brazil). Gerencia de Qualidade e Desenvolvimento de Produto], e-mail: alberto_lima@bahiapulp.com; Petti, Ana Carla [Braskem S.A., Camacari, BA (Brazil). Gerencia de Gestao e Regulacao de Energia], e-mail: ana.petti@braskem.com.br; Correia, Antonia Lucia Santiago [PETROBRAS S.A., Norte/Nordeste (Brazil)

    2008-01-15

    This paper makes a synthetic evaluation of the present and raw material situation and the energetic matrix, and future perspectives, focusing on the following aspects: analysis of the existent production chains; threats to the raw material and incomes; integration between the enterprises and opportunities for new business, and availability and competitiveness of the energetic matrix.

  8. High-Density Energetic Metal–Organic Frameworks Based on the 5,5′-Dinitro-2H,2′H-3,3′-bi-1,2,4-triazole

    Directory of Open Access Journals (Sweden)

    Yalu Dong

    2017-06-01

    Full Text Available High-energy metal–organic frameworks (MOFs based on nitrogen-rich ligands are an emerging class of explosives, and density is one of the positive factors that can influence the performance of energetic materials. Thus, it is important to design and synthesize high-density energetic MOFs. In the present work, hydrothermal reactions of Cu(II with the rigid polynitro heterocyclic ligands 5,5′-dinitro-2H,2′H-3,3′-bi-1,2,4-triazole (DNBT and 5,5′-dinitro-3,3′-bis-1,2,4-triazole-1-diol (DNBTO gave two high-density MOFs: [Cu(DNBT(ATRZ3]n (1 and [Cu(DNBTO(ATRZ2(H2O2]n (2, where ATRZ represents 4,4′-azo-1,2,4-triazole. The structures were characterized by infrared spectroscopy, elemental analysis, ultraviolet-visible (UV absorption spectroscopy and single-crystal X-ray diffraction. Their thermal stabilities were also determined by thermogravimetric/differential scanning calorimetry analysis (TG/DSC. The results revealed that complex 1 has a two-dimensional porous framework that possesses the most stable chair conformations (like cyclohexane, whereas complex 2 has a one-dimensional polymeric structure. Compared with previously reported MOFs based on copper ions, the complexes have higher density (ρ = 1.93 g cm−3 for complex 1 and ρ = 1.96 g cm−3 for complex 2 and high thermal stability (decomposition temperatures of 323 °C for complex 1 and 333.3 °C for complex 2, especially because of the introduction of an N–O bond in complex 2. We anticipate that these two complexes would be potential high-energy density materials.

  9. MOISTURE HUMIDITY EQUILIBRIUM OF WOOD CHIPS FROM ENERGETIC CROPS

    Directory of Open Access Journals (Sweden)

    Jan Barwicki

    2008-09-01

    Full Text Available Processes occurring during storage of wood chips for energetic or furniture industry purposes were presented. As a result of carried out investigations, dependences of temperature and relative humidity changes of surrounding air were shown. Modified Henderson equation can be utilized for computer simulation of storing and drying processes concerning wood chips for energetic and furniture industry purposes. It reflects also obtained results from experiments carried out with above mentioned material. Using computer simulation program we can examine different wood chips storing conditions to avoid overheating and loss problems.

  10. Dynamic fracture and hot-spot modeling in energetic composites

    Science.gov (United States)

    Grilli, Nicolò; Duarte, Camilo A.; Koslowski, Marisol

    2018-02-01

    Defects such as cracks, pores, and particle-matrix interface debonding affect the sensitivity of energetic materials by reducing the time-to-ignition and the threshold pressure to initiate an explosion. Frictional sliding of preexisting cracks is considered to be one of the most important causes of localized heating. Therefore, understanding the dynamic fracture of crystalline energetic materials is of extreme importance to assess the reliability and safety of polymer-bonded explosives. Phase field damage model simulations, based on the regularization of the crack surface as a diffuse delta function, are used to describe crack propagation in cyclotetramethylene-tetranitramine crystals embedded in a Sylgard matrix. A thermal transport model that includes heat generation by friction at crack interfaces is coupled to the solution of crack propagation. 2D and 3D dynamic compression simulations are performed with different boundary velocities and initial distributions of cracks and interface defects to understand their effect on crack propagation and heat generation. It is found that, at an impact velocity of 400 m/s, localized damage at the particle-binder interface is of key importance and that the sample reaches temperatures high enough to create a hot-spot that will lead to ignition. At an impact velocity of 10 m/s, preexisting cracks advanced inside the particle, but the increase of temperature will not cause ignition.

  11. X-ray spectroscopic technique for energetic electron transport studies in short-pulse laser/plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tutt, T.E.

    1994-12-01

    When a solid target is irradiated by a laser beam, the material is locally heated to a high temperature and a plasma forms. The interaction of the laser with plasma can produce energetic electrons. By observing the behavior of these {open_quotes}hot{close_quotes} electrons, we hope to obtain a better understanding of Laser/Plasma Interactions. In this work we employ a layered-fluorescer technique to study the transport, and therefore the energetics, of the electrons. The plasma forms on a thin foil of metallic Pd which is bonded to thin layer of metallic Sn. Electrons formed from the plasma penetrate first the Pd and then the Sn. In both layers the energetic electrons promote inner (K) shell ionization of the metallic atoms which leads to the emission of characteristic K{sub {alpha}} x-rays of the fluorescers. By recording the x-ray spectrum emitted by the two foils, we can estimate the energy-dependent range of the electrons and their numbers.

  12. Energetic Sustainability and the Environment: A Transdisciplinary, Economic–Ecological Approach

    Directory of Open Access Journals (Sweden)

    Ioan G. Pop

    2017-05-01

    Full Text Available The paper combines original concepts about eco-energetic systems, in a transdisciplinary sustainable context. Firstly, it introduces the concept of M.E.N. (Mega-Eco-Nega-Watt, the eco-energetic paradigm based on three different but complementary ecological economic spaces: the Megawatt as needed energy, the Ecowatt as ecological energy, and the Negawatt as preserved energy. The paper also deals with the renewable energies and technologies in the context of electrical energy production. Secondly, in the context of the M.E.N. eco-energetic paradigm, comprehensive definitions are given about eco-energetic systems and for pollution. Thirdly, the paper introduces a new formula for the eco-energetic efficiency which correlates the energetic efficiency of the system and the necessary newly defined ecological coefficient. The proposed formula for eco-energetic efficiency enables an interesting form of relating to different situations in which the input energy, output energy, lost energy, and externalities involved in an energetic process, interact to produce energy in a specific energetic system, in connection with the circular resilient economy model. Finally, the paper presents an original energetic diagram to explain different channels to produce electricity in a resilience regime, with high eco-energetic efficiency from primary external energetic sources (gravitation and solar sources, fuels (classical and radioactive, internal energetic sources (geothermal, volcanoes and other kind of sources. Regardless the kind of energetic sources used to obtain electricity, the entire process should be sustainable in what concerns the transdisciplinary integration of the different representative spheres as energy, socio-economy, and ecology (environment.

  13. Refined energetic ordering for sulphate-water (n = 3-6) clusters using high-level electronic structure calculations

    Science.gov (United States)

    Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin

    2012-10-01

    This work reports refinements of the energetic ordering of the known low-energy structures of sulphate-water clusters ? (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second-order Møller-Plesset theory. Harmonic zero-point energy (ZPE), included at the B3LYP/6-311 + + G(3df,3pd) level, was found to have a significant effect on the energetic ordering. In fact, we show that the energetic ordering is a result of a delicate balance between the electronic and vibrational energies. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPEs, even alters the global minimum for n = 5. Experiments on deuterated clusters, as well as more sophisticated vibrational calculations, may therefore be quite interesting.

  14. Creating high energy density in nuclei with energetic antiparticles

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1986-01-01

    The possibility of creating a phase change in nuclear matter using energetic antiprotons and antideuterons is examined. It is found that energy densities of the order of 2 GeV/c can be obtained for periods of approx.2 fm/c with the proper experimental selection of events. 10 refs., 7 figs

  15. Papers of 4. Scientific-Technical Seminar: Material Study for Electric Power Stations and Energetics; Referaty 4. Seminarium Naukowo-Techniczne: Badania Materialowe na Potrzeby Elektrowni i Przemyslu Energetycznego

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The research on the materials commonly used in electric power stations and energetics have been summarized in the course of the seminar. Especially a different kinds of steels have been investigated from the view point of their desirable mechanical and corrosion properties.

  16. Energetically resolved multiple-fluid equilibria of tokamak plasmas

    International Nuclear Information System (INIS)

    Hole, M J; Dennis, G

    2009-01-01

    In many magnetically confined fusion experiments, a significant fraction of the stored energy of the plasma resides in energetic, or non-thermal, particle populations. Despite this, most equilibrium treatments are based on MHD: a single fluid treatment which assumes a Maxwell-Boltzmann distribution function. Detailed magnetic reconstruction based on this treatment ignore the energetic complexity of the plasma and can result in model-data inconsistencies, such as thermal pressure profiles which are inconsistent with the total stored kinetic energy of the plasma. Alternatively, ad hoc corrections to the pressure profile, such as summing the energetic and thermal pressures, have poor theoretical justification. Motivated by this omission, we generalize ideal MHD one step further: we consider multiple quasi-neutral fluids, each in thermal equilibrium and each thermally insulated from each other-no population mixing occurs. Kinetically, such a model may be able to describe the ion or electron distribution function in regions of velocity phase space with a large number of particles, at the expense of more weakly populated phase space, which may have uncharacteristically high temperature and hence pressure. As magnetic equilibrium effects increase with the increase in pressure, our work constitutes an upper limit to the effect of energetic particles. When implemented into an existing solver, FLOW (Guazzotto et al 2004 Phys. Plasmas 11, 604-14), it becomes possible to qualitatively explore the impact of resolving the energetic populations on plasma equilibrium configurations in realistic geometry. Deploying the modified code, FLOW-M, on a high performance spherical torus configuration, we find that the effect of variations of the pressure, poloidal flow and toroidal flow of the energetic populations is qualitatively similar to variations in the background plasma. We also study the robustness of the equilibrium to uncertainties in the current profile and the energetic

  17. Beam-Material Interaction

    CERN Document Server

    Mokhov, N.V.

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high- intensity energetic particle beam interactions with accelerator, generic target , and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and envir onment in challenging current and future application

  18. Beam-Material Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N. V. [Fermilab; Cerutti, F. [CERN

    2016-01-01

    Th is paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications.

  19. High power laser research and development at the Laboratory for Laser Energetics

    International Nuclear Information System (INIS)

    Soures, J.M.; McCrory, R.L.; Cerqua, K.A.

    1986-01-01

    As part of its research mission - to investigate the interaction of intense radiation with matter - the Laboratory for Laser Energetics (LLE) of the University of Rochester is developing a number of high-peak power and high-average-power laser systems. In this paper we highlight some of the LLE work on solid-state laser research, development and applications. Specifically, we discuss the performance and operating characteristics of Omega, a twenty-four beam, 4000 Joule, Nd:glass laser system which is frequently tripled using the polarization mismatch scheme. We also discuss progress in efforts to develop high-average-power solid-state laser systems with active-mirror and slab geometries and to implement liquid-crystal devices in high-power Nd:glass lasers. Finally we present results from a program to develop a compact, ultrahigh-peak-power solid-state laser using the concept of frequency chirped pulse amplification

  20. Energetic utilization and recycling of straw; Energetische und stoffliche Verwertung von Stroh

    Energy Technology Data Exchange (ETDEWEB)

    Schuech, Andrea; Engler, Nils; Weissbach, Gunter; Nelles, Michael [Rostock Univ. (Germany). Lehrstuhl Abfall- und Stoffstromwirtschaft

    2013-10-01

    Worldwide arising significant emissions caused by the burning of rice straw on the field. The combined energetic and material utilization of rice straw offers the production possibility of various usable bioenergy and the closing of nutrient cycles by the return of the conversion residues. Thereby the soil quality can be improved and an important contribution to climate protection and resource conservation be realized. In the German-Egyptian project CEMUWA, the options of material and energetic use of rice straw are investigated. It is used as substrate for plant cultivation and for the production of ethanol, butanol and biogas. In this paper first results are presented. (orig.)

  1. Toxicity of Nitro-Heterocyclic and Nitroaromatic Energetic Materials to Folsomia candida in a Natural Sandy Loam Soil

    Science.gov (United States)

    2015-04-01

    these tests. Acetone (CAS: 67-64-1; high-performance liquid chromatography [HPLC] grade) was used for preparing EM solutions during the soil amendments... chromatography grade, purity: 99.9%) was used in the HPLC determinations. Certified standards of the energetics (AccuStandard, Inc., New Haven, CT) were used...H.; Van Gestel, C.A.M. Handbook of Soil Invertebrate Toxicity Tests; John Wiley & Sons: Hoboken, NJ, 1998. McLellan, W.L.; Hartley, W.R.; Brower

  2. Synthesis of a new energetic nitrate ester

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, David E [Los Alamos National Laboratory

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  3. Climate protection, natural resources management and soil improvement by combined Energetic and Material Utilization of lignocellulosic agricultural WAstes and residues (CEMUWA)

    International Nuclear Information System (INIS)

    Schuech, Andrea; Nelles, Michael; Tscherpel, Burckhard; El Behery, Ahmed; Menanz, Rania; Bahl, Hubert; Scheel, Michael; Nipkow, Mareen

    2015-01-01

    The project Climate protection, natural resources management and soil improvement by combined Energetic and Material Utilization of lignocellulosic agricultural WAstes and residues (CEMUWA) was implemented with long-term partners from Egypt and Germany leaded by the Department Waste Management and Material Flow from September 2011 until October 2013. Aim of the project was the development of technologies for the utilization of agricultural wastes and residues at the example of rice straw, with the focus on the energetic and material use. In the long term a contribution to climate protection and natural resource management could be reached. The focus was on investigations in the field of biogas, ethanol and butanol production including pretreatment as well as the material use in horticulture. The results show that the biogas and ethanol production with adapted pretreatments of rice straws is possible. The technical adaptation of a biogas plant (eo-digestion) would be associated with about 20% higher investment costs and higher operating costs with an approximately 15% higher energy demand. In Germany, however, this may still economically by the substitution of expensive or difficult available energy crops (reduction of substrate costs by 30 to 35% for a 600 kWel-BGP using maize silage). The investigated solutions for material use in Egypt showed good results, which in some cases exceeded the expectations. By the use of rice straw imported peat substrates could be substitute or irrigation water saved, what is ecologically and economically useful. The production of ethanol from rice straw was implemented on laboratory scale and preconditions for investigations in semi-industrial and partly pilot scale were created. The bilateral project'' was funded in the framework of the German-Egypt-Research-Fond (GERF) by the German Federal Ministry of Education and Research (BMBF) and the Egyptian Science and Technology Development Fund in Egypt (STDF). The total budget

  4. High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2014-02-01

    Full Text Available The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC. The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

  5. High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility

    Science.gov (United States)

    Cauchi, Marija; Aberle, O.; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cornelis, K.; Dallocchio, A.; Deboy, D.; Lari, L.; Redaelli, S.; Rossi, A.; Salvachua, B.; Mollicone, P.; Sammut, N.

    2014-02-01

    The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

  6. Disposal of energetic materials by alkaline pressure hydrolysis and combined techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bunte, G.; Krause, H.H.; Hirth, T. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal-Berghausen (Germany)

    1997-07-01

    Due to the reduction of armament and especially due to the German reunification we are met by objective of the diposal of energetic materials. Environmentally friendly disposal methods available for the different propellants, explosives and pyrotechnics are urgently needed. The main component of gun and rocket propellants is the energetic polymer nitrocellulose. One method to dispose nitrocellulose containing propellants is the combination of rapid chemical destruction by pressure hydrolysis and the biological degradation of the reaction mixture. The study describes the results of pressure hydrolysis of different gun and rocket propellants. Under alkaline conditions (propellant to NaOH ratio 2.3:1; reaction temperature 150 C; pressure below 30 bar) biological degradable reaction products were formed. The main products in the liquid phase were simple mono- and dicarboxylic acids. Dependent on the reaction conditions 30-50% of the nitrogen content of the propellants was transformed to nitrite and nitrate. The gaseous nitrogen containing products were N{sub 2} (16-46%), N{sub 2}O (2-23%), NO{sub x} (0-5%). Overall 40%-60% of the propellant nitrogen was transformed to gaseous products. In the solid residues a nitrogen content between 2% and 9% was found. The residues were mostly due to additives used in propellant manufacturing. In the case of nitrocellulose pressure hydrolysis below 30 bar and reaction temperature about 150 C are sufficient. (orig.) [Deutsch] Nicht zuletzt aufgrund der in den letzten Jahren erfolgten Abruestungsmassnahmen sowie auch der Wiedervereinigung beider deutscher Staaten ergab sich die Problematik der Entsorgung von energetischen Materialien. Alternativ zur Verbrennung besteht Bedarf an der Entwicklung von Entsorgungsverfahren, die eine umweltfreundliche Entsorgung von Treibladungspulvern, Raketenfesttreibstoffen oder pyrotechnischen Komponenten ermoeglichen. Eine interessante Methode zur Beseitigung von auf Nitrocellulose basierenden

  7. Studies on compatibility of energetic materials by thermal methods

    Directory of Open Access Journals (Sweden)

    Maria Alice Carvalho Mazzeu

    2010-04-01

    Full Text Available The chemical compatibility of explosives, pyrotechnics and propellants with those materials is studied to evaluate potential hazards when in contact with other materials during production, storage and handling. Compatibility can be studied by several thermal methods as DSC (differential scanning calorimetry, TG (Thermogravimetry, VST (Vacuum stability test and others. The test methods and well defined criteria are the most important elements when a compatibility study is being accomplished. In this paper, the compatibility of two very important high explosives used in ammunition, RDX (Cyclo-1,3,5-trimethylene-2,4,6-trinitramine and HMX (Cyclotetramethylene tetranitramine was studied with the materials: fluoroelastomer (Viton and powdered aluminum (Al, using DSC and VST methods. The criteria to judge the compatibility between materials is based on a standardization agreement (STANAG 4147, 2001, and the final conclusion is that explosives and this materials are compatible, but in DSC it was observed that the peak of decomposition temperature of the admixture of RDX with Al decreased in 3º C and another peak appeared after the decomposition peak.

  8. Energetic lanthanide complexes: coordination chemistry and explosives applications

    International Nuclear Information System (INIS)

    Manner, V W; Barker, B J; Sanders, V E; Laintz, K E; Scott, B L; Preston, D N; Sandstrom, M; Reardon, B L

    2014-01-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  9. Evaluating the Bulk Lorentz Factors of Outflow Material: Lessons Learned from the Extremely Energetic Outburst GRB 160625B

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai; Liang, Yun-Feng; Jin, Zhi-Ping; He, Hao-Ning; Liao, Neng-Hui; Fan, Yi-Zhong; Wei, Da-Ming, E-mail: liangyf@pmo.ac.cn, E-mail: jin@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Science, Nanjing, 210008 (China)

    2017-02-10

    GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ∼5.2 × 10{sup 52} erg or even ∼8 × 10{sup 52} erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factor correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ∼tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.

  10. Three-dimensional Mesoscale Simulations of Detonation Initiation in Energetic Materials with Density-based Kinetics

    Science.gov (United States)

    Jackson, Thomas; Jost, A. M.; Zhang, Ju; Sridharan, P.; Amadio, G.

    2017-06-01

    In this work we present three-dimensional mesoscale simulations of detonation initiation in energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The reaction rate at the mesoscale is modelled using a density-based kinetics scheme, adapted from standard Ignition and Growth models. The deposition term is based on previous results of simulations of pore collapse at the microscale, modelled at the mesoscale as hot-spots. We carry out three-dimensional mesoscale simulations of random packs of HMX crystals in a binder, and show that the transition between no-detonation and detonation depends on the number density of the hot-spots, the initial radius of the hot-spot, the post-shock pressure of an imposed shock, and the amplitude of the power deposition term. The trends of transition at lower pressure of the imposed shock for larger number density of pore observed in experiments is reproduced. Initial attempts to improve the agreement between the simulation and experiments through calibration of various parameters will also be made.

  11. Efficient Construction of Energetic Materials via Nonmetallic Catalytic Carbon-Carbon Cleavage/Oxime-Release-Coupling Reactions.

    Science.gov (United States)

    Zhao, Gang; He, Chunlin; Yin, Ping; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M

    2018-03-14

    The exploitation of C-C activation to facilitate chemical reactions is well-known in organic chemistry. Traditional strategies in homogeneous media rely upon catalyst-activated or metal-mediated C-C bonds leading to the design of new processes for applications in organic chemistry. However, activation of a C-C bond, compared with C-H bond activation, is a more challenging process and an underdeveloped area because thermodynamics does not favor insertion into a C-C bond in solution. Carbon-carbon bond cleavage through loss of an oxime moiety has not been reported. In this paper, a new observation of self-coupling via C-C bond cleavage with concomitant loss of oxime in the absence of metals (either metal-complex mediation or catalysis) results in dihydroxylammonium 5,5-bistetrazole-1,10-diolate (TKX-50) as well as N, N'-([3,3'-bi(1,2,4-oxadiazole)]-5,5'-diyl)dinitramine, a potential candidate for a new generation of energetic materials.

  12. Very energetic photons at HERA

    International Nuclear Information System (INIS)

    Bawa, A.C.; Krawczyk, M.

    1991-01-01

    We show that every energetic photons in the backward direction can be produced in deep inelastic Compton scattering at HERA. Assuming a fixed energy of 9 GeV for the initial photons and 820 GeV for the protons a high rate is found for the production of final photons with a transverse momentum equal to 5 GeV/c and energy between 40 GeV and 300 GeV. These energetic photons arise mainly from the scattering of the soft gluonic constituents of the initial photon with quarks from the proton. They are produced in the backward direction in coincidence with a photon beam jet of energy ∝ 9 GeV in the forward direction. (orig.)

  13. Electrical initiation of an energetic nanolaminate film

    Science.gov (United States)

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  14. Advanced carbon-based material C60 modification using partially ionized cluster and energetic beams

    International Nuclear Information System (INIS)

    Du Yuancheng; Ren Zhongmin; Ning Zhifeng; Xu Ning; Li Fuming

    1997-01-01

    Two processes have been undertaken using Partially ionized cluster deposition (PICBD) and energetic ion bombardment beams deposition (IBD) respectively. C 60 films deposited by PICBD at V=0 and 65 V, which result in highly textured close-packed structure in orientation (110) and being more polycrystalline respectively, the resistance of C 60 films to oxygen diffusion contamination will be improved. In the case of PICBD, the ionized C 60 soccer-balls molecules in the evaporation beams will be fragmented in collision with the substrate under the elevated accelerating fields Va. As a new synthetic IBD processing, two low energy (400 and 1000 eV) nitrogen ion beams have been used to bombard C 60 films to synthesize the carbon nitride films

  15. Energetic Particles Dynamics in Mercury's Magnetosphere

    Science.gov (United States)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  16. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake

    KAUST Repository

    Xue, Dongxu

    2013-05-22

    A series of fcu-MOFs based on rare-earth (RE) metals and linear fluorinated/nonfluorinated, homo/heterofunctional ligands were targeted and synthesized. This particular fcu-MOF platform was selected because of its unique structural characteristics combined with the ability/potential to dictate and regulate its chemical properties (e.g., tuning of the electron-rich RE metal ions and high localized charge density, a property arising from the proximal positioning of polarizing tetrazolate moieties and fluoro-groups that decorate the exposed inner surfaces of the confined conical cavities). These features permitted a systematic gas sorption study to evaluate/elucidate the effects of distinctive parameters on CO2-MOF sorption energetics. Our study supports the importance of the synergistic effect of exposed open metal sites and proximal highly localized charge density toward materials with enhanced CO2 sorption energetics. © 2013 American Chemical Society.

  17. Energetic M1 transitions as a probe of nuclear collectivity at high temperatures

    International Nuclear Information System (INIS)

    Baktash, C.

    1987-01-01

    At ORNL, we have recently utilized the Spin Spectrometer setup to investigate the differential effects of increasing spin and excitation energy on nuclear shape and collectivity in 158 Yb. Along the yrast line of this and other N = 88 nuclei, weakly prolate shapes gradually give way to triaxial, and then finally to non-collective oblate shapes as the spin approaches 40 h-bar. However, above the yrast line, large deformation and collectivity once again sets in. This is evidenced by the emergence of a broad quadrupole structure (E/sub γ/ ≅ 1.2 MeV) in the continuum gamma-ray spectra that grows with increasing temperature. The short (sub ps) lifetimes of these transitions attest to the collective nature of these structures. The emergence and growth of the quadrupole structure at high excitation energies is closely correlated with the appearance of energetic (E/sub γ/ ≅ 2.5 MeV), fast M1 transitions which form another broad structure in the continuum spectra. From the centroid of the M1 bump, a quadrupole deformation parameter of 0.35 is inferred. Because of this sensitivity, these energetic M1 transitions provide a unique probe of nuclear shape in the excitation energy range of ≅ 3 to 10 MeV. 6 refs., 2 figs

  18. Structure and energetics of nanotwins in cubic boron nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Shijian, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn; Ma, Xiuliang [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Ruifeng, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn [School of Materials Science and Engineering, and International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191 (China); Huang, Rong [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062 (China); Taniguchi, Takashi [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ikuhara, Yuichi [Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656 (Japan); Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-08-22

    Recently, nanotwinned cubic boron nitrides (NT c-BN) have demonstrated extraordinary leaps in hardness. However, an understanding of the underlying mechanisms that enable nanotwins to give orders of magnitude increases in material hardness is still lacking. Here, using transmission electron microscopy, we report that the defect density of twin boundaries depends on nanotwin thickness, becoming defect-free, and hence more stable, as it decreases below 5 nm. Using ab initio density functional theory calculations, we reveal that the Shockley partials, which may dominate plastic deformation in c-BNs, show a high energetic barrier. We also report that the c-BN twin boundary has an asymmetrically charged electronic structure that would resist migration of the twin boundary under stress. These results provide important insight into possible nanotwin hardening mechanisms in c-BN, as well as how to design these nanostructured materials to reach their full potential in hardness and strength.

  19. Conditioning ad energetic utilization of wooden materials for landscape conservation; Aufbereitung und Energetische Nutzung von holzigem Landschaftspflegematerial

    Energy Technology Data Exchange (ETDEWEB)

    Letalik, Christian [C.A.R.M.E.N. e.V., Straubing (Germany). Abt. Festbrennstoffe

    2013-10-01

    It has become common practice to energetically recover ligneous materials from landscape conservation activities in heat (and power) generation plants. The treatment of green cuttings along roads, railways or power supply lines is state of the art. Such landscaping materials are ligneous green residues e.g. from tree lopping in orchard meadows or shrub hedges - there are about 45,000 kilometers of hedgerows in Schleswig-Holstein, Germany, alone. Shredder machines disintegrate the materials into any required size. By means of adjustable perforated baskets on the disintegrating engine and subsequent sieving steps, homogenous fuels of defined dimensions and low shares of fines can be provided, whichever required. Depending on the water content, such wood chips contain about 20% less energy (calorific value) than comparable forest wood chips. It is important, however, that mineral fine particles like sand, soil or small stones are being sieved out before the combustion because they do not only decrease the calorific value and hence the boiler performance but also cause problems in the combustion areas resulting in higher costs for maintenance, cleaning and ash utilization. Composting plants are regularly well-equipped. They use well-proven management concepts for the material flow to merely condition as much landscape cuttings into fuels, enable the aerobe composting process with less ligneous and more humid materials to continue. For both compost and wood fuels there is sufficient demand resulting in increasing revenues. The EEG amendment 2012 classifies landscape conservation materials as raw materials of remuneration class II (= 8 ct/kWhel on top of the basic remuneration). This is likely to further increment the demand for ligneous fuel from landscape conservation. According to the EEG 2012 there will no longer be power plants without reasonable heat concepts. (orig.)

  20. About Russian nuclear energetic perspectives

    International Nuclear Information System (INIS)

    Laletin, N.I.

    2003-01-01

    My particular view about Russian nuclear energetics perspectives is presented. The nearest and the further perspectives are considered. The arguments are adduced that the most probable scenario of nuclear energetic development is its stabilization in the near future. Fur further development the arguments of supporters and opponents of nuclear energetics are analyzed. Three points of view are considered. The first point of view that there is not alternative for nuclear energetics. My notes are the following ones. a) I express a skeptic opinion about a statement of quick exhaustion of fossil organic fuel recourses and corresponding estimations are presented. b) It is expressed skeptic opinion about the statement that nuclear energetics can have a visual influence on ''steam effect''. c) I agree that nuclear energetics is the most ecological technology for normal work but however we can't disregard possibilities of catastrophic accidents. The second point of view that the use of nuclear energetics can't have the justification. I adduce the arguments contrary to this statement. The third point of view that nuclear energetics is a usual technology and the only criteria for discussions about what dimension and where one ought develop it is total cost of its unit. Expressed an opinion that the deceived for the choose of a way the skill of the estimate correctly and optimized so named the external parts of the unit energy costs for different energy technologies. (author)

  1. Selection of materials for ETF

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1980-01-01

    Repeated operation of a long burning, ignited plasma in ETF implies high exposure to an intense source of energetic particles and high energy (14.1 MeV) neutrons and presents a unique environment for materials in ETF compared with earlier tokamaks. Designing ETF (and FED) will provide many insights into reactor relevant design issues related to materials performance, particularly in components outside the first wall. This paper focuses primarily on how exposure to the plasma and radiation damage to materials infuence the design lifetime of particular components, including the first wall, armor, and TF coils. Also discussed are radiaton exposure limits for repair welding of the torus and for electrical materials used in RF and diagnostics

  2. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    Science.gov (United States)

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  3. The source of multi spectral energy of solar energetic electron

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani [Astronomy Division and Bosscha Observatory, Faculty Mathematics and Natural Sciences, Intitute Technology of Bandung, Ganesha 10, Bandung, Indonesia 40132 dhani@as.itb.ac.id (Indonesia)

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  4. Analysis of the energetic sector through the national energetic matrix

    International Nuclear Information System (INIS)

    Garzon Lozano, Enrique

    2007-01-01

    The author shows the results of the national energetic balance 1975-2005, through the energetic matrix of the country, giving an annual growth of 5.1% in this period of offer of primary energy, where the mineral coal participates with 9,6%, the hydraulic energy with 4,8%, natural gas with 4,2%, trash with 2,4% and petroleum with 2,2%, while the firewood fell in 0,5%

  5. Streaming reversal of energetic particles in the magnetotail during a substorm

    Science.gov (United States)

    Lui, A. T. Y.; Williams, D. J.; Eastman, T. E.; Frank, L. A.; Akasofu, S.-I.

    1984-01-01

    A case of reversal in the streaming anisotropy of energetic ions and in the plasma flow observed from the IMP 8 spacecraft during a substorm on February 8, 1978 is studied in detail using measurements of energetic particles, plasma, and magnetic field. Four new features emerge when high time resolution data are examined in detail. The times of streaming reversal of energetic particles in different energy ranges do not coincide with the time of plasma flow reversal. Qualitatively different velocity distributions are observed in earthward and tailward plasma flows during the observed flow reversal intervals. Strong tailward streaming of energetic particles can be detected during northward magnetic field environments and, conversely, earthward streaming in southward field environments. During the period of tailward streaming of energetic particles, earthward streaming fluxes are occasionally detected.

  6. Positron lifetime study of copper irradiated by energetic protons or energetic neutrons

    International Nuclear Information System (INIS)

    Howell, R.H.

    1979-03-01

    Positron lifetime measurements of pure copper damaged by irradiation with energetic protons and neutrons are presented. Lifetime determinations of the bulk material and various traps were made, and the dependence of the trapping rate on dose and irradiation energy were investigated. The results from the neutron- and proton-irradiated samples point to the existence of traps with similar but distinct lifetime parameters, not varying greatly from values reported in deformation studies. Also, a trap with long lifetime is seen for some proton irradiations, but is never seen for the neutron irradiations. The trapping rate of the short-lifetime trap is a linear function of dose for proton-irradiated samples and nearly so for the neutron irradiation. 1 figure

  7. Bioaccumulation of chemical warfare agents, energetic materials, and metals in deep-sea shrimp from discarded military munitions sites off Pearl Harbor

    Science.gov (United States)

    Koide, Shelby; Silva, Jeff A. K.; Dupra, Vilma; Edwards, Margo

    2016-06-01

    The bioaccumulation of munitions-related chemicals at former military deep-water disposal sites is poorly understood. This paper presents the results of human-food-item biota sampling to assess the potential for bioaccumulation of chemical warfare agents, energetic materials, arsenic, and additional munitions-related metals in deep-sea shrimp tissue samples collected during the Hawai'i Undersea Military Munitions Assessment (HUMMA) project to date. The HUMMA investigation area is located within a former munitions sea-disposal site located south of Pearl Harbor on the island of O'ahu, Hawai'i, designated site Hawaii-05 (HI-05) by the United States Department of Defense. Indigenous deep-sea shrimp (Heterocarpus ensifer) were caught adjacent to discarded military munitions (DMM) and at control sites where munitions were absent. Tissue analysis results showed that chemical warfare agents and their degradation products were not present within the edible portions of these samples at detectable concentrations, and energetic materials and their degradation products were detected in only a few samples at concentrations below the laboratory reporting limits. Likewise, arsenic, copper, and lead concentrations were below the United States Food and Drug Administration's permitted concentrations of metals in marine biota tissue (if defined), and their presence within these samples could not be attributed to the presence of DMM within the study area based on a comparative analysis of munitions-adjacent and control samples collected. Based on this current dataset, it can be concluded that DMM existing within the HUMMA study area is not contributing to the bioaccumulation of munitions-related chemicals for the biota species investigated to date.

  8. Effect of Trapped Energetic Ions on MHD Activity in Spherical Tori

    International Nuclear Information System (INIS)

    White, R.B.; Kolesnichenko, Ya.I.; Lutsenko, V.V.; Marchenko, V.S.

