WorldWideScience

Sample records for high encapsulation rate

  1. High throughput single-cell and multiple-cell micro-encapsulation.

    Science.gov (United States)

    Lagus, Todd P; Edd, Jon F

    2012-06-15

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of controlled sizes. By combining drop generation techniques with cell and particle ordering, we demonstrate controlled encapsulation of cell-sized particles for efficient, continuous encapsulation. Using an aqueous particle suspension and immiscible fluorocarbon oil, we generate aqueous drops in oil with a flow focusing nozzle. The aqueous flow rate is sufficiently high to create ordering of particles which reach the nozzle at integer multiple frequencies of the drop generation frequency, encapsulating a controlled number of cells in each drop. For representative results, 9.9 μm polystyrene particles are used as cell surrogates. This study shows a single-particle encapsulation efficiency P(k=1) of 83.7% and a double-particle encapsulation efficiency P(k=2) of 79.5% as compared to their respective Poisson efficiencies of 39.3% and 33.3%, respectively. The effect of consistent cell and particle concentration is demonstrated to be of major importance for efficient encapsulation, and dripping to jetting transitions are also addressed. Continuous media aqueous cell suspensions share a common fluid environment which allows cells to interact in parallel and also homogenizes the effects of specific cells in measurements from the media. High-throughput encapsulation of cells into picoliter-scale drops confines the samples to protect drops from cross-contamination, enable a measure of cellular diversity within samples, prevent dilution of reagents and expressed biomarkers, and amplify

  2. Process engineering of high voltage alginate encapsulation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Gryshkov, Oleksandr; Pogozhykh, Denys; Zernetsch, Holger; Hofmann, Nicola; Mueller, Thomas; Glasmacher, Birgit

    2014-01-01

    Encapsulation of stem cells in alginate beads is promising as a sophisticated drug delivery system in treatment of a wide range of acute and chronic diseases. However, common use of air flow encapsulation of cells in alginate beads fails to produce beads with narrow size distribution, intact spherical structure and controllable sizes that can be scaled up. Here we show that high voltage encapsulation (≥ 15 kV) can be used to reproducibly generate spherical alginate beads (200–400 μm) with narrow size distribution (± 5–7%) in a controlled manner under optimized process parameters. Flow rate of alginate solution ranged from 0.5 to 10 ml/h allowed producing alginate beads with a size of 320 and 350 μm respectively, suggesting that this approach can be scaled up. Moreover, we found that applied voltages (15–25 kV) did not alter the viability and proliferation of encapsulated mesenchymal stem cells post-encapsulation and cryopreservation as compared to air flow. We are the first who employed a comparative analysis of electro-spraying and air flow encapsulation to study the effect of high voltage on alginate encapsulated cells. This report provides background in application of high voltage to encapsulate living cells for further medical purposes. Long-term comparison and work on alginate–cell interaction within these structures will be forthcoming. - Highlights: • High voltage alginate encapsulation of mesenchymal stem cells (MSCs) was designed. • Reproducible and spherical alginate beads were generated via high voltage. • Air flow encapsulation was utilized as a comparative approach to high voltage. • High voltage did not alter the viability and proliferation of encapsulated MSCs. • High voltage encapsulation can be scaled up and applied in cell-based therapy

  3. High Resolution NMR Studies of Encapsulated Proteins In Liquid Ethane

    Science.gov (United States)

    Peterson, Ronald W.; Lefebvre, Brian G.; Wand, A. Joshua

    2005-01-01

    Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle, and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate co-surfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein. PMID:16028922

  4. Review of metal-matrix encapsulation of solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-05-01

    Literature describing previous and current work on the encapsulation of solidified high-level waste forms in a metal matrix was reviewed. Encapsulation of either stabilized calcine pellets or glass beads in alloys by casting techniques was concluded to be the most developed and direct approach to fabricating solid metal-matrix waste forms. Further characterizations of the physical and chemical properties of metal-matrix waste forms are still needed to assess the net attributes of metal-encapsulation alternatives. Steady-state heat transfer properties of waste canisters in air and water environments were calculated for four reference waste forms: (1) calcine, (2) glass monoliths, (3) metal-encapsulated calcine, and (4) metal-encapsulated glass beads. A set of criteria for the maximum allowable canister centerline and surface temperatures and heat generation rates per canister at the time of shipment to a Federal repository was assumed, and comparisons were made between canisters of these reference waste forms of the shortest time after reactor discharge that canisters could be filled and the subsequent ''interim'' storage times prior to shipment to a Federal repository for various canister diameters and waste ages. A reference conceptual flowsheet based on existing or developing technology for encapsulation of stabilized calcine pellets is discussed. Conclusions and recommendations are presented

  5. High Throughput Single-cell and Multiple-cell Micro-encapsulation

    OpenAIRE

    Lagus, Todd P.; Edd, Jon F.

    2012-01-01

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of ...

  6. Modeling Encapsulated Microbubble Dynamics at High Pressure Amplitudes

    Science.gov (United States)

    Heyse, Jan F.; Bose, Sanjeeb; Iaccarino, Gianluca

    2017-11-01

    Encapsulated microbubbles are commonly used in ultrasound contrast imaging and are of growing interest in therapeutic applications where local cavitation creates temporary perforations in cell membranes allowing for enhanced drug delivery. Clinically used microbubbles are encapsulated by a shell commonly consisting of protein, polymer, or phospholipid; the response of these bubbles to externally imposed ultrasound waves is sensitive to the compressibility of the encapsulating shell. Existing models approximate the shell compressibility via an effective surface tension (Marmottant et al. 2005). We present simulations of microbubbles subjected to high amplitude ultrasound waves (on the order of 106 Pa) and compare the results with the experimental measurements of Helfield et al. (2016). Analysis of critical points (corresponding to maximum and minimum expansion) in the governing Rayleigh-Plesset equation is used to make estimates of the parameters used to characterize the effective surface tension of the encapsulating shell. Stanford Graduate Fellowship.

  7. Novel encapsulation technique for incorporation of high permittivity fillers into silicone elastomers

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Hvilsted, Søren; Skov, Anne Ladegaard

    2014-01-01

    permittivity fillers, 2) Grafting of high permittivity molecules onto the polymer backbone in the elastomer, and 3) Encapsulation of high permittivity fillers. The approach investigated here is a new type of encapsulation which does not interfere with the mechanical properties to the same content...

  8. Highly efficient solid-state synthesis of carbon-encapsulated ultrafine MoO{sub 2} nanocrystals as high rate lithium-ion battery anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Boyang, E-mail: byliu@shmtu.edu.cn [Shanghai Maritime University, College of Ocean Science and Engineering (China); Shao, Yingfeng, E-mail: shaoyf@lnm.imech.ac.cn [Chinese Academy of Sciences, State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics (China); Zhang, Yuliang, E-mail: ylzhang@shmtu.edu.cn; Zhang, Fuhua, E-mail: fhzhang@shmtu.edu.cn; Zhong, Ning, E-mail: ningzhong@shmtu.edu.cn [Shanghai Maritime University, College of Ocean Science and Engineering (China); Li, Wenge, E-mail: wgli@shmtu.edu.cn [Shanghai Maritime University, Merchant Marine College (China)

    2016-12-15

    A simple and highly efficient method is developed for the one-step in situ preparation of carbon-encapsulated MoO{sub 2} nanocrystals (MoO{sub 2}@C) with core-shell structure for high-performance lithium-ion battery anode. The synthesis is depending on the solid-state reaction of cyclopentadienylmolybdenum tricarbonyl dimer with ammonium persulfate in an autoclave at 200 °C for 30 min. The large amount of heat generated during the explosive reaction cleaves the cyclopentadiene ligands into small carbon fragments, which form carbon shell after oxidative dehydrogenation coating on the MoO{sub 2} nanocrystals, resulting in the formation of core-shell structure. The MoO{sub 2} nanocrystals have an equiaxial morphology with an ultrafine diameter of 2–8 nm, and the median size is 4.9 nm. Hundreds of MoO{sub 2} nanocrystals are encapsulated together by the worm-like carbon shell, which is amorphous and about 3–5 nm in thickness. The content of MoO{sub 2} nanocrystals in the nanocomposite is about 69.3 wt.%. The MoO{sub 2}@C anode shows stable cyclability and retains a high reversible capacity of 443 mAh g{sup −1} after 50 cycles at a current density of 3 A g{sup −1}, owing to the effective protection of carbon shell.

  9. Graphene-encapsulated hollow Fe₃O₄ nanoparticle aggregates as a high-performance anode material for lithium ion batteries.

    Science.gov (United States)

    Chen, Dongyun; Ji, Ge; Ma, Yue; Lee, Jim Yang; Lu, Jianmei

    2011-08-01

    Graphene-encapsulated ordered aggregates of Fe(3)O(4) nanoparticles with nearly spherical geometry and hollow interior were synthesized by a simple self-assembly process. The open interior structure adapts well to the volume change in repetitive Li(+) insertion and extraction reactions; and the encapsulating graphene connects the Fe(3)O(4) nanoparticles electrically. The structure and morphology of the graphene-Fe(3)O(4) composite were confirmed by X-ray diffraction, scanning electron microscopy, and high-resolution transmission microscopy. The electrochemical performance of the composite for reversible Li(+) storage was evaluated by cyclic voltammetry and constant current charging and discharging. The results showed a high and nearly unvarying specific capacity for 50 cycles. Furthermore, even after 90 cycles of charge and discharge at different current densities, about 92% of the initial capacity at 100 mA g(-1) was still recoverable, indicating excellent cycle stability. The graphene-Fe(3)O(4) composite is therefore a capable Li(+) host with high capacity that can be cycled at high rates with good cycle life. The unique combination of graphene encapsulation and a hollow porous structure definitely contributed to this versatile electrochemical performance.

  10. Encapsulation layer design and scalability in encapsulated vertical 3D RRAM

    International Nuclear Information System (INIS)

    Yu, Muxi; Fang, Yichen; Wang, Zongwei; Chen, Gong; Pan, Yue; Yang, Xue; Yin, Minghui; Yang, Yuchao; Li, Ming; Cai, Yimao; Huang, Ru

    2016-01-01

    Here we propose a novel encapsulated vertical 3D RRAM structure with each resistive switching cell encapsulated by dielectric layers, contributing to both the reliability improvement of individual cells and thermal disturbance reduction of adjacent cells due to the effective suppression of unwanted oxygen vacancy diffusion. In contrast to the traditional vertical 3D RRAM, encapsulated bar-electrodes are adopted in the proposed structure substituting the previous plane-electrodes, thus encapsulated resistive switching cells can be naturally formed by simply oxidizing the tip of the metal bar-electrodes. In this work, TaO x -based 3D RRAM devices with SiO 2 and Si 3 N 4 as encapsulation layers are demonstrated, both showing significant advantages over traditional unencapsulated vertical 3D RRAM. Furthermore, it was found thermal conductivity and oxygen blocking ability are two key parameters of the encapsulation layer design influencing the scalability of vertical 3D RRAM. Experimental and simulation data show that oxygen blocking ability is more critical for encapsulation layers in the relatively large scale, while thermal conductivity becomes dominant as the stacking layers scale to the sub-10 nm regime. Finally, based on the notable impacts of the encapsulation layer on 3D RRAM scaling, an encapsulation material with both excellent oxygen blocking ability and high thermal conductivity such as AlN is suggested to be highly desirable to maximize the advantages of the proposed encapsulated structure. The findings in this work could pave the way for reliable ultrahigh-density storage applications in the big data era. (paper)

  11. Encapsulation of high temperature molten salts

    Science.gov (United States)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  12. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  13. Encapsulated, High-Performance, Stretchable Array of Stacked Planar Micro-Supercapacitors as Waterproof Wearable Energy Storage Devices.

    Science.gov (United States)

    Kim, Hyoungjun; Yoon, Jangyeol; Lee, Geumbee; Paik, Seung-Ho; Choi, Gukgwon; Kim, Daeil; Kim, Beop-Min; Zi, Goangseup; Ha, Jeong Sook

    2016-06-29

    We report the fabrication of an encapsulated, high-performance, stretchable array of stacked planar micro-supercapacitors (MSCs) as a wearable energy storage device for waterproof applications. A pair of planar all-solid-state MSCs with spray-coated multiwalled carbon nanotube electrodes and a drop-cast UV-patternable ion-gel electrolyte was fabricated on a polyethylene terephthalate film using serial connection to increase the operation voltage of the MSC. Additionally, multiple MSCs could be vertically stacked with parallel connections to increase both the total capacitance and the areal capacitance owing to the use of a solid-state patterned electrolyte. The overall device of five parallel-connected stacked MSCs, a microlight-emitting diode (μ-LED), and a switch was encapsulated in thin Ecoflex film so that the capacitance remained at 82% of its initial value even after 4 d in water; the μ-LED was lit without noticeable decrease in brightness under deformation including bending and stretching. Furthermore, an Ecoflex encapsulated oximeter wound around a finger was operated using the stored energy of the MSC array attached to the hand (even in water) to give information on arterial pulse rate and oxygen saturation in the blood. This study suggests potential applications of our encapsulated MSC array in wearable energy storage devices especially in water.

  14. Photochemical approach to high-barrier films for the encapsulation of flexible laminary electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Prager, L., E-mail: lutz.prager@iom-leipzig.de [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Helmstedt, U. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Herrnberger, H. [Solarion AG, Pereser Höhe 1, Breitscheidstraße 45, 04442 Zwenkau (Germany); Kahle, O. [Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Kantstraße 55, 14513 Teltow (Germany); Kita, F. [AZ Electronic Materials Germany GmbH, Rheingaustraße 190-196, 65203 Wiesbaden (Germany); Münch, M. [Solarion AG, Pereser Höhe 1, Breitscheidstraße 45, 04442 Zwenkau (Germany); Pender, A.; Prager, A.; Gerlach, J.W. [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Stasiak, M. [Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Kantstraße 55, 14513 Teltow (Germany)

    2014-11-03

    Based on results of preceding research and development, thin gas barriers were made by wet application of perhydropolysilazane solution onto polymer films and its subsequent photo-initiated conversion to dense silica layers applying vacuum ultraviolet irradiation. Compared to the state of the art, these layers were sufficiently improved and characterized by spectroscopic methods, by scanning electron microscopy and by gas permeation measurements. Water vapor transmission rates (WVTR) below 10{sup −2} g m{sup −2} d{sup −1} were achieved. In this way, single barrier films were developed and produced on a pilot plant from roll to roll, 250 mm wide, at speeds up to 10 m min{sup −1}. Two films were laminated using adhesives curable with ultraviolet (UV) light and evaluated by peel tests, gas permeation measurement and climate testing. It could be shown that the described high-barrier laminates which exhibit WVTR ≈ 5 × 10{sup −4} g m{sup −2} d{sup −1}, determined by the calcium mirror method, are suitable for encapsulation of flexible thin-film photovoltaic modules. Durability of the encapsulated modules could be verified in several climate tests including damp-heat, thermo-cycle (heating, freezing, wetting) and UV exposures which are equivalent to more than 20 years of endurance at outdoor conditions in temperate climate. In the frame of further research and technical development it seems to be possible to design a cost efficient industrial scale process for the production of encapsulation films for photovoltaic applications. - Highlights: • Dense silica barrier layers were developed by a photochemical approach. • Polymer based barrier films were laminated yielding flexible high-barrier films. • Using these laminates photovoltaic test modules were encapsulated and tested. • A durability of more than 20 years at outdoor conditions could be proved.

  15. There-dimensional porous carbon network encapsulated SnO2 quantum dots as anode materials for high-rate lithium ion batteries

    International Nuclear Information System (INIS)

    Yang, Juan; Xi, Lihua; Tang, Jingjing; Chen, Feng; Wu, Lili; Zhou, Xiangyang

    2016-01-01

    SnO 2 quantum dots have attracted enormous interest, since they have been shown to effectively minimize the volume change stress, improve the anode kinetic and shorten the lithium ion migration distance when used as anode materials for lithium ion battery. In this work, we report a facile strategy to fabricate nanostructure with homogenous SnO 2 quantum dots anchored on three-dimensional (3D) nitrogen and sulfur dual-doped porous carbon (NSGC@SnO 2 ). Characterization results show that the obtained SnO 2 quantum dots have an average critical size of 3–5 nm and uniformly encapsulated in the porous of NSGC matrix. The as-designed nanostructure can effectively avoid the aggregation of SnO 2 quantum dots as well as accommodate the mechanical stress induced by the volume change of SnO 2 quantum dots and thus maintain the structure integrity of the electrode. As a result, the obtained NSGC@SnO 2 composite exhibits a specific reversible capacity as high as 1118 mAh g −1 at a current of 200 mA g −1 after 100 cycles along with a high coulombic efficiency of 98% and excellent rate capability.

  16. Encapsulating peritoneal sclerosis: experience of a tertiary referral center.

    LENUS (Irish Health Repository)

    Phelan, P J

    2010-05-01

    Encapsulating peritoneal sclerosis (EPS) is arguably the most serious complication of chronic peritoneal dialysis (PD) therapy with extremely high mortality rates. We aimed to establish the rates of EPS and factors associated with its development in a single center.

  17. Thermoplastic encapsulation of waste surrogates by high-shear mixing

    International Nuclear Information System (INIS)

    Lageraaen, P.R.; Kalb, P.D.; Patel, B.R.

    1995-12-01

    Brookhaven National Laboratory (BNL) has developed a robust, extrusion-based polyethylene encapsulation process applicable to a wide range of solid and aqueous low-level radioactive, hazardous and mixed wastes. However, due to the broad range of physical and chemical properties of waste materials, pretreatment of these wastes is often required to make them amenable to processing with polyethylene. As part of the scope of work identified in FY95 open-quotes Removal and Encapsulation of Heavy Metals from Ground Water,close quotes EPA SERDP No. 387, that specifies a review of potential thermoplastic processing techniques, and in order to investigate possible pretreatment alternatives, BNL conducted a vendor test of the Draiswerke Gelimat (thermokinetic) mixer on April 25, 1995 at their test facility in Mahwah, NJ. The Gelimat is a batch operated, high-shear, high-intensity fluxing mixer that is often used for mixing various materials and specifically in the plastics industry for compounding additives such as stabilizers and/or colorants with polymers

  18. High hydrostatic pressure encapsulation of doxorubicin in ferritin nanocages with enhanced efficiency.

    Science.gov (United States)

    Wang, Qi; Zhang, Chun; Liu, Liping; Li, Zenglan; Guo, Fangxia; Li, Xiunan; Luo, Jian; Zhao, Dawei; Liu, Yongdong; Su, Zhiguo

    2017-07-20

    Human ferritin (HFn) nanocaging is becoming an appealing platform for anticancer drugs delivery. However, protein aggregation always occurs during the encapsulation process, resulting in low production efficiency. A new approach using high hydrostatic pressure (HHP) was explored in this study to overcome the problem of loading doxorubicin (DOX) in HFn. At the pressure of 500MPa and pH 5.5, DOX molecules were found to be encapsulated into HFn. Meanwhile, combining it with an additive of 20mM arginine completely inhibited precipitation and aggregation, resulting in highly monodispersed nanoparticles with almost 100% protein recovery. Furthermore, stepwise decompression and incubation of the complex in atmospheric pressure at pH 7.4 for another period could further increase the DOX encapsulation ratio. The HFn-DOX nanoparticles (NPs) showed similar morphology and structural features to the hollow cage and no notable drug leakage occurred for HFn-DOX NPs when stored at 4°C and pH 7.4 for two weeks. HFn-DOX NPs prepared through HHP also showed significant cytotoxicity in vitro and higher antitumor bioactivity in vivo than naked DOX. Moreover, This HHP encapsulation strategy could economize on DOX that was greatly wasted during the conventional preparation process simply through a desalting column. These results indicated that HHP could offer a feasible approach with high efficiency for the production of HFn-DOX NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Micro-Encapsulation of non-aqueous solvents for energy-efficient carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Stolaroff, Joshua K; Ye, Congwang; Oakdale, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baker, Sarah; Nugyen, Du; Smith, William; Aines, Roger

    2016-11-14

    Here, we demonstrate micro-encapsulation of several promising designer solvents: an IL, PCIL, and CO2BOL. We develop custom polymers that cure by UV light in the presence of each solvent while maintaining high CO2 permeability. We use several new process strategies to accommodate the viscosity and phase changes. We then measure and compare the CO2 absorption rate and capacity as well as the multi-cycle performance of the encapsulated solvents. These results are compared with previous work on encapsulated sodium carbonate solution. The prospects for designer solvents to reduce the cost of post-combustion capture and the implications for process design with encapsulated solvents are discussed.

  20. Micro-Encapsulation of Probiotics

    Science.gov (United States)

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  1. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  2. Silicon-Polymer Encapsulation of High-Level Calcine Waste for Transportation or Disposal

    International Nuclear Information System (INIS)

    Loomis, G.G.; Miller, C.M.; Giansiracusa, J.A.; Kimmel, R.; Prewett, S.V.

    2000-01-01

    This report presents the results of an experimental study investigating the potential uses for silicon-polymer encapsulation of High Level Calcine Waste currently stored within the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The study investigated two different applications of silicon polymer encapsulation. One application uses silicon polymer to produce a waste form suitable for disposal at a High Level Radioactive Waste Disposal Facility directly, and the other application encapsulates the calcine material for transportation to an offsite melter for further processing. A simulated waste material from INTEC, called pilot scale calcine, which contained hazardous materials but no radioactive isotopes was used for the study, which was performed at the University of Akron under special arrangement with Orbit Technologies, the originators of the silicon polymer process called Polymer Encapsulation Technology (PET). This document first discusses the PET process, followed by a presentation of past studies involving PET applications to waste problems. Next, the results of an experimental study are presented on encapsulation of the INTEC calcine waste as it applies to transportation or disposal of calcine waste. Results relating to long-term disposal include: (1) a characterization of the pilot calcine waste; (2) Toxicity Characteristic Leaching Procedure (TCLP) testing of an optimum mixture of pilot calcine, polysiloxane and special additives; and, (3) Material Characterization Center testing MCC-1P evaluation of the optimum waste form. Results relating to transportation of the calcine material for a mixture of maximum waste loading include: compressive strength testing, 10-m drop test, melt testing, and a Department of Transportation (DOT) oxidizer test

  3. Analysis of field usage failure rate data for plastic encapsulated solid state devices

    Science.gov (United States)

    1981-01-01

    Survey and questionnaire techniques were used to gather data from users and manufacturers on the failure rates in the field of plastic encapsulated semiconductors. It was found that such solid state devices are being successfully used by commercial companies which impose certain screening and qualification procedures. The reliability of these semiconductors is now adequate to support their consideration in NASA systems, particularly in low cost systems. The cost of performing necessary screening for NASA applications was assessed.

  4. Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation

    International Nuclear Information System (INIS)

    Bezbaruah, Achintya N.; Shanbhogue, Sai Sharanya; Simsek, Senay; Khan, Eakalak

    2011-01-01

    Nanoscale zero-valent iron (NZVI) particles (10–90 nm) were encapsulated in biodegradable calcium-alginate capsules for the first time for application in environmental remediation. Encapsulation is expected to offers distinct advances over entrapment. Trichloroethylene (TCE) degradation was 89–91% in 2 h, and the reaction followed pseudo first order kinetics for encapsulated NZVI systems with an observed reaction rate constant (k obs ) of 1.92–3.23 × 10 −2 min −1 and a surface normalized reaction rate constant (k sa ) of 1.02–1.72 × 10 −3 L m −2 min −1 . TCE degradation reaction rates for encapsulated and bare NZVI were similar indicating no adverse affects of encapsulation on degradation kinetics. The shelf-life of encapsulated NZVI was found to be four months with little decrease in TCE removal efficiency.

  5. Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan

    2016-10-01

    Full Text Available Phase change materials (PCMs have been identified as potential candidates for building energy optimization by increasing the thermal mass of buildings. The increased thermal mass results in a drop in the cooling/heating loads, thus decreasing the energy demand in buildings. However, direct incorporation of PCMs into building elements undermines their structural performance, thereby posing a challenge for building integrity. In order to retain/improve building structural performance, as well as improving energy performance, micro-encapsulated PCMs are integrated into building materials. The integration of microencapsulation PCMs into building materials solves the PCM leakage problem and assures a good bond with building materials to achieve better structural performance. The aim of this article is to identify the optimum micro-encapsulation methods and materials for improving the energy, structural and safety performance of buildings. The article reviews the characteristics of micro-encapsulated PCMs relevant to building integration, focusing on safety rating, structural implications, and energy performance. The article uncovers the optimum combinations of the shell (encapsulant and core (PCM materials along with encapsulation methods by evaluating their merits and demerits.

  6. Ultra-high resolution optical coherence tomography for encapsulation quality inspection

    KAUST Repository

    Czajkowski, Jakub

    2011-08-28

    We present the application of ultra-high resolution optical coherence tomography (UHR-OCT) in evaluation of thin, protective films used in printed electronics. Two types of sample were investigated: microscopy glass and organic field effect transistor (OFET) structure. Samples were coated with thin (1-3 μm) layer of parylene C polymer. Measurements were done using experimental UHR-OCT device based on a Kerr-lens mode locked Ti: sapphire femtosecond laser, photonic crystal fibre and modified, free-space Michelson interferometer. Submicron resolution offered by the UHR-OCT system applied in the study enables registration of both interfaces of the thin encapsulation layer. Complete, volumetric characterisation of protective layers is presented, demonstrating possibility to use OCT for encapsulation quality inspection. © Springer-Verlag 2011.

  7. Ultrafine Cobalt Sulfide Nanoparticles Encapsulated Hierarchical N-doped Carbon Nanotubes for High-performance Lithium Storage

    International Nuclear Information System (INIS)

    Li, Xiaoyan; Fu, Nianqing; Zou, Jizhao; Zeng, Xierong; Chen, Yuming; Zhou, Limin; Lu, Wei; Huang, Haitao

    2017-01-01

    Graphical abstract: Ultrafine cobalt sulfide nanoparticles encapsulated in hierarchical N-doped carbon nanotubes show exceptional lithium ion storage as anodes. - Abstract: Nanostructured cobalt sulfide based materials with rational design are attractive for high-performance lithium-ion batteries. In this work, we report a multistep method to synthesize ultrafine cobalt sulfide nanoparticles encapsulated in hierarchical N-doped carbon nanotubes (CoS x @HNCNTs). Co-based zeolitic imidazolate framework (ZIF-67) nanotubes are obtained from the reaction between electrospun polyacrylonitrile/cobalt acetate and 2-methylimidazole, followed by the dissolution of template. Next, a combined calcination and sulfidation process is employed to convert the ZIF-67 nanotubes to CoS x @HNCNTs. Benefited from the compositional and structural features, the as-prepared nanostructured hybrid materials deliver superior lithium storage properties with high capacity of 1200 mAh g −1 at 0.25 A g −1 . More importantly, a remarkable capacity of 1086 mAh g −1 can be maintained after 100 cycles at the current density of 0.5 A g −1 . Even at a high rate of 5 A g −1 , a reversible capacity of 592 mAh g −1 after 1600 cycles can still be achieved.

  8. Encapsulation of high temperature thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, James R.; Sakamoto, Jeffrey; Park, Youngsam

    2017-07-11

    A method of encapsulating a thermoelectric device and its associated thermoelectric elements in an inert atmosphere and a thermoelectric device fabricated by such method are described. These thermoelectric devices may be intended for use under conditions which would otherwise promote oxidation of the thermoelectric elements. The capsule is formed by securing a suitably-sized thin-walled strip of oxidation-resistant metal to the ceramic substrates which support the thermoelectric elements. The thin-walled metal strip is positioned to enclose the edges of the thermoelectric device and is secured to the substrates using gap-filling materials. The strip, substrates and gap-filling materials cooperatively encapsulate the thermoelectric elements and exclude oxygen and water vapor from atmospheric air so that the elements may be maintained in an inert, non-oxidizing environment.

  9. Rational synthesis of graphene-encapsulated uniform MnMoO4 hollow spheres as long-life and high-rate anodes for lithium-ion batteries.

    Science.gov (United States)

    Wei, Huaixin; Yang, Jun; Zhang, Yufei; Qian, Yong; Geng, Hongbo

    2018-03-29

    In this manuscript, the graphene-encapsulated MnMoO 4 hollow spheres (MnMoO 4 @G) synthesized by an effective strategy were reported. Benefiting from the intriguing hybrid architecture of hollow structure and conductive graphene network, the MnMoO 4 @G composite displays superior electrochemical performance with high specific capacity of 1142 mA h g -1 , high reversible cycling stability of 921 mA h g -1 at a current density of 100 mA g -1 after 70 cycles, and stable rate performance (around 513 mA h g -1 at a current density of 4.0 A g -1 ). The remarkable battery performance can be attributed to the rational design of the architecture, which not only ensures the fast transport of electrons and lithium ions within the electrode material, but also effectively relax the stress induced by the insertion/extraction of lithium ions. This facile synthetic method can extend to other transition metal oxides with large volume excursions and poor electric conductivity and promotes the development of transition metal oxides as high-performance LIB anode material. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers.

    Science.gov (United States)

    Rosenbaum, Ido; Harnoy, Assaf J; Tirosh, Einat; Buzhor, Marina; Segal, Merav; Frid, Liat; Shaharabani, Rona; Avinery, Ram; Beck, Roy; Amir, Roey J

    2015-02-18

    The high selectivity and often-observed overexpression of specific disease-associated enzymes make them extremely attractive for triggering the release of hydrophobic drug or probe molecules from stimuli-responsive micellar nanocarriers. Here we utilized highly modular amphiphilic polymeric hybrids, composed of a linear hydrophilic polyethylene glycol (PEG) and an esterase-responsive hydrophobic dendron, to prepare and study two diverse strategies for loading of enzyme-responsive micelles. In the first type of micelles, hydrophobic coumarin-derived dyes were encapsulated noncovalently inside the hydrophobic core of the micelle, which was composed of lipophilic enzyme-responsive dendrons. In the second type of micellar nanocarrier the hydrophobic molecular cargo was covalently linked to the end-groups of the dendron through enzyme-cleavable bonds. These amphiphilic hybrids self-assembled into micellar nanocarriers with their cargo covalently encapsulated within the hydrophobic core. Both types of micelles were highly responsive toward the activating enzyme and released their molecular cargo upon enzymatic stimulus. Importantly, while faster release was observed with noncovalent encapsulation, higher loading capacity and slower release rate were achieved with covalent encapsulation. Our results clearly indicate the great potential of enzyme-responsive micellar delivery platforms due to the ability to tune their payload capacities and release rates by adjusting the loading strategy.

  11. High voltage photo-switch package module having encapsulation with profiled metallized concavities

    Science.gov (United States)

    Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen A

    2015-05-05

    A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces metalized with first metallic layers formed thereon, and encapsulated with a dielectric encapsulation material such as for example epoxy. The first metallic layers are exposed through the encapsulation via encapsulation concavities which have a known contour profile, such as a Rogowski edge profile. Second metallic layers are then formed to line the concavities and come in contact with the first metal layer, to form profiled and metalized encapsulation concavities which mitigate enhancement points at the edges of electrodes matingly seated in the concavities. One or more optical waveguides may also be bonded to the substrate for coupling light into the photo-conductive wafer, with the encapsulation also encapsulating the waveguides.

  12. Free-Standing Hybrid Graphene Paper Encapsulating Nanostructures for High Cycle-Life Supercapacitors.

    Science.gov (United States)

    Jiao, Xinyan; Hao, Qingli; Xia, Xifeng; Lei, Wu; Ouyang, Yu; Ye, Haitao; Mandler, Daniel

    2018-03-09

    The incorporation of spacers between graphene sheets has been investigated as an effective method to improve the electrochemical performance of graphene papers (GPs) for supercapacitors. Here, we report the design of free-standing GP@NiO and GP@Ni hybrid GPs in which NiO nanoclusters and Ni nanoparticles are encapsulated into graphene sheets through electrostatic assembly and subsequent vacuum filtration. The encapsulated NiO nanoclusters and Ni nanoparticles can mitigate the restacking of graphene sheets, providing sufficient spaces for high-speed ion diffusion and electron transport. In addition, the spacers strongly bind to graphene sheets, which can efficiently improve the electrochemical stability. Therefore, at a current density of 0.5 A g -1 , the GP@NiO and GP@Ni electrodes exhibit higher specific capacitances of 306.9 and 246.1 F g -1 than the GP electrode (185.7 F g -1 ). The GP@NiO and GP@Ni electrodes exhibit capacitance retention of 98.7 % and 95.6 % after 10000 cycles, demonstrating an outstanding cycling stability. Additionally, the GP@NiO∥GP@Ni delivers excellent cycling stability (93.7 % after 10 000 cycles) and high energy density. These free-standing encapsulated hybrid GPs have great potential as electrode for high-performance supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries

    Science.gov (United States)

    Zhao, Bo; Huang, Sheng-Yun; Wang, Tao; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-12-01

    Hollow SnO2@Co3O4 spheres are fabricated using 300 nm spherical SiO2 particles as template. Then three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are successfully obtained through self-assembly in hydrothermal process from graphene oxide nanosheets and metal oxide hollow spheres. The three-dimensional graphene foams encapsulated architectures could greatly improve the capacity, cycling stability and rate capability of hollow SnO2@Co3O4 spheres electrodes due to the highly conductive networks and flexible buffering matrix. The three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are promising electrode materials for supercapacitors and lithium-ion batteries.

  14. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.

    Science.gov (United States)

    Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert

    2014-02-01

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO2) Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan; Degnan, Thomas; McCready, Mark; Stadtherr, Mark; Stolaroff, Joshuah; Ye, Congwang

    2016-09-30

    Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 μm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO2-permeable polymer shells. Here we report on the synthesis of the IL and PCIL materials, measurements of thermophysical properties including CO2 capacity and reprotonation equilibrium and kinetics, encapsulation of the ILs and PCILs, mechanical and thermodynamic testing of the encapsulated materials, development of a rate based model of the absorber, and the design of a laboratory scale unit to test the encapsulated particles for CO2 capture ability and efficiency. We show that the IL/PCIL materials can be successfully encapsulated, that they retain CO2 uptake capacity, and that the uptake rates are increased relative to a stagnant sample of IL liquid or PCIL powder.

  16. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device

    NARCIS (Netherlands)

    Schoeman, R.M.; Kemna, Evelien; Wolbers, F.; van den Berg, Albert

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped

  17. Highly stable lipid-encapsulation of fluorescent nanodiamonds for bioimaging applications.

    Science.gov (United States)

    Sotoma, Shingo; Hsieh, Feng-Jen; Chen, Yen-Wei; Tsai, Pei-Chang; Chang, Huan-Cheng

    2018-01-23

    Highly stable lipid-encapsulated fluorescent nanodiamonds (FNDs) are produced by photo-crosslinking of diacetylene-containing lipids physically attached to the FND surface. Not only is this coating method simple and fast, but also it gives the FND-lipid hybrids favorable properties for bioapplications. The hybrids are useful as fluorescent biolabels as well as fiducial markers for correlative light and electron microscopy.

  18. The Advanced Glaucoma Intervention Study (AGIS): 5. Encapsulated bleb after initial trabeculectomy.

    Science.gov (United States)

    Schwartz, A L; Van Veldhuisen, P C; Gaasterland, D E; Ederer, F; Sullivan, E K; Cyrlin, M N

    1999-01-01

    To compare the incidence of encapsulated bleb after trabeculectomy in eyes with and without previous argon laser trabeculoplasty and to assess other risk factors for encapsulated bleb development. After medical treatment failure, eyes enrolled in the Advanced Glaucoma Intervention Study (AGIS) were randomly assigned to sequences of interventions starting with either argon laser trabeculoplasty or trabeculectomy. In the present study we compared the clinical course for 1 year after trabeculectomy in 119 eyes with failed argon laser trabeculoplasty with that of 379 eyes without previous argon laser trabeculoplasty. Data on bleb encapsulation were collected at the time that the encapsulation was diagnosed, and 3 and 6 months later. Of multiple factors examined in the AGIS data for the risk of developing encapsulated bleb, only male gender and high school graduation without further formal education were statistically significant. Encapsulation occurred in 18.5% of eyes with previous argon laser trabeculoplasty failure and 14.5% of eyes without previous argon laser trabeculoplasty (unadjusted relative risk, 1.27; 95% confidence limits = 0.81, 2.00; P = .23). After adjusting for age, gender, educational achievement, prescribed systemic beta-blockers, diabetes, visual field score, and years since glaucoma diagnosis, this difference remains statistically not significant. Four weeks after trabeculectomy, mean intraocular pressure was 7.5 mm Hg higher in eyes with (22.5 mm Hg) than without (15.0 mm Hg) encapsulated bleb; at 1 year after trabeculectomy and the resumption of medical therapy when needed, this excess was reduced to 1.4 mm Hg. This study, as did two previous studies, found male gender to be a risk factor for bleb encapsulation. Four studies, including the present study, have reported a higher rate of encapsulation in eyes with previous argon laser trabeculoplasty; in two of the studies, one of which was the present study, the rate was not statistically

  19. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  20. Silk sericin-alginate-chitosan microcapsules: hepatocytes encapsulation for enhanced cellular functions.

    Science.gov (United States)

    Nayak, Sunita; Dey, Sanchareeka; Kundu, Subhas C

    2014-04-01

    The encapsulation based technology permits long-term delivery of desired therapeutic products in local regions of body without the need of immunosuppressant drugs. In this study microcapsules composed of sericin and alginate micro bead as inner core and with an outer chitosan shell are prepared. This work is proposed for live cell encapsulation for potential therapeutic applications. The sericin protein is obtained from cocoons of non-mulberry silkworm Antheraea mylitta. The sericin-alginate micro beads are prepared via ionotropic gelation under high applied voltage. The beads further coated with chitosan and crosslinked with genipin. The microcapsules developed are nearly spherical in shape with smooth surface morphology. Alamar blue assay and confocal microscopy indicate high cell viability and uniform encapsulated cell distribution within the sericin-alginate-chitosan microcapsules indicating that the microcapsules maintain favourable microenvironment for the cells. The functional analysis of encapsulated cells demonstrates that the glucose consumption, urea secretion rate and intracellular albumin content increased in the microcapsules. The study suggests that the developed sericin-alginate-chitosan microcapsule contributes towards the development of cell encapsulation model. It also offers to generate enriched population of metabolically and functionally active cells for the future therapeutics especially for hepatocytes transplantation in acute liver failure. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Air encapsulation. I. Measurement in a field soil

    International Nuclear Information System (INIS)

    Fayer, M.J.; Hillel, D.

    1986-01-01

    Encapsulated air is an important component of shallow water table fluctuations. Their objective was to measure the quantity and persistence of encapsulated air in a field setting. Using sprinkling rates of either 3.5 x 10 -6 or 3.8 x 10 -5 m s -1 , they brought the water table in a field soil from a depth of 1.5 m to the surface on several occasions. Moisture contents during and after sprinkling were monitored with a neutron probe. Twice following sprinkling, the water table was maintained at the surface for more than 20 d, during which time they continued to monitor moisture contents. With the water table at the surface, differences between the porosity and the measured moisture content were attributed to encapsulated air. Encapsulated air contents ranged from 1.1 to 6.3% of the bulk soil volume, depending on the rate of sprinkling, soil depth, and initial soil moisture content. During ponding, encapsulated air persisted at the 0.3-m depth for up to 28 d. The results indicate that encapsulated air is measurable in a field situation and that its quantity and persistence should be considered in analyzing the results of similar field experiments. 16 references

  2. Kinetic study of the Diels-Alder reaction of Li⁺@C₆₀ with cyclohexadiene: greatly increased reaction rate by encapsulated Li⁺.

    Science.gov (United States)

    Ueno, Hiroshi; Kawakami, Hiroki; Nakagawa, Koji; Okada, Hiroshi; Ikuma, Naohiko; Aoyagi, Shinobu; Kokubo, Ken; Matsuo, Yutaka; Oshima, Takumi

    2014-08-06

    We studied the kinetics of the Diels-Alder reaction of Li(+)-encapsulated [60]fullerene with 1,3-cyclohexadiene and characterized the obtained product, [Li(+)@C60(C6H8)](PF6(-)). Compared with empty C60, Li(+)@C60 reacted 2400-fold faster at 303 K, a rate enhancement that corresponds to lowering the activation energy by 24.2 kJ mol(-1). The enhanced Diels-Alder reaction rate was well explained by DFT calculation at the M06-2X/6-31G(d) level of theory considering the reactant complex with dispersion corrections. The calculated activation energies for empty C60 and Li(+)@C60 (65.2 and 43.6 kJ mol(-1), respectively) agreed fairly well with the experimentally obtained values (67.4 and 44.0 kJ mol(-1), respectively). According to the calculation, the lowering of the transition state energy by Li(+) encapsulation was associated with stabilization of the reactant complex (by 14.1 kJ mol(-1)) and the [4 + 2] product (by 5.9 kJ mol(-1)) through favorable frontier molecular orbital interactions. The encapsulated Li(+) ion catalyzed the Diels-Alder reaction by lowering the LUMO of Li(+)@C60. This is the first detailed report on the kinetics of a Diels-Alder reaction catalyzed by an encapsulated Lewis acid catalyst rather than one coordinated to a heteroatom in the dienophile.

  3. Critical factors affecting cell encapsulation in superporous hydrogels

    International Nuclear Information System (INIS)

    Desai, Esha S; Tang, Mary Y; Gemeinhart, Richard A; Ross, Amy E

    2012-01-01

    We recently showed that superporous hydrogel (SPH) scaffolds promote long-term stem cell viability and cell driven mineralization when cells were seeded within the pores of pre-fabricated SPH scaffolds. The possibility of cell encapsulation within the SPH matrix during its fabrication was further explored in this study. The impact of each chemical component used in SPH fabrication and each step of the fabrication process on cell viability was systematically examined. Ammonium persulfate, an initiator, and sodium bicarbonate, the gas-generating compound, were the two components having significant toxicity toward encapsulated cells at the concentrations necessary for SPH fabrication. Cell survival rates were 55.7% ± 19.3% and 88.8% ± 9.4% after 10 min exposure to ammonium persulfate and sodium bicarbonate solutions, respectively. In addition, solution pH change via the addition of sodium bicarbonate had significant toxicity toward encapsulated cells with cell survival of only 50.3% ± 2.5%. Despite toxicity of chemical components and the SPH fabrication method, cells still exhibited significant overall survival rates within SPHs of 81.2% ± 6.8% and 67.0% ± 0.9%, respectively, 48 and 72 h after encapsulation. This method of cell encapsulation holds promise for use in vitro and in vivo as a scaffold material for both hydrogel matrix encapsulation and cell seeding within the pores. (paper)

  4. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.

    Science.gov (United States)

    Kim, Seungjin; Bae, Wookeun; Hwang, Jungmin; Park, Jaewoo

    2010-01-01

    The degradation rates of toluene and trichloroethylene (TCE) by Pseudomonas putida and Bacillus spp. that were encapsulated in polyethylene glycol (PEG) polymers were evaluated in comparison with the results of exposure to suspended cultures. PEG monomers were polymerized together with TCE-degrading microorganisms, such that the cells were encapsulated in and protected by the matrices of the PEG polymers. TCE concentrations were varied from 0.1 to 1.5 mg/L. In the suspended cultures of P. putida, the TCE removal rate decreased as the initial TCE concentration increased, revealing TCE toxicity or a limitation of reducing power, or both. When the cells were encapsulated, an initial lag period of about 10-20 h was observed for toluene degradation. Once acclimated, the encapsulated P. putida cultures were more tolerant to TCE at an experimental range of 0.6-1.0 mg/L and gave higher transfer efficiencies (mass TCE transformed/mass toluene utilized). When the TCE concentration was low (e.g., 0.1 mg/L) the removal of TCE per unit mass of cells (specific removal) was significantly lower, probably due to a diffusion limitation into the PEG pellet. Encapsulated Bacillus spp. were able to degrade TCE cometabolically. The encapsulated Bacillus spp. gave significantly higher values than did P. putida in the specific removal and the transfer efficiency, particularly at relatively high TCE concentration of approximately 1.0±0.5 mg/L. The transfer efficiency by encapsulated Bacillus spp. in this study was 0.27 mgTCE/mgToluene, which was one to two orders of magnitude greater than the reported values.

  5. Encapsulation of biological species in sol-gel matrices

    International Nuclear Information System (INIS)

    Finnie, K.S.; Bartlett, J.R.; Woolfrey, J.L.

    2000-01-01

    Two examples are given of the gelation of silica sols containing bio catalysts, resulting in their encapsulation in porous matrices. Urease was encapsulated in gels made from a mixture of TMOS and alkyltrimethoxysilane. Enzyme activities, monitored by measuring the rate of production of ammoniacal nitrogen as urea was decomposed, ranged up to 60% of that of the unencapsulated species. Anaerobic sulphate-reducing bacteria were encapsulated in a gel produced from colloidal silica, thus avoiding contact with alcohol. The detection of H 2 S produced in the doped gel indicated that the bacteria were able to continue normal metabolic function within the gel matrix. A gel initially doped with ∼ 5 x 10 5 cells cm -3 , exhibited an optimum sulphate reduction rate of 11 ug h -1 cm -3 ; this reduction rate was quickly re-established after storage of the gel for 14 weeks. Copyright (2000) The Australian Ceramic Society

  6. Hypolipidaemic and anti-oxidative potential of encapsulated herb (Terminalia arjuna) added vanilla chocolate milk in high cholesterol fed rats.

    Science.gov (United States)

    Sawale, Pravin Digambar; Pothuraju, Ramesh; Abdul Hussain, Shaik; Kumar, Anuj; Kapila, Suman; Patil, Girdhari Ramdas

    2016-03-15

    Atherosclerosis is associated with coronary artery disease and occurs in developing as well as developed countries. In the present investigation, hypolipidaemic and anti-oxidative properties of encapsulated herb (Terminalia arjuna, 1.8%) added vanilla chocolate dairy drink was evaluated in high cholesterol fed Wistar rats for 60 days. At the end of the experimental period, a significant decrease in the body weight gain by rats receiving the encapsulated herb extract was noted as compared to high cholesterol fed rats. Administration of microencapsulated herb showed a statistically significant decrease in organ weights (epididymal fat and liver). Moreover, a significant decrease in serum lipids such as triglycerides, total cholesterol, low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol and atherogenic index was observed with encapsulated Terminalia arjuna extract in high cholesterol fed group. Increases in reduced glutathione and decreases in TBARS levels were also reported in both liver and red blood cell lysates with encapsulated herb supplementation. The results demonstrated that the bioactive components (phytosterols, flavanoids, saponins and tannins etc.) which are present in the encapsulated T. arjuna not only withstand the processing conditions but also are effectively released in the intestine and show their effects, such as hypolipidaemic and antioxidant activities, for better treating cardiovascular disease. © 2015 Society of Chemical Industry.

  7. Thin film Encapsulations of Flexible Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tsai Fa-Ta

    2016-01-01

    Full Text Available Various encapsulated films for flexible organic light emitting diodes (OLEDs were studied in this work, where gas barrier layers including inorganic Al2O3 thin films prepared by atomic layer deposition, organic Parylene C thin films prepared by chemical vapor deposition, and their combination were considered. The transmittance and water vapor transmission rate of the various organic and inorgabic encapsulated films were tested. The effects of the encapsulated films on the luminance and current density of the OLEDs were discussed, and the life time experiments of the OLEDs with these encapsulated films were also conducted. The results showed that the transmittance are acceptable even the PET substrate were coated two Al2O3 and Parylene C layers. The results also indicated the WVTR of the PET substrate improved by coating the barrier layers. In the encapsulation performance, it indicates the OLED with Al2O3 /PET, 1 pair/PET, and 2 pairs/PET presents similarly higher luminance than the other two cases. Although the 1 pair/PET encapsulation behaves a litter better luminance than the 2 pairs/PET encapsulation, the 2 pairs/PET encapsulation has much better life time. The OLED with 2 pairs/PET encapsulation behaves near double life time to the 1 pair encapsulation, and four times to none encapsulation.

  8. Dosimetric study of a new polymer encapsulated palladium-103 seed

    International Nuclear Information System (INIS)

    Bernard, S; Vynckier, S

    2005-01-01

    The use of low-energy photon emitters for brachytherapy applications, as in the treatment of prostate or ocular tumours, has increased significantly over the last few years. Several new seed models utilizing 103 Pd and 125 I have recently been introduced. Following the TG43U1 recommendations of the AAPM (American Association of Physicists in Medicine) (Rivard et al 2004 Med. Phys. 31 633), dose distributions around these low-energy photon emitters are characterized by the dose rate constant, the radial dose function and the anisotropy function in water. These functions and constants can be measured for each new seed in a solid phantom (i.e. solid water such as WT1) using high spatial resolution detectors such as very small thermoluminescent detectors. These experimental results in solid water must then be converted into liquid water by using Monte Carlo simulations. This paper presents the dosimetric parameters of a new palladium seed, OptiSeed TM (produced by International Brachytherapy (IBt), Seneffe, Belgium), made with a biocompatible polymeric shell and with a design that differs from the hollow titanium encapsulated seed, InterSource 103 , produced by the same company. A polymer encapsulation was chosen by the company IBt in order to reduce the quantity of radioactive material needed for a given dose rate, and to improve the symmetry of the radiation field around the seed. The necessary experimental data were obtained by measurements with LiF thermoluminescent dosimeters (1 mm 3 ) in a solid water phantom (WT1) and then converted to values in liquid water using Monte Carlo calculations (MCNP-4C). Comparison of the results with a previous study by Reniers et al (2002 Appl. Radiat. Isot. 57 805) shows very good agreement for the dose rate constant and for the radial dose function. In addition, the results also indicate an improvement in isotropy compared to a conventional titanium encapsulated seed. The relative dose (anisotropy value relative to 90 deg.) from

  9. Development of highly flexible and ultra-low permeation rate thin-film barrier structure for organic electronics

    International Nuclear Information System (INIS)

    Kim, Namsu; Graham, Samuel

    2013-01-01

    A flexible thin-film encapsulation architecture for organic electronics was built and consisted of a silicon oxide/alumina and parylene layer deposited over Ca sensors on a barrier-coated polyethylene terephthalate substrate. The film's effective water vapor transmission rate was 2.4 ± 1.5 × 10 −5 g/m 2 /day at 20 °C and 50% relative humidity. Flexural tests revealed that for films deposited on the polyethylene terephthalate substrate, the barrier layer failed due to cracking at a curvature radius of 6.4 mm, corresponding to a strain of 0.8%. Adding an epoxy top coat of suitable thickness shifted the neutral axis toward the encapsulation layer, reducing the induced strain. Barrier performance was maintained under the 6.4 mm radius of curvature in this encapsulation structure. Thus, shifting the neutral axis via device structural design is an effective method of extending the flexibility of thin-film encapsulation structure without compromising the performance loss as a barrier layer. - Highlights: • High performance barrier is fabricated on flexible substrate. • The water vapor transmission rate is 2.4 ± 1.5 × 10 −5 g/m 2 /day. • The structure maintains its performance under a small radius of bending curvature

  10. Durable crystalline Si photovoltaic modules based on silicone-sheet encapsulants

    Science.gov (United States)

    Hara, Kohjiro; Ohwada, Hiroto; Furihata, Tomoyoshi; Masuda, Atsushi

    2018-02-01

    Crystalline Si photovoltaic (PV) modules were fabricated with sheets of poly(dimethylsiloxane) (silicone) as an encapsulant. The long-term durability of the silicone-encapsulated PV modules was experimentally investigated. The silicone-based modules enhanced the long-term durability against potential-induced degradation (PID) and a damp-heat (DH) condition at 85 °C with 85% relative humidity (RH). In addition, we designed and fabricated substrate-type Si PV modules based on the silicone encapsulant and an Al-alloy plate as the substratum, which demonstrated high impact resistance and high incombustible performance. The high chemical stability, high volume resistivity, rubber-like elasticity, and incombustibility of the silicone encapsulant resulted in the high durability of the modules. Our results indicate that silicone is an attractive encapsulation material, as it improves the long-term durability of crystalline Si PV modules.

  11. High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent

    NARCIS (Netherlands)

    Goertz, David E.; Frijlink, Martijn E.; de Jong, N.; van der Steen, A.F.W.