    2002-01-01

    It is shown that the increase of beta (the ratio of plasma pressure to the magnetic field pressure) may change the character of the influence of trapped energetic ions on MHD stability in spherical tori. Namely, the energetic ions, which stabilize MHD modes (such as the ideal-kink mode, collisionless tearing mode, and semi-collisional tearing mode) at low beta, have a destabilizing influence at high beta unless the radial distribution of the energetic ions is very peaked

  9. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    International Nuclear Information System (INIS)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R.

    2008-03-01

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to the

  10. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R. [Royal Institute of Technology (KTH), (Sweden)

    2008-03-15

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to

  11. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Worley, C.M.

    1986-05-07

    The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that the polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.

  12. Multi-body forces and the energetics of transition metals, alloys, and semiconductors

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    Progress over the past year is divided into 3 areas: potential-energy functions for transition-metal aluminides; electronic structure and energetics of complex structures and quasicrystals; and ceramic materials (PdO, PtO)

  13. Resistive interchange mode destabilized by helically trapped energetic ions and its effects on energetic ions and bulk plasmas

    International Nuclear Information System (INIS)

    Du, X.D.; Toi, K.; Osakabe, M.

    2014-10-01

    A resistive interchange mode with bursting behavior and rapid frequency chirping in the range less than 10 kHz is observed for the first time in the magnetic hill region of net current-free, low beta LHD (Large Helical Device) plasmas during high power injection of perpendicular neutral beams. The mode resonates with the precession motion of helically trapped energetic beam ions, following the resonant condition. The radial mode structure is found to be very similar to that of usual pressure-driven interchange mode, of which radial displacement eigenfunction has an even function around the rational surface. This beam driven mode is excited when the beta value of helically trapped energetic ions exceed a certain threshold. The radial transport of helically trapped energetic ions induced by the mode transiently generates significant radial electric field near the plasma peripheral region. Thus generated radial electric field clearly suppresses micro turbulence and improves bulk plasma confinement, suggesting strong flow shear generation. (author)

  14. Flare energetics

    Science.gov (United States)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  15. Toward a Modular Ionic Liquid Platform for the Custom Design of Energetic Materials: Understanding How the Dual Nature of Ionic Liquids Relates Key Physical Properties to Target Structures

    Science.gov (United States)

    2009-11-30

    Separations to Advanced Materials to Pharmaceuticals: Energetic and API Examples from the Ionic Liquid Cookbook" Presented by R. D. Rogers, before the 2nd...3322 (s), 3219 (s), 3144 (s), 1687 (m), 1571 (s), 1516 (s), 1468 (m), 1435 (m), 1380 (s), 1277 (s), 1205 (s), 1139 (s), 1104 (w), 1043 (w), 1014 (s

  16. Deep energetic trap states in organic photovoltaic devices

    KAUST Repository

    Shuttle, Christopher G.; Treat, Neil D.; Douglas, Jessica D.; Frechet, Jean; Chabinyc, Michael L.

    2011-01-01

    The nature of energetic disorder in organic semiconductors is poorly understood. In photovoltaics, energetic disorder leads to reductions in the open circuit voltage and contributes to other loss processes. In this work, three independent optoelectronic methods were used to determine the long-lived carrier populations in a high efficiency N-alkylthieno[3,4-c]pyrrole-4,6-dione (TPD) based polymer: fullerene solar cell. In the TPD co-polymer, all methods indicate the presence of a long-lived carrier population of ∼ 10 15 cm -3 on timescales ≤100 μs. Additionally, the behavior of these photovoltaic devices under optical bias is consistent with deep energetic lying trap states. Comparative measurements were also performed on high efficiency poly-3-hexylthiophene (P3HT): fullerene solar cells; however a similar long-lived carrier population was not observed. This observation is consistent with a higher acceptor concentration (doping) in P3HT than in the TPD-based copolymer. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Deep energetic trap states in organic photovoltaic devices

    KAUST Repository

    Shuttle, Christopher G.

    2011-11-23

    The nature of energetic disorder in organic semiconductors is poorly understood. In photovoltaics, energetic disorder leads to reductions in the open circuit voltage and contributes to other loss processes. In this work, three independent optoelectronic methods were used to determine the long-lived carrier populations in a high efficiency N-alkylthieno[3,4-c]pyrrole-4,6-dione (TPD) based polymer: fullerene solar cell. In the TPD co-polymer, all methods indicate the presence of a long-lived carrier population of ∼ 10 15 cm -3 on timescales ≤100 μs. Additionally, the behavior of these photovoltaic devices under optical bias is consistent with deep energetic lying trap states. Comparative measurements were also performed on high efficiency poly-3-hexylthiophene (P3HT): fullerene solar cells; however a similar long-lived carrier population was not observed. This observation is consistent with a higher acceptor concentration (doping) in P3HT than in the TPD-based copolymer. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-throughput quantum chemistry and virtual screening for OLED material components

    Science.gov (United States)

    Halls, Mathew D.; Giesen, David J.; Hughes, Thomas F.; Goldberg, Alexander; Cao, Yixiang

    2013-09-01

    Computational structure enumeration, analysis using an automated simulation workflow and filtering of large chemical structure libraries to identify lead systems, has become a central paradigm in drug discovery research. Transferring this paradigm to challenges in materials science is now possible due to advances in the speed of computational resources and the efficiency and stability of chemical simulation packages. State-of-the-art software tools that have been developed for drug discovery can be applied to efficiently explore the chemical design space to identify solutions for problems such as organic light-emitting diode material components. In this work, virtual screening for OLED materials based on intrinsic quantum mechanical properties is illustrated. Also, a new approach to more reliably identify candidate systems is introduced that is based on the chemical reaction energetics of defect pathways for OLED materials.

  19. Energetic evaluation of high pressure PEM electrolyzer systems for intermediate storage of renewable energies

    International Nuclear Information System (INIS)

    Bensmann, B.; Hanke-Rauschenbach, R.; Peña Arias, I.K.; Sundmacher, K.

    2013-01-01

    Three pathways for high pressure hydrogen production by means of water electrolysis are energetically compared. Besides the two classic paths, comprising either the pressurization of the product gas (path I) or the mechanical pressurization of the feed water (path II), a third path is discussed. It involves the electrochemical co-compression during the electrolysis. The energetic evaluation is based on a uniform model description of the different hydrogen production pathways. It consists of integral, steady-state balances for energy, entropy and mass as well as a modern equation of state. From this the reversible energy demand is used to identify the inherent thermodynamic drawbacks of the pathways. The additional consideration of irreversibilities allows for the determination of efficiency losses due to device specific characteristics. For hydrogen delivery pressures of up to 40 bar the classical pathways are out-performed by path III. Since the hydrogen is already produced at elevated pressure this eliminates the need for an energy consuming mechanical hydrogen compression and spares the additional energy demand due to the oxygen pressurization. However, with increasing pressure differences the hydrogen back-diffusion strongly decreases the Faradaic efficiency of the asymmetric electrolyzer that has to be compensated by an additional energy supply

  20. Genetic Polymorphisms and Weight Loss in Obesity: A Randomised Trial of Hypo-Energetic High- versus Low-Fat Diets

    Science.gov (United States)

    Sørensen, Thorkild I. A; Boutin, Philippe; Taylor, Moira A; Larsen, Lesli H; Verdich, Camilla; Petersen, Liselotte; Holst, Claus; Echwald, Søren M; Dina, Christian; Toubro, Søren; Petersen, Martin; Polak, Jan; Clément, Karine; Martínez, J. Alfredo; Langin, Dominique; Oppert, Jean-Michel; Stich, Vladimir; Macdonald, Ian; Arner, Peter; Saris, Wim H. M; Pedersen, Oluf; Astrup, Arne; Froguel, Philippe

    2006-01-01

    Objectives: To study if genes with common single nucleotide polymorphisms (SNPs) associated with obesity-related phenotypes influence weight loss (WL) in obese individuals treated by a hypo-energetic low-fat or high-fat diet. Design: Randomised, parallel, two-arm, open-label multi-centre trial. Setting: Eight clinical centres in seven European countries. Participants: 771 obese adult individuals. Interventions: 10-wk dietary intervention to hypo-energetic (−600 kcal/d) diets with a targeted fat energy of 20%–25% or 40%–45%, completed in 648 participants. Outcome Measures: WL during the 10 wk in relation to genotypes of 42 SNPs in 26 candidate genes, probably associated with hypothalamic regulation of appetite, efficiency of energy expenditure, regulation of adipocyte differentiation and function, lipid and glucose metabolism, or production of adipocytokines, determined in 642 participants. Results: Compared with the noncarriers of each of the SNPs, and after adjusting for gender, age, baseline weight and centre, heterozygotes showed WL differences that ranged from −0.6 to 0.8 kg, and homozygotes, from −0.7 to 3.1 kg. Genotype-dependent additional WL on low-fat diet ranged from 1.9 to −1.6 kg in heterozygotes, and from 3.8 kg to −2.1 kg in homozygotes relative to the noncarriers. Considering the multiple testing conducted, none of the associations was statistically significant. Conclusions: Polymorphisms in a panel of obesity-related candidate genes play a minor role, if any, in modulating weight changes induced by a moderate hypo-energetic low-fat or high-fat diet. PMID:16871334

  1. Energetic ions and electrons and their acceleration processes in the magnetotail

    International Nuclear Information System (INIS)

    Scholer, M.

    1984-01-01

    Observations of energetic particle fluxes in the geomagnetic tail show that these particles exhibit a bursty appearance on all time scales. Often, however, the bursty appearance is merely due to multiple entries and exits of the spacecraft into and out of the plasma sheet which always contains varying fluxes of energetic particles. Observations of the suprathermal and high-energy component of the plasma sheet are discussed, and observations are presented of energetic particle bursts in the plasma sheet proper, which may be due to a locally ongoing acceleration process. Also discussed are energetic particle phenomena occurring near the edge of the plasma sheet, either during thinning or during recovery. Some recent results from the ISEE 3 deep tail mission bearing on energetic particle acceleration are presented, and the present status of the theory of particle acceleration within the magnetotail is briefly reviewed. 40 references

  2. Materials @ LANL: Solutions for National Security Challenges

    Science.gov (United States)

    Teter, David

    2012-10-01

    Materials science activities impact many programmatic missions at LANL including nuclear weapons, nuclear energy, renewable energy, global security and nonproliferation. An overview of the LANL materials science strategy and examples of materials science programs will be presented. Major materials leadership areas are in materials dynamics, actinides and correlated electron materials, materials in radiation extremes, energetic materials, integrated nanomaterials and complex functional materials. Los Alamos is also planning a large-scale, signature science facility called MaRIE (Matter Radiation Interactions in Extremes) to address in-situ characterization of materials in dynamic and radiation environments using multiple high energy probes. An overview of this facility will also be presented.

  3. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  4. Introduction to global energetic problems

    International Nuclear Information System (INIS)

    Gicquel, R.

    1992-01-01

    This book gives a view on global energetic problems and proposes a thorough economic analysis on principle aspects taken into account: energy supply, depending energy sources and available technologic channels, relationships between macro-economy and energy demand, new size of energy problems (environmental effects, overcosts of renewable energy sources, necessity of an high technologic development...). 38 refs

  5. Musical Tasks and Energetic Arousal.

    Science.gov (United States)

    Lim, Hayoung A; Watson, Angela L

    2018-03-08

    Music is widely recognized as a motivating stimulus. Investigators have examined the use of music to improve a variety of motivation-related outcomes; however, these studies have focused primarily on passive music listening rather than active participation in musical activities. To examine the influence of participation in musical tasks and unique participant characteristics on energetic arousal. We used a one-way Welch's ANOVA to examine the influence of musical participation (i.e., a non-musical control and four different musical task conditions) upon energetic arousal. In addition, ancillary analyses of participant characteristics including personality, age, gender, sleep, musical training, caffeine, nicotine, and alcohol revealed their possible influence upon pretest and posttest energetic arousal scores. Musical participation yielded a significant relationship with energetic arousal, F(4, 55.62) = 44.38, p = .000, estimated ω2 = 0.60. Games-Howell post hoc pairwise comparisons revealed statistically significant differences between five conditions. Descriptive statistics revealed expected differences between introverts' and extraverts' energetic arousal scores at the pretest, F(1, 115) = 6.80, p = .010, partial η2= .06; however, mean differences failed to reach significance at the posttest following musical task participation. No other measured participant characteristics yielded meaningful results. Passive tasks (i.e., listening to a story or song) were related to decreased energetic arousal, while active musical tasks (i.e., singing, rhythm tapping, and keyboard playing) were related to increased energetic arousal. Musical task participation appeared to have a differential effect for individuals with certain personality traits (i.e., extroverts and introverts).

  6. Density and temperature of energetic electrons in the Earth's magnetotail derived from high-latitude GPS observations during the declining phase of the solar cycle

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2011-10-01

    Full Text Available Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006–November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies ~0.1–1.0 MeV, in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electron density and temperature distribution in the magnetotail between McIlwain L-values of L=6 and L=22. Analysis reveals the characteristics of the density-temperature distribution of energetic electrons and its variation as a function of solar wind speed and the Kp index. The density-temperature characteristics of the magnetotail energetic electrons are very similar to those found in the outer electron radiation belt as measured at geosynchronous orbit. The energetic electron density in the magnetotail is much greater during increased geomagnetic activity and during fast solar wind. The total electron density in the magnetotail is found to be strongly correlated with solar wind speed and is at least a factor of two greater for high-speed solar wind (VSW=500–1000 km s−1 compared to low-speed solar wind (VSW=100–400 km s−1. These results have important implications for understanding (a how the solar wind may modulate entry into the magnetosphere during fast and slow solar wind, and (b if the magnetotail is a source or a sink for the outer electron radiation belt.

  7. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  8. Destruction of highly toxic chemical materials by using the energy of underground thermonuclear explosion

    International Nuclear Information System (INIS)

    Trutnev, Y.

    1991-01-01

    One of the main problems of modern technogenic civilisation is the evergrowing ecological crisis caused by the growth of industrial wastes harmful for biosphere. Among them the radioactive wastes of atomic energetics, worked out nuclear energy facilities and toxic wastes from various chemical plants begin to play a specific role. Traditional technologies of destruction and disposal of these wastes demand great investments up to many billions of dollars, enormous maintenance expenditures, occupation of substantial territories by new productions and security zones as well as many qualified specialists. On the other hand potential accidents during the conventional processes of waste reprocessing are fraught with the possibility of large ecological disasters, that are the reason of strong oppositions of population and 'green movement' to the foundation of such installations. So, rather progressive seem to be the technologies based on the utilisation of underground nuclear explosion energy for annihilations and disposal of high-level wastes of atomic energetics and nuclear facilities as well as for thermal decomposition of chemically toxic substances at extremely high temperatures. These technologies will be rather cheap, they will allow to process big amounts of materials in ecologically safe form far from the populated regions and will need a commercially beneficial if used for international purposes. The application of these technologies may be of great significance for realisation of disarmament process- destruction of chemical weapons and in future the nuclear warheads and some production components. (au)

  9. Theory of energetic/alpha particle effects on magnetohydrodynamic modes in tokamaks

    International Nuclear Information System (INIS)

    Chen, L.; White, R.B.; Rewoldt, G.; Colestock, P.; Rutherford, P.H.; Chen, Y.P.; Ke, F.J.; Tsai, S.T.; Bussac, M.N.

    1989-01-01

    The presence of energetic particles is shown to qualitatively modify the stability properties of ideal as well as resistive magnetohydrodynamic (MHD) modes in tokamaks. Specifically, we demonstrate that, consistent with highpower ICRF heating experiments in JET, high energy trapped particles can effectively stabilize the sawtooth mode, providing a possible route to stable high current tokamak operation. An alternative stabilization scheme employing barely circulating energetic particles is also proposed. Finally, we present analytical and numerical studies on the excitations of high-n MHD modes via transit resonances with circulating alpha particles. 14 refs., 3 figs

  10. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Linghua [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Shih, Albert Y. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Lin, Robert P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  11. Energetic high-voltage breakdowns in vacuum over a large gap for ITER neutral beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Villecroze, F., E-mail: Frederic.villecroze@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Christin, L.; Esch, H.P.L. de; Simonin, A. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Schunke, B.; Svensson, L.; Hemsworth, R.; Boilson, D. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► We performed energetic high voltage breakdowns up to 370 kV with a stored energy of 1 kJ. ► No breakdowns at 200 kV could be produced over a gap of 85 mm using 100 cm{sup 2} copper electrodes. ► Electrodes damage was visible after the experiment. ► The number of arcs impacts is orders of magnitude above the number of breakdowns. -- Abstract: CEA has undertaken tests to study the resilience of copper electrodes in vacuum against energetic high-voltage breakdowns using external capacitors to provide the energy. Earlier tests succeeded in dissipating a maximum of 150 J in a 30 mm gap, limited by the equivalent series resistance (ESR) in the external capacitors. Using new ones with an ESR that is a factor of 10 lower it was unsuccessfully tried to produce breakdowns at 200 kV over the 85 mm gap, despite the use of a UV flash lamp and a “field enhancement ring” (FER) that locally increased the electric field on the cathode by 50%. Consequently, the breakdowns had to be produced by raising the voltage to 300–350 kV while maintaining the gap at 85 mm. During these tests, single breakdowns dissipated up to 1140 J in the 85 mm vacuum gap. Inspection of the electrodes revealed that substantial amounts of copper appear have been evaporated from the anode and deposited on to the cathode. Also electrode deconditioning occurred.

  12. Near-Resonant Thermomechanics of Energetic and Mock Energetic Composite Materials

    Science.gov (United States)

    2016-11-01

    record frequency responses and operational deflection shapes. Simultaneously, a FLIR A325 infrared camera was used to capture the temperature...distribution of the top surface of the plate using infrared thermography. The experimental setup is depicted in Figure 4. The results obtained from this and...the inelastic behavior of many materials like metals [12,13], concrete [14], soils [15], metal matrix composites [16], filled rubber [17], Asphalt

  13. Leaked filters for energetic and angular dependence corrections of thermoluminescent response

    International Nuclear Information System (INIS)

    Manzoli, Jose Eduardo; Shammas, Gabriel Issa Jabra; Campos, Vicente de Paulo de

    2007-01-01

    Many thermoluminescent materials has been developed and used for photon personal dosimetry but no one has all desired characteristics alone. These characteristics include robustness, high sensitivity, energy photon independence, large range of photon energy detection, good reproducibility and small fading. The phosphors advantages begin to be more required and its disadvantages have became more apparent, in a global market more and more competitive. Calcium Sulfate Dysprosium doped (CaSO 4 :Dy) and Calcium Fluoride Manganese doped (CaF 2 :Mn) phosphor Thermoluminescent Dosimeters (TLDs) have been used by many laboratories. They are used in environmental and area monitoring, once they present more sensibility than other phosphors, like LiF:Mg. Theirs main disadvantage is the strong energetic dependence response, which must be corrected for theirs application in routine, where the kind of photon radiation is unknown a priori. An interesting way to make this correction is to interject a leaked filter between the beam and the phosphor, where the beam could strike the phosphor at any angle. In order to reduce the energetic dependence on any incidence angle, this work presents experimental and simulation studies on some filter geometries. It was made TL readings and simulations on TL responses to photon irradiations with gamma rays of 60 Co and X-rays of 33; 48 and 118 keV, on many incidence angles from zero to ninety degrees. The results pointed out the best filter thicknesses and widths, in order to optimize the correction of energetic dependence for the studied geometries. (author)

  14. Collective Thomson scattering in tokamaks having energetic ions

    International Nuclear Information System (INIS)

    Myer, R.C.; Woskov, P.P.; Machuzak, J.S.; Sigmar, D.J.; Cohn, D.R.; Bretz, N.L.; Efthimion, P.C.; Colestock, P.L.

    1989-01-01

    The authors discuss how collective Thomson scattering (CTS), using high power gyrotrons or long wavelength lasers,m shows promise as a powerful non-intrusive diagnostic of fast-ion transport as it may be capable of measuring the fast-ion velocity distribution and density profile with good spatial and temporal resolution. In addition, CTS may be used as a diagnostic for detecting localized power deposition in the background plasma. High power CTS systems are presently being planned for TFTR, JET, and CIT. Recent theoretical analysis suggests that an energetic (200-800 keV) He 3 minority can be produced in TFTR by ion cyclotron heating (ICH). Such an energetic population would be useful for simulating the energetic alpha-particles produced in a burning plasma. Since the ICH generated distribution is non-Maxwellian, the authors generalize the theoretical analysis of CTS to allow for particle distributions which can be represented by various orthogonal polynomial expansions. They evaluate the efficacy of CTS in detecting a fast He 3 component and determine the sensitivity of the diagnostic to the details of the ion distribution. In particular, the effectiveness of a planned 56 GHz gyrotron CTS diagnostic for TFTR is evaluated

  15. Physico-mathematical model of motor vehicle of divided weight with unifying energetic element

    Directory of Open Access Journals (Sweden)

    Leonid M. Petrov

    2015-12-01

    Full Text Available The traction characteristics are important for ensuring of motor vehicle work process. In providing the traction characteristics the average velocity of mobile energetic transport grows, energy costs for work process execution are uprating and operation costs are reducing. The implementation of traction characteristics is performed by transmission of mobile energetic transport. Aim: The aim of the work is improvement of torque transfer technology from the engine to the wheel driving forces through the establishment of new construction of divided weight vehicle transmission. Materials and Methods: Consider a motor vehicle of divided weight with unifying energetic element which performs rotary motions relative to the vehicle frame. Results: It was shown that, the momentum which creates the rotational motion depends on the module and the direction of rotation speed of the unifying energetic element. For the first time, the technology and design of vehicle transmission which differs from previous designs by significant simplifying of the torque transmission from the engine to driving wheels at increased value of efficiency coefficient were proposed.

  16. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  17. In situ measurement of low-Z material coating thickness on high Z substrate for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D., E-mail: dmueller@pppl.gov; Roquemore, A. L.; Jaworski, M.; Skinner, C. H.; Miller, J.; Creely, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Raman, P.; Ruzic, D. [Department of Nuclear, Plasma, and Radiological Engineering, Center for Plasma Material Interaction, University of Illinois, Urbana, Illinois 61801 (United States)

    2014-11-15

    Rutherford backscattering of energetic particles can be used to determine the thickness of a coating of a low-Z material over a heavier substrate. Simulations indicate that 5 MeV alpha particles from an {sup 241}Am source can be used to measure the thickness of a Li coating on Mo tiles between 0.5 and 15 μm thick. Using a 0.1 mCi source, a thickness measurement can be accomplished in 2 h of counting. This technique could be used to measure any thin, low-Z material coating (up to 1 mg/cm{sup 2} thick) on a high-Z substrate, such as Be on W, B on Mo, or Li on Mo. By inserting a source and detector on a moveable probe, this technique could be used to provide an in situ measurement of the thickness of Li coating on NSTX-U Mo tiles. A test stand with an alpha source and an annular solid-state detector was used to investigate the measurable range of low-Z material thicknesses on Mo tiles.

  18. Energetic Surface Smoothing of Complex Metal-Oxide Thin Films

    International Nuclear Information System (INIS)

    Willmott, P.R.; Herger, R.; Schlepuetz, C.M.; Martoccia, D.; Patterson, B.D.

    2006-01-01

    A novel energetic smoothing mechanism in the growth of complex metal-oxide thin films is reported from in situ kinetic studies of pulsed laser deposition of La 1-x Sr x MnO 3 on SrTiO 3 , using x-ray reflectivity. Below 50% monolayer coverage, prompt insertion of energetic impinging species into small-diameter islands causes them to break up to form daughter islands. This smoothing mechanism therefore inhibits the formation of large-diameter 2D islands and the seeding of 3D growth. Above 50% coverage, islands begin to coalesce and their breakup is thereby suppressed. The energy of the incident flux is instead rechanneled into enhanced surface diffusion, which leads to an increase in the effective surface temperature of ΔT≅500 K. These results have important implications on optimal conditions for nanoscale device fabrication using these materials

  19. Measurement of the force on microparticles in a beam of energetic ions and neutral atoms

    International Nuclear Information System (INIS)

    Trottenberg, Thomas; Schneider, Viktor; Kersten, Holger

    2010-01-01

    The force on microparticles in an energetic ion beam is investigated experimentally. Hollow glass microspheres are injected into the vertically upward directed beam and their trajectories are recorded with a charge-coupled device camera. The net force on the particles is determined by means of the measured vertical acceleration. The resulting beam pressures are compared with Faraday cup measurements of the ion current density and calorimetric measurements of the beam power density. Due to the neutral gas background, the beam consists, besides the ions, of energetic neutral atoms produced by charge-exchange collisions. It is found that the measured composition of the drag force by an ion and a neutral atom component agrees with a beam model that takes charge-exchange collisions into account. Special attention is paid to the momentum contribution from sputtered atoms, which is shown to be negligible in this experiment, but should become measurable in case of materials with high sputtering yields.

  20. Mammalian energetics. Flexible energetics of cheetah hunting strategies provide resistance against kleptoparasitism.

    Science.gov (United States)

    Scantlebury, David M; Mills, Michael G L; Wilson, Rory P; Wilson, John W; Mills, Margaret E J; Durant, Sarah M; Bennett, Nigel C; Bradford, Peter; Marks, Nikki J; Speakman, John R

    2014-10-03

    Population viability is driven by individual survival, which in turn depends on individuals balancing energy budgets. As carnivores may function close to maximum sustained power outputs, decreased food availability or increased activity may render some populations energetically vulnerable. Prey theft may compromise energetic budgets of mesopredators, such as cheetahs and wild dogs, which are susceptible to competition from larger carnivores. We show that daily energy expenditure (DEE) of cheetahs was similar to size-based predictions and positively related to distance traveled. Theft at 25% only requires cheetahs to hunt for an extra 1.1 hour per day, increasing DEE by just 12%. Therefore, not all mesopredators are energetically constrained by direct competition. Other factors that increase DEE, such as those that increase travel, may be more important for population viability. Copyright © 2014, American Association for the Advancement of Science.

  1. Sustainable prevention of resource conflicts. Raw materials supply and demand (Report 2); Rohstoffkonflikte nachhaltig vermeiden. Rohstoffe zwischen Angebot und Nachfrage (Teilbericht 2)

    Energy Technology Data Exchange (ETDEWEB)

    Taenzler, Dennis; Westerkamp, Meike [Adelphi Research, Berlin (Germany); Supersberger, Nikolaus; Ritthoff, Michael; Bleischwitz, Raimund [Wuppertal Institut (Germany)

    2011-04-15

    The demand for both energetic and non-energetic raw materials has been increasing continuously during the past few decades. Especially during the last few years, the threat of structural shortages of supply or availability came into focus. The discussion is highly controversial, especially in the case of petroleum. This sub-report presents an analysis of the supply situation of energetic and non-energetic raw materials, i.e. petroleum, coal and nuclear fuels on the one hand as well as iron and steel, chromium, nickel, cobalt, aluminium, magnesium, copper, platinum and platinum metals, industrial minerals, boron salts, phosphate, zirconium and zirconium oxide on the other hand. It is important to discuss also regional availability patterns in order to arrive at a regional picture of potential supply risks and resulting conflicts over raw materials as this is the best way to assess the danger of impending conflicts. (orig.)

  2. EB surface sterilization of food material

    International Nuclear Information System (INIS)

    Kaneko, H.; Mizutani, A.; Kato, K.; Nishikimi, T.; Taniguchi, S.

    2001-01-01

    In this paper, we introduce a food irradiation with low energetic, lower than 300keV, electrons (so-called SOFT ELECTRON) as a rather new method of food sterilization. It is also a physical sterilization method, and free from the problems mentioned above. Low energetic electrons have small penetration power (50-200micron) through raw materials, and by selecting a proper energy of electrons we can sterilize only the surfaces or skins of target materials

  3. Solar Energetic Particle Studies with PAMELA

    Science.gov (United States)

    Bravar, U.; Christian, E. R.; deNolfo, Georgia; Ryan, J. M.; Stochaj, S.

    2011-01-01

    The origin of the high-energy solar energetic particles (SEPs) may conceivably be found in composition signatures that reflect the elemental abundances of the low corona and chromosphere vs. the high corona and solar wind. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. Together with multi-wavelength imaging, in- situ observations of a variety of species, and coverage over a wide energy range provide a critical tool in identifying the origin of SEPs, understanding the evolution of these events within the context of solar active regions, and constraining the acceleration mechanisms at play. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA)instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012, measures energetic particles in the same energy range as ground-based neutron monitors, and lower energies as well. It thus bridges the gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations. It can measure the charge (up to Z=6) and atomic number of the detected particles, and it can identify and measure positrons and detect neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. We present prelimiary results on the for the 2006 December 13 solar flare and GLE and the 2011 March 21 solar flare, both registering proton and helium enhancements in PAMELA. Together with multi- spacecraft contextual data and modeling, we discuss the PAMELA results in the context of the different acceleration mechanisms at play.

  4. Defensive Metabolites from Antarctic Invertebrates: Does Energetic Content Interfere with Feeding Repellence?

    Directory of Open Access Journals (Sweden)

    Laura Núñez-Pons

    2014-06-01

    Full Text Available Many bioactive products from benthic invertebrates mediating ecological interactions have proved to reduce predation, but their mechanisms of action, and their molecular identities, are usually unknown. It was suggested, yet scarcely investigated, that nutritional quality interferes with defensive metabolites. This means that antifeedants would be less effective when combined with energetically rich prey, and that higher amounts of defensive compounds would be needed for predator avoidance. We evaluated the effects of five types of repellents obtained from Antarctic invertebrates, in combination with diets of different energetic values. The compounds came from soft corals, ascidians and hexactinellid sponges; they included wax esters, alkaloids, a meroterpenoid, a steroid, and the recently described organic acid, glassponsine. Feeding repellency was tested through preference assays by preparing diets (alginate pearls combining different energetic content and inorganic material. Experimental diets contained various concentrations of each repellent product, and were offered along with control compound-free pearls, to the Antarctic omnivore amphipod Cheirimedon femoratus. Meridianin alkaloids were the most active repellents, and wax esters were the least active when combined with foods of distinct energetic content. Our data show that levels of repellency vary for each compound, and that they perform differently when mixed with distinct assay foods. The natural products that interacted the most with energetic content were those occurring in nature at higher concentrations. The bioactivity of the remaining metabolites tested was found to depend on a threshold concentration, enough to elicit feeding repellence, independently from nutritional quality.

  5. Defensive Metabolites from Antarctic Invertebrates: Does Energetic Content Interfere with Feeding Repellence?

    Science.gov (United States)

    Núñez-Pons, Laura; Avila, Conxita

    2014-01-01

    Many bioactive products from benthic invertebrates mediating ecological interactions have proved to reduce predation, but their mechanisms of action, and their molecular identities, are usually unknown. It was suggested, yet scarcely investigated, that nutritional quality interferes with defensive metabolites. This means that antifeedants would be less effective when combined with energetically rich prey, and that higher amounts of defensive compounds would be needed for predator avoidance. We evaluated the effects of five types of repellents obtained from Antarctic invertebrates, in combination with diets of different energetic values. The compounds came from soft corals, ascidians and hexactinellid sponges; they included wax esters, alkaloids, a meroterpenoid, a steroid, and the recently described organic acid, glassponsine. Feeding repellency was tested through preference assays by preparing diets (alginate pearls) combining different energetic content and inorganic material. Experimental diets contained various concentrations of each repellent product, and were offered along with control compound-free pearls, to the Antarctic omnivore amphipod Cheirimedon femoratus. Meridianin alkaloids were the most active repellents, and wax esters were the least active when combined with foods of distinct energetic content. Our data show that levels of repellency vary for each compound, and that they perform differently when mixed with distinct assay foods. The natural products that interacted the most with energetic content were those occurring in nature at higher concentrations. The bioactivity of the remaining metabolites tested was found to depend on a threshold concentration, enough to elicit feeding repellence, independently from nutritional quality. PMID:24962273

  6. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H.

    2007-06-01

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  7. Ionization of water clusters by fast Highly Charged Ions: Stability, fragmentation, energetics and charge mobility

    International Nuclear Information System (INIS)

    Legendre, S; Maisonny, R; Capron, M; Bernigaud, V; Cassimi, A; Gervais, B; Grandin, J-P; Huber, B A; Manil, B; Rousseau, P; Tarisien, M; Adoui, L; Lopez-Tarifa, P; AlcamI, M; MartIn, F; Politis, M-F; Penhoat, M A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study dissociative ionization of water clusters by impact of fast Ni ions. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized clusters. An unusual stability of the (H 2 O) 4 H ''+ ion is observed, which could be the signature of the so called ''Eigen'' structure in gas phase water clusters. High charge mobility, responsible for the formation of protonated water clusters that dominate the mass spectrum, is evidenced. These results are supported by CPMD and TDDFT simulations, which also reveal the mechanisms of such mobility.

  8. Distribution and Fate of Energetics on DoD Test and Training Ranges: Interim Report 3

    National Research Council Canada - National Science Library

    Pennington, Judith

    2003-01-01

    .... The objective of this project, initiated in FYOO and planned for completion in FYO5, was to determine the potential for environmental contamination from residues of energetic materials on ranges...

  9. Computer code to predict the heat of explosion of high energy materials

    International Nuclear Information System (INIS)

    Muthurajan, H.; Sivabalan, R.; Pon Saravanan, N.; Talawar, M.B.

    2009-01-01

    The computational approach to the thermochemical changes involved in the process of explosion of a high energy materials (HEMs) vis-a-vis its molecular structure aids a HEMs chemist/engineers to predict the important thermodynamic parameters such as heat of explosion of the HEMs. Such a computer-aided design will be useful in predicting the performance of a given HEM as well as in conceiving futuristic high energy molecules that have significant potential in the field of explosives and propellants. The software code viz., LOTUSES developed by authors predicts various characteristics of HEMs such as explosion products including balanced explosion reactions, density of HEMs, velocity of detonation, CJ pressure, etc. The new computational approach described in this paper allows the prediction of heat of explosion (ΔH e ) without any experimental data for different HEMs, which are comparable with experimental results reported in literature. The new algorithm which does not require any complex input parameter is incorporated in LOTUSES (version 1.5) and the results are presented in this paper. The linear regression analysis of all data point yields the correlation coefficient R 2 = 0.9721 with a linear equation y = 0.9262x + 101.45. The correlation coefficient value 0.9721 reveals that the computed values are in good agreement with experimental values and useful for rapid hazard assessment of energetic materials

  10. Mapping the nanoscale energetic landscape in conductive polymer films with spatially super-resolved exciton dynamics

    Science.gov (United States)

    Ginsberg, Naomi

    2015-03-01

    The migration of Frenkel excitons, tightly-bound electron-hole pairs, in polymeric organic semiconducting films is critical to the efficiency of bulk heterojunction solar cells. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton diffusion lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore.