    2006-01-01

    An experimental lipid encapsulated contrast agent comprised substantially of micrometer to submicrometer diameter bubbles was evaluated for its capacity to produce nonlinear scattering in response to high transmit frequencies. Agent characterization experiments were conducted at transmit frequencies

  12. Development of thin film encapsulation process for piezoresistive MEMS gyroscope with wide gaps

    Science.gov (United States)

    Ayanoor-Vitikkate, Vipin

    The gyroscope is an inertial sensor used to measure the angular rate of a rotating object. This helps to determine the pitch and yaw rate of any moving body. A number of applications have been developed for consumer and automotive markets, for e.g. vehicle stability control, navigation assist, roll over detection. These are primarily used in high-end cars, where cost is not a major factor. Other areas where a MEMS Gyro can be used are robotics, camcorder stabilization, virtual reality, and more. Primarily due to cost and the size most of these applications have not reached any significant volume. One reason for this is the relatively high cost of MEMS gyros compared to other MEMS sensors like accelerometers or pressure sensors. Generally the cost of packaging a MEMS sensor is about 85-90% of the total cost. Currently most MEMS based gyroscopes are made using bulk or surface micromachining, after which they are packaged using wafer bonding. This unfortunately leads to wastage of silicon and increase in the package size, thus reducing the yield. One way to reduce the cost of packaging is by wafer scale thin film encapsulation of MEMS gyroscopes. The goal of the present work is to fabricate a rate grade MEMS gyroscope and encapsulate it by modifying an existing thin-film encapsulation technique. Packaging is an important step towards commercialization of the device and we plan to use thin wafer scale encapsulation technique developed previously in our group to package these devices. The silicon micro machined gyroscope will be fabricated on SOI (Silicon-on-Insulator) wafers using Bosch DRIE etching techniques. The encapsulation of the device is carried out using epitaxial polysilicon in order to provide a high vacuum inside the device chamber. The advantages offered by this technique are the reduction in area of the die and thus less silicon surface is wasted. In addition to this the encapsulation technique helps in creating a vacuum inside the micro device, which

  13. Capacitance-voltage analysis of electrical properties for WSe2 field effect transistors with high-k encapsulation layer

    Science.gov (United States)

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho Kyun; You, Min Youl; Jin, Jun-Eon; Choi, Miri; Cho, Jiung; Kim, Gyu-Tae

    2018-02-01

    Doping effects in devices based on two-dimensional (2D) materials have been widely studied. However, detailed analysis and the mechanism of the doping effect caused by encapsulation layers has not been sufficiently explored. In this work, we present experimental studies on the n-doping effect in WSe2 field effect transistors (FETs) with a high-k encapsulation layer (Al2O3) grown by atomic layer deposition. In addition, we demonstrate the mechanism and origin of the doping effect. After encapsulation of the Al2O3 layer, the threshold voltage of the WSe2 FET negatively shifted with the increase of the on-current. The capacitance-voltage measurements of the metal insulator semiconductor (MIS) structure proved the presence of the positive fixed charges within the Al2O3 layer. The flat-band voltage of the MIS structure of Au/Al2O3/SiO2/Si was shifted toward the negative direction on account of the positive fixed charges in the Al2O3 layer. Our results clearly revealed that the fixed charges in the Al2O3 encapsulation layer modulated the Fermi energy level via the field effect. Moreover, these results possibly provide fundamental ideas and guidelines to design 2D materials FETs with high-performance and reliability.

  14. LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes.

    Science.gov (United States)

    Fei, Huilong; Peng, Zhiwei; Yang, Yang; Li, Lei; Raji, Abdul-Rahman O; Samuel, Errol L G; Tour, James M

    2014-07-11

    LiFePO4 encapsulated in graphene nanoshells (LiFePO4@GNS) nanoparticles were synthesized by solid state reaction between graphene-coated Fe nanoparticles and LiH2PO4. The resulting nanocomposite was demonstrated to be a superior lithium-ion battery cathode with improved cycle and rate performances.

  15. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    Science.gov (United States)

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.

  16. Sol-gel method for encapsulating molecules

    Science.gov (United States)

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  17. Polycaprolactone Thin-Film Micro- and Nanoporous Cell-Encapsulation Devices.

    Science.gov (United States)

    Nyitray, Crystal E; Chang, Ryan; Faleo, Gaetano; Lance, Kevin D; Bernards, Daniel A; Tang, Qizhi; Desai, Tejal A

    2015-06-23

    Cell-encapsulating devices can play an important role in advancing the types of tissue available for transplantation and further improving transplant success rates. To have an effective device, encapsulated cells must remain viable, respond to external stimulus, and be protected from immune responses, and the device itself must elicit a minimal foreign body response. To address these challenges, we developed a micro- and a nanoporous thin-film cell encapsulation device from polycaprolactone (PCL), a material previously used in FDA-approved biomedical devices. The thin-film device construct allows long-term bioluminescent transfer imaging, which can be used for monitoring cell viability and device tracking. The ability to tune the microporous and nanoporous membrane allows selective protection from immune cell invasion and cytokine-mediated cell death in vitro, all while maintaining typical cell function, as demonstrated by encapsulated cells' insulin production in response to glucose stimulation. To demonstrate the ability to track, visualize, and monitor the viability of cells encapsulated in implanted thin-film devices, we encapsulated and implanted luciferase-positive MIN6 cells in allogeneic mouse models for up to 90 days. Lack of foreign body response in combination with rapid neovascularization around the device shows promise in using this technology for cell encapsulation. These devices can help elucidate the metrics required for cell encapsulation success and direct future immune-isolation therapies.

  18. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    Science.gov (United States)

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Huilin; Chen, Junzheng; Cao, Ruiguo; Murugesan, Vijay; Rajput, Nav Nidhi; Han, Kee Sung; Persson, Kristin; Estevez, Luis; Engelhard, Mark H.; Zhang, Ji-Guang; Mueller, Karl T.; Cui, Yi; Shao, Yuyan; Liu, Jun

    2017-09-25

    Sulfur encapsulation in high surface area, nanoporous carbon is currently the most widely studied approach to improve the cycling stability of Li-S batteries. However, the relatively large amount of high surface area carbon decreases the overall volumetric energy density in the system and makes it difficult to compete with other battery chemistries. In this paper, we report a new approach that does not depend on sulfur encapsulation and high surface area carbon. We investigate the nucleation and deposition of sulfur using low surface area carbon in the cathode (surface area 17 m2 g-1). Optimization of the solvent properties and the deposition condition produce large spherical porous agglomerated particles rather than thin films. A solution mediated nucleation and growth mechanism is identified to form the large porous polysulfide particles. This new mechanism leads to close to 100% sulfur utilization, almost no capacity fading, over 99% coulombic efficacy, and high energy density (2350 Wh kg-1 and 2600 Wh L-1 based on overall mass/volume of cathode). This study may open a fundamentally new approach of using a low surface area carbon host for designing high energy Li-S battery by controlling the nucleation/growth pathway and morphology of sulfur species.

  20. Encapsulation of electroless copper patterns into diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Pimenov, S.M.; Shafeev, G.A.; Lavrischev, S.V. [General Physics Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    The results are reported on encapsulating copper lines into diamond films grown by a DC plasma CVD. The process includes the steps of (i) laser activation of diamond for electroless metal plating, (ii) electroless copper deposition selectively onto the activated surface regions, and (iii) diamond regrowth on the Cu-patterned diamond films. The composition and electrical properties of the encapsulated copper lines were examined, revealing high purity and low electrical resistivity of the encapsulated electroless copper.

  1. Sclerosing encapsulating peritonitis: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Candido, Paula de Castro Menezes; Werner, Andrea de Freitas; Pereira, Izabela Machado Flores; Matos, Breno Assuncao; Pfeilsticker, Rudolf Moreira; Silva Filho, Raul, E-mail: paulacmcandido@yahoo.com.br [Hospital Felicio Rocho, Belo Horizonte, MG (Brazil)

    2015-01-15

    Sclerosing encapsulating peritonitis, a rare cause of bowel obstruction, was described as a complication associated with peritoneal dialysis which is much feared because of its severity. The authors report a case where radiological findings in association with clinical symptoms have allowed for a noninvasive diagnosis of sclerosing encapsulating peritonitis, emphasizing the high sensitivity and specificity of computed tomography to demonstrate the characteristic findings of such a condition. (author)

  2. Matrix-encapsulated waste forms: application to idealized systems, commercial and SRP/INEL wastes, hydrated radiophases and encapsulant phases

    International Nuclear Information System (INIS)

    Roy, R.; Vance, E.R.; McCarthy, G.J.; White, W.B.

    1981-01-01

    This paper describes the encapsulation strategy as applied to microscopic-scale encapsulation in ceramics composed of micron-sized grains of possibly more leachable radiophases intimately surrounded by micron-sized grains of more insoluble phases. The encapsulation approach should be valid, almost axiomatic, for defense waste. However, there are still problems to be investigated experimentally. These are (a) because of the dilution, it is difficult to confirm the geometry of the radionuclide-bearing phases relative to that of the matrix: one almost has to use the inverse approach by making leach measurements, (b) deciding between using the highly reactive oxyhydroxide sludges themselves or sintered calcine to be coated, (c) verification of the insolubility of the encapsulant phases in a variety of groundwaters, and (d) the production of ceramics of near-zero porosity, using hot-isostatic pressing, or incorporation in either silicate or phosphate cements

  3. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Tudor Albert Ioan

    2018-01-01

    Full Text Available Thermal energy storage systems using phase change materials (PCMs as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300–500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  4. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Science.gov (United States)

    Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores

    2018-05-01

    Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  5. Encapsulation plant at Forsmark

    International Nuclear Information System (INIS)

    Nystroem, Anders

    2007-08-01

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate report

  6. Encapsulation plant at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Anders

    2007-08-15

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate

  7. Encapsulation Efficiency, Oscillatory Rheometry

    Directory of Open Access Journals (Sweden)

    Z. Mohammad Hassani

    2014-01-01

    Full Text Available Nanoliposomes are one of the most important polar lipid-based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using a modified thermal method. Only one melting peak in DSC curve of gamma oryzanol bearing liposomes was observed which could be attributed to co-crystallization of both compounds. The addition of gamma oryzanol, caused to reduce the melting point of 5% (w/v lecithin-based liposome from 207°C to 163.2°C. At high level of lecithin, increasing of liposome particle size (storage at 4°C for two months was more obvious and particle size increased from 61 and 113 to 283 and 384 nanometers, respectively. The encapsulation efficiency of gamma oryzanol increased from 60% to 84.3% with increasing lecithin content. The encapsulation stability of oryzanol in liposome was determined at different concentrations of lecithin 3, 5, 10, 20% (w/v and different storage times (1, 7, 30 and 60 days. In all concentrations, the encapsulation stability slightly decreased during 30 days storage. The scanning electron microscopy (SEM images showed relatively spherical to elliptic particles which indicated to low extent of particles coalescence. The oscillatory rheometry showed that the loss modulus of liposomes were higher than storage modulus and more liquid-like behavior than solid-like behavior. The samples storage at 25°C for one month, showed higher viscoelastic parameters than those having been stored at 4°C which were attributed to higher membrane fluidity at 25°C and their final coalescence.Nanoliposomes are one of the most important polar lipid based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using modified thermal method. Only one

  8. Nano-encapsulation of olive leaf phenolic compounds through WPC-pectin complexes and evaluating their release rate.

    Science.gov (United States)

    Mohammadi, Adeleh; Jafari, Seid Mahdi; Assadpour, Elham; Faridi Esfanjani, Afshin

    2016-01-01

    In this study, W/O micro-emulsions as primary emulsions and a complex of whey protein concentrate (WPC) and pectin in the external aqueous phase were used to produce W/O/W emulsions. Average droplet size of primary W/O emulsion and multiple emulsions stabilized by WPC or WPC-pectin after one day of production was 6.16, 675.7 and 1443 nm, respectively, which achieved to 22.97, 347.7 and, 1992.4 nm after 20 days storage without any sedimentation. The encapsulation efficiency of phenolic compounds for stabilized W/O/W emulsions with WPC and WPC-pectin were 93.34% and 96.64%, respectively, which was decreased to 72.73% and 88.81% at 20th storage day. The lowest release of phenolics observed in multiple emulsions of WPC-pectin. These results suggest that nano-encapsulation of olive leaf extract within inner aqueous phase of W/O/W emulsions was successful, and there could be a high potential for the application of olive leaf extract in fortification of food products. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Encapsulation of phytosterols and phytosterol esters in liposomes made with soy phospholipids by high pressure homogenization.

    Science.gov (United States)

    Wang, Fan C; Acevedo, Nuria; Marangoni, Alejandro G

    2017-11-15

    Phytosterols and phytosterol esters were encapsulated within large unilamellar liposomes prepared with soy phospholipids using a microfluidizer. The average particle diameter of these liposomal vesicles increased with increasing amounts of encapsulated phytosterols, especially with increasing free sterol content. The phytosterol content, liposomal particle size, and phytosterol encapsulation efficiency started to plateau when liposomes were prepared with MOPS buffer dispersions that contained 50 mg ml -1 soy phospholipid and more than 4% phytosterol blend, suggesting the saturation of phytosterol encapsulation. We proposed an encapsulation mechanism of free sterols and phytosterol esters in liposomes, where free sterols were mainly encapsulated within the lumen of these liposomes as crystals, and sterol esters and some free sterols were incorporated within the phospholipid bilayer of the liposomal membrane. The results from this work could provide the pharmaceutical and nutraceutical industries a practical method to produce loaded liposomes using inexpensive phospholipid mixtures for the delivery of bioactive ingredients.

  10. Encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.

    1980-01-01

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  11. Production and characterization of nanocapsules encapsulated linalool by ionic gelation method using chitosan as wall material

    Directory of Open Access Journals (Sweden)

    Zuobing XIAO

    Full Text Available Abstract Linalool has been extensively applied in various fields, such as flavoring agent, perfumes, cosmetics and medical science. However, linalool is unstable, volatile and readily oxidizable. A sensitive substance can be encapsulated in a capsule, so encapsulation technology can solve these problems. In this paper, linalool-loaded nanocapsules (Lin-nanocapsules were prepared via the ionic gelation method and Lin-nanocapsules were characterized. The results of Fourier transformation infrared spectroscopy (FTIR showed that linalool was successfully encapsulated in the wall materials. Scanning electron microscopy (SEM results demonstrated that the shapes of Lin-nanocapsules, with smooth surfaces, were nearly spherical. Lin-nanocapsule average particle size was 352 nm and its polydispersity index (PDI was proved to be 0.214 by the results of dynamic light scattering (DLC. Thermogravimetric results indicated that linalool loading capacity (LC was 15.17%, and encapsulation could decrease linalool release and increase linalool retaining time under the high temperature. Oscillatory shear and steady-state shear measurements of Lin-nanocapsule emulsions were systematically investigated. The results of steady-state shear showed that Lin-nanocapsule emulsion, which was Newtonian only for high shear rate, was non-Newtonian. It was proved by oscillatory shear that when oscillation frequency changed from low to high, Lin-nanocapsules emulsion changed from viscous into elastic.

  12. Photopolymerizable liquid encapsulants for microelectronic devices

    Science.gov (United States)

    Baikerikar, Kiran K.

    2000-10-01

    Plastic encapsulated microelectronic devices consist of a silicon chip that is physically attached to a leadframe, electrically interconnected to input-output leads, and molded in a plastic that is in direct contact with the chip, leadframe, and interconnects. The plastic is often referred to as the molding compound, and is used to protect the chip from adverse mechanical, thermal, chemical, and electrical environments. Encapsulation of microelectronic devices is typically accomplished using a transfer molding process in which the molding compound is cured by heat. Most transfer molding processes suffer from significant problems arising from the high operating temperatures and pressures required to fill the mold. These aspects of the current process can lead to thermal stresses, incomplete mold filling, and wire sweep. In this research, a new strategy for encapsulating microelectronic devices using photopolymerizable liquid encapsulants (PLEs) has been investigated. The PLEs consist of an epoxy novolac-based vinyl ester resin (˜25 wt.%), fused silica filler (70--74 wt.%), and a photoinitiator, thermal initiator, and silane coupling agent. For these encapsulants, the use of light, rather than heat, to initiate the polymerization allows precise control over when the reaction starts, and therefore completely decouples the mold filling and the cure. The low viscosity of the PLEs allows for low operating pressures and minimizes problems associated with wire sweep. In addition, the in-mold cure time for the PLEs is equivalent to the in-mold cure times of current transfer molding compounds. In this thesis, the thermal and mechanical properties, as well as the viscosity and adhesion of photopolymerizable liquid encapsulants, are reported in order to demonstrate that a UV-curable formulation can have the material properties necessary for microelectronic encapsulation. In addition, the effects of the illumination time, postcure time, fused silica loading, and the inclusion

  13. Lead macro-encapsulation conceptual and experimental studies

    International Nuclear Information System (INIS)

    Orebaugh, E.G.

    1993-01-01

    Macro-encapsulation, the regulatory treatment for radioactively contaminated lead (mixed) waste has been conceptually and experimentally evaluated for practical application. Epoxy encapsulants molded around lead billets have proven to be exceptionally rugged, easily applied, have high radiation and chemical stability, and minimize required process equipment and production of secondary wastes. This technology can now be considered developed, and can be applied as discussed in this report

  14. Oxygen Measurements in Liposome Encapsulated Hemoglobin

    Science.gov (United States)

    Phiri, Joshua Benjamin

    Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.

  15. Challenging encapsulation in the design of high-risk control systems

    Science.gov (United States)

    Dvorak, D.

    2002-01-01

    An apporpriate architectural approach is to acknowledge the underlying physics and to elevate the concepts of state and models to first-class design elements that are not encapsulated within subsystem objects.

  16. Integrating Micro- or Nanoscale Encapsulation Technology with Vitreous Cryopreservation: A New Strategy to Improve Biopreservation.

    Science.gov (United States)

    Zheng, Y Y; Zhao, G

      BACKGROUND: None-uniform distributions of temperatures, limited freezing and thawing rates, and thermal stresses are three main hindering factors for successful vitreous cryopreservation of mass volume of biosamples. Micro- and nanoscale encapsulation, owning the intrinsic features to avoid those limitations introduced by the traditional approaches, has been opened up a new way for effective and high-efficiency biopreservation. This short review article summarizes recent advances in cell encapsulation technology for biopreservation by manipulating cells and biological agents in micro- or nanoscale volume droplets and microgels, and discusses its promising applications for future vitreous cryopreservation.

  17. Selective encapsulation by Janus particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu [Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Ruth, Donovan; Gunton, James D. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Rickman, Jeffrey M. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  18. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO2) Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan F [Univ. of Texas, Austin, TX (United States); Degnan, Jr, Thomas Francis [Univ. of Notre Dame, IN (United States); McCready, Mark J. [Univ. of Notre Dame, IN (United States); Stadtherr, Mark A. [Univ. of Texas, Austin, TX (United States); Stolaroff, Joshua K [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ye, Congwang [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-03

    Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 µm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO2-permeable polymer shells. Here we report on the encapsulation of the IL and PCIL materials, thermodynamic testing of the encapsulated materials, mass transfer measurements in both a fluidized bed and a packed bed, determination of the effect of impurities (SO2, NOx and water) on the free and encapsulated IL and PCIL, recyclability of the CO2 uptake, selection and synthesis of kg quantities of the IL and PCIL, identification of scale-up methods for encapsulation and production of a kg quantity of the PCIL, construction and shakedown of the laboratory scale unit to test the encapsulated particles for CO2 capture ability and efficiency, use of our mass transfer model to predict mass transfer and identify optimal properties of the encapsulated particles, and initial testing of the encapsulated particles in the laboratory scale unit. We also show our attempts at developing shell materials that are resistant to water permeation. Overall, we have shown that the selected IL and PCIL can be successfully encapsulated in polymer shells and the methods scaled up to production levels. The IL/PCIL and encapsulated IL/PCIL react irreversibly with SO2 and NOx so the CO2 capture unit would need to be placed after the flue gas desulfurization and NOx reduction units. However

  19. FEM Simulation of Influence of Protective Encapsulation on MEMS Pressure Sensor

    DEFF Research Database (Denmark)

    Yao, Qingshan; Janting, Jakob; Branebjerg, Jens

    2003-01-01

    The objective of the work is to evaluate the feasibility of packaging a MEMS silicon pressure sensor by using either a polymer encapsulation or a combination of a polymer encapsulation and a metallic protection Membrane (fig. 1). The potential application of the protected sensor is for harsh...... environments. Several steps of simulation are carried out:1) Comparisons of the sensitivities are made among the non-encapsulated silicon sensor, the polymer encapsulated and polymer with metal encapsulated sensor. This is for evaluating whether the encapsulating materials reduce the pressure sensitivity...... whether the metallic membrane / coating will peel off when applying the maximum pressure, which is 4000 bar leading to high shear stress between the metallic membrane and the polymer encapsulation material.3) Thermal calculations are made to evaluate the influence of the environment on the packaged sensor...

  20. Cytokine production induced by non-encapsulated and encapsulated Porphyromonas gingivalis strains

    NARCIS (Netherlands)

    Kunnen, A.; Dekker, D.C.; van Pampus, M.G.; Harmsen, H.J.; Aarnoudse, J.G.; Abbas, F.; Faas, M.M.

    Objective: Although the exact reason is not known, encapsulated gram-negative Porphyromonas gingivalis strains are more virulent than non-encapsulated strains. Since difference in virulence properties may be due to difference in cytokine production following recognition of the bacteria or their

  1. Highly efficient one-step synthesis of carbon encapsulated nanocrystals by the oxidation of metal π-complexes

    Science.gov (United States)

    Liu, Boyang; Shao, Yingfeng; Xiang, Xin; Zhang, Fuhua; Yan, Shengchang; Li, Wenge

    2017-08-01

    Various carbon encapsulated nanocrystals, including MnS and MnO, Cr2O3, MoO2, Fe7S8 and Fe3O4, and ZrO2, are prepared in one step and in situ by a simple and highly efficient synthesis approach. The nanocrystals have an equiaxed morphology and a median size smaller than 30 nm. Tens and hundreds of these nanocrystals are entirely encapsulated by a wormlike amorphous carbon shell. The formation of a core-shell structure depends on the strongly exothermic reaction of metal π-complexes with ammonium persulfate in an autoclave at below 200 °C. During the oxidation process, the generated significant amounts of heat will destroy the molecular structure of the metal π-complex and cleave the ligands into small carbon fragments, which further transform into an amorphous carbon shell. The central metal atoms are oxidized to metal oxide/sulfide nanocrystals. The formation of a core-shell structure is independent of the numbers of ligands and carbon atoms as well as the metal types, implying that any metal π-complex can serve as a precursor and that various carbon encapsulated nanocrystals can be synthesized by this method.

  2. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    International Nuclear Information System (INIS)

    Wang Xiaoyun; Xu Hui; Zhao Yanqiu; Wang Shaoning; Abe, Hiroya; Naito, Makio; Liu Yanli; Wang Guoqing

    2012-01-01

    Highlights: ► PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). ► Sustained Doxy release without obvious burst was observed. ► Mechanism of the sustained Doxy release was illustrated. ► Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady compared to that of the un-encapsulated microspheres. In conclusion, PLGA encapsulated HAP-MSs may

  3. On-chip Magnetic Separation and Cell Encapsulation in Droplets

    Science.gov (United States)

    Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.

    2012-02-01

    The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.

  4. Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe3O4 nano-flower architecture with high lithium storage capacity and excellent rate capability

    Science.gov (United States)

    Ma, Yating; Huang, Jian; Lin, Liang; Xie, Qingshui; Yan, Mengyu; Qu, Baihua; Wang, Laisen; Mai, Liqiang; Peng, Dong-Liang

    2017-10-01

    Graphene-encapsulated hierarchical metal oxides architectures can efficiently combine the merits of graphene and hierarchical metal oxides, which are deemed as the potential anode material candidates for the next-generation lithium-ion batteries due to the synergistic effect between them. Herein, a cationic surfactant induced self-assembly method is developed to construct 3D Fe3O4@reduction graphene oxide (H-Fe3O4@RGO) hybrid architecture in which hierarchical Fe3O4 nano-flowers (H-Fe3O4) are intimately encapsulated by 3D graphene network. Each H-Fe3O4 particle is constituted of rod-shaped skeletons surrounded by petal-like nano-flakes that are made up of enormous nanoparticles. When tested as the anode material in lithium-ion batteries, a high reversible capacity of 2270 mA h g-1 after 460 cycles is achieved under a current density of 0.5 A g-1. More impressively, even tested at a large current density of 10 A g-1, a decent reversible capacity of 490 mA h g-1 can be retained, which is still higher than the theoretical capacity of traditional graphite anode, demonstrating the remarkable lithium storage properties. The reasons for the excellent electrochemical performance of H-Fe3O4@RGO electrode have been discussed in detail.

  5. Encapsulation by Janus spheroids

    OpenAIRE

    Li, Wei; Liu, Ya; Brett, Genevieve; Gunton, James D.

    2011-01-01

    The micro/nano encapsulation technology has acquired considerable attention in the fields of drug delivery, biomaterial engineering, and materials science. Based on recent advances in chemical particle synthesis, we propose a primitive model of an encapsulation system produced by the self-assembly of Janus oblate spheroids, particles with oblate spheroidal bodies and two hemi-surfaces coded with dissimilar chemical properties. Using Monte Carlo simulation, we investigate the encapsulation sys...

  6. Encapsulation of spent nuclear fuel-safety analysis

    International Nuclear Information System (INIS)

    Soederman, E.

    1983-04-01

    Two methods of encapsulation are studied, both including a copper canister. In one process the copper canister with the spent fuel is filled with copper powder and pressed to solid copper metal at high pressure. In the other process lead is cast around the fuel before the canister is sealed by electron beam welding. The activity decay of the fuel has been going on for 40 years before it arrives to the encapsulation station. This is the basic reason for expecting less activity release and less contamination of the plant than would be the case with fuel recently taken out from the reactors. In analysing the plant safety, experience from the nuclear power plants, from the planning of the Swedish central storage facility for spent fuel (CLAB) and from La Hague has been used. The analysis is also based on experience of todays technology, although it should be possible to improve the encapsulation process further before time has come to actually build the plant. The environment activity release will be very low, both at normal operation and following accidents in the plant. Using very conservative release rates also the most severe anticipated accident in the plant will induce a dose to critical group of only 3 μSv. The staff dose can also be kept low. Due to remote handling, fuel damage will not primarily give staff dose. Of the totally anticipated staff dose of 150 man mSv/year the greatest portion will come from external radiation during repair work in areas where fuel containing canisters by failure can not be taken away. The hot isostatic pressed (HIP) canister process contains more operations than does the lead casting and welding procedure. It is therefore expected to give the highest activity release and staff dose unless extra measures are taken to keep them low. Using remote operation and adequate equipment the encapsulation station with any of the two processes can be built and run with good radiological safety. (author)

  7. Encapsulating Silica/Antimony into Porous Electrospun Carbon Nanofibers with Robust Structure Stability for High-Efficiency Lithium Storage.

    Science.gov (United States)

    Wang, Hongkang; Yang, Xuming; Wu, Qizhen; Zhang, Qiaobao; Chen, Huixin; Jing, Hongmei; Wang, Jinkai; Mi, Shao-Bo; Rogach, Andrey L; Niu, Chunming

    2018-04-24

    To address the volume-change-induced pulverization problems of electrode materials, we propose a "silica reinforcement" concept, following which silica-reinforced carbon nanofibers with encapsulated Sb nanoparticles (denoted as SiO 2 /Sb@CNFs) are fabricated via an electrospinning method. In this composite structure, insulating silica fillers not only reinforce the overall structure but also contribute to additional lithium storage capacity; encapsulation of Sb nanoparticles into the carbon-silica matrices efficiently buffers the volume changes during Li-Sb alloying-dealloying processes upon cycling and alleviates the mechanical stress; the porous carbon nanofiber framework allows for fast charge transfer and electrolyte diffusion. These advantageous characteristics synergistically contribute to the superior lithium storage performance of SiO 2 /Sb@CNF electrodes, which demonstrate excellent cycling stability and rate capability, delivering reversible discharge capacities of 700 mA h/g at 200 mA/g, 572 mA h/g at 500 mA/g, and 468 mA h/g at 1000 mA/g each after 400 cycles. Ex situ as well as in situ TEM measurements confirm that the structural integrity of silica-reinforced Sb@CNF electrodes can efficiently withstand the mechanical stress induced by the volume changes. Notably, the SiO 2 /Sb@CNF//LiCoO 2 full cell delivers high reversible capacities of ∼400 mA h/g after 800 cycles at 500 mA/g and ∼336 mA h/g after 500 cycles at 1000 mA/g.

  8. Hanford waste encapsulation: strontium and cesium

    International Nuclear Information System (INIS)

    Jackson, R.R.

    1976-06-01

    The strontium and cesium fractions separated from high radiation level wastes at Hanford are converted to the solid strontium fluoride and cesium chloride salts, doubly encapsulated, and stored underwater in the Waste Encapsulation and Storage Facility (WESF). A capsule contains approximately 70,000 Ci of 137 Cs or 70,000 to 140,000 Ci of 90 Sr. Materials for fabrication of process equipment and capsules must withstand a combination of corrosive chemicals, high radiation dosages and frequently, elevated temperatures. The two metals selected for capsules, Hastelloy C-276 for strontium fluoride and 316-L stainless steel for cesium chloride, are adequate for prolonged containment. Additional materials studies are being done both for licensing strontium fluoride as source material and for second generation process equipment

  9. Encapsulation in the food industry: a review.

    Science.gov (United States)

    Gibbs, B F; Kermasha, S; Alli, I; Mulligan, C N

    1999-05-01

    Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.

  10. Suppression of intrinsic roughness in encapsulated graphene

    DEFF Research Database (Denmark)

    Thomsen, Joachim Dahl; Gunst, Tue; Gregersen, Søren Schou

    2017-01-01

    Roughness in graphene is known to contribute to scattering effects which lower carrier mobility. Encapsulating graphene in hexagonal boron nitride (hBN) leads to a significant reduction in roughness and has become the de facto standard method for producing high-quality graphene devices. We have...... fabricated graphene samples encapsulated by hBN that are suspended over apertures in a substrate and used noncontact electron diffraction measurements in a transmission electron microscope to measure the roughness of encapsulated graphene inside such structures. We furthermore compare the roughness...... of these samples to suspended bare graphene and suspended graphene on hBN. The suspended heterostructures display a root mean square (rms) roughness down to 12 pm, considerably less than that previously reported for both suspended graphene and graphene on any substrate and identical within experimental error...

  11. Ultrasmall SnO₂ nanocrystals: hot-bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage.

    Science.gov (United States)

    Ding, Liping; He, Shulian; Miao, Shiding; Jorgensen, Matthew R; Leubner, Susanne; Yan, Chenglin; Hickey, Stephen G; Eychmüller, Alexander; Xu, Jinzhang; Schmidt, Oliver G

    2014-04-15

    Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g(-1) at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs.

  12. Process and Material Design for Micro-Encapsulated Ionic Liquids in Post-Combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bo [Univ. of Notre Dame, IN (United States); Brennecke, Joan F [Univ. of Notre Dame, IN (United States); McCready, Mark [Univ. of Notre Dame, IN (United States); Stadtherr, Mark [Univ. of Notre Dame, IN (United States)

    2016-11-18

    Aprotic Heterocyclic Anion (AHA) Ionic Liquids (ILs) have been identified as promising new solvents for post-combustion carbon capture due to their high CO2 uptake and the high tenability 1,2 of their binding energy with CO2. Some of these compounds change phase (solid to liquid) on absorption of CO2; these Phase Change ILs (PCILs)3 offer the additional advantage that part of the heat needed to desorb the CO2 from the absorbent is provided by the heat of fusion as the PCIL solidifies upon release of CO2. However, the relatively high viscosity of AHA ILs and the occurrence of a phase change in PCILs present challenges for conventional absorption equipment. To overcome these challenges we are pursuing the use of new technology to micro-encapsulate the AHA ILs and PCILs. Our partners at Lawrence Livermore National Laboratory have successfully demonstrated this technology in the application of post-combustion carbon capture with sodium and potassium carbonate solutions,4 and have recently shown the feasibility of micro-encapsulation of an AHA IL for carbon capture.5 The large effective surface area and high CO2 permeability of the micro-capsules is expected to offset the drawback of the high IL viscosity and to provide for a more efficient and cost-effective mass transfer operation involving AHA ILs and PCILs. These opportunities, however, present us with both process and materials design questions. For example, what is the target CO2 absorption strength (enthalpy of chemical absorption) for the tunable AHA IL? What is the target for micro-capsule diameter in order to obtain a high mass transfer rate and good fluidization performance? What are the appropriate temperatures and pressures for the absorber and stripper? In order to address these and other questions, we have developed a rate-based model of a post-combustion CO2 capture process using micro-encapsulated ILs. As a performance baseline

  13. Imaging features of encapsulating peritoneal sclerosis in continuous ambulatory peritoneal dialysis patients.

    LENUS (Irish Health Repository)

    Ti, Joanna P

    2010-07-01

    OBJECTIVE: The purpose of this article is to present the spectrum of radiologic findings of encapsulating peritoneal sclerosis in patients undergoing continuous ambulatory peritoneal dialysis (CAPD). CONCLUSION: Although a rare diagnosis, encapsulating peritoneal sclerosis in patients undergoing CAPD has a high morbidity and mortality. Diagnosis is often delayed because clinical features are insidious and nonspecific. Radiologic imaging may be helpful in the early diagnosis of encapsulating peritoneal sclerosis and in facilitating timely intervention for CAPD patients with encapsulating peritoneal sclerosis.

  14. The encapsulation of nuclear waste in a magnesium aluminosilicate glass-ceramic

    International Nuclear Information System (INIS)

    Luk, K.M.

    1999-07-01

    The use of Magnesium aluminosilicate (MAS) glass-ceramics for the immobilisation of nuclear waste has been investigated. Nuclear waste is currently immobilised in a borosilicate glass. It is possible that immobilisation in an MAS glass-ceramic will reduce processing temperature of the waste, offer greater thermal and chemical stabilities and chemical durabilities. The primary reason for investigating sintered glass-ceramics is the possible advent of wastes containing high levels of refractory elements such as zirconia from the future reprocessing techniques such as electrochemical dissolution. In the first instance zirconia was used as a simulated waste with the principal of encapsulating zirconia with the minimum of porosity. Attempts were made to encapsulate 0, 20 and 40 volume % of zirconia in MAS sintering at temperatures of around 950 deg. C. It was found that the main cause of porosity was the agglomeration of fine zirconia powder. Three Taguchi experiments to optimise conditions for encapsulation of zirconia in MAS were carried out. In each case 10 volume % of zirconia was encapsulated. A Taguchi L 8 was carried out to optimise thermal conditions and powder characteristics. A Taguchi L 9 was carried out to improve knowledge of the thermal characteristics and an L 16 was carried out to provide information on curvature of thermal parameters and powder particle sizes. The conditions predicted to be optimum from these Taguchi experiments were a temperature of 940 - 960 deg. C, a heating rate of 30 deg. C/min, a hold time of 30 - 50 minutes and particle sizes of 2-4 and ∼ 15μm respectively. Densifications of up to 99% have been observed. Tapping experiments were carried out in an attempt to remove the pressing stage from processing. MAS was tapped into an alumina crucible with and without the addition of a dead weight. Almost fully dense MAS pellets were produced. This is an indication that it may be possible to process glass-ceramic waste forms in their final

  15. Properties of probiotics and encapsulated probiotics in food.

    Science.gov (United States)

    Ozyurt, V Hazal; Ötles, Semih

    2014-01-01

    Probiotics are microorganisms which confer health benefits upon application in sufficiently-high viable cell amounts. Probiotics are typically members of Lactobacillus and Bifidobacterium species commonly associated with human gastrointestinal tracts. In the recent past, there has been a rising interest in producing functional foods containing encapsulated probiotic bacteria. Recent studies have been reported using dairy products like cheese, yogurt and ice cream as food carrier, and non-dairy products like meat, fruits, cereals, chocolate, etc. However, the industrial sector contains only few encapsulated probiotic products. Probiotics have been developed by several companies in a capsule or a tablet form. The review compiles probiotics, encapsulation technology and cell life in the food matrices.

  16. Encapsulation of bacteria and viruses in electrospun nanofibres

    International Nuclear Information System (INIS)

    Salalha, W; Kuhn, J; Dror, Y; Zussman, E

    2006-01-01

    Bacteria and viruses were encapsulated in electrospun polymer nanofibres. The bacteria and viruses were suspended in a solution of poly(vinyl alcohol) (PVA) in water and subjected to an electrostatic field of the order of 1 kV cm -1 . Encapsulated bacteria in this work (Escherichia coli, Staphylococcus albus) and bacterial viruses (T7, T4, λ) managed to survive the electrospinning process while maintaining their viability at fairly high levels. Subsequently the bacteria and viruses remain viable during three months at -20 and -55 deg. C without a further decrease in number. The present results demonstrate the potential of the electrospinning process for the encapsulation and immobilization of living biological material

  17. Color-Tunable and High-Efficiency Dye-Encapsulated Metal-Organic Framework Composites Used for Smart White-Light-Emitting Diodes.

    Science.gov (United States)

    Chen, Wenwei; Zhuang, Yixi; Wang, Le; Lv, Ying; Liu, Jianbin; Zhou, Tian-Liang; Xie, Rong-Jun

    2018-05-25

    Luminescent metal-organic frameworks (MOFs) (typically dye-encapsulated MOFs) are considered as one kind of interesting downconversion materials for white-light-emitting diodes (LEDs), but their quantum efficiency (QE) is not sufficient and thus needs to be significantly enhanced for practical applications. In this study, we successfully synthesized a series of Rh@bio-MOF-1 (Rh = rhodamine) with an internal QE as high as ∼79% via a solvothermal reaction followed by cation exchanges. The high efficiency of the Rh@bio-MOF-1 composites was attributable to the high intrinsic luminescent efficiency of the selected Rh dyes, the confinement effect in the bio-MOF-1 host, and the uniform particle morphology. The emission maximum could be continuously tuned from 550 to 610 nm by controlling the species and concentration of encapsulated dye molecules, showing great color tunability of the dye-encapsulated MOFs. The emission lifetime of ∼7 ns was 1 or 2 magnitude orders shorter than that of Ce 3+ - or Eu 2+ -doped inorganic phosphors, allowing for visible light communication (VLC). White LEDs, fabricated by using the synthesized Rh@bio-MOF-1 composite and inorganic phosphors of green (Ba,Sr) 2 SiO 4 :Eu 2+ and red CaAlSiN 3 :Eu 2+ , exhibited a high color rendering index of 80-94, a luminous efficacy of 94-156 lm/W, and an excellent stability in color point against drive current. The Rh@bio-MOF-1 composites with tunable colors, short emission lifetime, and high QE are expected to be used for smart white LEDs with multifunctions of both lighting and VLC.

  18. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaoyun [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Department of Pharmacy, Shandong Drug and Food Vocational College, Science and Technology Town, Hightech Industrial Development Zone, Weihai 264210 (China); Xu Hui; Zhao Yanqiu [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Shaoning, E-mail: wsn-xh@126.com [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Abe, Hiroya; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Liu Yanli [School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China); Wang Guoqing [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer PLGA encapsulated HAP-MSs were used for the sustained delivery of Doxycycline (Doxy, a broad spectrum tetracycline antibiotic). Black-Right-Pointing-Pointer Sustained Doxy release without obvious burst was observed. Black-Right-Pointing-Pointer Mechanism of the sustained Doxy release was illustrated. Black-Right-Pointing-Pointer Sustained Doxy release character in vivo was also obtained, the plasma Doxy levels were relatively lower and steady compared to that of the un-encapsulated HAP-MSs. - Abstract: The purpose of this study was to prepare a poly(lactide-co-glycolide) (PLGA) encapsulated hydroxyapatite microspheres (HAP-MSs) as injectable depot for sustained delivery of Doxycycline (Doxy). Doxy loaded HAP-MSs (Doxy-HAP-MSs) were encapsulated with PLGA by solid-in-oil-in-water (S/O/W) emulsion-solvent evaporation technique, the effects of the PLGA used (various intrinsic viscosity and LA/GA ratio) and ratio of PLGA/HAP-MSs on the formation of Doxy-HAP-MSs and in vitro release of Doxy were studied. The results showed that sustained drug release without obvious burst was obtained by using PLGA encapsulated HAP-MSs as the carrier, also the drug release rate could be tailored by changing the ratio of PLGA/HAP-MSs, or PLGA of various intrinsic viscosities or LA/GA ratio. Lower ratio of PLGA/HAP-MSs corresponded faster Doxy release, e.g. for the microspheres of PLGA/HAP-MSs ratio of 8 and 0.25, the in vitro Doxy release percents at the end of 7days were about 23% and 76%, respectively. Higher hydrophilicity (higher ratio of GA to LA) and lower molecular weight of PLGA corresponded to higher Doxy release rates. For in vivo release study, PLGA encapsulated HAP-MSs were subcutaneously injected to the back of mice, and the results showed good correlation between the in vivo and in vitro drug release. Meanwhile, the plasma Doxy levels after subcutaneous administration of PLGA encapsulated Doxy-HAP-MSs were relatively lower and steady

  19. Encapsulation plant preliminary design, phase 2. Repository connected facility

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-12-01

    The disposal facility of the spent nuclear fuel will be located in Olkiluoto. The encapsulation plant is a part of the disposal facility. In this report, an independent encapsulation plant is located above the underground repository. In the encapsulation plant, the spent fuel is received and treated for disposal. In the fuel handling cell, the spent fuel assemblies are unloaded from the spent fuel transport casks and loaded into the disposal canisters. The gas atmosphere of the disposal canister is changed, the bolted inner canister lid is closed, and the electron beam welding method is used to close the lid of the outer copper canister. The disposal canisters are cleaned and transferred into the buffer store after the machining and inspection of the copper lid welds. From the buffer store, the disposal canisters are transferred into the repository spaces by help of the canister lift. All needed stages of operation are to be performed safely without any activity releases or remarkable personnel doses. The bentonite block interim storage is associated with the encapsulation plant. The bentonite blocks are made from bentonite powder. The bentonite blocks are used as buffer material around the disposal canister in the deposition hole. The average production rate of the encapsulation plant is 40 canisters per year. The nominal maximum production capacity is 100 canisters per year in one shift operation. (orig.)

  20. Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage

    Science.gov (United States)

    Ding, Liping; He, Shulian; Miao, Shiding; Jorgensen, Matthew R.; Leubner, Susanne; Yan, Chenglin; Hickey, Stephen G.; Eychmüller, Alexander; Xu, Jinzhang; Schmidt, Oliver G.

    2014-04-01

    Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA.h.g-1 at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs.

  1. Improved performance of InSe field-effect transistors by channel encapsulation

    Science.gov (United States)

    Liang, Guangda; Wang, Yiming; Han, Lin; Yang, Zai-Xing; Xin, Qian; Kudrynskyi, Zakhar R.; Kovalyuk, Zakhar D.; Patanè, Amalia; Song, Aimin

    2018-06-01

    Due to the high electron mobility and photo-responsivity, InSe is considered as an excellent candidate for next generation electronics and optoelectronics. In particular, in contrast to many high-mobility two-dimensional (2D) materials, such as phosphorene, InSe is more resilient to oxidation in air. Nevertheless, its implementation in future applications requires encapsulation techniques to prevent the adsorption of gas molecules on its surface. In this work, we use a common lithography resist, poly(methyl methacrylate) (PMMA) to encapsulate InSe-based field-effect transistors (FETs). The encapsulation of InSe by PMMA improves the electrical stability of the FETs under a gate bias stress, and increases both the drain current and electron mobility. These findings indicate the effectiveness of the PMMA encapsulation method, which could be applied to other 2D materials.

  2. High temperature in-situ observations of multi-segmented metal nanowires encapsulated within carbon nanotubes by in-situ filling technique.

    Science.gov (United States)

    Hayashi, Yasuhiko; Tokunaga, Tomoharu; Iijima, Toru; Iwata, Takuya; Kalita, Golap; Tanemura, Masaki; Sasaki, Katsuhiro; Kuroda, Kotaro

    2012-08-08

    Multi-segmented one-dimensional metal nanowires were encapsulated within carbon nanotubes (CNTs) through in-situ filling technique during plasma-enhanced chemical vapor deposition process. Transmission electron microscopy (TEM) and environmental TEM were employed to characterize the as-prepared sample at room temperature and high temperature. The selected area electron diffractions revealed that the Pd4Si nanowire and face-centered-cubic Co nanowire on top of the Pd nanowire were encapsulated within the bottom and tip parts of the multiwall CNT, respectively. Although the strain-induced deformation of graphite walls was observed, the solid-state phases of Pd4Si and Co-Pd remain even at above their expected melting temperatures and up to 1,550 ± 50°C. Finally, the encapsulated metals were melted and flowed out from the tip of the CNT after 2 h at the same temperature due to the increase of internal pressure of the CNT.

  3. Silica particles encapsulated poly(styrene-divinylbenzene) monolithic stationary phases for micro-high performance liquid chromatography.

    Science.gov (United States)

    Bakry, R; Stöggl, W M; Hochleitner, E O; Stecher, G; Huck, C W; Bonn, G K

    2006-11-03

    In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which

  4. Observation and Characterization of Fragile Organometallic Molecules Encapsulated in Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2014-01-01

    Full Text Available Thermally fragile tris(η5-cyclopentadienylerbium (ErCp3 molecules are encapsulated in single-wall carbon nanotubes (SWCNTs with high yield. We realized the encapsulation of ErCp3 with high filling ratio by using high quality SWCNTs at an optimized temperature under higher vacuum. Structure determination based on high-resolution transmission electron microscope observations together with the image simulations reveals the presence of almost free rotation of each ErCp3 molecule in SWCNTs. The encapsulation is also confirmed by X-ray diffraction. Trivalent character of Er ions (i.e., Er3+ is confirmed by X-ray absorption spectrum.

  5. High temperature thermal storage for solar gas turbines using encapsulated phase change materials

    CSIR Research Space (South Africa)

    Klein, P

    2014-01-01

    Full Text Available in the near term. Sensible heat storage in packed beds involves a random packing of ceramic pebbles/particles in an insulated container. The temperature change of the solid during charging/discharging is used to store/release thermal energy. The primary... the packed bed due to vaporization and condensation effects. 2.3. Macro-encapsulation of PCM In the macro-encapsulation approach the PCM is retained within a hollow shell material. The shell can be preformed, filled with a molten PCM and sealed; or it can...

  6. Properties of Lactobacillus reuteri chitosan-calcium-alginate encapsulation under simulated gastrointestinal conditions.

    Science.gov (United States)

    Huang, Hui-Ying; Tang, Yi-Ju; King, V An-Erl; Chou, Jen-Wei; Tsen, Jen-Horng

    2015-03-01

    The protective effects of encapsulation on the survival of Lactobacillus reuteri and the retention of the bacterium's probiotic properties under simulated gastrointestinal conditions were investigated. Viable counts and the remaining probiotic properties of calcium (Ca)-alginate encapsulated (A group), chitosan-Ca-alginate encapsulated (CA group), and unencapsulated, free L. reuteri (F group) were determined. Encapsulation improved the survival of L. reuteri subjected to simulated gastrointestinal conditions, with the greatest protective effect achieved in the CA group. The degree of cell membrane injury increased with increasing bile salt concentrations at constant pH, but the extent of injury was less in the encapsulated than in the free cells. Adherence rates were, in descending order: CA (0.524%)>A (0.360%)>F (0.275%). Lactobacillus reuteri cells retained their antagonistic activity toward Listeria monocytogenes even after incubation of the lactobacilli under simulated gastrointestinal conditions. Displacement of the pathogen by cells released from either of the encapsulation matrices was higher than that by free cells. The safety of L. reuteri was demonstrated in an in vitro invasion assay. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  7. Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods.

    Science.gov (United States)

    Chakraborty, Amrita; Fernandez, Ann Candice; Som, Anirban; Mondal, Biswajit; Natarajan, Ganapati; Paramasivam, Ganesan; Lahtinen, Tanja; Häkkinen, Hannu; Nonappa, Nonappa; Pradeep, Thalappil

    2018-04-01

    We present the self-assembled structures of atomically precise, ligand-protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs). Unlike highly sophisticated DNA nanotechnology, our approach demonstrates a strategically simple hydrogen bonding-directed self-assembly of nanoclusters leading to octahedral nanocrystals encapsulating GNRs. Specifically, we use the p-mercaptobenzoic acid (pMBA) protected atomically precise nanocluster, Na4[Ag44(pMBA)30] and pMBA functionalized GNRs. High resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H-bonding leading to octahedral symmetry. Further, use of water dispersible gold nanoclusters, Au~250(pMBA)n and Au102(pMBA)44 also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles present a new category of precision hybrids with diverse possibilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Zein-based colloidal particles for encapsulation and delivery of epigallocatechin gallate

    NARCIS (Netherlands)

    Donsì, F.; Voudouris, P.; Veen, S.J.; Velikov, K.P.

    Zein, a water insoluble plant protein from a renewable natural source, has been identified as a highly promising material for the production of protein-based colloidal particles for the encapsulation of lipophilic compounds. However, the encapsulation of hydrophilic, water-soluble, bioactive

  9. Reliability performance testing of totally encapsulating chemical protective suits

    International Nuclear Information System (INIS)

    Johnson, J.S.; Swearengen, P.M.

    1991-01-01

    The need to assure a high degree of reliability for totally encapsulating chemical protective (TECP) suits has been recognized by Lawrence Livermore National Laboratory's (LLNL) Hazards Control Department for some time. The following four tests were proposed as necessary to provide complete evaluation of TECP suit performance: 1. Quantitative leak test (ASTM draft), 2. Worst-case chemical exposure test (conceptual), 3. Pressure leak-rate test (complete, ASTM F1057-87), and 4. Chemical leak-rate test (ASTM draft). This paper reports on these tests which should be applied to measuring TECP suit performance in two stages: design qualification tests and field use tests. Test 1, 2, and 3 are used as design qualification tests, and tests 3 and 4 are used as field use tests

  10. Electromagnetic properties of conducting polymers encapsulated in an insulating matrix

    International Nuclear Information System (INIS)

    Esnouf, Stephane

    1995-01-01

    The aim of this work is to study the electronic properties of conducting polymers encapsulated in zeolite. We studied two kinds of polymers: intrinsic conducting polymers (poly-pyrrole) and pyrolyzed polymers (polyacrylonitrile and poly-furfuryl alcohol). These systems were characterized by electron paramagnetic resonance and microwave conductivity measurements. In the first part, we present the preparation and the characterization of encapsulated poly-pyrrole. Conductivity measurements show that the encapsulated material is insulating, certainly because a strong interaction with the zeolite traps the charge carriers. In the second part, we focus on pyrolyzed encapsulated polyacrylonitrile. This system has a metal-like susceptibility at room temperature and a relatively high microwave conductivity. These results demonstrate the formation during the pyrolysis of extended aromatic clusters. Finally, we study pyrolyzed encapsulated poly-furfuryl alcohol. We show that the only effect of the pyrolysis is to fragment the polymers. We also discuss the spin relaxation and the EPR line broadening. (author) [fr

  11. Novel Solid Encapsulation of Ethylene Gas Using Amorphous α-Cyclodextrin and the Release Characteristics.

    Science.gov (United States)

    Ho, Binh T; Bhandari, Bhesh R

    2016-05-04

    This research investigated the encapsulation of ethylene gas into amorphous α-cyclodextrins (α-CDs) at low (LM) and high (HM) moisture contents at 1.0-1.5 MPa for 24-120 h and its controlled release characteristics at 11.2-52.9% relative humidity (RH) for 1-168 h. The inclusion complexes (ICs) were characterized using X-ray diffractometry (XRD), nuclear magnetic resonance spectroscopy (CP-MAS (13)C NMR), and scanning electron microscopy (SEM). Ethylene concentrations in the ICs were from 0.45 to 0.87 mol of ethylene/mol CD and from 0.42 to 0.54 mol of ethylene/mol CD for LM and HM α-CDs, respectively. Ethylene gas released from the encapsulated powder at higher rates with increasing RH. An analysis of release kinetics using Avrami's equation showed that the LM and HM amorphous α-CDs were not associated with significant differences in release constant k and parameter n for any given RH condition. NMR spectra showed the presence of the characteristic carbon-carbon double bond of ethylene gas in the encapsulated α-CD powder.

  12. Encapsulated Synbiotic Dietary Supplementation at Different Dosages to Prevent Vibriosis in White Shrimp, Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Anis Zubaidah

    2015-10-01

    Full Text Available The aim of this study was to evaluate the effect of encapsulated synbiotic (Bacillus sp. NP5 and oligosaccharide dietary at different dosages on growth performance, survival rate, feed conversion ratio, and immune responses of Litopenaeus vannamei against Vibrio infection. The shrimps of the main treatments were fed by the diet that contained three different dosages of encapsulated synbiotic [0.5% (A, 1% (B, and 2% (C (w/w] with feeding rate of 5% of shrimp biomass (4 times a day. The shrimps of two control treatments (negative control and positive control were fed only by commercial feed without supplementation of encapsulated synbiotic. The growth, feed conversion ratio, and survival rate were observed after 30 days of encapsulated synbiotic dietary. The shrimps were then challenged by injection of Vibrio harveyi (6 log colony forming units/mL 0.1 mL/shrimp, excluded the negative control treatment. Afterward, the survival and immune responses were observed for 9 days after experimental infection. The shrimps treated with 2% encapsulated synbiotic (treatment C in the diet showed the highest growth performance (2.98 ± 0.42%, feed conversion ratio (1.26 ± 0.19, and better immune responses i.e. total hemocyte counts, differential hemocyte count, phenoloxidase, and intestine bacteria observation compared to those of positive control treatment.