  11. Energetic particles at venus: galileo results.

    Science.gov (United States)

    Williams, D J; McEntire, R W; Krimigis, S M; Roelof, E C; Jaskulek, S; Tossman, B; Wilken, B; Stüdemann, W; Armstrong, T P; Fritz, T A; Lanzerotti, L J; Roederer, J G

    1991-09-27

    At Venus the Energetic Particles Detector (EPD) on the Galileo spacecraft measured the differential energy spectra and angular distributions of ions >22 kiloelectron volts (keV) and electrons > 15 keV in energy. The only time particles were observed by EPD was in a series of episodic events [0546 to 0638 universal time (UT)] near closest approach (0559:03 UT). Angular distributions were highly anisotropic, ordered by the magnetic field, and showed ions arriving from the hemisphere containing Venus and its bow shock. The spectra showed a power law form with intensities observed into the 120- to 280-keV range. Comparisons with model bow shock calculations show that these energetic ions are associated with the venusian foreshock-bow shock region. Shock-drift acceleration in the venusian bow shock seems the most likely process responsible for the observed ions.

  12. Rural energetic development: cuban experience

    International Nuclear Information System (INIS)

    Aguilera Barciela, M.

    1994-01-01

    The development of electro energetic national system in Cuba has been directed to the following objectives: to brake the rural population's exodus toward the cities, electrification of dairy farm, interconnection to the system electro energetic of all the sugar central production, these improves the rural population's conditions life

  13. Energetic integration of processes: a case of practical application in the petroleum exploitation and production area in Mexico

    International Nuclear Information System (INIS)

    Rangel D, H.; Rodriguez T, M.A.

    1994-01-01

    The energetic integration of processes also called Pinch technology has reached the maturity by means of its development and application in different parts of the world, producing enormous savings in energy and capital, nevertheless. In Latin America countries, particularly in Mexico, not much is done respect of its practical application, and for this reason, the majority of the industrial processes operate with high costs of energy and capital. The infrastructure of the Mexican Petroleum Industry represents a great potential to make efficient the use of materials and energetic resources. In this work, with a vision of saving energy and capital, the traditional process of crude oil dehydration is analyzed. By means of the application of Pinch technology there were proposed modifications to the existing process, intended for the saving of energy and capital and to avoid unnecessary consumption of cooling water. (Author)

  14. Energetic cost of communication.

    Science.gov (United States)

    Stoddard, Philip K; Salazar, Vielka L

    2011-01-15

    Communication signals may be energetically expensive or inexpensive to produce, depending on the function of the signal and the competitive nature of the communication system. Males of sexually selected species may produce high-energy advertisement signals, both to enhance detectability and to signal their size and body condition. Accordingly, the proportion of the energy budget allocated to signal production ranges from almost nothing for many signals to somewhere in excess of 50% for acoustic signals in short-lived sexually selected species. Recent data from gymnotiform electric fish reveal mechanisms that regulate energy allocated to sexual advertisement signals through dynamical remodeling of the excitable membranes in the electric organ. Further, males of the short-lived sexually selected species, Brachyhypopomus gauderio, trade off among different metabolic compartments, allocating energy to signal production while reducing energy used in other metabolic functions. Female B. gauderio, by contrast, do not trade off energy between signaling and other functions. To fuel energetically expensive signal production, we expect a continuum of strategies to be adopted by animals of different life history strategies. Future studies should explore the relation between life history and energy allocation trade-offs.

  15. Nosema spp. infections cause no energetic stress in tolerant honeybees

    DEFF Research Database (Denmark)

    Kurze, Christoph; Mayack, Christopher; Hirche, Frank

    2016-01-01

    closely related and highly host dependent intracellular gut pathogens, Nosema apis and Nosema ceranae, on the energetic state in Nosema tolerant and sensitive honeybees facing the infection. We quantified the three major haemolymph carbohydrates fructose, glucose, and trehalose using high......-performance liquid chromatography (HPLC) as a measure for host energetic state. Trehalose levels in the haemolymph were negatively associated with N. apis infection intensity and with N. ceranae infection regardless of the infection intensity in sensitive honeybees. Nevertheless, there was no such association...

  16. Energetic differences between bacterioplankton trophic groups and coral reef resistance.

    Science.gov (United States)

    McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest

    2016-04-27

    Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. © 2016 The Author(s).

  17. The location of energetic compartments affects energetic communication in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rikke eBirkedal

    2014-09-01

    Full Text Available The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM. A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilised cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.

  18. Streaming reversal of energetic particles in the magnetetail during a substorm

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Williams, D.J.; Eastman, T.E.; Frank, L.A.; Akasofu, S.

    1984-01-01

    Reversal from tailward streaming to earthward streaming of energetic ions at 0.29--0.50 MeV during a substorm on February 3, 1978, is studied with measurements of energetic particles, plasma, and magnetic field from that IMP 8 spacecraft near the dusk flank of the magnetotail. Four new features emerge when high time resolution data are examined in detail. The times of reversal from tailward to earthward streaming of energetic ions and from tailward to earthward plasma flow do not coincide. Second, the velocity distribution in the tailward flowing plasma has a cresent shape, whereas the velocity distribution in the earthward flowing plasma has a crescent shape, whereas the velocity distribution in the earthward flowing plasma resembles a convecting Maxwellian. Third, tailward streaming of energetic ions is sometime detected in northward magnetic field regions and conversely, earthward streaming in southward field environments. Fourth, energetic ions scattering earthward are occasionally present in conjunction with a strong tailward streaming population in the same energy range. These new features suggest that the streaming reversal of energetic ions and the plasma flow reversal in this event are due to the spacecraft traversing different plasma regions during the substorm-associated configurational change of the plasma sheet and the magnetotail and is unrelated to the motion of an acceleration region such as an X type neutral line moving past the spacecraft

  19. Energetic proton generation in ultra-intense laser-solid interactions

    International Nuclear Information System (INIS)

    Wilks, S.C.; Langdon, A.B.; Cowan, T.E.; Roth, M.; Singh, M.; Hatchett, S.; Key, M. H.; Pennington, D.; MacKinnon, A.; Snavely, R.A.

    2001-01-01

    An explanation for the energetic ions observed in the PetaWatt experiments is presented. In solid target experiments with focused intensities exceeding 10 20 W/cm 2 , high-energy electron generation, hard bremsstrahlung, and energetic protons have been observed on the backside of the target. In this report, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment. In particular, we hypothesize that hot electrons produced on the front of the target are sent through to the back off the target, where they ionize the hydrogen layer there. These ions are then accelerated by the hot electron cloud, to tens of MeV energies in distances of order tens of μm, whereupon they end up being detected in the radiographic and spectrographic detectors

  20. Hazardous materials sensing: An electrical metamaterial approach

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, Vaishali; Kitture, Rohini [Department of Applied Physics, Defence Institute of Advanced Technology (DIAT), Girinagar, Pune 411025 (India); Kumari, Dimple [Department of Applied Chemistry, Defence Institute of Advanced Technology (DIAT), Girinagar, Pune 411025 (India); Rajesh, Harsh [Society for Applied Microwave Electronics Engineering and Research (SAMEER), IIT-Bombay Campus, Powai, Mumbai (India); Banerjee, Shaibal [Department of Applied Chemistry, Defence Institute of Advanced Technology (DIAT), Girinagar, Pune 411025 (India); Kale, S.N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DIAT), Girinagar, Pune 411025 (India)

    2016-10-01

    Metamaterials are recently emerging materials exhibiting amazing properties such as extremely miniaturized antennas, waveguides, optical couplers, multiplexers and filters. Such structures also respond to the variation in their ambient conditions when exposed to toxic and hazardous materials, which are especially hazardous to human health. Through this manuscript, we document our studies on three different high energy materials; namely 2- bromo-2nitropropane-1,3-diol (BNP), bis (1,3-diazido prop-2-yl) malonate (AM) and bis (1,3-diazido prop-2-yl) glutarate (AG). A Complementary Split Ring Resonator has been fabricated at resonant frequency of 4.48 GHz using copper on FR4 substrate. The energetic materials were exposed to the sensor and results were monitored using Vector Network Analyzer. The volume of liquids was varied from 0.5 µL to 3 µL. Prominent and explicit shifts in the transmission resonant frequency and amplitude was seen as a signature of each energetic material. The signatures were not only sensitive to the specific toxic group in the material but also to the volume of the liquid subjected to this sensor. The results are correlated with the simulation results, basic chemistry of the materials and permittivity measurements. The ultra-fast reversibility and repeatability, with good sensitivity and specificity of these devices project their applications in sensitive locations, particularly to combat for human security and health issues.

  1. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-01

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  2. The Principle of Energetic Consistency

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  3. Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria

    Science.gov (United States)

    2015-07-01

    agent (GA). During a reaction the GA generates nucleation sites that promote the formation of bubbles. As the reaction wave passes, the gas pockets...studies have shown iodine producing reactive materials are effective against spore forming bacteria, but are sensitive to the relative humidity in the...testing environment. Results from tests run in relative high humidity environments show a decreased ability of iodine to effectively neutralize

  4. Second School of Nuclear Energetics

    International Nuclear Information System (INIS)

    2009-01-01

    At 3-5 Nov 2009 Institute of Nuclear Energy POLATOM, Association of Polish Electrical Engineers (SEP) and Polish Nuclear Society have organized Second School of Nuclear Energetics. 165 participants have arrived from all Poland and represented both different central institutions (e.g. ministries) and local institutions (e.g. Office of Technical Inspection, The Voivodship Presidential Offices, several societies, consulting firms or energetic enterprises). Students from the Warsaw Technical University and Gdansk Technical University, as well as the PhD students from the Institute of Nuclear Chemistry and Technology (Warsaw) attended the School. 20 invited lectures presented by eminent Polish specialists concerned basic problems of nuclear energetics, nuclear fuel cycle and different problems of the NPP construction in Poland. [pl

  5. Identification of high-energetic particles by transition radiation

    International Nuclear Information System (INIS)

    Struczinski, W.

    1986-01-01

    This thesis gives a comprehensive survey on the application of the transition radiation for the particle identification. After a short historical review on the prediction and the detection of the transition radiation its theoretical foundations are more precisely explained. They form the foundations for the construction of an optimal transition radiation detector the principal construction of which is described. The next chapter shows some experiments by which the main predictions of the transition-radiation theory are confirmed. Then the construction and operation of two transition-radiation detectors are described which were applied at the ISR respectively SPS in the CERN in Geneva in complex experiments. The detector applied at the ISR served for the e ± identification. With two lithium radiators which were followed by xenon-filled proportional chambers an e/π separation of ≅ 10 -2 could be reached. The transition-radiation detector applied in the SPS was integrated into the European Hybrid Spectrometer. It served for the identification of high-energetic pions (> or approx. 90 GeV) against kaons and protons. With twenty units of carbon-fiber radiators which were followed by xenon-filled proportional chambers a π/K, p separation of better than 1:20 for momenta above 100 GeV could be reached. The cluster-counting method is then presented. Finally, a survey on the contemporary status in the development of transition-radiation detectors for the e/π separation is given. It is shown that by an about half a meter long detector the radiators of which consist of carbon fibers an e/π separation in the order of magnitude of ≅ 10 -2 can be reached. (orig./HSI) [de

  6. Los Alamos energetic particle sensor systems at geostationary orbit

    International Nuclear Information System (INIS)

    Baker, D.N.; Aiello, W.; Asbridge, J.R.; Belian, R.D.; Higbie, P.R.; Klebesadel, R.W.; Laros, J.G.; Tech, E.R.

    1985-01-01

    The Los Alamos National Laboratory has provided energetic particle sensors for a variety of spacecraft at the geostationary orbit (36,000 km altitude). The sensor system called the Charged Particle Analyzer (CPA) consists of four separate subsystems. The LoE and HiE subsystems measure electrons in the energy ranges 30 to 300 keV and 200 to 2000 keV, respectively. The LoP and HiP subsystems measure ions in the ranges 100 to 600 keV and 0.40 to 150 MeV, respectively. A separate sensor system called the spectrometer for energetic electrons (SEE) measures very high-energy electrons (2 to 15 MeV) using advanced scintillator design. In this paper we describe the relationship of operational anomalies and spacecraft upsets to the directly measured energetic particle environments at 6.6 R/sub E/. We also compare and contrast the CPA and SEE instrument design characteristics with the next generation of Los Alamos instruments to be flown at geostationary altitudes

  7. Observation of energetic particle mode by using microwave reflectometer

    International Nuclear Information System (INIS)

    Tokuzawa, T.; Kawahata, K.; Sakakibara, S.; Toi, K.; Osakabe, M.; Yamamoto, S.

    2006-01-01

    Two heterodyne reflectometer systems are utilized for the fluctuation measurement in the Large Helical Device (LHD). By using the extraordinary polarized wave, we can measure the corresponding value to the combined fluctuation with the electron density and the magnetic field in the plasma core region even if the radial electron density profile is flat. E-band system has three channels of fixed frequencies of 78, 72, 65 GHz. The system is very convenient to observe magnetohydrodynamics (MHD) phenomena such as energetic particle driven Alfven eigenmodes, even if the system works as an interferometer mode. The detailed behaviour of the energetic particle mode is studied when low-n MHD burst is occurred. It seems to be caused that the spatial distribution of high energy particle is changed by such a MHD-burst. Also to know the radial distribution of MHD mode, frequency swept R-band reflectometer is applied for the first time. It seems to be successfully detected the energetic particle mode and toroidal Alfven eigenmode. (author)

  8. Amorphous-tetrahedral diamondlike carbon layered structures resulting from film growth energetics

    Science.gov (United States)

    Siegal, M. P.; Barbour, J. C.; Provencio, P. N.; Tallant, D. R.; Friedmann, T. A.

    1998-08-01

    High-resolution transmission electron microscopy (HRTEM) shows that amorphous-tetrahedral diamondlike carbon (a-tC) films grown by pulsed-laser deposition on Si(100) consist of three-to-four layers, depending on the growth energetics. We estimate the density of each layer using both HRTEM image contrast and Rutherford backscattering spectrometry. The first carbon layer and final surface layer have relatively low density. The bulk of the film between these two layers has higher density. For films grown under the most energetic conditions, there exists a superdense a-tC layer between the interface and bulk layers. The density of all four layers, and the thickness of the surface and interfacial layers, correlate well with the energetics of the depositing carbon species.

  9. Energetic Techniques For Planetary Defense

    Science.gov (United States)

    Barbee, B.; Bambacus, M.; Bruck Syal, M.; Greenaugh, K. C.; Leung, R. Y.; Plesko, C. S.

    2017-12-01

    Near-Earth Objects (NEOs) are asteroids and comets whose heliocentric orbits tend to approach or cross Earth's heliocentric orbit. NEOs of various sizes periodically collide with Earth, and efforts are currently underway to discover, track, and characterize NEOs so that those on Earth-impacting trajectories are discovered far enough in advance that we would have opportunities to deflect or destroy them prior to Earth impact, if warranted. We will describe current efforts by the National Aeronautics and Space Administration (NASA) and the National Nuclear Security Administration (NNSA) to assess options for energetic methods of deflecting or destroying hazardous NEOs. These methods include kinetic impactors, which are spacecraft designed to collide with an NEO and thereby alter the NEO's trajectory, and nuclear engineering devices, which are used to rapidly vaporize a layer of NEO surface material. Depending on the amount of energy imparted, this can result in either deflection of the NEO via alteration of its trajectory, or robust disruption of the NEO and dispersal of the remaining fragments. We have studied the efficacies and limitations of these techniques in simulations, and have combined the techniques with corresponding spacecraft designs and mission designs. From those results we have generalized planetary defense mission design strategies and drawn conclusions that are applicable to a range of plausible scenarios. We will present and summarize our research efforts to date, and describe approaches to carrying out planetary defense missions with energetic NEO deflection or disruption techniques.

  10. Energetic map

    International Nuclear Information System (INIS)

    2012-01-01

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  11. Fusion reactor materials

    International Nuclear Information System (INIS)

    Sethi, V.K.; Scholz, R.; Nolfi, F.V. Jr.; Turner, A.P.L.

    1980-01-01

    Data are given for each of the following areas: (1) effects of irradiation on fusion reactor materials, (2) hydrogen permeation and materials behavior in alloys, (3) carbon coatings for fusion applications, (4) surface damage of TiB 2 coatings under energetic D + and 4 He + irradiations, and (5) neutron dosimetry

  12. Production of high-energetic photons in the heavy ion reaction 136Xe + 48Ti at ELab = 18.5 MeV/u

    International Nuclear Information System (INIS)

    Enders, G.

    1991-05-01

    The production mechanism for high-energetic photons in heavy ion collisions was studied on the example of the deep inelastic reaction 136 Xe+ 48 Ti at a projectile energy of 18.5 MeV/u in an exclusive experiment, in which photons and heavy reaction fragments were detected in coincidence. (orig.) [de

  13. Economical aspects of nuclear energetics

    International Nuclear Information System (INIS)

    Celinski, Z.

    2000-01-01

    The economical aspects of nuclear power generation in respect to costs of conventional energetics have been discussed in detail. The costs and competitiveness of nuclear power have been considered on the base of worldwide trends taking into account investment and fuel costs as well as 'social' costs being result of impact of different types of energetics on environment, human health etc

  14. Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions

    Science.gov (United States)

    Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan

    2017-04-01

    Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR

  15. Energetic ion driven Alfven eigenmodes in Large Helical Device plasmas with three-dimensional magnetic structure and their impact on energetic ion transport

    International Nuclear Information System (INIS)

    Toi, K; Yamamoto, S; Nakajima, N; Ohdachi, S; Sakakibara, S; Osakabe, M; Murakami, S; Watanabe, K Y; Goto, M; Kawahata, K; Kolesnichenko, Ya I; Masuzaki, S; Morita, S; Narihara, K; Narushima, Y; Takeiri, Y; Tanaka, K; Tokuzawa, T; Yamada, H; Yamada, I; Yamazaki, K

    2004-01-01

    In the Large Helical Device (LHD), energetic ion driven Alfven eigenmodes (AEs) and their impact on energetic ion transport have been studied. The magnetic configuration of the LHD is three-dimensional and has negative magnetic shear over a whole plasma radius in the low beta regime. These features introduce the characteristic structures of the shear Alfven spectrum. In particular, a core-localized type of toroidicity-induced AE (TAE) is most likely because the TAE gap frequency rapidly increases towards the plasma edge. Moreover, helicity-induced AEs (HAEs) can be generated through a toroidal mode coupling as well as poloidal one in the three-dimensional configuration. The following experimental results have been obtained in LHD plasmas heated by tangential neutral beam injection: (1) observation of core-localized TAEs having odd as well as even parity, (2) eigenmode transition of the core-localized TAE to global AEs (GAEs), which phenomenon is very similar to that in a reversed shear tokamak, (3) observation of HAEs of which the frequency is about eight times higher than the TAE gap frequency, (4) enhanced radial transport/loss of energetic ions caused by bursting TAEs in a relatively high beta regime, and (5) seed formation of internal transport barriers induced by TAE-induced energetic ion transport. These results will be important and interesting information for AE physics in toroidal plasmas

  16. Stability, energetic particles, waves, and current drive summary

    International Nuclear Information System (INIS)

    Stambaugh, R.D.

    2005-01-01

    This is the summary paper for the subjects of plasma stability, energetic particles, waves, and current drive for the 20th IAEA Fusion Energy Conference, 1-6 November 2004, Vilamoura, Portugal. Material summarized herein was drawn from 65 contributed papers and 21 overview papers. The distribution of contributed papers by subjects is shown. Significant advances were reported on the principal instabilities in magnetically confined plasmas, even looking forward to the burning plasma state. Wave-plasma physics is maturing and novel methods of current drive and noninductive current generation are being developed. (author)

  17. Optimization of some eco-energetic systems

    International Nuclear Information System (INIS)

    Purica, I.; Pavelescu, M.; Stoica, M.

    1976-01-01

    An optimization problem of two eco-energetic systems is described. The first one is close to the actual eco-energetic system in Romania, while the second is a new one, based on nuclear energy as primary source and hydrogen energy as secondary source. The optimization problem solved is to find the optimal structure of the systems so that the objective functions adopted, namely unitary energy cost C and total pollution P, to be minimum at the same time. The problem can be modelated with a bimatrix cooperative mathematical game without side payments. We demonstrate the superiority of the new eco-energetic system. (author)

  18. 2 keV filters of quasi-mono-energetic neutrons

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; El-Mesiry, M.S.; Bashter, I.I.; Saleh, A.; Fathallah, M.

    2013-01-01

    A simulation study for the production of 2 keV filters of quasi-mono-energetic neutrons based on the deep interference minima in the 45 Sc total cross-section was carried out. A computer code QMENF-II was adapted to calculate the optimum amounts of the 45 Sc as a main filter element and additional component ones to obtain sufficient intensity at high resolution and purity of the filtered quasi-mono-energetic neutrons. The emitted neutron spectrum from nuclear reactor and from the reaction of 2.6 MeV protons on a lithium fluoride target at the accelerator beam port, are used for simulation

  19. The composition of corotating energetic particle streams

    International Nuclear Information System (INIS)

    McGuire, R.E.; von Rosenvinge, T.T.; McDonald, F.B.

    1978-01-01

    The relative abundances of 1.5--23 MeV per nucleon ions in corotating nucleon streams are compared with ion abundances in particle events associated with solar flares and with solar and solar wind abundances. He/O and C/O ratios are found to be a factor of the order 2--3 greater in corotating streams than in flare-associated events. The distribution of H/He ratios in corotating streams is found to be much narrower and of lower average value than in flare-associated events. H/He in corotating energetic particle streams compares favorably in both lack of variability and numerical value with H/He in high-speed solar wind plasma streams. The lack of variability suggests that the source population for the corotating energetic particles is the solar wind, a suggestion consistent with acceleration of the corotating particles in interplanetary space

  20. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    2003-06-01

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  1. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    Science.gov (United States)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  2. Effect of Defects on Mechanisms of Initiation and Energy Release in Energetic Molecular Crystals

    Science.gov (United States)

    2011-02-10

    also examined other energetic and reactive materials such as 1,3,5,7 cyclooctatetraene (COT) and potassium chlorate (KClO3) and ringed hydrocarbons...the space charge induced by the diffusive separation of potassium and fluoride ions in the shock wave affects polarization currents and depends on

  3. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    CERN Document Server

    Bertarelli, A; Boccone, V; Carra, F; Cerutti, F; Charitonidis, N; Charrondiere, C; Dallocchio, A; Fernandez Carmona, P; Francon, P; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Marques dos Santos, S D; Moyret, P; Peroni, L; Redaelli, S; Scapin, M

    2013-01-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser ...

  4. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  5. Rocket measurements of energetic particles in the midlatitude precipitation zone

    Science.gov (United States)

    Voss, H. D.; Smith, L. G.; Braswell, F. M.

    1980-01-01

    Measurements of energetic ion and electron properties as a function of altitude in the midlatitude zone of nighttime energetic particle precipitation are reported. The measurements of particle fluxes, energy spectra and pitch angle distributions were obtained by a Langmuir probe, six energetic particle spectrometers and an electrostatic analyzer on board a Nike Apache rocket launched near the center of the midlatitude zone during disturbed conditions. It is found that the incident flux was primarily absorbed rather than backscattered, and consists of mainly energetic hydrogen together with some helium and a small energetic electron component. Observed differential energy spectra of protons having an exponential energy spectrum, and pitch angle distributions at various altitudes indicate that the energetic particle flux decreases rapidly for pitch angles less than 70 deg. An energetic particle energy flux of 0.002 ergs/sq cm per sec is calculated which indicates the significance of energetic particles as a primary nighttime ionization source for altitudes between 120 and 200 km in the midlatitude precipitation zone.

  6. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertarelli, A., E-mail: alessandro.bertarelli@cern.ch [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Berthome, E. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Boccone, V. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Carra, F. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Cerutti, F. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Charitonidis, N. [CERN, Engineering Department, Machines and Experimental Facilities Group (EN-MEF), CH-1211 Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Charrondiere, C. [CERN, Engineering Department, Industrial Controls and Engineering Group (EN-ICE), CH-1211 Geneva 23 (Switzerland); Dallocchio, A.; Fernandez Carmona, P.; Francon, P.; Gentini, L.; Guinchard, M.; Mariani, N. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Masi, A. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Marques dos Santos, S.D.; Moyret, P. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Peroni, L. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Redaelli, S. [CERN, Beams Department, Accelerators and Beams Physics Group (BE-ABP), CH-1211 Geneva 23 (Switzerland); Scapin, M. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-08-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser Doppler vibrometer and high-speed camera). The method presented in this paper, combining experimental measurements with numerical simulations, may find applications to assess materials under very high strain rates and temperatures in domains well beyond particle physics (severe accidents in fusion and fission nuclear facilities, space debris impacts, fast and intense loadings on materials and structures etc.)

  7. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  8. Radiotoxicology analysis in Nuclear and Energetic Research Institute (IPEN-CNEN/SP)

    International Nuclear Information System (INIS)

    Duarte, C.L.; Gaburo, J.C.; Bellintani, S.A.

    1987-01-01

    The radiotoxicology laboratory of Nuclear and Energetic Research Institute (IPEN) has the objective of control the internal contamination of workers that handle radioactive materials, in industrial and medical sectors. This control is made through radiochemical analysis of excreta. Nowadays in this laboratory are realized occupational controls on individual, exposure to uranium, tritium, iodine, fluorine, lead compounds, for workers of IPEN and for external institutions, when solicited. (C.G.C.) [pt

  9. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  10. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  11. Energetic consumption levels and human development indexes

    International Nuclear Information System (INIS)

    Boa Nova, Antonio Carlos

    1999-01-01

    The article overviews the energetic consumption levels and human development indexes. The human development indexes are described based on the United Nations Development Programme. A comparison between the energetic consumption levels and human development indexes is also presented

  12. Molecular dynamics simulations of interactions between energetic dust and plasma-facing materials

    International Nuclear Information System (INIS)

    Niu, Guo-jian; Li, Xiao-chun; Xu, Qian; Yang, Zhong-shi; Luo, Guang-nan

    2015-01-01

    The interactions between dust and plasma-facing material (PFM) relate to the lifetime of PFM and impurity production. Series results have been obtained theoretically and experimentally but more detailed studies are needed. In present research, we investigate the evolution of kinetic, potential and total energy of plasma-facing material (PFM) in order to understand the dust/PFM interaction process. Three typical impacting energy are selected, i.e., 1, 10 and 100 keV/dust for low-, high- and hyper-energy impacting cases. For low impacting energy, dust particles stick on PFM surface without damaging it. Two typical time points exist and the temperature of PFM grows all the time but PFM structure experience a modifying process. Under high energy case, three typical points appear. The temperature curve fluctuates in the whole interaction process which indicates there are dust/PFM and kinetic/potential energy exchanges. In the hyper-energy case in present simulation, the violence dust/PFM interactions cause sputtering and crater investigating on energy evolution curves. We further propose the statistics of energy distribution. Results show that about half of impacting energy consumes on heating plasma-facing material meanwhile the other half on PFM structure deformation. Only a small proportion becomes kinetic energy of interstitial or sputtering atoms.

  13. Molecular dynamics simulations of interactions between energetic dust and plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Guo-jian, E-mail: niugj@ipp.ac.cn [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Li, Xiao-chun; Xu, Qian; Yang, Zhong-shi [Hefei Center Physical Science and Technology, Hefei (China); Luo, Guang-nan [Institute of Plasma Physics Chinese Academy of Sciences, Hefei (China); Hefei Center Physical Science and Technology, Hefei (China); Hefei Science Center of CAS, Hefei (China)

    2015-11-15

    The interactions between dust and plasma-facing material (PFM) relate to the lifetime of PFM and impurity production. Series results have been obtained theoretically and experimentally but more detailed studies are needed. In present research, we investigate the evolution of kinetic, potential and total energy of plasma-facing material (PFM) in order to understand the dust/PFM interaction process. Three typical impacting energy are selected, i.e., 1, 10 and 100 keV/dust for low-, high- and hyper-energy impacting cases. For low impacting energy, dust particles stick on PFM surface without damaging it. Two typical time points exist and the temperature of PFM grows all the time but PFM structure experience a modifying process. Under high energy case, three typical points appear. The temperature curve fluctuates in the whole interaction process which indicates there are dust/PFM and kinetic/potential energy exchanges. In the hyper-energy case in present simulation, the violence dust/PFM interactions cause sputtering and crater investigating on energy evolution curves. We further propose the statistics of energy distribution. Results show that about half of impacting energy consumes on heating plasma-facing material meanwhile the other half on PFM structure deformation. Only a small proportion becomes kinetic energy of interstitial or sputtering atoms.

  14. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.

    Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  15. Broadband Study of GRB 091127: A Sub-energetic Burst at Higher Redshift?

    Science.gov (United States)

    Troja, E.; Sakamoto, T.; Guidorzi, C.; Norris, J. P.; Panaitescu, A.; Kobayashi, S.; Omodei, N.; Brown, J. C.; Burrows, D. N.; Evans, P. A.; Gehrels, N.; Marshall, F. E.; Mawson, N.; Melandri, A.; Mundell, C. G.; Oates, S. R.; Pal'shin, V.; Preece, R. D.; Racusin, J. L.; Steele, I. A.; Tanvir, N. R.; Vasileiou, V.; Wilson-Hodge, C.; Yamaoka, K.

    2012-12-01

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z = 0.49 and associated with SN 2009nz. We present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low-energy release (E γ < 3 × 1049 erg), soft spectrum, and unusual spectral lag connect this GRB to the class of sub-energetic bursts. We discuss the suppression of high-energy emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion.

  16. BROADBAND STUDY OF GRB 091127: A SUB-ENERGETIC BURST AT HIGHER REDSHIFT?

    Energy Technology Data Exchange (ETDEWEB)

    Troja, E.; Sakamoto, T.; Brown, J. C.; Gehrels, N.; Marshall, F. E.; Racusin, J. L. [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guidorzi, C. [Physics Department, University of Ferrara, via Saragat 1, I-44122, Ferrara (Italy); Norris, J. P. [Physics Department, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Panaitescu, A. [Space Science and Applications, MS D466, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kobayashi, S.; Mawson, N.; Melandri, A.; Mundell, C. G.; Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, CH41 1LD Birkenhead (United Kingdom); Omodei, N. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Burrows, D. N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Evans, P. A. [X-ray and Observational Astronomy Group, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Oates, S. R. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Pal' shin, V. [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Preece, R. D. [Department of Physics, University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); and others

    2012-12-10

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z = 0.49 and associated with SN 2009nz. We present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low-energy release (E{sub {gamma}} < 3 Multiplication-Sign 10{sup 49} erg), soft spectrum, and unusual spectral lag connect this GRB to the class of sub-energetic bursts. We discuss the suppression of high-energy emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion.

  17. Nano Engineered Energetic Materials (NEEM)

    Science.gov (United States)

    2011-01-12

    Dryer, FL; Aksay, IA, Functionalized Graphene Sheet Colloids for Enhanced Fuel/Propellant Combustion, ACS NANO 3, 13, 3945-3954, 2009. 16. Weismiller...loading) which was not observed in other heterogeneous mixtures. Additional details on nano fuels (including graphene ) with liquid oxidizers can be...to the high reflectance of some samples black high temperature spray paint was used on ends of the samples to decrease ignition delay times and

  18. Does increasing pressure always accelerate the condensed material decay initiated through bimolecular reactions? A case of the thermal decomposition of TKX-50 at high pressures.

    Science.gov (United States)

    Lu, Zhipeng; Zeng, Qun; Xue, Xianggui; Zhang, Zengming; Nie, Fude; Zhang, Chaoyang

    2017-08-30

    Performances and behaviors under high temperature-high pressure conditions are fundamentals for many materials. We study in the present work the pressure effect on the thermal decomposition of a new energetic ionic salt (EIS), TKX-50, by confining samples in a diamond anvil cell, using Raman spectroscopy measurements and ab initio simulations. As a result, we find a quadratic increase in decomposition temperature (T d ) of TKX-50 with increasing pressure (P) (T d = 6.28P 2 + 12.94P + 493.33, T d and P in K and GPa, respectively, and R 2 = 0.995) and the decomposition under various pressures initiated by an intermolecular H-transfer reaction (a bimolecular reaction). Surprisingly, this finding is contrary to a general observation about the pressure effect on the decomposition of common energetic materials (EMs) composed of neutral molecules: increasing pressure will impede the decomposition if it starts from a bimolecular reaction. Our results also demonstrate that increasing pressure impedes the H-transfer via the enhanced long-range electrostatic repulsion of H +δ H +δ of neighboring NH 3 OH + , with blue shifts of the intermolecular H-bonds. And the subsequent decomposition of the H-transferred intermediates is also suppressed, because the decomposition proceeds from a bimolecular reaction to a unimolecular one, which is generally prevented by compression. These two factors are the basic root for which the decomposition retarded with increasing pressure of TKX-50. Therefore, our finding breaks through the previously proposed concept that, for the condensed materials, increasing pressure will accelerate the thermal decomposition initiated by bimolecular reactions, and reveals a distinct mechanism of the pressure effect on thermal decomposition. That is to say, increasing pressure does not always promote the condensed material decay initiated through bimolecular reactions. Moreover, such a mechanism may be feasible to other EISs due to the similar intermolecular

  19. Carbon nanostructure formation driven by energetic particles

    International Nuclear Information System (INIS)

    Zhu Zhiyuan; Gong Jinlong; Zhu Dezhang

    2006-01-01

    -treatment of multiwalled CNTs. A core-sheath structure of the diamond nanorods were identified, with the inner core being diamond crystal and outer shell being amorphous carbon. The diamond nanorods grow along diamond [110] direction. A growth mechanism was proposed. Under irradiation of 60 keV N + and Si + beams at room temperatures, we found that CNTs undergo a non-equilibrium amorphization with ion-generated displacement atoms jumping ballistically from graphite phase to amorphous phase. At high temperature (800 degree C), the recombination of vacancies and interstitials would repair the CNT structure and prevent the CNTs from amorphization. Furthermore, due to vacancy-mending in the graphitic shells, hence decreased shell diameter, and due to growing concentration of carbon atoms in the interior of the tube, the pressure in the inner parts of the system increases. However, unlike interstitials in spherical onions, carbon interstitials in CNTs can easily migrate away from regions with elevated pressure. Thus, radiation generated CNT amorphization can rarely be observed. By irradiating pre-amorphized carbon nanowires at high temperatures, the formation of carbon onions was clearly evidenced by high resolution transmission electron microscope (HRTEM). Such a two-step transformation model, i.e., amorphization at room temperatures and transformation from amorphous carbon to onion-like structure at high temperatures, demonstrated the structural evolution before early nucleation of diamond under energetic particles. A congruous designed compromise between nuclear and electron stopping power makes the diamond nucleation possible in carbon onions. The interconnected CNT networks have fundamental importance in nanoelectronics, integrated circuit connection and reinforcement of composite materials. At room temperatures, the morphological and structural evolution of CNT films under Si + ion beam (60 keV) irradiation was observed by scanning electron microscope and transmission

  20. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, K.; Takechi, M.; Ishikawa, M.; Yamamoto, S.