  13. Fragrance encapsulation in polymeric matrices by emulsion electrospinning

    OpenAIRE

    Camerlo Agathe; Vebert-Nardin Corinne; Rossi René Michel; Popa Ana Maria

    2013-01-01

    We present the successful application of emulsion electrospinning for the encapsulation of a model for highly volatile fragrances namely (R) (+) limonene in a poly(vinyl alcohol) (PVA) fibrous matrix. The influence of the emulsion formulation and of its colloidal properties on the fiber morphology as well as on the limonene encapsulation efficiency is described. The release profile of the fragrance from the electrospun nanofibers over a fifteen days range shows that this type of nanofibrous m...

  14. The Effects of Biopolymer Encapsulation on Total Lipids and Cholesterol in Egg Yolk during in Vitro Human Digestion

    Directory of Open Access Journals (Sweden)

    Si-Kyung Lee

    2013-08-01

    Full Text Available The purpose of this study was to examine the effect of biopolymer encapsulation on the digestion of total lipids and cholesterol in egg yolk using an in vitro human digestion model. Egg yolks were encapsulated with 1% cellulose, pectin, or chitosan. The samples were then passed through an in vitro human digestion model that simulated the composition of mouth saliva, stomach acid, and the intestinal juice of the small intestine by using a dialysis tubing system. The change in digestion of total lipids was monitored by confocal fluorescence microscopy. The digestion rate of total lipids and cholesterol in all egg yolk samples dramatically increased after in vitro human digestion. The digestion rate of total lipids and cholesterol in egg yolks encapsulated with chitosan or pectin was reduced compared to the digestion rate of total lipids and cholesterol in other egg yolk samples. Egg yolks encapsulated with pectin or chitosan had lower free fatty acid content, and lipid oxidation values than samples without biopolymer encapsulation. Moreover, the lipase activity decreased, after in vitro digestion, in egg yolks encapsulated with biopolymers. These results improve our understanding of the effects of digestion on total lipids and cholesterol in egg yolk within the gastrointestinal tract.

  15. The Effects of Biopolymer Encapsulation on Total Lipids and Cholesterol in Egg Yolk during in Vitro Human Digestion

    Science.gov (United States)

    Hur, Sun-Jin; Kim, Young-Chan; Choi, Inwook; Lee, Si-Kyung

    2013-01-01

    The purpose of this study was to examine the effect of biopolymer encapsulation on the digestion of total lipids and cholesterol in egg yolk using an in vitro human digestion model. Egg yolks were encapsulated with 1% cellulose, pectin, or chitosan. The samples were then passed through an in vitro human digestion model that simulated the composition of mouth saliva, stomach acid, and the intestinal juice of the small intestine by using a dialysis tubing system. The change in digestion of total lipids was monitored by confocal fluorescence microscopy. The digestion rate of total lipids and cholesterol in all egg yolk samples dramatically increased after in vitro human digestion. The digestion rate of total lipids and cholesterol in egg yolks encapsulated with chitosan or pectin was reduced compared to the digestion rate of total lipids and cholesterol in other egg yolk samples. Egg yolks encapsulated with pectin or chitosan had lower free fatty acid content, and lipid oxidation values than samples without biopolymer encapsulation. Moreover, the lipase activity decreased, after in vitro digestion, in egg yolks encapsulated with biopolymers. These results improve our understanding of the effects of digestion on total lipids and cholesterol in egg yolk within the gastrointestinal tract. PMID:23965957

  16. Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage

    Science.gov (United States)

    Ding, Liping; He, Shulian; Miao, Shiding; Jorgensen, Matthew R.; Leubner, Susanne; Yan, Chenglin; Hickey, Stephen G.; Eychmüller, Alexander; Xu, Jinzhang; Schmidt, Oliver G.

    2014-01-01

    Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g−1 at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs. PMID:24732294

  17. Encapsulation of nodal segments of lobelia chinensis

    Directory of Open Access Journals (Sweden)

    Weng Hing Thong

    2015-04-01

    Full Text Available Lobelia chinensis served as an important herb in traditional chinese medicine. It is rare in the field and infected by some pathogens. Therefore, encapsulation of axillary buds has been developed for in vitro propagation of L. chinensis. Nodal explants of L. chinensis were used as inclusion materials for encapsulation. Various combinations of calcium chloride and sodium alginate were tested. Encapsulation beads produced by mixing 50 mM calcium chloride and 3.5% sodium alginate supported the optimal in vitro conversion potential. The number of multiple shoots formed by encapsulated nodal segments was not significantly different from the average of shoots produced by non-encapsulated nodal segments. The encapsulated nodal segments regenerated in vitro on different medium. The optimal germination and regeneration medium was Murashige-Skoog medium. Plantlets regenerated from the encapsulated nodal segments were hardened, acclimatized and established well in the field, showing similar morphology with parent plants. This encapsulation technology would serve as an alternative in vitro regeneration system for L. chinensis.

  18. Design, characterisation and application of alginate-based encapsulated pig liver esterase.

    Science.gov (United States)

    Pauly, Jan; Gröger, Harald; Patel, Anant V

    2018-06-05

    Encapsulation of hydrolases in biopolymer-based hydrogels often suffers from low activities and encapsulation efficiencies along with high leaching and unsatisfactory recycling properties. Exemplified for the encapsulation of pig liver esterase the coating of alginate and chitosan beads have been studied by creating various biopolymer hydrogel beads. Enzyme activity and encapsulation efficiency were notably enhanced by chitosan coating of alginate beads while leaching remained nearly unchanged. This was caused by the enzymatic reaction acidifying the matrix, which increased enzyme retention through enhanced electrostatic enzyme-alginate interaction but decreased activity through enzyme deactivation. A practical and ready-to-use method for visualising pH in beads during reaction by co-encapsulation of a conventional pH indicator was also found. Our method proves that pH control inside the beads can only be realised by buffering. The resulting beads provided a specific activity of 0.267 μmol ∙ min -1 ∙ mg -1 , effectiveness factor 0.88, encapsulation efficiency of 88%, 5% leaching and good recycling properties. This work will contribute towards better understanding and application of encapsulated hydrolases for enzymatic syntheses. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Nuclear-waste encapsulation by metal-matrix casting

    International Nuclear Information System (INIS)

    Nelson, R.G.; Nesbitt, J.F.; Slate, S.C.

    1981-05-01

    Several encapsulation casting processes are described that were developed or used at the Pacific Northwest Laboratory to embed simulated high-level wastes of two different forms (glass marbles and ceramic pellets) in metal matrices. Preliminary evaluations of these casting processes and the products are presented. Demonstrations have shown that 5- to 10-mm-dia glass marbles can be encapsulated on an engineering scale with lead or lead alloys by gravity or vacuum processes. Marbles approx. 12 mm in dia were successfully encapsulated in a lead alloy on a production scale. Also, 4- to 9-mm-dia ceramic pellets in containers of various sizes were completely penetrated and the individual pellets encased with aluminum-12 wt % silicon alloy by vacuum processes. Indications are that of the casting processes tested, aluminum 12 wt % silicon alloy vacuum-cast around ceramic pellets had the highest degree of infiltration or coverage of pellet surfaces

  20. Method of encapsulating a phase change material with a metal oxide

    Science.gov (United States)

    Ram, Manoj Kumar; Jotshi, Chand K.; Stefanakos, Elias K.; Goswami, Dharendra Yogi

    2016-11-15

    Storage systems based on latent heat storage have high-energy storage density, which reduces the footprint of the system and the cost. However, phase change materials (PCMs), such as NaNO.sub.3, NaCl, KNO.sub.3, have very low thermal conductivities. To enhave the storage of PCMs, macroencapsulation of PCMs was performed using a metal oxide, such as SiO.sub.2 or a graphene-SiO.sub.2, over polyimide-coated or nickel-embedded, polyimide-coated pellets The macro encapsulation provides a self-supporting structure, enhances the heat transfer rate, and provides a cost effective and reliable solution for thermal energy storage for use in solar thermal power plants. NaNO.sub.3 was selected for thermal storage in a temperature range of 300.degree. C. to 500.degree. C. The PCM was encapsulated in a metal oxide cell using self-assembly reactions, hydrolysis, and simultaneous chemical oxidation at various temperatures.

  1. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  2. High rate performance of the carbon encapsulated Li4Ti5O12 for lithium ion battery

    Directory of Open Access Journals (Sweden)

    Qi Cheng

    Full Text Available Li4Ti5O12 (LTO is attractive alternative anode material with excellent cyclic performance and high rate after coating modifications of the conductive materials. Anatase TiO2 and glucose were applied of the synthesis of the carbon coated LTO (C@LTO. XRD results showed that all the major diffractions from the spinel structure of LTO can be found in the C@LTO such as (111, (311, (400 but there are no observations of the Carbon diffraction peaks. Electrochemical Impedance Spectroscopy (EIS data shows C@LTO resistance was nearly half of the LTO value. Rate performance showed that capacity of C@LTO was higher than that of the pure LTO from 0.1 C, 0.2 C, 1 C, 2 C, 5 C and 10 C, which indicates that this is a promising approach to prepare the high performance LTO anode. Keywords: Li-ion batteries, Rate performance, Carbon materials, Li4Ti5O12 anode

  3. Review of encapsulation technologies

    International Nuclear Information System (INIS)

    Shaulis, L.

    1996-09-01

    The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms

  4. Enhancement of survival of alginate-encapsulated Lactobacillus casei NCDC 298.

    Science.gov (United States)

    Mandal, Surajit; Hati, Subrota; Puniya, Anil Kumar; Khamrui, Kaushik; Singh, Kishan

    2014-08-01

    Micro-encapsulation of hydrocolloids improves the survival of sensitive probiotic bacteria in the harsh conditions that prevail in foods and during gastrointestinal passage by segregating them from environments. Incorporation of additives in encapsulating hydrocolloids and coatings of microcapsules further improves the survival of the probiotics. In this study, the effect of incorporation of resistant-maize starch in alginate for micro-encapsulation and coating of microcapsules with poly-l-lysine, stearic acid and bees wax on the survival of encapsulated Lactobacillus casei NCDC 298 at pH 1.5, 2% high bile salt, 65 °C for 20 min and release of viable lactobacilli cells from the capsule matrix in simulated aqueous solutions of colonic pH were assessed. Addition of resistant maize starch (2%) improved the survival of encapsulated L. casei NCDC 298. Coating of microcapsules with poly-L-lysine did not further improve the protection of encapsulated cells from the harsh conditions; however, bees wax and stearic acid (2%) improved the survival under similar conditions. Incorporation of maize starch (2%) in alginate followed by coating of beads with stearic acid (2%) led to better protection and complete release of entrapped lactobacilli in simulated colonic pH solution was observed. Additional treatments improve the survival of alginate-encapsulated lactobacilli cells without hindering the release of active cells from the capsule matrix and hence, the resulting encapsulated probiotics can be exploited in the development of probiotic functional foods with better survival of sensitive probiotic organisms. © 2013 Society of Chemical Industry.

  5. Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds.

    Science.gov (United States)

    Pan, Yuanjie; Tikekar, Rohan V; Nitin, N

    2013-06-25

    Oxidation of encapsulated bioactive compounds in emulsions is one of the key challenges that limit shelf life of emulsion containing products. Oxidation in these emulsions is triggered by permeation of free radicals generated at the emulsion interface. The objective of this study was to evaluate the role of antioxidant properties of common emulsifiers (lecithin and Tween 20) in reducing permeation of free radicals across the emulsion interface. Radical permeation rates were correlated with oxidative stability of a model bioactive compound (curcumin) encapsulated in these emulsions. Rate of permeation of peroxyl radicals from the aqueous phase to the oil phase of emulsion was inversely proportional to the antioxidant properties of emulsifiers. The rate of radical permeation was significantly higher (plecithin compared to native lecithin that showed higher antioxidant activity. Free radical permeation rate correlated with stability of curcumin in emulsions and was significantly higher (plecithin stabilized emulsions as compared to Tween 20 emulsions. Overall, this study demonstrates that antioxidant activity of emulsifiers significantly influences permeation of free radicals across the emulsion interface and the rate of oxidation of bioactive encapsulant. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles

    DEFF Research Database (Denmark)

    Hervella, Pablo; Ortiz, Elisa Parra; Needham, David

    2016-01-01

    ) Chelate copper into the octaethyl porphyrin; (3) Encapsulate OEP-Cu in nanoparticles: the encapsulation efficiency of copper into liquid nanoparticles (LNP), solid nanoparticles (SNP) and phospholipid liposomes (PL) was evaluated by UV-Vis and atomic absorption spectroscopy; (4) Retain the encapsulated...... OEP-Cu in the liquid or solid cores of the nanoparticles in the presence of a lipid sink. RESULTS: (1) The size of the nanoparticles was found to be strongly dependent on the Reynolds number and the initial concentration of components for the fast injection technique. At high Reynolds number (2181......), a minimum value for the particle diameter of ∼30nm was measured. (2) Copper was chelated by OEP in a 1:1mol ratio with an association constant of 2.57×10(5)M(-1). (3) The diameter of the nanoparticles was not significantly affected by the presence of OEP or OEP-Cu. The percentage of encapsulation of copper...

  7. Nano spray drying for encapsulation of pharmaceuticals.

    Science.gov (United States)

    Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi

    2018-05-17

    Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.

  9. Encapsulation method for atom probe tomography analysis of nanoparticles

    International Nuclear Information System (INIS)

    Larson, D.J.; Giddings, A.D.; Wu, Y.; Verheijen, M.A.; Prosa, T.J.; Roozeboom, F.; Rice, K.P.; Kessels, W.M.M.; Geiser, B.P.; Kelly, T.F.

    2015-01-01

    Open-space nanomaterials are a widespread class of technologically important materials that are generally incompatible with analysis by atom probe tomography (APT) due to issues with specimen preparation, field evaporation and data reconstruction. The feasibility of encapsulating such non-compact matter in a matrix to enable APT measurements is investigated using nanoparticles as an example. Simulations of field evaporation of a void, and the resulting artifacts in ion trajectory, underpin the requirement that no voids remain after encapsulation. The approach is demonstrated by encapsulating Pt nanoparticles in an ZnO:Al matrix created by atomic layer deposition, a growth technique which offers very high surface coverage and conformality. APT measurements of the Pt nanoparticles are correlated with transmission electron microscopy images and numerical simulations in order to evaluate the accuracy of the APT reconstruction. - Highlights: • Pt nanoparticles were analyzed using atom probe tomography and TEM. • The particles were prepared by encapsulation using atomic layer deposition. • Simulation of field evaporation near a void results in aberrations in ion trajectories. • Apparent differences between TEM and APT analyses are reconciled through simulation of field evaporation from a low-field matrix containing high-field NPs; ion trajectory aberrations are shown to lead to an apparent mixing of the matrix into the NPs.

  10. Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.

    Science.gov (United States)

    Kapusuz, Derya; Durucan, Caner

    2017-07-01

    The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29 Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.

  11. Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Hellring; Jiping Shao; James Poole

    2011-12-05

    The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in

  12. Comparative study of DNA encapsulation into PLGA microparticles using modified double emulsion methods and spray drying techniques.

    Science.gov (United States)

    Oster, C G; Kissel, T

    2005-05-01

    Recently, several research groups have shown the potential of microencapsulated DNA as adjuvant for DNA immunization and in tissue engineering approaches. Among techniques generally used for microencapsulation of hydrophilic drug substances into hydrophobic polymers, modified WOW double emulsion method and spray drying of water-in-oil dispersions take a prominent position. The key parameters for optimized microspheres are particle size, encapsulation efficiency, continuous DNA release and stabilization of DNA against enzymatic and mechanical degradation. This study investigates the possibility to encapsulate DNA avoiding shear forces which readily degrade DNA during this microencapsulation. DNA microparticles were prepared with polyethylenimine (PEI) as a complexation agent for DNA. Polycations are capable of stabilizing DNA against enzymatic, as well as mechanical degradation. Further, complexation was hypothesized to facilitate the encapsulation by reducing the size of the macromolecule. This study additionally evaluated the possibility of encapsulating lyophilized DNA and lyophilized DNA/PEI complexes. For this purpose, the spray drying and double emulsion techniques were compared. The size of the microparticles was characterized by laser diffractometry and the particles were visualized by scanning electron microscopy (SEM). DNA encapsulation efficiencies were investigated photometrically after complete hydrolysis of the particles. Finally, the DNA release characteristics from the particles were studied. Particles with a size of <10 microm which represent the threshold for phagocytic uptake could be prepared with these techniques. The encapsulation efficiency ranged from 100-35% for low theoretical DNA loadings. DNA complexation with PEI 25?kDa prior to the encapsulation process reduced the initial burst release of DNA for all techniques used. Spray-dried particles without PEI exhibited high burst releases, whereas double emulsion techniques showed continuous

  13. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    Science.gov (United States)

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  14. Molecular glasses for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Ropp, R.C.

    1982-01-01

    The use of a molecular glass based upon a polymerized phosphate of aluminum (PAP), indium or gallium overcomes all of the prior objections to use of glass as a high-level nuclear waste (HLW) encapsulation agent. This HLW glass product could not be made to devitrify, dissolved all of the oxides found in calcine, including the difficultly soluble ones, did not form microcrystallites in the melt or subsequent glass-casting, and possessed a hydrolytic etching rate to boiling water even lower than that of HLW-ZBS glass. A precursor compound, M(H 2 PO 4 ) 3 , is prepared, where M is a trivalent metal selected from the group consisting of aluminum, indium and gallium. The impurity level is carefully controlled so as not to exceed 300 ppm total. The precursor crystals may be washed to remove excess phosphoric acid as desired. HLW is added to the crystals and the mixture is then heated at a controlled heating rate to induce solid state polymerization and to form a melt at 1350 degrees C in which the HLW oxides dissolve rapidly

  15. It's a wrap: encapsulation as a management tool for marine biofouling.

    Science.gov (United States)

    Atalah, Javier; Brook, Rosemary; Cahill, Patrick; Fletcher, Lauren M; Hopkins, Grant A

    2016-01-01

    Encapsulation of fouled structures is an effective tool for countering incursions by non-indigenous biofoulers. However, guidelines for the implementation of encapsulation treatments are yet to be established. This study evaluated the effects of temperature, biomass, community composition, treatment duration and the biocide acetic acid on biofoulers. In laboratory trials using the model organisms Ciona spp. and Mytilus galloprovincialis, increasing the temperature or biomass speeded up the development of a toxic environment. Total mortality for Ciona spp. occurred within 72 and 24 h at 10 and 19°C, respectively. M. galloprovincialis survived up to 18 days, with high biomass increasing mortality at 10°C only. In a field study, three-month-old and four-year-old communities were encapsulated with and without acetic acid. Mortality took up to 10 days for communities encapsulated without acetic acid, compared to 48 h with acetic acid. The insights gained from this study will be useful in developing standardised encapsulation protocols.

  16. Characterization of Encapsulated Corrosion Inhibitors Containing Microparticles for Environmentally Friendly Smart Coatings

    Science.gov (United States)

    Pearman, Benjamin Pieter; Calle, Luz M.

    2015-01-01

    This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.

  17. Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm.

    Science.gov (United States)

    Danso, K E; Ford-Lloyd, B V

    2003-04-01

    We report the encapsulation of in vitro-derived nodal cuttings or shoot tips of cassava in 3% calcium alginate for storage and germplasm exchange purposes. Shoot regrowth was not significantly affected by the concentration of sucrose in the alginate matrix while root formation was. In contrast, increasing the sucrose concentration in the calcium chloride polymerisation medium significantly reduced regrowth from encapsulated nodal cuttings of accession TME 60444. Supplementing the alginate matrix with increased concentrations of 6-benzylaminopurine and alpha-naphthaleneacetic acid enhanced complete plant regrowth within 2 weeks. Furthermore, plant regrowth by encapsulated nodal cuttings and shoot tips was significantly affected by the duration of the storage period as shoot recovery decreased from almost 100% to 73.3% for encapsulated nodal cuttings and 94.4% to 60% for shoot tips after 28 days of storage. The high frequency of plant regrowth from alginate-coated micropropagules coupled with high viability percentage after 28 days of storage is highly encouraging for the exchange of cassava genetic resources. Such encapsulated micropropagules could be used as an alternative to synthetic seeds derived from somatic embryos.

  18. Exergy analysis of encapsulation of photochromic dye by spray drying

    Science.gov (United States)

    Çay, A.; Akçakoca Kumbasar, E. P.; Morsunbul, S.

    2017-10-01

    Application of exergy analysis methodology for encapsulation of photochromic dyes by spray drying was presented. Spray drying system was investigated considering two subsystems, the heater and the dryer sections. Exergy models for each subsystem were proposed and exergy destruction rate and exergy efficiency of each subsystem and the whole system were computed. Energy and exergy efficiency of the system were calculated to be 5.28% and 3.40%, respectively. It was found that 90% of the total exergy inlet was destroyed during encapsulation by spray drying and the exergy destruction of the heater was found to be higher.

  19. Encapsulation of nuclear wastes

    International Nuclear Information System (INIS)

    Arnold, J.L.; Boyle, R.W.

    1978-01-01

    Toxic waste materials are encapsulated by the method wherein the waste material in liquid or finely divided solid form is uniformly dispersed in a vinyl ester resin or an unsaturated polyester and the resin cured under conditions that the exotherm does not rise above the temperature at which the integrity of the encapsulating material is destroyed

  20. Transport of encapsulated nuclear fuels

    International Nuclear Information System (INIS)

    Broman, Ulrika; Dybeck, Peter; Ekendahl, Ann-Mari

    2005-12-01

    The transport system for encapsulated fuel is described, including a preliminary drawing of a transport container. In the report, the encapsulation plant is assumed to be located to Oskarshamn, and the repository to Oskarshamn or Forsmark

  1. Preparation and structure of carbon encapsulated copper nanoparticles

    International Nuclear Information System (INIS)

    Hao Chuncheng; Xiao Feng; Cui Zuolin

    2008-01-01

    Carbon-encapsulated copper nanoparticles were synthesized by a modified arc plasma method using methane as carbon source. The particles were characterized in detail by transmission electron microscope, high-resolution transmission electron microscopy, selected-area electron diffraction, X-ray diffraction, thermogravimetric and differential scanning calorimetry. The encapsulated copper nanoparticles were about 30 nm in diameter with 3-5 nm graphitic carbon shells. The outside graphitic carbon layers effectively prevented unwanted oxidation of the copper inside. The effect of the ratio of He/CH 4 on the morphologies and the formation of the carbon shell were investigated

  2. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite-1 is reported and their high...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2-3nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50% conversion of ethanol with 98...

  3. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite‐1 is reported and their high...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2–3 nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50 % conversion of ethanol with 98...

  4. Anisotropic silica mesostructures for DNA encapsulation

    Indian Academy of Sciences (India)

    The encapsulation of biomolecules in inert meso or nanostructures is an important step towards controlling drug delivery agents. Mesoporous silica nanoparticles (MSN) are of immense importance owing to their high surface area, large pore size, uniform particle size and chemical inertness. Reverse micellar method with ...

  5. Encapsulation of Volatile Citronella Essential Oil by Coacervation: Efficiency and Release Study

    Science.gov (United States)

    Manaf, M. A.; Subuki, I.; Jai, J.; Raslan, R.; Mustapa, A. N.

    2018-05-01

    The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using Arabic gum and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph obtained with R2 of 0.9523 was used for the accurate determination of encapsulation efficiency and release study. The release kinetic was analysed based on Fick"s law of diffusion for polymeric system and linear graph of Log fraction release over Log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The produced capsules for both coacervation processes were discussed based on the capsules morphology and release kinetic mechanisms.

  6. OSR encapsulation basis -- 100-KW

    International Nuclear Information System (INIS)

    Meichle, R.H.

    1995-01-01

    The purpose of this report is to provide the basis for a change in the Operations Safety Requirement (OSR) encapsulated fuel storage requirements in the 105 KW fuel storage basin which will permit the handling and storing of encapsulated fuel in canisters which no longer have a water-free space in the top of the canister. The scope of this report is limited to providing the change from the perspective of the safety envelope (bases) of the Safety Analysis Report (SAR) and Operations Safety Requirements (OSR). It does not change the encapsulation process itself

  7. SU-8 doped and encapsulated n-type graphene nanomesh with high air stability

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mumen, Haider [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Electrical Engineering, University of Babylon, Babylon (Iraq); Dong, Lixin; Li, Wen, E-mail: wenli@egr.msu.edu [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2013-12-02

    N-type doping of graphene with long-term chemical stability in air represents a significant challenge for practical application of graphene electronics. This paper reports a reversible doping method to achieve highly stable n-type graphene nanomeshes, in which the SU-8 photoresist simultaneously serves as an effective electron dopant and an excellent encapsulating layer. The chemically stable n-type characteristics of the SU-8 doped graphene were evaluated in air using their Raman spectra, electrical transport properties, and electronic band structures. The SU-8 doping does minimum damage to the hexagonal carbon lattice of graphene and is completely reversible by removing the uncrosslinked SU-8 resist.

  8. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  9. Spent LWR fuel encapsulation and dry storage demonstration

    International Nuclear Information System (INIS)

    Bahorich, R.J.; Durrill, D.C.; Cross, T.E.; Unterzuber, R.

    1980-01-01

    In 1977 the Spent Fuel Handling and Packaging Program (SFHPP) was initiated by the Department of Energy to develop and test the capability to satisfactorily encapsulate typical spent fuel assemblies from commercial light-water nuclear power plants and to establish the suitability of one or more surface and near surface concepts for the interim dry storage of the encapsulated spent fuel assemblies. The E-MAD Facility at the Nevada Test Site, which is operated for the Department of Energy by the Advanced Energy Systems Division (AESD) of the Westinghouse Electric Corporation, was chosen as the location for this demonstration because of its extensive existing capabilities for handling highly radioactive components and because of the desirable site characteristics for the proposed storage concepts. This paper describes the remote operations related to the process steps of handling, encapsulating and subsequent dry storage of spent fuel in support of the Demonstration Program

  10. Ilmenite Nanotubes for High Stability and High Rate Sodium-Ion Battery Anodes.

    Science.gov (United States)

    Yu, Litao; Liu, Jun; Xu, Xijun; Zhang, Liguo; Hu, Renzong; Liu, Jiangwen; Ouyang, Liuzhang; Yang, Lichun; Zhu, Min

    2017-05-23

    To solve the problem of large volume change and low electronic conductivity of earth-abundant ilmenite used in rechargeable Na-ion batteries (SIBs), an anode of tiny ilmenite FeTiO 3 nanoparticle embedded carbon nanotubes (FTO⊂CNTs) has been successfully proposed. By introducing a TiO 2 shell on metal-organic framework (Fe-MOF) nanorods by sol-gel deposition and subsequent solid-state annealing treatment of these core-shell Fe-MOF@TiO 2 , such well-defined FTO⊂CNTs are obtained. The achieved FTO⊂CNT electrode has several distinct advantages including a hollow interior in the hybrid nanostructure, fully encapsulated ultrasmall electroactive units, flexible conductive carbon matrix, and stable solid electrolyte interface (SEI) of FTO in cycles. FTO⊂CNT electrodes present an excellent cycle stability (358.8 mA h g -1 after 200 cycles at 100 mA g -1 ) and remarkable rate capability (201.8 mA h g -1 at 5000 mA g -1 ) with a high Coulombic efficiency of approximately 99%. In addition, combined with the typical Na 3 V 2 (PO 4 ) 3 cathode to constitute full SIBs, the assembled FTO⊂CNT//Na 3 V 2 (PO 4 ) 3 batteries are also demonstrated with superior rate capability and a long cycle life.

  11. Functional Design of Dielectric-Metal-Dielectric-Based Thin-Film Encapsulation with Heat Transfer and Flexibility for Flexible Displays.

    Science.gov (United States)

    Kwon, Jeong Hyun; Choi, Seungyeop; Jeon, Yongmin; Kim, Hyuncheol; Chang, Ki Soo; Choi, Kyung Cheol

    2017-08-16

    In this study, a new and efficient dielectric-metal-dielectric-based thin-film encapsulation (DMD-TFE) with an inserted Ag thin film is proposed to guarantee the reliability of flexible displays by improving the barrier properties, mechanical flexibility, and heat dissipation, which are considered to be essential requirements for organic light-emitting diode (OLED) encapsulation. The DMD-TFE, which is composed of Al 2 O 3 , Ag, and a silica nanoparticle-embedded sol-gel hybrid nanocomposite, shows a water vapor transmission rate of 8.70 × 10 -6 g/m 2 /day and good mechanical reliability at a bending radius of 30 mm, corresponding to 0.41% strain for 1000 bending cycles. The electrical performance of a thin-film encapsulated phosphorescent organic light-emitting diode (PHOLED) was identical to that of a glass-lid encapsulated PHOLED. The operational lifetimes of the thin-film encapsulated and glass-lid encapsulated PHOLEDs are 832 and 754 h, respectively. After 80 days, the thin-film encapsulated PHOLED did not show performance degradation or dark spots on the cell image in a shelf-lifetime test. Finally, the difference in lifetime of the OLED devices in relation to the presence and thickness of a Ag film was analyzed by applying various TFE structures to fluorescent organic light-emitting diodes (FOLEDs) that could generate high amounts of heat. To demonstrate the difference in heat dissipation effect among the TFE structures, the saturated temperatures of the encapsulated FOLEDs were measured from the back side surface of the glass substrate, and were found to be 67.78, 65.12, 60.44, and 39.67 °C after all encapsulated FOLEDs were operated at an initial luminance of 10 000 cd/m 2 for sufficient heat generation. Furthermore, the operational lifetime tests of the encapsulated FOLED devices showed results that were consistent with the measurements of real-time temperature profiles taken with an infrared camera. A multifunctional hybrid thin-film encapsulation

  12. In Situ Synthesis of Vertical Standing Nanosized NiO Encapsulated in Graphene as Electrodes for High-Performance Supercapacitors.

    Science.gov (United States)

    Lin, Jinghuang; Jia, Henan; Liang, Haoyan; Chen, Shulin; Cai, Yifei; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Fei, Weidong; Feng, Jicai

    2018-03-01

    NiO is a promising electrode material for supercapacitors. Herein, the novel vertically standing nanosized NiO encapsulated in graphene layers (G@NiO) are rationally designed and synthesized as nanosheet arrays. This unique vertical standing structure of G@NiO nanosheet arrays can enlarge the accessible surface area with electrolytes, and has the benefits of short ion diffusion path and good charge transport. Further, an interconnected graphene conductive network acts as binder to encapsulate the nanosized NiO particles as core-shell structure, which can promote the charge transport and maintain the structural stability. Consequently, the optimized G@NiO hybrid electrodes exhibit a remarkably enhanced specific capacity up to 1073 C g -1 and excellent cycling stability. This study provides a facial strategy to design and construct high-performance metal oxides for energy storage.

  13. Encapsulation methods for organic electrical devices

    Science.gov (United States)

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  14. Real-time assessment of encapsulated neonatal porcine islets prior to clinical xenotransplantation.

    Science.gov (United States)

    Kitzmann, Jennifer P; Law, Lee; Shome, Avik; Muzina, Marija; Elliott, Robert B; Mueller, Kate R; Schuurman, Henk-Jan; Papas, Klearchos K

    2012-01-01

    Porcine islet transplantation is emerging as an attractive option for the treatment of patients with type 1 diabetes, with the possibility of providing islets of higher and more consistent quality and in larger volumes than available from human pancreata. The use of encapsulated neonatal porcine islets (ENPI) is appealing because it can address islet supply limitations while reducing the need for anti-rejection therapy. Pre-transplant characterization of ENPI viability and potency is an essential component of the production process. We applied the validated assay for oxygen consumption rate normalized for DNA content (OCR/DNA) to characterize ENPI viability. ENPI of low viscosity and high m alginate were prepared according to standard methods and characterized at various culture time points up to 5 weeks. The OCR/DNA (nmol/min·mgDNA ± SEM) of ENPI (235 ± 10, n = 9) was comparable to that of free NPI (255 ± 14, n = 13). After encapsulation, NPI OCR/DNA was sustained over a culture period of up to 5 weeks. The average OCR/DNA of ENPI cultured longer than 9 days was higher than that of freshly encapsulated NPI. This is the first characterization of ENPI by a validated and more sensitive method for product viability. The NPI encapsulation process does not compromise viability as measured by OCR/DNA, and ENPI can be cultured for up to 5 weeks with maintenance of viability. ENPI meet or exceed current adult porcine islet product release criteria (established at the University of Minnesota) for preclinical xenotransplantation in terms of OCR/DNA. © 2012 John Wiley & Sons A/S.

  15. Melting of Pb clusters encapsulated in large fullerenes

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: Encapsulation significantly increases the melting point of nanometer-sized Pb particles with respect to the corresponding unsupported ones. Highlights: → Nanometer-sized Pb particles are encapsulated in fullerene cages. → Their thermal behavior is studied by molecular dynamics simulations. → Encapsulated particles undergo a pressure rise as temperature increases. → Encapsulated particles melt at temperatures higher than unsupported ones. - Abstract: Molecular dynamics simulations have been employed to explore the melting behavior of nanometer-sized Pb particles encapsulated in spherical and polyhedral fullerene cages of suitable size. The encapsulated particles, as well as the corresponding unsupported ones for comparison, were submitted to a gradual temperature rise. Encapsulation is shown to severely affect the thermodynamic behavior of Pb particles due to the different thermal expansion coefficients of particles and cages. This determines a volume constraint that induces a rise of pressure inside the fullerene cages, which operate for particles as rigid confinement systems. The result is that surface pre-melting and melting processes occur in encapsulated particles at temperatures higher than in unsupported ones.

  16. High rate performance of the carbon encapsulated Li4Ti5O12 for lithium ion battery

    Science.gov (United States)

    Cheng, Qi; Tang, Shun; Liang, Jiyuan; Zhao, Jinxing; Lan, Qian; Liu, Chang; Cao, Yuan-Cheng

    Li4Ti5O12 (LTO) is attractive alternative anode material with excellent cyclic performance and high rate after coating modifications of the conductive materials. Anatase TiO2 and glucose were applied of the synthesis of the carbon coated LTO (C@LTO). XRD results showed that all the major diffractions from the spinel structure of LTO can be found in the C@LTO such as (1 1 1), (3 1 1), (4 0 0) but there are no observations of the Carbon diffraction peaks. Electrochemical Impedance Spectroscopy (EIS) data shows C@LTO resistance was nearly half of the LTO value. Rate performance showed that capacity of C@LTO was higher than that of the pure LTO from 0.1 C, 0.2 C, 1 C, 2 C, 5 C and 10 C, which indicates that this is a promising approach to prepare the high performance LTO anode.

  17. Encapsulated phosphates reduce lipid oxidation in both ground chicken and ground beef during raw and cooked meat storage with some influence on color, pH, and cooking loss.

    Science.gov (United States)

    Kılıç, B; Simşek, A; Claus, J R; Atılgan, E

    2014-05-01

    Effects of encapsulated sodium tripolyphosphate (STP), sodium hexametaphosphate (HMP) and sodium pyrophosphate (SPP) on lipid oxidation in uncooked (0, 2, 24h) and cooked (0, 1, 7 d) ground chicken and beef during storage were determined. Ten phosphate treatments included a control (no phosphate), three unencapsulated (u) at 0.5% and three encapsulated (e) phosphates (0.5%) each at a low (e-low) and high (e-high) coating level. Two heating rates (slow, fast) were investigated. Cooking loss (CL), pH, color, orthophosphate (OP), TBARS and lipid hydroperoxides (LPO) were determined. A fast heating and uSTP resulted in lower CL (pcooked samples. Not increased coating level but encapsulated phosphates decreased lipid oxidation in cooked samples (p<0.05). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Thermoresponsive latexes for fragrance encapsulation and release.

    Science.gov (United States)

    Popadyuk, N; Popadyuk, A; Kohut, A; Voronov, A

    2016-04-01

    To synthesize cross-linked latex particles protecting the encapsulated fragrance at ambient temperatures and facilitating the release of cargo at the temperature of the surface of the skin that varies in different regions of the body between 33.5 and 36.9°C. Poly(stearyl acrylate) (PSA), a polymer with long crystallizable alkyl side chains (undergoes order-disorder transitions at 45°C), was chosen as the main component of the polymer particles. As a result, new thermoresponsive polymer particles for fragrance encapsulation were synthesized and characterized, including assessing the performance of particles in triggered release by elevated temperature. To obtain network domains of various crystallinity, stearyl acrylate was copolymerized with dipropylene glycol acrylate caprylate (DGAC) (comonomer) in the presence of a dipropylene glycol diacrylate sebacate (cross-linker) using the miniemulsion process. Comonomers and a cross-linker were mixed directly in a fragrance during polymerization. Fragrance release was evaluated at 25, 31, 35 and 39°C to demonstrate a new material potential in personal/health care skin-related applications. Particles protect the fragrance from evaporation at 25°C. The fragrance release rate gradually increases at 31, 35 and 39°C. Two slopes were found on release plots. The first slope corresponds to a rapid fragrance release. The second slope indicates a subsequent reduction in the release rate. Crystalline-to-amorphous transition of PSA triggers the release of fragrances from cross-linked latex particles at elevated temperatures. The presence of the encapsulated fragrance, as well as the inclusion of amorphous fragments in the polymer network, reduces the particle crystallinity and enhances the release. Release profiles can be tuned by temperature and controlled by the amount of loaded fragrance and the ratio of comonomers in the feed mixture. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Comparative studies on osmosis based encapsulation of sodium diclofenac in porcine and outdated human erythrocyte ghosts.

    Science.gov (United States)

    Bukara, Katarina; Drvenica, Ivana; Ilić, Vesna; Stančić, Ana; Mišić, Danijela; Vasić, Borislav; Gajić, Radoš; Vučetić, Dušan; Kiekens, Filip; Bugarski, Branko

    2016-12-20

    The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes

    International Nuclear Information System (INIS)

    Randall, Paul; Chattopadhyay, Sandip

    2004-01-01

    Although industrial and commercial uses of mercury have been curtailed in recent times, there is a demonstrated need for the development of reliable hazardous waste management techniques because of historic operations that have led to significant contamination and ongoing hazardous waste generation. This study was performed to evaluate whether the U.S. EPA could propose treatment and disposal alternatives to the current land disposal restriction (LDR) treatment standards for mercury. The focus of this article is on the current state of encapsulation technologies that can be used to immobilize elemental mercury, mercury-contaminated debris, and other mercury-contaminated wastes, soils, sediments, or sludges. The range of encapsulation materials used in bench-scale, pilot-scale, and full-scale applications for mercury-contaminated wastes are summarized. Several studies have been completed regarding the application of sulfur polymer stabilization/solidification, chemically bonded phosphate ceramic encapsulation, and polyethylene encapsulation. Other materials reported in the literature as under development for encapsulation use include asphalt, polyester resins, synthetic elastomers, polysiloxane, sol-gels, Dolocrete TM , and carbon/cement mixtures. The primary objective of these encapsulation methods is to physically immobilize the wastes to prevent contact with leaching agents such as water. However, when used for mercury-contaminated wastes, several of these methods require a pretreatment or stabilization step to chemically fix mercury into a highly insoluble form prior to encapsulation. Performance data is summarized from the testing and evaluation of various encapsulated, mercury-contaminated wastes. Future technology development and research needs are also discussed

  1. Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS).

    Science.gov (United States)

    Yong, K J; Scott, D J

    2015-03-01

    Directed evolution is a powerful method for engineering proteins towards user-defined goals and has been used to generate novel proteins for industrial processes, biological research and drug discovery. Typical directed evolution techniques include cellular display, phage display, ribosome display and water-in-oil compartmentalization, all of which physically link individual members of diverse gene libraries to their translated proteins. This allows the screening or selection for a desired protein function and subsequent isolation of the encoding gene from diverse populations. For biotechnological and industrial applications there is a need to engineer proteins that are functional under conditions that are not compatible with these techniques, such as high temperatures and harsh detergents. Cellular High-throughput Encapsulation Solubilization and Screening (CHESS), is a directed evolution method originally developed to engineer detergent-stable G proteins-coupled receptors (GPCRs) for structural biology. With CHESS, library-transformed bacterial cells are encapsulated in detergent-resistant polymers to form capsules, which serve to contain mutant genes and their encoded proteins upon detergent mediated solubilization of cell membranes. Populations of capsules can be screened like single cells to enable rapid isolation of genes encoding detergent-stable protein mutants. To demonstrate the general applicability of CHESS to other proteins, we have characterized the stability and permeability of CHESS microcapsules and employed CHESS to generate thermostable, sodium dodecyl sulfate (SDS) resistant green fluorescent protein (GFP) mutants, the first soluble proteins to be engineered using CHESS. © 2014 Wiley Periodicals, Inc.

  2. Micelle-encapsulated fullerenes in aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ala-Kleme, T., E-mail: timo.ala-kleme@utu.fi [Department of Chemistry, University of Turku, 20014 Turku (Finland); Maeki, A.; Maeki, R.; Kopperoinen, A.; Heikkinen, M.; Haapakka, K. [Department of Chemistry, University of Turku, 20014 Turku (Finland)

    2013-03-15

    Different micellar particles Mi(M{sup +}) (Mi=Triton X-100, Triton N-101 R, Triton CF-10, Brij-35, M{sup +}=Na{sup +}, K{sup +}, Cs{sup +}) have been prepared in different aqueous H{sub 3}BO{sub 3}/MOH background electrolytes. It has been observed that these particles can be used to disperse the highly hydrophobic spherical [60]fullerene (1) and ellipsoidal [70]fullerene (2). This dispersion is realised as either micelle-encapsulated monomers Mi(M{sup +})1{sub m} and Mi(M{sup +})2{sub m} or water-soluble micelle-bound aggregates Mi(M{sup +})1{sub agg} and Mi(M{sup +})2{sub agg}, where especially the hydration degree and polyoxyethylene (POE) thickness of the micellar particle seems to play a role of vital importance. Further, the encapsulation microenvironment of 1{sub m} was found to depend strongly on the selected monovalent electrolyte cation, i.e., the encapsulated 1{sub m} is accommodated in the more hydrophobic microenvironment the higher the cationic solvation number is. - Highlights: Black-Right-Pointing-Pointer Different micellar particles is used to disperse [60]fullerene and [70]fullerene. Black-Right-Pointing-Pointer Fullerene monomers or aggregates are dispersed encaging or bounding by micelles. Black-Right-Pointing-Pointer Effective facts are hydration degree and polyoxyethylene thickness of micelle.

  3. Hollow carbon spheres with encapsulation of Co3O4 nanoparticles as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhan Liang; Wang Yanli; Qiao Wenming; Ling, Licheng; Yang Shubin

    2012-01-01

    Graphical abstract: Hollow carbon spheres with encapsulation of Co 3 O 4 nanoparticles were synthesized. As anode materials for lithium ion battery, the reversible capacity of obtained electrode is as high as 732 mAh g −1 at 74 mA g −1 and 500 mAh g −1 at 744 mA g −1 . - Abstract: Based on the high theoretical capacity of Co 3 O 4 for lithium storage, a noval type of monodisperse hollow carbon spheres with encapsulation of Co 3 O 4 nanoparticles (HCSE-Co 3 O 4 ) were designed and synthesized. The monodisperse hollow carbon spheres not only can provide enough void volume to accommodate the volume change of encapsulated Co 3 O 4 nanoparicles, but also can prevent the formation of solid electrolyte interface (SEI) films on the surface of Co 3 O 4 nanoparticles and following direct contact of Co and SEI films upon lithium extraction. The HCSE-Co 3 O 4 electrode exhibit highly reversible capacity, excellent cycle performance and rate capability attributed to the unique structure. The reversible capacity of HCSE-Co 3 O 4 electrode is as high as 500 mAh g −1 at a current density of 744 mA g −1 , while that of bare Co 3 O 4 electrode is only around 80 mAh g −1 .

  4. Charge transfer in conjugated oligomers encapsulated into carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Almadori, Y.; Alvarez, L.; Michel, T.; Le Parc, R.; Bantignies, J.L.; Hermet, P.; Sauvajol, J.L. [Laboratoire Charles Coulomb UMR 5521, Universite Montpellier 2, 34095 Montpellier (France); Laboratoire Charles Coulomb UMR 5521, CNRS, 34095 Montpellier (France); Arenal, R. [Laboratoire d' Etude des Microstructures, CNRS-ONERA, 92322 Chatillon (France); Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, U. Zaragoza, 50018 Zaragoza (Spain); Babaa, R. [Laboratoire de Chimie des Surfaces et Interfaces, CEA, IRAMIS, SPCSI, 91191 Gif-sur-Yvette Cedex (France); Chemical Engineering Department, University of Technology PETRONAS, UTP, Ipoh-Perak (Malaysia); Jouselme, B.; Palacin, S. [Laboratoire de Chimie des Surfaces et Interfaces, CEA, IRAMIS, SPCSI, 91191 Gif-sur-Yvette Cedex (France)

    2011-11-15

    This study deals with a hybrid system consisting in quaterthiophene derivative encapsulated inside single-walled and multi-walled carbon nanotubes. Investigations of the encapsulation step are performed by transmission electron microscopy. Raman spectroscopy data point out different behaviors depending on the laser excitation energy with respect to the optical absorption of quaterthiophene. At low excitation energy (far from the oligomer resonance window) there is no significant modification of the Raman spectra before and after encapsulation. By contrast, at high excitation energy (close to the oligomer resonance window), Raman spectra exhibit a G-band shift together with an important RBM intensity loss, suggesting a significant charge transfer between the inserted molecule and the host nanotubes. Those results suggest a photo induced process leading to a significant charge transfer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Hybrid chip-on-board LED module with patterned encapsulation

    Science.gov (United States)

    Soer, Wouter Anthon; Helbing, Rene; Huang, Guan

    2018-02-27

    Different wavelength conversion materials, or different concentrations of a wavelength conversion material are used to encapsulate the light emitting elements of different colors of a hybrid light emitting module. In an embodiment of this invention, second light emitting elements (170) of a particular color are encapsulated with a transparent second encapsulant (120;420;520), while first light emitting elements (160) of a different color are encapsulated with a wavelength conversion first encapsulant (110;410;510). In another embodiment of this invention, a particular second set of second and third light emitting elements (170,580) of different colors is encapsulated with a different encapsulant than another first set of first light emitting elements (160).

  6. Some thermal analysis aspects of metal encapsulated waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-01-01

    This paper is to summarize two waste management schemes: (1) packaging for extended storage of LWR spent fuel assemblies, with the capability for simple conversion either to terminal storage if a ''throwaway'' fuel cycle is ultimately adopted or to a form that can be reprocessed and (2) packaging for the terminal storage of solidified high-level wastes when the reprocessing of spent fuel is initiated. Only concepts utilizing metals or metal alloys to encapsulate either spent fuel or solidified high-level waste forms have been considered. Conceptual process flow sheets have been constructed to allow potential advantages and disadvantages of encapsulation alternatives to be identified in comparison with more conventional reference processes. Identification is also made of uncertainties of the analysis due to a lack of fundamental data required to perform evaluations. 3 tables

  7. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.

    Science.gov (United States)

    Pfeifer, Blaine A; Burdick, Jason A; Little, Steve R; Langer, Robert

    2005-11-04

    Poly(ester-anhydride) delivery devices allow flexibility regarding carrier dimensions (micro- versus nanospheres), degradation rate (anhydride versus ester hydrolysis), and surface labeling (through the anhydride functional unit), and were therefore tested for DNA encapsulation and transfection of a macrophage P388D1 cell line. Poly(l-lactic acid-co-sebacic anhydride) and poly(l-lactic acid-co-adipic anhydride) were synthesized through melt condensation, mixed with 25 wt.% poly(beta-amino ester), and formulated with plasmid DNA (encoding firefly luciferase) into micro- and nanospheres using a double emulsion/solvent evaporation technique. The micro- and nanospheres were then characterized (size, morphology, zeta potential, DNA release) and assayed for DNA encapsulation and cellular transfection over a range of poly(ester-anhydride) copolymer ratios. Poly(ester-anhydride):poly(beta-amino ester) composite microspheres (6-12 microm) and nanospheres (449-1031 nm), generated with copolymers containing between 0 and 25% total polyanhydride content, encapsulated plasmid DNA (>or=20% encapsulation efficiency). Within this polyanhydride range, poly(adipic anhydride) copolymers provided DNA encapsulation at an increased anhydride content (10%, microspheres; 10-25%, nanospheres) compared to poly(sebacic anhydride) copolymers (1%, microspheres and nanospheres) with cellular transfection correlating with the observed DNA encapsulation.

  8. Cryopreservation of human insulin expressing cells macro-encapsulated in a durable therapeutic immunoisolating device theracyte.

    Science.gov (United States)

    Yakhnenko, Ilya; Wong, Wallace K; Katkov, Igor I; Itkin-Ansari, Pamela

    2012-01-01

    Encapsulating insulin producing cells (INPCs) in an immunoisolation device have been shown to cure diabetes in rodents without the need for immunosuppression. However, micro-encapsulation in semi-solid gels raises longevity and safety concerns for future use of stem cell derived INPCs. We have focused on a durable and retrievable macro-encapsulation (> 10(6) cells) device (TheraCyte). Cryopreservation (CP) of cells preloaded into the device is highly desirable but may require prolonged exposure to cryoprotectants during loading and post-thaw manipulations. Here, we are reporting survival and function of a human islet cell line frozen as single cells or as islet-like cell clusters. The non-clusterized cells exhibited high cryosurvival after prolonged pre-freeze or post-thaw exposure to 10 percent DMSO. However, both clusterization and especially loading INPCs into the device reduced viable yield even without CP. The survived cryopreserved macro-encapsulated INPCs remained fully functional suggesting that CP of macro-encapsulated cells is a promising tool for cell based therapies.

  9. Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts

    Science.gov (United States)

    Behzadi, Shahed; Rosenauer, Christine; Kappl, Michael; Mohr, Kristin; Landfester, Katharina; Crespy, Daniel

    2016-06-01

    The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials.The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01882c

  10. Acoustically excited encapsulated microbubbles and mitigation of biofouling

    KAUST Repository

    Qamar, Adnan

    2017-08-31

    Provided herein is a universally applicable biofouling mitigation technology using acoustically excited encapsulated microbubbles that disrupt biofilm or biofilm formation. For example, a method of reducing biofilm formation or removing biofilm in a membrane filtration system is provided in which a feed solution comprising encapsulated microbubbles is provided to the membrane under conditions that allow the encapsulated microbubbles to embed in a biofilm. Sonication of the embedded, encapsulated microbubbles disrupts the biofilm. Thus, provided herein is a membrane filtration system for performing the methods and encapsulated microbubbles specifically selected for binding to extracellular polymeric substances (EFS) in a biofilm.

  11. Perspective of metal encapsulation of waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-01-01

    A conceptual flow sheet is presented for encapsulating solid, stabilized calcine (e.g., supercalcine) in a solid lead alloy, using existing or developing technologies. Unresolved and potential problem areas of the flow sheet are outlined and suggestions are made as how metal encapsulation might be applied to other solid wastes from the fuel cycle. It is concluded that metal encapsulation is a technique applicable to many forms of solid wastes and is likely to meet future waste isolation criteria and regulations

  12. Encapsulation and Hemocyte Numbers in Crocidolomia pavonana and Spodoptera litura Fabricius (Lepidoptera Attacked by Parasitoid Eriborus argenteopilosus Cameron (Hymenoptera

    Directory of Open Access Journals (Sweden)

    DAMAYANTI BUCHORI

    2009-12-01

    Full Text Available Eriborus argenteopilosus is the most important parasitoid attacking cabbage pest Crocidolomia pavonana in Indonesia. Previous studies proved that parasitoid encapsulation was found to be an important factor limiting the effectiveness of the parasitoid in controlling pest population in the field. Since 1998, we have conducted series studies to investigate encapsulation mechanism developed by hosts against parasitoid, responses of parasitoid toward encapsulation ability and to determine factors that may help parasitoid avoid encapsulation. Parasitoid responses were examined on two different hosts C. pavonana and Spodoptera litura. Our findings showed that parasitization level was found to be high both on C. pavonana and S. litura. Encapsulation occurred to be high in all larva stages of C. pavonana, in contrast encapsulation was recorded very low in all larvae stages of S. litura. We recorded that encapsulation in the larval body of C. pavonana was completed in 72 hours and mostly occurred in higher larval stage. Melanization was only recorded in encapsulated parasitoid inside larva body of C. pavonana, not in S. litura. We recorded that encapsulation increased blood cell number of both larvae C. pavonana and S. litura. Encapsulation may affect development of immature parasitoid. Weight of S. litura's pupae containing encapsulated parasitoid was found to be lower in S. litura, but not in C. pavonana. Our investigation also proved that superparasitism may help parasitoid avoid encapsulation.

  13. Gadolinium-Encapsulating Iron Oxide Nanoprobe as Activatable NMR/MRI Contrast Agent

    Science.gov (United States)

    Santra, Santimukul; Jativa, Samuel D.; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J. Manuel

    2012-01-01

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the polyacrylic acid (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA) yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T1). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T1 relaxation rate (1/T1) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T1-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T1 signal was observed. This result suggests that upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH = 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T1 activation. No change in T1 was observed when the Gd-DTPA complex was chemically conjugated on the surface of the nanoparticle's polymeric coating or when encapsulated in the polymeric coating of a non-magnetic nanoparticle. These results confirmed that the observed (T1) quenching of the composite magnetic nanoprobe is due to the encapsulation and close proximity of the Gd ion to the nanoparticles superparamagnetic iron oxide (IO) core. In addition, when an anticancer drug (Taxol) was co-encapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T1 activation of the probe coincide with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T1 nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI. PMID:22809405

  14. Low Hysteresis Carbon Nanotube Transistors Constructed via a General Dry-Laminating Encapsulation Method on Diverse Surfaces.

    Science.gov (United States)

    Yang, Yi; Wang, Zhongwu; Xu, Zeyang; Wu, Kunjie; Yu, Xiaoqin; Chen, Xiaosong; Meng, Yancheng; Li, Hongwei; Qiu, Song; Jin, Hehua; Li, Liqiang; Li, Qingwen

    2017-04-26

    Electrical hysteresis in carbon nanotube thin-film transistor (CNTTFT) due to surface adsorption of H 2 O/O 2 is a severe obstacle for practical applications. The conventional encapsulation methods based on vacuum-deposited inorganic materials or wet-coated organic materials have some limitations. In this work, we develop a general and highly efficient dry-laminating encapsulation method to reduce the hysteresis of CNTTFTs, which may simultaneously realize the construction and encapsulation of CNTTFT. Furthermore, by virtue of dry procedure and wide compatibility of PMMA, this method is suitable for the construction of CNTTFT on diverse surface including both inorganic and organic dielectric materials. Significantly, the dry-encapsulated CNTTFT exhibits very low or even negligible hysteresis with good repeatability and air stability, which is greatly superior to the nonencapsulated and wet-encapsulated CNTTFT with spin-coated PMMA. The dry-laminating encapsulation strategy, a kind of technological innovation, resolves a significant problem of CNTTFT and therefore will be promising in facile transferring and packaging the CNT films for high-performance optoelectronic devices.

  15. Postmortem analysis of encapsulation around long-term ventricular endocardial pacing leads.

    Science.gov (United States)

    Candinas, R; Duru, F; Schneider, J; Lüscher, T F; Stokes, K

    1999-02-01

    To analyze the site and thickness of encapsulation around ventricular endocardial pacing leads and the extent of tricuspid valve adhesion, from today's perspective, with implications for lead removal and sensor location. Gross cardiac postmortem analysis was performed in 11 cases (8 female and 3 male patients; mean age, 78+/-7 years). None of the patients had died because of pacemaker malfunction. The mean implant time was 61+/-60 months (range, 4 to 184). The observations ranged from encapsulation only at the tip of the pacing lead to complete encapsulation along the entire length of the pacing lead within the right ventricle. Substantial areas of adhesion at the tricuspid valve apparatus were noted in 7 of the 11 cases (64%). The firmly attached leads could be removed only by dissection, and in some cases, removal was possible only by damaging the associated structures. No specific optimal site for sensor placement could be identified along the ventricular portion of the pacing leads; however, the fibrotic response was relatively less prominent in the atrial chamber. Extensive encapsulation is present in most long-term pacemaker leads, which may complicate lead removal. The site and thickness of encapsulation seem to be highly variable. Tricuspid valve adhesion, which is usually underestimated, may be severe. In contrast to earlier reports, our study demonstrates that the extent of fibrotic encapsulation may not be related to the duration since lead implantation. Moreover, we noted no ideal encapsulation-free site for sensors on the ventricular portion of long-term pacing leads.

  16. Innovative encapsulated oxygen-releasing beads for bioremediation of BTEX at high concentration in groundwater.

    Science.gov (United States)

    Lin, Chi-Wen; Wu, Chih-Hung; Guo, Pei-Yu; Chang, Shih-Hsien

    2017-12-15

    Both a low concentration of dissolved oxygen and the toxicity of a high concentration of BTEX inhibit the bioremediation of BTEX in groundwater. A novel method of preparing encapsulated oxygen-releasing beads (encap-ORBs) for the biodegradation of BTEX in groundwater was developed. Experimental results show that the integrality and oxygen-releasing capacity of encap-ORBs exceeded those of ORBs. The use of polyvinyl alcohol (PVA) with high M.W. to prepare encap-ORBs improved their integrality. The encap-ORBs effectively released oxygen for 128 days. High concentration of BTEX (480 mg L -1 ) inhibited the biodegradation by the free cells. Immobilization of degraders in the encap-ORB alleviated the inhibition. Scanning electron microscope analysis reveals that the BTEX degraders grew on the surface of encap-ORB after bioremediation. The above results indicate that the encap-ORBs were effective in the bioremediation of BTEX at high concentration in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage

    DEFF Research Database (Denmark)

    Baranauskiene, R.; Bylaite, Egle; Zukauskaite, J.

    2007-01-01

    The effect of different commercial modified food starch carrier materials on the flavor retention of the essential oil (EO) of peppermint (Mentha piperita L.) during spray drying and storage was evaluated. The obtained results revealed that the emulsification and encapsulation efficiencies...... individual compounds were observed. Larger differences in the compositions of surface oils from various encapsulation products were obtained. Flavor components were released at different rates by each of the encapsulated products. The aroma binding capacity of different modified starch matrices to lock EO...... droplets depends on the water activity, and the leakage of aromas from encapsulated powder products during storage increased with increasing water activity....

  18. Fabrication of hemispherical liquid encapsulated structures based on droplet molding

    Science.gov (United States)

    Ishizuka, Hiroki; Miki, Norihisa

    2015-12-01

    We have developed and demonstrated a method for forming spherical structures of a thin polydimethylsiloxane (PDMS) membrane encapsulating a liquid. Liquid encapsulation can enhance the performance of microelectromechanical systems (MEMS) devices by providing deformability and improved dielectric properties. Parylene deposition and wafer bonding are applied to encapsulate liquid into a MEMS device. In parylene deposition, a parylene membrane is directly formed onto a liquid droplet. However, since the parylene membrane is stiff, the membrane is fragile. Although wafer bonding can encapsulate liquid between two substrates, the surface of the fabricated structure is normally flat. We propose a new liquid encapsulation method by dispensing liquid droplets. At first, a 20 μl PDMS droplet is dispensed on ethylene glycol. A 70 μl glycerin droplet is dispensed into a PDMS casting solution layer. The droplet forms a layer on heated ethylene glycol. Glycerin and ethylene glycol are chosen for their high boiling points. Additionally, a glycerin droplet is dispensed on the layer and surrounded by a thin PDMS casting solution film. The film is baked for 1 h at 75 °C. As the result, a structure encapsulating a liquid in a flexible PDMS membrane is obtained. We investigate the effects of the volume, surface tension, and guide thickness on the shape of the formed structures. We also evaluated the effect of the structure diameter on miniaturization. The structure can be adapted for various functions by changing the encapsulated liquid. We fabricated a stiffness-tunable structure by dispensing a magnetorheoligical fluid droplet with a stiffness that can be changed by an external magnetic field. We also confirmed that the proposed structure can produce stiffness differences that are distinguishable by humans.

  19. Encapsulation of biomaterials in porous glass-like matrices prepared via an aqueous colloidal sol-gel process

    Science.gov (United States)

    Liu, Dean-Mo; Chen, I-Wei

    2001-01-01

    The present invention provides a process for the encapsulation of biologically important proteins into transparent, porous silica matrices by an alcohol-free, aqueous, colloidal sol-gel process, and to the biological materials encapsulated thereby. The process is exemplified by studies involving encapsulated cytochrome c, catalase, myoglobin, and hemoglobin, although non-proteinaceous biomaterials, such as active DNA or RNA fragments, cells or even tissues, may also be encapsulated in accordance with the present methods. Conformation, and hence activity of the biomaterial, is successfully retained after encapsulation as demonstrated by optical characterization of the molecules, even after long-term storage. The retained conformation of the biomaterial is strongly correlated to both the rate of gelation and the subsequent drying speed of the encapsulatng matrix. Moreover, in accordance with this process, gelation is accelerated by the use of a higher colloidal solid concentration and a lower synthesis pH than conventional methods, thereby enhancing structural stability and retained conformation of the biomaterials. Thus, the invention also provides a remarkable improvement in retaining the biological activity of the encapsulated biomaterial, as compared with those involved in conventional alkoxide-based processes. It further provides new methods for the quantitative and qualitative detection of test substances that are reactive to, or catalyzed by, the active, encapsulated biological materials.

  20. Improvement of Stability and Antioxidant Activities by Using Phycocyanin - Chitosan Encapsulation Technique

    Science.gov (United States)

    Suzery, Meiny; Hadiyanto; Majid, Dian; Setyawan, Deny; Sutanto, Heri

    2017-02-01

    Encapsulation is a coating process to improve the stability of bioactive compounds. Phycocyanin with high antioxidant activity has been encapsulated with chitosan in microcapsules form. In this study aims to determine the best conditions in the encapsulation process using the extrusion method, characterization of the physicochemical properties of the microcapsules, antioxidant activity test using DPPH, in vitro release performance and evaluate the storage stability against temperature. The results of the encapsulation process is obtained: Na-TPP is better than Na-citrate as crosslinker and chitosan content 3% as a coating with ratio of chitosan to phycocyanin ratio 1: 1. Test of antioxidant activity also showed encapsulation with chitosan content 3% has the highest antioxidant activity. Morphological analysis microcapsules were found to have compact spherical shape with diameter range 900-1000 µm. In vitro release testing showed a quick release in an acidic environment (SGF) for 2 hours and slowly release under alkaline conditions (SIF) for 8 hours under mechanical stirring at 37°C. Phycocyanin much more stable against temperature during storage in microcapsules.

  1. Behavior of lateral buds of Hancornia speciosa after cryopreservation by encapsulation-vitrification

    Directory of Open Access Journals (Sweden)

    Débora de Oliveira Prudente

    2017-05-01

    Full Text Available Hancornia speciosa is a fruitful species from Cerrado biome with high economic potential. However, the intense and disordered extractivism have caused a reduction of its population in its endemic area. In addition, seed recalcitrance negatively affects the conventional conservation of the species. Aiming to find alternatives that enable the long-term conservation of this species, the study’s objective was to assess the behavior of lateral bud’s regrowth after cryopreservation procedures by encapsulation-vitrification technique. Sodium alginate capsules containing lateral buds were pre-cultured in liquid WPM supplemented with 1.0 M glycerol, and subsequently exposed to different concentrations of sucrose (0.3; 0.75 and 1.0 M for 24 or 48 hours. The capsules were subjected to dehydration in silica gel or airflow hood for 0, 1, 2 and 3 hours before different incubation times in PVS2 (0, 15, 30, 60 and 120 minutes at 0°C. A high regeneration percentage of lateral buds was observed after cryopreservation of capsules treated with 0.75 M sucrose plus 1.0 M glycerol (24 hours, associated with dehydration in an airflow hood (1 hour and immersion in PVS2 (15 minutes. Encapsulation-vitrification allowed the long-term conservation, and provided high plant material survival rates after cryopreservation of Hancornia speciosa sensitive explants.

  2. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    International Nuclear Information System (INIS)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J.; Meyer, Willem C.H.M.; Hyatt, Neil C.

    2013-01-01

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle–glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers’ hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H 2 /N 2 atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle–glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required

  3. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD (United Kingdom); Meyer, Willem C.H.M. [Necsa, South African Nuclear Energy Corporation, PO Box 582, Pretoria, Gauteng (South Africa); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2013-05-15

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle–glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers’ hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H{sub 2}/N{sub 2} atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle–glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required.

  4. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes

    Science.gov (United States)

    Panwar, Preety; Pandey, Bhumika; Lakhera, P C; Singh, K P

    2010-01-01

    The purpose of the present study was to formulate effective and controlled release albendazole liposomal formulations. Albendazole, a hydrophobic drug used for the treatment of hydatid cysts, was encapsulated in nanosize liposomes. Rapid evaporation method was used for the preparation of albendazole-encapsulated conventional and PEGylated liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (6:4) and PC:CH: polyethylene glycol (PEG) (5:4:1), respectively. In this study, PEGylated and conventional liposomes containing albendazole were prepared and their characteristics, such as particle size, encapsulation efficiency, and in vitro drug release were investigated. The drug encapsulation efficiency of PEGylated and conventional liposomes was 81% and 72%, respectively. The biophysical characterization of both conventional and PEG-coated liposomes were done by transmission electron microscopy and UV-vis spectrophotometry. Efforts were made to study in vitro release of albendazole. The drug release rate showed decrease in albendazole release in descending order: free albendazole, albendazole-loaded conventional liposomes, and least with albendazole-loaded PEG-liposomes. Biologically relevant vesicles were prepared and in vitro release of liposome-entrapped albendazole was determined. PMID:20309396

  5. Mercuric iodide semiconductor detectors encapsulated in polymeric resin

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao F. Trencher; Santos, Robinson A. dos; Ferraz, Caue de M.; Oliveira, Adriano S.; Velo, Alexandre F.; Mesquita, Carlos H. de; Hamada, Margarida M., E-mail: mmhamada@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Disch, Christian; Fiederle, Michael [Albert-Ludwigs Universität Freiburg - UniFreibrug, Freiburg Materials Research Center - FMF, Freiburg (Germany)

    2015-07-01

    The development of new semiconductor radiation detectors always finds many setback factors, such as: high concentration of impurities in the start materials, poor long term stability, the surface oxidation and other difficulties discussed extensively in the literature, that limit their use. In this work was studied, the application of a coating resin on HgI2 detectors, in order to protect the semiconductor crystal reactions from atmospheric gases and to isolate electrically the surface of the crystals. Four polymeric resins were analyzed: Resin 1: 50% - 100%Heptane, 10% - 25% methylcyclohexane, <1% cyclohexane; Resin 2: 25% - 50% ethanol, 25% - 50% acetone, <2,5% ethylacetate; Resin 3: 50% - 100% methylacetate, 5% - 10% n-butylacetate; Resin 4: 50% - 100% ethyl-2-cyanacrylat. The influence of the polymeric resin type used on the spectroscopic performance of the HgI{sub 2} semiconductor detector is, clearly, demonstrated. The better result was found for the detector encapsulated with Resin 3. An increase of up to 26 times at the stability time was observed for the detectors encapsulated compared to that non-encapsulated detector. (author)

  6. An encapsulated Yersinia pseudotuberculosis is a highly efficient vaccine against pneumonic plague.

    Directory of Open Access Journals (Sweden)

    Anne Derbise

    Full Text Available BACKGROUND: Plague is still a public health problem in the world and is re-emerging, but no efficient vaccine is available. We previously reported that oral inoculation of a live attenuated Yersinia pseudotuberculosis, the recent ancestor of Yersinia pestis, provided protection against bubonic plague. However, the strain poorly protected against pneumonic plague, the most deadly and contagious form of the disease, and was not genetically defined. METHODOLOGY AND PRINCIPAL FINDINGS: The sequenced Y. pseudotuberculosis IP32953 has been irreversibly attenuated by deletion of genes encoding three essential virulence factors. An encapsulated Y. pseudotuberculosis was generated by cloning the Y. pestis F1-encoding caf operon and expressing it in the attenuated strain. The new V674pF1 strain produced the F1 capsule in vitro and in vivo. Oral inoculation of V674pF1 allowed the colonization of the gut without lesions to Peyer's patches and the spleen. Vaccination induced both humoral and cellular components of immunity, at the systemic (IgG and Th1 cells and the mucosal levels (IgA and Th17 cells. A single oral dose conferred 100% protection against a lethal pneumonic plague challenge (33×LD(50 of the fully virulent Y. pestis CO92 strain and 94% against a high challenge dose (3,300×LD(50. Both F1 and other Yersinia antigens were recognized and V674pF1 efficiently protected against a F1-negative Y. pestis. CONCLUSIONS AND SIGNIFICANCE: The encapsulated Y. pseudotuberculosis V674pF1 is an efficient live oral vaccine against pneumonic plague, and could be developed for mass vaccination in tropical endemic areas to control pneumonic plague transmission and mortality.

  7. Limonene encapsulation in freeze dried gellan systems.

    Science.gov (United States)

    Evageliou, Vasiliki; Saliari, Dimitra

    2017-05-15

    The encapsulation of limonene in freeze-dried gellan systems was investigated. Surface and encapsulated limonene content was determined by measurement of the absorbance at 252nm. Gellan matrices were both gels and solutions. For a standard gellan concentration (0.5wt%) gelation was induced by potassium or calcium chloride. Furthermore, gellan solutions of varying concentrations (0.25-1wt%) were also studied. Limonene was added at two different concentrations (1 and 2mL/100g sample). Gellan gels encapsulated greater amounts of limonene than solutions. Among all gellan gels, the KCl gels had the greater encapsulated limonene content. However, when the concentration of limonene was doubled in these KCl gels, the encapsulated limonene decreased. The surface limonene content was significant, especially for gellan solutions. The experimental conditions and not the mechanical properties of the matrices were the dominant factor in the interpretation of the observed results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Preliminary investigation of cryopreservation by encapsulation ...

    African Journals Online (AJOL)

    Protocorm-like bodies (PLBs) of Brassidium Shooting Star, a new commercial ornamental orchid hybrid, were cryopreserved by an encapsulation-dehydration technique. The effects of PLB size, various sucrose concentrations in preculture media and sodium alginate concentration for encapsulation were the main ...

  9. Reversible Morphological Control of Tubulin-Encapsulating Giant Liposomes by Hydrostatic Pressure.

    Science.gov (United States)

    Hayashi, Masahito; Nishiyama, Masayoshi; Kazayama, Yuki; Toyota, Taro; Harada, Yoshie; Takiguchi, Kingo

    2016-04-19

    Liposomes encapsulating cytoskeletons have drawn much recent attention to develop an artificial cell-like chemical-machinery; however, as far as we know, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons because the sets of various regulatory factors, that is, their interacting proteins, are required to control the state of every reaction system of cytoskeletons. Here we focused on hydrostatic pressure to control the polymerization state of microtubules (MTs) within cell-sized giant liposomes (diameters ∼10 μm). MT is the cytoskeleton formed by the polymerization of tubulin, and cytoskeletal systems consisting of MTs are very dynamic and play many important roles in living cells, such as the morphogenesis of nerve cells and formation of the spindle apparatus during mitosis. Using real-time imaging with a high-pressure microscope, we examined the effects of hydrostatic pressure on the morphology of tubulin-encapsulating giant liposomes. At ambient pressure (0.1 MPa), many liposomes formed protrusions due to tubulin polymerization within them. When high pressure (60 MPa) was applied, the protrusions shrank within several tens of seconds. This process was repeatedly inducible (around three times), and after the pressure was released, the protrusions regenerated within several minutes. These deformation rates of the liposomes are close to the velocities of migrating or shape-changing living cells rather than the shortening and elongation rates of the single MTs, which have been previously measured. These results demonstrate that the elongation and shortening of protrusions of giant liposomes is repeatedly controllable by regulating the polymerization state of MTs within them by applying and releasing hydrostatic pressure.

  10. Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, R.

    2008-04-01

    Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

  11. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    Science.gov (United States)

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  12. Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; García Moreno, Pedro Jesús; Mendes, Ana Carina Loureiro

    2018-01-01

    or in the gastrointestinal tract. For that purpose, efficient encapsulation of the compounds may be required. Spray drying is one of the most commonly used encapsulation techniques in the food industry, but it uses high temperature, which can lead to decomposition of the bioactive compounds. Recently, alternative...

  13. Alginate Encapsulation of Begonia Microshoots for Short-Term Storage and Distribution

    Directory of Open Access Journals (Sweden)

    Hamidou F. Sakhanokho

    2013-01-01

    Full Text Available Synthetic seeds were formed from shoot tips of two in vitro grown Begonia cultivars using 3% sodium alginate in Murashige and Skoog medium (MS salt solution as the gel matrix and 100 mM calcium chloride for complexation. Synthetic seed formation was achieved by releasing the sodium alginate/explant combination into 100 mM calcium chloride (CaCl2·H2O solution for 30 or 45 min. Both control and encapsulated shoots were transferred into sterile Petri dishes and stored at 4°C or 22°C for 0, 2, 4, 6, or 8 weeks. Conversion of synthetic seeds into plantlets for both storage environments was assessed in MS medium or peat-based substrate. No significant difference was found between the 30 and 45 min CaCl2·H2O treatments or the two cultivars. Encapsulation of explants improved survival rate over time irrespective of the medium type or storage environment. Survival rates of 88, 53, 28, and 11% for encapsulated microshoots versus 73, 13, 0, and 0% for control explants were achieved in microshoots stored for 2, 4, 6, and 8 weeks, respectively. The best results were obtained when synthetic seeds were stored at 4°C and germinated on MS medium. Regenerated plantlets were successfully established in potting soil.

  14. Photovoltaic module encapsulation design and materials selection, volume 1

    Science.gov (United States)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  15. Encapsulated iron-based oxygen reduction electrocatalysts by high pressure pyrolysis

    DEFF Research Database (Denmark)

    Zhong, Lijie; Hu, Yang; Cleemann, Lars Nilausen

    2017-01-01

    ) and a half-wave potential of 0.72 V in acid media. After 10,000 potential cycles, only 25 mV shift of half-wave potential is observed showing excellent stability. An analogue material prepared from nitrogen-free precursors shows significant electrochemical activity though it is much lower than that from...... the nitrogen containing precursors and can be improved by post treatment in ammonia. These results indicate the contribution to the catalysis from surface nitrogen functionalities and encapsulated metal-containing nanoparticles. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights...

  16. Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage.

    Science.gov (United States)

    Lee, Gwan-Hyoung; Cui, Xu; Kim, Young Duck; Arefe, Ghidewon; Zhang, Xian; Lee, Chul-Ho; Ye, Fan; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip; Hone, James

    2015-07-28

    Emerging two-dimensional (2D) semiconductors such as molybdenum disulfide (MoS2) have been intensively studied because of their novel properties for advanced electronics and optoelectronics. However, 2D materials are by nature sensitive to environmental influences, such as temperature, humidity, adsorbates, and trapped charges in neighboring dielectrics. Therefore, it is crucial to develop device architectures that provide both high performance and long-term stability. Here we report high performance of dual-gated van der Waals (vdW) heterostructure devices in which MoS2 layers are fully encapsulated by hexagonal boron nitride (hBN) and contacts are formed using graphene. The hBN-encapsulation provides excellent protection from environmental factors, resulting in highly stable device performance, even at elevated temperatures. Our measurements also reveal high-quality electrical contacts and reduced hysteresis, leading to high two-terminal carrier mobility (33-151 cm(2) V(-1) s(-1)) and low subthreshold swing (80 mV/dec) at room temperature. Furthermore, adjustment of graphene Fermi level and use of dual gates enable us to separately control contact resistance and threshold voltage. This novel vdW heterostructure device opens up a new way toward fabrication of stable, high-performance devices based on 2D materials.

  17. Liposomal encapsulated Zn-DTPA for removing intracellular 169Yb

    International Nuclear Information System (INIS)

    Blank, M.L.; Cress, E.A.; Byrd, B.L.; Washburn, L.C.; Snyder, F.

    1980-01-01

    Multilamellar liposomes possessing neutral positive or negative charges were tested for their capacity to encapsulate sodium ethylenediaminetetraacetate (EDTA) and for their selectivity in depositing in specific tissues after being injected into rats. Negative-charged liposomes had the greatest trapping efficiency over a wide range of lipid-to-aqueous phase ratios. In contrast, except for lung, liposomal charge had no significant effect on the tissue distribution of encapsulated EDTA; liver and spleen exhibited the highest uptake with all preparations. The proportion of encapsulated EDTA taken up by the liver decreased as the amount of injected liposomes was increased. Free zinc diethylenetriaminepentaacetate (Zn-DTPA) and multilamellar liposomes containing entrapped Zn-DTPA were administered to rats that had been injected with 169 Yb-citrate 24 hr earlier. At doses of 14 mg Zn-DTPA per kg body weight, both free Zn-DPTA and the liposomal-bound Zn-DTPA caused increased removal of 169 Yb from the animals. However, treatment with the liposomal Zn-DTPA caused significantly more of the 169 Yb to be removed than did the free Zn-DTPA treatment by itself. Our data indicate that lipophilic forms of chelators can effectively increase the removal rates of heavy metal contamination in tissues. (author)

  18. Different encapsulation strategies for implanted electronics

    Directory of Open Access Journals (Sweden)

    Winkler Sebastian

    2017-09-01

    Full Text Available Recent advancements in implant technology include increasing application of electronic systems in the human body. Hermetic encapsulation of electronic components is necessary, specific implant functions and body environments must be considered. Additional functions such as wireless communication systems require specialized technical solutions for the encapsulation.

  19. Impact of culture conditions on β-carotene encapsulation using Yarrowia lipolytica cells

    Science.gov (United States)

    Dang, Tran Hai; Minh, Ho Thi Thu; Van Nhi, Tran Nguyen; Ngoc, Ta Thi Minh

    2017-09-01

    Yeast cell was reported as an effective natural preformed material for use in encapsulation of hydrophobic compounds. The encapsulation process was normally considered as passive transfer through cellular wall and cellular membrane. Beside solubility of hydrophobic compound in phospholipid membrane or plasmolysis, membrane characteristics of yeast cell which are differed between strains and influenced by culture conditions are main factors involving the accumulation of hydrophobic compound into yeast cell. In this study, the oleaginous yeast Yarrowia lipolytica was used as micro-container shell to encapsulate a high hydrophobic compound - β-carotene. Yeast cell was cultured under different conditions and wet yeast biomass was incubated with β-carotene which was dissolved in soybean oil overnight. β-carotene accumulation was then extracted and evaluated by UV-VIS spectrometry. Optimization of culture condition was investigated using the Box-Behnken model. β-carotene encapsulation efficiency in Y. lipolytica was showed to be affected by both pH of medium and agitation conditions. The highest β-carotene encapsulation efficiency was optimized at 42.8 μg/g with Y. lipolytica cultured at pH 4.5, medium volume equal to 115 ml and agitation speed at 211 rpm.

  20. Randomized clinical trial of encapsulated and hand-mixed glass-ionomer ART restorations: one-year follow-up.

    Science.gov (United States)

    Freitas, Maria Cristina Carvalho de Almendra; Fagundes, Ticiane Cestari; Modena, Karin Cristina da Silva; Cardia, Guilherme Saintive; Navarro, Maria Fidela de Lima

    2018-01-18

    This prospective, randomized, split-mouth clinical trial evaluated the clinical performance of conventional glass ionomer cement (GIC; Riva Self-Cure, SDI), supplied in capsules or in powder/liquid kits and placed in Class I cavities in permanent molars by the Atraumatic Restorative Treatment (ART) approach. A total of 80 restorations were randomly placed in 40 patients aged 11-15 years. Each patient received one restoration with each type of GIC. The restorations were evaluated after periods of 15 days (baseline), 6 months, and 1 year, according to ART criteria. Wilcoxon matched pairs, multivariate logistic regression, and Gehan-Wilcoxon tests were used for statistical analysis. Patients were evaluated after 15 days (n=40), 6 months (n=34), and 1 year (n=29). Encapsulated GICs showed significantly superior clinical performance compared with hand-mixed GICs at baseline (p=0.017), 6 months (p=0.001), and 1 year (p=0.026). For hand-mixed GIC, a statistically significant difference was only observed over the period of baseline to 1 year (p=0.001). Encapsulated GIC presented statistically significant differences for the following periods: 6 months to 1 year (p=0.028) and baseline to 1 year (p=0.002). Encapsulated GIC presented superior cumulative survival rate than hand-mixed GIC over one year. Importantly, both GICs exhibited decreased survival over time. Encapsulated GIC promoted better ART performance, with an annual failure rate of 24%; in contrast, hand-mixed GIC demonstrated a failure rate of 42%.

  1. Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of acetaldehyde

    Science.gov (United States)

    Al-Ghamdi, Saleh; Kathuria, Ajay; Abiad, Mohamad; Auras, Rafael

    2016-10-01

    Gamma cyclodextrin (γ-CD) metal organic frameworks (CDMOFs) were synthesized by coordinating γ-CDs with potassium hydroxide (KOH), referred hereafter as CDMOF-a, and potassium benzoate (C7H5KO2), denoted as CDMOF-b. The obtained CDMOF structures were characterized using nitrogen sorption isotherm, thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). High surface areas were achieved by the γ-CD based MOF structures where the Langmuir specific surface areas (SSA) of CDMOF-a and CDMOF-b were determined as 1376 m2 g-1 and 607 m2 g-1; respectively. The dehydrated CDMOF structures demonstrated good thermal stability up to 250 °C as observed by the TGA studies. XRD results for CDMOF-a and CDMOF-b reveal a body centered-cubic (BCC) and trigonal crystal system; respectively. Due to its accessible porous structure and high surface area, acetaldehyde was successfully encapsulated in CDMOF-b. During the release kinetic studies, we observed peak release of 53 μg of acetaldehyde per g of CDMOF-b, which was 100 times greater than previously reported encapsulation in β-CD. However, aldol condensation reaction occurred during encapsulation of acetaldehyde into CDMOF-a. This research work demonstrates the potential to encapsulate volatile organic compounds in CDMOF-b, and their associated release for applications including food, pharmaceuticals and packaging.

  2. ParaCEST agents encapsulated in Reverse nano-Assembled Capsules (RACs): How slow molecular tumbling can quench CEST

    Science.gov (United States)

    Farashishiko, Annah; Slack, Jacqueline R.; Botta, Mauro; Woods, Mark

    2018-04-01

    Although paraCEST is a method with immense scope for generating image contrast in MRI, it suffers from the series the serious drawback of high detection limits. For a typical discrete paraCEST agent the detection limit is roughly an order of magnitude higher than that of a clinically used relaxation agent. One solution to this problem may be the incorporation of a large payload of paraCEST agents into a single macromolecular agent. Here we report a new synthetic method for accomplishing this goal: incorporating a large payload of the paraCEST agent DyDOTAM3+ into a Reverse Assembled nano-Capsule. An aggregate can be generated between this chelate and polyacrylic acid after the addition of ethylene diamine. Subsequent addition of polyallylamine hydrochloride followed by silica nanoparticles generated a robust encapsulating shell and afforded capsule with a mean hydrodynamic diameter of 650 ± 250 nm. Unfortunately this encapsulation did not have the effect of amplifying the CEST effect per agent, but quenched the CEST altogether. A significant proportion of the quenching effect of encapsulation could be attributed to the effect of slowing molecular tumbling, which is inevitable when the chelate is incorporated into a nano-scale material. This increases the transverse relaxation rate of chelate protons and a theoretical examination using Solomon Bloembergen Morgan theory and the Bloch equations shows that the increase in the transverse relaxation rate constant for the amide protons, in even modestly sized nano-materials, is sufficient to significantly quench CEST.

  3. Encapsulated Islet Transplantation: Where Do We Stand?

    Science.gov (United States)

    Vaithilingam, Vijayaganapathy; Bal, Sumeet; Tuch, Bernard E

    2017-01-01

    Transplantation of pancreatic islets encapsulated within immuno-protective microcapsules is a strategy that has the potential to overcome graft rejection without the need for toxic immunosuppressive medication. However, despite promising preclinical studies, clinical trials using encapsulated islets have lacked long-term efficacy, and although generally considered clinically safe, have not been encouraging overall. One of the major factors limiting the long-term function of encapsulated islets is the host's immunological reaction to the transplanted graft which is often manifested as pericapsular fibrotic overgrowth (PFO). PFO forms a barrier on the capsule surface that prevents the ingress of oxygen and nutrients leading to islet cell starvation, hypoxia and death. The mechanism of PFO formation is still not elucidated fully and studies using a pig model have tried to understand the host immune response to empty alginate microcapsules. In this review, the varied strategies to overcome or reduce PFO are discussed, including alginate purification, altering microcapsule geometry, modifying alginate chemical composition, co-encapsulation with immunomodulatory cells, administration of pharmacological agents, and alternative transplantation sites. Nanoencapsulation technologies, such as conformal and layer-by-layer coating technologies, as well as nanofiber, thin-film nanoporous devices, and silicone based NanoGland devices are also addressed. Finally, this review outlines recent progress in imaging technologies to track encapsulated cells, as well as promising perspectives concerning the production of insulin-producing cells from stem cells for encapsulation.

  4. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete

    Directory of Open Access Journals (Sweden)

    Zhijun Dong

    2016-01-01

    Full Text Available The application of thermal energy storage with phase change materials (PCMs for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB. The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times.

  5. Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating

    Science.gov (United States)

    Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.

    2018-03-01

    Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.

  6. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete.

    Science.gov (United States)

    Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo

    2016-01-19

    The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times.

  7. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete

    Science.gov (United States)

    Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo

    2016-01-01

    The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times. PMID:28787859

  8. Low temperature synthesis of carbon encapsulated Fe7S8 nanocrystals as high performance anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Boyang; Zhang, Fuhua; Wu, Qianlin; Wang, Junhua; Li, Wenge; Dong, Lihua; Yin, Yansheng

    2015-01-01

    A novel method is developed for low temperature synthesis of carbon encapsulated spherical Fe 7 S 8 nanocrystals with core–shell structure (Fe 7 S 8 @C) by the reaction of ferrocene with ammonium persulphate. The phase structure, morphology, specific surface area and composition of the nanocomposite are systematically characterized. It is found that the Fe 7 S 8 nanocrystals with a weight percent of 33.5% have a median size of 25.2 nm. The Fe 7 S 8 @C electrodes retain a reversible capacity of 815 and 539 mAh g −1 after 50 cycles at a current density of 200 and 2284 mA g −1 , respectively. The high capacity, good cycling behavior and rate capability of Fe 7 S 8 @C electrodes are attributed to the good protection and electrical conductivity of carbon shell. - Highlights: • Large scale and low temperature synthesis of Fe 7 S 8 @C with core–shell structure. • The Fe 7 S 8 @C electrodes retain a capacity of 815 mAh g −1 after 50 cycles at 200 mA g −1 . • The Fe 7 S 8 @C electrodes show good cycling behavior and rate capability

  9. Methanation of CO2 over Zeolite-Encapsulated Nickel Nanoparticles

    DEFF Research Database (Denmark)

    Goodarzi, Farnoosh; Kang, Liqun; Wang, Feng Ryan

    2018-01-01

    in an increased metal dispersion and, consequently, a high catalytic activity for CO2 methanation. With a gas hourly space velocity of 60000 ml/g catalyst h-1 and H2/CO2=4, the zeolite-encapsulated Ni nanoparticles result in 60% conversion at 450°C, which corresponds to a site-time yield of around 304 mol CH4/mol......Efficient methanation of CO2 relies on the development of more selective and stable heterogeneous catalysts. Here we present a simple and effective method to encapsulate Ni nanoparticles in zeolite silicalite-1. In this method, the zeolite is modified by selective desilication, which creates intra...

  10. [Encapsulation of a mechatronic implant that restores the ability to accommodate].

    Science.gov (United States)

    Rheinschmitt, L; Gengenbach, U; Bretthauer, G

    2010-12-01

    In order to restore the ability of accommodation of the human eye, a lens implant manufactured by micro system technology can be used. This highly integrated Artificial Accommodation System contains sensitive electronics as well as moving components in order to adapt its refractive power. One challenge of the production of this system is the encapsulation. It has to be a biocompatible and long-term reliable package. In this paper the advantages of a hermetic glass package over other approaches of encapsulation are introduced. Concepts of production for a glass package are presented. The package is thereby optimised to be placed in the optical path of the eye, but it can also be used for the encapsulation of other implants. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Encapsulated microsensors for reservoir interrogation

    Science.gov (United States)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  12. Encapsulation of aluminium in geopolymers produced from metakaolin

    Energy Technology Data Exchange (ETDEWEB)

    Kuenzel, C. [Department of Civil and Environmental Engineering, Imperial College London (United Kingdom); Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London (United Kingdom); Neville, T.P. [Centre for CO_2 Technology, Department of Chemical Engineering, University College London (United Kingdom); Omakowski, T. [Flowcrete, Group Ltd., Cheshire (United Kingdom); Vandeperre, L. [Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London (United Kingdom); Boccaccini, A.R. [Institute of Biomaterials, University of Erlangen-Nuremberg (Germany); Bensted, J.; Simons, S.J.R. [Centre for CO_2 Technology, Department of Chemical Engineering, University College London (United Kingdom); Cheeseman, C.R., E-mail: c.cheeseman@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London (United Kingdom)

    2014-04-01

    Magnox swarf contaminated with trace levels of Al metal is an important UK legacy waste originated from the fuel rod cladding system used in Magnox nuclear power stations. Composite cements made from Portland cement and blast furnace slag form a potential encapsulation matrix. However the high pH of this system causes the Al metal to corrode causing durability issues. Geopolymers derived from metakaolin are being investigated as an alternative encapsulation matrix for Magnox swarf waste and the corrosion kinetics and surface interactions of Al with metakaolin geopolymer are reported in this paper. It is shown that the pH of the geopolymer paste can be controlled by the selection of metakaolin and the sodium silicate solution used to form the geopolymer. A decrease in pH of the activation solution reduces corrosion of the Al metal and increases the stability of bayerite and gibbsite layers formed on the Al surface. The bayerite and gibbsite act as a passivation layer which inhibits further corrosion and mitigates H{sub 2} generation. The research shows that optimised metakaolin geopolymers have potential to be used to encapsulate legacy Magnox swarf wastes.

  13. Synthesis of Polyamidoamine Dendrimer for Encapsulating Tetramethylscutellarein for Potential Bioactivity Enhancement.

    Science.gov (United States)

    Shadrack, Daniel M; Mubofu, Egid B; Nyandoro, Stephen S

    2015-11-04

    The biomedical potential of flavonoids is normally restricted by their low water solubility. However, little has been reported on their encapsulation into polyamidoamine (PAMAM) dendrimers to improve their biomedical applications. Generation four (G4) PAMAM dendrimer containing ethylenediaminetetraacetic acid core with acrylic acid and ethylenediamine as repeating units was synthesized by divergent approach and used to encapsulate a flavonoid tetramethylscutellarein (TMScu, 1) to study its solubility and in vitro release for potential bioactivity enhancement. The as-synthesized dendrimer and the dendrimer-TMScu complex were characterized by spectroscopic and spectrometric techniques. The encapsulation of 1 into dendrimer was achieved by a co-precipitation method with the encapsulation efficiency of 77.8% ± 0.69% and a loading capacity of 6.2% ± 0.06%. A phase solubility diagram indicated an increased water solubility of 1 as a function of dendrimer concentration at pH 4.0 and 7.2. In vitro release of 1 from its dendrimer complex indicated high percentage release at pH 4.0. The stability study of the TMScu-dendrimer at 0, 27 and 40 °C showed the formulations to be stable when stored in cool and dark conditions compared to those stored in light and warmer temperatures. Overall, PAMAM dendrimer-G4 is capable of encapsulating 1, increasing its solubility and thus could enhance its bioactivity.

  14. "Lollipop-shaped" high-sensitivity Microelectromechanical Systems vector hydrophone based on Parylene encapsulation

    Science.gov (United States)

    Liu, Yuan; Wang, Renxin; Zhang, Guojun; Du, Jin; Zhao, Long; Xue, Chenyang; Zhang, Wendong; Liu, Jun

    2015-07-01

    This paper presents methods of promoting the sensitivity of Microelectromechanical Systems (MEMS) vector hydrophone by increasing the sensing area of cilium and perfect insulative Parylene membrane. First, a low-density sphere is integrated with the cilium to compose a "lollipop shape," which can considerably increase the sensing area. A mathematic model on the sensitivity of the "lollipop-shaped" MEMS vector hydrophone is presented, and the influences of different structural parameters on the sensitivity are analyzed via simulation. Second, the MEMS vector hydrophone is encapsulated through the conformal deposition of insulative Parylene membrane, which enables underwater acoustic monitoring without any typed sound-transparent encapsulation. Finally, the characterization results demonstrate that the sensitivity reaches up to -183 dB (500 Hz 0dB at 1 V/ μPa ), which is increased by more than 10 dB, comparing with the previous cilium-shaped MEMS vector hydrophone. Besides, the frequency response takes on a sensitivity increment of 6 dB per octave. The working frequency band is 20-500 Hz and the concave point depth of 8-shaped directivity is beyond 30 dB, indicating that the hydrophone is promising in underwater acoustic application.

  15. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lei; Luo, Langli; Feng, Zhenxing; Engelhard, Mark; Xie, Xiaohong; Han, Binghong; Sun, Junming; Zhang, Jianghao; Yin, Geping; Wang, Chongmin; Wang, Yong; Shao, Yuyan

    2017-09-01

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhanced reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and poor durability. Here, we report OER catalysts of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells derived from bimetallic metal–organic frameworks (MOFs) precursors. The optimal OER catalyst shows excellent activity (360 mV overpotential at 10 mA cm–2GEO) and durability (no obvious degradation after 20 000 cycles). The electron-donation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by chemical state of precursors. Severe metal particle growth probably caused by oxidation of carbon shells and encapsulated nanoparticles is believed to the main mechanism for activity degradation in these catalysts.

  16. Encapsulation - how it will be achieved

    International Nuclear Information System (INIS)

    Barlow, P.

    1990-01-01

    The work of the new Encapsulation Plant at British Nuclear Fuel Limited's (BNFL) Sellafield site is described in this article. Intermediate-level radioactive materials are encapsulated in a cement matrix in 500 litre stainless steel drums suitable for storage, transport and disposal. The drums will be stored in an above-ground air-cooled store until UK Nirex Limited have built the planned underground disposal facility. The concept of product specification is explored as it applies to the four stages of nuclear waste management, namely, processing, storage, transport and disposal. By following this approach the encapsulation plant will work within government regulations and the public concerns over safety and environmental issues can be met. U.K

  17. Wax encapsulation of water-soluble compounds for application in foods.

    Science.gov (United States)

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  18. Highly Efficient Malolactic Fermentation of Red Wine Using Encapsulated Bacteria in a Robust Biocomposite of Silica-Alginate.

    Science.gov (United States)

    Simó, Guillermo; Vila-Crespo, Josefina; Fernández-Fernández, Encarnación; Ruipérez, Violeta; Rodríguez-Nogales, José Manuel

    2017-06-28

    Bacteria encapsulation to develop malolactic fermentation emerges as a biotechnological strategy that provides significant advantages over the use of free cells. Two encapsulation methods have been proposed embedding Oenococcus oeni, (i) interpenetrated polymer networks of silica and Ca-alginate and (ii) Ca-alginate capsules coated with hydrolyzed 3-aminopropyltriethoxysilane (hAPTES). On the basis of our results, only the first method was suitable for bacteria encapsulation. The optimized silica-alginate capsules exhibited a negligible bacteria release and an increase of 328% and 65% in L-malic acid consumption and mechanical robustness, respectively, compared to untreated alginate capsules. Moreover, studies of capsule stability at different pH and ethanol concentrations in water solutions and in wine indicated a better behavior of silica-alginate capsules than untreated ones. The inclusion of silicates and colloidal silica in alginate capsules containing O. oeni improved markedly their capacity to deplete the levels of L-malic acid in red wines and their mechanical robustness and stability.

  19. Flat-plate solar array project. Volume 7: Module encapsulation

    Science.gov (United States)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-01-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  20. Dispensing of very low volumes of ultra high viscosity alginate gels: a new tool for encapsulation of adherent cells and rapid prototyping of scaffolds and implants.

    Science.gov (United States)

    Gepp, Michael M; Ehrhart, Friederike; Shirley, Stephen G; Howitz, Steffen; Zimmermann, Heiko

    2009-01-01

    We present a tool for dispensing very low volumes (20 nL or more) of ultra high viscosity (UHV) medical-grade alginate hydrogels. It uses a modified piezo-driven micrometering valve, integrated into a versatile system that allows fast prototyping of encapsulation procedures and scaffold production. Valves show excellent dispensing properties for UHV alginate in concentrations of 0.4% and 0.7% and also for aqueous liquids. An optimized process flow provides excellent handling of biological samples under sterile conditions. This technique allows the encapsulation of adherent cells and structuring of substrates for biotechnology and regenerative medicine. A variety of cell lines showed at least 70% viability after encapsulation (including cell lines that are relevant in regenerative medicine like Hep G2), and time-lapse analysis revealed cells proliferating and showing limited motility under alginate spots. Cells show metabolic activity, gene product expression, and physiological function. Encapsulated cells have contact with the substrate and can exchange metabolites while being isolated from macromolecules in the environment. Contactless dispensing allows structuring of substrates with alginate, isolation and transfer of cell-alginate complexes, and the dispensing of biological active hydrogels like extracellular matrix-derived gels.

  1. ParaCEST Agents Encapsulated in Reverse Nano-Assembled Capsules (RACs: How Slow Molecular Tumbling Can Quench CEST Contrast

    Directory of Open Access Journals (Sweden)

    Annah Farashishiko

    2018-04-01

    Full Text Available Although paraCEST is a method with immense scope for generating image contrast in MRI, it suffers from the serious drawback of high detection limits. For a typical discrete paraCEST agent the detection limit is roughly an order of magnitude higher than that of a clinically used relaxation agent. One solution to this problem may be the incorporation of a large payload of paraCEST agents into a single macromolecular agent. Here we report a new synthetic method for accomplishing this goal: incorporating a large payload of the paraCEST agent DyDOTAM3+ into a Reverse Assembled nano-Capsule. An aggregate can be generated between this chelate and polyacrylic acid (PAA after the addition of ethylene diamine. Subsequent addition of polyallylamine hydrochloride (PAH followed by silica nanoparticles generated a robust encapsulating shell and afforded capsule with a mean hydrodynamic diameter of 650 ± 250 nm. Unfortunately this encapsulation did not have the effect of amplifying the CEST effect per agent, but quenched the CEST altogether. The quenching effect of encapsulation could be attributed to the effect of slowing molecular tumbling, which is inevitable when the chelate is incorporated into a nano-scale material. This increases the transverse relaxation rate of chelate protons and a theoretical examination using Solomon Bloembergen Morgan theory and the Bloch equations shows that the increase in the transverse relaxation rate constant for the amide protons, in even modestly sized nano-materials, is sufficient to significantly quench CEST.

  2. ParaCEST Agents Encapsulated in Reverse Nano-Assembled Capsules (RACs): How Slow Molecular Tumbling Can Quench CEST Contrast.

    Science.gov (United States)

    Farashishiko, Annah; Slack, Jacqueline R; Botta, Mauro; Woods, Mark

    2018-01-01

    Although paraCEST is a method with immense scope for generating image contrast in MRI, it suffers from the serious drawback of high detection limits. For a typical discrete paraCEST agent the detection limit is roughly an order of magnitude higher than that of a clinically used relaxation agent. One solution to this problem may be the incorporation of a large payload of paraCEST agents into a single macromolecular agent. Here we report a new synthetic method for accomplishing this goal: incorporating a large payload of the paraCEST agent DyDOTAM 3+ into a Reverse Assembled nano-Capsule. An aggregate can be generated between this chelate and polyacrylic acid (PAA) after the addition of ethylene diamine. Subsequent addition of polyallylamine hydrochloride (PAH) followed by silica nanoparticles generated a robust encapsulating shell and afforded capsule with a mean hydrodynamic diameter of 650 ± 250 nm. Unfortunately this encapsulation did not have the effect of amplifying the CEST effect per agent, but quenched the CEST altogether. The quenching effect of encapsulation could be attributed to the effect of slowing molecular tumbling, which is inevitable when the chelate is incorporated into a nano-scale material. This increases the transverse relaxation rate of chelate protons and a theoretical examination using Solomon Bloembergen Morgan theory and the Bloch equations shows that the increase in the transverse relaxation rate constant for the amide protons, in even modestly sized nano-materials, is sufficient to significantly quench CEST.

  3. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles.

    Science.gov (United States)

    Cheng, Kuo-Wei; Hsu, Shan-Hui

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50-60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers.

  4. Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil.

    Science.gov (United States)

    Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-01-01

    Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation.

  5. Safeguards by Design at the Encapsulation Plant in Finland

    International Nuclear Information System (INIS)

    Ingegneri, M.; Baird, K.; Park, W.-S.; Coyne, J.M.; Enkhjin, L.; Chew, L.S.; Plenteda, R.; Sprinkle, J.; Yudin, Y.; Ciuculescu, C.; Koutsoyannopoulos, C.; Murtezi, M.; Schwalbach, P.; Vaccaro, S.; Pekkarinen, J.; Thomas, M.; Zein, A.; Honkamaa, T.; Hamalainen, M.; Martikka, E.; Moring, M.; Okko, O.

    2015-01-01

    Finland has launched a spent fuel disposition project to encapsulate all of its spent fuel assemblies and confine the disposal canisters in a deep geological repository. The construction of the underground premises started several years ago with the drilling, blasting and reinforcement of tunnels and shafts to ensure the safe deep underground construction and disposal techniques in the repository, while the design of the encapsulation plant (EP) enters the licencing phase preliminary to its construction. The spent fuel assemblies, which have been safeguarded for decades at the nuclear power plants, are going to be transported to the EP, loaded into copper canisters and stored in underground tunnels where they become inaccessible after backfilling. Safeguards measures are needed to ensure that final spent fuel verification is performed before its encapsulation and that no nuclear material is diverted during the process. This is an opportunity for the inspectorates to have the infrastructure necessary for the safeguards equipment incorporated in the design of the encapsulation plant before licencing for construction occurs. The peculiarity of this project is that it is going to run for more than a century. Therefore, significant changes are to be expected in the technical capabilities available for implementing safeguards (e.g., verification techniques and instruments), as well as in the process itself, e.g., redesign for the encapsulation of future fuel types. For these reasons a high degree of flexibility is required in order to be able to shift to different solutions at a later stage while minimizing the interference with the licencing process and facility operations. This paper describes the process leading to the definition of the technical requirements by IAEA and Euratom to be incorporated in the facility's design. (author)

  6. Performance of Deacetyled Glucomannan as Iron Encapsulation Excipient

    Directory of Open Access Journals (Sweden)

    Wardhani Dyah H.

    2018-01-01

    Full Text Available Encapsulation protects iron from degradation or oxidation possibilities due to its encapsulation material. Glucomannan (GM is a neutral polysaccharide consist of D-mannose and D-glucose connected with β-1,4 linkage. Deactylation transforms solubility of glucomannan as well as its gel structure. These properties support for excipient application. The aim of this work was to determine performance of deacetylated glucomannan as iron matrix. Deacetylation was conducted heterogeneously. Deacetylation did not change the backbone of GM. Higher alkali concentration has better ability to encapsulate iron. Extended deacetylation time and alkali concentration affect insignificantly on the performance of encapsulation to protect iron from oxidation. The release of iron from the matrix influences by deacetylation degree.

  7. Spatiotemporal control over molecular delivery and cellular encapsulation from electropolymerized micro- and nanopatterned surfaces.

    Science.gov (United States)

    Stern, Eric; Jay, Steven M; Demento, Stacey L; Murelli, Ryan P; Reed, Mark A; Malinski, Tadeusz; Spiegel, David A; Mooney, David J; Fahmy, Tarek M

    2009-07-13

    Bioactive, patterned micro- and nanoscale surfaces that can be spatially engineered for three-dimensional ligand presentation and sustained release of signaling molecules represent a critical advance for the development of next-generation diagnostic and therapeutic devices. Lithography is ideally suited to patterning such surfaces due to its precise, easily scalable, high-throughput nature; however, to date polymers patterned by these techniques have not demonstrated the capacity for sustained release of bioactive agents. We demonstrate here a class of lithographically-defined, electropolymerized polymers with monodisperse micro- and nanopatterned features capable of sustained release of bioactive drugs and proteins. We show that precise control can be achieved over the loading capacity and release rates of encapsulated agents and illustrate this aspect using a fabricated surface releasing a model antigen (ovalbumin) and a cytokine (interleukin-2) for induction of a specific immune response. We further demonstrate the ability of this technique to enable three-dimensional control over cellular encapsulation. The efficacy of the described approach is buttressed by its simplicity, versatility, and reproducibility, rendering it ideally suited for biomaterials engineering.

  8. Nanocarriers from GRAS Zein Proteins to Encapsulate Hydrophobic Actives.

    Science.gov (United States)

    Weissmueller, Nikolas T; Lu, Hoang D; Hurley, Amanda; Prud'homme, Robert K

    2016-11-14

    One factor limiting the expansion of nanomedicines has been the high cost of the materials and processes required for their production. We present a continuous, scalable, low cost nanoencapsulation process, Flash Nanoprecipitation (FNP) that enables the production of nanocarriers (NCs) with a narrow size distribution using zein corn proteins. Zein is a low cost, GRAS protein (having the FDA status of "Generally Regarded as Safe") currently used in food applications, which acts as an effective encapsulant for hydrophobic compounds using FNP. The four-stream FNP configuration allows the encapsulation of very hydrophobic compounds in a way that is not possible with previous precipitation processes. We present the encapsulation of several model active compounds with as high as 45 wt % drug loading with respect to zein concentration into ∼100 nm nanocarriers. Three examples are presented: (1) the pro-drug antioxidant, vitamin E-acetate, (2) an anticholera quorum-sensing modulator CAI-1 ((S)-3-hydroxytridecan-4-one; CAI-1 that reduces Vibrio cholerae virulence by modulating cellular communication), and (3) hydrophobic fluorescent dyes with a range of hydrophobicities. The specific interaction between zein and the milk protein, sodium caseinate, provides stabilization of the NCs in PBS, LB medium, and in pH 2 solutions. The stability and size changes in the three media provide information on the mechanism of assembly of the zein/active/casein NC.