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n = 2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  1. Nonperturbative effects of energetic ions on Alfven eigenmodes

    International Nuclear Information System (INIS)

    Todo, Y.; Nakajima, N.; Shinohara, Kouji; Takechi, Manabu; Ishikawa, Masao

    2005-01-01

    Linear properties and nonlinear evolutions of an energetic-ion driven instability in a JT-60U plasma were investigated using a simulation code for magnetohydrodynamics and energetic particles. The spatial profile of the unstable mode peaks near the plasma center where the safety factor profile is flat. The unstable mode is not a toroidal Alfven eigenmode (TAE) because the spatial profile deviates from the expected location of TAE and the spatial profile consists of a single primary harmonic m/n=2/1 where m, n are poloidal and toroidal mode numbers. The real frequency of the unstable mode is close to the experimental starting frequency of the fast frequency sweeping mode. The simulation results demonstrate that the energetic ion orbit width and the energetic ion pressure significantly broaden radial profile of the unstable mode. For the smallest value among the investigated energetic ion orbit width, the unstable mode is localized within 20% of the minor radius. This gives an upper limit of the spatial profile width of the unstable mode which the magnetohydrodynamic effects alone can induce. For the experimental condition of the JT-60U plasma, the energetic ions broaden the spatial profile of the unstable mode by a factor of 3 compared with the smallest orbit width case. The unstable mode is primarily induced by the energetic particles. It is demonstrated that the frequency shifts both upward and downward in the nonlinear evolution at the rate close to that of the fast frequency sweeping mode. In addition to the energetic particle mode in the JT-60U plasma, an investigation of TAE in an LHD-like plasma using the simulation code for the helical coordinate system is reported. (author)

  2. Ecological problems of thermonuclear energetics. Review

    Energy Technology Data Exchange (ETDEWEB)

    Sivintsev, Yu V

    1980-01-01

    A review of preliminary quantitative estimates of radiation hazard of thermonuclear reactors is presented. Main attention is given to three aspects: nonradiation effect on environment, radionuclide blow-ups at normal operation and emergency situations with their consequences. The given data testify to great radiological advantages of thermonuclear energetics as compared with the modern nuclear energetics with thermal and prospective fast reactors.

  3. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    Science.gov (United States)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  4. The second evolution of ionic liquids: from solvents and separations to advanced materials--energetic examples from the ionic liquid cookbook.

    Science.gov (United States)

    Smiglak, Marcin; Metlen, Andreas; Rogers, Robin D

    2007-11-01

    In this Account of the small portion of the recent research in ionic liquids (ILs) by the Rogers Group, we fast forward through the first evolution of IL research, where ILs were studied for their unique set of physical properties and the resulting potential for tunable "green solvents", to the second evolution of ILs, where the tunability of the cation and anion independently offers almost unlimited access to targeted combinations of physical and chemical properties. This approach is demonstrated here with the field of energetic ionic liquids (EILs), which utilizes this design flexibility to find safe synthetic routes to ILs with high energy content and targeted physical properties.

  5. Heliospheric Observations of Energetic Particles

    Science.gov (United States)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  6. Physics of energetic ions

    International Nuclear Information System (INIS)

    1999-01-01

    Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor. (author)

  7. Time-of-flight secondary ion mass spectrometry with energetic cluster ion impact ionization for highly sensitive chemical structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, K., E-mail: k.hirata@aist.go.jp [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Saitoh, Y.; Chiba, A.; Yamada, K.; Narumi, K. [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), Takasaki, Gumma 370-1292 (Japan)

    2013-11-01

    Energetic cluster ions with energies of the order of sub MeV or greater were applied to time-of-flight (TOF) secondary ion (SI) mass spectrometry. This gave various advantages including enhancement of SIs required for chemical structure characterization and prevention of charging effects in SI mass spectra for organic targets. We report some characteristic features of TOF SI mass spectrometry using energetic cluster ion impact ionization and discuss two future applications of it.

  8. Energetic use of the urban solid wastes (waste-to-energy); Aproveitamento energetico de residuos solidos urbanos (waste-to-energy)

    Energy Technology Data Exchange (ETDEWEB)

    Dodde, Paula Arrais Moreira; Fonseca, Zilton Jose Sa da [Universidade Federal do Rio de Janeiro (PPE/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Planejamento Energetico], Emails: pauladodde@yahoo.com.br, ziltonfonseca@ig.com.br

    2010-07-01

    This paper approaches the advantages and disadvantages of energetic using of biomass present in the garbage (the urban solid residue is composed by average 65% of organic material)This paper effluents technologically.

  9. Energetic policies 2005-2030

    International Nuclear Information System (INIS)

    2008-01-01

    This power point exhibition shows the following topics: energy analysis, production and use, supply and demand, consumption, energy sources, energetic prospective of Uruguay country, medium and long term perspectives.

  10. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  11. Advances in magnetospheric physics, 1971--1974: energetic particles

    International Nuclear Information System (INIS)

    West, H.I. Jr.

    1974-12-01

    An account is given of energetic particle research in magnetospheric physics for the time period 1971--1974. Emphasis is on relating the various aspects of energetic particles to magnetospheric processes. 458 refs. (U.S.)

  12. Range and energetics of charge hopping in organic semiconductors

    Science.gov (United States)

    Abdalla, Hassan; Zuo, Guangzheng; Kemerink, Martijn

    2017-12-01

    The recent upswing in attention for the thermoelectric properties of organic semiconductors (OSCs) adds urgency to the need for a quantitative description of the range and energetics of hopping transport in organic semiconductors under relevant circumstances, i.e., around room temperature (RT). In particular, the degree to which hops beyond the nearest neighbor must be accounted for at RT is still largely unknown. Here, measurements of charge and energy transport in doped OSCs are combined with analytical modeling to reach the univocal conclusion that variable-range hopping is the proper description in a large class of disordered OSC at RT. To obtain quantitative agreement with experiment, one needs to account for the modification of the density of states by ionized dopants. These Coulomb interactions give rise to a deep tail of trap states that is independent of the material's initial energetic disorder. Insertion of this effect into a classical Mott-type variable-range hopping model allows one to give a quantitative description of temperature-dependent conductivity and thermopower measurements on a wide range of disordered OSCs. In particular, the model explains the commonly observed quasiuniversal power-law relation between the Seebeck coefficient and the conductivity.

  13. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  14. On the interactions between energetic electrons and lightning whistler waves observed at high L-shells on Van Allen Probes

    Science.gov (United States)

    Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.

    2017-12-01

    Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes lightning whistler waves. It is well known that lightning whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - Lightning-induced Electron Precipitation). It is an open question whether lightning whistler waves play an important role at high L-shells. The possible interactions between energetic electrons and lightning whistler waves at high L-shells are considered to be weak in the past. However, lightning is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out lightning whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.

  15. Monte Carlo simulations of the Galileo energetic particle detector

    CERN Document Server

    Jun, I; Garrett, H B; McEntire, R W

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study.

  16. Monte Carlo simulations of the Galileo energetic particle detector

    International Nuclear Information System (INIS)

    Jun, I.; Ratliff, J.M.; Garrett, H.B.; McEntire, R.W.

    2002-01-01

    Monte Carlo radiation transport studies have been performed for the Galileo spacecraft energetic particle detector (EPD) in order to study its response to energetic electrons and protons. Three-dimensional Monte Carlo radiation transport codes, MCNP version 4B (for electrons) and MCNPX version 2.2.3 (for protons), were used throughout the study. The results are presented in the form of 'geometric factors' for the high-energy channels studied in this paper: B1, DC2, and DC3 for electrons and B0, DC0, and DC1 for protons. The geometric factor is the energy-dependent detector response function that relates the incident particle fluxes to instrument count rates. The trend of actual data measured by the EPD was successfully reproduced using the geometric factors obtained in this study

  17. Food environments select microorganisms based on selfish energetic behavior

    Directory of Open Access Journals (Sweden)

    Diego eMora

    2013-11-01

    Full Text Available Nutrient richness, and specifically the abundance of mono- and disaccharides that characterize several food matrixes, such as milk and grape juice, has allowed the speciation of lactic acid bacteria and yeasts with a high fermentation capacity instead of energetically favorable respiratory metabolism. In these environmental contexts, rapid sugar consumption and lactic acid or ethanol production, accumulation and tolerance, together with the ability to propagate in the absence of oxygen, are several of the ‘winning’ traits that have apparently evolved and become specialized to perfection in these fermenting microorganisms. Here, we summarize and discuss the evolutionary context that has driven energetic metabolism in food-associated microorganisms, using the dairy species Lactococcus lactis and Streptococcus thermophilus among prokaryotes and the bakers’ yeast Saccharomyces cerevisiae among eukaryotes as model organisms.

  18. Long-lasting injection of solar energetic electrons into the heliosphere

    Science.gov (United States)

    Dresing, N.; Gómez-Herrero, R.; Heber, B.; Klassen, A.; Temmer, M.; Veronig, A.

    2018-05-01

    Context. The main sources of solar energetic particle (SEP) events are solar flares and shocks driven by coronal mass ejections (CMEs). While it is generally accepted that energetic protons can be accelerated by shocks, whether or not these shocks can also efficiently accelerate solar energetic electrons is still debated. In this study we present observations of the extremely widespread SEP event of 26 Dec 2013 To the knowledge of the authors, this is the widest longitudinal SEP distribution ever observed together with unusually long-lasting energetic electron anisotropies at all observer positions. Further striking features of the event are long-lasting SEP intensity increases, two distinct SEP components with the second component mainly consisting of high-energy particles, a complex associated coronal activity including a pronounced signature of a shock in radio type-II observations, and the interaction of two CMEs early in the event. Aims: The observations require a prolonged injection scenario not only for protons but also for electrons. We therefore analyze the data comprehensively to characterize the possible role of the shock for the electron event. Methods: Remote-sensing observations of the complex solar activity are combined with in situ measurements of the particle event. We also apply a graduated cylindrical shell (GCS) model to the coronagraph observations of the two associated CMEs to analyze their interaction. Results: We find that the shock alone is likely not responsible for this extremely wide SEP event. Therefore we propose a scenario of trapped energetic particles inside the CME-CME interaction region which undergo further acceleration due to the shock propagating through this region, stochastic acceleration, or ongoing reconnection processes inside the interaction region. The origin of the second component of the SEP event is likely caused by a sudden opening of the particle trap.

  19. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  20. A combination of high stress-induced tense and energetic arousal compensates for impairing effects of stress on memory retrieval in men.

    Science.gov (United States)

    Boehringer, Andreas; Schwabe, Lars; Schachinger, Hartmut

    2010-09-01

    Stress can both impair and enhance memory retrieval. Glucocorticoids mediate impairing effects of stress on memory retrieval. Little is known, however, about factors that facilitate post-stress memory performance. Here, we asked whether stress-induced arousal mediates facilitative stress effects on memory retrieval. Two arousal dimensions were separated: tense arousal, which is characterized by feelings ranging from tension and anxiety to calmness and quietness, and energetic arousal, which is associated with feelings ranging from energy and vigor to states of fatigue and tiredness. Fifty-one men (mean age +/- SEM: 24.57 +/- 0.61 years) learned emotional and neutral words. Memory for these words was tested 165 min later, after participants were exposed to a psychosocial stress or a non-arousing control condition. Changes in heart rate, self-reported (energetic and tense) arousal, and saliva cortisol in response to the stress/control condition were measured. Overall, stress impaired memory retrieval. However, stressed participants with large increases in both tense and energetic arousal performed comparably to controls. Neither salivary cortisol level nor autonomic arousal predicted memory performance after controlling for changes in energetic and tense arousal. The present data indicate that stress-induced concurrent changes in tense and energetic arousal can compensate for impairing effects of stress on memory retrieval. This finding could help to explain some of the discrepancies in the literature on stress and memory.

  1. Energetic aspects of skeletal muscle contraction: implications of fiber types.

    Science.gov (United States)

    Rall, J A

    1985-01-01

    In this chapter fundamental energetic properties of skeletal muscles as elucidated from isolated muscle preparations are described. Implications of these intrinsic properties for the energetic characterization of different fiber types and for the understanding of locomotion have been considered. Emphasis was placed on the myriad of physical and chemical techniques that can be employed to understand muscle energetics and on the interrelationship of results from different techniques. The anaerobic initial processes which liberate energy during contraction and relaxation are discussed in detail. The high-energy phosphate (approximately P) utilized during contraction and relaxation can be distributed between actomyosin ATPase or cross-bridge cycling (70%) and the Ca2+ ATPase of the sacroplasmic reticulum (30%). Muscle shortening increases the rate of approximately P hydrolysis, and stretching a muscle during contraction suppresses the rate of approximately P hydrolysis. The economy of an isometric contraction is defined as the ratio of isometric mechanical response to energetic cost and is shown to be a fundamental intrinsic parameter describing muscle energetics. Economy of contraction varies across the animal kingdom by over three orders of magnitude and is different in different mammalian fiber types. In mammalian skeletal muscles differences in economy of contraction can be attributed mainly to differences in the specific actomyosin and Ca2+ ATPase of muscles. Furthermore, there is an inverse relationship between economy of contraction and maximum velocity of muscle shortening (Vmax) and maximum power output. This is a fundamental relationship. Muscles cannot be economical at developing and maintaining force and also exhibit rapid shortening. Interestingly, there appears to be a subtle system of unknown nature that modulates the Vmax and economy of contraction. Efficiency of a work-producing contraction is defined and contrasted to the economy of contraction

  2. Energetic matrix of Rio de Janeiro State, Brazil - 1994/2004

    International Nuclear Information System (INIS)

    1996-01-01

    This book has been structured into three parts and three appendices. In the first part, named Energetic matrix of Rio de Janeiro State, the most important economic and social aspects of the State and the methodology for elaboration of economic and energetic scenarios has been detailed. In the second part, an analysis of seven consumption sectors components of the energetic matrix structure ( industrial, transports, residential, commercial, energetic, agriculture and cattle-breeding, non energetic) has been performed, with the objective of providing information on the present status and future prospects of energy consumption by sectors up to 2004. Finally, in the third part, the energy supply of Rio de Janeiro State for the consumption sectors has been discussed

  3. Energetic Extremes in Aquatic Locomotion by Coral Reef Fishes

    Science.gov (United States)

    Fulton, Christopher J.; Johansen, Jacob L.; Steffensen, John F.

    2013-01-01

    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s−1) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed. PMID:23326566

  4. Energetic extremes in aquatic locomotion by coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Christopher J Fulton

    Full Text Available Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1 while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting, streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.

  5. Energetic magnetospheric protons in the plasma depletion layer

    International Nuclear Information System (INIS)

    Fuselier, S.A.

    1992-01-01

    Interplanetary magnetic field draping against the Earth's dayside subsolar magnetopause creates a region of reduced plasma density and increased magnetic field called the plasma depletion layer. In this region, leakage of energetic ions from the Earth's magnetosphere onto magnetic field lines in the plasma depletion layer can be studied without interference from ions accelerated at the Earth's quasi-parallel bow shock. Active Magnetospheric Particle Tracer Experiment/Charge Composition Explorer (AMPTE/CCE) observations for 13 plasma depletion layer events are used to determine the characteristics of energetic protons between a few keV/e and ∼100keV/e leaked from the magnetosphere. Results indicate that the leaked proton distributions resemble those in the magnetosphere except that they have lower densities and temperatures and much higher velocities parallel (or antiparallel) and perpendicular to the magnetic field. Compared to the low-energy magnetosheath proton distributions present in the depletion layer, the leaked energetic proton distributions typically have substantially higher flow velocities along the magnetic field indicate that the leaked energetic proton distributions to contribute to the energetic proton population seen upstream and downstream from the quasi-parallel bow shock. However, their contribution is small compared to the contribution from acceleration of protons at the bow shock because the leaked proton densities are on the order of 10 times smaller than the energetic proton densities typically observed in the vicinity of the quasi-parallel bow shock

  6. Patterning high explosives at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Nafday, Omkar A.; Pitchimani, Rajasekar; Weeks, Brandon L. [Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Haaheim, Jason [NanoInk Inc., 8025 Lamon Ave., Skokie, IL 60077 (United States)

    2006-10-15

    For the first time, we have shown that spin coating and Dip pen nanolithography (DPN trademark) are simple methods of preparing energetic materials such as PETN and HMX on the nanoscale, requiring no heating of the energetic material. Nanoscale patterning has been demonstrated by the DPN method while continuous thin films were produced using the spin coating method. Results are presented for preparing continuous PETN thin films of nanometer thickness by the spin coating method and for controlling the architecture of arbitrary nanoscale patterns of PETN and HMX by the DPN method. These methods are simple for patterning energetic materials and can be extended beyond PETN and HMX, opening the door for fundamental studies at the nanoscale. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. 1999 Summer Research Program for High School Juniors at the University of Rochester's Laboratory for Laser Energetics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-10-09

    oak-B202--During the summer of 1999, 12 students from Rochester-area high schools participated in the Laboratory for Laser Energetics' Summer High School Research Program. The goal of this program is to excite a group of high school students about careers in the areas of science and technology by exposing them to research in a state-of-the-art environment. Too often, students are exposed to ''research'' only through classroom laboratories that have prescribed procedures and predictable results. In LLE's summer program, the students experience all of the trials, tribulations, and rewards of scientific research. By participating in research in a real environment, the students often become more enthusiastic about careers in science and technology. In addition, LLE gains from the contributions of the many highly talented students who are attracted to the program. The students spent most of their time working on their individual research projects with members of LLE's technical staff. The projects were related to current research activities at LLE and covered a broad range of areas of interest including laser modeling, diagnostic development, chemistry, liquid crystal devices, and opacity data visualization. The students, their high schools, their LLE supervisors and their project titles are listed in the table. Their written reports are collected in this volume. The students attended weekly seminars on technical topics associated with LLE's research. Topics this year included lasers, fusion, holography, optical materials, global warming, measurement errors, and scientific ethics. The students also received safety training, learned how to give scientific presentations, and were introduced to LLE's resources, especially the computational facilities. The program culminated with the High School Student Summer Research Symposium on 25 August at which the students presented the results of their research to an audience that

  8. Development of high pressure deuterium gas targets for the generation of intense mono-energetic fast neutron beams

    International Nuclear Information System (INIS)

    Guzek, J.; Richardson, K.; Franklyn, C.B.; Waites, A.; McMurray, W.R.; Watterson, J.I.W.; Tapper, U.A.S.

    1999-01-01

    Two different technical solutions to the problem of generation of mono-energetic fast neutron beams on the gaseous targets are presented here. A simple and cost-effective design of a cooled windowed gas target system is described in the first part of this paper. It utilises a thin metallic foil window and circulating deuterium gas cooled down to 100 K. The ultimate beam handling capability of such target is determined by the properties of the window. Reliable performance of this gas target system was achieved at 1 bar of deuterium gas, when exposed to a 45 μA beam of 5 MeV deuterons, for periods in excess of 6 h. Cooling of the target gas resulted in increased fast neutron output and improved neutron to gamma-ray ratio. The second part of this paper discusses the design of a high pressure, windowless gas target for use with pulsed, low duty cycle accelerators. A rotating seal concept was applied to reduce the gas load in a differentially pumped system. This allows operation at 1.23 bar of deuterium gas pressure in the gas cell region. Such a gas target system is free from the limitations of the windowed target but special attention has to be paid to the heat dissipation capability of the beam dump, due to the use of a thin target. The rotating seal concept is particularly suitable for use with accelerators such as radio-frequency quadrupole (RFQ) linacs that operate with a very high peak current at low duty cycle. The performance of both target systems was comprehensively characterized using the time-of-flight (TOF) technique. This demonstrated that very good quality mono-energetic fast neutron beams were produced with the slow neutron and gamma-ray component below 10% of the total target output

  9. Sociosynergistic Management of the Companies. Economic, Energetic and Ecologic Challenge

    Directory of Open Access Journals (Sweden)

    Dušan Turan

    2008-06-01

    Full Text Available Sociosynergistic management is inevitable condition of nanotechnology tendency of value-creating process of the companies in incoming third level of social division of labor. This management is being a product of transdisciplinary nanocognition and nano-projection of the systems there through creates for the management the operation base for system solution of economic effectiveness, energetic friendliness and ecologic safety of material-technological processes of the companies. He uncovers the sociosynergetics as a system entirety in the limits of abstract thinking, notion-categorical communication and knowingly-practical acting of the subject.

  10. Energetic utilization of Paludi biomass; Energetische Nutzung von Paludi-Biomassen

    Energy Technology Data Exchange (ETDEWEB)

    Ahlhaus, Matthias; Jantzen, Christian [Fachhochschule Stralsund (DE). Inst. fuer Regenerative EnergieSysteme (IRES)

    2011-07-01

    Paludiculture as the new way of adapted cultivation from wetlands can provide a significant contribution to reducing CO{sub 2} emissions. Definite statements about the possible emission reductions, by first avoidance (rewetting) and second substitution of fossil fuels can be made only by the results of the current research project. The material use of the Paludi-biomass would be favored from an energetic point of view. Unfortunately, caused of the high opportunity costs, there are only niche markets currently. The possibilities of energy use from this biomass will reduce both environmental and economic reasons, to the direct thermal conversion. The fuel properties are in some aspects similar to those of wood. The compaction of these harbaceous crops to pellets or briquettes is advantageous from an economic and process engineering point of view but requires an energy-intensive conditioning of the biomass. During the combustion some problems appears can be traced on the high mineral content as well as the low temperature when the ash is melting (ash melting behavior). The combination of these two factors requires the use of suitable additives regarding to a continuous operation of a conversation plan. (orig.)

  11. Simulation study of energetic ion distribution during combined NBI and ICRF heating in LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Fukuyama, A.; Kasilov, V.

    2006-01-01

    In the LHD, significant performances of ICRF heating (fundamental, minority heating regime) have been demonstrated and up to 500keV of energetic tail ions have been observed by fast neutral particle analysis (NPA). These measured results indicate a good property of energetic ion confinement in helical systems. From the 9th campaign of LHD experiment (FY2005) a new perpendicular NBI heating system (P<3MW) has been installed and an effective heating of perpendicularly injected beam ions by the higher harmonics ICRF heating is expected. ICRF heating generates highly energetic tail ions, which drift around the torus for a long time (typically on a collisional time scale). Thus, the behavior of these energetic ions is strongly affected by the characteristics of the drift motions, which depend on the magnetic field configuration. In particular, in a three-dimensional (3D) magnetic configuration, complicated drift motions of trapped particles would play an important role in the confinement of the energetic ions and the ICRF heating process. Therefore a global simulation of ICRF heating is necessary for the accurate modeling of the plasma heating process in a 3D magnetic configuration. In this paper we study the energetic ion distribution during combined NBI and 2nd harmonics ICRF heating in LHD using two global simulation codes: a full wave field solver TASK/WK and a drift kinetic equation solver GNET. GNET solves a linearized drift kinetic equation for energetic ions including complicated behavior of trapped particles in 5-D phase space. TASK/WM solves Maxwell's equation for RF wave electric field with complex frequency as a boundary value problem in the 3D magnetic configuration. (author)

  12. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  13. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  14. Neoclassical transport of energetic beam ions in the Large Helical Device

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Kaneko, Osamu

    2000-01-01

    The neoclassical (collisional) transport of energetic ions is investigated by the global neoclassical transport simulation in the Large Helical Device (LHD). The steady state distributions of energetic ions are evaluated assuming an energetic particle source by NBI heating (tangentally injected). Significant radial transport of energetic ions can be seen due to the radial motion of trapped particles in the velocity region below near critical velocity. Our simulation results show relatively good agreements with the experimental results of fast particle measurements in the LHD. This suggests an important role of neoclassical transport in the radial transport process of energetic ions in heliotrons. (author)

  15. High Density, Insensitive Oxidizer With RDX Performance Final Report CRADA No. TC02178.0

    Energy Technology Data Exchange (ETDEWEB)

    Pagoria, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Preda, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-25

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Physical Sciences, Inc. (PSI), to develop a synthesis and evaluate a novel high density, insensitive oxidizer with RDX performance. This CRADA resulted from the award of a Phase I STTR ("STTR") from DOD. In recent years, the synthesis of new energetic heterocyclic compounds to replace the energetic materials currently in the stockpile has received a great amount of attention. The Office of the Secretary of Defense has identified that there is a need to incorporate new energetic materials in current and future weapon systems in an effort to increase performance and decrease sensitivity. For many of the future weapon systems, incorporation of energetic compounds currently in the stockpile will not provide the desired performance and sensitivity goals. The success of this CRADA may lead to a Phase I option STTR from DOD and to a Phase II STTR from DOD. The goal of this CRADA was to produce and test a novel oxidizer, 2,5,8-trinitroheptazine (TNH).

  16. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  17. Transformation and Crystallization Energetics of Synthetic and Biogenic Amorphous Calcium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Radha, A. V. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Forbes, Tori Z. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Killian, Christopher E. [Univ. of Wisconsin, Madison, WI (United States); Gilbert, P.U.P.A [Univ. of Wisconsin, Madison, WI (United States); Navrotsky, Alexandra [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States)

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC→anhydrous ACC ~ biogenic anhydrous ACC→vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO₂ sequestration.

  18. Vanadium based materials as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  19. Mapping travelling convection vortex events with respect to energetic particle boundaries

    DEFF Research Database (Denmark)

    Moretto, T.; Yahnin, A.

    1998-01-01

    Thirteen events of high-latitude ionospheric travelling convection vortices during very quiet conditions were identified in the Greenland magnetometer data during 1990 and 1991. The latitudes of the vortex centres for these events are compared to the energetic electron trapping boundaries...

  20. Life cycles of energetic systems

    International Nuclear Information System (INIS)

    Adnot, Jerome; Marchio, Dominique; Riviere, Philippe; Duplessis, B.; Rabl, A.; Glachant, M.; Aggeri, F.; Benoist, A.; Teulon, H.; Daude, J.

    2012-01-01

    This collective publication aims at being a course for students in engineering of energetic systems, i.e. at learning how to decide to accept or discard a project, to select the most efficient system, to select the optimal system, to select the optimal combination of systems, and to classify independent systems. Thus, it presents methods to analyse system life cycle from an energetic, economic and environmental point of view, describes how to develop an approach to the eco-design of an energy consuming product, how to understand the importance of hypotheses behind abundant and often contradicting publicised results, and to be able to criticise or to put in perspective one's own analysis. The first chapters thus recall some aspects of economic calculation, introduce the assessment of investment and exploitation costs of energetic systems, describe how to assess and internalise environmental costs, present the territorial carbon assessment, discuss the use of the life cycle assessment, and address the issue of environmental management at a product scale. The second part proposes various case studies: an optimal fleet of thermal production of electric power, the eco-design of a refrigerator, the economic and environmental assessment of wind farms

  1. Nuclear energetics all over the world

    International Nuclear Information System (INIS)

    Wojcik, T.

    2000-01-01

    The actual state and tendencies of nuclear power further development for different world regions have been presented and discussed. The problem of safety of energetic nuclear reactors, radioactive waste management and related problems have been discussed in respect of regulations in different countries. The economical aspects of nuclear energetics in comparison with different fossil fuel power plants exploitation costs has been presented as well. The official state of international organizations (IAEA, WANO, HASA etc.) have been also shown in respect to subject presented

  2. Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters

    International Nuclear Information System (INIS)

    Sum, Tze Chien; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo

    2015-01-01

    The rapid transcendence of organic–inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley–Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic–inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted. (topical review)

  3. High concentrations of H2O2 make aerobic glycolysis energetically more favourable than cellular respiration.

    Directory of Open Access Journals (Sweden)

    Hamid R Molavian

    2016-08-01

    Full Text Available Since the original observation of the Warburg Effect in cancer cells, over eight decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2 above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP in response to the production of reactive oxygen species H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources. This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis.

  4. Energetic certification in Europe

    International Nuclear Information System (INIS)

    1998-01-01

    At community level the problem of energy quality control in a building was introduced by EEC recommendation n. 93/76 in 1993. In this item are reported some notes on energetic certification in European countries [it

  5. Measurement of energetic radiation caused by thunderstorm activities by a sounding balloon and ground observation

    Science.gov (United States)

    Torii, T.

    2015-12-01

    Energetic radiation caused by thunderstorm activity is observed at various places, such as the ground, high mountain areas, and artificial satellites. In order to investigate the radiation source and its energy distribution, we measured energetic radiation by a sounding balloon, and the ground observation. On the measurement inside/above the thundercloud, we conducted a sounding observation using a radiosonde mounted two GM tubes (for gamma-rays, and for beta/gamma-rays), in addition to meteorological instruments. The balloon passed through a region of strong echoes in a thundercloud shown by radar image, at which time an increase in counting rate of the GM tube about 2 orders of magnitude occurred at the altitude from 5 km to 7.5 km. Furthermore, the counting rate of two GM tubes indicated the tendency different depending on movement of a balloon. This result suggests that the ratio for the gamma-rays (energetic photons) of the beta-rays (energetic electrons) varies according to the place in the thundercloud. Furthermore, we carried out a ground observation of the energetic gamma rays during winter thunderstorm at a coastal area facing the Sea of Japan. Two types of the energetic radiation have been observed at this time. We report the outline of these measurements and analysis in the session of the AGU meeting.

  6. Geodesic acoustic mode driven by energetic particles with bump-on-tail distribution

    Science.gov (United States)

    Ren, Haijun; Wang, Hao

    2018-04-01

    Energetic-particle-driven geodesic acoustic mode (EGAM) is analytically investigated by adopting the bump-on-tail distribution for energetic particles (EPs), which is created by the fact that the charge exchange time (τcx ) is sufficiently shorter than the slowing down time (τsl ). The dispersion relation is derived in the use of gyro-kinetic equations. Due to the finite ratio of the critical energy and the initial energy of EPs, defined as τc , the dispersion relation is numerically evaluated and the effect of finite τc is examined. Following relative simulation and experimental work, we specifically considered two cases: τsl/τcx = 3.4 and τsl/τcx = 20.4 . The pitch angle is shown to significantly enhance the growth rate and meanwhile, the real frequency is dramatically decreased with increasing pitch angle. The excitation of high-frequency EGAM is found, and this is consistent with both the experiment and the simulation. The number density effect of energetic particles, represented by \

  7. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    International Nuclear Information System (INIS)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Seguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005)], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006)]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D 3 He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006)]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  8. Nano-Bio Quantum Technology for Device-Specific Materials

    Science.gov (United States)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  9. The Modeling of Coupled Electromagnetic-Thermo-Mechanical Laser Interactions and Microstructural Behavior of Energetic Aggregates

    Science.gov (United States)

    2015-01-01

    analytical Beer - Lambert absorption profile to model laser heating of pure energetic crystals without considering any EM wave propagation effects...temperature. These aggregates were studied using both an analytical distribution for laser heating following Beer - Lambert absorption and the full EM finite...surface (ysurface - y) and material absorption coefficient, α, following a Beer - Lambert absorption relation given by , = !()

  10. Novel Materials for Collimators at LHC and its Upgrades

    CERN Document Server

    AUTHOR|(CDS)2108536; Dallocchio, Alessandro; Garlasche, Marco; Gentini, Luca; Gradassi, Paolo; Guinchard, Michael; Redaelli, Stefano; Rossi, Adriana; Sacristan De Frutos, Oscar; Carra, Federico; Quaranta, Elena

    2015-01-01

    Collimators for last-generation particle accelerators like the LHC, must be designed to withstand the close interaction with intense and energetic particle beams, safely operating over an extended range of temperatures in harsh environments, while minimizing the perturbing effects, such as instabilities induced by RF impedance, on the circulating beam. The choice of materials for collimator active components is of paramount importance to meet these requirements, which are to become even more demanding with the increase of machine performances expected in future upgrades, such as the High Luminosity LHC (HL-LHC). Consequently, a farreaching R&D program has been launched to develop novel materials with excellent thermal shock resistance and high thermal and electrical conductivity, replacing or complementing materials used for present collimators. Molybdenum Carbide - Graphite and Copper-Diamond composites have been so far identified as the most promising materials. The manufacturing methods, properties and...

  11. Chemistry and Materials Science

    International Nuclear Information System (INIS)

    1993-07-01

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director's initiatives and individual projects, and transactinium institute studies

  12. The Energetics of Economics (Money as access to Energy)

    OpenAIRE

    Ternyik, Stephen I.