  9. Application of Electrostatic Extrusion - Flavour Encapsulation and Controlled Release.

    Science.gov (United States)

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-03-03

    The subject of this study was the development of flavour alginate formulationsaimed for thermally processed foods. Ethyl vanilline was used as the model flavourcompound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline inalginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethylvanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginateused in this study had a high content (67 %) of guluronic residues and was rich in GG diadblocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermalbehaviour of alginate beads encapsulating ethyl vanilline was investigated bythermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC)under heating conditions which mimicked usual food processing to provide informationabout thermal decomposition of alginate matrix and kinetics of aroma release. Two wellresolved weight losses were observed. The first one was in the 50-150 °C temperaturerange with the maximum at approx. 112 °C, corresponding to the dehydration of thepolymer network. The second loss in the 220-325 °C temperature range, with a maximumat ~ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to230 °C most of the vanilline remained intacta, while prolonged heating at elevatedtemperatures led to the entire loss of the aroma compound.

  10. Sol-gel encapsulation for controlled drug release and biosensing

    Science.gov (United States)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  11. Tracking hypoxic signaling within encapsulated cell aggregates.

    Science.gov (United States)

    Skiles, Matthew L; Sahai, Suchit; Blanchette, James O

    2011-12-16

    , is therefore reduced and limited by diffusion. This reduced oxygen availability may especially impact β-cells whose insulin secretory function is highly dependent on oxygen. Capsule composition and geometry will also impact diffusion rates and lengths for oxygen. Therefore, we also describe a technique for identifying hypoxic cells within our PEG capsules. Infection of the cells with a recombinant adenovirus allows for a fluorescent signal to be produced when intracellular hypoxia-inducible factor (HIF) pathways are activated. As HIFs are the primary regulators of the transcriptional response to hypoxia, they represent an ideal target marker for detection of hypoxic signaling. This approach allows for easy and rapid detection of hypoxic cells. Briefly, the adenovirus has the sequence for a red fluorescent protein (Ds Red DR from Clontech) under the control of a hypoxia-responsive element (HRE) trimer. Stabilization of HIF-1 by low oxygen conditions will drive transcription of the fluorescent protein (Figure 1). Additional details on the construction of this virus have been published previously. The virus is stored in 10% glycerol at -80° C as many 150 μL aliquots in 1.5 mL centrifuge tubes at a concentration of 3.4 x 10(10) pfu/mL. Previous studies in our lab have shown that MIN6 cells encapsulated as aggregates maintain their viability throughout 4 weeks of culture in 20% oxygen. MIN6 aggregates cultured at 2 or 1% oxygen showed both signs of necrotic cells (still about 85-90% viable) by staining with ethidium bromide as well as morphological changes relative to cells in 20% oxygen. The smooth spherical shape of the aggregates displayed at 20% was lost and aggregates appeared more like disorganized groups of cells. While the low oxygen stress does not cause a pronounced drop in viability, it is clearly impacting MIN6 aggregation and function as measured by glucose-stimulated insulin secretion. Western blot analysis of encapsulated cells in 20% and 1% oxygen also

  12. A formulation to encapsulate nootkatone for tick control.

    Science.gov (United States)

    Behle, Robert W; Flor-Weiler, Lina B; Bharadwaj, Anuja; Stafford, Kirby C

    2011-11-01

    Nootkatone is a component of grapefruit oil that is toxic to the disease-vectoring tick, Ixodes scapularis Say, but unfortunately causes phytotoxicity to treated plants and has a short residual activity due to volatility. We prepared a lignin-encapsulated nootkatone formulation to compare with a previously used emulsifiable formulation for volatility, plant phytotoxicity, and toxicity to unfed nymphs of I. scapularis. Volatility of nootkatone was measured directly by trapping nootkatone vapor in a closed system and indirectly by measuring nootkatone residue on treated filter paper after exposure to simulated sunlight (Xenon). After 24 h in the closed system, traps collected only 15% of the nootkatone applied as the encapsulated formulation compared with 40% applied as the emulsifiable formulation. After a 1-h light exposure, the encapsulated formulation retained 92% of the nootkatone concentration compared with only 26% retained by the emulsifiable formulation. For plant phytotoxicity, cabbage, Brassica oleracea L., leaves treated with the encapsulated formulation expressed less necrosis, retaining greater leaf weight compared with leaves treated with the emusifiable formulation. The nootkatone in the emulsifiable formulation was absorbed by cabbage and oat, Avena sativa L., plants (41 and 60% recovered 2 h after application, respectively), as opposed to 100% recovery from the plants treated with encapsulated nootkatone. Using a treated vial technique, encapsulated nootkatone was significantly more toxic to I. scapularis nymphs (LC50 = 20 ng/cm2) compared with toxicity of the emulsifiable formulation (LC50 = 35 ng/cm2). Thus, the encapsulation of nootkatone improved toxicity for tick control, reduced nootkatone volatility, and reduced plant phytotoxicity.

  13. Encapsulating of high-level radioactive waste with use of pyrocarbon and silicon carbide coatings

    International Nuclear Information System (INIS)

    Chernikov, A.

    2007-01-01

    It is known that high-level radioactive waste (HLW) constitute a real danger to biosphere, especially that their part, which contains transuranium and long-lived radionuclides resulting during reprocessing of nuclear fuel industrial and power reactors. Such waste contains approximately 99 % of long-lived fission products and transplutonium elements. At present, the concept of multi barrier protection of biosphere from radioactive waste is generally acknowledged. The main barriers are the physicochemical form of waste and enclosing strata of geological formation at places of waste-disposal. Applied methods of solidification of HLW with preparation of phosphatic and borosilicate glasses do not guarantee in full measure safety of places of waste-disposal of solidified waste in geological formations during thousand years. One promising way to improve HLW handling safety is placing of radionuclides in mineral-like matrixes similar to natural materials. The other possible way to increase safety of HLW disposal places is suggested for research by experts of Russian research institutes, for example, in the proposal for the Project of ISTC and considered in the present report, is to introduce an additional barrier on a radionuclides migration path by coating of HLW particles. Unique protective properties of pyrocarbon and silicon carbide such as low coefficients of diffusion of gaseous and solid fission products and high chemical and radiation stability [1] attract attention to these materials for coating of solidified HLW. The objective of the Project is the development of method of HLW encapsulating with use of pyrocarbon and silicon carbide coatings. To gain this end main direction of researches, including analysis of various encapsulation processes of fractionated HLW, and expected results are presented. Realization of the Project will allow to prove experimentally the efficiency of the proposed approach in the solution of the problem of HLW conditioning and ecological

  14. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Yongkun

    2012-10-01

    Full Text Available Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold

  15. Ni0 encapsulated in N-doped carbon nanotubes for catalytic reduction of highly toxic hexavalent chromium

    Science.gov (United States)

    Yao, Yunjin; Zhang, Jie; Chen, Hao; Yu, Maojing; Gao, Mengxue; Hu, Yi; Wang, Shaobin

    2018-05-01

    N-doped carbon nanotubes encapsulating Ni0 nanoparticles (Ni@N-C) were fabricated via thermal reduction of dicyandiamide and NiCl2·6H2O, and used to remove CrVI in polluted water. The resultant products present an excellent catalytic activity for CrVI reduction using formic acid under relatively mild conditions. The CrVI reduction efficiency of Ni@N-C was significantly affected by the preparation conditions including the mass of nickel salt and synthesis temperatures. The impacts of several reaction parameters, such as initial concentrations of CrVI and formic acid, solution pH and temperatures, as well as inorganic anions in solution on CrVI reduction efficiency were also evaluated in view of scalable industrial applications. Owing to the synergistic effects amongst tubes-coated Ni0, doped nitrogen, oxygen containing groups, and the configuration of carbon nanotubes, Ni@N-C catalysts exhibit excellent catalytic activity and recyclable capability for CrVI reduction. Carbon shell can efficiently protect inner Ni0 core and N species from corrosion and subsequent leaching, while Ni0 endows the Ni@N-C catalysts with ferromagnetism, so that the composites can be easily separated via a permanent magnet. This study opens up an avenue for design of N-doped carbon nanotubes encapsulating Ni0 nanoparticles with high CrVI removal efficiency and magnetic recyclability as low-cost catalysts for industrial applications.

  16. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture

    International Nuclear Information System (INIS)

    Dumpala, Pradeep R.; Holdcraft, Robert W.; Martis, Prithy C.; Laramore, Melissa A.; Parker, Thomas S.; Levine, Daniel M.; Smith, Barry H.; Gazda, Lawrence S.

    2016-01-01

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.

  17. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture

    Energy Technology Data Exchange (ETDEWEB)

    Dumpala, Pradeep R., E-mail: pdumpala@rixd.org [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States); Holdcraft, Robert W.; Martis, Prithy C.; Laramore, Melissa A. [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States); Parker, Thomas S.; Levine, Daniel M. [The Rogosin Institute, 505 East 70th Street, New York, NY 10021 (United States); Smith, Barry H. [The Rogosin Institute, 505 East 70th Street, New York, NY 10021 (United States); NewYork-Presbyterian Hospital, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021 (United States); Gazda, Lawrence S. [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States)

    2016-08-05

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.

  18. Germination and plantlet regeneration of encapsulated microshoots of aromatic rice (Oryza sativa L. Cv. MRQ 74).

    Science.gov (United States)

    Taha, Rosna Mat; Saleh, Azani; Mahmad, Noraini; Hasbullah, Nor Azlina; Mohajer, Sadegh

    2012-01-01

    Plant tissues such as somatic embryos, apical shoot tips, axillary shoot buds, embryogenic calli, and protocom-like bodies are potential micropropagules that have been considered for creating synthetic seeds. In the present study, 3-5 mm microshoots of Oryza sativa L. Cv. MRQ 74 were used as explant sources for obtaining synthetic seeds. Microshoots were induced from stem explants on Murashige and Skoog (MS) medium supplemented with 1.5 mg/L benzylaminopurine (BAP). They were encapsulated in 3% (w/v) sodium alginate, 3% sucrose, 0.1 mg/L BAP, and 0.1 mg/L α-Naphthalene acetic acid (NAA). Germination and plantlet regeneration of the encapsulated seeds were tested by culturing them on various germination media. The effect of storage period (15-30 days) was also investigated. The maximum germination and plantlet regeneration (100.0%) were recorded on MS media containing 3% sucrose and 0.8% agar with and without 0.1 mg/L BAP. However, a low germination rate (6.67%) was obtained using top soil as a sowing substrate. The germination rate of the encapsulated microshoots decreased from 93.33% to 3.33% after 30 days of storage at 4°C in the dark. Therefore, further research is being done to improve the germination rate of the synthetic seeds.

  19. Encapsulation of Curcumin in Self-Assembling Peptide Hydrogels as Injectable Drug Delivery Vehicles

    Science.gov (United States)

    Altunbas, Aysegul; Lee, Seung Joon; Rajasekaran, Sigrid A.; Schneider, Joel P.; Pochan, Darrin J.

    2011-01-01

    Curcumin, a hydrophobic polyphenol, is an extract of turmeric root with antioxidant, anti-inflammatory and anti-tumorigenic properties. Its lack of water solubility and relatively low bioavailability set major limitations for its therapeutic use. In this study, a self-assembling peptide hydrogel is demonstrated to be an effective vehicle for the localized delivery of curcumin over sustained periods of time. The curcumin-hydrogel is prepared in-situ where curcumin encapsulation within the hydrogel network is accomplished concurrently with peptide self-assembly. Physical and in vitro biological studies were used to demonstrate the effectiveness of curcumin-loaded β-hairpin hydrogels as injectable agents for localized curcumin delivery. Notably, rheological characterization of the curcumin loaded hydrogel before and after shear flow have indicated solid-like properties even at high curcumin payloads. In vitro experiments with a medulloblastoma cell line confirm that the encapsulation of the curcumin within the hydrogel does not have an adverse effect on its bioactivity. Most importantly, the rate of curcumin release and its consequent therapeutic efficacy can be conveniently modulated as a function of the concentration of the MAX8 peptide. PMID:21601921

  20. Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair

    Science.gov (United States)

    Weir, Michael D.; Xu, Hockin H.K.

    2010-01-01

    Due to its injectability and excellent osteoconductivity, calcium phosphate cement (CPC) is highly promising for orthopedic applications. However, a literature search revealed no report on human bone marrow mesenchymal stem cell (hBMSC) encapsulation in CPC for bone tissue engineering. The aim of this study was to encapsulate hBMSCs in alginate hydrogel beads and then incorporate them into CPC, CPC–chitosan and CPC–chitosan–fiber scaffolds. Chitosan and degradable fibers were used to mechanically reinforce the scaffolds. After 21 days, that the percentage of live cells and the cell density of hBMSCs inside CPC-based constructs matched those in alginate without CPC, indicating that the CPC setting reaction did not harm the hBMSCs. Alkaline phosphate activity increased by 8-fold after 14 days. Mineral staining, scanning electron microscopy and X-ray diffraction confirmed that apatitic mineral was deposited by the cells. The amount of hBMSC-synthesized mineral in CPC–chitosan–fiber matched that in CPC without chitosan and fibers. Hence, adding chitosan and fibers, which reinforced the CPC, did not compromise hBMSC osteodifferentiation and mineral synthesis. In conclusion, hBMSCs were encapsulated in CPC and CPC–chitosan–fiber scaffolds for the first time. The encapsulated cells remained viable, osteodifferentiated and synthesized bone minerals. These self-setting, hBMSC-encapsulating CPC-based constructs may be promising for bone tissue engineering applications. PMID:20451676

  1. New trends in encapsulation of liposoluble vitamins.

    Science.gov (United States)

    Gonnet, M; Lethuaut, L; Boury, F

    2010-09-15

    Liposoluble vitamins (A, D, E, and K) and carotenoids have many benefits on health. They are provided mainly by foods. At pharmacological doses, they can also be used to treat skin diseases, several types of cancer or decrease oxidative stress. These molecules are sensitive to oxidation, thus encapsulation might constitute an appropriate mean to preserve their properties during storage and enhance their physiological potencies. Formulation processes have been adapted for sensitive molecule, limiting their exposure to high temperature, light or oxygen. Each administration pathway, oral, systemic, topical, transdermal and local, requires different particle sizes and release profile. Encapsulation can lead to greater efficiency allowing smaller administration doses thus diminishing potential hypervitaminosis syndrome appearance and side effects. Carrier formulation can be based on vitamin dissolution in lipid media and its stabilization by surfactant mixture, on its entrapment in a matrix or molecular system. Suitability of each type of carrier will be discussed for each pathway. 2010 Elsevier B.V. All rights reserved.

  2. A simple HPLC method for the determination of halcinonide in lipid nanoparticles: development, validation, encapsulation efficiency, and in vitro drug permeation

    Directory of Open Access Journals (Sweden)

    Clarissa Elize Lopes

    2017-06-01

    Full Text Available ABSTRACT Halcinonide is a high-potency topical glucocorticoid used for skin inflammation treatments that presents toxic systemic effects. A simple and quick analytical method to quantify the amount of halcinonide encapsulated into lipid nanoparticles, such as polymeric lipid-core nanoparticles and solid lipid nanoparticles, was developed and validated regarding the drug's encapsulation efficiency and in vitro permeation. The development and validation of the analytical method were carried out using the high performance liquid chromatography with the UV detection at 239 nm. The validation parameters were specificity, linearity, precision and accuracy, limits of detection and quantitation, and robustness. The method presented an isocratic flow rate of 1.0 mL.min-1, a mobile phase methanol:water (85:15 v/v, and a retention time of 4.21 min. The method was validated according to international and national regulations. The halcinonide encapsulation efficiency in nanoparticles was greater than 99% and the in vitro drug permeation study showed that less than 9% of the drug permeated through the membrane, indicating a nanoparticle reservoir effect, which can reduce the halcinonide's toxic systemic effects. These studies demonstrated the applicability of the developed and validated analytical method to quantify halcinonide in lipid nanoparticles.

  3. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin

    International Nuclear Information System (INIS)

    Flynn, Nicholas; Topal, Ç. Özge; Hikkaduwa Koralege, Rangika S.; Hartson, Steve; Ranjan, Ashish; Liu, Jing; Pope, Carey; Ramsey, Joshua D.

    2016-01-01

    The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15–30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery. - Highlights: • A 4–70 kDa range of PLL-g-PEG copolymers was able to encapsulate BSA into NPs. • Encapsulation of BSA by PLL-g-PEG not only retained but increased esterolytic activity. • NPs were stable against protease degradation and polyanion dissociation.

  4. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Nicholas [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Topal, Ç. Özge [School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Hikkaduwa Koralege, Rangika S. [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Hartson, Steve [Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 (United States); Ranjan, Ashish; Liu, Jing; Pope, Carey [Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 (United States); Ramsey, Joshua D., E-mail: josh.ramsey@okstate.edu [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2016-05-01

    The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15–30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery. - Highlights: • A 4–70 kDa range of PLL-g-PEG copolymers was able to encapsulate BSA into NPs. • Encapsulation of BSA by PLL-g-PEG not only retained but increased esterolytic activity. • NPs were stable against protease degradation and polyanion dissociation.

  5. A simple encapsulation method for organic optoelectronic devices

    International Nuclear Information System (INIS)

    Sun Qian-Qian; An Qiao-Shi; Zhang Fu-Jun

    2014-01-01

    The performances of organic optoelectronic devices, such as organic light emitting diodes and polymer solar cells, have rapidly improved in the past decade. The stability of an organic optoelectronic device has become a key problem for further development. In this paper, we report one simple encapsulation method for organic optoelectronic devices with a parafilm, based on ternary polymer solar cells (PSCs). The power conversion efficiencies (PCE) of PSCs with and without encapsulation decrease from 2.93% to 2.17% and from 2.87% to 1.16% after 168-hours of degradation under an ambient environment, respectively. The stability of PSCs could be enhanced by encapsulation with a parafilm. The encapsulation method is a competitive choice for organic optoelectronic devices, owing to its low cost and compatibility with flexible devices. (atomic and molecular physics)

  6. A quantitative method for photovoltaic encapsulation system optimization

    Science.gov (United States)

    Garcia, A., III; Minning, C. P.; Cuddihy, E. F.

    1981-01-01

    It is pointed out that the design of encapsulation systems for flat plate photovoltaic modules requires the fulfillment of conflicting design requirements. An investigation was conducted with the objective to find an approach which will make it possible to determine a system with optimum characteristics. The results of the thermal, optical, structural, and electrical isolation analyses performed in the investigation indicate the major factors in the design of terrestrial photovoltaic modules. For defect-free materials, minimum encapsulation thicknesses are determined primarily by structural considerations. Cell temperature is not strongly affected by encapsulant thickness or thermal conductivity. The emissivity of module surfaces exerts a significant influence on cell temperature. Encapsulants should be elastomeric, and ribs are required on substrate modules. Aluminum is unsuitable as a substrate material. Antireflection coating is required on cell surfaces.

  7. Biological responses of T cells encapsulated with polyelectrolyte-coated gold nanorods and their cellular activities in a co-culture system

    Science.gov (United States)

    Wattanakull, Porntida; Killingsworth, Murray C.; Pissuwan, Dakrong

    2017-11-01

    Currently, human T cell therapy is of considerable scientific interest. In addition, cell encapsulation has become an attractive approach in biomedical applications. Here, we propose an innovative technique of single-cell encapsulation of human T cells using polyelectrolytes combined with gold nanorods. We have demonstrated encapsulation of human Jurkat T cells with poly(sodium 4-styrenesulfonate) (PSS)-coated gold nanorods (PSS-GNRs). Other forms of encapsulation, using polyelectrolytes without GNRs, were also performed. After Jurkat T cells were encapsulated with poly(allylamine hydrochloride) (PAH) and/or PSS-GNRs or PSS, most cells survived and could proliferate. Jurkat T cells encapsulated with a double layer of PSS-GNR/PAH (PSS-GNR/PAH@Jurkat) showed the highest rate of cell proliferation when compared to 24-h encapsulated cells. With the exception of IL-6, no significant induction of inflammatory cytokines (IL-2, IL-1β, and TNF-α) was observed. Interestingly, when encapsulated cells were co-cultured with THP-1 macrophages, co-cultures exhibited TNF-α production enhancement. However, the co-culture of THP-1 macrophage and PSS-GNR/PAH@Jurkat or PSS/PAH@Jurkat did not enhance TNF-α production. No significant inductions of IL-2, IL-1β, and IL-6 were detected. These data provide promising results, demonstrating the potential use of encapsulated PSS-GNR/PAH@Jurkat to provide a more inert T cell population for immunotherapy application and other biomedical applications.

  8. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    Science.gov (United States)

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  9. Uranium metal oxidation, grinding, and encapsulation in BorobondR: TRU waste management - 59279

    International Nuclear Information System (INIS)

    Cook, Kevin S.; Addington, Larry A.; Utley, Beth

    2012-01-01

    Hydrogen generation mitigation for K Basin sludge was examined by encapsulation of uranium metal in BoroBond R , pre-oxidation of uranium metal with Fenton's reagent and grinding of Densalloy SD170, an irradiated uranium metal surrogate. Encapsulation in BoroBond R resulted in pressure increase rates at 60 deg. C ranging from 0.116 torr/h to 0.186 torr/h compared to 0.240 torr/h for a uranium metal in water standard. Samples cast with higher water content led to increased rates. A Fenton's reagent system consisting of a simple reagent mix of FeSO 4 .7H 2 O, H 2 O 2 and HCl effectively oxidized 1/4'' cubes of uranium metal in under four days at room temperature. Increased peroxide addition rate, increased FeSO 4 .7H 2 O concentration and low pH all increase the corrosion rate. Densalloy SD170 with an average particle size of 581 μm with 7.63 % of particles less than 90 μm was milled so that over 90 % of the Densalloy mass measured less than 90 μm in 6 hours of milling. Acceptable wear rates were seen on wear components that were from standard materials (Nitronic SS and 440SS). (authors)

  10. Characterization of a bonding-in-liquid technique for liquid encapsulation into MEMS devices

    International Nuclear Information System (INIS)

    Okayama, Yoshiyuki; Nakahara, Keijiro; Arouette, Xavier; Ninomiya, Takeshi; Matsumoto, Yasuaki; Orimo, Yoshinori; Hotta, Atsushi; Omiya, Masaki; Miki, Norihisa

    2010-01-01

    We demonstrate and characterize a new bonding-in-liquid technique (BiLT) for the encapsulation of liquids in MEMS devices. Liquid encapsulation enables innovative MEMS devices with various functions exploiting the unique characteristics of liquids, such as high deformation and spherical shape due to surface tension. Interfusion of air bubbles, variation of the liquid quantity and leakage of the encapsulated liquid must be avoided, or device performance will deteriorate. In BiLT, two structural layers are passively aligned and brought into contact in a solution, and the encapsulation cavities are filled uniformly with liquid, without air bubbles. A UV-curable resin is used as an adhesive that does not require heat or vacuum to bond the layers, but UV irradiation. DI water, glycerin and phosphate buffer saline were successfully encapsulated in silicon structural layers with PDMS membranes. We experimentally evaluated the bond strengths and alignment accuracy of BiLT in order to provide crucial information for the application of this process to the packaging and/or manufacturing of MEMS devices. Since conventional aligners are not applicable to BiLT, we experimentally evaluated the accuracy of an in-solution passive alignment process, which made use of matching concave and convex structures.

  11. Development of DBD plasma actuators: The double encapsulated electrode

    Science.gov (United States)

    Erfani, Rasool; Zare-Behtash, Hossein; Hale, Craig; Kontis, Konstantinos

    2015-04-01

    Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The standard plasma actuator consists of a single encapsulated (ground) electrode. The aim of this project is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Utilising a transformer cascade, a variety of input voltages are studied for their effect. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry. Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design is proposed. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with a shallow initial encapsulated electrode induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial encapsulated electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric.

  12. Activity of encapsulated Lactobacillus bulgaricus in alginate-whey protein microspheres

    Directory of Open Access Journals (Sweden)

    Meng-Yan Chen

    2014-10-01

    Full Text Available In this work, alginate-whey protein was used as wall materials for encapsulating Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus. The characteristics of encapsulated and free L. bulgaricus showed that the free L. bulgaricus lost viability after 1 min exposure to simulated gastric fluid (SGF at pH 2.0 and 2.5. However, the viability of encapsulated L. bulgaricus did not decrease in SGF at pH 2.5 for 2 h incubation. The viable numbers of encapsulated L. bulgaricus decreased less than 1.0 log unit for 2 h incubation in SGF at pH 2.0. For bile stability, only 1.2 log units and 2.0 log units viability of the encapsulated L. bulgaricus was lost in 1 and 2% bile for 1 h exposure, respectively, compared with no survival of free L. bulgaricus under the same conditions. Encapsulated L. bulgaricus was completely released from the microspheres in simulated intestinal fluid (SIF, pH 6.8 in 3 h. The viability of the encapsulated L. bulgaricus retained more 8.0 log CFU/g after stored at 4°C for four weeks. However, for free L. bulgaricus, only around 3.0 log CFU/mL was found at the same storage conditions. Results showed that the encapsulation could improve the stability of L. bulgaricus.

  13. An examination of sulfur polymer cement as a waste encapsulation agent

    International Nuclear Information System (INIS)

    McNew, E.B.

    1995-01-01

    Sulfur polymer cement (SPC) is a unique material having potential applications for hazardous and radioactive waste encapsulation. This material was originally developed by the US Bureau of Mines as an acid and chemical resistant construction cement and has since been applied in tie waste encapsulation field. The material is easily prepared from elemental sulfur and organic dienes. It is an easy to use low-viscosity thermoplastic, and has many favorable properties such as low porosity, high compressive strength, and resistance to chemical attack. The results of several invetigations on this material will be discussed, and include: (1) the chemical form and physical structure of the material, (2) the compressive strength of cylindrical test samples after gamma radiation testing, (3) the aqueous leaching behavior of lead, cerium, cesium, cobalt, and strontium from SPC-ash mixtures at room and elevated temperatures, (4) the casting compatibility of mixtures of SPC with different waste materials, (5) the ability of SPC to encapsulate elemental mercury contaminated soils, (6) laboratory and field studies of SPC biocorrosion by Thiobacillus bacteria, (7) small scale (10 kg) SPC-ash monolith casting studies, and (8) methods for the formulation of a grade of SPC more applicable to the encapsulation of aggregate waste materials

  14. Optimisation of preparation conditions and properties of phytosterol liposome-encapsulating nattokinase.

    Science.gov (United States)

    Dong, Xu-Yan; Kong, Fan-Pi; Yuan, Gang-You; Wei, Fang; Jiang, Mu-Lan; Li, Guang-Ming; Wang, Zhan; Zhao, Yuan-Di; Chen, Hong

    2012-01-01

    Phytosterol liposomes were prepared using the thin film method and used to encapsulate nattokinase (NK). In order to obtain a high encapsulation efficiency within the liposome, an orthogonal experiment (L9 (3)(4)) was applied to optimise the preparation conditions. The molar ratio of lecithin to phytosterols, NK activity and mass ratio of mannite to lecithin were the main factors that influenced the encapsulation efficiency of the liposomes. Based on the results of a single-factor test, these three factors were chosen for this study. We determined the optimum extraction conditions to be as follows: a molar ratio of lecithin to phytosterol of 2 : 1, NK activity of 2500 U mL⁻¹ and a mass ratio of mannite to lecithin of 3 : 1. Under these optimised conditions, an encapsulation efficiency of 65.25% was achieved, which agreed closely with the predicted result. Moreover, the zeta potential, size distribution and microstructure of the liposomes prepared were measured, and we found that the zeta potential was -51 ± 3 mV and the mean diameter was 194.1 nm. From the results of the scanning electron microscopy, we observed that the phytosterol liposomes were round and regular in shape and showed no aggregation.

  15. Long-term safety of the maintenance and decommissioning waste of the encapsulation plant

    International Nuclear Information System (INIS)

    Nummi, O.; Kylloenen, J.; Eurajoki, T.

    2012-12-01

    This report, Long-term safety of the maintenance and decommissioning waste of the encapsulation plant, presents the disposal concept for the low and intermediate level waste (L/ILW) that is generated during the operation and decommissioning of the encapsulation plant, and assesses the long-term safety of the disposal of the waste. Radioactive waste originates from the spent nuclear fuel transferred and dried in the encapsulation plant. Radioactive waste accumulates also in the maintenance of the components and systems of the encapsulation plant. The waste is collected, exempted from control if possible and treated for final disposal if necessary. The waste is disposed of in the L/ILW hall which is currently planned to be located at a depth of -180 meters along the access tunnel to the repository for spent fuel. The main engineered barrier in the L/ILW hall is a concrete basin that encases the dried liquid waste. The safety concept of L/ILW disposal is based on the slow release of radioactivity from the L/ILW hall and its limited transport through the bedrock into biosphere. The release and transport of the radioactivity is described by the assessment scenarios, which include expected evolution and unlikely events affecting the long-term safety. The scenarios act as guidelines according to which the conceptual and mathematical models are formed. The long-term safety of the L/ILW hall is assessed using deterministic and probabilistic modeling. Special issues such as human intrusion and radiation effects on other biota are also assessed. The most significant contributor to the dose rates is the short-lived radionuclide 90 Sr followed by long-lived nuclides 129 I and 108 mAg. The annual doses to the public, and release rates of radioactive substances stay below the regulatory constraints in all analyzed scenarios. (orig.)

  16. Investigation of test methods, material properties, and processes for solar cell encapsulants. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Willis, P. B.; Baum, B.; Schnitzer, H. S.

    1980-07-01

    The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Technical activities during the past year have covered a number of topics and have emphasized the development of solar module encapsulation technology that employs ethylene/vinyl acetate, copolymer (EVA) as the pottant. These activities have included: (1) continued production of encapsulation grade EVA in sheet form to meet the needs of the photovoltaic industry; (2) investigations of three non-blocking techniques for EVA sheet; (3) performed an economic analysis of the high volume production of each pottant in order to estimate the large volume selling price (EVA, EPDM, aliphatic urethane, PVC plastisol, and butyl acrylate); (4) initiated an experimental corrosion protection program to determine if metal components could be successfully protected by encapsulation; (5) began an investigation to determine the maximum temperature which can be tolerated by the candidate pottant material in the event of hot spot heating or other temperature override; (6) continuation of surveys of potentially useful outer cover materials; and (7) continued with the accelerated artificial weathering of candidate encapsulation materials. Study results are presented. (WHK)

  17. A Flexible Capacitive Sensor with Encapsulated Liquids as Dielectrics

    Directory of Open Access Journals (Sweden)

    Yasunari Hotta

    2012-03-01

    Full Text Available Flexible and high-sensitive capacitive sensors are demanded to detect pressure distribution and/or tactile information on a curved surface, hence, wide varieties of polymer-based flexible MEMS sensors have been developed. High-sensitivity may be achieved by increasing the capacitance of the sensor using solid dielectric material while it deteriorates the flexibility. Using air as the dielectric, to maintain the flexibility, sacrifices the sensor sensitivity. In this paper, we demonstrate flexible and highly sensitive capacitive sensor arrays that encapsulate highly dielectric liquids as the dielectric. Deionized water and glycerin, which have relative dielectric constants of approximately 80 and 47, respectively, could increase the capacitance of the sensor when used as the dielectric while maintaining flexibility of the sensor with electrodes patterned on flexible polymer substrates. A reservoir of liquids between the electrodes was designed to have a leak path, which allows the sensor to deform despite of the incompressibility of the encapsulated liquids. The proposed sensor was microfabricated and demonstrated successfully to have a five times greater sensitivity than sensors that use air as the dielectric.

  18. Effectiveness of amorphous silica encapsulation technology on welding fume particles and its impact on mechanical properties of welds

    International Nuclear Information System (INIS)

    Wang, Jun; Wu, Chang-Yu; Franke, Gene

    2014-01-01

    Highlights: • A novel welding shielding gas containing a silica precursor. • Up to 76% of the welding fume particles encapsulated in an amorphous silica layer. • No statistical difference between different types of welds in mechanical tests. • Can potentially reduce the toxicity of welding fume particles. - Abstract: Stainless steel welding generates nano-sized fume particles containing toxic metals which may cause serious health effects upon inhalation. The objective of this study was to investigate the effectiveness of an amorphous silica encapsulation (ASE) technology by evaluating its silica coating efficiency (SCE), particle morphology, and its impact on the weld’s mechanical properties. Tetramethylsilane (TMS) added to the welding shielding gas decomposed at the high-temperature arc zone to enable the silica coating. Collected welding fume particles were digested by two acid mixtures with different degrees of silica solubility, and the measured mass differences in the digests were used to determine the SCE. The SCEs were around 48–64% at the low and medium primary shielding gas flow rates. The highest SCE of 76% occurred at the high shielding gas flow rate (30 Lpm) with a TMS carrier gas flow of 0.64 Lpm. Transmission electron microscopy (TEM) images confirmed the amorphous silica layer on the welding fume particles at most gas flow rates, as well as abundant stand-alone silica particles formed at the high gas flow rate. Metallography showed that welds from the baseline and from the ASE technology were similar except for a tiny crack found in one particular weld made with the ASE technology. Tensile tests showed no statistical difference between the baseline and the ASE welds. All the above test results confirm that welding equipment retrofitted with the ASE technology has the potential to effectively address the toxicity problem of welding fume particles without affecting the mechanical properties of the welds

  19. Encapsulation and delivery of food ingredients using starch based systems.

    Science.gov (United States)

    Zhu, Fan

    2017-08-15

    Functional ingredients can be encapsulated by various wall materials for controlled release in food and digestion systems. Starch, as one of the most abundant natural carbohydrate polymers, is non-allergenic, GRAS, and cheap. There has been increasing interest of using starch in native and modified forms to encapsulate food ingredients such as flavours, lipids, polyphenols, carotenoids, vitamins, enzymes, and probiotics. Starches from various botanical sources in granular or amorphous forms are modified by chemical, physical, and/or enzymatic means to obtain the desired properties for targeted encapsulation. Other wall materials are also employed in combination with starch to facilitate some types of encapsulation. Various methods of crafting the starch-based encapsulation such as electrospinning, spray drying, antisolvent, amylose inclusion complexation, and nano-emulsification are introduced in this mini-review. The physicochemical and structural properties of the particles are described. The encapsulation systems can positively influence the controlled release of food ingredients in food and nutritional applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Antidiabetic Activity from Gallic Acid Encapsulated Nanochitosan

    Science.gov (United States)

    Purbowatiningrum; Ngadiwiyana; Ismiyarto; Fachriyah, E.; Eviana, I.; Eldiana, O.; Amaliyah, N.; Sektianingrum, A. N.

    2017-02-01

    Diabetes mellitus (DM) has become a health problem in the world because it causes death. One of the phenolic compounds that have antidiabetic activity is gallic acid. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The result of chitosan nanoparticle’s Scanning Electron Microscopy (SEM) showed that chitosan nanoparticle’s size is uniform and it is smaller than chitosan. The value of encapsulation efficiency (EE) of gallic acid which encapsulated within chitosan nanoparticles is about 50.76%. Inhibition test result showed that gallic acid-chitosan nanoparticles at 50 ppm could inhibite α-glucosidase activity in 28.87% with 54.94 in IC50. So it can be concluded that gallic acid can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.

  1. Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics.

    Science.gov (United States)

    Lee, Yoon Kyeung; Yu, Ki Jun; Song, Enming; Barati Farimani, Amir; Vitale, Flavia; Xie, Zhaoqian; Yoon, Younghee; Kim, Yerim; Richardson, Andrew; Luan, Haiwen; Wu, Yixin; Xie, Xu; Lucas, Timothy H; Crawford, Kaitlyn; Mei, Yongfeng; Feng, Xue; Huang, Yonggang; Litt, Brian; Aluru, Narayana R; Yin, Lan; Rogers, John A

    2017-12-26

    The chemistry that governs the dissolution of device-grade, monocrystalline silicon nanomembranes into benign end products by hydrolysis serves as the foundation for fully eco/biodegradable classes of high-performance electronics. This paper examines these processes in aqueous solutions with chemical compositions relevant to groundwater and biofluids. The results show that the presence of Si(OH) 4 and proteins in these solutions can slow the rates of dissolution and that ion-specific effects associated with Ca 2+ can significantly increase these rates. This information allows for effective use of silicon nanomembranes not only as active layers in eco/biodegradable electronics but also as water barriers capable of providing perfect encapsulation until their disappearance by dissolution. The time scales for this encapsulation can be controlled by introduction of dopants into the Si and by addition of oxide layers on the exposed surfaces.The former possibility also allows the doped silicon to serve as an electrical interface for measuring biopotentials, as demonstrated in fully bioresorbable platforms for in vivo neural recordings. This collection of findings is important for further engineering development of water-soluble classes of silicon electronics.

  2. Measurement of Strain and Strain Rate during the Impact of Tennis Ball Cores

    Directory of Open Access Journals (Sweden)

    Ben Lane

    2018-03-01

    Full Text Available The aim of this investigation was to establish the strains and strain rates experienced by tennis ball cores during impact to inform material characterisation testing and finite element modelling. Three-dimensional surface strains and strain rates were measured using two high-speed video cameras and corresponding digital image correlation software (GOM Correlate Professional. The results suggest that material characterisation testing to a maximum strain of 0.4 and a maximum rate of 500 s−1 in tension and to a maximum strain of −0.4 and a maximum rate of −800 s−1 in compression would encapsulate the demands placed on the material during impact and, in turn, define the range of properties required to encapsulate the behavior of the material during impact, enabling testing to be application-specific and strain-rate-dependent properties to be established and incorporated in finite element models.

  3. Protein encapsulation via porous CaCO3 microparticles templating.

    Science.gov (United States)

    Volodkin, Dmitry V; Larionova, Natalia I; Sukhorukov, Gleb B

    2004-01-01

    Porous microparticles of calcium carbonate with an average diameter of 4.75 microm were prepared and used for protein encapsulation in polymer-filled microcapsules by means of electrostatic layer-by-layer assembly (ELbL). Loading of macromolecules in porous CaCO3 particles is affected by their molecular weight due to diffusion-limited permeation inside the particles and also by the affinity to the carbonate surface. Adsorption of various proteins and dextran was examined as a function of pH and was found to be dependent both on the charge of the microparticles and macromolecules. The electrostatic effect was shown to govern this interaction. This paper discusses the factors which can influence the adsorption capacity of proteins. A new way of protein encapsulation in polyelectrolyte microcapsules is proposed exploiting the porous, biocompatible, and decomposable microparticles from CaCO3. It consists of protein adsorption in the pores of the microparticles followed by ELbL of oppositely charged polyelectrolytes and further core dissolution. This resulted in formation of polyelectrolyte-filled capsules with protein incorporated in interpenetrating polyelectrolyte network. The properties of CaCO3 microparticles and capsules prepared were characterized by scanning electron microscopy, microelectrophoresis, and confocal laser scanning microscopy. Lactalbumin was encapsulated by means of the proposed technique yielding a content of 0.6 pg protein per microcapsule. Horseradish peroxidase saves 37% of activity after encapsulation. However, the thermostability of the enzyme was improved by encapsulation. The results demonstrate that porous CaCO3 microparticles can be applied as microtemplates for encapsulation of proteins into polyelectrolyte capsules at neutral pH as an optimal medium for a variety of bioactive material, which can also be encapsulated by the proposed method. Microcapsules filled with encapsulated material may find applications in the field of

  4. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    Directory of Open Access Journals (Sweden)

    Cheng K

    2017-03-01

    Full Text Available Kuo-Wei Cheng, Shan-hui Hsu Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan, Republic of China Abstract: Superparamagnetic iron oxide nanoparticles (SPIO NPs have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm suspended in water. SPIO-PU hybrid NPs contained ~50–60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3] or (9-(methylaminomethylanthracene [MAMA] could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95% without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers. Keywords: superparamagnetic iron oxide, polyurethane, drug release, hybrid nanoparticles

  5. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices.

    Science.gov (United States)

    Shekarforoush, Elhamalsadat; Mendes, Ana C; Baj, Vanessa; Beeren, Sophie R; Chronakis, Ioannis S

    2017-10-17

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  6. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    Directory of Open Access Journals (Sweden)

    Elhamalsadat Shekarforoush

    2017-10-01

    Full Text Available Electrospun phospholipid (asolectin microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC and the total phenolic content (TPC of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient and pressures (vacuum, ambient. 1H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  7. K Basins fuel encapsulation and storage hazard categorization

    International Nuclear Information System (INIS)

    Porten, D.R.

    1994-12-01

    This document establishes the initial hazard categorization for K-Basin fuel encapsulation and storage in the 100 K Area of the Hanford site. The Hazard Categorization for K-Basins addresses the potential for release of radioactive and non-radioactive hazardous material located in the K-Basins and their supporting facilities. The Hazard Categorization covers the hazards associated with normal K-Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. The criteria categorizes a facility based on total curies per radionuclide located in the facility. Tables 5-3 and 5-4 display the results in section 5.0. In accordance with DOE-STD-1027 and the analysis provided in section 5.0, the K East Basin fuel encapsulation and storage activity and the K West Basin storage are classified as a open-quotes Category 2close quotes Facility

  8. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    DEFF Research Database (Denmark)

    Shekarforoush, Elhamalsadat; Mendes, Ana Carina Loureiro; Baj, Vanessa

    2017-01-01

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant...... capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin...

  9. Shelf life stability of lactobacilli encapsulated in raspberry powder: insights into non-dairy probiotics.

    Science.gov (United States)

    Anekella, Kartheek; Orsat, Valérie

    2014-06-01

    Study the shelf-life quality changes in raspberry juice with encapsulated lactobacilli (Lactobacillus rhamnosus NRRL B-4495 and Lactobacillus acidophilus NRRL B-442) obtained by spray drying and understand the various factors involved. Raspberry powder was obtained from spray drying lactobacilli and raspberry juice with maltodextrin as an additive. Shelf life of the powder was analyzed over a period of 30 d. Acid and bile tolerance and antibiotic resistance was compared before and after spray drying. Water activity, survival, and scanning electron microscope images were also measured during the shelf life. A combination of processing conditions: inlet temperature (°C), maltodextrin to juice solids ratio and inlet feed rate (ml/min) during spray drying had a significant role on the survival of lactobacilli during shelf life. Refrigerated storage provided a higher shelf-life stability with regards to CFU/g (as high as 84% on day 0 and 98% retention by the end of 30 d) compared to room temperature storage. Probiotic properties during shelf life are affected by the processing conditions and encapsulated food matrix. Thus, understanding these aspects in vitro during shelf life gives us a brief insight into the future of non-dairy probiotics.

  10. Germination and Plantlet Regeneration of Encapsulated Microshoots of Aromatic Rice (Oryza sativa L. Cv. MRQ 74

    Directory of Open Access Journals (Sweden)

    Rosna Mat Taha

    2012-01-01

    Full Text Available Plant tissues such as somatic embryos, apical shoot tips, axillary shoot buds, embryogenic calli, and protocom-like bodies are potential micropropagules that have been considered for creating synthetic seeds. In the present study, 3–5 mm microshoots of Oryza sativa L. Cv. MRQ 74 were used as explant sources for obtaining synthetic seeds. Microshoots were induced from stem explants on Murashige and Skoog (MS medium supplemented with 1.5 mg/L benzylaminopurine (BAP. They were encapsulated in 3% (w/v sodium alginate, 3% sucrose, 0.1 mg/L BAP, and 0.1 mg/L α-Naphthalene acetic acid (NAA. Germination and plantlet regeneration of the encapsulated seeds were tested by culturing them on various germination media. The effect of storage period (15–30 days was also investigated. The maximum germination and plantlet regeneration (100.0% were recorded on MS media containing 3% sucrose and 0.8% agar with and without 0.1 mg/L BAP. However, a low germination rate (6.67% was obtained using top soil as a sowing substrate. The germination rate of the encapsulated microshoots decreased from 93.33% to 3.33% after 30 days of storage at 4°C in the dark. Therefore, further research is being done to improve the germination rate of the synthetic seeds.

  11. Novel chitosan film embedded with liposome-encapsulated phage for biocontrol of Escherichia coli O157:H7 in beef.

    Science.gov (United States)

    Cui, Haiying; Yuan, Lu; Lin, Lin

    2017-12-01

    In recent years, phages used for the reduction of pathogenic bacteria have fostered many attentions, but they are liable to lost bioactivity in food due to the presence of acidic compounds, enzymes and evaporite materials. To improve the stability of phages, a chitosan edible film containing liposome-encapsulated phage was engineered in the present study. The characteristics of liposome-encapsulated phage and the chitosan film containing liposome-encapsulated phage were investigated. The encapsulation efficiency of phages in liposome reached 57.66±0.12%. Besides, the desirable physical properties of chitosan film were obtained. The chitosan film embedded with liposome-encapsulated phage exhibited high antibacterial activity against Escherichia coli O157:H7, without the impact on the sensory properties of beef. Hence, chitosan film containing liposome-encapsulated phage could be a promising antibacterial packaging for beef preservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Considerations for successful transplantation of encapsulated pancreatic islets

    NARCIS (Netherlands)

    de Vos, P; Hamel, AF; Tatarkiewicz, K

    Encapsulation of pancreatic islets allows for transplantion in the absence of immunosuppression. The technology is based on the principle that transplanted tissue is protected for the host immune system by an artificial membrane. Encapsulation offers a solution to the shortage of donors in clinical

  13. Comparative assessment of plasmid DNA delivery by encapsulation ...

    African Journals Online (AJOL)

    Purpose: To compare the gene delivery effectiveness of plasmid DNA (pDNA) encapsulated within poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles with that adsorbed on PLGA nanoparticles. Methods: PLGA nanoparticles were prepared using solvent-evaporation method. To encapsulate pDNA within the particles, ...

  14. Enzyme-Like Catalysis of the Nazarov Cyclization by Supramolecular Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Courtney; Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2010-03-29

    A primary goal in the design and synthesis of molecular hosts has been the selective recognition and binding of a variety of guests using non-covalent interactions. Supramolecular catalysis, which is the application of such hosts towards catalysis, has much in common with many enzymatic reactions, chiefly the use of both spatially appropriate binding pockets and precisely oriented functional groups to recognize and activate specific substrate molecules. Although there are now many examples which demonstrate how selective encapsulation in a host cavity can enhance the reactivity of a bound guest, all have failed to reach the degree of increased reactivity typical of enzymes. We now report the catalysis of the Nazarov cyclization by a self-assembled coordination cage, a carbon-carbon bond-forming reaction which proceeds under mild, aqueous conditions. The acceleration in this system is over a million-fold, and represents the first example of supramolecular catalysis that achieves the level of rate enhancement comparable to that observed in several enzymes. We explain the unprecedented degree of rate increase as due to the combination of (a) preorganization of the encapsulated substrate molecule, (b) stabilization of the transition state of the cyclization by constrictive binding, and (c) increase in the basicity of the complexed alcohol functionality.

  15. A Universal Strategy for Hollow Metal Oxide Nanoparticles Encapsulated into B/N Co-Doped Graphitic Nanotubes as High-Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Tabassum, Hassina; Zou, Ruqiang; Mahmood, Asif; Liang, Zibin; Wang, Qingfei; Zhang, Hao; Gao, Song; Qu, Chong; Guo, Wenhan; Guo, Shaojun

    2018-02-01

    Yolk-shell nanostructures have received great attention for boosting the performance of lithium-ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li + ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co-doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni 2 O 3 , Mn 3 O 4 ) through combining pyrolysis with an oxidation method is reported herein. The as-made TMO@BNG exhibits the TMO-dependent lithium-ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium-ion storage capacity of 1554 mA h g -1 at the current density of 96 mA g -1 , good rate ability (410 mA h g -1 at 1.75 A g -1 ), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The production of volvox spheres and their potential application in multi-drugs encapsulation and release

    Energy Technology Data Exchange (ETDEWEB)

    Teong, Benjamin; Chang, Shwu Jen [Department of Biomedical Engineering, I-Shou University, College of Medicine, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (China); Chuang, Chin Wen [Department of Electrical Engineering, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City 84001, Taiwan (China); Kuo, Shyh Ming, E-mail: smkuo@isu.edu.tw [Department of Biomedical Engineering, I-Shou University, College of Medicine, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (China); Manousakas, Ioannis, E-mail: i.manousakas@ieee.org [Department of Biomedical Engineering, I-Shou University, College of Medicine, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (China)

    2013-12-01

    Volvox sphere is a bio-mimicking concept of an innovative biomaterial structure of a sphere that contains smaller microspheres which then encapsulate chemicals, drugs and/or cells. The volvox spheres were produced via a high-voltage electrostatic field system, using alginate as the primary material. Encapsulated materials tested in this study include staining dyes, nuclear fast red and trypan blue, and model drugs, bovine serum albumin (BSA) and cytochrome c (CytC). The external morphology of the volvox spheres was observed via electron microscopy whereas the internal structure of the volvox spheres was observed via an optical microscope with the aid of the staining dyes, since alginate is colorless and transparent. The diameter of the microspheres was about 200 to 300 μm, whereas the diameter of the volvox spheres was about 1500 μm. Volvox spheres were durable, retaining about 95% of their mass after 4 weeks. Factors affecting entrapment efficiency, such as temperature and concentration of the bivalent cross-linker, were compared followed by a 7-day in vitro release study. The encapsulation efficiency of CytC within the microspheres was higher at cold (∼ 4 °C) and warm (∼ 50 °C) temperatures whereas temperature has no obvious effect on the BSA encapsulation. High crosslinking concentration (25% w/v) of calcium chloride has resulted higher entrapment efficiency for BSA but not for CytC. Furthermore, volvox spheres showed a different release pattern of BSA and CytC when compared to microspheres encapsulating BSA and CytC. Despite the fact that the mechanisms behind remain unclear and further investigation is required, this study demonstrates the potential of the volvox spheres for drug delivery. - Highlights: • Volvox spheres contain smaller microspheres which can encapsulate drugs and/or cells. • Alginate is the primary material for the inner and outer spheres. • Encapsulation is affected by the crosslinking, temperature and the selection of drugs.

  17. The production of volvox spheres and their potential application in multi-drugs encapsulation and release

    International Nuclear Information System (INIS)

    Teong, Benjamin; Chang, Shwu Jen; Chuang, Chin Wen; Kuo, Shyh Ming; Manousakas, Ioannis

    2013-01-01

    Volvox sphere is a bio-mimicking concept of an innovative biomaterial structure of a sphere that contains smaller microspheres which then encapsulate chemicals, drugs and/or cells. The volvox spheres were produced via a high-voltage electrostatic field system, using alginate as the primary material. Encapsulated materials tested in this study include staining dyes, nuclear fast red and trypan blue, and model drugs, bovine serum albumin (BSA) and cytochrome c (CytC). The external morphology of the volvox spheres was observed via electron microscopy whereas the internal structure of the volvox spheres was observed via an optical microscope with the aid of the staining dyes, since alginate is colorless and transparent. The diameter of the microspheres was about 200 to 300 μm, whereas the diameter of the volvox spheres was about 1500 μm. Volvox spheres were durable, retaining about 95% of their mass after 4 weeks. Factors affecting entrapment efficiency, such as temperature and concentration of the bivalent cross-linker, were compared followed by a 7-day in vitro release study. The encapsulation efficiency of CytC within the microspheres was higher at cold (∼ 4 °C) and warm (∼ 50 °C) temperatures whereas temperature has no obvious effect on the BSA encapsulation. High crosslinking concentration (25% w/v) of calcium chloride has resulted higher entrapment efficiency for BSA but not for CytC. Furthermore, volvox spheres showed a different release pattern of BSA and CytC when compared to microspheres encapsulating BSA and CytC. Despite the fact that the mechanisms behind remain unclear and further investigation is required, this study demonstrates the potential of the volvox spheres for drug delivery. - Highlights: • Volvox spheres contain smaller microspheres which can encapsulate drugs and/or cells. • Alginate is the primary material for the inner and outer spheres. • Encapsulation is affected by the crosslinking, temperature and the selection of drugs.

  18. Novel encapsulation systems and processes for overcoming the challenges of polypharmacy.

    Science.gov (United States)

    Orlu-Gul, Mine; Topcu, Ahmet Alptekin; Shams, Talayeh; Mahalingam, Suntharavathanan; Edirisinghe, Mohan

    2014-10-01

    The encapsulation process has been studied to develop smart drug delivery systems for decades. In particular, micro-encapsulation and nano-encapsulation approaches have gained wide interest in the development of particulate drug delivery and achieved progress in specialties such as nano-medicine. Encapsulation technologies have evolved through various platforms including emulsion solvent evaporation, spray drying and polymer conjugation. Among current encapsulation methods, electrohydrodynamic and microfluidic processes stand out by enabling the making of formulations with uniform shape and nanoscale size. Pressurized gyration is a new method of combining rotation and controlled pressure to produce encapsulated structures of various morphologies. In this review we address key developments in electrohydrodynamic, microfluidic, their combined and new approaches as well as their potential to obtain combined therapies with desired drug release profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effects of micro-encapsulation on morphology and endocrine function of cryopreserved neonatal porcine islet-like cell clusters.

    Science.gov (United States)

    Murakami, M; Satou, H; Kimura, T; Kobayashi, T; Yamaguchi, A; Nakagawara, G; Iwata, H

    2000-10-27

    For the success of clinical islets transplantation, the development of a long-term storage method is necessary. However, the structure of digested islets is scanty for culture and cryopreservation. In this study, the effect of micro-encapsulation to cryopreserved porcine islet-like cell clusters (ICCs) was investigated. The ICCs prepared from neonatal pigs by collagenase digestion and culture technique were cryopreserved and micro-encapsulated in 5% agarose membranes. After cryopreservation, ICC cultured without encapsulation (group A) and cultured with encapsulation (group B) were assessed by comparison with no cryopreserved ICC (control) both in vitro by static incubation test and in vivo in a xenotransplantation study. Micro-encapsulation was able to maintain the fine morphology and the number of ICCs of group B after 7 days of culture. There were not significant differences in insulin secretion of group B and control on day 1 and 7 of culture (1 day:11+/-0.99, 7 days: 5.30+/-1.08 microU/ICC/hr NS versus control). On day 7 of culture, the retrieval rate of group B (105.2+/-9.8%) is obviously higher compared with group A (63.0+/-6.3%). In the xenotransplatation model, the ICCs of group B showed long survival time (7.9+/-0.4 weeks) and good transplantation effect. Our study suggests that micro-encapsulation is one of the useful method for cryopreserved ICC to maintain the fine morphology and effectively recover the endocrine function.

  20. Encapsulation of hazardous wastes into agglomerates

    International Nuclear Information System (INIS)

    Guloy, A.

    1992-01-01

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising

  1. Notice of construction for the 105 KE encapsulation activity

    International Nuclear Information System (INIS)

    1993-03-01

    This is a Notice of Construction for the 105-KE Basin Fuel Encapsulation Activity. This Notice of Construction is being submitted to the State of Washington Department of Health pursuant to the Washington Administrative Code, 246-247, ''Radiation Protection--Air Emissions,'' as amended. The encapsulation activity will consist of all of the activities described in Section 1.3 as necessary to complete encapsulation of the fuel elements and sludge contained in the 105-KE Basin. The encapsulation activity will be carried out on the 105-KE Basin floor under a minimum of 3 m (10 ft) of water. The encapsulation activity.includes emptying irradiated fuel elements from the existing canisters stored in the 105-KE Basin, packaging.these fuel elements in new canisters, packaging sludge from previous fuel inventories and the current inventory in new canisters, capping these canisters of fuel elements and sludge, and returning the new canisters to the storage racks in the basin. The empty canisters will be cleaned and crushed underwater. Packaging and disposal of the crushed canisters will take place above the water

  2. Novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides with enhanced lithium storage

    International Nuclear Information System (INIS)

    Lin, Rong; Yue, Wenbo; Niu, Fangzhou; Ma, Jie

    2016-01-01

    As potential anode materials for lithium-ion batteries, mesoporous metal oxides show high reversible capacities but relatively poor cycle stability due to the structural collapse during cycles. Graphene-encapsulated mesoporous metal oxides may increase the electronic conductivity of the composite as well as stabilize the mesostructure of metal oxides, thereby enhancing the electrochemical performance of mesoporous metal oxides. Herein we describe a novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides (SnO_2, Mn_3O_4), which exhibit superior electrochemical performance compared to pure mesoporous metal oxides. Moreover, some mesoporous metal oxides may be further reduced to low-valence metal oxides when calcined in presence of graphene. Mesoporous metal oxides with high isoelectric points are not essential for this synthesis method since metal oxides are connected with graphene through mesoporous silica template, thus expanding the types of graphene-encapsulated mesoporous metal oxides.

  3. Encapsulation of β-carotene within ferritin nanocages greatly increases its water-solubility and thermal stability.

    Science.gov (United States)

    Chen, Lingli; Bai, Guangling; Yang, Rui; Zang, Jiachen; Zhou, Ting; Zhao, Guanghua

    2014-04-15

    Carotenoids may play a number of potential health benefits for human. However, their use in food industry is limited mostly because of their poor water-solubility and low thermal stability. Ferritins are widely distributed in nature with a shell-like structure which offers a great opportunity to improve the water-solubility and thermal stability of the carotenoids by encapsulation. In this work, recombinant human H-chain ferritin (rHuHF) was prepared and used to encapsulate β-carotene, a typical compound among carotenoids, by taking advantage of the reversible dissociation and reassembly characteristic of apoferritin in different pH environments. Results from high-performance liquid chromatography (HPLC), UV/Vis spectroscopy and transmission electron microscope (TEM) indicated that β-carotene molecules were successfully encapsulated within protein cages with a β-carotene/protein molar ratio of 12.4-1. Upon such encapsulation, these β-carotene-containing apoferritin nanocomposites were water-soluble. Interestingly, the thermal stability of the β-carotene encapsulated within apoferritin nanocages was markedly improved as compared to free β-carotene. These new properties might be favourable to the utilisation of β-carotene in food industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    Science.gov (United States)

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Amplified CPEs enhancement of chorioamnion membrane mass transport by encapsulation in nano-sized PLGA particles.

    Science.gov (United States)

    Azagury, Aharon; Amar-Lewis, Eliz; Appel, Reut; Hallak, Mordechai; Kost, Joseph

    2017-08-01

    Chemical penetration enhancers (CPEs) have long been used for mass transport enhancement across membranes. Many CPEs are used in a solution or gel and could be a solvent. The use of CPEs is mainly limited due to their toxicity/irritation levels. This study presents the evaluation of encapsulated CPEs in nano-sized polymeric particles on the chorioamnion (CA) membrane mass transport. CPEs' mass encapsulated in nanoparticles was decreased by 10,000-fold. Interestingly, this approach resulted in a 6-fold increase in mass transport across the CA. This approach may also be used with other CPEs' base applications necessitating lower CPE concentration. Applying Ultrasound (US) has shown to increase the release rate of and also the mass transport across the CA membrane. It is proposed that encapsulated CPEs penetrate into the CA membrane thus prolonging their exposure, possibly extending their penetration into the CA membrane, while insonation also deepens their penetration into the CA membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Controlling chitosan-based encapsulation for protein and vaccine delivery

    Science.gov (United States)

    Koppolu, Bhanu prasanth; Smith, Sean G.; Ravindranathan, Sruthi; Jayanthi, Srinivas; Kumar, Thallapuranam K.S.; Zaharoff, David A.

    2014-01-01

    Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 μm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, was inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters. PMID:24560459

  7. Substantial improvements of long-term stability in encapsulation-free WS2 using highly interacting graphene substrate

    Science.gov (United States)

    Kim, Se-Yang; Kwak, Jinsung; Kim, Jung Hwa; Lee, Jae-Ung; Jo, Yongsu; Youb Kim, Sung; Cheong, Hyeonsik; Lee, Zonghoon; Kwon, Soon-Yong

    2017-03-01

    We report the novel role of graphene substrates in obstructing the aging propagation in both the basal planes and edges of two-dimensitional sheets of transition metal dichalcogenides (TMDs). Even after 300 d in ambient air conditions, the epitaxially grown WS2/graphene samples have a clean, uniform surface without any encapsulation. We show that high crystallinity is an effective factor that determines the excellent air stability of WS2/graphene, and we present impressive experimental evidence of the relation between defects and the aging phenomena. Moreover, we reveal the strong interlayer charge interaction as an additional factor for the enhanced air stability as a result of charge transfer-induced doping. This work not only proposes a simple method to create highly stable TMDs by the selection of a suitable substrate but also paves the way for the realization of practical TMDs-based applications.

  8. Synthesis and evaluation of tetracycline encapsulated in poly (lactic-co-glycolic acid) on porous titania formed by using plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Moon, Seung-Kyun; Kang, Min-Kyung; Im, Su-Yeon; Kim, Kyoung-Nam; Kwon, Jae-Sung

    2012-01-01

    Despite a relatively high success rate in treating bacterial infection, it is still the major complication following dental implant surgery. Many attempts have been carried out to produce antibacterial effects on implant metals, and there have included coating of antibiotics encapsulated in polymers by using the electro-spray deposition (ESD) method. However, remnant polymer following full release of the medication, resulting in delamination between the surface layers of the implant and newly formed bone, has been a major problem. Hence, different organic polymer of poly (lactic-co-glycolic acid) (PLGA) were used in this study. Commercially pure titanium was used in this experiment and was anodized to improve biocompatibility. The PLGA was dissolved in dichloromethane along with tetracycline, and the fabricated tetracycline encapsulated in PLGA was then coated on a porous oxide layer of titanium by using the ESD method. The surface characteristics were analyzed, and the antibacterial effects of the specimen were assessed using bacteria of Staphylococcus aereus. Finally, the cytotoxicity and cell proliferation on the surface was evaluated. The results indicated that such titanium formed by a coating of tetracycline encapsulated in PLGA on a porous titania structure exhibited antibacterial effects and was both non-cytotoxic and biocompatible. Also, PLGA seemed to be an ideal candidate as the medium to encapsulate antibiotics or other medications such as growth factors due to its rapid degradation compared to other organic polymer. From this experiment, we conclude that porous titania coated by tetracycline encapsulated in PLGA by using ESD method is appropriate for use in dental or medical implants to prevent the major complication of surgery, infection.

  9. Synthesis and evaluation of tetracycline encapsulated in poly (lactic-co-glycolic acid) on porous titania formed by using plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Seung-Kyun; Kang, Min-Kyung; Im, Su-Yeon; Kim, Kyoung-Nam; Kwon, Jae-Sung [Yonsei University, Seoul (Korea, Republic of)

    2012-03-15

    Despite a relatively high success rate in treating bacterial infection, it is still the major complication following dental implant surgery. Many attempts have been carried out to produce antibacterial effects on implant metals, and there have included coating of antibiotics encapsulated in polymers by using the electro-spray deposition (ESD) method. However, remnant polymer following full release of the medication, resulting in delamination between the surface layers of the implant and newly formed bone, has been a major problem. Hence, different organic polymer of poly (lactic-co-glycolic acid) (PLGA) were used in this study. Commercially pure titanium was used in this experiment and was anodized to improve biocompatibility. The PLGA was dissolved in dichloromethane along with tetracycline, and the fabricated tetracycline encapsulated in PLGA was then coated on a porous oxide layer of titanium by using the ESD method. The surface characteristics were analyzed, and the antibacterial effects of the specimen were assessed using bacteria of Staphylococcus aereus. Finally, the cytotoxicity and cell proliferation on the surface was evaluated. The results indicated that such titanium formed by a coating of tetracycline encapsulated in PLGA on a porous titania structure exhibited antibacterial effects and was both non-cytotoxic and biocompatible. Also, PLGA seemed to be an ideal candidate as the medium to encapsulate antibiotics or other medications such as growth factors due to its rapid degradation compared to other organic polymer. From this experiment, we conclude that porous titania coated by tetracycline encapsulated in PLGA by using ESD method is appropriate for use in dental or medical implants to prevent the major complication of surgery, infection.

  10. Encapsulation with structured triglycerides

    Science.gov (United States)

    Lipids provide excellent materials to encapsulate bioactive compounds for food and pharmaceutical applications. Lipids are renewable, biodegradable, and easily modified to provide additional chemical functionality. The use of structured lipids that have been modified with photoactive properties are ...

  11. Method of encapsulating waste radioactive material

    International Nuclear Information System (INIS)

    Forrester, J.A.; Rootham, M.W.

    1982-01-01

    When encapsulating radioactive waste including radioactive liquid having a retardant therein which retards the setting of cements by preventing hydration at cement particles in the mix, the liquid is mixed with ordinary Portland cement and subjected, in a high shear mixer, to long term shear far in excess of that needed to form ordinary grout. The controlled utilization of the retardants plus shear produces a thixotropic paste with extreme moldability which will not bleed, and finally sets more rapidly than can be expected with normal cement mixtures forming a very strong product. (author)

  12. Selective Co-Encapsulation Inside an M6 L4 Cage.

    Science.gov (United States)

    Leenders, Stefan H A M; Becker, René; Kumpulainen, Tatu; de Bruin, Bas; Sawada, Tomohisa; Kato, Taito; Fujita, Makoto; Reek, Joost N H

    2016-10-17

    There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy-transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh-Cp-type metal complexes can be encapsulated inside a self-assembled M 6 L 4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co-encapsulation is observed. This principle is demonstrated by co-encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge-transfer interaction may also contribute to this effect. Charge-transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge-transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge-transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Encapsulated Unresolved Subdural Hematoma Mimicking Acute Epidural Hematoma: A Case Report

    Science.gov (United States)

    Park, Sang-Soo; Kim, Hyo-Joon; Kwon, Chang-Young

    2014-01-01

    Encapsulated acute subdural hematoma (ASDH) has been uncommonly reported. To our knowledge, a few cases of lentiform ASDH have been reported. The mechanism of encapsulated ASDH has been studied but not completely clarified. Encapsulated lentiform ASDH on a computed tomography (CT) scan mimics acute epidural hematoma (AEDH). Misinterpretation of biconvex-shaped ASDH on CT scan as AEDH often occurs and is usually identified by neurosurgical intervention. We report a case of an 85-year-old man presenting with a 2-day history of mental deterioration and right-sided weakness. CT scan revealed a biconvex-shaped hyperdense mass mixed with various densities of blood along the left temporoparietal cerebral convexity, which was misinterpreted as AEDH preoperatively. Emergency craniectomy was performed, but no AEDH was found beneath the skull. In the subdural space, encapsulated ASDH was located. En block resection of encapsulated ASDH was done. Emergency craniectomy confirmed that the preoperatively diagnosed AEDH was an encapsulated ASDH postoperatively. Radiologic studies of AEDH-like SDH allow us to establish an easy differential diagnosis between AEDH and ASDH by distinct features. More histological studies will provide us information on the mechanism underlying encapsulated ASDH. PMID:27169052

  14. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    Science.gov (United States)

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginate used in this study had a high content (67 %) of guluronic residues and was rich in GG diad blocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermal behaviour of alginate beads encapsulating ethyl vanilline was investigated by thermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC) under heating conditions which mimicked usual food processing to provide information about thermal decomposition of alginate matrix and kinetics of aroma release. Two well resolved weight losses were observed. The first one was in the 50-150 °C temperature range with the maximum at approx. 112 °C, corresponding to the dehydration of the polymer network. The second loss in the 220-325 °C temperature range, with a maximum at ∼ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to 230 °C most of the vanilline remained intacta, while prolonged heating at elevated temperatures led to the entire loss of the aroma compound. PMID:27879775

  15. Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene.

    Science.gov (United States)

    Shi, Lei; Young, Trevor L; Kim, Jincheol; Sheng, Yun; Wang, Lei; Chen, Yifeng; Feng, Zhiqiang; Keevers, Mark J; Hao, Xiaojing; Verlinden, Pierre J; Green, Martin A; Ho-Baillie, Anita W Y

    2017-08-02

    Metal halide perovskite solar cells (PSCs) have undergone rapid progress. However, unstable performance caused by sensitivity to environmental moisture and high temperature is a major impediment to commercialization of PSCs. In the present work, a low-temperature, glass-glass encapsulation technique using high performance polyisobutylene (PIB) as the moisture barrier is investigated on planar glass/FTO/TiO 2 /FAPbI 3 /PTAA/gold perovskite solar cells. PIB was applied as either an edge seal or blanket layer. Electrical connections to the encapsulated PSCs were provided by either the FTO or Au layers. Results of a "calcium test" demonstrated that a PIB edge-seal effectively prevents moisture ingress. A shelf life test was performed and the PIB-sealed PSC was stable for at least 200 days. Damp heat and thermal cycling tests, in compliance with IEC61215:2016, were used to evaluate different encapsulation methods. Current-voltage measurements were performed regularly under simulated AM1.5G sunlight to monitor changes in PCE. The best results we have achieved to date maintained the initial efficiency after 540 h of damp heat testing and 200 thermal cycles. To the best of the authors' knowledge, these are among the best damp heat and thermal cycle test results for perovskite solar cells published to date. Given the modest performance of the cells (8% averaged from forward and reverse scans) especially with the more challenging FAPbI 3 perovskite material tested in this work, it is envisaged that better stability results can be further achieved when higher performance perovskite solar cells are encapsulated using the PIB packaging techniques developed in this work. We propose that heat rather than moisture was the main cause of our PSC degradation. Furthermore, we propose that preventing the escape of volatile decomposition products from the perovskite solar cell materials is the key for stability. PIB encapsulation is a very promising packaging solution for perovskite

  16. Simultant encapsulation of vitamin C and beta-carotene in sesame (Sesamum indicum l.) liposomes

    Science.gov (United States)

    Hudiyanti, D.; Fawrin, H.; Siahaan, P.

    2018-04-01

    In this study sesame liposomes were used to encapsulate both vitamin C and beta-carotene simultaneously. Liposomes were prepared with addition of cholesterol. The encapsulation efficiency (EE) of sesame liposomes for vitamin C in the present of beta-carotene was 77%. The addition of cholesterol increased the encapsulation efficiency. The highest encapsulation efficiency was 89% obtained in liposomes with 10% and 20% cholesterol. Contrary to that, the highest beta-carotene encapsulation efficiency of 78%, was found in the sesame liposomes prepared without the added cholesterol. Results showed that sesame liposomes can be used to encapsulate beta-carotene and vitamin C simultaneously. When beta-carotene and vitamin C were encapsulated concurrently, cholesterol intensified the efficiency of vitamin C encapsulation on the contrary it diminished the efficiency of beta-carotene encapsulation.

  17. Encapsulated social perception of emotional expressions.

    Science.gov (United States)

    Smortchkova, Joulia

    2017-01-01

    In this paper I argue that the detection of emotional expressions is, in its early stages, informationally encapsulated. I clarify and defend such a view via the appeal to data from social perception on the visual processing of faces, bodies, facial and bodily expressions. Encapsulated social perception might exist alongside processes that are cognitively penetrated, and that have to do with recognition and categorization, and play a central evolutionary function in preparing early and rapid responses to the emotional stimuli. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Antidiabetic activity from cinnamaldydhe encapsulated by nanochitosan

    Science.gov (United States)

    Purbowatingrum; Ngadiwiyana; Fachriyah, E.; Ismiyarto; Ariestiani, B.; Khikmah

    2018-04-01

    Diabetes mellitus (DM) is a disease characterized by chronic hyperglycemia and metabolic disorders of carbohydrates, proteins, and fats due to reduced function of insulin. Treatment of diabetes can be done by insulin therapy or hypoglycemic drugs. Hypoglycemic drugs usually contain compounds that can inhibit the action of α-glucosidase enzymes that play a role in breaking carbohydrates into blood sugar. Cinnamaldehyde has α-glucosidase inhibit activity because it has a functional group of alkene that is conjugated with a benzene ring and a carbonyl group. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The value of encapsulation efficiency (EE) of cinnamaldyhde which encapsulated within chitosan nanoparticles is about 74%. Inhibition test result showed that cinnamaldehyde-chitosan nanoparticles at 100 ppm could inhibit α-glucosidase activity in 23.9% with 134,13 in IC50. So it can be concluded that cinnamaldehyde can be encapsulated in nanoparticles of chitosan and proved that it could inhibit α-glucosidase.

  19. Spectral perturbations from silicon diode detector encapsulation and shielding in photon fields.

    Science.gov (United States)

    Eklund, Karin; Ahnesjö, Anders

    2010-11-01

    Silicon diodes are widely used as detectors for relative dose measurements in radiotherapy. The common manufacturing practice is to encapsulate the diodes in plastic for protection and to facilitate mounting in scanning devices. Diodes intended for use in photon fields commonly also have a shield of a high atomic number material (usually tungsten) integrated into the encapsulation to selectively absorb low-energy photons to which silicon diodes would otherwise over-response. However, new response models based on cavity theories and spectra calculations have been proposed for direct correction of the readout from unshielded (e.g., "electron") diodes used in photon fields. This raises the question whether it is correct to assume that the spectrum in a water phantom at the location of the detector cavity is not perturbed by the detector encapsulation materials. The aim of this work is to investigate the spectral effects of typical encapsulations, including shielding, used for clinical diodes. The effects of detector encapsulation of an unshielded and a shielded commercial diode on the spectra at the detector cavity location are studied through Monte Carlo simulations with PENELOPE-2005. Variance reduction based on correlated sampling is applied to reduce the CPU time needed for the simulations. The use of correlated sampling is found to be efficient and to not introduce any significant bias to the results. Compared to reference spectra calculated in water, the encapsulation for an unshielded diode is demonstrated to not perturb the spectrum, while a tungsten shielded diode caused not only the desired decrease in low-energy scattered photons but also a large increase of the primary electron fluence. Measurements with a shielded diode in a 6 MV photon beam proved that the shielding does not completely remove the field-size dependence of the detector response caused by the over-response from low-energy photons. Response factors of a properly corrected unshielded diode

  20. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.; Labelle, André J.; Sargent, Edward H.

    2013-01-01

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  1. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  2. Plantlets from encapsulated shoot buds of Catalpa ovata G. Don

    Directory of Open Access Journals (Sweden)

    Halina Wysokińska

    2014-01-01

    Full Text Available Shoot buds isolated from in vitro shoot cultures of Catalpa ovata G. Don were encapsulated using 3% sodium alginate with sucrose (3% and 50 mM calcium chloride. The morphogenic response of encapsulated buds was affected by such factors, like composition of the media and the presence of growth regulators. The highest frequency of plantlet germination from encapsulated buds (70% within 4 weeks was obtained on Woody Plant medium (WP (Lloyd and McCown 1980 containing indole-3-butyric acid (IBA (1 mg/l. The process was substantially inhibited by cold-storage (4oC of encapsulated buds. In this case, the frequency response ranged from 3% to 22% dependent on storage period (28 or 42 days and the presence of the paraffin coat covering the alginate capsules. The plantlets developed from both unstored and stored encapsulated buds of C. ovata were transplanted to soil and grew in pots to phenotypically normal plants.

  3. Synthesis and characterization of a stable humic-urease complex: application to barley seed encapsulation for improving N uptake.

    Science.gov (United States)

    Mvila, Beaufray G; Pilar-Izquierdo, María C; Busto, María D; Perez-Mateos, Manuel; Ortega, Natividad

    2016-07-01

    Most N fertilizers added to soil are not efficiently used by plants and are lost to the atmosphere or leached from the soil, causing environmental pollution and increasing cost. Barley seed encapsulation in calcium alginate gels containing free or immobilized urease to enhance plant utilization of soil N was investigated. Urease was immobilized with soil humic acids (HA). A central composite face-centered design was applied to optimize the immobilization process, reaching an immobilization yield of 127%. Soil stability of urease was enhanced after the immobilization. Seed encapsulation with free urease (FU) and humic-urease complex (HUC) resulted in a urease activity retention in the coating layer of 46% and 24%, and in germination rates of 87% and 92%, respectively. Under pot culture conditions, the pots planted with seeds encapsulated with FU and HUC showed higher ammonium N (NH4 (+) -N) (26% and 64%, respectively) than the control soil at 28 days after planting (DAP). Moreover, the seed encapsulation with FU and HUC increased the N uptake 83% and 97%, respectively, at 35 DAP. Seed encapsulation with urease could substantially contribute to enhancing plant N nutrition in the early stages of seedling establishment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. Alginate Encapsulation of Pluripotent Stem Cells Using a Co-axial Nozzle.

    Science.gov (United States)

    Horiguchi, Ikki; Sakai, Yasuyuki

    2015-07-02

    Pluripotent stem cells (PS cells) are the focus of intense research due to their role in regenerative medicine and drug screening. However, the development of a mass culture system would be required for using PS cells in these applications. Suspension culture is one promising culture method for the mass production of PS cells, although some issues such as controlling aggregation and limiting shear stress from the culture medium are still unsolved. In order to solve these problems, we developed a method of calcium alginate (Alg-Ca) encapsulation using a co-axial nozzle. This method can control the size of the capsules easily by co-flowing N₂ gas. The controllable capsule diameter must be larger than 500 µm because too high a flow rate of N₂ gas causes the breakdown of droplets and thus heterogeneous-sized capsules. Moreover, a low concentration of Alg-Na and CaCl₂ causes non-spherical capsules. Although an Alg-Ca capsule without a coating of Alg-PLL easily dissolves enabling the collection of cells, they can also potentially leak out from capsules lacking an Alg-PLL coating. Indeed, an alginate-PLL coating can prevent cellular leakage but is also hard to break. This technology can be used to research the stem cell niche as well as the mass production of PS cells because encapsulation can modify the micro-environment surrounding cells including the extracellular matrix and the concentration of secreted factors.

  5. Subcutaneous encapsulated fat necrosis

    DEFF Research Database (Denmark)

    Aydin, Dogu; Berg, Jais O

    2016-01-01

    We have described subcutaneous encapsulated fat necrosis, which is benign, usually asymptomatic and underreported. Images have only been published on two earlier occasions, in which the necrotic nodules appear "pearly" than the cloudy yellow surface in present case. The presented image may help...

  6. Ultrasonographic findings of sclerosing encapsulating peritonitis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jong Kyu; Lee, Hae Kyung; Moon, Chul; Hong, Hyun Sook; Kwon, Kwi Hyang; Choi, Deuk Lin [Soonchunhyangi University College of Medicine, Seoul (Korea, Republic of)

    2001-03-15

    To evaluate the ultrasonographic findings of the patients with sclerosing encapsulating peritonitis (SEP). Thirteen patients with surgically confirmed sclerosing encapsulating peritonitis were involved in this study. Because of intestinal obstruction, all patients had received operations. Among 13 patients, 12 cases had continuous ambulatory peritoneal dialysis (CAPD) for 2 months-12 years and 4 months from (mean; 6 years and 10 months), owing to chronic renal failure and one patient had an operation due to variceal bleeding caused by liver cirrhosis. On ultrasonographic examination, all patients showed loculated ascites which were large (n=7) or small (n=6) in amount with multiple separations. The small bowel loops were tethered posteriorly perisaltic movement and covered with the thick membrane. The ultrasonographic of findings of sclerosing encapsulating peritonitis were posteriorly tethered small bowels covered with a thick membrane and loculated ascites with multiple septa. Ultrasonographic examination can detect the thin membrane covering the small bowel loops in the early phase of the disease, therefore ultrasonography would be a helpful modality to diagnose SEP early.

  7. Chemical Characterization of an Encapsulated Red Wine Powder and Its Effects on Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Diego Rocha-Parra

    2018-04-01

    Full Text Available Red wine polyphenols are known for their implications for human health protection, although they suffer from high instability. For this reason, a red wine powder was prepared by freeze-drying encapsulation in maltodextrin/arabic gum matrix, and its composition was determined by means of high-performance liquid chromatography coupled quadrupole time-of-flight mass spectrometry (HPLC-MS-QTOF. More than thirty polyphenols, including anthocyanins, flavanols, flavonols, phenolic acids and stilbenoids, were identified. Some of the main quantified polyphenols were: malvidin-3-O-glucoside, malvidin 3-O-(6″-acetyl-glucose, petunidin-3-O-glucoside, quercetin-3-O-glucuronide, syringenin-3-O-glucoside, epicatechin, gallic acid and syringic acid. The biological activity of this de-alcoholized and encapsulated red wine on human neuroblastoma SH-SY5Y cells was studied. The results showed that the encapsulated red wine powder has active redox properties, as verified by performing reactive oxygen species (ROS analysis utilizing a neuronal model. This could help explain its action against the neurotoxicity induced by 6-hydroxydopamine (6-OHDA.

  8. Chemical Characterization of an Encapsulated Red Wine Powder and Its Effects on Neuronal Cells.

    Science.gov (United States)

    Rocha-Parra, Diego; Chirife, Jorge; Zamora, Clara; de Pascual-Teresa, Sonia

    2018-04-07

    Red wine polyphenols are known for their implications for human health protection, although they suffer from high instability. For this reason, a red wine powder was prepared by freeze-drying encapsulation in maltodextrin/arabic gum matrix, and its composition was determined by means of high-performance liquid chromatography coupled quadrupole time-of-flight mass spectrometry (HPLC-MS-QTOF). More than thirty polyphenols, including anthocyanins, flavanols, flavonols, phenolic acids and stilbenoids, were identified. Some of the main quantified polyphenols were: malvidin-3- O -glucoside, malvidin 3- O -(6″-acetyl-glucose), petunidin-3- O -glucoside, quercetin-3- O -glucuronide, syringenin-3- O -glucoside, epicatechin, gallic acid and syringic acid. The biological activity of this de-alcoholized and encapsulated red wine on human neuroblastoma SH-SY5Y cells was studied. The results showed that the encapsulated red wine powder has active redox properties, as verified by performing reactive oxygen species (ROS) analysis utilizing a neuronal model. This could help explain its action against the neurotoxicity induced by 6-hydroxydopamine (6-OHDA).

  9. Microfluidic assisted preparation of CdSe/ZnS nanocrystals encapsulated into poly(DL-lactide-co-glycolide) microcapsules

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J-Y [Nanopowder and Thin Film Technology Center, Industrial Technology Research Institute, Taiwan (China); Yang, C-H [Department of Biological Science and Technology, I-Shou University, Taiwan (China); Huang, K-S [Department of Biological Science and Technology, I-Shou University, Taiwan (China)

    2007-08-01

    This paper demonstrates a proof-of-concept approach for encapsulating CdSe/ZnS quantum dots (QDs) into uniform-sized poly(DL-lactide-co-glycolide) (PLGA) biocompatible microcapsules utilizing a microfluidic chip. By adapting a blend of poly(vinyl alcohol) (PVA) and chitosan (CS) as stabilizers for constructing a PLGA polymer matrix to entrap CdSe/ZnS QDs, the PLGA polymer solution was constrained to adopt the spherical droplets in a continuous aqueous phase at a microchannel cross-junction. The generation of these droplets was then studied quantitatively. The flow conditions of the two immiscible solutions were adjusted in order to successfully generate the polymer droplets. Size-controllable PLGA microgels containing CdSe/ZnS QDs were produced, ranging in size from 180 to 550 {mu}m in diameter. The narrow size distribution (within {+-} 5%) was obtained by altering the ratio of the flow rate. In contrast to individual QDs, each PLGA microsphere encapsulates thousands of fluorescent QDs in a protective polymer matrix, providing a highly amplified and reproducible signal for fluorescence-based bioanalysis.

  10. Pleurocidin Peptide Enhances Grouper Anti-Vibrio harveyi Immunity Elicited by Poly(lactide-co-glycolide)-Encapsulated Recombinant Glyceraldehyde-3-phosphate Dehydrogenase.

    Science.gov (United States)

    Chuang, Shu-Chun; Huang, Wan-Ling; Kau, Sau-Wei; Yang, Yun-Pei; Yang, Chung-Da

    2014-05-14

    Outer membrane proteins, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), are considered immunodominant antigens for eliciting protective immunity against Vibrio harveyi, the main etiological agent of vibriosis in fish. Cationic antimicrobial peptides (AMPs), such as pleurocidin (PLE), play important roles in activating and recruiting immune cells, thereby contributing to subsequent innate and adaptive immune responses. In the present study, we aimed to use PLE peptide as a potent adjuvant to improve the immunogenicity of V. harveyi recombinant GAPDH (rGAPDH). In order to prepare a controlled-release vaccine, PLE peptide and rGAPDH protein were simultaneously encapsulated into polymeric microparticles made from the biodegradable poly(lactide-co-glycolide) (PLG) polymer. The resulting PLG-encapsulated PLE plus rGAPDH (PLG-PLE/rGAPDH) microparticles, 3.21-6.27 μm in diameter, showed 72%-83% entrapment efficiency and durably released both PLE and rGAPDH for a long 30-day period. Following peritoneal immunization in grouper (Epinephelus coioides), PLG-PLE/rGAPDH microparticles resulted in significantly higher (p PLE/rGAPDH microparticles conferred a high survival rate (85%), which was significantly higher (p PLE peptide exhibits an efficacious adjuvant effect to elicit not only improved immunity, but also enhanced protection against V. harveyi in grouper induced by rGAPDH protein encapsulated in PLG microparticles.

  11. Extended Culture of Encapsulated Human Blastocysts in Alginate Hydrogel Containing Decidualized Endometrial Stromal Cells in the Presence of Melatonin.

    Science.gov (United States)

    Arjmand, Fatemeh; Khanmohammadi, Manijeh; Arasteh, Shaghayegh; Mohammadzadeh, Afsaneh; Kazemnejad, Somaieh; Akhondi, Mohammad-Mehdi

    2016-10-01

    Extended in vitro culture of human embryos beyond blastocyst stage could serve as a tool to explore the molecular and physiological mechanisms underlying embryo development and to identify factors regulating pregnancy outcomes. This study presents the first report on the maintenance of human embryo in vitro by alginate co-encapsulation of human blastocyst and decidualized endometrial stromal cells (EnSCs) under melatonin-fortified culture conditions. The effectiveness of the 3D culture system was studied through monitoring of embryo development in terms of survival time, viability, morphological changes, and production of the two hormones of 17b-oestradiol and human chorionic gonadotropin. The embryo structural integrity was preserved during alginate encapsulation; however, only 23 % of the encapsulated embryos could retain in the hydrogels over time and survived until day 4 post-encapsulation. The culture medium fortification with melatonin significantly elevated the maintenance rate of expanded embryos in alginate beads by 65 % and prolonged survival time of human embryos to day 5. Furthermore, embryo co-culture with EnSCs using melatonin-fortified medium increased the survival time of encapsulated embryos to 44 %. The levels of two measured hormones significantly rose at day 4 in comparison with day 2 post-encapsulation especially in the group co-encapsulated with EnSCs and cultivated in melatonin-fortified culture medium. These data are the first evidence representing in vitro development of human embryos until day 10 post-fertilization. This achievement can facilitate the investigation of the mechanisms regulating human embryo development.

  12. Lipid Membrane Encapsulation of a 3D DNA Nano Octahedron.

    Science.gov (United States)

    Perrault, Steven D; Shih, William M

    2017-01-01

    Structural DNA nanotechnology methods such as DNA origami allow for the synthesis of highly precise nanometer-scale materials (Rothemund, Nature 440:297-302, 2006; Douglas et al., Nature 459:414-418, 2009). These offer compelling advantages for biomedical applications. Such materials can suffer from structural instability in biological environments due to denaturation and nuclease digestion (Hahn et al., ACS Nano 2014; Perrault and Shih, ACS Nano 8:5132-5140, 2014). Encapsulation of DNA nanostructures in a lipid membrane compartmentalizes them from their environment and prevents denaturation and nuclease digestion (Perrault and Shih, ACS Nano 8:5132-5140, 2014). Here, we describe the encapsulation of a 50 nm DNA nanostructure having the geometry of a wireframe octahedron in a phospholipid membrane containing poly-(ethylene glycol), resulting in biocompatible DNA nanostructures.

  13. Investigations into encapsulation of intermediate level wastes containing organic components

    International Nuclear Information System (INIS)

    Palmer, J.

    1988-01-01

    A product evaluation programme was set up to investigate the properties of a variety of matrix-waste formulations prior to their encapsulation. The waste/matrix forms were defined and characterised and waste pretreatments studied. Potential encapsulation matrices were investigated for their suitability for individual waste streams. The physical, chemical and thermal properties, radiation stability and leaching behaviour of the formulations were studied. Operational and design limits for the encapsulation plant were defined. (U.K.)

  14. Characterization studies of lower and non-TDI polyurethane encapsulants

    International Nuclear Information System (INIS)

    Wilson, M.H.

    1993-09-01

    Polyurethane prepolymers containing toluene diisocyanate (TDI) are used within the Nuclear Weapons complex for many adhesive and encapsulation applications. As part of a program for minimizing hazards to workers and the environment, TDI will be eliminated. This report presents evaluation of alternative encapsulants

  15. Nanovesicle encapsulation of antimicrobial peptide P34: physicochemical characterization and mode of action on Listeria monocytogenes

    Science.gov (United States)

    da Silva Malheiros, Patrícia; Sant'Anna, Voltaire; Micheletto, Yasmine Miguel Serafini; da Silveira, Nadya Pesce; Brandelli, Adriano

    2011-08-01

    Antimicrobial peptide P34, a substance showing antibacterial activity against pathogenic and food spoilage bacteria, was encapsulated in liposomes prepared from partially purified soybean phosphatidylcholine, and their physicochemical characteristics were evaluated. The antimicrobial activity was estimated by agar diffusion assay using Listeria monocytogenes ATCC 7644 as indicator strain. A concentration of 3,200 AU/mL of P34 was encapsulated in nanovesicles and stocked at 4 °C. No significant difference ( p > 0.05) in the biological activity of free and encapsulated P34 was observed through 24 days. Size and PDI of liposomes, investigated by light scattering analysis, were on average 150 nm and 0.22 respectively. Zeta potential was -27.42 mV. There was no significant change ( p > 0.05) in the physicochemical properties of liposomes during the time of evaluation. The liposomes presented closed spherical morphology as visualized by transmission electron microscopy (TEM). The mode of action of liposome-encapsulated P34 under L. monocytogenes cells was investigated by TEM. Liposomes appeared to adhere but not fuse with the bacterial cell wall, suggesting that the antimicrobial is released from nanovesicles to act against the microorganism. The effect of free and encapsulated P34 was tested against L. monocytogenes, showing that free bacteriocin inhibited the pathogen more quickly than the encapsulated P34. Liposomes prepared with low-cost lipid showed high encapsulation efficiency for a new antimicrobial peptide and were stable during storage. The mode of action against the pathogen L. monocytogenes was characterized.

  16. Zeolite Encapsulated Nanocrystalline CuO: A Redox Catalyst for the Oxidation of Secondary Alcohols

    Directory of Open Access Journals (Sweden)

    Sakthivel Vijaikumar

    2008-01-01

    Full Text Available Zeolite encapsulated nanocrystalline CuO is synthesized and characterized by powder XRD and HRTEM analyses which clearly show that the particles are less than 15 nm and the nanoparticles are highly dispersed. This nano CuO encapsulated CuY zeolite is used as catalyst in the oxidation of aromatic secondary alcohols. CuY zeolite acts as an efficient support for nano CuO, by stabilizing it and preventing its aggregation. Plausible mechanisms for the formation of the various products are also given.

  17. Introducing lattice strain to graphene encapsulated in hBN

    Science.gov (United States)

    Tomori, Hikari; Hiraide, Rineka; Ootuka, Youiti; Watanabe, Kenji; Taniguchi, Takashi; Kanda, Akinobu

    Due to the characteristic lattice structure, lattice strain in graphene produces an effective gauge field. Theories tell that by controlling spatial variation of lattice strain, one can tailor the electronic state and transport properties of graphene. For example, under uniaxial local strain, graphene exhibits a transport gap at low energies, which is attractive for a graphene application to field effect devices. Here, we develop a method for encapsulating a strained graphene film in hexagonal boron-nitride (hBN). It is known that the graphene carrier mobility is significantly improved by the encapsulation of graphene in hBN, which has never been applied to strained graphene. We encapsulate graphene in hBN using the van der Waals assembly method. Strain is induced by sandwiching a graphene film between patterned hBN sheets. Spatial variation of strain is confirmed with micro Raman spectroscopy. Transport measurement of encapsulated strained graphene is in progress.

  18. Final Scientific/Technical Report (DOE F 241.3) Next-Generation LED Package Architectures Enabled by Thermally Conductive Transparent Encapsulants

    Energy Technology Data Exchange (ETDEWEB)

    Murugaiah, Anand [Momentive Performance Materials Quartz, Inc., Strongsville, OH (United States)

    2016-12-30

    The objective of this program is to generate novel LED package designs that would provide 30% improvement in lumen/$ output. This was to be achieved by improving thermal management in encapsulants/ phosphors to reduce their temperatures. Currently, the heat that is generated during down conversion of blue light to longer wavelengths by the phosphors dispersed in the encapsulant does not have optimum thermal pathways for dissipation due to poor thermal conductivity of the encapsulant material. Additionally, high temperature in the encapsulant during operation is one of the primary failure modes in LED luminaires resulting in much shorter than expected life. The thermal issues manifest in color instability (yellowing, browning), cracking and hot spots in the encapsulant leading to failures. This work explored boron nitride (hBN) as thermal fillers in encapsulants to improve thermal conductivity while minimally impacting optical properties. Various approaches to Boron Nitride (BN) were evaluated and over 380 samples were generated to down select appropriate BN morphologies. We developed a range or BN materials for enabling thermal properties while attempting to minimally impact to optical properties.

  19. Leptin Production by Encapsulated Adipocytes Increases Brown Fat, Decreases Resistin, and Improves Glucose Intolerance in Obese Mice.

    Directory of Open Access Journals (Sweden)

    David J DiSilvestro

    Full Text Available The neuroendocrine effects of leptin on metabolism hold promise to be translated into a complementary therapy to traditional insulin therapy for diabetes and obesity. However, injections of leptin can provoke inflammation. We tested the effects of leptin, produced in the physiological adipocyte location, on metabolism in mouse models of genetic and dietary obesity. We generated 3T3-L1 adipocytes constitutively secreting leptin and encapsulated them in a poly-L-lysine membrane, which protects the cells from immune rejection. Ob/ob mice (OB were injected with capsules containing no cells (empty, OB[Emp], adipocytes (OB[3T3], or adipocytes overexpressing leptin (OB[Lep] into both visceral fat depots. Leptin was found in the plasma of OB[Lep], but not OB[Emp] and OB[3T3] mice at the end of treatment (72 days. The OB[Lep] and OB[3T3] mice have transiently suppressed appetite and weight loss compared to OB[Emp]. Only OB[Lep] mice have greater brown fat mass, metabolic rate, and reduced resistin plasma levels compared to OB[Emp]. Glucose tolerance was markedly better in OB[Lep] vs. OB[Emp] and OB[3T3] mice as well as in wild type mice with high-fat diet-induced obesity and insulin resistance treated with encapsulated leptin-producing adipocytes. Our proof-of-principle study provides evidence of long-term improvement of glucose tolerance with encapsulated adipocytes producing leptin.

  20. The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wujie; He Xiaoming [Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Rong Jianhua; Wang Qian [Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208 (United States)], E-mail: xmhe@sc.edu

    2009-07-08

    The thermally responsive wall permeability of an empty core-shell structured Pluronic nanocapsule (together with its temperature dependent size and surface charge) was successfully utilized for encapsulation, intracellular delivery, and controlled release of trehalose, a highly hydrophilic small (M{sub W} = 342 D) molecule (a disaccharide of glucose) that is exceptional for long-term stabilization of biologicals (particularly at ambient temperatures). It was found that trehalose can be physically encapsulated in the nanocapsule using a soaking-freeze-drying-heating procedure. The nanocapsule is capable of physically withholding trehalose with negligible release in hours for cellular uptake at 37 deg. C when its wall permeability is low. A quick release of the encapsulated sugar can be achieved by thermally cycling the nanocapsule between 37 and 22 deg. C (or lower). A significant amount of trehalose (up to 0.3 M) can be delivered into NIH 3T3 fibroblasts by incubating the cells with the trehalose-encapsulated nanocapsules at 37 deg. C for 40 min. Moreover, cytotoxicity of the nanocapsule for the purpose of intracellular delivery of trehalose was found to be negligible. Altogether, the thermally responsive nanocapsule is effective for intracellular delivery of trehalose, which is critical for the long-term stabilization of mammalian cells at ambient temperatures and the eventual success of modern cell-based medicine.

  1. Nondestructive Assay Options for Spent Fuel Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Stephen J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jansson, Peter [Uppsala Univ. (Sweden)

    2014-10-02

    This report describes the role that nondestructive assay (NDA) techniques and systems of NDA techniques may have in the context of an encapsulation and deep geological repository. The potential NDA needs of an encapsulation and repository facility include safeguards, heat content, and criticality. Some discussion of the facility needs is given, with the majority of the report concentrating on the capability and characteristics of individual NDA instruments and techniques currently available or under development. Particular emphasis is given to how the NDA techniques can be used to determine the heat production of an assembly, as well as meet the dual safeguards needs of 1) determining the declared parameters of initial enrichment, burn-up, and cooling time and 2) detecting defects (total, partial, and bias). The report concludes with the recommendation of three integrated systems that might meet the combined NDA needs of the encapsulation/repository facility.

  2. Carbide Nanoparticles Encapsulated in the Caves of Carbon Nanotubes by an In Situ Reduction-Carbonization Route

    Directory of Open Access Journals (Sweden)

    Chunli Guo

    2011-01-01

    Full Text Available Carbides (TiC, WC, and NbC nanoparticles fully encapsulated in the caves of carbon nanotubes (CNTs were synthesized via an in situ reduction-carbonization route at 600∘C in an autoclave. The structural features and morphologies of as-obtained products were investigated using by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy (HRTEM. HRTEM studies showed that the average diameter of CNTs encapsulated with carbide nanoparticles are in the range of 15–40 nm. The reaction temperature, the reaction time, and the metal catalyst are found to play crucial roles to the product morphology. The growth mechanism of carbide nanoparticles encapsulated in CNTs was discussed in detail.

  3. Light outputs of LED with various refractive indices and geometrical structures of encapsulants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Tae [Chosun University, Gwangju (Korea, Republic of); Jo, Kyoung-Woo; Hwang, Jung-Ha; Kwon, Ho-Ki [LG Innotek Co., Ltd., Seoul (Korea, Republic of); Park, Si-Hyun [Yeungnam University, Gyeongsan (Korea, Republic of)

    2010-12-15

    In this paper we present the results of experiments and simulations for the light output power from LEDs for various refractive indices and the geometrical structures of the LED encapsulants. InGaN-based LED chips were fabricated and were bonded in Ag reflector cups within polyphthalamide (PPA) chip carriers; then, encapsulants with various refractive indices and the geometrical structures were fabricated onto them by using a dispensing method. The light output power with the encapsulant was shown to increase with the refractive index of the encapsulant materials in the case of a spherical encapsulant while it decreased in the case of a flat geometry encapsulant. We performed ray tracing simulations for the LED light output and confirmed that the simulation results were consistent with our experimentally measured results. In addition, the light output with the encapsulant rapidly increased with the sidewall angle of the chip carrier in the case of the flat encapsulant while it was not affected by the sidewall angle, remaining constant, in the case of the spherical geometry.

  4. Light outputs of LED with various refractive indices and geometrical structures of encapsulants

    International Nuclear Information System (INIS)

    Kim, Kyung-Tae; Jo, Kyoung-Woo; Hwang, Jung-Ha; Kwon, Ho-Ki; Park, Si-Hyun

    2010-01-01

    In this paper we present the results of experiments and simulations for the light output power from LEDs for various refractive indices and the geometrical structures of the LED encapsulants. InGaN-based LED chips were fabricated and were bonded in Ag reflector cups within polyphthalamide (PPA) chip carriers; then, encapsulants with various refractive indices and the geometrical structures were fabricated onto them by using a dispensing method. The light output power with the encapsulant was shown to increase with the refractive index of the encapsulant materials in the case of a spherical encapsulant while it decreased in the case of a flat geometry encapsulant. We performed ray tracing simulations for the LED light output and confirmed that the simulation results were consistent with our experimentally measured results. In addition, the light output with the encapsulant rapidly increased with the sidewall angle of the chip carrier in the case of the flat encapsulant while it was not affected by the sidewall angle, remaining constant, in the case of the spherical geometry.

  5. P-111 : a thin film encapsulation stack for PLED and OLED displays

    NARCIS (Netherlands)

    Assche, van F.J.H.; Vangheluwe, R.T.; Maes, J.W.C.; Mischke, W.S.; Bijker, M.D.; Dings, F.C.; Evers, M.F.J.; Kessels, W.M.M.; Sanden, van de M.C.M.

    2004-01-01

    For a thin film (<1 µm) encapsulation stack consisting of only 3 plasma deposited silicon nitride layers separated by a thin (<100 nm) organic layer, a water permeation rate of below 10–5 g/m2 per day at 50 °C and 50% rH has been measured using the Ca test. PLED lifetimes of over 500 hours at 60 °C

  6. Steel Bar corrosion monitoring based on encapsulated piezoelectric sensors

    Science.gov (United States)

    Xu, Ying; Tang, Tianyou

    2018-05-01

    The durability of reinforced concrete has a great impact on the structural bearing capacity, while the corrosion of steel bars is the main reason for the degradation of structural durability. In this paper, a new type of encapsulated cement based piezoelectric sensor is developed and its working performance is verified. The consistency of the finite element simulation and the experimental results shows the feasibility of monitoring the corrosion of steel bars using encapsulated piezoelectric sensors. The research results show that the corrosion conditions of the steel bars can be determined by the relative amplitude of the measured signal through the encapsulated piezoelectric sensor.

  7. Encapsulation of health-promoting ingredients: applications in foodstuffs.

    Science.gov (United States)

    Tolve, Roberta; Galgano, Fernanda; Caruso, Marisa Carmela; Tchuenbou-Magaia, Fideline Laure; Condelli, Nicola; Favati, Fabio; Zhang, Zhibing

    2016-12-01

    Many nutritional experts and food scientists are interested in developing functional foods containing bioactive agents and many of these health-promoting ingredients may benefit from nano/micro-encapsulation technology. Encapsulation has been proven useful to improve the physical and the chemical stability of bioactive agents, as well as their bioavailability and efficacy, enabling their incorporation into a wide range of formulations aimed to functional food production. There are several reviews concerning nano/micro-encapsulation techniques, but none are focused on the incorporation of the bioactive agents into food matrices. The aim of this paper was to investigate the development of microencapsulated food, taking into account the different bioactive ingredients, the variety of processes, techniques and coating materials that can be used for this purpose.

  8. Update on cellular encapsulation.

    Science.gov (United States)

    Smith, Kate E; Johnson, Robert C; Papas, Klearchos K

    2018-05-06

    There is currently a significant disparity between the number of patients who need lifesaving transplants and the number of donated human organs. Xenotransplantation is a way to address this disparity and attempts to enable the use of xenogeneic tissues have persisted for centuries. While immunologic incompatibilities have presented a persistent impediment to their use, encapsulation may represent a way forward for the use of cell-based xenogeneic therapeutics without the need for immunosuppression. In conjunction with modern innovations such as the use of bioprinting, incorporation of immune modulating molecules into capsule membranes, and genetic engineering, the application of xenogeneic cells to treat disorders ranging from pain to liver failure is becoming increasingly realistic. The present review discusses encapsulation in the context of xenotransplantation, focusing on the current status of clinical trials, persistent issues such as antigen shedding, oxygen availability, and donor selection, and recent developments that may address these limitations. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    Science.gov (United States)

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    2017-10-01

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. Here, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450-2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminating reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.

  10. Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor.

    Science.gov (United States)

    Hennebel, Tom; Verhagen, Pieter; Simoen, Henri; De Gusseme, Bart; Vlaeminck, Siegfried E; Boon, Nico; Verstraete, Willy

    2009-08-01

    Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics. The calculated k-values of the encapsulated catalysts were a factor of six lower compared to non-encapsulated bio-Pd. Bio-Pd, used as a catalyst, was able to dechlorinate 100 mgL(-1) trichloroethylene within a time period of 1h. The main reaction product was ethane; yet small levels of chlorinated intermediates were detected. Subsequently polyurethane cubes empowered with bio-Pd were implemented in a fixed bed reactor for the treatment of water containing trichloroethylene. The influent recycle configuration resulted in a cumulative removal of 98% after 22 h. The same reactor in a flow through configuration achieved removal rates up to 1059 mg trichloroethylene g Pd(-1)d(-1). This work showed that fixed bed reactors with bio-Pd polyurethane cubes can be instrumental for remediation of water contaminated with trichloroethylene.

  11. Islet and Stem Cell Encapsulation for Clinical Transplantation

    Science.gov (United States)

    Krishnan, Rahul; Alexander, Michael; Robles, Lourdes; Foster 3rd, Clarence E.; Lakey, Jonathan R.T.

    2014-01-01

    Over the last decade, improvements in islet isolation techniques have made islet transplantation an option for a certain subset of patients with long-standing diabetes. Although islet transplants have shown improved graft function, adequate function beyond the second year has not yet been demonstrated, and patients still require immunosuppression to prevent rejection. Since allogeneic islet transplants have experienced some success, the next step is to improve graft function while eliminating the need for systemic immunosuppressive therapy. Biomaterial encapsulation offers a strategy to avoid the need for toxic immunosuppression while increasing the chances of graft function and survival. Encapsulation entails coating cells or tissue in a semipermeable biocompatible material that allows for the passage of nutrients, oxygen, and hormones while blocking immune cells and regulatory substances from recognizing and destroying the cell, thus avoiding the need for systemic immunosuppressive therapy. Despite advances in encapsulation technology, these developments have not yet been meaningfully translated into clinical islet transplantation, for which several factors are to blame, including graft hypoxia, host inflammatory response, fibrosis, improper choice of biomaterial type, lack of standard guidelines, and post-transplantation device failure. Several new approaches, such as the use of porcine islets, stem cells, development of prevascularized implants, islet nanocoating, and multilayer encapsulation, continue to generate intense scientific interest in this rapidly expanding field. This review provides a comprehensive update on islet and stem cell encapsulation as a treatment modality in type 1 diabetes, including a historical outlook as well as current and future research avenues. PMID:25148368

  12. Proteomic analysis of the increased stress tolerance of saccharomyces cerevisiae encapsulated in liquid core alginate-chitosan capsules.