    2013-01-01

    Money is being portrayed as temporal access to energy and a new methodical approach to the energetics of the human economy is introduced.The economic evolution of world system energetics is put into the historical focus of all global monetary civilization, reaching back to Sumerian city states.This long wave energetics of human economic action clearly points to the biophysical boundaries of the globalized monetary production economy which is also based on natural law.The future perspective of...

  13. Interaction in the large energetic companies in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Janevski, Risto

    1999-01-01

    After disintegration of former power energetic system of Yugoslavia 1991, the Republic of Macedonia has faced enormous problems in the energetic field. It was necessary to realize all options in order to secure enough electric power for normal economic capacities function. In that course a direct involvement of five large companies, which represent very significant energetic subjects, will largely determine the future energetic conditions and circumstances in our country. These are the following companies: P.E. Electric Power Company Of Macedonia; OKTA Crude Oil Refinery; Heat Power Company; HEK Jugohrom; Fenimak. The paper presents the electric power consumption of these macro energetic companies during the period 1991-1998

  14. Oxygen vacancies in oxides studied by annihilation of mono-energetic positrons

    Energy Technology Data Exchange (ETDEWEB)

    Hugenschmidt, Christoph; Pikart, Philip [ZWE FRM II, Technische Universitaet Muenchen, Lichtenbergstrasse 1, 85747 Garching (Germany); Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Schreckenbach, Klaus [Physik-Department E21, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)

    2009-07-01

    Oxygen vacancies play a fundamental role for the material properties of various oxides, e.g. charge carrier density in high-Tc superconductors, magnetic properties of diluted magnetic semiconductors or paramagnetic properties of SiO{sub 2}. In this study, open volume defects in (metal) oxides are investigated by Doppler-broadening spectroscopy (DBS) of the positron annihilation. More detailed information about the chemical surrounding at the positron annihilation site is gained by additional coincident DBS experiments, where a signature of positrons annihilating with electrons from oxygen is observed. The mono-energetic positron beam at NEPOMUC was used which allows depth dependent measurements, and hence the investigation of thin oxide layers. Recent results for metallic oxides such as ZnO are presented and compared with various non-metallic oxides such as amorphous and crystalline SiO{sub 2}, oxygen terminated Si-surface, and ice. The role of neutral and charged oxygen vacancies and the application of the positron annihilation technique to study oxygen vacancies will be discussed.

  15. 1982 Annual status report: high-temperature materials

    International Nuclear Information System (INIS)

    Van de Voorde, M.

    1983-01-01

    The High Temperature Materials Programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. Materials and engineering studies include: corrosion with or without load, mechanical properties under static or dynamic loads, surface protection creep of tubular components in corrosive environments and high temperature materials data bank

  16. Observations of Energetic Particle Escape at the Magnetopause: Early Results from the MMS Energetic Ion Spectrometer (EIS)

    Science.gov (United States)

    Cohen, I. J.; Mauk, B. H.; Anderson, B. J.; Westlake, J. H.; Sibeck, David Gary; Giles, Barbara L.; Pollock, C. J.; Turner, D. L.; Fennell, J. F.; Blake, J. B.; hide

    2016-01-01

    Energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly, irrespective of conditions that engender reconnection and boundary-normal magnetic fields. A signature observed by the Magnetospheric Multiscale (MMS) mission, simultaneous monohemispheric streaming of multiple species (electrons, H+, Hen+), is reported here as unexpectedly common in the dayside, dusk quadrant of the magnetosheath even though that region is thought to be drift-shadowed from energetic electrons. This signature is sometimes part of a pitch angle distribution evolving from symmetric in the magnetosphere, to asymmetric approaching the magnetopause, to monohemispheric streaming in the magnetosheath. While monohemispheric streaming in the magnetosheath may be possible without a boundary-normal magnetic field, the additional pitch angle depletion, particularly of electrons, on the magnetospheric side requires one. Observations of this signature in the dayside dusk sector imply that the static picture of magnetospheric drift-shadowing is inappropriate for energetic particle dynamics in the outer magnetosphere.

  17. High-efficiency InP-based photocathode for hydrogen production by interface energetics design and photon management

    NARCIS (Netherlands)

    Gao, L.; Cui, Y.; Vervuurt, R.H.J.; van Dam, D.; van Veldhoven, R.; Hofmann, J.P.; Bol, A.A.; Haverkort, J.E.M.; Notten, P.H.L.; Bakkers, E.P.A.M.; Hensen, E.J.M.

    2016-01-01

    The solar energy conversion efficiency of photoelectrochemical (PEC) devices is usually limited by poor interface energetics, limiting the onset potential, and light reflection losses. Here, a three-pronged approach to obtain excellent performance of an InP-based photoelectrode for water reduction

  18. Quinquennial National Program (1990-1994) for the Energetic Modernization

    International Nuclear Information System (INIS)

    1990-01-01

    The Mexican Energetics Sector currently has the eighth possition regarding reserves of hydrocarbons and the sixth regarding oil production, the installed capacity in electricity matters is among the first 20 of the world. The Program established first, a general balance of the situation in which the energetics sector lays today. It also points out the strategic role that this sector holds, as well an on the solutions to the problems faced. This Program establishes the objectives pursued by the energetics sector and that are as follows: to guarantee enough supply of energetics, to strenghten the link between the energetics sector and economy, society and environmental protection, to consolidate an energetics sector that is more current and better integrated. This Program presents the proposal to tend to five priorities: productivity, saving and effective use of energy, financing of the development and expansion of the offer, to diversify sources, as well as an efficient participation in international markets. In the chapter the effort regarding supply and demand of energy, it is evident that the effort made to expand the offer must be great, facing the total demand of energy demonstrated by the figures. For 1994 this demmand is of 31 - 36 % greater to that observed in 1988. Lastly, two statistic documents are enclosed, one historic, with general pointers of the sector, and another with the basic variables for national energy balance

  19. Effect of multiple short highly energetic X-ray pulses on the synthesis of endoglucanase by a mutant strain of Trichoderma reesei-M7

    International Nuclear Information System (INIS)

    Gemishev, Orlin; Markova, Maya; Savov, Valentin; Zapryanov, Stanislav; Blagoev, Alexander

    2014-01-01

    Bioconversion of cellulose-containing substrate to glucose represents an important area of modern biotechnology. Enzymes for the degradation of the polysaccharide part of biomass have been produced, mostly by fungi belonging to genus Trichoderma. Studies were carried out with the mutant strain Trichoderma reesei-M7, a cellulase producer. Spores of the enzyme producer were irradiated with different doses of characteristic X-ray radiation from metallic tungsten (mainly the W Ka1 and Ka2 lines) with a high dose rate. The latter is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles. In this case, we focused our study on the influence of hard X-rays. The doses of X-rays absorbed by the spores varied in the range of approximately 5-11,000 mSv measured with thermoluminescent dosimeters (TLD). The influence of the applied doses in combination with exceptionally high dose rates (in the order of tens of millisieverts per microsecond) on the activity of the produced endoglucanase, amount of biomass and extra-cellular protein, was studied in batch cultivation conditions. In the dose range of 200-1200 mSv, some enhancement of endoglucanase activity was obtained: around 18%-32%, despite the drop of the biomass amount, compared with the untreated material. Keywords: endoglucanase; X-ray pulses; thermoluminescent dosimeters (TLD); dense plasma focus (DPF); Trichoderma reesei

  20. The effect of binary oxide materials on a single droplet vapor explosion triggering

    International Nuclear Information System (INIS)

    Hansson, R.C.; Manickam, L.T.; Dinh, T.N.

    2011-01-01

    In order to explore the fundamental mechanism dictated by the material influence on triggering, fine fragmentation and subsequent vapor explosion energetics, a series of experiments using a mixture of eutectic and non-eutectic binary oxide were initiated. Dynamics of the hot liquid (WO 3 -CaO) droplet and the volatile liquid (water) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). The acquired images followed by further analysis showed a milder interaction for the non-eutectic melt composition for the tests with low melt superheat, whether no evident differences between eutectic and non-eutectic melt compositions regarding bubble dynamics, energetics and melt preconditioning was perceived for the high melt superheat tests. (author)

  1. The energetic significance of cooking.

    Science.gov (United States)

    Carmody, Rachel N; Wrangham, Richard W

    2009-10-01

    While cooking has long been argued to improve the diet, the nature of the improvement has not been well defined. As a result, the evolutionary significance of cooking has variously been proposed as being substantial or relatively trivial. In this paper, we evaluate the hypothesis that an important and consistent effect of cooking food is a rise in its net energy value. The pathways by which cooking influences net energy value differ for starch, protein, and lipid, and we therefore consider plant and animal foods separately. Evidence of compromised physiological performance among individuals on raw diets supports the hypothesis that cooked diets tend to provide energy. Mechanisms contributing to energy being gained from cooking include increased digestibility of starch and protein, reduced costs of digestion for cooked versus raw meat, and reduced energetic costs of detoxification and defence against pathogens. If cooking consistently improves the energetic value of foods through such mechanisms, its evolutionary impact depends partly on the relative energetic benefits of non-thermal processing methods used prior to cooking. We suggest that if non-thermal processing methods such as pounding were used by Lower Palaeolithic Homo, they likely provided an important increase in energy gain over unprocessed raw diets. However, cooking has critical effects not easily achievable by non-thermal processing, including the relatively complete gelatinisation of starch, efficient denaturing of proteins, and killing of food borne pathogens. This means that however sophisticated the non-thermal processing methods were, cooking would have conferred incremental energetic benefits. While much remains to be discovered, we conclude that the adoption of cooking would have led to an important rise in energy availability. For this reason, we predict that cooking had substantial evolutionary significance.

  2. ELM triggering by energetic particle driven mode in wall-stabilized high-β plasmas

    International Nuclear Information System (INIS)

    Matsunaga, G.; Aiba, N.; Shinohara, K.; Asakura, N.; Isayama, A.; Oyama, N.

    2013-01-01

    In the JT-60U high-β plasmas above the no-wall β limit, a triggering of an edge localized mode (ELM) by an energetic particle (EP)-driven mode has been observed. This EP-driven mode is thought to be driven by trapped EPs and it has been named EP-driven wall mode (EWM) on JT-60U (Matsunaga et al 2009 Phys. Rev. Lett. 103 045001). When the EWM appears in an ELMy H-mode phase, ELM crashes are reproducibly synchronized with the EWM bursts. The EWM-triggered ELM has a higher repetition frequency and less energy loss than those of the natural ELM. In order to trigger an ELM by the EP-driven mode, some conditions are thought to be needed, thus an EWM with large amplitude and growth rate, and marginal edge stability. In the scrape-off layer region, several measurements indicate an ion loss induced by the EWM. The ion transport is considered as the EP transport through the edge region. From these observations, the EP contributions to edge stability are discussed as one of the ELM triggering mechanisms. (paper)

  3. Solar energetic particles: observational studies and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Masson, S.

    2010-10-01

    Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that

  4. Sawteeth stabilization by energetic trapped ions

    International Nuclear Information System (INIS)

    Samain, A.; Edery, D.; Garbet, X.; Roubin, J.P.

    1991-01-01

    The analysis of a possible stabilization of sawteeth by a population of energetic ions is performed by using the Lagrangian of the electromagnetic perturbation. It is shown that the trapped component of such a population has a small influence compared to that of the passing component. The stabilization threshold is calculated assuming a non linear regime in the q=1 resonant layer. The energetic population must create a stable tearing structure if the average curvature effect on thermal particles in the layer is small. However, this effect decreases the actual threshold

  5. A Study on Mono-energetic Beam Source Using Characteristic X-ray for Substance Identification System

    International Nuclear Information System (INIS)

    Lee, Hwan Soo

    2009-02-01

    A new mono-energetic beam source was developed by using characteristic X-ray for improving performance of the substance identification system. Most of inspection systems use X-ray tubes for their source modules. However, the broad energy spectrum of X-ray tube causes an increase of uncertainty. In this study, it was found that mono-energetic beam sources can be generated by using X-ray tube and the designed target filter assembly. In order to investigate the monoenergetic beam source, the sensitivity study was conducted with a series of different X-ray tube potentials, radiator and filter materials using Monte Carlo simulation. The developed beam sources have a mono-energy peak at 69 keV, 78 keV and 99 keV, and they are named as characteristic X-ray beam BEAM69, BEAM78 and BEAM99, respectively. The characteristic X-ray beam intensity was over thirty three times more than that of hardening beam used previous work at Hanyang University. And BEAM69 and BEAM99 were applied to the substance identification system as a source. The relative error between results of characteristic X-ray beams and 69 keV and 99 keV photons was about 2% on the average for five unknown materials. In comparison with experiment results by using hardening beam, characteristic X-ray beam achieves better accuracy which is about 6.46 % on the average. Hence, it is expected that the developed characteristic X-ray beam source helps lower uncertainty of the inspection system, and the inspection time will be reduced considerably due to its high beam intensity

  6. The structure and dynamics of energetic displacement cascades in Cu and Ni. A molecular dynamics computer simulation study

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.

    1989-01-01

    The primary state of damage present in a solid as a result of particle irradiation has been a topic of interest to the physics and materials research community over the last forty years. Energetic displacement cascades resulting from the heavy ion irradiation of a solid play a prominent role in radiation damage and non-equilibrium processing of materials; however, their study has been hampered by the small size (∼10 -20 cm 3 ) and short lifetime (∼10 -11 s) as well as by their highly non-homogeneous nature. In this work, the molecular dynamics computer simulation technique is employed to study the structure and dynamics of energetic displacement cascades in Cu and Ni. The atomic interactions in Cu were described with the use of the Gibson II form of the Born-Mayer pair potential while for Ni the Johnson-Erginsoy pair potential was employed. Calculations were also carried out with the use of the embedded atom method many-body potentials. The results provide the first detailed microscopic description of the evolution of the cascade. The author shows for the first time, that a process akin to melting takes place in the core of the cascade. Atomic mixing, point defect production and point defect agglomeration, all processes directly related to the evolution of the cascade, are then explained in terms of a simple model in which the liquid-like nature of the cascade plays a dominant role in determining the primary state of damage

  7. Study of energetic dependence of LiF TLDs for photons

    International Nuclear Information System (INIS)

    Cavalieri, Tassio A.; Antunes, Paula C.G.; Paiva, Fabio; Branco, Isabela S.; Sena, Michelle K.S.; Siqueira, Paulo T.D.; Yoriyaz, Helio

    2015-01-01

    The LiF TLDs are widely used for photon dosimetry. However, in the most case the energetic dependence of these TLDs are not taken into account. This work is a preliminary study of energetic photon dependence in LiF TLD (TLD 700, enriched with 7 Li). For this study it was utilized a methodology already used in others works that seek understand the dependence energetic of TLD. It was utilized three different X-ray spectrum and a 137 Cs source; Beyond the calculus utilized in previous works, it was built the calibration curve for each spectrum to see the difference in dosimetry that the energetic dependence could cause. (author)

  8. Study of energetic dependence of LiF TLDs for photons

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, Tassio A.; Antunes, Paula C.G.; Paiva, Fabio; Branco, Isabela S.; Sena, Michelle K.S.; Siqueira, Paulo T.D.; Yoriyaz, Helio, E-mail: tcavalieri@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The LiF TLDs are widely used for photon dosimetry. However, in the most case the energetic dependence of these TLDs are not taken into account. This work is a preliminary study of energetic photon dependence in LiF TLD (TLD 700, enriched with {sup 7}Li). For this study it was utilized a methodology already used in others works that seek understand the dependence energetic of TLD. It was utilized three different X-ray spectrum and a {sup 137}Cs source; Beyond the calculus utilized in previous works, it was built the calibration curve for each spectrum to see the difference in dosimetry that the energetic dependence could cause. (author)

  9. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  10. Fast wave current drive on ITER in the presence of energetic alphas

    International Nuclear Information System (INIS)

    Mau, T.K.

    1989-01-01

    The impact of energetic alpha particle wave absorption on the range of frequencies for efficient fast wave current drive in an ITER-like fusion reactor core is investigated. The energetic alpha damping decrement is calculated, using an exact slowing down distribution function, and compared to electron and fuel ion damping over a wide range of frequencies. A combination of strong alpha damping and edge electron absorption in the higher ion harmonic regime limits efficient core fast wave current drive to the lower harmonics (1=2.3). However, high frequency fast waves may be employed to generate current in the outer plasma region. 11 refs., 7 figs

  11. Experimental and Theoretical Investigation of Shock-Induced Reactions in Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Jeffrey J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Park, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kohl, Ian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knepper, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farrow, Darcie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insights regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.

  12. Decomposition mechanisms and kinetics of novel energetic molecules BNFF-1 and ANFF-1: quantum-chemical modeling.

    Science.gov (United States)

    Tsyshevsky, Roman V; Kuklja, Maija M

    2013-07-18

    Decomposition mechanisms, activation barriers, Arrhenius parameters, and reaction kinetics of the novel explosive compounds, 3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole (BNFF-1), and 3-(4-amino-1,2,5-oxadiazol-3-yl)-4-(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole (ANFF-1) were explored by means of density functional theory with a range of functionals combined with variational transition state theory. BNFF-1 and ANFF-1 were recently suggested to be good candidates for insensitive high energy density materials. Our modeling reveals that the decomposition initiation in both BNFF-1 and ANFF-1 molecules is triggered by ring cleavage reactions while the further process is defined by a competition between two major pathways, the fast C-NO₂ homolysis and slow nitro-nitrite isomerization releasing NO. We discuss insights on design of new energetic materials with targeted properties gained from our modeling.

  13. Decomposition Mechanisms and Kinetics of Novel Energetic Molecules BNFF-1 and ANFF-1: Quantum-Chemical Modeling

    Directory of Open Access Journals (Sweden)

    Maija M. Kuklja

    2013-07-01

    Full Text Available Decomposition mechanisms, activation barriers, Arrhenius parameters, and reaction kinetics of the novel explosive compounds, 3,4-bis(4-nitro-1,2,5-oxadiazol-3-yl-1,2,5-oxadiazole (BNFF-1, and 3-(4-amino-1,2,5-oxadiazol-3-yl-4-(4-nitro-1,2,5-oxadiazol-3-yl-1,2,5-oxadiazole (ANFF-1 were explored by means of density functional theory with a range of functionals combined with variational transition state theory. BNFF-1 and ANFF-1 were recently suggested to be good candidates for insensitive high energy density materials. Our modeling reveals that the decomposition initiation in both BNFF-1 and ANFF-1 molecules is triggered by ring cleavage reactions while the further process is defined by a competition between two major pathways, the fast C-NO2 homolysis and slow nitro-nitrite isomerization releasing NO. We discuss insights on design of new energetic materials with targeted properties gained from our modeling.

  14. Characterization of polymorphic states in energetic samples of 1,3,5-trinitro-1,3,5-triazine (RDX) fabricated using drop-on-demand inkjet technology.

    Science.gov (United States)

    Emmons, Erik D; Farrell, Mikella E; Holthoff, Ellen L; Tripathi, Ashish; Green, Norman; Moon, Raphael P; Guicheteau, Jason A; Christesen, Steven D; Pellegrino, Paul M; Fountain, Augustus W

    2012-06-01

    The United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data. In this work, we report on the novel application of drop-on-demand technology for the fabrication of standardized trace 1,3,5-trinitro-1,3,5-triazine (RDX) samples. The drop-on-demand sample fabrication technique is compared both visually and spectrally to the more commonly used drop-and-dry technique. As the drop-on-demand technique allows for the fabrication of trace level hazard materials, concerted efforts focused on characterization of the polymorphic phase changes observed with low concentrations of RDX commonly used in drop-on-demand processing. This information is important when evaluating optical detection technologies using samples prepared with a drop-on-demand inkjet system, as the technology may be "trained" to detect the common bulk α phase of the explosive based on its spectral features but fall short in positively detecting a trace quantity of RDX (β-phase). We report the polymorphic shifts observed between α- and β-phases of this energetic material and discuss the conditions leading to the favoring of one phase over the other.

  15. Forecast of nuclear energetics

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1976-01-01

    The forecast concerning the development of nuclear energetics is presented. Some information on economics of nuclear power plants is given. The nuclear fuel reserves are estimated on the background of power resources of the world. The safety and environment protection problems are mentioned.

  16. Energetic particle pressure in intense ESP events

    Science.gov (United States)

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A.-F.

    2015-09-01

    We study three intense energetic storm particle (ESP) events in which the energetic particle pressure PEP exceeded both the pressure of the background thermal plasma Pth and the pressure of the magnetic field PB. The region upstream of the interplanetary shocks associated with these events was characterized by a depression of the magnetic field strength coincident with the increase of the energetic particle intensities and, when plasma measurements were available, a depleted solar wind density. The general feature of cosmic-ray mediated shocks such as the deceleration of the upstream background medium into which the shock propagates is generally observed. However, for those shocks where plasma parameters are available, pressure balance is not maintained either upstream of or across the shock, which may result from the fact that PEP is not included in the calculation of the shock parameters.

  17. High-resolution energetic particle measurements at 6.6 R/sub E/ 1. Electron micropulsations

    International Nuclear Information System (INIS)

    Higbie, P.R.; Belian, R.D.; Baker, D.N.

    1978-01-01

    The three papers dealing with data from satellites 1976--059A which we present in this issue represent the first publication of data from the new series of charged particle analyzer (CPA) instruments designed to measure energetic particle fluxes at geosynchronous altitudes. This first report presents new results on electron micropulsation phenomena and includes a concise description of the instrument. We often observe highly periodic modulations which persist for times as long as 2 hours in the spin-averaged counting rate data. These flux oscillations occur most frequently in the 30- to 300-keV electron data but are occasionally seen in higher-energy electron or low-energy proton data. The pitch angle distributions of the observed modulated fluxes may be either 'cigar-shaped' or 'pancake-shaped.' Oscillations at different energies are in phase, although the gross counting rate may be changing in an energy-time dispersive manner. The occurrence distribution of these modulations in local time suggests that they are related to Pc 5 geomagnetic micropulsations observed at ground stations

  18. High energy ions and energetic plasma irradiation effects on aluminum in a Filippov-type plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, M.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)], E-mail: mroshan20@yahoo.com; Rawat, R.S. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Babazadeh, A.R.; Emami, M.; Sadat Kiai, S.M. [Plasma Physics Research Center, AEOI, 14155-1339 Tehran (Iran, Islamic Republic of); Verma, R.; Lin, J.J.; Talebitaher, A.R.; Lee, P.; Springham, S.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2008-12-30

    High energy ions and energetic plasma irradiation of aluminum cathode inserts have been accomplished in nitrogen and argon filled plasma focus device. The Filippov-type plasma focus facility, Dena, with 288 {mu}F capacitor bank and charging voltage of 25 kV (90 kJ maximum storage energy) was first optimized for strong ion beam generation for nitrogen and argon gases by maximizing hard X-ray emission efficiency. X-ray diffraction analysis as well as scanning electron microscopy along with energy dispersive X-ray spectroscopy carried out to study the structural, morphological and compositional profile of the treated samples. Change in preferred orientation, emergence of meta-stable phases, generation of copper micro-droplets, and production of cracks across the sample are demonstrated and discussed. The micro-hardness measurements in Vickers scale reveal that after ion irradiation, the surface hardness of samples is reduced.

  19. Nuclear energy I, Non-energetic applications

    International Nuclear Information System (INIS)

    Lartigue G, J.; Navarrete T, M.; Cabrera M, L.; Arandia, P.A.; Arriola S, H.

    1986-01-01

    The nuclear energy is defined as the energy produced or absorbed in the nuclear reactions, therefore, these are divided in endothermic and exothermic. The exothermic nuclear reactions present more interest from the point of view of its applications and they can show in four main forms: radioactivity (from 0 to 4 MeV/reaction; light nucleus fusion ( ∼ 20 MeV/reaction), heavy nucleus fusion (∼ 200 MeV/reaction) and nucleons annihilation ( ∼ 2000 MeV/reaction). Nowadays only the fission has reached the stage of profitable energetic application, finding the other three forms in research and development. The non-energetic applications of the nuclear energy are characterized by they do not require of prior conversion to another form of energy and they are made through the use of radioisotopes as well as through the use of endothermic reaction caused in particle accelerators. In this work are presented some of the non-energetic applications with its theoretical and experimental basis as well as its benefits of each one. (Author)

  20. How low can you go? An adaptive energetic framework for interpreting basal metabolic rate variation in endotherms.

    Science.gov (United States)

    Swanson, David L; McKechnie, Andrew E; Vézina, François

    2017-12-01

    Adaptive explanations for both high and low body mass-independent basal metabolic rate (BMR) in endotherms are pervasive in evolutionary physiology, but arguments implying a direct adaptive benefit of high BMR are troublesome from an energetic standpoint. Here, we argue that conclusions about the adaptive benefit of BMR need to be interpreted, first and foremost, in terms of energetics, with particular attention to physiological traits on which natural selection is directly acting. We further argue from an energetic perspective that selection should always act to reduce BMR (i.e., maintenance costs) to the lowest level possible under prevailing environmental or ecological demands, so that high BMR per se is not directly adaptive. We emphasize the argument that high BMR arises as a correlated response to direct selection on other physiological traits associated with high ecological or environmental costs, such as daily energy expenditure (DEE) or capacities for activity or thermogenesis. High BMR thus represents elevated maintenance costs required to support energetically demanding lifestyles, including living in harsh environments. BMR is generally low under conditions of relaxed selection on energy demands for high metabolic capacities (e.g., thermoregulation, activity) or conditions promoting energy conservation. Under these conditions, we argue that selection can act directly to reduce BMR. We contend that, as a general rule, BMR should always be as low as environmental or ecological conditions permit, allowing energy to be allocated for other functions. Studies addressing relative reaction norms and response times to fluctuating environmental or ecological demands for BMR, DEE, and metabolic capacities and the fitness consequences of variation in BMR and other metabolic traits are needed to better delineate organismal metabolic responses to environmental or ecological selective forces.

  1. Platform for high temperature materials (PHiTEM)

    International Nuclear Information System (INIS)

    Baluc, N.; Hoffelner, W.; Michler, J.

    2007-01-01

    Advanced energy power systems like Generation IV fission reactors, thermonuclear fusion reactors, solar thermal/solar chemical reactors, gas turbines and coal gasification systems require materials that can operate at high temperatures in extreme environments: irradiation, corrosion, unidirectional and cyclic loads. On the path to development of new and adequate high temperature materials, understanding of damage formation and evolution and of damage effects is indispensable. Damage of materials in components takes place on different time and length scales. Component failure is usually a macroscopic event. Macroscopic material properties and their changes with time (e.g., hardening, creep embrittlement, corrosion) are determined by the micro- to nano-properties of the material. The multi scale is an ambitious and challenging attempt to take these facts into consideration by developing an unified model of the material behaviour. This requires, however, dedicated tools to test and analyse materials on different scales. The platform for high temperatures materials is being set up within the framework of collaboration between the EPFL, the PSI and the EMPA. It has three main goals: 1) Establish a platform that allows the multi scale characterization of relationships between microstructure and mechanical properties of advanced, high temperature materials, with a focus on irradiated, i.e. radioactive, materials, by combining the use of a focused ion beam and a nano indentation device with multi scale modelling and simulations. 2) Use the methods developed and the results gained for existing materials for developing improved high temperature materials to be used in advanced and sustainable future energy power plants. 3) Become an attractive partner for industry by providing a wide knowledge base, flexibility in answering technical questions and skills to better understand damage in already existing plants and to support development of new products at the industrial scale

  2. Recovering method for high level radioactive material

    International Nuclear Information System (INIS)

    Fukui, Toshiki

    1998-01-01

    Offgas filters such as of nuclear fuel reprocessing facilities and waste control facilities are burnt, and the burnt ash is melted by heating, and then the molten ashes are brought into contact with a molten metal having a low boiling point to transfer the high level radioactive materials in the molten ash to the molten metal. Then, only the molten metal is evaporated and solidified by drying, and residual high level radioactive materials are recovered. According to this method, the high level radioactive materials in the molten ashes are transferred to the molten metal and separated by the difference of the distribution rate of the molten ash and the molten metal. Subsequently, the molten metal to which the high level radioactive materials are transferred is heated to a temperature higher than the boiling point so that only the molten metal is evaporated and dried to be removed, and residual high level radioactive materials are recovered easily. On the other hand, the molten ash from which the high level radioactive material is removed can be discarded as ordinary industrial wastes as they are. (T.M.)

  3. Energetic assessment of soybean biodiesel obtainment in West ...

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... Energetic outputs added up to 3,003.75 MJ and energy balance was 57,132.54 MJ. ... biodiesel, the study was divided into three stages: soybean farming, ... considering energetic consumptions with labor, seeds, diesel oil, ... model MF 283(4X2 TDA), power 63.2 kW (86 cv) in the engine, board weight.

  4. ENERGETIC PARTICLE OBSERVATIONS AND PROPAGATION IN THE THREE-DIMENSIONAL HELIOSPHERE DURING THE 2006 DECEMBER EVENTS

    International Nuclear Information System (INIS)

    Malandraki, O. E.; Marsden, R. G.; Tranquille, C.; Lario, D.; Heber, B.; Mewaldt, R. A.; Cohen, C. M. S.; Lanzerotti, L. J.; Forsyth, R. J.; Elliott, H. A.; Vogiatzis, I. I.; Geranios, A.

    2009-01-01

    We report observations of solar energetic particles obtained by the HI-SCALE and COSPIN/LET instruments onboard Ulysses during the period of isolated but intense solar activity in 2006 December, in the declining phase of the solar activity cycle. We present measurements of particle intensities and also discuss observations of particle anisotropies and composition in selected energy ranges. Active Region 10930 produced a series of major solar flares with the strongest one (X9.0) recorded on December 5 after it rotated into view on the solar east limb. Located over the South Pole of the Sun, at >72 0 S heliographic latitude and 2.8 AU radial distance, Ulysses provided unique measurements for assessing the nature of particle propagation to high latitudes under near-minimum solar activity conditions, in a relatively undisturbed heliosphere. The observations seem to exclude the possibility that magnetic field lines originating at low latitudes reached Ulysses, suggesting either that the energetic particles observed as large solar energetic particle (SEP) events over the South Pole of the Sun in 2006 December were released when propagating coronal waves reached high-latitude field lines connected to Ulysses, or underwent perpendicular diffusion. We also discuss comparisons with energetic particle data acquired by the STEREO and Advanced Composition Explorer in the ecliptic plane near 1 AU during this period.

  5. Distribution and Fate of Energetics on DoD Test and Training Ranges: Final Report

    Science.gov (United States)

    2006-11-01

    of this project was to develop a low-cost, fieldable process for the rapid decontamination of energetic material from range scrap. Debris was...types of range contaminants such as heavy metals, petroleum products, and radioactive compounds when appropriate. Just as data generated on U.S...Generally, stainless steel scoops were used to sample noncohesive soils such as sands and gravels, and specially designed corers were used in more

  6. Symposium on high temperature and materials chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions

  7. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  8. New highly efficient piezoceramic materials

    International Nuclear Information System (INIS)

    Dantsiger, A.Ya.; Razumovskaya, O.N.; Reznichenko, L.A.; Grineva, L.D.; Devlikanova, R.U.; Dudkina, S.I.; Gavrilyachenko, S.V.; Dergunova, N.V.

    1993-01-01

    New high efficient piezoceramic materials with various combination of parameters inclusing high Curie point for high-temperature transducers using in atomic power engineering are worked. They can be used in systems for heated matters nondestructive testing, controllers for varied industrial power plants and other high-temperature equipment

  9. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    Science.gov (United States)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Séguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005), 10.1364/OPN.16.7.000030], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006), 10.1103/PhysRevLett.97.045001]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D3He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006), 10.1063/1.2228252]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  10. Synergistic and alkaline stability studies of mixtures of simulated high level waste sludge with selected energetic compounds

    International Nuclear Information System (INIS)

    Fondeur, F.F.

    2000-01-01

    This study examined the stability of mercury oxalate and mercury fulminate in alkaline sludge simulating Savannah River Site waste. These compounds represent two classes of energetic compounds previously speculated as potential components in sludge stored without a supernatant liquid

  11. Energetic Ion Loss Diagnostic for the Wendelstein 7-AS Stellarator

    International Nuclear Information System (INIS)

    Darrow, D. S.; Werner, A.; Weller, A.

    2000-01-01

    A diagnostic to measure the loss of energetic ions from the Wendelstein 7-AS (W7-AS) stellarator has been built. It is capable of measuring losses of both neutral beam ions and energetic ions arising from ion cyclotron resonant heating. The probe can measure losses of both clockwise and counterclockwise-going energetic ions simultaneously, and accepts a wide range of pitch angles in both directions. Initial measurements by the diagnostic are reported

  12. Energetics of hydrogen bonding in proteins: a model compound study.

    OpenAIRE

    Habermann, S. M.; Murphy, K. P.

    1996-01-01

    Differences in the energetics of amide-amide and amide-hydroxyl hydrogen bonds in proteins have been explored from the effect of hydroxyl groups on the structure and dissolution energetics of a series of crystalline cyclic dipeptides. The calorimetrically determined energetics are interpreted in light of the crystal structures of the studied compounds. Our results indicate that the amide-amide and amide-hydroxyl hydrogen bonds both provide considerable enthalpic stability, but that the amide-...

  13. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu [Univ. of California, Irvine, CA (United States)

    2017-12-20

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

  14. High temperature materials characterization

    Science.gov (United States)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  15. The effect of binary oxide materials on a single droplet vapor explosion triggering

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, R.C.; Manickam, L.T.; Dinh, T.N. [Royal Inst. of Tech., Stockholm (Sweden)

    2011-07-01

    In order to explore the fundamental mechanism dictated by the material influence on triggering, fine fragmentation and subsequent vapor explosion energetics, a series of experiments using a mixture of eutectic and non-eutectic binary oxide were initiated. Dynamics of the hot liquid (WO{sub 3}-CaO) droplet and the volatile liquid (water) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). The acquired images followed by further analysis showed a milder interaction for the non-eutectic melt composition for the tests with low melt superheat, whether no evident differences between eutectic and non-eutectic melt compositions regarding bubble dynamics, energetics and melt preconditioning was perceived for the high melt superheat tests. (author)

  16. Interaction of energetic ions with high-density plasmas

    International Nuclear Information System (INIS)

    Gericke, D.O.; Edie, D.; Grinenko, A.; Vorberger, J.