    Directory of Open Access Journals (Sweden)

    Johan O Westman

    Full Text Available Saccharomyces cerevisiae CBS8066 encapsulated in semi-permeable alginate or alginate-chitosan liquid core capsules have been shown to have an enhanced tolerance towards complex dilute-acid lignocellulose hydrolysates and the lignocellulose-derived inhibitor furfural, as well as towards high temperatures. The underlying molecular reasons for these effects have however not been elucidated. In this study we have investigated the response of the encapsulation on the proteome level in the yeast cells, in comparison with cells grown freely in suspension under otherwise similar conditions. The proteomic analysis was performed on whole cell protein extracts using nLC-MS/MS with TMT® labelling and 2-D DIGE. 842 and 52 proteins were identified using each method, respectively. The abundances of 213 proteins were significantly different between encapsulated and suspended cells, with good correlation between the fold change ratios obtained by the two methods for proteins identified in both. Encapsulation of the yeast caused an up-regulation of glucose-repressed proteins and of both general and starvation-specific stress responses, such as the trehalose biosynthesis pathway, and down-regulation of proteins linked to growth and protein synthesis. The encapsulation leads to a lack of nutrients for cells close to the core of the capsule due to mass transfer limitations. The triggering of the stress response may be beneficial for the cells in certain conditions, for example leading to the increased tolerance towards high temperatures and certain inhibitors.

  13. Comparisons of alternative sites for the encapsulation plant

    International Nuclear Information System (INIS)

    Havel, R.

    2000-12-01

    This report discuses the pros and cons of localizing the spent fuel encapsulation plant at the planned Swedish repository for spent nuclear fuel or at CLAB (Central interim storage facility for spent nuclear fuel). After weighing together all aspects (economy, technology, safety, transports, personnel and environment) it is concluded that building the encapsulation plant in direct connection to CLAB is the most advantageous alternative

  14. Micropillar arrays enabling single microbial cell encapsulation in hydrogels.

    Science.gov (United States)

    Park, Kyun Joo; Lee, Kyoung G; Seok, Seunghwan; Choi, Bong Gill; Lee, Moon-Keun; Park, Tae Jung; Park, Jung Youn; Kim, Do Hyun; Lee, Seok Jae

    2014-06-07

    Single microbial cell encapsulation in hydrogels is an important task to find valuable biological resources for human welfare. The conventional microfluidic designs are mainly targeted only for highly dispersed spherical bioparticles. Advanced structures should be taken into consideration for handling such aggregated and non-spherical microorganisms. Here, to address the challenge, we propose a new type of cylindrical-shaped micropillar array in a microfluidic device for enhancing the dispersion of cell clusters and the isolation of individual cells into individual micro-hydrogels for potential practical applications. The incorporated micropillars act as a sieve for the breaking of Escherichia coli (E. coli) clusters into single cells in a polymer mixture. Furthermore, the combination of hydrodynamic forces and a flow-focusing technique will improve the probability of encapsulation of a single cell into each hydrogel with a broad range of cell concentrations. This proposed strategy and device would be a useful platform for genetically modified microorganisms for practical applications.

  15. Thermal degradation kinetics of phycocyanin encapsulation as an antioxidant agent

    Science.gov (United States)

    Nilamsari, A. M.; Yunanda, A.; Hadiyanto, H.

    2018-01-01

    Phycocyanin is a blue-light pigment that found in Cyanobacteria and two Eukaryotics algae such as Rhodophyta and Crytophyta. Phycocyanin is soluble in water and has a strong fluorescent properties as an antioxidant and normally used in food industry, cosmetic, biotechnology, and drug. However, Phycocyanin is easily damaged by a heating process. The aim of this study is to obtain the optimal condition of phycocyanin encapsulation with different coating materials, Chitosan and Carrageenan, by the calculation of heat resistance of antioxidant activity (D), range of temperature that increase the rate of degradation (Z), rate constant of degradation (k), and activation energy (Ea). The ratio of phycocyanin and the coating material are 2% (w/v) and 2 % (w/v).

  16. Recent progress on thin-film encapsulation technologies for organic electronic devices

    Science.gov (United States)

    Yu, Duan; Yang, Yong-Qiang; Chen, Zheng; Tao, Ye; Liu, Yun-Fei

    2016-03-01

    Among the advanced electronic devices, flexible organic electronic devices with rapid development are the most promising technologies to customers and industries. Organic thin films accommodate low-cost fabrication and can exploit diverse molecules in inexpensive plastic light emitting diodes, plastic solar cells, and even plastic lasers. These properties may ultimately enable organic materials for practical applications in industry. However, the stability of organic electronic devices still remains a big challenge, because of the difficulty in fabricating commercial products with flexibility. These organic materials can be protected using substrates and barriers such as glass and metal; however, this results in a rigid device and does not satisfy the applications demanding flexible devices. Plastic substrates and transparent flexible encapsulation barriers are other possible alternatives; however, these offer little protection to oxygen and water, thus rapidly degrading the devices. Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation into the flexible devices. Because of these (and other) reasons, there has been an intense interest in developing transparent barrier materials with much lower permeabilities, and their market is expected to reach over 550 million by 2025. In this study, the degradation mechanism of organic electronic devices is reviewed. To increase the stability of devices in air, several TFE technologies were applied to provide efficient barrier performance. In this review, the degradation mechanism of organic electronic devices, permeation rate measurement, traditional encapsulation technologies, and TFE technologies are presented.

  17. Conformally encapsulated multi-electrode arrays with seamless insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah

    2016-11-22

    Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.

  18. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    Science.gov (United States)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  19. Performance evaluation soil samples utilizing encapsulation technology

    Science.gov (United States)

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  20. Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study

    Science.gov (United States)

    Nagai, Shoko; Yamada, Kiho; Hirano, Akira; Ippommatsu, Masamichi; Ito, Masahiro; Morishima, Naoki; Aosaki, Ko; Honda, Yoshio; Amano, Hiroshi; Akasaki, Isamu

    2016-08-01

    To replace mercury lamps with AlGaN-based deep-ultraviolet (DUV) LEDs, a simple and low-cost package with increased light extraction efficiency (LEE) is indispensable. Therefore, resin encapsulation is considered to be a key technology. However, the photochemical reactions induced by DUV light cause serious problems, and conventional resins cannot be used. In the former part of this study, a comparison of a silicone resin and fluorine polymers was carried out in terms of their suitability for encapsulation, and we concluded that only one of the fluorine polymers can be used for encapsulation. In the latter part, the endurance of encapsulation using the selected fluorine polymer was investigated, and we confirmed that the selected fluorine polymer can guarantee a lifetime of over 6,000 h at a wavelength of 265 nm. Furthermore, a 3 × 4 array module of encapsulated dies on a simple AlN submount was fabricated, demonstrating the possibility of W/cm2-class lighting.

  1. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy.

    Science.gov (United States)

    Malik, Danish J; Sokolov, Ilya J; Vinner, Gurinder K; Mancuso, Francesco; Cinquerrui, Salvatore; Vladisavljevic, Goran T; Clokie, Martha R J; Garton, Natalie J; Stapley, Andrew G F; Kirpichnikova, Anna

    2017-11-01

    Against a backdrop of global antibiotic resistance and increasing awareness of the importance of the human microbiota, there has been resurgent interest in the potential use of bacteriophages for therapeutic purposes, known as phage therapy. A number of phage therapy phase I and II clinical trials have concluded, and shown phages don't present significant adverse safety concerns. These clinical trials used simple phage suspensions without any formulation and phage stability was of secondary concern. Phages have a limited stability in solution, and undergo a significant drop in phage titre during processing and storage which is unacceptable if phages are to become regulated pharmaceuticals, where stable dosage and well defined pharmacokinetics and pharmacodynamics are de rigueur. Animal studies have shown that the efficacy of phage therapy outcomes depend on the phage concentration (i.e. the dose) delivered at the site of infection, and their ability to target and kill bacteria, arresting bacterial growth and clearing the infection. In addition, in vitro and animal studies have shown the importance of using phage cocktails rather than single phage preparations to achieve better therapy outcomes. The in vivo reduction of phage concentration due to interactions with host antibodies or other clearance mechanisms may necessitate repeated dosing of phages, or sustained release approaches. Modelling of phage-bacterium population dynamics reinforces these points. Surprisingly little attention has been devoted to the effect of formulation on phage therapy outcomes, given the need for phage cocktails, where each phage within a cocktail may require significantly different formulation to retain a high enough infective dose. This review firstly looks at the clinical needs and challenges (informed through a review of key animal studies evaluating phage therapy) associated with treatment of acute and chronic infections and the drivers for phage encapsulation. An important driver

  2. Encapsulation of ionic electroactive polymers: reducing the interaction with environment

    Science.gov (United States)

    Jaakson, P.; Aabloo, A.; Tamm, T.

    2016-04-01

    Ionic electro-active polymer (iEAP) actuators are composite materials that change their mechanical properties in response to external electrical stimulus. The interest in these devices is mainly driven by their capability to generate biomimetic movements, and their potential use in soft robotics. The driving voltage of an iEAP-actuator (0.5… 3 V) is at least an order of magnitude lower than that needed for other types of electroactive polymers. To apply iEAP-actuators in potential real-world applications, the capability of operating in different environments (open air, different solvents) must be available. In their natural form, the iEAP-actuators are capable of interacting with the surrounding environment (evaporation of solvent from the electrolyte solution, ion or solvent exchange, humidity effects), therefore, for prevention of unpredictable behavior of the actuator and the contamination of the environment, encapsulation of the actuator is needed. The environmental contamination aspect of the encapsulation material is substantial when selecting an applicable encapsulant. The suitable encapsulant should form thin films, be light in weight, elastic, fit tightly, low cost, and easily reproducible. The main goal of the present study is to identify and evaluate the best potential encapsulation techniques for iEAPactuators. Various techniques like thin film on liquid coating, dip coating, hot pressing, hot rolling; and several materials like polydimethylsiloxane, polyurethane, nitrocellulose, paraffin-composite-films were investigated. The advantages and disadvantages of the combinations of the above mentioned techniques and materials are discussed. Successfully encapsulated iEAP-actuators gained durability and were stably operable for long periods of time under ambient conditions. The encapsulation process also increased the stability of the iEAP-actuator by minimizing the environment effects. This makes controlling iEAP-actuators more straight-forward and

  3. Modeling an array of encapsulated germanium detectors

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    A probability model has been presented for understanding the operation of an array of encapsulated germanium detectors generally known as composite detector. The addback mode of operation of a composite detector has been described considering the absorption and scattering of γ-rays. Considering up to triple detector hit events, we have obtained expressions for peak-to-total and peak-to-background ratios of the cluster detector, which consists of seven hexagonal closely packed encapsulated HPGe detectors. Results have been obtained for the miniball detectors comprising of three and four seven hexagonal closely packed encapsulated HPGe detectors. The formalism has been extended to the SPI spectrometer which is a telescope of the INTEGRAL satellite and consists of nineteen hexagonal closely packed encapsulated HPGe detectors. This spectrometer comprises of twelve detector modules surrounding the cluster detector. For comparison, we have considered a spectrometer comprising of nine detector modules surrounding the three detector configuration of miniball detector. In the present formalism, the operation of these sophisticated detectors could be described in terms of six probability amplitudes only. Using experimental data on relative efficiency and fold distribution of cluster detector as input, the fold distribution and the peak-to-total, peak-to-background ratios have been calculated for the SPI spectrometer and other composite detectors at 1332 keV. Remarkable agreement between experimental data and results from the present formalism has been observed for the SPI spectrometer.

  4. Nanoprecipitation process: From encapsulation to drug delivery.

    Science.gov (United States)

    Martínez Rivas, Claudia Janeth; Tarhini, Mohamad; Badri, Waisudin; Miladi, Karim; Greige-Gerges, Hélène; Nazari, Qand Agha; Galindo Rodríguez, Sergio Arturo; Román, Rocío Álvarez; Fessi, Hatem; Elaissari, Abdelhamid

    2017-10-30

    Drugs encapsulation is a suitable strategy in order to cope with the limitations of conventional dosage forms such as unsuitable bioavailability, stability, taste, and odor. Nanoprecipitation technique has been used in the pharmaceutical and agricultural research as clean alternative for other drug carrier formulations. This technique is based on precipitation mechanism. Polymer precipitation occurs after the addition of a non-solvent to a polymer solution in four steps mechanism: supersaturation, nucleation, growth by condensation, and growth by coagulation that leads to the formation of polymer nanoparticles or aggregates. The scale-up of laboratory-based nanoprecipitation method shows a good reproducibility. In addition, flash nanoprecipitation is a good strategy for industrial scale production of nanoparticles. Nanoprecipitation is usually used for encapsulation of hydrophobic or hydrophilic compounds. Nanoprecipitation was also shown to be a good alternative for the encapsulation of natural compounds. As a whole, process and formulation related parameters in nanoprecipitation technique have critical effect on nanoparticles characteristics. Biodegradable or non-biodegradable polymers have been used for the preparation of nanoparticles intended to in vivo studies. Literature studies have demonstrated the biodistribution of the active loaded nanoparticles in different organs after administration via various routes. In general, in vitro drug release from nanoparticles prepared by nanoprecipitation includes two phases: a first phase of "burst release" which is followed by a second phase of prolonged release. Moreover, many encapsulated active molecules have been commercialized in the pharmaceutical market. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The interaction of encapsulated pharmaceutical drugs with a silica matrix.

    Science.gov (United States)

    Morais, Everton C; Correa, Gabriel G; Brambilla, Rodrigo; Radtke, Claudio; Baibich, Ione Maluf; dos Santos, João Henrique Z

    2013-03-01

    A series of seven drugs, namely, fluoxetine, gentamicin, lidocaine, morphine, nifedipine, paracetamol and tetracycline, were encapsulated. The encapsulated systems were characterized using a series of complementary techniques: Fourier-transform infrared spectroscopy (FT-IR), diffusive reflectance spectroscopy in the UV-vis region (DRS) and X-ray photoelectron spectroscopy (XPS). According to the DRS spectra, most of the encapsulated systems showed a band shift of the maximum absorption when compared with the corresponding bare pharmaceutical. Additionally, after encapsulation, the drugs exhibited infrared band shifts toward higher wavenumbers, which in turn provided insight into potential sites for interaction with the silica framework. The amine group showed a band shift in the spectra of almost all the drugs (except nifedipine and tetracycline). This finding indicates the possibility of a hydrogen bonding interaction between the drug and the silica via electron donation from the amine group to the silica framework. XPS confirmed this interaction between the pharmaceuticals and the silica through the amine group. A correlation was observed between the textural characteristics of the solids and the spectroscopic data, suggesting that the amine groups from the pharmaceuticals were more perturbed upon encapsulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Encapsulation of cosmetic active ingredients for topical application--a review.

    Science.gov (United States)

    Casanova, Francisca; Santos, Lúcia

    2016-02-01

    Microencapsulation is finding increasing applications in cosmetics and personal care markets. This article provides an overall discussion on encapsulation of cosmetically active ingredients and encapsulation techniques for cosmetic and personal care products for topical applications. Some of the challenges are identified and critical aspects and future perspectives are addressed. Many cosmetics and personal care products contain biologically active substances that require encapsulation for increased stability of the active materials. The topical and transdermal delivery of active cosmetic ingredients requires effective, controlled and safe means of reaching the target site within the skin. Preservation of the active ingredients is also essential during formulation, storage and application of the final cosmetic product. Microencapsulation offers an ideal and unique carrier system for cosmetic active ingredients, as it has the potential to respond to all these requirements. The encapsulated agent can be released by several mechanisms, such as mechanical action, heat, diffusion, pH, biodegradation and dissolution. The selection of the encapsulation technique and shell material depends on the final application of the product, considering physical and chemical stability, concentration, required particle size, release mechanism and manufacturing costs.

  7. TmDOTA-tetraglycinate encapsulated liposomes as pH-sensitive LipoCEST agents.

    Directory of Open Access Journals (Sweden)

    Ana Christina L Opina

    Full Text Available Lanthanide DOTA-tetraglycinate (LnDOTA-(gly₄⁻ complexes contain four magnetically equivalent amide protons that exchange with protons of bulk water. The rate of this base catalyzed exchange process has been measured using chemical exchange saturation transfer (CEST NMR techniques as a function of solution pH for various paramagnetic LnDOTA-(gly₄⁻ complexes to evaluate the effects of lanthanide ion size on this process. Complexes with Tb(III, Dy(III, Tm(III and Yb(III were chosen because these ions induce large hyperfine shifts in all ligand protons, including the exchanging amide protons. The magnitude of the amide proton CEST exchange signal differed for the four paramagnetic complexes in order, Yb>Tm>Tb>Dy. Although the Dy(III complex showed the largest hyperfine shift as expected, the combination of favorable chemical shift and amide proton CEST linewidth in the Tm(III complex was deemed most favorable for future in vivo applications where tissue magnetization effects can interfere. TmDOTA-(gly₄⁻ at various concentrations was encapsulated in the core interior of liposomes to yield lipoCEST particles for molecular imaging. The resulting nanoparticles showed less than 1% leakage of the agent from the interior over a range of temperatures and pH. The pH versus amide proton CEST curves differed for the free versus encapsulated agents over the acidic pH regions, consistent with a lower proton permeability across the liposomal bilayer for the encapsulated agent. Nevertheless, the resulting lipoCEST nanoparticles amplify the CEST sensitivity by a factor of ∼10⁴ compared to the free, un-encapsulated agent. Such pH sensitive nano-probes could prove useful for pH mapping of liposomes targeted to tumors.

  8. The improved stability of enzyme encapsulated in biomimetic titania particles

    International Nuclear Information System (INIS)

    Jiang Yanjun; Sun Qianyun; Jiang Zhongyi; Zhang Lei; Li Jian; Li Lin; Sun Xiaohui

    2009-01-01

    This study demonstrates a novel biomimetic approach for the entrapment of yeast alcohol dehydrogenase (YADH) within titania nanoparticles to improve its stability. Protamine was as the template and catalyst for the condensation of titanium (IV) bis(ammonium lactato) dihydroxide (Ti-BALDH) into titania nanoparticles in which YADH was trapped. The as-prepared titania/protamine/YADH composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The mechanism of YADH encapsulation was tentatively proposed from a series of experimental results. The preliminary investigation showed that encapsulated YADH could retain most of its initial activity. Compared to free YADH, encapsulated YADH exhibited significantly improved thermal, pH and recycling stability. After 5 weeks storage, no substantial loss of catalytic activity for encapsulated YADH was observed

  9. Effect of TheraCyte-encapsulated parathyroid cells on lumbar fusion in a rat model.

    Science.gov (United States)

    Chen, Sung-Hsiung; Huang, Shun-Chen; Lui, Chun-Chung; Lin, Tzu-Ping; Chou, Fong-Fu; Ko, Jih-Yang

    2012-09-01

    Implantation of TheraCyte 4 × 10(6) live parathyroid cells can increase the bone marrow density of the spine of ovariectomized rats. There has been no published study examining the effect of such implantation on spinal fusion outcomes. The purpose of this study was to examine the effect of TheraCyte-encapsulated parathyroid cells on posterolateral lumbar fusions in a rat model. Forty Sprague-Dawley rats underwent single-level, intertransverse process spinal fusions using iliac crest autograft. The rats were randomly assigned to two groups: Group 1 rats received sham operations on their necks (control; N = 20); Group 2 rats were implanted with TheraCyte-encapsulated 4 × 10(6) live parathyroid cells into the subcutis of their necks (TheraCyte; N = 20). Six weeks after surgery the rats were killed. Fusion was assessed by inspection, manual palpation, radiography, and histology. Blood was drawn to measure the serum levels of calcium, phosphorus, and intact parathyroid hormone (iPTH). Based on manual palpation, the control group had a fusion rate of 33 % (6/18) and the TheraCyte group had a fusion rate of 72 % (13/18) (P = 0.044). Histology confirmed the manual palpation results. Serum iPTH levels were significantly higher in the TheraCyte group compared with the control group (P TheraCyte-encapsulated 4 × 10(6) live parathyroid cells than in control rats without significant change in serum calcium or phosphorus concentrations. As with any animal study, the results may not extrapolate to a higher species. Further studies are needed to determine if these effects are clinically significant.

  10. Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries

    Directory of Open Access Journals (Sweden)

    Jain PP

    2014-07-01

    similar pharmacologic efficacy as nonencapsulated iloprost. Cationic liposomes can encapsulate iloprost with high efficacy and can serve as potential iloprost carriers to improve its therapeutic efficacy.Keywords: prostacyclin, cationic liposomes, pulmonary hypertension, wire myograph

  11. Safety evaluation for packaging (onsite) singly encapsulated cesium chloride capsules

    International Nuclear Information System (INIS)

    Smyth, W.W.

    1997-01-01

    Three nonstandard Waste Encapsulation and Storage Facility (WESF) cesium chloride capsules are being shipped from WESF (225B building) to the 324 building. They would normally be shipped in the Beneficial Uses Shipping System (BUSS) cask under its US Department of Energy (DOE) license (DOE 1996), but these capsules are nonstandard: one has a damaged or defective weld in the outer layer of encapsulation, and two have the outer encapsulation removed. The 3 capsules, along with 13 other capsules, will be overpacked in the 324 building to meet the requirements for storage in WESF's pool

  12. Suitability of cement encapsulated ILW for transport

    International Nuclear Information System (INIS)

    Fitzpatrick, J.

    1989-01-01

    ILW arising during the reprocessing of nuclear fuel is to be encapsulated in cement in nominal 500-litre drums. It is important that the waste package produced can be safely transported to a deep repository. Preliminary assessments of the performances of waste packages during transport for a number of the ILW streams to be generated at Sellafield have been carried out. The results show that the proposed encapsulation process produces a waste package which can be transported to an acceptable standard of safety and which does not prejudice any aspects of transport. (author)

  13. A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells.

    Science.gov (United States)

    Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab

    2017-04-01

    Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells.

  14. Encapsulating betalains from Opuntia ficus-indica fruits by ionic gelation: Pigment chemical stability during storage of beads.

    Science.gov (United States)

    Otálora, María Carolina; Carriazo, José Gregorio; Iturriaga, Laura; Osorio, Coralia; Nazareno, Mónica Azucena

    2016-07-01

    Betalain encapsulation was performed by ionic gelation as a stabilization strategy for these natural pigments. Betalains were extracted from purple cactus fruits and encapsulated in calcium-alginate and in combination of calcium alginate and bovine serum albumin. Beads were characterised by scanning electron microscopy and thermal analysis using differential scanning calorimetry and thermogravimetry. Moisture sorption isotherms were determined. Bead morphology was affected by matrix composition. Pigments storage stability was evaluated at different equilibrium relative humidity and temperatures. Pigment composition of beads was determined by HPLC-MS-MS and degradation products were also analysed after storage; betalamic acid being the major one. Both types of matrices protected the encapsulated pigments, being their storage stability better at low relative humidity than that of the non-encapsulated control material. Antiradical activities of beads were proportional to remaining betalain contents. At high relative humidity, there was no protection and low storage stability was observed in the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Pleurocidin Peptide Enhances Grouper Anti-Vibrio harveyi Immunity Elicited by Poly(lactide-co-glycolide-Encapsulated Recombinant Glyceraldehyde-3-phosphate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Shu-Chun Chuang

    2014-05-01

    Full Text Available Outer membrane proteins, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH, are considered immunodominant antigens for eliciting protective immunity against Vibrio harveyi, the main etiological agent of vibriosis in fish. Cationic antimicrobial peptides (AMPs, such as pleurocidin (PLE, play important roles in activating and recruiting immune cells, thereby contributing to subsequent innate and adaptive immune responses. In the present study, we aimed to use PLE peptide as a potent adjuvant to improve the immunogenicity of V. harveyi recombinant GAPDH (rGAPDH. In order to prepare a controlled-release vaccine, PLE peptide and rGAPDH protein were simultaneously encapsulated into polymeric microparticles made from the biodegradable poly(lactide-co-glycolide (PLG polymer. The resulting PLG-encapsulated PLE plus rGAPDH (PLG-PLE/rGAPDH microparticles, 3.21–6.27 μm in diameter, showed 72%–83% entrapment efficiency and durably released both PLE and rGAPDH for a long 30-day period. Following peritoneal immunization in grouper (Epinephelus coioides, PLG-PLE/rGAPDH microparticles resulted in significantly higher (p < 0.05, nested design long-lasting GAPDH-specific immunity (serum titers and lymphocyte proliferation than PLG-encapsulated rGAPDH (PLG-rGAPDH microparticles. After an experimental challenge of V. harveyi, PLG-PLE/rGAPDH microparticles conferred a high survival rate (85%, which was significantly higher (p < 0.05, chi-square test than that induced by PLG-rGAPDH microparticles (67%. In conclusion, PLE peptide exhibits an efficacious adjuvant effect to elicit not only improved immunity, but also enhanced protection against V. harveyi in grouper induced by rGAPDH protein encapsulated in PLG microparticles.

  16. Mechanical Robustness and Hermeticity Monitoring for MEMS Thin Film Encapsulation

    NARCIS (Netherlands)

    Santagata, F.

    2011-01-01

    Many Micro-Electro-Mechanical-Systems (MEMS) require encapsulation, to prevent delicate sensor structures being exposed to external perturbations such as dust, humidity, touching, and gas pressure. An upcoming and cost-effective way of encapsulation is zero-level packaging or thin-film

  17. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration.

    Science.gov (United States)

    Din, Fakhar Ud; Choi, Ju Yeon; Kim, Dong Wuk; Mustapha, Omer; Kim, Dong Shik; Thapa, Raj Kumar; Ku, Sae Kwang; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2017-11-01

    Intravenously administered for the treatment of rectum cancer, irinotecan produces severe side effects due to very high plasma concentrations. A novel irinotecan-encapsulated double reverse thermosensitive nanocarrier system (DRTN) for rectal administration was developed as an alternative. The DRTN was fabricated by dispersing the thermosensitive irinotecan-encapsulated solid lipid nanoparticles (SLN) in the thermosensitive poloxamer solution. Its gel properties, pharmacokinetics, morphology, anticancer activity and immunohistopathology were assessed after its rectal administration to rats and tumor-bearing mice. In the DRTN, the solid form of the SLN and the liquid form of the poloxamer solution persisted at 25 °C; the former melted to liquid, and the latter altered to gel at 36.5 °C. The DRTN was easily administered to the anus, gelling rapidly and strongly after rectal administration. Compared to the conventional hydrogel and intravenously administered solution, it retarded dissolution and initial plasma concentration. The DRTN gave sustained release and nearly constant plasma concentrations of irinotecan at 1-3 h in rats, resulting in improved anticancer activity. It induced no damage to the rat rectum and no body weight loss in tumor-bearing mice. Thus, this irinotecan-encapsulated DRTN associated with a reduced burst effect, lack of toxicity and excellent antitumor efficacy would be strongly recommended as a rectal pharmaceutical product alternative to commercial intravenous injection in the treatment of rectum and colon cancer.

  18. Near-Infrared Squaraine Dye Encapsulated Micelles for in Vivo Fluorescence and Photoacoustic Bimodal Imaging.

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli

    2015-06-23

    Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.

  19. Swedish encapsulation station review

    International Nuclear Information System (INIS)

    Andersson, Sven Olof; Brunzell, P.; Heibel, R.; McCarthy, J.; Pennington, C.; Rusch, C.; Varley, G.

    1998-06-01

    In the Encapsulation Station (ES) Review performed by NAC International, a number of different areas have been studied. The main objectives with the review have been to: Perform an independent review of the cost estimates for the ES presented in SKB's document 'Plan 1996'. This has been made through comparisons between the ES and BNFL's Waste Encapsulation Plant (WEP) at Sellafield as well as with the CLAB facility. Review the location of the ES (at the CLAB site or at the final repository) and its interaction with other parts of the Swedish system for spent fuel management. Review the logistics and plant capacity of the ES. Identify important safety aspects of the ES as a basis for future licensing activities. Based on NAC International's experience of casks for transport and storage of spent fuel, review the basic design of the copper/steel canister and the transport cask. This review insides design, manufacturing, handling and licensing aspects. Perform an overall comparison between the ES project and the CLAB project with the objective to identify major project risks and discuss their mitigation

  20. High population increase rates.

    Science.gov (United States)

    1991-09-01

    In addition to its economic and ethnic difficulties, the USSR faces several pressing demographic problems, including high population increase rates in several of its constituent republics. It has now become clear that although the country's rigid centralized planning succeeded in covering the basic needs of people, it did not lead to welfare growth. Since the 1970s, the Soviet economy has remained sluggish, which as led to increase in the death and birth rates. Furthermore, the ideology that held that demography could be entirely controlled by the country's political and economic system is contradicted by current Soviet reality, which shows that religion and ethnicity also play a significant role in demographic dynamics. Currently, Soviet republics fall under 2 categories--areas with high or low natural population increase rates. Republics with low rates consist of Christian populations (Armenia, Moldavia, Georgia, Byelorussia, Russia, Lithuania, Estonia, Latvia, Ukraine), while republics with high rates are Muslim (Tadzhikistan, Uzbekistan, Turkmenistan, Kirgizia, Azerbaijan Kazakhstan). The later group has natural increase rates as high as 3.3%. Although the USSR as a whole is not considered a developing country, the later group of republics fit the description of the UNFPA's priority list. Another serious demographic issue facing the USSR is its extremely high rate of abortion. This is especially true in the republics of low birth rates, where up to 60% of all pregnancies are terminated by induced abortions. Up to 1/5 of the USSR's annual health care budget is spent on clinical abortions -- money which could be better spent on the production of contraceptives. Along with the recent political and economic changes, the USSR is now eager to deal with its demographic problems.

  1. Idiopathic sclerosing encapsulating peritonitis (or abdominal cocoon).

    Science.gov (United States)

    Serafimidis, Costas; Katsarolis, Ioannis; Vernadakis, Spyros; Rallis, George; Giannopoulos, George; Legakis, Nikolaos; Peros, George

    2006-02-13

    Idiopathic sclerosing encapsulating peritonitis (or abdominal cocoon) is a rare cause of small bowel obstruction, especially in adult population. Diagnosis is usually incidental at laparotomy. We discuss one such rare case, outlining the fact that an intra-operative surprise diagnosis could have been facilitated by previous investigations. A 56 year-old man presented in A&E department with small bowel ileus. He had a history of 6 similar episodes of small bowel obstruction in the past 4 years, which resolved with conservative treatment. Pre-operative work-up did not reveal any specific etiology. At laparotomy, a fibrous capsule was revealed, in which small bowel loops were encased, with the presence of interloop adhesions. A diagnosis of abdominal cocoon was established and extensive adhesiolysis was performed. The patient had an uneventful recovery and follow-up. Idiopathic sclerosing encapsulating peritonitis, although rare, may be the cause of a common surgical emergency such as small bowel ileus, especially in cases with attacks of non-strangulating obstruction in the same individual. A high index of clinical suspicion may be generated by the recurrent character of small bowel ileus combined with relevant imaging findings and lack of other plausible etiologies. Clinicians must rigorously pursue a preoperative diagnosis, as it may prevent a "surprise" upon laparotomy and result in proper management.

  2. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.

    Science.gov (United States)

    He, Xuedan; Alves, Carla S; Oliveira, Nilsa; Rodrigues, João; Zhu, Jingyi; Bányai, István; Tomás, Helena; Shi, Xiangyang

    2015-01-01

    Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Encapsulation of polymer photovoltaic prototypes

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2006-01-01

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows...

  4. Encapsulation and Nano-Encapsulation of Papain Active Sites to Enhance Radiolityc Stability and Decrease Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lugão, A. B.; Varca, G. H.C.; Mathor, M. B.; Santos Lopes, P.; Rogero, M. S.S.; Rogero, J.R., E-mail: ablugao@ipen.br [Comissão Nacional de Energia Nuclear (CNEN), Instituto de Pesquisas Energeticas e Nucleares (IPEN), Av. Prof. Lineu Prestes, 2242 Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2010-07-01

    Papain is used as an ingredient in various enzymatic debridement preparations. Those paste-like preparations are based on water solution and usually are sterilized by radiation. As a consequence, there is a major decrease in papain activity. Papain containing preparations are used in chronic wounds treatment in order to clean and remove the necrotic tissue. However FDA (2008) is taking an action against such products due to severe adverse events reported in patients submitted to papain treatments. Thus, the main goal of this proposal is to develop encapsulated papain containing membranes based on hydrogels and silicone rubber in an attempt to achieve a controllable distribution of size and delivery profile, a toxicity reduction and provide stability towards radiation processing through molecular encapsulation with β-cyclodextrin, which may also provide protection to the enzyme against radiation induced radiolysis. (author)

  5. Encapsulation and Nano-Encapsulation of Papain Active Sites to Enhance Radiolityc Stability and Decrease Toxicity

    International Nuclear Information System (INIS)

    Lugão, A.B.; Varca, G.H.C.; Mathor, M.B.; Santos Lopes, P.; Rogero, M.S.S.; Rogero, J.R.

    2010-01-01

    Papain is used as an ingredient in various enzymatic debridement preparations. Those paste-like preparations are based on water solution and usually are sterilized by radiation. As a consequence, there is a major decrease in papain activity. Papain containing preparations are used in chronic wounds treatment in order to clean and remove the necrotic tissue. However FDA (2008) is taking an action against such products due to severe adverse events reported in patients submitted to papain treatments. Thus, the main goal of this proposal is to develop encapsulated papain containing membranes based on hydrogels and silicone rubber in an attempt to achieve a controllable distribution of size and delivery profile, a toxicity reduction and provide stability towards radiation processing through molecular encapsulation with β-cyclodextrin, which may also provide protection to the enzyme against radiation induced radiolysis. (author)

  6. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Cheow, Wean Sin; Hadinoto, Kunn

    2011-07-01

    Lipid-polymer hybrid nanoparticles are polymeric nanoparticles enveloped by lipid layers that combine the highly biocompatible nature of lipids with the structural integrity afforded by polymeric nanoparticles. Recognizing them as attractive drug delivery vehicles, antibiotics are encapsulated in the present work into hybrid nanoparticles intended for lung biofilm infection therapy. Modified emulsification-solvent-evaporation methods using lipid as surfactant are employed to prepare the hybrid nanoparticles. Biodegradable poly (lactic-co-glycolic acid) and phosphatidylcholine are used as the polymer and lipid models, respectively. Three fluoroquinolone antibiotics (i.e. levofloxacin, ciprofloxacin, and ofloxacin), which vary in their ionicity, lipophilicity, and aqueous solubility, are used. The hybrid nanoparticles are examined in terms of their drug encapsulation efficiency, drug loading, stability, and in vitro drug release profile. Compared to polymeric nanoparticles prepared using non-lipid surfactants, hybrid nanoparticles in general are larger and exhibit higher drug loading, except for the ciprofloxacin-encapsulated nanoparticles. Hybrid nanoparticles, however, are unstable in salt solutions, but the stability can be conferred by adding TPGS into the formulation. Drug-lipid ionic interactions and drug lipophilicity play important roles in the hybrid nanoparticle preparation. First, interactions between oppositely charged lipid and antibiotic (i.e. ciprofloxacin) during preparation cause failed nanoparticle formation. Charge reversal of the lipid facilitated by adding counterionic surfactants (e.g. stearylamine) must be performed before drug encapsulation can take place. Second, drug loading and the release profile are strongly influenced by drug lipophilicity, where more lipophilic drug (i.e. levofloxacin) exhibit a higher drug loading and a sustained release profile attributed to the interaction with the lipid coat. Copyright © 2011 Elsevier B.V. All

  7. Improving catalase-based propelled motor endurance by enzyme encapsulation

    Science.gov (United States)

    Simmchen, Juliane; Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, Maria

    2014-07-01

    Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed.Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02459a

  8. Antioxidant Effects of Quercetin and Catechin Encapsulated into PLGA Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hector Pool

    2012-01-01

    Full Text Available Polymeric nanoparticles (PLGA have been developed for the encapsulation and controlled release of quercetin and catechin. Nanoparticles were fabricated using a solvent displacement method. Physicochemical properties were measured by light scattering, scanning electron microscopy and ζ-potential, X-ray diffraction, infrared spectroscopy and differential scanning calorimetry. Encapsulation efficiency and in vitro release profiles were obtained from differential pulse voltammetry experiments. Antioxidant properties of free and encapsulated flavonoids were determined by TBARS, fluorescence spectroscopy and standard chelating activity methods. Relatively small (d≈ 400 nm polymeric nanoparticles were obtained containing quercetin or catechin in a non-crystalline form (EE ≈ 79% and the main interactions between the polymer and each flavonoid were found to consist of hydrogen bonds. In vitro release profiles were pH-dependant, the more acidic pH, the faster release of each flavonoid from the polymeric nanoparticles. The inhibition of the action of free radicals and chelating properties, were also enhanced when quercetin and catechin were encapsulated within PLGA nanoparticles. The information obtained from this study will facilitate the design and fabrication of polymeric nanoparticles as possible oral delivery systems for encapsulation, protection and controlled release of flavonoids aimed to prevent oxidative stress in human body or food products.

  9. Encapsulation of lycopene in Chlorella pyrenoidosa: Loading properties and stability improvement.

    Science.gov (United States)

    Pu, Chuanfen; Tang, Wenting

    2017-11-15

    Aiming to improve the stability of lycopene and incorporate it into a complex nutraceutical, exogenous lycopene-loaded Chlorella pyrenoidosa cells (CPCs) were developed. The complex had an encapsulation yield of 13.06±0.89% and an encapsulation efficiency of 96.31±3.10%. Fluorescence analyses indicated that lycopene was encapsulated in the CPCs. X-ray diffraction, thermogravimetric and differential scanning calorimetric analyses were conducted and compared to those of the non-loaded CPCs, lycopene and their physical mixture. These studies demonstrated that lycopene was amorphous in the complex. The degradation kinetics indicated that encapsulation increased the stability of lycopene. The antioxidant activity of lycopene loaded CPCs against DPPH free radicals was higher than that of the unencapsulated lycopene after storage at 25°C for 25d. This study proved the feasibility of encapsulation of lycopene in the CPCs and combined the activities of both materials, which could be employed in the production of novel nutraceuticals to reduce oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Elastin-like polypeptides: the power of design for smart cell encapsulation.

    Science.gov (United States)

    Bandiera, Antonella

    2017-01-01

    Cell encapsulation technology is still a challenging issue. Innovative methodologies such as additive manufacturing, and alternative bioprocesses, such as cell therapeutic delivery, where cell encapsulation is a key tool are rapidly gaining importance for their potential in regenerative medicine. Responsive materials such as elastin-based recombinant expression products have features that are particularly attractive for cell encapsulation. They can be designed and tailored to meet desired requirements. Thus, they represent promising candidates for the development of new concept-based materials that can be employed in this field. Areas covered: An overview of the design and employment of elastin-like polypeptides for cell encapsulation is given to outline the state of the art. Special attention is paid to the design of the macromolecule employed as well as to the method of matrix formation and the biological system involved. Expert opinion: As a result of recent progress in regenerative medicine there is a compelling need for materials that provide specific properties and demonstrate defined functional features. Rationally designed materials that may adapt according to applied external stimuli and that are responsive to biological systems, such as elastin-like polypeptides, belong to this class of smart material. A run through the components described to date represents a good starting point for further advancement in this area. Employment of these components in cell encapsulation application will promote its advance toward 'smart cell encapsulation technology'.

  11. Do encapsulated heat storage materials really retain their original thermal properties?

    Science.gov (United States)

    Chaiyasat, Preeyaporn; Noppalit, Sayrung; Okubo, Masayoshi; Chaiyasat, Amorn

    2015-01-14

    The encapsulation of Rubitherm®27 (RT27), which is one of the most common commercially supplied heat storage materials, by polystyrene (PS), polydivinyl benzene (PDVB) and polymethyl methacrylate (PMMA) was carried out using conventional radical microsuspension polymerization. The products were purified to remove free RT27 and free polymer particles without RT27. In the cases of PS and PDVB microcapsules, the latent heats of melting and crystallization for RT27 ( and , J/g-RT27) were clearly decreased by the encapsulation. On the other hand, those of the PMMA microcapsules were the same as pure RT27. A supercooling phenomenon was observed not only for PS and PDVB but also for the PMMA microcapsules. These results indicate that the thermal properties of the heat storage materials encapsulated depend on the type of polymer shells, i.e., encapsulation by polymer shell changes the thermal properties of RT27. This is quite different from the idea of other groups in the world, in which they discussed the thermal properties based on the ΔHm and ΔHc values expressed in J/g-capsule, assuming that the thermal properties of the heat storage materials are not changed by the encapsulation. Hereafter, this report should raise an alarm concerning the "wrong" common knowledge behind developing the encapsulation technology of heat storage materials.

  12. Hydrogels for in situ encapsulation of biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Ibragimova, Sania; Jensen, Karin Bagger Stibius; Szewczykowski, Piotr Przemyslaw

    2012-01-01

    to chemically initiated hydrogels; however, for all hydrogels the permeability was several-fold higher than the water permeability of conventional reverse osmosis (RO) membranes. Lifetimes of freestanding BLM arrays in gel precursor solutions were short compared to arrays formed in buffer. However, polymerizing......Hydrogels are hydrophilic, porous polymer networks that can absorb up to thousands of times their own weight in water. They have many potential applications, one of which is the encapsulation of freestanding black lipid membranes (BLMs) for novel separation technologies or biosensor applications....... We investigated gels for in situ encapsulation of multiple BLMs formed across apertures in a hydrophobic ethylene tetrafluoroethylene (ETFE) support. The encapsulation gels consisted of networks of poly(ethylene glycol)-dimethacrylate or poly(ethylene glycol)-diacrylate polymerized using either...

  13. Thickness-Dependent Strain Effect on the Deformation of the Graphene-Encapsulated Au Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shuangli Ye

    2014-01-01

    Full Text Available The strain effect on graphene-encapsulated Au nanoparticles is investigated. A finite-element calculation is performed to simulate the strain distribution and morphology of the monolayer and multilayer graphene-encapsulated Au nanoparticles, respectively. It can be found that the inhomogeneous strain and deformation are enhanced with the increasing shrinkage of the graphene shell. Moreover, the strain distribution and deformation are very sensitive to the layer number of the graphene shell. Especially, the inhomogeneous strain at the interface between the graphene shell and encapsulated Au nanoparticles is strongly tuned by the graphene thickness. For the mono- and bilayer graphene-encapsulated Au nanoparticles, the dramatic shape transformation can be observed. However, with increasing the graphene thickness further, there is hardly deformation for the encapsulated Au nanoparticles. These simulated results indicate that the strain and deformation can be designed by the graphene layer thickness, which provides an opportunity to engineer the structure and morphology of the graphene-encapsulated nanoparticles.

  14. The interpretation of encapsulating anaphors in Spanish and their functions

    DEFF Research Database (Denmark)

    Dam, Lotte

    2014-01-01

    Encapsulating anaphors differ from other types of anaphor by having one or more situations - not an entity - as its referent. The main aim of the article is to propose a hypothesis for how anaphoric encapsulation is resolved. The hypothesis builds on the cognitive linguistic theory of instruction...

  15. Microscale Strategies for Generating Cell-Encapsulating Hydrogels

    Directory of Open Access Journals (Sweden)

    Ali Khademhosseini

    2012-09-01

    Full Text Available Hydrogels in which cells are encapsulated are of great potential interest for tissue engineering applications. These gels provide a structure inside which cells can spread and proliferate. Such structures benefit from controlled microarchitectures that can affect the behavior of the enclosed cells. Microfabrication-based techniques are emerging as powerful approaches to generate such cell-encapsulating hydrogel structures. In this paper we introduce common hydrogels and their crosslinking methods and review the latest microscale approaches for generation of cell containing gel particles. We specifically focus on microfluidics-based methods and on techniques such as micromolding and electrospinning.

  16. Preliminary safety evaluation of a commercial-scale krypton-85 encapsulation facility

    International Nuclear Information System (INIS)

    Christensen, A.B.; Tanner, J.E.; Knecht, D.A.

    1980-09-01

    This report demonstrates that a commercial-scale facility for encapsulating krypton-85 in zeolite-5A or glass at a 2000 MTHM per year nuclear fuel reprocessing plant can be designed to contain fragments and the 340 to 850 kCi krypton-85 inventory from an assumed catastrophic failure of the high pressure vessel. The vessel failure was assumed as a worst case and was not based on a detailed design evaluation or operating experience. The process design is based on existing commercial hot isostatic pressing technology operated at up to 40 times the scale required for krypton encapsulation. From the calculated process gas inventory in the pressure vessel and vessel design, the explosive energy of 8.4 kg TNT and vessel plug and fragment velocities were calculated. The facility Containment Cell housing the high pressure vessel was designed to contain the gases, fragments, and the shock wave energy calculated for vessel failure. The Access Cell located directly above the Containment Cell was designed to be a tertiary confinement of krypton-85, should the access hatch be breached

  17. Evaluation of the immunogenicity of liposome encapsulated HVR1 and NS3 regions of genotype 3 HCV, either singly or in combination

    Directory of Open Access Journals (Sweden)

    Gupte Gouri M

    2012-03-01

    Full Text Available Abstract Background Hepatitis C virus displays a high rate of mutation and exists as a quasispecies in infected patients. In the absence of an effective universal vaccine, genotype-specific vaccine development represents an alternative. We have attempted to develop a genotype 3 based, liposome encapsulated HCV vaccine with hypervariable region-1 (HVR1 and non-structural region-3 (NS3 components. Results HCV RNA extracted from serum samples of 49 chronically infected patients was PCR amplified to obtain HVR1 region. These amplified products were cloned to obtain 20 clones per sample in order to identify the quasispecies pattern. The HVR1 consensus sequence, along with three variants was reverse transcribed to obtain peptides. The peptides were checked for immunoreactivity individually, as a pool or as a single peptide tetramer interspersed with four glycine residues. Anti-HCV positivity varied from 42.6% (tetramer to 92.2% (variant-4 when 115 anti-HCV positive sera representing genotypes 1, 3, 4 and 6 were screened. All the 95 anti-HCV negatives were scored negative by all antigens. Mice were immunized with different liposome encapsulated or Al(OH3 adjuvanted formulations of HVR1 variants and recombinant NS3 protein, and monitored for anti-HVR1 and anti-NS3 antibody titres, IgG isotypes and antigen specific cytokine levels. A balanced Th1/Th2 isotyping response with high antibody titres was observed in most of the liposome encapsulated antigen groups. The effect of liposomes and aluminium hydroxide on the expression of immune response genes was studied using Taqman Low Density Array. Both Th1 (IFN-gamma, Il18 and Th2 (Il4 genes were up regulated in the liposome encapsulated HVR1 variant pool-NS3 combination group. In-vitro binding of the virus to anti-HVR1 antibodies was demonstrated. Conclusion The optimum immunogen was identified to be combination of peptides of HVR1 consensus sequence and its variants along with pNS3 encapsulated in liposomes

  18. The encapsulated nuclear heat source reactor for proliferation-resistant nuclear energy

    International Nuclear Information System (INIS)

    Brown, N.W.; Hossain, Q.; Carelli, M.D.; Conway, L.; Dzodzo, M.; Greenspan, E.; Saphier, D.

    2001-01-01

    The encapsulated nuclear heat source (ENHS) is a modular reactor that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor concept. It is a fast neutron spectrum reactor cooled by Pb-Bi using natural circulation. It is designed for passive load following, for high level of passive safety, and for 15 years without refueling. One of the unique features of the ENHS is that the fission-generated heat is transferred from the primary coolant to the secondary coolant across the reactor vessel wall by conduction-providing for an essentially sealed module that is easy to install and replace. Because the fuel is encapsulated within a heavy steel container throughout its life it provides a unique improvement to the proliferation resistance of the nuclear fuel cycle. This paper presents the innovative technology of the ENHS. (author)

  19. High Rate Digital Demodulator ASIC

    Science.gov (United States)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  20. Technology of mammalian cell encapsulation

    NARCIS (Netherlands)

    Uludag, H; De Vos, P; Tresco, PA

    2000-01-01

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates

  1. Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids

    International Nuclear Information System (INIS)

    Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua

    2011-01-01

    Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ∼23 to ∼10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.

  2. The Effect of Alcohol on Bead Performance of Encapsulated Iron Using Deacetylated Glucomannan

    Directory of Open Access Journals (Sweden)

    Wardhani Dyah H.

    2018-01-01

    Full Text Available The success of encapsulation to protect iron from inhibitor degradation or oxidation depends on many factors including the excipient characteritics. Glucomannan, a neutral heterosaccharide, has a potential for the excipient. To improve the excipient performances, glucomannan is deacetylated to remove the acetyl groups by reacted with Na2CO3. This deacylated glucomannan is subject to bead formation after iron loading. The alcohol solution is commonly used in bead forming as dehydration medium during the encapsulation process. The objective of this work was to study the effect of alcohol on the bead performance of encapsulated iron using deacetylated glucomannan. The bead forming was conducted by dropping the excipient into ethanol and isopropyl alcohol (IPA solution at various concentrations (50, 60, 70, 80 and 90% and two condition temperatures (27-30° and 7-10°C. The encapsulation samples were subject to yield (YE and efficiency of encapsulation (EE. The concentration of alcohol showed a positive impact on the yield and efficiency of encapsulation. Ethanol has a better performance compared with that of IPA regarding yield and efficiency of encapsulation. The optimum of yield bead formation (69.67% and highest EE (66.80% were obtained at 90% ethanol. Temperature of dehydration did not affect the YE and EE significantly.

  3. Polyphosphonate induced coacervation of chitosan: Encapsulation of proteins/enzymes and their biosensing

    International Nuclear Information System (INIS)

    Liu, Hailing; Cui, Yanyun; Li, Pan; Zhou, Yiming; Chen, Yu; Tang, Yawen; Lu, Tianhong

    2013-01-01

    Graphical abstract: Based on the coacervation of chitosan via the ionotropic crosslinking interaction, proteins/enzymes can be encapsulated in situ into chitosan matrix. -- Highlights: •The ionotropic crosslinking interactions result in the coacervation of chitosan. •A phosphonate-assisted encapsulation of proteins in chitosan matrix is introduced. •The encapsulated proteins retain their bioactivity. •The encapsulation method can be used to fabricate various chitosan-based biosensors. -- Abstract: Based on the polyphosphonate-assisted coacervation of chitosan, a simple and versatile procedure for the encapsulation of proteins/enzymes in chitosan–carbon nanotubes (CNTs) composites matrix was developed. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrum (EDS) mapping demonstrated the hemoglobin (Hb) uniformly distributed into chitosan–CNTs composites matrix. Raman measurements indicated the CNTs in composites matrix retained the electronic and structural integrities of the pristine CNTs. Fourier transform infrared (FT-IR), ultraviolet–visible (UV–vis) and circular dichroism (CD) spectroscopy displayed the encapsulated Hb preserved their near-native structure, indicating the polyphosphonate–chitosan–CNTs composites possessed excellent biocompatibility for the encapsulation of proteins/enzymes. Electrochemical measurements indicated the encapsulated Hb could directly exchange electron with the substrate electrode. Moreover, the modified electrode showed excellent bioelectrocatalytic activity for the reduction of hydrogen peroxide. Under optimum experimental conditions, the fabricated electrochemical sensor displayed the fast response (less than 3 s), wide linear range (7.0 × 10 −7 to 2.0 × 10 −3 M) and low detection limit (4.0 × 10 −7 M) for the determination of hydrogen peroxide. This newly developed protocol was simple and mild and would certainly

  4. Polyphosphonate induced coacervation of chitosan: Encapsulation of proteins/enzymes and their biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hailing; Cui, Yanyun; Li, Pan; Zhou, Yiming; Chen, Yu, E-mail: ndchenyu@yahoo.cn; Tang, Yawen; Lu, Tianhong

    2013-05-07

    Graphical abstract: Based on the coacervation of chitosan via the ionotropic crosslinking interaction, proteins/enzymes can be encapsulated in situ into chitosan matrix. -- Highlights: •The ionotropic crosslinking interactions result in the coacervation of chitosan. •A phosphonate-assisted encapsulation of proteins in chitosan matrix is introduced. •The encapsulated proteins retain their bioactivity. •The encapsulation method can be used to fabricate various chitosan-based biosensors. -- Abstract: Based on the polyphosphonate-assisted coacervation of chitosan, a simple and versatile procedure for the encapsulation of proteins/enzymes in chitosan–carbon nanotubes (CNTs) composites matrix was developed. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrum (EDS) mapping demonstrated the hemoglobin (Hb) uniformly distributed into chitosan–CNTs composites matrix. Raman measurements indicated the CNTs in composites matrix retained the electronic and structural integrities of the pristine CNTs. Fourier transform infrared (FT-IR), ultraviolet–visible (UV–vis) and circular dichroism (CD) spectroscopy displayed the encapsulated Hb preserved their near-native structure, indicating the polyphosphonate–chitosan–CNTs composites possessed excellent biocompatibility for the encapsulation of proteins/enzymes. Electrochemical measurements indicated the encapsulated Hb could directly exchange electron with the substrate electrode. Moreover, the modified electrode showed excellent bioelectrocatalytic activity for the reduction of hydrogen peroxide. Under optimum experimental conditions, the fabricated electrochemical sensor displayed the fast response (less than 3 s), wide linear range (7.0 × 10{sup −7} to 2.0 × 10{sup −3} M) and low detection limit (4.0 × 10{sup −7} M) for the determination of hydrogen peroxide. This newly developed protocol was simple and mild and

  5. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Qiuqiang; Qian Jun; Li Xin; He Sailing, E-mail: qianjun@coer.zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China)

    2010-02-05

    Mesoporous encapsulation of gold nanorods (GNRs) in a silica shell of controllable thickness (4.5-25.5 nm) was realized through a single-step coating method without any intermediary coating. The dependence of localized surface plasmon resonance (LSPR) extinction spectra of the coated GNRs on the thickness of the silica shell was investigated with both simulation and experiments, which agreed well with each other. It was found that cetyltrimethyl ammonium bromide (CTAB) molecules, which act as surfactants for the GNRs and dissociate in the solution, greatly affect the silica coating. Mesoporous silica-encapsulated GNRs were also shown to be highly biocompatible and stable in bio-environments. Based on LSPR enhanced scattering, mesoporous silica-encapsulated GNRs were utilized for dark field scattering imaging of cancer cells. Biomolecule-conjugated mesoporous silica-encapsulated GNRs were specifically taken up by cancer cells in vitro, justifying their use as effective optical probes for early cancer diagnosis. Mesoporous silica can also be modified with functional groups and conjugated with certain biomolecules for specific labeling on mammalian cells as well as carrying drugs or biomolecules into biological cells.