    2010-01-01

    Complete text of publication follows. The talk will review the importance of energetic ions in different inertial confinement fusion scenarios: i) heavy ion beams are very efficient drivers that can deliver the energy for compression in indirect as well as direct drive approaches; ii) the interaction of α-particles, that are created in a burning plasma, with the surrounding cold plasma is essential for creating a burn wave; iii) laser-produced ion beams are also a strong candidate to create the hot spot needed for fast ignition. In all applications the ions interact with dense matter that is characterized by strongly coupled ions and (possibly) partially degenerate electrons. Moreover, the coupling between beam ions and target electrons can be strong as well. Under these conditions, standard approaches for the beam-plasma interactions process are known to fail. The presentation will demonstrate how advanced models for the energy loss of ions in dense plasmas can resolve the issues mentioned above. These models are largely built on quantum kinetic theory that is able to describe degeneracy and strong coupling in a systematic way. In particular, strong interactions require a quantum description for electron-ion collisions in dense plasma environments, which is done by direct solutions of the Schroedinger equation. Degeneracy and collective excitations can be included via the Lenard-Balescu description where strong interactions may be included via a pseudo-potential approach. Finally, results are shown for all three fusion applications described above. The effects related to strong coupling and degeneracy mainly concern the end of the stopping range where the beam ion dose not have enough energy to excite all possible degrees of freedom and, thus, certain processes are frozen out. However, we also find a significant reduction of the range for swift heavy ions in the GeV-range when stopping in dense matter is considered. The stopping range of α-particles in the

  17. Interactions of energetic particles and clusters with solids

    International Nuclear Information System (INIS)

    Averback, R.S.; Hsieh, Horngming; Benedek, R.

    1990-12-01

    Ion beams are being applied for surface modifications of materials in a variety of different ways: ion implantation, ion beam mixing, sputtering, and particle or cluster beam-assisted deposition. Fundamental to all of these processes is the deposition of a large amount of energy, generally some keV's, in a localized area. This can lead to the production of defects, atomic mixing, disordering and in some cases, amorphization. Recent results of molecular dynamics computer simulations of energetic displacement cascades in Cu and Ni with energies up to 5 keV suggest that thermal spikes play an important role in these processes. Specifically, it will be shown that many aspects of defect production, atomic mixing and ''cascade collapse'' can be understood as a consequence of local melting of the cascade core. Included in this discussion will be the possible role of electron-phonon coupling in thermal spike dynamics. The interaction of energetic clusters of atoms with solid surfaces has also been studied by molecular dynamics simulations. this process is of interest because a large amount of energy can be deposited in a small region and possibly without creating point defects in the substrate or implanting cluster atoms. The simulations reveal that the dynamics of the collision process are strongly dependent on cluster size and energy. Different regimes where defect production, local melting and plastic flow dominate will be discussed. 43 refs., 7 figs

  18. Solar energetic particles a modern primer on understanding sources, acceleration and propagation

    CERN Document Server

    Reames, Donald V

    2017-01-01

    This concise primer introduces the non-specialist reader to the physics of solar energetic particles (SEP) and systematically reviews the evidence for the two main mechanisms which lead to the so-called impulsive and gradual SEP events. More specifically, the timing of the onsets, the longitude distributions, the high-energy spectral shapes, the correlations with other solar phenomena (e.g. coronal mass ejections), as well as the all-important elemental and isotopic abundances of SEPs are investigated. Impulsive SEP events are related to magnetic reconnection in solar flares and jets. The concept of shock acceleration by scattering on self-amplified Alfvén waves is introduced, as is the evidence of reacceleration of impulsive-SEP material in the seed population accessed by the shocks in gradual events. The text then develops processes of transport of ions out to an observer. Finally, a new technique to determine the source plasma temperature in both impulsive and gradual events is demonstrated. Last but not ...

  19. Energetic charged particles above thunderclouds

    International Nuclear Information System (INIS)

    Fullekrug, Martin; Diver, Declan; Pincon, Jean-Louis; Renard, Jean-Baptiste; Phelps, Alan D.R.; Bourdon, Anne; Helling, Christiane; Blanc, Elisabeth; Honary, Farideh; Kosch, Mike; Harrison, Giles; Sauvaud, Jean-Andre; Lester, Mark; Rycroft, Michael; Kosch, Mike; Horne, Richard B.; Soula, Serge; Gaffet, Stephane

    2013-01-01

    The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth's atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C. T. R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth's atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth's atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized. (authors)

  20. Energetic contaminants inhibit plant litter decomposition in soil.

    Science.gov (United States)

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Sunahara, Geoffrey I; Hawari, Jalal

    2018-05-30

    Individual effects of nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), nitroglycerin (NG), and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) on litter decomposition, an essential biologically-mediated soil process, were assessed using Orchard grass (Dactylis glomerata) straw in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support "very high" qualitative relative bioavailability for organic chemicals. Batches of SSL soil were separately amended with individual EMs or acetone carrier control. To quantify the decomposition rates, one straw cluster was harvested from a set of randomly selected replicate containers from within each treatment, after 1, 2, 3, 4, 6, and 8 months of exposure. Results showed that soil amended with 2,4-DNT or NG inhibited litter decomposition rates based on the median effective concentration (EC50) values of 1122 mg/kg and 860 mg/kg, respectively. Exposure to 2-ADNT, 4-ADNT or CL-20 amended soil did not significantly affect litter decomposition in SSL soil at ≥ 10,000 mg/kg. These ecotoxicological data will be helpful in identifying concentrations of EMs in soil that present an acceptable ecological risk for biologically-mediated soil processes. Published by Elsevier Inc.

  1. Energetic tradeoffs control the size distribution of aquatic mammals

    Science.gov (United States)

    Gearty, William; McClain, Craig R.; Payne, Jonathan L.

    2018-04-01

    Four extant lineages of mammals have invaded and diversified in the water: Sirenia, Cetacea, Pinnipedia, and Lutrinae. Most of these aquatic clades are larger bodied, on average, than their closest land-dwelling relatives, but the extent to which potential ecological, biomechanical, and physiological controls contributed to this pattern remains untested quantitatively. Here, we use previously published data on the body masses of 3,859 living and 2,999 fossil mammal species to examine the evolutionary trajectories of body size in aquatic mammals through both comparative phylogenetic analysis and examination of the fossil record. Both methods indicate that the evolution of an aquatic lifestyle is driving three of the four extant aquatic mammal clades toward a size attractor at ˜500 kg. The existence of this body size attractor and the relatively rapid selection toward, and limited deviation from, this attractor rule out most hypothesized drivers of size increase. These three independent body size increases and a shared aquatic optimum size are consistent with control by differences in the scaling of energetic intake and cost functions with body size between the terrestrial and aquatic realms. Under this energetic model, thermoregulatory costs constrain minimum size, whereas limitations on feeding efficiency constrain maximum size. The optimum size occurs at an intermediate value where thermoregulatory costs are low but feeding efficiency remains high. Rather than being released from size pressures, water-dwelling mammals are driven and confined to larger body sizes by the strict energetic demands of the aquatic medium.

  2. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    Science.gov (United States)

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  3. Energetic frustrations in protein folding at residue resolution: a homologous simulation study of Im9 proteins.

    Directory of Open Access Journals (Sweden)

    Yunxiang Sun

    Full Text Available Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding.

  4. Biogas - energetical and environmental point of view

    International Nuclear Information System (INIS)

    Skele, A.; Upitis, A.; Kristapsons, M.; Goizevskis, O.; Ziemelis, I.

    2003-01-01

    Energy sector has been one of the most important priorities since reestablishment of independence of Latvia. The deficiency of energy resources in Latvia has created a need to assess all the possibilities to utilise all possibilities to utilise all the energy resources, including the biological ones, to motivate the trends in the development of energetic in Latvia. A huge non-utilised reserve in Latvia is methane fermentation of organic agricultural and municipal residue and sewage from food industry. The organic mass of solid and liquid waste of different origin and its energetic potential for rural region have been investigated. The work deals with an integrated system of the utilisation of agricultural waste with the anaerobic (biogas) and the thermal processes. Presently the anaerobic waste utilisation, in combination with the production of biogas and organic fertiliser, is considered as one of the energetically most efficient and environment-friendly ways of organic fertiliser utilisation (authors)

  5. Magnetic studies of current conduction and flux pinning in high-Tc cuprates: Virgin, irradiated, and oxygen deficient materials

    International Nuclear Information System (INIS)

    Thompson, J.R.; Civale, L.; Marwick, A.D.; Holtzberg, F.

    1992-09-01

    To increase the current density and pinning of magnetic flux in high temperature superconductors, defects with point-like and line-like geometries were created in controlled numbers using ion irradiation methods. Single crystals of Y 1 Ba 2 Cu 3 O 7 and Bi 2 Sr 2 Ca 1 Cu 2 0 8 superconductors were studied using dc magnetic methods. These studies showed greatly increased irreversibility in the vortex state magnetization and enhanced intragrain current density J c following irradiation. Linear defects, created by irradiation with energetic heavy ions, are particularly effective in pinning vortices at higher temperatures and magnetic fields. Further investigations of ''flux creep'' (the time dependence of magnetization) are well described by recent vortex glass and collective pinning theories. Complementary investigations have delineated the role of oxygen deficiency δ on pinning in aligned Y 1 Ba 2 Cu 3 O 7-δ materials

  6. Development of LTCC Materials with High Mechanical Strength

    International Nuclear Information System (INIS)

    Kawai, Shinya; Nishiura, Sousuke; Terashi, Yoshitake; Furuse, Tatsuji

    2011-01-01

    We have developed LTCC materials suitable for substrates of RF modules used in mobile phone. LTCC can provide excellent solutions to requirements of RF modules, such as down-sizing, embedded elements and high performance. It is also important that LTCC material has high mechanical strength to reduce risk of fracture by mechanical impact. We have established a method of material design for high mechanical strength. There are two successive steps in the concept to achieve high mechanical strength. The first step is to improve mechanical strength by increasing the Young's modulus, and the second step is either further improvement through the Young's modulus or enhancement of the fracture energy. The developed material, so called high-strength LTCC, thus possesses mechanical strength of 400MPa, which is twice as strong as conventional material whose mechanical strength is approximately 200MPa in typical. As a result, high-strength LTCC shows an excellent mechanical reliability, against the drop impact test for example. The paper presents material design and properties of LTCC materials.

  7. The acceleration and propagation of energetic particles in turbulent cosmic plasmas

    International Nuclear Information System (INIS)

    Achterberg, A.

    1981-01-01

    This thesis concentrates on the acceleration and propagation of energetic particles in turbulent cosmic plasmas. The stochastic acceleration of relativistic electrons by long-wavelength weak magnetohydrodynamic turbulence is considered and a model is discussed that allows the determination of both the electron energy spectrum and the wavenumber spectrum of the magnetohydrodynamic turbulence in a consistent way. The question of second phase acceleration in large solar flares and the precise form of the force exerted on the background plasma when Alfven waves are generated by fast particles are considered. The energy balance in the shock wave acceleration, the propagation of energetic particles in a high β plasma (β>10 2 ) and sheared flow as a possible source of plasma turbulence for a magnetized plasma with field-aligned flow, are discussed. (Auth./C.F.)

  8. Materials Informatics: Statistical Modeling in Material Science.

    Science.gov (United States)

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Theoretical model of Orion gamma emission: acceleration, propagation and interaction of energetic particles in the interstellar medium

    International Nuclear Information System (INIS)

    Parizot, Etienne

    1997-01-01

    This research thesis reports the development of a general model for the study of the propagation and interaction of energetic particles (cosmic rays, and so on) in the interstellar medium (ISM). The first part addresses the development of theoretical and numerical tools. The author presents cosmic rays and energetic particles, presents and describes the various processes related to high-energy particles (matter ionisation, synchrotron and Bremsstrahlung radiation, Compton scattering, nuclear processes), addresses the transport and acceleration of energetic particles (plasmas, magnetic fields and energetic particles, elements of kinetic theory, transport and acceleration of energetic particles), and describes the general model of production of γ nuclear lines and of secondary nuclei. The second part addresses the gamma signature of a massive star in a dense medium: presentation and description of massive stars and of the circumstellar medium, life, death and gamma resurrection of a massive star at the heart of a cloud. The third part addresses the case of the gamma emission by Orion, and more particularly presents a theoretical model of this emission. Some generalities and perspectives (theoretical as well as observational) are then stated [fr

  10. Review of high Z materials for PSI applications

    International Nuclear Information System (INIS)

    Tanabe, Tetsuo; Noda, Nobuaki; Nakamura, Hiroo.

    1992-06-01

    Application of carbon based low Z materials to PFM has significantly improved plasma parameters in large tokamaks. There are, however, serious concerns of erosion, neutron damage etc. for application of low Z materials in future D - T burning machine. To apply high Z metals to PFM, there are several issues to be solved; high Z impurity production by sputtering, their accumulation in plasma center, and high radiation loss. Because of these concerns high Z metals are not widely employed nor planned to be used in the present large tokamaks. Since our efforts have been concentrated to optimize the low Z materials, little systematic investigations for high Z materials in tokamak have been done, lacking data base especially those concerning the impacts on plasma core. In order to employ high Z material as PFM near future, material properties related to impurity production and hydrogen recycling are reviewed and discussed what is important and what shall be done. (author) 109 refs

  11. Recent progress of hybrid simulation for energetic particles and MHD

    International Nuclear Information System (INIS)

    Todo, Y.

    2013-01-01

    Several hybrid simulation models have been constructed to study the evolution of Alfven eigenmodes destabilized by energetic particles. Recent hybrid simulation results of energetic particle driven instabilities are presented in this paper. (J.P.N.)

  12. First-principles investigation of the energetics of point defects at a grain boundary in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Jun; Li, Yu-Hao; Niu, Liang-Liang; Qin, Shi-Yao; Zhou, Hong-Bo, E-mail: hbzhou@buaa.edu.cn; Jin, Shuo; Zhang, Ying; Lu, Guang-Hong

    2017-02-15

    Tungsten (W) and W alloys are considered as the most promising candidates for plasma facing materials in future fusion reactor. Grain boundaries (GBs) play an important role in the self-healing of irradiation defects in W. Here, we investigate the stability of point defects [vacancy and self-interstitial atoms (SIA’s)] in a Σ5(3 1 0) [0 0 1] tilt W GB by calculating the energetics using a first-principles method. It is found that both the vacancy and SIA are energetically favorable to locate at neighboring sites of the GB, suggesting the vacancy and SIA can easily segregate to the GB region with the segregation energy of 1.53 eV and 7.5 eV, respectively. This can be attributed to the special atomic configuration and large available space of the GB. The effective interaction distance between the GB and the SIA is ∼6.19 Å, which is ∼2 Å larger than that of the vacancy-GB, indicating the SIA are more preferable to locate at the GB in comparison with the vacancy. Further, the binding energy of di-vacancies in the W GB are much larger than that in bulk W, suggesting that the vacancy energetically prefers to congregate in the GB.

  13. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong

    2015-01-01

    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  14. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Xiao, Dong-Dong; Ge, Mingyuan; Yu, Xiqian; Chu, Yong; Huang, Xiaojing; Zhang, Xu-Dong; Yin, Ya-Xia; Yang, Xiao-Qing; Guo, Yu-Guo; Gu, Lin; Wan, Li-Jun

    2018-03-01

    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg -1 . The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    International Nuclear Information System (INIS)

    Wong, K.L.; Heidbrink, W.W.; Ruskov, E.; Petty, C.C.; Greenfield, C.M.; Nazikian, R.; Budny, R.

    2004-01-01

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed

  16. FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.

    2016-01-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10 5 ) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10 3 , similar to those of comparably sized well-connected (W20–W90) SEP events.

  17. Structural materials for fusion and spallation sources

    International Nuclear Information System (INIS)

    Cottrell, G.A.; Baker, L.J.

    2003-01-01

    Experimental investigation of neutron-induced irradiation damage in structural materials is fundamental to the development of magnetic confinement fusion. Proposals for the testing of candidate materials are described, indicating that a period of at least 10 years will elapse before a suitable high neutron fluence fusion test facility becomes available. In this circumstance, the possibility that neutron spallation sources could be exploited to shorten the time-scale of fusion materials development is attractive. Although fusion displacement and transmutation reaction rates can be replicated in spallation sources, there are significant differences arising from the harder neutron spectra and the presence of energetic protons. These differences, including higher energy PKA, electron heating effects, transmutation rates and pulsing are described and their consequences discussed, together with the concomitant development of theoretical models, needed to understand the effects. It is concluded that spallation source experiments could make a significant contribution to the database required for the validation of theoretical models, and hence reduce the time scale of fusion materials development

  18. Energetic Particles: From Sun to Heliosphere - and vice versa

    Science.gov (United States)

    Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Boden, S.; Boettcher, S. I.; Cernuda, I.; Dresing, N.; Drews, C.; Droege, W.; Espinosa Lara, F.; Gomez-Herrero, R.; Heber, B.; Ho, G. C.; Klassen, A.; Kulkarni, S. R.; Mann, G. J.; Martin-Garcia, C.; Mason, G. M.; Panitzsch, L.; Prieto, M.; Sanchez, S.; Terasa, C.; Eldrum, S.

    2017-12-01

    Energetic particles in the heliosphere can be measured at their elevated energetic status after three processes: injection, acceleration, and transport. Suprathermal seed particles have speeds well above the fast magnetosonic speed in the solar wind frame of reference and can vary from location to location and within the solar activity cycle. Acceleration sites include reconnecting current sheets in solar flares or magnetspheric boundaries, shocks in the solar corona, heliosphere and a planetary obstacles, as well as planetary magnetospheres. Once accelerated, particles are transported from the acceleration site into and through the heliosphere. Thus, by investigating properties of energetic particles such as their composition, energy spectra, pitch-angle distribution, etc. one can attempt to distinguish their origin or injection and acceleration site. This in turn allows us to better understand transport effects whose underlying microphysics is also a key ingredient in the acceleration of particles. In this presentation we will present some clear examples which link energetic particles from their observing site to their source locations. These include Jupiter electrons, singly-charged He ions from CIRs, and 3He from solar flares. We will compare these examples with the measurement capabilities of the Energetic Particle Detector (EPD) on Solar Orbiter and consider implications for the key science goal of Solar Orbiter and Solar Proble Plus - How the Sun creates and controls the heliosphere.

  19. 2009 Insensitive Munitions and Energetic Materials Technology Symposium

    Science.gov (United States)

    2009-05-14

    Government Civilian (Non-DOD/MOD) u Trade/Professional Assn. u Educator /Academia u Professional Services u Non-Defense Business u Other...synthesis; Available starting materials; Not yet commercialised Initial selection refined to 5, subsequently 3 candidates: • Oxadiazole (CL-14); hexahydro...is an integral part of OSD’s Educational Outreach Program in providing an ongoing source of scientific and engineering talent for government R&D labs

  20. Physics of energetic particle-driven instabilities in the START spherical tokamak

    International Nuclear Information System (INIS)

    McClements, K.G.; Gryaznevich, M.P.; Akers, R.J.; Appel, L.C.; Counsell, G.F.; Roach, C.M.; Sharapov, S.E.; Majeski, R.

    1999-01-01

    The recent use of neutral beam injection (NBI) in the UKAEA small tight aspect ratio tokamak (START) has provided the first opportunity to study experimentally the physics of energetic ions in spherical tokamak (ST) plasmas. In such devices the ratio of major radius to minor radius R 0 /a is of order unity. Several distinct classes of NBI-driven instability have been observed at frequencies up to 1 MHz during START discharges. These observations are described, and possible interpretations are given. Equilibrium data, corresponding to times of beam-driven wave activity, are used to compute continuous shear Alfven spectra: toroidicity and high plasma beta give rise to wide spectral gaps, extending up to frequencies of several times the Alfven gap frequency. In each of these gaps Alfvenic instabilities could, in principle, be driven by energetic ions. Chirping modes observed at high beta in this frequency range have bandwidths comparable to or greater than the gap widths. Instability drive in START is provided by beam ion pressure gradients (as in conventional tokamaks), and also by positive gradients in beam ion velocity distributions, which arise from velocity-dependent charge exchange losses. It is shown that fishbone-like bursts observed at a few tens of kHz can be attributed to internal kink mode excitation by passing beam ions, while narrow-band emission at several hundred kHz may be due to excitation of fast Alfven (magnetosonic) eigenmodes. In the light of our understanding of energetic particle-driven instabilities in START, the possible existence of such instabilities in larger STs is discussed. (author)

  1. Isotope specific arbitrary material flow meter

    Science.gov (United States)

    Barty, Christopher P. J.; Post, John C.; Jones, Edwin

    2016-10-25

    A laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  2. Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper

    2009-01-01

    Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...

  3. Energetic conditions promoting top-down control of prey by predators.

    Directory of Open Access Journals (Sweden)

    Kristin N Marshall

    Full Text Available Humans remove large amounts of biomass from natural ecosystems, and large bodied high trophic level animals are especially sensitive and vulnerable to exploitation. The effects of removing top-predators on food webs are often difficult to predict because of limited information on species interaction strengths. Here we used a three species predator-prey model to explore relationships between energetic properties of trophodynamic linkages and interaction strengths to provide heuristic rules that indicate observable energetic conditions that are most likely to lead to stable and strong top-down control of prey by predator species. We found that strong top-down interaction strengths resulted from low levels of energy flow from prey to predators. Strong interactions are more stable when they are a consequence of low per capita predation and when predators are subsidized by recruitment. Diet composition also affects stability, but the relationship depends on the form of the functional response. Our results imply that for generalist satiating predators, strong top-down control on prey is most likely for prey items that occupy a small portion of the diet and when density dependent recruitment is moderately high.

  4. Aerosol particle charger and an SO2 reactor using energetic electrons

    International Nuclear Information System (INIS)

    Davis, R.H.

    1984-01-01

    Two properties of energetic electrons in gas, their high specific ionization and their production of radicals and other chemically active specie, have promising applications to the cleanup of flue gas from coal combustion. The copious ionization has been used in a test particle charger to electrically charge 1 and 3 μm particles for subsequent removal by electrostatic precipitation. Particle charge greater than 5 times the theoretical ionic charging value for 1 μm particles have been observed in a bi-electrode electron beam precharger in which the beam energy is matched with the electrode spacing. In another test device, pulsed streamer coronas have been used to release and to energize electrons which promote gas phase chemical reactions and remote sulfur dioxide from humid air with high efficiency. The energized electrons produce oxidant radicals and chemically active specie which convert the SO 2 into sulfuric acid mist. While reported separately here, the two applications of energetic electrons may be amenable to combination in an integrated system for the combined treatment of flue gas

  5. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Medley, S.S.; Gorelenkov, N.N.; Andre, R.; Bell, R.E.; Darrow, D.S.; Fredrickson, E.D.; Kaye, S.M.; LeBlanc, B.P.; Roquemore, A.L.

    2004-01-01

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E ∼ 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times, and

  6. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley; N.N. Gorelenkov; R. Andre; R.E. Bell; D.S. Darrow; E.D. Fredrickson; S.M. Kaye; B.P. LeBlanc; A.L. Roquemore; and the NSTX Team

    2004-03-15

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times

  7. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  8. Investigation of energetic particle induced geodesic acoustic mode

    Science.gov (United States)

    Schneller, Mirjam; Fu, Guoyong; Chavdarovski, Ilija; Wang, Weixing; Lauber, Philipp; Lu, Zhixin

    2017-10-01

    Energetic particles are ubiquitous in present and future tokamaks due to heating systems and fusion reactions. Anisotropy in the distribution function of the energetic particle population is able to excite oscillations from the continuous spectrum of geodesic acoustic modes (GAMs), which cannot be driven by plasma pressure gradients due to their toroidally and nearly poloidally symmetric structures. These oscillations are known as energetic particle-induced geodesic acoustic modes (EGAMs) [G.Y. Fu'08] and have been observed in recent experiments [R. Nazikian'08]. EGAMs are particularly attractive in the framework of turbulence regulation, since they lead to an oscillatory radial electric shear which can potentially saturate the turbulence. For the presented work, the nonlinear gyrokinetic, electrostatic, particle-in-cell code GTS [W.X. Wang'06] has been extended to include an energetic particle population following either bump-on-tail Maxwellian or slowing-down [Stix'76] distribution function. With this new tool, we study growth rate, frequency and mode structure of the EGAM in an ASDEX Upgrade-like scenario. A detailed understanding of EGAM excitation reveals essential for future studies of EGAM interaction with micro-turbulence. Funded by the Max Planck Princeton Research Center. Computational resources of MPCDF and NERSC are greatefully acknowledged.

  9. Energetically Unfavorable Amide Conformations for N6-Acetyllysine Side Chains in Refined Protein Structures

    Science.gov (United States)

    Genshaft, Alexander; Moser, Joe-Ann S.; D'Antonio, Edward L.; Bowman, Christine M.; Christianson, David W.

    2013-01-01

    The reversible acetylation of lysine to form N6-acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N-alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein-protein interactions. We now report the analysis of 381 N6-acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6-acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6-acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6-acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cis-trans isomerization. In contrast, 109 unique N-alkylacetamide groups contained in 84 highly-accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6-acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. PMID:23401043

  10. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  11. Computer simulation of multi-elemental fusion reactor materials

    International Nuclear Information System (INIS)

    Voertler, K.

    2011-01-01

    Thermonuclear fusion is a sustainable energy solution, in which energy is produced using similar processes as in the sun. In this technology hydrogen isotopes are fused to gain energy and consequently to produce electricity. In a fusion reactor hydrogen isotopes are confined by magnetic fields as ionized gas, the plasma. Since the core plasma is millions of degrees hot, there are special needs for the plasma-facing materials. Moreover, in the plasma the fusion of hydrogen isotopes leads to the production of high energetic neutrons which sets demanding abilities for the structural materials of the reactor. This thesis investigates the irradiation response of materials to be used in future fusion reactors. Interactions of the plasma with the reactor wall leads to the removal of surface atoms, migration of them, and formation of co-deposited layers such as tungsten carbide. Sputtering of tungsten carbide and deuterium trapping in tungsten carbide was investigated in this thesis. As the second topic the primary interaction of the neutrons in the structural material steel was examined. As model materials for steel iron chromium and iron nickel were used. This study was performed theoretically by the means of computer simulations on the atomic level. In contrast to previous studies in the field, in which simulations were limited to pure elements, in this work more complex materials were used, i.e. they were multi-elemental including two or more atom species. The results of this thesis are in the microscale. One of the results is a catalogue of atom species, which were removed from tungsten carbide by the plasma. Another result is e.g. the atomic distributions of defects in iron chromium caused by the energetic neutrons. These microscopic results are used in data bases for multiscale modelling of fusion reactor materials, which has the aim to explain the macroscopic degradation in the materials. This thesis is therefore a relevant contribution to investigate the

  12. Energetic evolution of cellular Transportomes

    DEFF Research Database (Denmark)

    Darbani, Behrooz; Kell, Douglas B.; Borodina, Irina

    2018-01-01

    of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues......) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5–6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants...... of modern mitochondrial solute carriers. Conclusions: The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important...

  13. Energetic expense in the conduction of the physic nut culture: comparative between the dried and irrigated system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Michelle Sato; Frigo, Elisandro Pires; Klar, Antonio Evaldo; Bueno, Osmar de Carvalho; Esperancini, Maura Seiko Tsuitsui [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas], E-mail: msfrigo@fca.unesp.br

    2008-07-01

    The discussion around new vegetable raw materials for biofuel, production have been being very important for the consolidation of the National Program of Biofuel Production and Use (PNPB) in Brazil. In this scenery, a potential culture which could be pointed for such a thing is the physic nut one, however, the studies about it are very poor. Thus the goal of this present paper was to compare the energetic expense to this culture conduction, in two different productive systems, the dried and the irrigated ones, so as to identify the less dependent system on not-renewable energy, therefore, the most energetically sustainable one for these conduction operations. The selected planting was one of the areas of the company NNE Minas Agro-Florestal Ltda., in Janauba/MG; there were identified two operations for the dried system and four operations for the irrigated system. The adopted methodology was based in bibliographical revision. The dried system showed an energetic consumption of 1.151,22 MJ. ha{sup -1} and the irrigated one was 5.325,43 MJ . ha{sup -1}. In relation to the expenditure by source, the dried one used 2,72% by biological source and 97,28% by industrial source; and the irrigated system used 0,87% by biological source and 99,14% by industrial source. The conclusion is that the conduction with the dried system is the most efficient and sustainable from the energetic point of view. (author)

  14. Transport of energetic ions by low-n magnetic perturbations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1992-10-01

    The stochastic transport of MeV ions induced by low-n magnetic perturbations is studied, focussing chiefly on the stochastic mechanism operative for passing particles in low frequency perturbations. Beginning with a single-harmonic form for the perturbing field, it iii first shown numerically and analytically that the stochastic threshold of energetic particles can be much lower than that of the magnetic field, contrary to earlier expectations, so that MHD perturbations could cause appreciable loss of energetic ions without destroying the bulk confinement. The analytic theory is then extended in a number of directions, to darity the relation of the present stochaistic mechanism to instances already found, to allow for more complex perturbations, and to consider the more general relationship between the stochasticity of magnetic fields, and that of particles of differing energies (and pitch angles) moving in those fields. It is shown that the stochastic threshold is in general a nonmonotonic function of energy, whose form can to some extent be tailored to achieve desired goals (e.g., burn control or ash removal) by a judicious choice of the perturbation. Illustrative perturbations are exhibited which are stochastic for low but not for high-energy ions, for high but not for low-energy ions, and for intermediate-energy ions, but not for low or high energy. The second possibility is the behavior needed for burn control; the third provides a possible mechanism for ash removal

  15. Analysis and verification of a prediction model of solar energetic proton events

    Science.gov (United States)

    Wang, J.; Zhong, Q.

    2017-12-01

    The solar energetic particle event can cause severe radiation damages near Earth. The alerts and summary products of the solar energetic proton events were provided by the Space Environment Prediction Center (SEPC) according to the flux of the greater than 10 MeV protons taken by GOES satellite in geosynchronous orbit. The start of a solar energetic proton event is defined as the time when the flux of the greater than 10 MeV protons equals or exceeds 10 proton flux units (pfu). In this study, a model was developed to predict the solar energetic proton events, provide the warning for the solar energetic proton events at least minutes in advance, based on both the soft X-ray flux and integral proton flux taken by GOES. The quality of the forecast model was measured against verifications of accuracy, reliability, discrimination capability, and forecast skills. The peak flux and rise time of the solar energetic proton events in the six channels, >1MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >100 MeV, were also simulated and analyzed.

  16. Dual scattering foil design for poly-energetic electron beams

    International Nuclear Information System (INIS)

    Kainz, K K; Antolak, J A; Almond, P R; Bloch, C D; Hogstrom, K R

    2005-01-01

    The laser wakefield acceleration (LWFA) mechanism can accelerate electrons to energies within the 6-20 MeV range desired for therapy application. However, the energy spectrum of LWFA-generated electrons is broad, on the order of tens of MeV. Using existing laser technology, the therapeutic beam might require a significant energy spread to achieve clinically acceptable dose rates. The purpose of this work was to test the assumption that a scattering foil system designed for a mono-energetic beam would be suitable for a poly-energetic beam with a significant energy spread. Dual scattering foil systems were designed for mono-energetic beams using an existing analytical formalism based on Gaussian multiple-Coulomb scattering theory. The design criterion was to create a flat beam that would be suitable for fields up to 25 x 25 cm 2 at 100 cm from the primary scattering foil. Radial planar fluence profiles for poly-energetic beams with energy spreads ranging from 0.5 MeV to 6.5 MeV were calculated using two methods: (a) analytically by summing beam profiles for a range of mono-energetic beams through the scattering foil system, and (b) by Monte Carlo using the EGS/BEAM code. The analytic calculations facilitated fine adjustments to the foil design, and the Monte Carlo calculations enabled us to verify the results of the analytic calculation and to determine the phase-space characteristics of the broadened beam. Results showed that the flatness of the scattered beam is fairly insensitive to the width of the input energy spectrum. Also, results showed that dose calculated by the analytical and Monte Carlo methods agreed very well in the central portion of the beam. Outside the useable field area, the differences between the analytical and Monte Carlo results were small but significant, possibly due to the small angle approximation. However, these did not affect the conclusion that a scattering foil system designed for a mono-energetic beam will be suitable for a poly-energetic

  17. Development of renewable energetics needs knowledge, skills and co-operation

    International Nuclear Information System (INIS)

    Elmet, Henn; Tiit, Valdur

    2000-01-01

    Full text: The principles of sustainable lifestyle that are based on natural balance spread nowadays more and more widely. The broad use of renewable energy sources enables to meet the population's need for energy, keeping at the same time our life environment clean. These principles must also be followed at the development of Estonian economy, taking into consideration the responsibilities of the present generation to the following ones. It means that we are obliged to protect healthy environment and to preserve our resources for the sake of the whole world. We have to behave in such a way that we would not decrease our descendants' hope for a happy life neither in the close nor in the further future. The sphere of activity of the Estonian Agricultural University is very broad, including to a smaller or greater extent everything that is connected with farming and forestry. For decades we have successfully developed scientific research on forestry and educated a lot of good workers. Many of them work successfully in the enterprises that are connected with timber fuel, using thus raw material that is energetically renewable and implementing the principles of sustainable development. As the initiators and to a certain extent also organisers of the present conference we would especially like to stress that the role of our University both in the use of renewable sources of energy and the production of energetic raw material is constantly growing. Due to the change of the economic situation it is not reasonable to produce as much foodstuffs as ten year ago in Estonia. On the spare land it is possible to grow plants that store solar energy and that enable to produce different biofuels. During summer approximately 5 mln kWh of solar energy fall on one hectare of land in our conditions. Taking into account the efficiency of plants and the cost of production we might receive a couple of tons of diesel fuel as so-called pure receipts. As the area of unused farmland is at

  18. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  19. Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures

    International Nuclear Information System (INIS)

    Guo Feng; Hu Hai-Quan; Zhang Hong; Cheng Xin-Lu

    2014-01-01

    To probe the behavior of hydrogen bonds in solid energetic materials, we conduct ReaxFF and SCC–DFTB molecular dynamics simulations of crystalline TATB, RDX, and DATB. By comparing the intra- and inter-molecular hydrogen bonding rates, we find that the crystal structures are stabilized by inter-molecular hydrogen bond networks. Under high-pressure, the inter- and intra-molecular hydrogen bonds in solid TATB and DATB are nearly equivalent. The hydrogen bonds in solid TATB and DATB are much shorter than in solid RDX, which suggests strong hydrogen bond interactions existing in these energetic materials. Stretching of the C–H bond is observed in solid RDX, which may lead to further decomposition and even detonation. (condensed matter: structural, mechanical, and thermal properties)

  20. Baseline composition of solar energetic particles

    International Nuclear Information System (INIS)

    Meyer, J.

    1985-01-01

    We analyze all existing spacecraft observations of the highly variable heavy element composition of solar energetic particles (SEP) during non- 3 He-rich events. All data show the imprint of an ever-present basic composition pattern (dubbed ''mass-unbiased baseline'' SEP composition) that differs from the photospheric composition by a simple bias related to first ionization potential (FIP). In each particular observation, this mass-unbiased baseline composition is being distorted by an additional bias, which is always a monotonic function of mass (or Z). This latter bias varies in amplitude and even sign from observation to observation. To first order, it seems related to differences in the A/Z* ratio between elements (Z* = mean effective charge)

  1. Inferring repeat-protein energetics from evolutionary information.

    Directory of Open Access Journals (Sweden)

    Rocío Espada

    2017-06-01

    Full Text Available Natural protein sequences contain a record of their history. A common constraint in a given protein family is the ability to fold to specific structures, and it has been shown possible to infer the main native ensemble by analyzing covariations in extant sequences. Still, many natural proteins that fold into the same structural topology show different stabilization energies, and these are often related to their physiological behavior. We propose a description for the energetic variation given by sequence modifications in repeat proteins, systems for which the overall problem is simplified by their inherent symmetry. We explicitly account for single amino acid and pair-wise interactions and treat higher order correlations with a single term. We show that the resulting evolutionary field can be interpreted with structural detail. We trace the variations in the energetic scores of natural proteins and relate them to their experimental characterization. The resulting energetic evolutionary field allows the prediction of the folding free energy change for several mutants, and can be used to generate synthetic sequences that are statistically indistinguishable from the natural counterparts.

  2. Enhancement of open-circuit voltage and the fill factor in CdTe nanocrystal solar cells by using interface materials

    International Nuclear Information System (INIS)

    Zhu, Jiaoyan; Yang, Yuehua; Gao, Yuping; Qin, Donghuan; Wu, Hongbin; Huang, Wenbo; Hou, Lintao

    2014-01-01

    Interface states influence the operation of nanocrystal (NC) solar cell carrier transport, recombination and energetic mechanisms. In a typical CdTe NC solar cell with a normal structure of a ITO/p-CdTe NCs/n-acceptor (or without)/Al configuration, the contact between the ITO and CdTe is a non-ohm contact due to a different work function (for an ITO, the value is ∼4.7 eV, while for CdTe NCs, the value is ∼5.3 eV), which results in an energetic barrier at the ITO/CdTe interface and decreases the performance of the NC solar cells. This work investigates how interface materials (including Au, MoO x and C 60 ) affect the performance of NC solar cells. It is found that devices with interface materials have shown higher V oc than those without interface materials. For the case in which we used Au as an interface, we obtained a high open-circuit voltage of 0.65 V, coupled with a high fill factor (62%); this resulted in a higher energy conversion efficiency (ECE) of 5.3%, which showed a 30% increase in the ECE compared with those without the interlayer. The capacitance measurements indicate that the increased V oc in the case in which Au was used as the interface is likely due to good ohm contact between the Au’s and the CdTe NCs’ thin film, which decreases the energetic barrier at the ITO/CdTe interface. (paper)

  3. Highly heat removing radiation shielding material

    International Nuclear Information System (INIS)

    Asano, Norio; Hozumi, Masahiro.

    1990-01-01

    Organic materials, inorganic materials or metals having excellent radiation shielding performance are impregnated into expanded metal materials, such as Al, Cu or Mg, having high heat conductivity. Further, the porosity of the expanded metals and combination of the expanded metals and the materials to be impregnated are changed depending on the purpose. Further, a plurality of shielding materials are impregnated into the expanded metal of the same kind, to constitute shielding materials. In such shielding materials, impregnated materials provide shielding performance against radiation rays such as neutrons and gamma rays, the expanded metals provide heat removing performance respectively and they act as shielding materials having heat removing performance as a whole. Accordingly, problems of non-informity and discontinuity in the prior art can be dissolved be provide materials having flexibility in view of fabrication work. (T.M.)

  4. DFT study of the structures and energetics of 98-atom AuPd clusters.

    Science.gov (United States)

    Bruma, Alina; Ismail, Ramli; Paz-Borbón, L Oliver; Arslan, Haydar; Barcaro, Giovanni; Fortunelli, Alessandro; Li, Z Y; Johnston, Roy L

    2013-01-21

    The energetics, structures and segregation of 98-atom AuPd nanoclusters are investigated using a genetic algorithm global optimization technique with the Gupta empirical potential (comparing three different potential parameterisations) followed by local minimizations using Density Functional Theory (DFT) calculations. A shell optimization program algorithm is employed in order to study the energetics of the highly symmetric Leary Tetrahedron (LT) structure and optimization of the chemical ordering of a number of structural motifs is carried out using the Basin Hopping Monte Carlo approach. Although one of the empirical potentials is found to favour the LT structure, it is shown that Marks Decahedral and mixed FCC-HCP motifs are lowest in energy at the DFT level.

  5. Preliminary Breakdown: Physical Mechanisms and Potential for Energetic Emissions

    Science.gov (United States)

    Petersen, D.; Beasley, W. H.

    2014-12-01

    Observations and analysis of the preliminary breakdown phase of virgin negative cloud-to-ground (-CG) lightning strokes will be presented. Of primary interest are the physical processes responsible for the fast electric field "characteristic" pulses that are often observed during this phase. The pulse widths of characteristic pulses are shown to occur as a superposed bimodal distribution, with the short and long modes having characteristic timescales on the order of 1 microsecond and 10 microseconds, respectively. Analysis of these pulses is based on comparison with laboratory observations of long spark discharge processes and with recently acquired high-speed video observations of a single -CG event. It will be argued that the fast electric field bimodal distribution is the result of conventional discharge processes operating in an extensive strong ambient electric field environment. An important related topic will also be discussed, where it will be argued that preliminary breakdown discharges are capable of generating energetic electrons and may therefore seed relativistic electron avalanches that go on to produce pulsed energetic photon emissions.

  6. Decomposition and Ignition of the high-nitrogen compound triaminoguanidinium azotetrazolate (TAGzT)

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Bryce C.; Ali, Arif N.; Son, Steven F. [Dynamic Experimentation Division, DX-2 High Explosives Science and Technology, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brill, Thomas B. [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States)

    2006-06-15

    The high-nitrogen compound triaminoguanidinium azotetrazolate (TAGzT) belongs to a class of C, H and N compounds that are free of both oxygen and metal, but retain energetic material properties as a result of their high heat of formation. Its decomposition thus lacks secondary oxidation reactions of carbon and hydrogen. The fact that TAGzT is over 80% nitrogen makes it potentially useful as a gas generant and energetic material with a low flame temperature to increase the impulse in gun or rocket propellants. The burning rate, laser ignition and flash pyrolysis (T-jump/FTIR spectroscopy) characteristics were determined. It was found that TAGzT exhibits one of the fastest low-pressure burning rates yet measured for an organic compound. Both the decomposition and ignition behavior of TAGzT are dominated by condensed phase reactions. T-Jump/FTIR spectroscopy indicates that condensed phase reactions release about 65% of the energy, which helps to explain the high burning rate at low pressure. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. Starting of H9ANFNb(P91) steel tubing production for energetics in domestic steel-works; Uruchomienie w krajowych hutach produkcji rur ze stali H9AMFNb(P91) przeznaczonych dla energetyki

    Energy Technology Data Exchange (ETDEWEB)

    Wiedermann, J. [Instytut Metalurgii Zelaza, Gliwice (Poland); Bieniek, K. [Huta Jednosc, Siemianowice Slaskie (Poland); Pogoda, K. [Huta Batory, Chorzow (Poland)

    1996-12-31

    The results of primary investigations and attempt of ferritic steel H9AMFNb production in domestic steel-works have been reported. The prototype series of tubes for energetic boilers have been tested and their mechanical properties determined. It has been found the applicability of the material for use in energetics. 9 refs, 4 figs, 3 tabs.

  8. Energetic adaptations persist after bariatric surgery in severely obese adolescents

    Science.gov (United States)

    Energetic adaptations induced by bariatric surgery have not been studied in adolescents or for extended periods postsurgery. Energetic, metabolic, and neuroendocrine responses to Roux-en-Y gastric bypass (RYGB) surgery were investigated in extremely obese adolescents. At baseline and at 1.5, 6, and...

  9. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    Science.gov (United States)

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  10. Properties of materials

    CERN Document Server

    Kelly, P F

    2014-01-01

    Materials 'Tidings' of Rigidity's Breakdown Elastic Properties of Solids Elastic Solids in Series and Parallel Fluid Statics Eureka! Fluid Dynamics: Flux Bernoulli's Equation No Confusion, It's Just Diffusion Baby, It's Viscous Outside Gas Gas Gas Through the Earth and Back Introduction to Simple Harmonic Oscillation SHO-Time Springs in Series and Parallel SHO: Kinematics, Dynamics, and Energetics Damped Oscillation: Qualitative Damped Oscillation: Explicitly Forced Oscillations Impedance and Power Resonance The First Wave Wave Dynamics and Phenomenology Linear Superposition of Waves Linear Superposition of Rightmoving Harmonic Waves Standing Waves Transverse Waves: Speed and Energetics Speed of Longitudinal Waves Energy Content of Longitudinal Waves Inhomogeneous Media Doppler Shifts Huygens' Principle, Interference, and Diffraction Say Hello, Wave Goodbye Optics Mirror Mirror Refraction Through a Glass Darkly Temperature and Thermometry Heat Convective and Conductive Heat Flow Radiative Heat Flow More Radia...

  11. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  12. Interaction in the large energetics companies in the Republic of Macedonia (Part 3)

    International Nuclear Information System (INIS)

    Janevski, Risto

    2000-01-01

    After the disintegration of former power energetic system of Yugoslavia 1991, the Republic of Macedonia has faced enormous problems in the energetic field. It was necessary to realize all options in order to secure enough electric power for normal economic capacities function. In that course a direct involvement of five large companies, which represent very significant energetic subjects, will largely determine the future energetic conditions and circumstances in our country. These are the following companies: P.E. Electric Power Co. of Macedonia; Heat Power Co.; HEK Jugohrom; Fenimak. In this paper the energetic system of the OKTA Crude Oil Refinery from 1991-1998 is analyzed, as well as its characteristics and plans for the future development

  13. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  14. Influence of an energetic-particle component on ballooning modes in an optimized stellarator

    International Nuclear Information System (INIS)

    Nuehrenberg, J.; Zheng, L.J.

    1993-01-01

    Besides quasi-helically symmetric configurations, which have particle drift properties analogous to tokamaks, a second interesting route for stellarator investigations is the choice of the optimized stellarator configuration, which has been adopted for the W7-X stellarator project. Of the many remarkably good properties of the optimized stellarator, two are mentioned here: One is the low geodesic curvature, which leads to a small Pfirsch-Schlueter current and fosters the MHD stability together with a vacuum field magnetic well; the other is that trapped energetic particles are well confined being reflected around the triangular cross section with maximum J - the second invariant. Maximum J configuration could be favorable for the stabilization of the low-frequency thermal-trapped-particle modes. On the other hand, for the energetic particles this means drift-reversal prevailing, and therefore the kinetic energy of the trapped energetic particles is destabilizing. Furthermore, when trapped energetic particles are drift-reversed, two β limits emerge: One is due to the ballooning modes, which relates to the Van Dam-Lee-Nelson limit for EBT; the other is due to the interchange modes. Nevertheless, these two theories predict that - when the core plasma β is high enough - stability may resume. The purpose of this work is to determine whether one of these two limits - the Van Dam-Lee-Nelson limit for ballooning modes - harms the optimized stellarator or not. (author) 12 refs., 1 fig

  15. High-energy ion implantation of materials

    International Nuclear Information System (INIS)

    Williams, J.M.

    1991-11-01

    High-energy ion implantation is an extremely flexible type of surface treatment technique, in that it offers the possibility of treating almost any type of target material or product with ions of almost any chemical species, or combinations of chemical species. In addition, ion implantations can be combined with variations in temperature during or after ion implantation. As a result, the possibility of approaching a wide variety of surface-related materials science problems exists with ion implantation. This paper will outline factors pertinent to application of high-energy ion implantation to surface engineering problems. This factors include fundamental advantages and limitations, economic considerations, present and future equipment, and aspects of materials science

  16. Energetic Nitrogen Ions within the Inner Magnetosphere of Saturn

    Science.gov (United States)

    Sittler, E. C.; Johnson, R. E.; Richardson, J. D.; Jurac, S.; Moore, M.; Cooper, J. F.; Mauk, B. H.; Smith, H. T.; Michael, M.; Paranicus, C.; Armstrong, T. P.; Tsurutani, B.; Connerney, J. E. P.

    2003-05-01

    Titan's interaction with Saturn's magnetosphere will result in the energetic ejection of atomic nitrogen atoms into Saturn's magnetosphere due to dissociation of N2 by electrons, ions, and UV photons. The ejection of N atoms into Saturn's magnetosphere will form a nitrogen torus around Saturn with mean density of about 4 atoms/cm3 with source strength of 4.5x1025 atoms/sec. These nitrogen atoms are ionized by photoionization, electron impact ionization and charge exchange reactions producing an N+ torus of 1-4 keV suprathermal ions centered on Titan's orbital position. We will show Voyager plasma observations that demonstrate presence of a suprathermal ion component within Saturn's outer magnetosphere. The Voyager LECP data also reported the presence of inward diffusing energetic ions from the outer magnetosphere of Saturn, which could have an N+ contribution. If so, when one conserves the first and second adiabatic invariant the N+ ions will have energies in excess of 100 keV at Dione's L shell and greater than 400 keV at Enceladus' L shell. Energetic charged particle radial diffusion coefficients are also used to constrain the model results. But, one must also consider the solar wind as another important source of keV ions, in the form of protons and alpha particles, for Saturn's outer magnetosphere. Initial estimates indicate that a solar wind source could dominate in the outer magnetosphere, but various required parameters for this estimate are highly uncertain and will have to await Cassini results for confirmation. We show that satellite sweeping and charged particle precipitation within the middle and outer magnetosphere will tend to enrich N+ ions relative to protons within Saturn's inner magnetosphere as they diffuse radially inward for radial diffusion coefficients that do not violate observations. Charge exchange reactions within the inner magnetosphere can be an important loss mechanism for O+ ions, but to a lesser degree for N+ ions. Initial LECP

  17. Advances in High Temperature Materials for Additive Manufacturing

    Science.gov (United States)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  18. Energetics, Biomechanics, and Performance in Masters' Swimmers: A Systematic Review.

    Science.gov (United States)

    Ferreira, Maria I; Barbosa, Tiago M; Costa, Mário J; Neiva, Henrique P; Marinho, Daniel A

    2016-07-01

    Ferreira, MI, Barbosa, TM, Costa, MJ, Neiva, HP, and Marinho, DA. Energetics, biomechanics, and performance in masters' swimmers: a systematic review. J Strength Cond Res 30(7): 2069-2081, 2016-This study aimed to summarize evidence on masters' swimmers energetics, biomechanics, and performance gathered in selected studies. An expanded search was conducted on 6 databases, conference proceedings, and department files. Fifteen studies were selected for further analysis. A qualitative evaluation of the studies based on the Quality Index (QI) was performed by 2 independent reviewers. The studies were thereafter classified into 3 domains according to the reported data: performance (10 studies), energetics (4 studies), and biomechanics (6 studies). The selected 15 articles included in this review presented low QI scores (mean score, 10.47 points). The biomechanics domain obtained higher QI (11.5 points), followed by energetics and performance (10.6 and 9.9 points, respectively). Stroke frequency (SF) and stroke length (SL) were both influenced by aging, although SF is more affected than SL. Propelling efficiency (ηp) decreased with age. Swimming performance declined with age. The performance declines with age having male swimmers deliver better performances than female counterparts, although this difference tends to be narrow in long-distance events. One single longitudinal study is found in the literature reporting the changes in performance over time. The remaining studies are cross-sectional designs focusing on the energetics and biomechanics. Overall, biomechanics parameters, such as SF, SL, and ηp, tend to decrease with age. This review shows the lack of a solid body of knowledge (reflected in the amount and quality of the articles published) on the changes in biomechanics, energetics, and performance of master swimmers over time. The training programs for this age-group should aim to preserve the energetics as much as possible and, concurrently, improve the

  19. Energetic evaluation of indigenous tree and shrub species in Basilicata, Southern Italy

    Directory of Open Access Journals (Sweden)

    Todaro L

    2007-01-01

    Full Text Available An evaluation of energetic characteristics such as high calorific value (on ash-free dry weight basis, ash, carbon, nitrogen, and moisture content of 12 indigenous tree and shrub species of Southern Italy (Basilicata Region was carried out. The studied species are the most abundant in this area: Quercus cerris L., Quercus pubescens Willd., Fraxinus ornus L., Populus canescens (Aiton Smith, Salix alba L., Alnus cordata L., Robinia pseudoacacia L., Olea europaea L., Spartium junceum L., Rubus hirtus W., Onopordum illirium L., Arundo donax L. For Q. cerris, Q. pubescens and O. europaea L., the energetic characteristics were measured by separating the wood components from the leaves. Q. cerris leaves contained the greatest high calorific value. F. ornus leaves had a greater ash content than the other samples while the lowest values were measured for S. junceum, Q. pubescens and R. pseudoacacia. The highest content of Carbon was in O. europaea leaves. A. donax and O. illirium had the lower level of high calorific value and Carbon than all the other species. The highest Nitrogen content was measured in Q. cerris leaves and the lowest one in F. ornus wood components.

  20. Energetics and Kinetics of trans-SNARE Zippering

    Science.gov (United States)

    Rebane, Aleksander A.; Shu, Tong; Krishnakumar, Shyam; Rothman, James E.; Zhang, Yongli

    Synaptic exocytosis relies on assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins into a four-helix bundle to drive membrane fusion. Complementary SNAREs anchored to the synaptic vesicle (v-SNARE) and the plasma membrane (t-SNARE) associate from their N-termini, transiting a half-assembled intermediate (trans-SNARE), and ending at their C-termini with a rapid power stroke that leads to membrane fusion. Although cytosolic SNARE assembly has been characterized, it remains unknown how membranes modulate the energetics and kinetics of SNARE assembly. Here, we present optical tweezers measurements on folding of single membrane proteins in phospholipid bilayers. To our knowledge, this is the first such report. We measured the energetics, kinetics, and assembly intermediates of trans-SNAREs formed between a t-SNARE inserted into a bead-supported bilayer and a v-SNARE in a nanodisc. We found that the repulsive force of the apposed membranes increases the lifetime of the half-assembled intermediate. Our findings provide a single-molecule platform to study the regulation of trans-SNARE assembly by proteins that act on the half-assembled state, and thus reveal the mechanistic basis of the speed and high fidelity of synaptic transmission. This work was supported by US National Institutes of Health Grants F31 GM119312-01 (to A.A.R) and R01 GM093341 (to Y.Z.).

  1. Materials Science of High-Temperature Superconducting Coated Conductor Materials

    National Research Council Canada - National Science Library

    Beasley, M. R

    2007-01-01

    This program was broadly focused on the materials science of high temperature superconducting coated conductors, which are of potential interest for application in electric power systems of interest to the Air Force...

  2. High-energy elastic recoil detection heavy ions for light element analysis

    International Nuclear Information System (INIS)

    Goppelt-Langer, P.; Yamamoto, S.; Takeshita, H.; Aoki, Y.; Naramoto, H.

    1994-01-01

    The detection of light and medium heavy elements in not homogeneous solids is a severe problem in ion beam analysis. Heavy elements can be detected by the well established Rutherford backscattering technique (RBS). In a homogeneous host material most impurities can be easily analyzed by secondary ion mass spectroscopy (SIMS). Some isotopes ( 3 He, 6 Li, 10 B) can be measured by nuclear reaction analysis (NRA) using thermal neutrons inducing (n, p) or (n, α) reactions. Others can be detected by energetic ion beams by nuclear reactions (e.g. 15 N( 1 H, αγ) 12 C for analysis of hydrogen). A high content of H, D or T can be also determined by elastic recoil detection using an energetic He beam. The latter technique has been developed to a universal method for detection of light and heavy elements in any target, using a high energetic heavy ion beam and a detector system, which is able to identify the recoils and delivers energy and position of the particles. (author)

  3. 1981 Annual status report. High-temperature materials

    International Nuclear Information System (INIS)

    1981-01-01

    The high temperature materials programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. A range of engineering studies is being carried out. A data bank storing factual data on alloys for high temperature applications is being developed and has reached the operational phase

  4. Muon radiography technology for detecting high-Z materials

    International Nuclear Information System (INIS)

    Ma Lingling; Wang Wenxin; Zhou Jianrong; Sun Shaohua; Liu Zuoye; Li Lu; Du Hongchuan; Zhang Xiaodong; Hu Bitao

    2010-01-01

    This paper studies the possibility of using the scattering of cosmic muons to identify threatening high-Z materials. Various scenarios of threat material detection are simulated with the Geant4 toolkit. PoCA (Point of Closest Approach) algorithm reconstructing muon track gives 3D radiography images of the target material. Z-discrimination capability, effects of the placement of high-Z materials, shielding materials inside the cargo, and spatial resolution of position sensitive detector for muon radiography are carefully studied. Our results show that a detector position resolution of 50 μm is good enough for shielded materials detection. (authors)

  5. High performance soft magnetic materials

    CERN Document Server

    2017-01-01

    This book provides comprehensive coverage of the current state-of-the-art in soft magnetic materials and related applications, with particular focus on amorphous and nanocrystalline magnetic wires and ribbons and sensor applications. Expert chapters cover preparation, processing, tuning of magnetic properties, modeling, and applications. Cost-effective soft magnetic materials are required in a range of industrial sectors, such as magnetic sensors and actuators, microelectronics, cell phones, security, automobiles, medicine, health monitoring, aerospace, informatics, and electrical engineering. This book presents both fundamentals and applications to enable academic and industry researchers to pursue further developments of these key materials. This highly interdisciplinary volume represents essential reading for researchers in materials science, magnetism, electrodynamics, and modeling who are interested in working with soft magnets. Covers magnetic microwires, sensor applications, amorphous and nanocrystalli...

  6. Radiational and energetic characteristics of diatomic molecules (data base)

    International Nuclear Information System (INIS)

    Kuznetsova, L.A.; Pazyuk, E.A.; Stolyarov, A.V.

    1993-01-01

    Data base on radiational and energetic characteristics of diatomic molecules was created. The base consists of two parts: reference system and recommended data system. The reference system contains the information about studies of radiational and energetic parameters of more than 1500 electronic states and 1700 electron transfers for ∼ 350 diatomic molecules and their ions. The base bibliography includes ∼ 3000 publications. 11 refs., 1 figs

  7. Climate protection, natural resources management and soil improvement by combined Energetic and Material Utilization of lignocellulosic agricultural WAstes and residues (CEMUWA); Klimaschutz, Naturressourcenschutz und Bodenverbesserung durch kombinierte energetische und stoffliche Verwertung lignozelluloser landwirtschaftlicher Abfaelle und Reststoffe

    Energy Technology Data Exchange (ETDEWEB)

    Schuech, Andrea; Nelles, Michael; Tscherpel, Burckhard; El Behery, Ahmed; Menanz, Rania; Bahl, Hubert; Scheel, Michael; Nipkow, Mareen

    2015-07-01

    The project Climate protection, natural resources management and soil improvement by combined Energetic and Material Utilization of lignocellulosic agricultural WAstes and residues (CEMUWA) was implemented with long-term partners from Egypt and Germany leaded by the Department Waste Management and Material Flow from September 2011 until October 2013. Aim of the project was the development of technologies for the utilization of agricultural wastes and residues at the example of rice straw, with the focus on the energetic and material use. In the long term a contribution to climate protection and natural resource management could be reached. The focus was on investigations in the field of biogas, ethanol and butanol production including pretreatment as well as the material use in horticulture. The results show that the biogas and ethanol production with adapted pretreatments of rice straws is possible. The technical adaptation of a biogas plant (eo-digestion) would be associated with about 20% higher investment costs and higher operating costs with an approximately 15% higher energy demand. In Germany, however, this may still economically by the substitution of expensive or difficult available energy crops (reduction of substrate costs by 30 to 35% for a 600 kWel-BGP using maize silage). The investigated solutions for material use in Egypt showed good results, which in some cases exceeded the expectations. By the use of rice straw imported peat substrates could be substitute or irrigation water saved, what is ecologically and economically useful. The production of ethanol from rice straw was implemented on laboratory scale and preconditions for investigations in semi-industrial and partly pilot scale were created. The bilateral project'' was funded in the framework of the German-Egypt-Research-Fond (GERF) by the German Federal Ministry of Education and Research (BMBF) and the Egyptian Science and Technology Development Fund in Egypt (STDF). The total budget

  8. Novel design concepts for generating intense accelerator based beams of mono-energetic fast neutrons

    International Nuclear Information System (INIS)

    Franklyn, C.B.; Govender, K.; Guzek, J.; Beer, A. de; Tapper, U.A.S.

    2001-01-01

    Full text: Successful application of neutron techniques in research, medicine and industry depends on the availability of suitable neutron sources. This is particularly important for techniques that require mono-energetic fast neutrons with well defined energy spread. There are a limited number of nuclear reactions available for neutron production and often the reaction yield is low, particularly for thin targets required for the production of mono-energetic neutron beams. Moreover, desired target materials are often in a gaseous form, such as the reactions D(d,n) 3 He and T(d,n) 3 He, requiring innovative design of targets, with sufficient target pressure and particle beam handling capability. Additional requirements, particularly important in industrial applications, and for research institutions with limited funds, are the cost effectiveness as well as small size, coupled with reliable and continuous operation of the system. Neutron sources based on high-power, compact radio-frequency quadrupole (RFQ) linacs can satisfy these criteria, if used with a suitable target system. This paper discusses the characteristics of a deuteron RFQ linear accelerator system coupled to a high pressure differentially pumped deuterium target. Such a source, provides in excess of 10 10 mono- energetic neutrons per second with minimal slow neutron and gamma-ray contamination, and is utilised for a variety of applications in the field of mineral identification and materials diagnostics. There is also the possibility of utilising a proposed enhanced system for isotope production. The RFQ linear accelerator consists of: 1) Deuterium 25 keV ion source injector; 2) Two close-coupled RFQ resonators, each powered by an rf amplifier supplying up to 300 kW of peak power at 425 MHz; 3) High energy beam transport system consisting of a beam line, a toroid for beam current monitoring, two steering magnets and a quadrupole triplet for beam focusing. Basic technical specifications of the RFQ linac

  9. Calculation of the energetics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, T.H. Jr.; Harding, L.B.; Shepard, R.L.; Harrison, R.J.

    1988-01-01

    To calculate the energetics of chemical reactions we must solve the electronic Schroedinger equation for the molecular conformations of importance for the reactive encounter. Substantial changes occur in the electronic structure of a molecular system as the reaction progresses from reactants through the transition state to products. To describe these changes, our approach includes the following three elements: the use of multiconfiguration self-consistent field wave functions to provide a consistent zero-order description of the electronic structure of the reactants, transition state, and products; the use of configuration interaction techniques to describe electron correlation effects needed to provide quantitative predictions of the reaction energetics; and the use of large, optimized basis sets to provide the flexibility needed to describe the variations in the electronic distributions. With this approach we are able to study reactions involving as many as 5--6 atoms with errors of just a few kcal/mol in the predicted reaction energetics. Predictions to chemical accuracy, i.e., to 1 kcal/mol or less, are not yet feasible, although continuing improvements in both the theoretical methodology and computer technology suggest that this will soon be possible, at least for reactions involving small polyatomic species. 4 figs.

  10. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  11. Energetic constraints, size gradients, and size limits in benthic marine invertebrates.

    Science.gov (United States)

    Sebens, Kenneth P

    2002-08-01

    Populations of marine benthic organisms occupy habitats with a range of physical and biological characteristics. In the intertidal zone, energetic costs increase with temperature and aerial exposure, and prey intake increases with immersion time, generating size gradients with small individuals often found at upper limits of distribution. Wave action can have similar effects, limiting feeding time or success, although certain species benefit from wave dislodgment of their prey; this also results in gradients of size and morphology. The difference between energy intake and metabolic (and/or behavioral) costs can be used to determine an energetic optimal size for individuals in such populations. Comparisons of the energetic optimal size to the maximum predicted size based on mechanical constraints, and the ensuing mortality schedule, provides a mechanism to study and explain organism size gradients in intertidal and subtidal habitats. For species where the energetic optimal size is well below the maximum size that could persist under a certain set of wave/flow conditions, it is probable that energetic constraints dominate. When the opposite is true, populations of small individuals can dominate habitats with strong dislodgment or damage probability. When the maximum size of individuals is far below either energetic optima or mechanical limits, other sources of mortality (e.g., predation) may favor energy allocation to early reproduction rather than to continued growth. Predictions based on optimal size models have been tested for a variety of intertidal and subtidal invertebrates including sea anemones, corals, and octocorals. This paper provides a review of the optimal size concept, and employs a combination of the optimal energetic size model and life history modeling approach to explore energy allocation to growth or reproduction as the optimal size is approached.

  12. Inclusion and difusion studies of D in fusion breeding blanket candidate materials

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.

    2015-07-01

    Deuterium-Tritium (D-T) reaction is the most practical fusion reaction on the way to harness fusion energy. As tritium presents trace quantities on Earth [1], tritium fuel is essential to be generated simultaneously with the D-T reaction in a commerical fusion power plant. Tritium can be obtained in the lithium contained breeding blanket as a transmutation product of nuclear reaction 6Li (n, a)T. Li2T iO3 is considered to be one promising candidate solid tritium breeder material, due to its high lithium density, low activation, compatiblity with structure materials and high chemical stability. The tritium generated in Li2T iO3 breeding blanket needs to be collected and recycled back to the fusion reaction. Therefore, the study of the diffusion characteristic of breeder material Li2T iO3 is necessary to determine tritium mobility and tritium extraction efficiency. In order to study tritium release mechanism of Li2T iO3 breeding material in a fusion power plant environment, a fusion like neutron spectrum is essential while it is now not availble in any laboratory. One alternative is using ion accelerator or implantor to get energetic hydrogenic (H,D,T) ions impacting on breeding material, to simulate the tritium distribution situation. Because of the radioactive property of tritium which will complicate processing procedure, another isotope of hydrogen Deuterium is actually used to be studied. The defect structure in Li2T iO3, due to reactor exposure to fusion generated particles and ? ray irradiation, is achieved by energetic Ti ions. SRIM program is implemented to simulate the D ion or Ti ion distributions after bombarding, as well as the defects. X-ray diffraction technique helps to identify phase compositions. Transmission electron microscopy technique is used to observe the microstructures (Author)

  13. Analysis of the Variation of Energetic Electron Flux with Respect to Longitude and Distance Normal to the Magnetic Equatorial Plane for Galileo Energetic Particle Detector Data

    Science.gov (United States)

    Swimm, R.; Garrett, H. B.; Jun, I.; Evans, R. W.

    2004-12-01

    In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances from the planet Jupiter from 8 to 28 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron radiation with longitude. We also develop a model of the electron flux with respect to distance normal to the magnetic equatorial plane as a function of the distance from Jupiter.

  14. Microstructure of irradiated materials

    International Nuclear Information System (INIS)

    Robertson, I.M.

    1995-01-01

    The focus of the symposium was on the changes produced in the microstructure of metals, ceramics, and semiconductors by irradiation with energetic particles. the symposium brought together those working in the different material systems, which revealed that there are a remarkable number of similarities in the irradiation-produced microstructures in the different classes of materials. Experimental, computational and theoretical contributions were intermixed in all of the sessions. This provided an opportunity for these groups, which should interact, to do so. Separate abstracts were prepared for 58 papers in this book

  15. Materials for Photovoltaic Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana

    Energy priorities are changing nowadays. As mankind will probably have to face energy crisis, factors such as energy independence, energy security, stability of energy supply and the variety of energy sources become much more vital these days. Photovoltaics is exceptional compared to other renewable sources of energy due to its wide opportunity to gain energetic and environmental benefits. An overview of the present state of knowledge of the materials aspects of photovoltaic cells will be given, and new semiconductor materials, including nanomaterials, with potential for application in photovoltaic devices will be identified.

  16. High value carbon materials from PET recycling

    International Nuclear Information System (INIS)

    Parra, J.B.; Ania, C.O.; Arenillas, A.; Rubiera, F.; Pis, J.J.

    2004-01-01

    Poly(ethylene) terephthalate (PET), has become one of the major post-consumer plastic waste. In this work special attention was paid to minimising PET residues and to obtain a high value carbon material. Pyrolysis and subsequent activation of PET from post-consumer soft-drink bottles was performed. Activation was carried out at 925 deg. C under CO 2 atmosphere to different burn-off degrees. Textural characterisation of the samples was carried out by performing N 2 adsorption isotherms at -196 deg. C. The obtained carbons materials were mainly microporous, presenting low meso and macroporosity, and apparent BET surface areas of upto 2500 m 2 g -1 . The capacity of these materials for phenol adsorption and PAHs removal from aqueous solutions was measured and compared with that attained with commercial active carbons. Preliminary tests also showed high hydrogen uptake values, as good as the results obtained with high-tech carbon materials

  17. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  18. Inorganic nanostructured materials for high performance electrochemical supercapacitors

    Science.gov (United States)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-01-01

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  19. High energy electron irradiation of flowable materials

    International Nuclear Information System (INIS)

    Offermann, B.P.

    1975-01-01

    In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated. (U.S.)

  20. Backward emission mechanism of energetic protons studied from two-particle correlations in 800 MeV proton-nucleus collisions

    International Nuclear Information System (INIS)

    Miake, Yasuo

    1982-07-01

    The production mechanism of backward energetic protons was studied in 800 MeV proton-nucleus collision from the measurement of two-particle correlation over a wide range of kinematic regions. The backward energetic protons at 118 deg were measured in coincidence with the particles emitted in the angular range from 15 deg to 100 deg. Both in-plane and out-of-plane coincidences were measured. The backward energetic protons were detected with a delta E-E counter in a momentum region from 350 to 750 MeV/c, whereas the coincident particles were detected with a magnetic spectrometer in the momentum region from 450 to 2000 MeV/c. The reaction process of the backward protons were decomposed into six categories by the measurement of the associated particles, p or d. The momentum spectra, angular distribution and the target mass dependence of these components were studied. The component of p-p QES was well reproduced by the PW1A model, but the backward energetic protons were not from this process. The momenta of two nucleons inside the quasi-deuteron are highly correlated. The components of p-p non-QES and p-p out-of-plane are the main components of the backward energetic proton production. (Kako, I.)

  1. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)

    2009-02-15

    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  2. Roles of kinetics and energetics in the growth of AlN by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Im, I. H.; Minegishi, T.; Hanada, T.; Lee, S. W.; Cho, M. W.; Yao, T.; Oh, D. C.; Chang, J. H.

    2006-01-01

    The roles of kinetics and energetics in the growth processes of AlN on c-sapphire by plasma assisted molecular beam epitaxy are investigated by varying the growth rate from 1 to 31 A/min and the substrate temperature from 800 to 1000 .deg. C. The energetics is found to govern the growth of AlN in the low-growth rate region even at a low substrate temperature of 800 .deg. C owing to the enhanced residence time of adatoms, thereby increasing the surface migration length. As the growth rate increases, the growth tends to be governed by kinetics because of a reduction in the residence time of adatoms. Consequently, the surface roughness and crystal quality are greatly improved for the low-growth-rate case. In addition, the lattice strain relaxation is completed from the beginning of epitaxy for energetics-limiting growth while lattice strain relaxation is retarded for kinetics-limiting growth because of pre-existing partial strain relaxation. Energetics becomes more favorable as the substrate temperature is raised because of an increase in the surface diffusion length owing to an enhanced diffusion coefficient. Consequently high-crystal-quality AlN layers are grown under the energetics-limiting growth condition with a screw dislocation density of 7.4 x 10 8 cm -2 even for a thin 42-nm thick film.

  3. Development of scintillation materials for medical imaging and other applications

    International Nuclear Information System (INIS)

    Melcher, C. L.

    2013-01-01

    Scintillation materials that produce pulses of visible light in response to the absorption of energetic photons, neutrons, and charged particles, are widely used in various applications that require the detection of radiation. The discovery and development of new scintillators has accelerated in recent years, due in large part to their importance in medical imaging as well as in security and high energy physics applications. Better understanding of fundamental scintillation mechanisms as well as the roles played by defects and impurities have aided the development of new high performance scintillators for both gamma-ray and neutron detection. Although single crystals continue to dominate gamma-ray based imaging techniques, composite materials and transparent optical ceramics potentially offer advantages in terms of both synthesis processes and scintillation performance. A number of promising scintillator candidates have been identified during the last few years, and several are currently being actively developed for commercial production. Purification and control of raw materials and cost effective crystal growth processes can present significant challenges to the development of practical new scintillation materials.

  4. Reactive Energetic Plasticizers Utilizing Cu-Free Azide-Alkyne 1,3-Dipolar Cycloaddition for In-Situ Preparation of Poly(THF-co-GAP-Based Polyurethane Energetic Binders

    Directory of Open Access Journals (Sweden)

    Mingyang Ma

    2018-05-01

    Full Text Available Reactive energetic plasticizers (REPs coupled with hydroxy-telechelic poly(glycidyl azide-co-tetrahydrofuran (PGT-based energetic polyurethane (PU binders for use in solid propellants and plastic-bonded explosives (PBXs were investigated. The generation of gem-dinitro REPs along with a terminal alkyne stemmed from a series of finely designed approaches to not only satisfy common demands as conventional energetic plasticizers, but also to prevent the migration of plasticizers. The miscibility and rheological behavior of a binary mixture of PGT/REP with various REP fractions were quantitatively determined by differential scanning calorimetry (DSC and rheometer, respectively, highlighting the promising performance of REPs in the formulation process. The kinetics on the distinct reactivity of propargyl vs. 3-butynyl species of REPs towards the azide group of the PGT prepolymer in terms of Cu-free azide-alkyne 1,3-dipolar cycloaddition (1,3-DPCA was studied by monitoring 1H nuclear magnetic resonance spectroscopy and analyzing the activation energies (Ea obtained using DSC. The thermal stability of the finally cured energetic binders with the incorporation of REPs indicated that the thermal stability of the REP/PGT-based PUs was maintained independently of the REP content. The tensile strength and modulus of the PUs increased with an increase in the REP content. In addition, the energetic performance and sensitivity of REP and REP triazole species was predicted.

  5. Waste management, energy generation, material recycling

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The concept of process pyrolysis according to the system of low-temperature pyrolysis (up to 450 Cel) for the purpose of waste processing is described. This system not only uses the material value (raw materials) but also the processing value (energetic utilization of organic components). Three product groups are mentioned where process pyrolysis can be applied: 1. rubber-metall connecting, coated and non-coated components, 2. Compound materials like pc boards, used electronic devices, films, used cables and batteries, 3. organic waste and residues like foils, insulating material, lubricating, oil and grease, flooring. Importance of waste management is emphasized, economic aspects are illustrated.

  6. Improving the Material Response for Slow Heat of Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, A L

    2010-03-08

    The goal of modern high explosive slow heat cookoff modeling is to understand the level of mechanical violence. This requires understanding the coupled thermal-mechanical-chemical system that such an environment creates. Recent advances have improved our ability to predict the time to event, and we have been making progress on predicting the mechanical response. By adding surface tension to the product gas pores in the high explosive, we have been able to reduce the current model's tendency to overpressurize confinement vessels. We describe the model and demonstrate how it affects a LX-10 STEX experiment. Issues associated with current product gas equations of state are described and examined.

  7. Engineering materials for high level radioactive waste repository

    International Nuclear Information System (INIS)

    Wen Zhijian

    2009-01-01

    Radioactive wastes can arise from a wide range of human activities and have different physical and chemical forms with various radioactivity. The high level radioactive wastes (HLW)are characterized by nuclides of very high initial radioactivity, large thermal emissivity and the long life-term. The HLW disposal is highly concerned by the scientists and the public in the world. At present, the deep geological disposal is regarded as the most reasonable and effective way to safely dispose high-level radioactive wastes in the world. The conceptual model of HLW geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineering barrier system(EBS). The engineering materials in EBS include the vitrified HLW, canister, overpack, buffer materials and backfill materials. Referring to progress in the world, this paper presents the function, the requirement for material selection and design, and main scientific projects of R and D of engineering materials in HLW repository. (authors)

  8. Materials for high-level waste containment

    International Nuclear Information System (INIS)

    Marsh, G.P.

    1982-01-01

    The function of the high-level radioactive waste container in storage and of a container/overpack combination in disposal is considered. The consequent properties required from potential fabrication materials are discussed. The strategy adopted in selecting containment materials and the experimental programme underway to evaluate them are described. (U.K.)

  9. Organization of the national energetic institutions

    International Nuclear Information System (INIS)

    Waltenberg, D.A.M.

    1983-01-01

    This text broaches, in a critical pourt of view, the organization of national energetic institutions, the need of a law revision, the problem of the rising of tariff and shows the decisions of GC01 [pt

  10. Pulsations of Energetic Electron Pulsations In Association With Substorm Onset

    Science.gov (United States)

    Åsnes, A.; Stadsnes, J.; Bjordal, J.; Østgaard, N.; Haaland, S.; Rosenberg, T. J.; Detrick, D. L.

    The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is giving detailed images of the energetic electron precipitation when the POLAR satellite is near perigee over the Antarctica. In this area the PIXIE images have a spatial resolution of the order of 100 km, and a temporal resolution of 10 s can be obtained. In this paper we present the results of a study focusing on the onset and expansion of a substorm occuring on July 24, 1998. In this event we observe strong modulations of the energetic electron precipitation with period around 1 minute following substorm onset. The pulsations were restricted to a narrow magnetic local time sector in the pre-midnight region, about 0.5 hours wide, and showed movement towards higher latitudes and earlier lo- cal times. The event will be discussed in context of measurements from ground sta- tions and satellites in geosynchronous orbit. Precipitation of energetic electrons will be compared with VLF/ELF ground measurements. Features in the energetic elec- tron precipitation will be mapped to the magnetospheric equatorial plane by field line tracing.

  11. Energetic Variational Approach to Multi-Component Fluid Flows

    Science.gov (United States)

    Kirshtein, Arkadz; Liu, Chun; Brannick, James

    2017-11-01

    In this talk I will introduce the systematic energetic variational approach for dissipative systems applied to multi-component fluid flows. These variational approaches are motivated by the seminal works of Rayleigh and Onsager. The advantage of this approach is that we have to postulate only energy law and some kinematic relations based on fundamental physical principles. The method gives a clear, quick and consistent way to derive the PDE system. I will compare different approaches to three-component flows using diffusive interface method and discuss their advantages and disadvantages. The diffusive interface method is an approach for modeling interactions among complex substances. The main idea behind this method is to introduce phase field labeling functions in order to model the contact line by smooth change from one type of material to another. The work of Arkadz Kirshtein and Chun Liu is partially supported by NSF Grants DMS-141200 and DMS-1216938.

  12. High capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  13. ENERGETIC EXTREMES IN REEF FISH OCCUPYING HARSH HABITATS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2009-01-01

    document how relatively small changes in fin morphology has afforded some coral reef fish taxa with exceptional locomotor performance and energetic efficiency, and how this key attribute may have played a key role in the evolution and ecology of several diverse Indo-Pacific reef fish families. Using......-finned counterparts. We discuss how such differences in locomotor efficiency are pivotal to the habitat-use of these fishes, and how eco-energetic models may be used to provide new insights into spatial variations in fish demography and ecology among coral reef habitat zones....

  14. Utilisation of biological and secondary raw materials VI. Recycling - conversion to energy; Bio- und Sekundaerrohstoffverwertung VI. Stofflich - energetisch

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, Klaus; Kern, Michael

    2011-07-01

    In a lot of contributions the Kasseler waste and bio-energy forum reports on a sustainable management of wastes. The organizers hope that this results in a lively dialogue on sustainable activities in waste management corresponding to the responsibility towards future generations. Within the 23rd Kasseler waste and bio-energy forum at 12th to 14th April, 2010 in Kassel (Federal Republic of Germany) lectures were held to the following themes: (1) Perspectives of the waste management; (2) Ressource conservation and securing of raw material; (3) Common capture of packages and high-grade materials; (4) Bin for reusable materials - system trusteeship, material flows, qualities, financing, practical examples; (5) Industrial waste flows, EBS quality assurance and increase of efficiency; (6) New technological developments in the area of fermentation of biological wastes; (7) Perspectives of material and energetical utilization of biological wastes; (8) Renewable Energy Law and direct marketing of 'green' electricity; (9) Technology and experiences with biogas processing; (10) Fermentation of biogenic residues and catering waste; (11) Increase of efficiency of mechanical-biological treatment plants; (12) Mechanical-biological treatment technology in an international environment; (13) Concepts of energetic utilization for landfill sites; (14) Landfill law and landfill after-care; (15) Renaturation of landfills.

  15. High value carbon materials from PET recycling

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.B.; Ania, C.O.; Arenillas, A.; Rubiera, F.; Pis, J.J

    2004-11-15

    Poly(ethylene) terephthalate (PET), has become one of the major post-consumer plastic waste. In this work special attention was paid to minimising PET residues and to obtain a high value carbon material. Pyrolysis and subsequent activation of PET from post-consumer soft-drink bottles was performed. Activation was carried out at 925 deg. C under CO{sub 2} atmosphere to different burn-off degrees. Textural characterisation of the samples was carried out by performing N{sub 2} adsorption isotherms at -196 deg. C. The obtained carbons materials were mainly microporous, presenting low meso and macroporosity, and apparent BET surface areas of upto 2500 m{sup 2} g{sup -1}. The capacity of these materials for phenol adsorption and PAHs removal from aqueous solutions was measured and compared with that attained with commercial active carbons. Preliminary tests also showed high hydrogen uptake values, as good as the results obtained with high-tech carbon materials.

  16. Molecular and Material Approaches to Overcome Kinetic and Energetic Constraints in Dye-Sensitized Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Thomas [Michigan State Univ., East Lansing, MI (United States)

    2016-08-14

    Dye-sensitized solar cells (DSSCs) have attracted a lot of interest as they proffer the possibility of extremely inexpensive and efficient solar energy conversion. The excellent performance of the most efficient DSSCs relies on two main features: 1) a high surface area nanoparticle semiconductor photoanode to allow for excellent light absorption with moderate extinction molecular dyes and 2) slow recombination rates from the photoanode to I3- allowing good charge collection. The I3-/I- couple, however, has some disadvantages, notably the redox potential limits the maximum open-circuit voltage, and the dye regeneration requires a large driving force which constrains the light harvesting ability. Thus, the design features that allow DSSCs to perform as well as they do also prevent further significant improvements in performance. As a consequence, the most efficient device configuration, and the maximum efficiency, has remained essentially unchanged over the last 16 years. Significant gains in performance are possible; however it will likely require a substantial paradigm shift. The general goal of this project is to understand the fundamental role of dye-sensitized solar cell, DSSC, components (sensitizer, redox shuttle, and photoanode) involved in key processes in order to overcome the kinetic and energetic constraints of current generation DSSCs. For example, the key to achieving high energy conversion efficiency DSSCs is the realization of a redox shuttle which fulfills the dual requirements of 1) efficient dye regeneration with a minimal driving force and 2) efficient charge collection. In current generation DSSCs, however, only one or the other of these requirements is met. We are currently primarily interested in understanding the physical underpinnings of the regeneration and recombination reactions. Our approach is to systematically vary the components involved in reactions and interrogate them with a

  17. Laser shock ignition of porous silicon based nano-energetic films

    International Nuclear Information System (INIS)

    Plummer, A.; Gascooke, J.; Shapter, J.; Kuznetsov, V. A.; Voelcker, N. H.

    2014-01-01

    Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131 MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity

  18. Laser shock ignition of porous silicon based nano-energetic films

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, A.; Gascooke, J.; Shapter, J. [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Kuznetsov, V. A., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Weapons and Combat Systems Division, Defence Science and Technology Organisation, Edinburgh 5111 (Australia); Voelcker, N. H., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [Mawson Institute, University of South Australia, 5095, Mawson Lakes (Australia)

    2014-08-07

    Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131 MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity.

  19. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  20. Composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.

    1983-01-01

    The elemental, charge state, and isotopic composition of approximately 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events was determined and current understanding of the nature of solar and interplanetary processes which may explain the observations are outlined. The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however are found to be roughly energy independent in the approximately 1 to approximately 20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seem to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He(+) along with heavy ions with typical coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP Ne-22 relative to this isotopes ratio in the solar wind

  1. Study for material analogs of FeSb2: Material design for thermoelectric materials

    Science.gov (United States)

    Kang, Chang-Jong; Kotliar, Gabriel

    2018-03-01

    Using the ab initio evolutionary algorithm (implemented in uspex) and electronic structure calculations we investigate the properties of a new thermoelectric material FeSbAs, which is a material analog of the enigmatic thermoelectric FeSb2. We utilize the density functional theory and the Gutzwiller method to check the energetics. We find that FeSbAs can be made thermodynamically stable above ˜30 GPa. We investigate the electronic structure and thermoelectric properties of FeSbAs based on the density functional theory and compare with those of FeSb2. Above 50 K, FeSbAs has higher Seebeck coefficients than FeSb2. Upon doping, the figure of merit becomes larger for FeSbAs than for FeSb2. Another material analog FeSbP, was also investigated, and found thermodynamically unstable even at very high pressure. Regarding FeSb2 as a member of a family of compounds (FeSb2, FeSbAs, and FeSbP) we elucidate what are the chemical handles that control the gaps in this series. We also investigate solubility (As or P for Sb in FeSb2) we found As to be more soluble. Finally, we study a two-band model for thermoelectric properties and find that the temperature dependent chemical potential and the presence of the ionized impurities are important to explain the extremum in the Seebeck coefficient exhibited in experiments for FeSb2.

  2. THE VERY UNUSUAL INTERPLANETARY CORONAL MASS EJECTION OF 2012 JULY 23: A BLAST WAVE MEDIATED BY SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C. T. [University of California, Los Angeles, CA 90095-1567 (United States); Mewaldt, R. A.; Cohen, C. M. S.; Leske, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Luhmann, J. G. [University of California, Berkeley, CA 94720 (United States); Mason, G. M. [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Von Rosenvinge, T. T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gomez-Herrero, R. [University of Alcala, E-28871 Alcala de Henares (Spain); Klassen, A. [Kiel University, D-24118 Kiel (Germany); Galvin, A. B.; Simunac, K. D. C., E-mail: ctrussell@igpp.ucla.edu [University of New Hampshire, Durham, NH 03824 (United States)

    2013-06-10

    The giant, superfast, interplanetary coronal mass ejection, detected by STEREO A on 2012 July 23, well away from Earth, appears to have reached 1 AU with an unusual set of leading bow waves resembling in some ways a subsonic interaction, possibly due to the high pressures present in the very energetic particles produced in this event. Eventually, a front of record high-speed flow reached STEREO. The unusual behavior of this event is illustrated using the magnetic field, plasma, and energetic ion observations obtained by STEREO. Had the Earth been at the location of STEREO, the large southward-oriented magnetic field component in the event, combined with its high speed, would have produced a record storm.

  3. High-throughput theoretical design of lithium battery materials

    International Nuclear Information System (INIS)

    Ling Shi-Gang; Gao Jian; Xiao Rui-Juan; Chen Li-Quan

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. (topical review)

  4. Magneto-Hydrodynamic Activity and Energetic Particles - Application to Beta Alfven Eigenmodes

    International Nuclear Information System (INIS)

    Nguyen, Ch.

    2009-12-01

    The goal of magnetic fusion research is to extract the power released by fusion reactions and carried by the product of these reactions, liberated at energies of the order of a few MeV. The feasibility of fusion energy production relies on our ability to confine these energetic particles, while keeping the thermonuclear plasma in safe operating conditions. For that purpose, it is necessary to understand and find ways to control the interaction between energetic particles and the thermonuclear plasma. Reaching these two goals is the general motivation for this work. More specifically, our focus is on one type of instability, the Beta Alfven Eigenmode (BAE), which can be driven by energetic particles and impact on the confinement of both energetic and thermal particles. In this work, we study the characteristics of BAEs analytically and derive its dispersion relation and structure. Next, we analyze the linear stability of the mode in the presence of energetic particles. First, a purely linear description is used, which makes possible to get an analytical linear criterion for BAE destabilization in the presence of energetic particles. This criterion is compared with experiments conducted in the Tore-Supra tokamak. Secondly, because the linear analysis reveals some features of the BAE stability which are subject to a strong nonlinear modification, the question is raised of the possibility of a sub-critical activity of the mode. We propose a simple scenario which makes possible the existence of meta-stable modes, verified analytically and numerically. Such a scenario is found to be relevant to the physics and scales characterizing BAEs. (author)

  5. Sunward-propagating Solar Energetic Electrons inside Multiple Interplanetary Flux Ropes

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, Raúl; Hidalgo, Miguel A.; Carcaboso, Fernando; Blanco, Juan J. [Dpto. de Física y Matemáticas, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid (Spain); Dresing, Nina; Klassen, Andreas; Heber, Bernd [Institut für Experimentelle und Angewandte Physik, University of Kiel, D-24118, Kiel (Germany); Temmer, Manuela; Veronig, Astrid [Institute of Physics/Kanzelhöhe Observatory, University of Graz, A-8010 Graz (Austria); Bučík, Radoslav [Institut für Astrophysik, Georg-August-Universität Göttingen, D-37077, Göttingen (Germany); Lario, David, E-mail: raul.gomezh@uah.es [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2017-05-10

    On 2013 December 2 and 3, the SEPT and STE instruments on board STEREO-A observed two solar energetic electron events with unusual sunward-directed fluxes. Both events occurred during a time interval showing typical signatures of interplanetary coronal mass ejections (ICMEs). The electron timing and anisotropies, combined with extreme-ultraviolet solar imaging and radio wave spectral observations, are used to confirm the solar origin and the injection times of the energetic electrons. The solar source of the ICME is investigated using remote-sensing observations and a three-dimensional reconstruction technique. In situ plasma and magnetic field data combined with energetic electron observations and a flux-rope model are used to determine the ICME magnetic topology and the interplanetary electron propagation path from the Sun to 1 au. Two consecutive flux ropes crossed the STEREO-A location and each electron event occurred inside a different flux rope. In both cases, the electrons traveled from the solar source to 1 au along the longest legs of the flux ropes still connected to the Sun. During the December 2 event, energetic electrons propagated along the magnetic field, while during the December 3 event they were propagating against the field. As found by previous studies, the energetic electron propagation times are consistent with a low number of field line rotations N < 5 of the flux rope between the Sun and 1 au. The flux rope model used in this work suggests an even lower number of rotations.

  6. Interaction of candidate plasma facing materials with tokamak plasma in COMPASS

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Weinzettl, Vladimír; Macková, Anna; Malinský, Petr; Havránek, Vladimír; Naydenkova, Diana; Klevarová, Veronika; Petersson, P.; Gasior, P.; Hakola, A.; Rubel, M.; Fortuna, E.; Kolehmainen, J.; Tervakangas, S.

    2017-01-01

    Roč. 493, September (2017), s. 102-119 ISSN 0022-3115. [International Conference on Plasma-Facing Materials and Components for Fusion Applications/15./. Aix-en-Provence, 18.05.2015-22.05.2015] R&D Projects: GA ČR(CZ) GA14-12837S; GA ČR(CZ) GA15-10723S; GA MŠk(CZ) LM2015045; GA MŠk LM2015056 Institutional support: RVO:61389021 ; RVO:61389005 Keywords : erosion * COMPASS tokamak * plasma-material interaction * ion beam analysis Subject RIV: JF - Nuclear Energetics; JF - Nuclear Energetics (UJF-V) OBOR OECD: Nuclear related engineering ; Nuclear related engineering (UJF-V) Impact factor: 2.048, year: 2016 http://www.sciencedirect.com/science/ article /pii/S0022311517301708

  7. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model

    Directory of Open Access Journals (Sweden)

    Guoli Ren

    2017-01-01

    Full Text Available The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang (SG series laser facilities and the National Ignition Facility (NIF experiments published in the past few years. The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20% deviation. The 20% deviation might be caused by the diversity in hohlraum parameters, such as material, laser pulse, gas filling density, etc. In addition, the NIF's ignition target designs and our ignition target designs given by simulations are also in accordance with the energy balance model. This work confirms the value of the energy balance model for ignition target design and experimental data assessment, and demonstrates that the NIF energy is enough to achieve ignition if a 1D spherical radiation drive could be created, meanwhile both the laser plasma instabilities and hydrodynamic instabilities could be suppressed.

  8. Energetics of edge oxidization of graphene nanoribbons

    Science.gov (United States)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  9. The sub-energetic gamma-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425.

    Science.gov (United States)

    Soderberg, A M; Kulkarni, S R; Berger, E; Fox, D W; Sako, M; Frail, D A; Gal-Yam, A; Moon, D S; Cenko, S B; Yost, S A; Phillips, M M; Persson, S E; Freedman, W L; Wyatt, P; Jayawardhana, R; Paulson, D

    2004-08-05

    Over the six years since the discovery of the gamma-ray burst GRB 980425, which was associated with the nearby (distance approximately 40 Mpc) supernova 1998bw, astronomers have debated fiercely the nature of this event. Relative to bursts located at cosmological distance (redshift z approximately 1), GRB 980425 was under-luminous in gamma-rays by three orders of magnitude. Radio calorimetry showed that the explosion was sub-energetic by a factor of 10. Here we report observations of the radio and X-ray afterglow of the recent GRB 031203 (refs 5-7), which has a redshift of z = 0.105. We demonstrate that it too is sub-energetic which, when taken together with the low gamma-ray luminosity, suggests that GRB 031203 is the first cosmic analogue to GRB 980425. We find no evidence that this event was a highly collimated explosion viewed off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows. We expect intensive follow-up of faint bursts with smooth gamma-ray light curves (common to both GRB 031203 and 980425) to reveal a large population of such events.

  10. CIRCUMSOLAR ENERGETIC PARTICLE DISTRIBUTION ON 2011 NOVEMBER 3

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Herrero, R.; Blanco, J.J.; Rodríguez-Pacheco, J. [SRG, Universidad de Alcalá, E-28871 Alcalá de Henares (Spain); Dresing, N.; Klassen, A.; Heber, B.; Banjac, S. [IEAP, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Lario, D. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Agueda, N. [Departament d' Astronomia i Meteorologia. Institut de Ciències del Cosmos. Universitat de Barcelona, E-08028 Barcelona (Spain); Malandraki, O. E., E-mail: raul.gomezh@uah.es [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-01-20

    Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.

  11. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  12. Energetic stress: The reciprocal relationship between energy availability and the stress response.

    Science.gov (United States)

    Harrell, C S; Gillespie, C F; Neigh, G N

    2016-11-01

    The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Heat flows and energetic behavior of a telecommunication radio base station

    International Nuclear Information System (INIS)

    Petraglia, Antonio; Spagnuolo, Antonio; Vetromile, Carmela; D'Onofrio, Antonio; Lubritto, Carmine

    2015-01-01

    This paper shows a study on energetic consumption of BTSs (Base Transceiver Stations) for mobile communication, related to conditioning functions. An energetic “thermal model” of a telecommunication station is proposed and studied. The results have been validated with a BTS in central Italy, showing good agreement. Findings show a substantial high internal-external temperature difference in the containing shelter, particularly during daytime and warm months, due to sources of heat (equipment, external temperature and sun radiation) and to the difficulty in spread the warmth out. The necessity to keep the operating temperatures within a given range for the correct functioning of the electronic equipment requires the use of conditioning setups, and this significantly increases the energetic demand of the whole system. The analysis of thermal flows across the shelter can help to gather further data on its temperature behavior and to devise practical measures to lower the power demand, while keeping the operating parameters in the suggested ranges. The investigation of some operating parameters of the equipment and of the shelter, such as threshold set-points, air vent area, external wall transmittance and reflectivity, suggests annual energy savings between 10% and 30%. - Highlights: • A heat flow model for a telecommunication shelter was created. • Successful matching of the model and real-life cases was obtained. • The model addresses how each parameter affects energy consumption. • Reasonably savings of up to 30% of consumed energy can be expected

  14. Energetic electron injections and dipolarization events in Mercury's magnetotail: Substorm dynamics

    Science.gov (United States)

    Dewey, R. M.; Slavin, J. A.; Raines, J. M.; Imber, S.; Baker, D. N.; Lawrence, D. J.

    2017-12-01

    Despite its small size, Mercury's terrestrial-like magnetosphere experiences brief, yet intense, substorm intervals characterized by features similar to at Earth: loading/unloading of the tail lobes with open magnetic flux, dipolarization of the magnetic field at the inner edge of the plasma sheet, and, the focus of this presentation, energetic electron injection. We use the Gamma-Ray Spectrometer's high-time resolution (10 ms) energetic electron measurements to determine the relationship between substorm activity and energetic electron injections coincident with dipolarization fronts in the magnetotail. These dipolarizations were detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. We estimate the typical flow channel to be 0.15 RM, planetary convection speed of 750 km/s, cross-tail potential drop of 7 kV, and flux transport of 0.08 MWb for each dipolarization event, suggesting multiple simultaneous and sequential dipolarizations are required to unload the >1 MWb of magnetic flux typically returned to the dayside magnetosphere during a substorm interval. Indeed, while we observe most dipolarization-injections to be isolated or in small chains of events (i.e., 1-3 events), intervals of sawtooth-like injections with >20 sequential events are also present. The typical separation between dipolarization-injection events is 10 s. Magnetotail dipolarization, in addition to being a powerful source of electron acceleration, also plays a significant role in the substorm process at Mercury.

  15. An automatic system to study sperm motility and energetics

    OpenAIRE

    Shi, LZ; Nascimento, JM; Chandsawangbhuwana, C; Botvinick, EL; Berns, MW

    2008-01-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membr...

  16. Capturing the most energetic cosmic rays

    International Nuclear Information System (INIS)

    Mantsch, P.

    1999-01-01

    The methods of energy measurement applied to the most energetic cosmic rays are described. The rays are so rare that two gigantic systems of detectors are proposed to detect at least some of them (the Pierre Auger Project ). (Z.J.)

  17. Energetic costs of performance in trained and untrained Anolis carolinensis lizards.

    Science.gov (United States)

    Lailvaux, Simon P; Wang, Andrew Z; Husak, Jerry F

    2018-03-12

    The energetic costs of performance constitute a non-trivial component of animals' daily energetic budgets. However, we currently lack an understanding of how those costs are partitioned among the various stages of performance development, maintenance, and production. We manipulated individual investment in performance by training Anolis carolinensis lizards for endurance or sprinting ability. We then measured energetic expenditure both at rest and immediately following exercise to test whether such training alters the maintenance and production costs of performance. Trained lizards had lower resting metabolic rates than controls, suggestive of a maintenance saving associated with enhanced performance as opposed to a cost. Production costs also differed, with sprint-trained lizards incurring the largest energetic performance cost and experiencing the longest recovery times compared to endurance trained and control animals. Although performance training modifies metabolism, production costs are probably the key drivers of trade-offs between performance and other life-history traits in this species. © 2018. Published by The Company of Biologists Ltd.

  18. Computer simulation for prediction of performance and thermodynamic parameters of high energy materials

    International Nuclear Information System (INIS)

    Muthurajan, H.; Sivabalan, R.; Talawar, M.B.; Asthana, S.N.

    2004-01-01

    A new code viz., Linear Output Thermodynamic User-friendly Software for Energetic Systems (LOTUSES) developed during this work predicts the theoretical performance parameters such as density, detonation factor, velocity of detonation, detonation pressure and thermodynamic properties such as heat of detonation, heat of explosion, volume of explosion gaseous products. The same code also assists in the prediction of possible explosive decomposition products after explosion and power index. The developed code has been validated by calculating the parameters of standard explosives such as TNT, PETN, RDX, and HMX. Theoretically predicated parameters are accurate to the order of ±5% deviation. To the best of our knowledge, no such code is reported in literature which can predict a wide range of characteristics of known/unknown explosives with minimum input parameters. The code can be used to obtain thermochemical and performance parameters of high energy materials (HEMs) with reasonable accuracy. The code has been developed in Visual Basic having enhanced windows environment, and thereby advantages over the conventional codes, written in Fortran. The theoretically predicted HEMs performance can be directly printed as well as stored in text (.txt) or HTML (.htm) or Microsoft Word (.doc) or Adobe Acrobat (.pdf) format in the hard disk. The output can also be copied into the Random Access Memory as clipboard text which can be imported/pasted in other software as in the case of other codes

  19. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua

    2013-03-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  20. Iron oxide/aluminum/graphene energetic nanocomposites synthesized by atomic layer deposition: Enhanced energy release and reduced electrostatic ignition hazard

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ning; Qin, Lijun [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hao, Haixia [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Hui, Longfei [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Zhao, Fengqi [Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Shaanxi (China); Feng, Hao, E-mail: fenghao98@hotmail.com [Laboratory of Material Surface Engineering and Nanofabrication, Xi’an Modern Chemistry Research Institute, Shaanxi (China); State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Shaanxi (China)

    2017-06-30

    Highlights: • Energetic rGO/Al@Fe{sub 2}O{sub 3}nanocompositeswerefabricatedbyatomiclayerdepositionapproach. • A novel Al@Fe{sub 2}O{sub 3} unit featuring core-shell structure was decorated on the graphene nanosheet. • RGO/Al@Fe{sub 2}O{sub 3} nanocomposite exhibits superior energy release and reduced electrostatic ignition hazard. - Abstract: Nanocomposites consisting of iron oxide (Fe{sub 2}O{sub 3}) and nano-sized aluminum (Al), possessing outstanding exothermic redox reaction characteristics, are highly promising nanothermite materials. However, the reactant diffusion inhibited in the solid state system makes the fast and complete energy release very challenging. In this work, Al nanoparticles anchored on graphene oxide (GO/Al) was initially prepared by a solution assembly approach. Fe{sub 2}O{sub 3} was deposited on GO/Al substrates by atomic layer deposition (ALD). Simultaneously thermal reduction of GO occurs, resulting in rGO/Al@Fe{sub 2}O{sub 3} energetic composites. Differential scanning calorimetry (DSC) analysis reveals that rGO/Al@Fe{sub 2}O{sub 3} composite containing 4.8 wt% of rGO exhibits a 50% increase of the energy release compared to the Al@Fe{sub 2}O{sub 3} nanothermite synthesized by ALD, and an increase of about 130% compared to a random mixture of rGO/Al/Fe{sub 2}O{sub 3} nanoparticles. The enhanced energy release of rGO/Al@Fe{sub 2}O{sub 3} is attributed to the improved spatial distribution as well as the increased interfacial intimacy between the oxidizer and the fuel. Moreover, the rGO/Al@Fe{sub 2}O{sub 3} composite with an rGO content of 9.6 wt% exhibits significantly reduced electrostatic discharge sensitivity. These findings may inspire potential pathways for engineering energetic nanocomposites with enhanced energy release and improved safety characteristics.