  6. Structure and electronic properties of molybdenum monatomic wires encapsulated in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa-Fuente, A; Vega, A [Departamento de Fisica Teorica, Atomica y Optica. Universidad de Valladolid, E-47011 Valladolid (Spain); GarcIa-Suarez, V M; Ferrer, J [Departamento de Fisica and CINN, Universidad de Oviedo, 33007 Oviedo (Spain)

    2011-07-06

    Monatomic chains of molybdenum encapsulated in single-walled carbon nanotubes (CNTs) of different chiralities are investigated using density functional theory. We determine the optimal size of the CNT for encapsulating a single atomic wire, as well as the most stable atomic arrangement adopted by the wire. We also study the transport properties in the ballistic regime by computing the transmission coefficients and tracing them back to the electronic conduction channels of the wire and the host. We predict that CNTs of appropriate radii encapsulating a Mo wire have metallic behavior, even if both the nanotube and the wire are insulators. Therefore, encapsulation of Mo wires in CNTs is a way to create conductive quasi-one-dimensional hybrid nanostructures.

  7. Encapsulated Curcumin for Transdermal Administration

    African Journals Online (AJOL)

    Purpose: To develop a proniosomal carrier system of curcumin for transdermal delivery. Methods: Proniosomes of curcumin were prepared by encapsulation of the drug in a mixture of Span 80, cholesterol and diethyl ether by ether injection method, and then investigated as a transdermal drug delivery system (TDDS).

  8. Reactants encapsulation and Maillard Reaction

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, V.

    2013-01-01

    In the last decades many efforts have been addressed to the control of Maillard Reaction products in different foods with the aim to promote the formation of compounds having the desired color and flavor and to reduce the concentration of several potential toxic molecules. Encapsulation, already

  9. Studies with encapsulated 125I sources: dosimetry for determination of relative biological effectiveness

    International Nuclear Information System (INIS)

    Goldhagen, P.; Freeman, M.L.; Hall, E.J.

    1981-01-01

    During the past year, members of this laboratory have measured the Relative Biological Effectiveness (RBE) of photons from encapsulated 125 I sources (mean energy = 28.33 keV) using 661.6 keV 137 Cs gamma rays as a standard for comparison. These experiments were performed at clinically relevant dose rates and used reduction of the reproductive viability of mammalian cells as an endpoint. This section will discuss how dosimetry problems special to 125 I influence the design of the apparatus and will describe the ionization chamber to be used for measuring dose rates from both 125 I and 137 Cs photons

  10. Niosome Encapsulation of Curcumin: Characterization and Cytotoxic Effect on Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ying-Qi Xu

    2016-01-01

    Full Text Available Curcumin, a natural chemical compound found in Curcuma longa, has been applied in multiple medicinal areas from antibiotic to antitumor treatment. However, the chemical structure of curcumin results in poor stability, low solubility, and rapid degradation in vivo, hindering its clinical utilization. To address these issues, we have developed a novel niosome system composed of nonionic surfactants: Span 80, Tween 80, and Poloxamer 188. Curcumin was encapsulated in the niosomes with a high entrapment efficiency of 92.3±0.4%. This system provided controlled release of curcumin, thereby improving its therapeutic capability. Dynamic dialysis was conducted to evaluate the in vitro drug release of curcumin-niosomes. Curcumin-niosomes exhibited enhanced cytotoxic activity and apoptotic rate against ovarian cancer A2780 cells compared with freely dispersed curcumin. These results demonstrate that the curcumin-niosome system is a promising strategy for the delivery of curcumin and ovarian cancer therapy.

  11. Swedish encapsulation station review

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven Olof; Brunzell, P.; Heibel, R.; McCarthy, J.; Pennington, C.; Rusch, C.; Varley, G. [NAC International, Zuerich (Switzerland)

    1998-06-01

    In the Encapsulation Station (ES) Review performed by NAC International, a number of different areas have been studied. The main objectives with the review have been to: Perform an independent review of the cost estimates for the ES presented in SKB`s document `Plan 1996`. This has been made through comparisons between the ES and BNFL`s Waste Encapsulation Plant (WEP) at Sellafield as well as with the CLAB facility. Review the location of the ES (at the CLAB site or at the final repository) and its interaction with other parts of the Swedish system for spent fuel management. Review the logistics and plant capacity of the ES. Identify important safety aspects of the ES as a basis for future licensing activities. Based on NAC International`s experience of casks for transport and storage of spent fuel, review the basic design of the copper/steel canister and the transport cask. This review insides design, manufacturing, handling and licensing aspects. Perform an overall comparison between the ES project and the CLAB project with the objective to identify major project risks and discuss their mitigation 19 refs, 9 figs, 35 tabs

  12. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization.

    Science.gov (United States)

    Bumb, Ambika; Sarkar, Susanta K; Billington, Neil; Brechbiel, Martin W; Neuman, Keir C

    2013-05-29

    Fluorescent nanodiamonds (FNDs) emit in the near-IR and do not photobleach or photoblink. These properties make FNDs better suited for numerous imaging applications compared with commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here we present a method for encapsulating nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution.

  13. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ebata, Takayuki; Kusaka, Ryoji [Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526 (Japan); Xantheas, Sotiris S. [Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, WA 99352 (United States)

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  14. Sulfur polymer cement encapsulation of oily matrix mixed low-level sludge

    International Nuclear Information System (INIS)

    Calhoun, C.L. Jr.; Nulf, L.E.; Fedorov, V.V.

    1996-01-01

    The U.S. Department of Energy (DOE) has been investigating a variety of stabilization technologies for the treatment of mixed low-level debris and sludges. Sulfur Polymer Cement (SPC) is being considered as one possible alternative final waste form for that segment of these wastes that does not readily lend itself to vitrification and/or grout stabilization. Earlier work demonstrated that SPC effectively immobilizes some Resource Conservation and Recovery Act (RCRA) toxic metal and metal salt species. However, the use of SPC as an encapsulant is relatively new, and the scope of tested waste streams has been limited. Accordingly, the authors' intent was to identify and ascertain the effects of process variables on final waste form properties for encapsulated mixed low-level sludge. The authors conducted an optimal design factorial experiment to study the effects of eight variables in twelve trials with replication. Factors for consideration included waste spike level, waste loading, additive type, additive loading, mixing method, hold time, hold temperature, and cooling rate. Toxic metal leachability was assessed for samples and was the basis for factor comparison. Trials were typically conducted with 150-g of total material per batch. Experimental results demonstrated that a number of process variables -- process hold time, cooling rate, waste loading, spike level, process temperature, additive type, and additive loading -- can influence toxic metal leachability. Also, the effects of different factors may weigh more heavily on different individual species; accordingly, optimum process conditions may vary considerably based on waste composition

  15. Survival of encapsulated Lactobacillus plantarum during isothermal heating and bread baking

    NARCIS (Netherlands)

    Zhang, L.; Chen, Xiao Dong; Boom, R.M.; Schutyser, M.A.I.

    2018-01-01

    The effect of encapsulation on the survival of Lactobacillus plantarum during isothermal heating and bread baking was investigated. Four encapsulating materials were evaluated, i.e., reconstituted skim milk (RSM), gum arabic (GA), maltodextrin (MD) and inulin. Freeze dried bacteria survived better

  16. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    Hui-Ying Li

    2015-02-01

    Full Text Available Preparation of dense alumina (Al2O3 thin film through atomic layer deposition (ALD provides a pathway to achieve the encapsulation of organic light emitting devices (OLED. Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.

  17. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.

    Science.gov (United States)

    Wen, Yang; Zhu, Yujie; Langrock, Alex; Manivannan, Ayyakkannu; Ehrman, Sheryl H; Wang, Chunsheng

    2013-08-26

    Silicon (Si) has been considered a very promising anode material for lithium ion batteries due to its high theoretical capacity. However, high-capacity Si nanoparticles usually suffer from low electronic conductivity, large volume change, and severe aggregation problems during lithiation and delithiation. In this paper, a unique nanostructured anode with Si nanoparticles bonded and wrapped by graphene is synthesized by a one-step aerosol spraying of surface-modified Si nanoparticles and graphene oxide suspension. The functional groups on the surface of Si nanoparticles (50-100 nm) not only react with graphene oxide and bind Si nanoparticles to the graphene oxide shell, but also prevent Si nanoparticles from aggregation, thus contributing to a uniform Si suspension. A homogeneous graphene-encapsulated Si nanoparticle morphology forms during the aerosol spraying process. The open-ended graphene shell with defects allows fast electrochemical lithiation/delithiation, and the void space inside the graphene shell accompanied by its strong mechanical strength can effectively accommodate the volume expansion of Si upon lithiation. The graphene shell provides good electronic conductivity for Si nanoparticles and prevents them from aggregating during charge/discharge cycles. The functionalized Si encapsulated by graphene sample exhibits a capacity of 2250 mAh g⁻¹ (based on the total mass of graphene and Si) at 0.1C and 1000 mAh g⁻¹ at 10C, and retains 85% of its initial capacity even after 120 charge/discharge cycles. The exceptional performance of graphene-encapsulated Si anodes combined with the scalable and one-step aerosol synthesis technique makes this material very promising for lithium ion batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Role of an encapsulating layer for reducing resistance drift in phase change random access memory

    Directory of Open Access Journals (Sweden)

    Bo Jin

    2014-12-01

    Full Text Available Phase change random access memory (PCRAM devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM and the encapsulating layer material (YELM according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.

  19. Idiopathic sclerosing encapsulating peritonitis (or abdominal cocoon

    Directory of Open Access Journals (Sweden)

    Legakis Nikolaos

    2006-02-01

    Full Text Available Abstract Background Idiopathic sclerosing encapsulating peritonitis (or abdominal cocoon is a rare cause of small bowel obstruction, especially in adult population. Diagnosis is usually incidental at laparotomy. We discuss one such rare case, outlining the fact that an intra-operative surprise diagnosis could have been facilitated by previous investigations. Case presentation A 56 year-old man presented in A&E department with small bowel ileus. He had a history of 6 similar episodes of small bowel obstruction in the past 4 years, which resolved with conservative treatment. Pre-operative work-up did not reveal any specific etiology. At laparotomy, a fibrous capsule was revealed, in which small bowel loops were encased, with the presence of interloop adhesions. A diagnosis of abdominal cocoon was established and extensive adhesiolysis was performed. The patient had an uneventful recovery and follow-up. Conclusion Idiopathic sclerosing encapsulating peritonitis, although rare, may be the cause of a common surgical emergency such as small bowel ileus, especially in cases with attacks of non-strangulating obstruction in the same individual. A high index of clinical suspicion may be generated by the recurrent character of small bowel ileus combined with relevant imaging findings and lack of other plausible etiologies. Clinicians must rigorously pursue a preoperative diagnosis, as it may prevent a "surprise" upon laparotomy and result in proper management.

  20. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    Directory of Open Access Journals (Sweden)

    Cambridge CD

    2013-05-01

    Full Text Available Chino D Cambridge, Shree R Singh, Alain B Waffo, Stacie J Fairley, Vida A DennisCenter for NanoBiotechnology Research (CNBR, Alabama State University, Montgomery, AL, USAAbstract: Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP and encapsulated it in chitosan nanoparticles (DMCNP using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 µg/mL to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and

  1. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    International Nuclear Information System (INIS)

    Ribeiro, J F; Sousa, R; Cunha, D J; Vieira, E M F; Goncalves, L M; Silva, M M; Dupont, L

    2015-01-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO 2 ) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si 3 N 4 ). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber. (paper)

  2. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    Science.gov (United States)

    Ribeiro, J. F.; Sousa, R.; Cunha, D. J.; Vieira, E. M. F.; Silva, M. M.; Dupont, L.; Goncalves, L. M.

    2015-10-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO2) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si3N4). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber.

  3. Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles.

    Science.gov (United States)

    Vanacker, Julie; Amorim, Christiani A

    2017-07-01

    In vitro culture of ovarian follicles isolated or enclosed in ovarian tissue fragments and grafting of isolated ovarian follicles represent a potential alternative to restore fertility in cancer patients who cannot undergo cryopreservation of embryos or oocytes or transplantation of frozen-thawed ovarian tissue. In this regard, respecting the three-dimensional (3D) architecture of isolated follicles is crucial to maintaining their proper follicular physiology. To this end, alginate hydrogel has been widely investigated using follicles from numerous animal species, yielding promising results. The goal of this review is therefore to provide an overview of alginate applications utilizing the biomaterial as a scaffold for 3D encapsulation of isolated ovarian follicles. Different methods of isolated follicle encapsulation in alginate are discussed in this review, as its use of 3D alginate culture systems as a tool for in vitro follicle analysis. Possible improvements of this matrix, namely modification with arginine-glycine-aspartic acid peptide or combination with fibrin, are also summarized. Encouraging results have been obtained in different animal models, and particularly with isolated follicles encapsulated in alginate matrices and grafted to mice. This summary is designed to guide the reader towards development of next-generation alginate scaffolds, with enhanced properties for follicle encapsulation.

  4. UV-screening chitosan nanocontainers: increasing the photostability of encapsulated materials and controlled release

    International Nuclear Information System (INIS)

    Anumansirikul, Nattaporm; Wittayasuporn, Mayura; Klinubol, Patcharawalai; Tachaprutinun, A; Wanichwecharungruang, Supason P

    2008-01-01

    Methyl ether terminated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC), a UV absorptive polymer, and methyl ether terminated poly(ethylene glycol)-phthaloylchitosan (PPLC) were synthesized, characterized and self-assembled into stable water-dispersible spherical nanoparticles. The encapsulation of a model compound, 2-ethylhexyl-4-methoxycinnamate (EHMC), was carried out to give particles with 67% (w/w) EHMC loading. The E to Z photoisomerization of EHMC encapsulated inside both particles was monitored and compared to non-encapsulated EHMC. Minimal E to Z photoisomerization was observed when EHMC was encapsulated in PCPLC particles prepared from a polymer with a maximum degree of 4-methoxycinnamoyl substitution. The results indicated that the grafted UVB absorptive chromophore, 4-methoxycinnamoyl moieties, situated at the shell of PCPLC nanoparticles acted as a UV-filtering barrier, protecting the encapsulated EHMC from the UVB radiation, thus minimizing its photoisomerization. In vitro experiments revealed the pH-dependent controlled release of EHMC from PCPLC and PPLC particles. Ex vivo experiments, using a Franz diffusion cell with baby mouse skin, indicated that neither PPLC nor PCPLC particles could penetrate the skin into the receptor medium after a 24 h topical application. When applied on the baby mouse skin, both EHMC-encapsulated PPLC and EHMC-encapsulated PCPLC showed comparable controlled releases of the EHMC. The released EHMC could transdermally penetrate the baby mouse skin

  5. UV-screening chitosan nanocontainers: increasing the photostability of encapsulated materials and controlled release

    Science.gov (United States)

    Anumansirikul, Nattaporm; Wittayasuporn, Mayura; Klinubol, Patcharawalai; Tachaprutinun, A.; Wanichwecharungruang, Supason P.

    2008-05-01

    Methyl ether terminated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC), a UV absorptive polymer, and methyl ether terminated poly(ethylene glycol)-phthaloylchitosan (PPLC) were synthesized, characterized and self-assembled into stable water-dispersible spherical nanoparticles. The encapsulation of a model compound, 2-ethylhexyl-4-methoxycinnamate (EHMC), was carried out to give particles with 67% (w/w) EHMC loading. The E to Z photoisomerization of EHMC encapsulated inside both particles was monitored and compared to non-encapsulated EHMC. Minimal E to Z photoisomerization was observed when EHMC was encapsulated in PCPLC particles prepared from a polymer with a maximum degree of 4-methoxycinnamoyl substitution. The results indicated that the grafted UVB absorptive chromophore, 4-methoxycinnamoyl moieties, situated at the shell of PCPLC nanoparticles acted as a UV-filtering barrier, protecting the encapsulated EHMC from the UVB radiation, thus minimizing its photoisomerization. In vitro experiments revealed the pH-dependent controlled release of EHMC from PCPLC and PPLC particles. Ex vivo experiments, using a Franz diffusion cell with baby mouse skin, indicated that neither PPLC nor PCPLC particles could penetrate the skin into the receptor medium after a 24 h topical application. When applied on the baby mouse skin, both EHMC-encapsulated PPLC and EHMC-encapsulated PCPLC showed comparable controlled releases of the EHMC. The released EHMC could transdermally penetrate the baby mouse skin.

  6. Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica.

    Science.gov (United States)

    Cui, Jiandong; Liang, Longhao; Han, Cong; Lin Liu, Rong

    2015-06-01

    Phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis was encapsulated within polyethyleneimine-mediated biomimetic silica. The main factors in the preparation of biomimetic silica were optimized by response surface methodology (RSM). Compared to free PAL (about 2 U), the encapsulated PAL retained more than 43 % of their initial activity after 1 h of incubation time at 60 °C, whereas free PAL lost most of activity in the same conditions. It was clearly indicated that the thermal stability of PAL was improved by encapsulation. Moreover, the encapsulated PAL exhibited the excellent stability of the enzyme against denaturants and storage stability, and pH stability was improved by encapsulation. Operational stability of 7 reaction cycles showed that the encapsulated PAL was stable. Nevertheless, the K m value of encapsulated PAL in biomimetic silica was higher than that of the free PAL due to lower total surface area and increased mass transfer resistance.

  7. Effect of layer-by-layer coatings and localization of antioxidant on oxidative stability of a model encapsulated bioactive compound in oil-in-water emulsions.

    Science.gov (United States)

    Pan, Yuanjie; Nitin, N

    2015-11-01

    Oxidation of encapsulated bioactives in emulsions is one of the key challenges that limit shelf-life of many emulsion containing products. This study seeks to quantify the role of layer-by-layer coatings and localization of antioxidant molecules at the emulsion interface in influencing oxidation of the encapsulated bioactives. Oxidative barrier properties of the emulsions were simulated by measuring the rate of reaction of peroxyl radicals generated in the aqueous phase with the encapsulated radical sensitive dye in the lipid core of the emulsions. The results of peroxyl radical permeation were compared to the stability of encapsulated retinol (model bioactive) in emulsions. To evaluate the role of layer-by-layer coatings in influencing oxidative barrier properties, radical permeation rates and retinol stability were evaluated in emulsion formulations of SDS emulsion and SDS emulsion with one or two layers of polymers (ϵ-polylysine and dextran sulfate) coated at the interface. To localize antioxidant molecules to the interface, gallic acid (GA) was chemically conjugated with ϵ-polylysine and subsequently deposited on SDS emulsion based on electrostatic interactions. Emulsion formulations with localized GA molecules at the interface were compared with SDS emulsion with GA molecules in the bulk aqueous phase. The results of this study demonstrate the advantage of localization of antioxidant at the interface and the limited impact of short chain polymer coatings at the interface of emulsions in reducing permeation of radicals and oxidation of a model encapsulated bioactive in oil-in-water emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Dozie-Nwachukwu, S.O. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), P.M.B 186, Garki, Abuja, Federal Capital Territory (Nigeria); Danyuo, Y. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Malete (Nigeria); Obayemi, J.D. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Odusanya, O.S. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), P.M.B 186, Garki, Abuja, Federal Capital Territory (Nigeria); Malatesta, K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Soboyejo, W.O., E-mail: soboyejo@princeton.edu [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Princeton Institute of Science and Technology of Materials (PRISM), Bowen Hall, 70 Prospect Street, Princeton, NJ 08544 (United States)

    2017-02-01

    The encapsulation of drugs in polymeric materials has brought opportunities to the targeted delivery of chemotherapeutic agents. These polymeric delivery systems are capable of maximizing the therapeutic activity, as well as reducing the side effects of anti-cancer agents. Prodigiosin, a secondary metabolite extracted from the bacteria, Serratia marcescens, exhibits anti-cancer properties. Prodigiosin-loaded chitosan microspheres were prepared via water-in-oil (w/o) emulsion technique, using glutaraldehyde as a cross-linker. The morphologies of the microspheres were studied using scanning electron microscopy. The average sizes of the microspheres were between 40 μm and 60 μm, while the percentage yields ranged from 42 ± 2% to 55.5 ± 3%. The resulting encapsulation efficiencies were between 66.7 ± 3% and 90 ± 4%. The in-vitro drug release from the microspheres was characterized by zeroth order, first order and Higuchi and Korsmeyer-Peppas models. - Highlights: • Prodigiosin of ~ 92.8% purity was extracted from locally isolated Serratia marcescens. • This approach reduces the cost and ensure availability of drugs for cancer treatment. • High encapsulation efficiency which increased with increasing drug:polymer ratio • The percentage yield was generally poor due to the recovery process. • Prodigiosin greatly reduced the viability of the breast cancer cell line (MDA-MB-231).

  9. Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery

    International Nuclear Information System (INIS)

    Dozie-Nwachukwu, S.O.; Danyuo, Y.; Obayemi, J.D.; Odusanya, O.S.; Malatesta, K.; Soboyejo, W.O.

    2017-01-01

    The encapsulation of drugs in polymeric materials has brought opportunities to the targeted delivery of chemotherapeutic agents. These polymeric delivery systems are capable of maximizing the therapeutic activity, as well as reducing the side effects of anti-cancer agents. Prodigiosin, a secondary metabolite extracted from the bacteria, Serratia marcescens, exhibits anti-cancer properties. Prodigiosin-loaded chitosan microspheres were prepared via water-in-oil (w/o) emulsion technique, using glutaraldehyde as a cross-linker. The morphologies of the microspheres were studied using scanning electron microscopy. The average sizes of the microspheres were between 40 μm and 60 μm, while the percentage yields ranged from 42 ± 2% to 55.5 ± 3%. The resulting encapsulation efficiencies were between 66.7 ± 3% and 90 ± 4%. The in-vitro drug release from the microspheres was characterized by zeroth order, first order and Higuchi and Korsmeyer-Peppas models. - Highlights: • Prodigiosin of ~ 92.8% purity was extracted from locally isolated Serratia marcescens. • This approach reduces the cost and ensure availability of drugs for cancer treatment. • High encapsulation efficiency which increased with increasing drug:polymer ratio • The percentage yield was generally poor due to the recovery process. • Prodigiosin greatly reduced the viability of the breast cancer cell line (MDA-MB-231).

  10. Separation of rubidium from irradiated aluminum-encapsulated uranium

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Schmitz, F.J.; Rokop, D.J.

    1982-01-01

    A procedure was developed for separating rubidium from irradiated aluminum encapsulated uranium. The separations procedure produces a final ultra-high purity RbCl product for subsequent high performance mass spectrometric analysis. The procedure involves first removing most of the macro-components and fission products by strong base anion exchange using, first, concentrated HCl, then oxalic acid media and second, selectively separating rubidium from alkaline-earth ions and other alkali-metal ions, including cesium, using Bio-Rex-40 cation-exchange resin. The resultant RbCl is then put through a final vacuum sublimation step. Ultra-pure reagents and specially clean glassware are used throughout the procedure to minimize contamination by naturally-occurring rubidium

  11. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies.

    Science.gov (United States)

    Chang, Ming-Tsung; Tsai, Tong-Rong; Lee, Chun-Yann; Wei, Yu-Sheng; Chen, Ying-Jie; Chen, Chun-Ren; Tzen, Jason T C

    2013-10-09

    Utilization of curcumin has been limited due to its poor oral bioavailability. Oral bioavailability of hydrophobic compounds might be elevated via encapsulation in artificial seed oil bodies. This study aimed to improve oral bioavailability of curcumin via this encapsulation. Unfortunately, curcumin was indissoluble in various seed oils. A mixed dissolvent formula was used to dissolve curcumin, and the admixture was successfully encapsulated in artificial oil bodies stabilized by recombinant sesame caleosin. The artificial oil bodies of relatively small sizes (150 nm) were stably solidified in the forms of powder and tablet. Oral bioavailability of curcumin with or without encapsulation in artificial oil bodies was assessed in Sprague-Dawley male rats. The results showed that encapsulation of curcumin significantly elevated its bioavailability and provided the highest maximum whole blood concentration (Cmax), 37 ± 28 ng/mL, in the experimental animals 45 ± 17 min (t(max)) after oral administration. Relative bioavailability calculated on the basis of the area under the plasma concentration-time curve (AUC) was increased by 47.7 times when curcumin was encapsulated in the artificial oil bodies. This novel formulation of artificial oil bodies seems to possess great potential to encapsulate hydrophobic drugs for oral administration.

  12. Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography.

    Science.gov (United States)

    Bajaj, Piyush; Marchwiany, Daniel; Duarte, Carlos; Bashir, Rashid

    2013-03-01

    Controlling the assembly of cells in three dimensions is very important for engineering functional tissues, drug screening, probing cell-cell/cell-matrix interactions, and studying the emergent behavior of cellular systems. Although the current methods of cell encapsulation in hydrogels can distribute them in three dimensions, these methods typically lack spatial control of multi-cellular organization and do not allow for the possibility of cell-cell contacts as seen for the native tissue. Here, we report the integration of dielectrophoresis (DEP) with stereolithography (SL) apparatus for the spatial patterning of cells on custom made gold micro-electrodes. Afterwards, they are encapsulated in poly (ethylene glycol) diacrylate (PEGDA) hydrogels of different stiffnesses. This technique can mimic the in vivo microscale tissue architecture, where the cells have a high degree of three dimensional (3D) spatial control. As a proof of concept, we show the patterning and encapsulation of mouse embryonic stem cells (mESCs) and C2C12 skeletal muscle myoblasts. mESCs show high viability in both the DEP (91.79% ± 1.4%) and the no DEP (94.27% ± 0.5%) hydrogel samples. Furthermore, we also show the patterning of mouse embryoid bodies (mEBs) and C2C12 spheroids in the hydrogels, and verify their viability. This robust and flexible in vitro platform can enable various applications in stem cell differentiation and tissue engineering by mimicking elements of the native 3D in vivo cellular micro-environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility.

    Science.gov (United States)

    Wani, Touseef Ahmed; Shah, Adil Gani; Wani, Sajad Mohd; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad; Nissar, Nazia; Shagoo, Mudasir Ahmad

    2016-11-17

    Functional foods find a very important place in the modern era, where different types of cancer, diabetes, cardiovascular diseases, etc. are on a high. Irrespective of the abundance of bioactive components in different fruits and vegetables, their low solubility in aqueous solution, vulnerability to destruction in different environmental and gastrointestinal conditions and a low intestinal absorption becomes a concern. Because it is quite difficult to commercialize non food materials for the food encapsulation purposes due to their safety concerns in the human body, scientists in the recent times have come up with the idea of encapsulating the different bioactive components in different food grade materials that are able to safeguard these bioactive components against the different environmental and gastrointestinal conditions and ensure their safe and targeted delivery at their absorption sites. Different food grade encapsulation materials including various oligosaccharides, polysaccharides (starch, cyclodextrins, alginates, chitosan, gum arabic, and carboxymethyl cellulose) and proteins and their suitability for encapsulating various bioactive components like flavonoids (catechins, rutin, curcumin, hesperetin, and vanillin), nonflavonoids (resveratrol), carotenoids (β-carotene, lycopene, and lutein), and fatty acids (fish oil, flaxseed oil, and olive oil) of high medical and nutritional value are reviewed here.

  14. Effect of layer-by-layer polyelectrolyte method on encapsulation of vanillin.

    Science.gov (United States)

    Noshad, Mohammad; Mohebbi, Mohebbat; Shahidi, Fakhri; Koocheki, Arash

    2015-11-01

    The objective of this work was to microencapsulate vanillin by multilayer emulsion followed by spray drying, aiming to protect it and control its release. An electrostatic layer-by-layer deposition method was used to create the multilayered interfacial membranes around microcapsules with different compositions: (i) one-layer (soy protein isolate); (ii) two-layer (soy protein isolate - OSA starch); (iii) three-layer (soy protein isolate - OSA starch - Chitosan). The morphology of the microcapsules was analyzed by scanning electronic microscopy. The hygroscopicity, solubility, particle size, encapsulation efficiency, Fourier transform infrared spectroscopy and release into water (37°C and 80°C) were also examined. FTIR confirmed the interaction between the wall materials. All microcapsules were not very water-soluble or hygroscopic while three-layer microcapsules compared to one and two layer microcapsules have lower moisture content and predominantly shriveled surfaces. The results indicated it was possible to encapsulate vanillin with the techniques employed and that these protected the vanillin even at 80°C. The reduced solubility and low release rates indicated the enormous potential of the vehicle developed in controlling the release of the vanillin into the food and pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying.

    Science.gov (United States)

    Bustamante, Mariela; Oomah, B Dave; Rubilar, Mónica; Shene, Carolina

    2017-02-01

    Mucilage (M) and soluble protein (SP) extracted from chia seed and flaxseed were used as encapsulating material for two probiotic bacteria: Bifidobacterium infantis and Lactobacillus plantarum by spray drying. Probiotic survival and viability after spray drying and during storage were evaluated. B. infantis and L. plantarum displayed high survival (⩾98%) after encapsulation with mixtures of maltodextrin (MD) combined with M and SP from flaxseed (MD:FM:FSP - 7.5:0.2:7.5%, w/w/w) and chia seed (MD:CM:CSP - 7.5:0.6:7.5%, w/w/w), respectively. These ternary blends protected the probiotics and enhanced their resistance to simulated gastric juice and bile solution. Probiotics encapsulated with the ternary blends incorporated in instant juice powder exhibited high viability (>9Log10CFU/g) after 45days refrigerated storage. Encapsulation with the ternary blends reduced particle size of the probiotic powders thereby offering additional functional benefits. Our results reveal that chia seed and flaxseed are excellent sources of probiotic encapsulating agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Method of encapsulating solid radioactive waste material for storage

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Bates, J.L.

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation. 8 claims

  17. The use of high expansion foam in the control of sodium and other fumes

    International Nuclear Information System (INIS)

    Hughes, G.W.

    1971-01-01

    The uses of high expansion air foam for removing sodium fume and airborne radioactivity is discussed. Experiments are described which indicate that a high rate of removal of air contamination can be expected by encapsulation in a high expansion foam of low stability. (author)

  18. Quantum Dots Encapsulated with Canine Parvovirus-Like Particles Improving the Cellular Targeted Labeling.

    Directory of Open Access Journals (Sweden)

    Dan Yan

    Full Text Available Quantum dots (QDs have a promising prospect in live-cell imaging and sensing because of unique fluorescence features. QDs aroused significant interest in the bio-imaging field through integrating the fluorescence properties of QDs and the delivery function of biomaterial. The natural tropism of Canine Parvovirus (CPV to the transferrin receptor can target specific cells to increase the targeting ability of QDs in cell imaging. CPV virus-like particles (VLPs from the expression of the CPV-VP2 capsid protein in a prokaryotic expression system were examined to encapsulate the QDs and deliver to cells with an expressed transferrin receptor. CPV-VLPs were used to encapsulate QDs that were modified using 3-mercaptopropionic acid. Gel electrophoresis, fluorescence spectrum, particle size, and transmission electron microscopy verified the conformation of a complex, in which QDs were encapsulated in CPV-VLPs (CPV-VLPs-QDs. When incubated with different cell lines, CPV-VLPs-QDs significantly reduced the cytotoxicity of QDs and selectively labeled the cells with high-level transferrin receptors. Cell-targeted labeling was achieved by utilizing the specific binding between the CPV capsid protein VP2 of VLPs and cellular receptors. CPV-VLPs-QDs, which can mimic the native CPV infection, can recognize and attach to the transferrin receptors on cellular membrane. Therefore, CPV-VLPs can be used as carriers to facilitate the targeted delivery of encapsulated nanomaterials into cells via receptor-mediated pathways. This study confirmed that CPV-VLPs can significantly promote the biocompatibility of nanomaterials and could expand the application of CPV-VLPs in biological medicine.

  19. Preliminary safety evaluation of a commercial-scale krypton-85 encapsulation facility

    International Nuclear Information System (INIS)

    Christensen, A.B.; Tanner, J.E.; Knecht, D.A.

    1980-01-01

    This paper demonstrates that a commercial-scale facility for encapsulating krypton-85 in zeolite-5A or glass at a 2000 MTHM per year nuclear fuel reprocessing plant can be designed to contain fragments and the 340 to 850 kCi krypton-85 inventory from an assumed catastrophic failure of the high pressure vessel. The vessel failure was assumed as a worst case and was not based on a detailed design evaluation or operating experience. The process design is based on existing commercial hot isostatic pressing technology operated at up to 40 times the scale required for krypton encapsulation. From the calculated process gas inventory in the pressure vessel and vessel design, the maximum explosive energy of 8.4 kg TNT and resulting vessel plug and fragment velocities were calculated. The facility Containment Cell housing the high pressure vessel was designed to contain the gases, fragments, and the shock wave energy calculated for a hypothetical vessel failure. The Access Cell located directly above the Containment Cell was designed to be a tertiary confinement of krypton-85, should the access hatch be breached. 3 figures, 2 tables

  20. Effect of pH and ionic strength on exposure and toxicity of encapsulated lambda-cyhalothrin to Daphnia magna.

    Science.gov (United States)

    Son, Jino; Hooven, Louisa A; Harper, Bryan; Harper, Stacey L

    2015-12-15

    Encapsulation of pesticide active ingredients in polymers has been widely employed to control the release of poorly water-soluble active ingredients. Given the high dispersibility of these encapsulated pesticides in water, they are expected to behave differently compared to their active ingredients; however, our current understanding of the fate and effects of encapsulated pesticides is still limited. In this study, we employed a central composite design (CCD) to investigate how pH and ionic strength (IS) affect the hydrodynamic diameter (HDD) and zeta potential of encapsulated λ-cyhalothrin and how those changes affect the exposure and toxicity to Daphnia magna. R(2) values greater than 0.82 and 0.84 for HDD and zeta potential, respectively, irrespective of incubation time suggest those changes could be predicted as a function of pH and IS. For HDD, the linear factor of pH and quadratic factor of pH×pH were found to be the most significant factors affecting the change of HDD at the beginning of incubation, whereas the effects of IS and IS×IS became significant as incubation time increased. For zeta potential, the linear factor of IS and quadratic factor of IS×IS were found to be the most dominant factors affecting the change of zeta potential of encapsulated λ-cyhalothrin, irrespective of incubation time. The toxicity tests with D. magna under exposure conditions in which HDD or zeta potential of encapsulated λ-cyhalothrin was maximized or minimized in the overlying water also clearly showed the worst-case exposure condition to D. magna was when the encapsulated λ-cyhalothrin is either stable or small in the overlying water. Our results show that water quality could modify the fate and toxicity of encapsulated λ-cyhalothrin in aquatic environments, suggesting understanding their aquatic interactions are critical in environmental risk assessment. Herein, we discuss the implications of our findings for risk assessment. Copyright © 2015 Elsevier B.V. All

  1. Encapsulation of pancreatic islets for transplantation in diabetes : the untouchable islets

    NARCIS (Netherlands)

    de Vos, P; Marchetti, P

    The aim of encapsulation of pancreatic islets is to transplant in the absence of immunosuppression. It is based on the principle that transplanted tissue is protected from the host immune system by an artificial membrane. Encapsulation allows for application of insulin-secreting cells of animal or

  2. Rapid fabrication of Al{sub 2}O{sub 3} encapsulations for organic electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kamran; Ali, Junaid [Department of Mechatronics Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of); Mehdi, Syed Murtuza [Department of Mechanical Engineering, NED University of Engineering and Technology, Karachi 75270 (Pakistan); Choi, Kyung-Hyun, E-mail: amm@jejunu.ac.kr [Department of Mechatronics Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of); An, Young Jin [Jeonnam Science and Technology Promotion Center, Yeongam-gun, Jeollanam-do 526-897 (Korea, Republic of)

    2015-10-30

    Highlights: • Al{sub 2}O{sub 3} encapsulations are being developed through a unique R2R-AALD system. • The encapsulations have resulted in life time enhancement of PVP memristor devices. • The Al{sub 2}O{sub 3} encapsulated memristor performed with superior stability for four weeks. • Encapsulated devices performed efficiently even after bending test for 100 cycles. - Abstract: Organic electronics have earned great reputation in electronic industry yet they suffer technical challenges such as short lifetimes and low reliability because of their susceptibility to water vapor and oxygen which causes their fast degradation. This paper report on the rapid fabrication of Al{sub 2}O{sub 3} encapsulations through a unique roll-to-roll atmospheric atomic layer deposition technology (R2R-AALD) for the life time enhancement of organic poly (4-vinylphenol) (PVP) memristor devices. The devices were then categorized into two sets. One was processed with R2R-AALD Al{sub 2}O{sub 3} encapsulations at 50 °C and the other one was kept as un-encapsulated. The field-emission scanning electron microscopy (FESEM) results revealed that pin holes and other irregularities in PVP films with average arithmetic roughness (R{sub a}) of 9.66 nm have been effectively covered by Al{sub 2}O{sub 3} encapsulation having R{sub a} of 0.92 nm. The X-ray photoelectron spectroscopy XPS spectrum for PVP film showed peaks of C 1s and O 1s at the binding energies of 285 eV and 531 eV, respectively. The respective appearance of Al 2p, Al 2s, and O 1s peaks at the binding energies of 74 eV, 119 eV, and 531 eV, confirms the fabrication of Al{sub 2}O{sub 3} films. Electrical current–voltage (I–V) measurements confirmed that the Al{sub 2}O{sub 3} encapsulation has a huge influence on the performance, robustness and life time of memristor devices. The Al{sub 2}O{sub 3} encapsulated memristor performed with superior stability for four weeks whereas the un-encapsulated devices could only last for one

  3. Design documentation: Krypton encapsulation preconceptual design

    International Nuclear Information System (INIS)

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs, technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy

  4. Design documentation: Krypton encapsulation preconceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, D.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs, technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.

  5. Development of PLGA–PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rishikesh; Sahoo, Ganesh Chandra [Biomedical and Nanomedicine Department, Rajendra Memorial Research Institute Medical Science (ICMR) (India); Pandey, Krishna; Das, V.N.R.; Topno, Roshan K. [Clinical Medicine Department, Rajendra Memorial Research Institute Medical Science (ICMR) (India); Ansari, Md Yousuf [Pharmacoinformatics Department, National Institute Pharmaceutica Research and Education Industrial Area, Hajipur (India); Rana, Sindhuprava [Biomedical and Nanomedicine Department, Rajendra Memorial Research Institute Medical Science (ICMR) (India); Das, Pradeep [Molecular Biology Department, Rajendra Memorial Research Institute Medical Science (ICMR) (India)

    2016-02-01

    Targeted drug delivery systems are ideal technology to increase the maximum mechanism of action with smaller dose, we have developed miltefosine encapsulated PLGA–PEG nanoparticles (PPEM) to target macrophage of infected tissues against Leishmania donovani. The structural characterization of PLGA–PEG by transmission electron microscopy (TEM) has shown a size range of 10 to 15 nm. Synthesis and drug encapsulation confirmed by dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR) and confirmed NP encapsulation. The dose of nano encapsulated miltefosine decreased by fifty percent as compared to that of a conventional miltefosine and Amphoterecin B. The inhibition of amastigotes in the splenic tissue with nano encapsulated miltefosine (23.21 ± 23) was significantly more than the conventional miltefosine (89.22 ± 52.7) and Amphoterecin B (94.12 ± 55.1). This study signifies that there is an increased contact surface area of the nano encapsulated drug and significant reduction in size, improved the efficacy in both in vitro and in vivo study than that of the conventional miltefosine, Amphoterecin B. - Graphical abstract: The analyses of detailed structure characterized by TEM and DLS confirmed the nano-size of the particle 10–20 nm and FTIR confirmed for antileishmanial drug encapsulation in to PLGA–PEG. The dose of miltefosine is decreased by fifty percent as the IC50 value is decreased from 0.2 to 0.1 μg. Further inhibitions of amastigotes in the splenic tissue with these nanoparticles are significantly more than the conventional miltefosine and PLGA–PEG encapsulated Amphoterecin B (23.21 ± 23/89.09 ± 52.7/92.12 ± 55.1). - Highlights: • Synthesis of PLGA-PEG encapsulated miltefosine nanoparticles has been done. • An IC50 value of PPEM (0.1 ug/ml), miltefosine (0.2 μg/ml) and AmpB (1 μg/ml) were observed two fold better efficacies. • Inhibition of amastigotes of PPEM (23.21 ± 23) was significantly more than

  6. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles.

    Science.gov (United States)

    Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina

    2017-09-26

    The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification-solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide-polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology.

  7. Enhanced structural stability of DNA origami nanostructures by graphene encapsulation

    International Nuclear Information System (INIS)

    Matković, Aleksandar; Vasić, Borislav; Pešić, Jelena; Gajić, Radoš; Prinz, Julia; Bald, Ilko; Milosavljević, Aleksandar R

    2016-01-01

    We demonstrate that a single-layer graphene replicates the shape of DNA origami nanostructures very well. It can be employed as a protective layer for the enhancement of structural stability of DNA origami nanostructures. Using the AFM based manipulation, we show that the normal force required to damage graphene encapsulated DNA origami nanostructures is over an order of magnitude greater than for the unprotected ones. In addition, we show that graphene encapsulation offers protection to the DNA origami nanostructures against prolonged exposure to deionized water, and multiple immersions. Through these results we demonstrate that graphene encapsulated DNA origami nanostructures are strong enough to sustain various solution phase processing, lithography and transfer steps, thus extending the limits of DNA-mediated bottom-up fabrication. (paper)

  8. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles

    Science.gov (United States)

    Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina

    2017-01-01

    The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification–solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide–polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology. PMID:28952560

  9. Preliminary Hazards Analysis of K-Basin Fuel Encapsulation and Storage

    International Nuclear Information System (INIS)

    Strickland, G.C.

    1994-01-01

    This Preliminary Hazards Analysis (PHA) systematically examines the K-Basin facilities and their supporting systems for hazards created by abnormal operating conditions and external events (e.g., earthquakes) which have the potential for causing undesirable consequences to the facility worker, the onsite individual, or the public. The operational activities examined are fuel encapsulation, fuel storage and cooling. Encapsulation of sludges in the basins is not examined. A team of individuals from Westinghouse produced a set of Hazards and Operability (HAZOP) tables documenting their examination of abnormal process conditions in the systems and activities examined in K-Basins. The purpose of this report is to reevaluate and update the HAZOP in the original Preliminary Hazard Analysis of K-Basin Fuel Encapsulation and Storage originally developed in 1991

  10. USE OF RECYCLED POLYMERS FOR ENCAPSULATION OF RADIOACTIVE, HAZARDOUS AND MIXED WASTES

    International Nuclear Information System (INIS)

    LAGERRAAEN, P.R.; KALB, P.D.

    1997-01-01

    Polyethylene encapsulation is a waste treatment technology developed at Brookhaven National Laboratory using thermoplastic polymers to safely and effectively solidify hazardous, radioactive and mixed wastes for disposal. Over 13 years of development and demonstration with surrogate wastes as well as actual waste streams on both bench and full scale have shown this to be a viable and robust technology with wide application. Process development efforts have previously focused on the use of virgin polymer feedstocks. In order to potentially improve process economics and serve to lessen the municipal waste burden, recycled polymers were investigated for use as encapsulating agents. Recycled plastics included low-density polyethylene, linear low-density polyethylene, high-density polyethylene and polypropylene, and were used as a direct substitute for or blended together with virgin resin. Impacts on processing and final waste form performance were examined

  11. Influence of the Encapsulation Efficiency and Size of Liposome on the Oral Bioavailability of Griseofulvin-Loaded Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong

    2016-08-01

    Full Text Available The objective of the present study was to investigate the influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Griseofulvin-loaded liposomes with desired characteristics were prepared from pro-liposome using various techniques. To study the effect of encapsulation efficiency, three preparations of griseofulvin, namely, griseofulvin aqueous suspension and two griseofulvin-loaded liposomes with different amounts of griseofulvin encapsulated [i.e., F1 (32% and F2(98%], were administered to rats. On the other hand, to study the effect of liposome size, the rats were given three different griseofulvin-loaded liposomes of various sizes, generated via different mechanical dispersion techniques [i.e., FTS (142 nm, MS (357 nm and NS (813 nm], but with essentially similar encapsulation efficiencies (about 93%. Results indicated that the extent of bioavailability of griseofulvin was improved 1.7–2.0 times when given in the form of liposomes (F1 compared to griseofulvin suspension. Besides that, there was an approximately two-fold enhancement of the extent of bioavailability following administration of griseofulvin-loaded liposomes with higher encapsulation efficiency (F2, compared to those of F1. Also, the results showed that the extent of bioavailability of liposomal formulations with smaller sizes were higher by approximately three times compared to liposomal formulation of a larger size. Nevertheless, a further size reduction of griseofulvin-loaded liposome (≤400 nm did not promote the uptake or bioavailability of griseofulvin. In conclusion, high drug encapsulation efficiency and small liposome size could enhance the oral bioavailability of griseofulvin-loaded liposomes and therefore these two parameters deserve careful consideration during formulation.

  12. Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Boutrup Stephansen, Karen; van derKruijs, Jules

    2016-01-01

    The encapsulation of fish oil in poly(vinyl alcohol) (PVA) nanofibers by emulsion electrospinning was investigated. Independently of the emulsifier used, whey protein isolate (WPI) or fish protein hydrolysate (FPH), PVA concentration had a high influence on fiber morphology. Fibers without bead d...

  13. Dysprosium Acetylacetonato Single-Molecule Magnet Encapsulated in Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ryo Nakanishi

    2016-12-01

    Full Text Available Dy single-molecule magnets (SMMs, which have several potential uses in a variety of applications, such as quantum computing, were encapsulated in multi-walled carbon nanotubes (MWCNTs by using a capillary method. Encapsulation was confirmed by using transmission electron microscopy (TEM. In alternating current magnetic measurements, the magnetic susceptibilities of the Dy acetylacetonato complexes showed clear frequency dependence even inside the MWCNTs, meaning that this hybrid can be used as magnetic materials in devices.

  14. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes.

    Science.gov (United States)

    Sayin, Serkan; Akoz, Enise; Yilmaz, Mustafa

    2014-09-14

    In this study, two types of nanoparticles have been used as additives for the encapsulation of Candida rugosa lipase via the sol-gel method. In one case, the nanoparticles were covalently linked with a new synthesized calix[8]arene octa valeric acid derivative (C[8]-C4-COOH) to produce new calix[8]arene-adorned magnetite nanoparticles (NP-C[8]-C4-COOH), and then NP-C[8]-C4-COOH was used as an additive in the sol-gel encapsulation process. In the other case, iron oxide nanoparticles were directly added into the sol-gel encapsulation process in order to interact electrostatically with both C[8]-C4-COOH and Candida rugosa lipase. The catalytic activities and enantioselectivities of two novel encapsulated lipases (Enc-NP-C[8]-C4-COOH and Enc-C[8]-C4-COOH@Fe3O4) in the hydrolysis reaction of racemic naproxen methyl ester were evaluated. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives. Indeed, the encapsulated lipases have an excellent rate of enantioselectivity, with E = 371 and 265, respectively, as compared to the free enzyme (E = 137). The lipases encapsulated with C[8]-C4-COOH and iron oxide nanoparticles (Enc-C[8]-C4-COOH@Fe3O4) retained more than 86% of their initial activities after 5 repeated uses and 92% with NP-C[8]-C4-COOH.

  15. A combined interfacial and in-situ polymerization strategy to construct well-defined core-shell epoxy-containing SiO2-based microcapsules with high encapsulation loading, super thermal stability and nonpolar solvent tolerance

    Directory of Open Access Journals (Sweden)

    Yin Jia

    2016-10-01

    Full Text Available SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.

  16. Graphene-encapsulated cobalt sulfides nanocages with excellent anode performances for lithium ion batteries

    International Nuclear Information System (INIS)

    Guo, Jinxue; Li, Fenfen; Sun, Yanfang; Zhang, Xiao; Tang, Lin

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •Graphene wrapped CoS 2 nanocages are synthesized as anode materials. •Layer-by-layer assembled structures are beneficial for fast and stable Li storage. •Hollow features improve capacity, rate capability and cycling life. •The sample shows outstanding lithium storages, especially high-rate performance. -- Abstract: A layer-by-layer assembled composite of graphene nanosheets (GNSs) wrapped monodisperse cobalt sulfides (CoS 2 ) nanocages has been prepared via a solvothermal method. The flexible GNSs in the layered composite act as the effective matrix to encapsulate the monodisperse CoS 2 nanocages, buffer the volume changes and prevent the aggregation of the CoS 2 nanocages during electrochemical cycling. The loosely stacked GNSs, which are induced with the insertion of CoS 2 , are convenient for electrolyte wetting and serve as highway for the rapid electron and lithium transport. The monodisperse nanocages can supply additional space to tolerate the volume changes, shorten lithium diffusion path, and do not tend to aggregate. As a result, the specific sample can deliver a high capacity approaching 800 mA h g −1 after 150 cycles at 100 mA g −1 and 697 mA h g −1 after 300 cycles at 500 mA g −1 , in addition to good capacity retention and excellent rate capability, making it a promising candidate as next-generation anode materials for lithium-ion batteries

  17. The encapsulation of trimetallic nitride clusters in fullerene cages

    International Nuclear Information System (INIS)

    Dorn, H.C.; Stevenson, S.; Craft, J.; Cromer, F.; Duchamp, J.; Rice, G.; Glass, T.; Harich, K.; Fowler, P.W.; Heine, T.; Hajdu, E.; Bible, R.; Olmstead, M.M.; Maitra, K.; Fisher, A.J.; Balch, A.L.

    2000-01-01

    The Kratschmer-Huffman electric-arc generator typically produces endohedral metallofullerenes in low yields with a wide array of different products, but the introduction of nitrogen leads to a new family of encapsulates. A family of endohedral metallofullerenes A n B 3-n N at C 2n (n=0-3, x=34, 39, and 40) where A and B are Group III and rare-earth metals is formed by a trimetallic nitride template (TNT) process in relatively high yields. The archetypal representative of this new class is the stable endohedral metallofullerene, Sc 3 N at C 80 containing a triscandium nitride cluster encapsulated in an icosahedron (I h ), C 80 cage. The Sc 3 N at C 80 is formed in yields even exceeding empty-cage C 84 . Other prominent scandium TNT members are Sc 3 N at C 68 and Sc 3 N at C 78 . The former Sc 3 N at C 68 molecule represents an exception to the well known isolated pentagon rule (IPR). These new molecules were purified by chromatography with corresponding characterization by various spectroscopic approaches. In this paper we focus on the characterization and properties of this fascinating new class of materials

  18. Macro-Encapsulated PCM Cylinder Module Based on Paraffin and Float Stones

    Directory of Open Access Journals (Sweden)

    Kailiang Huang

    2016-05-01

    Full Text Available Organic phase change material (PCM with macro-encapsulation is attractive in energy storage applications as it has relatively low cost. This study focuses on using PET plastic pipes to encapsulate paraffin and using low-cost float stones to increase the thermal conductivity of PCM modules as they have a special structure of high porosity. Float stones were immersed in the liquid PCM and an ultrasonic welding method used to prevent leakage of the PET plastic pipes. Scanning electron microscopy (SEM was used to discover the appearance of the composite PCM. The thermal performance of the PCM cylinder module was analyzed through experimental tests of a constant-temperature water bath and numerical simulations. The result indicates that this PCM Ccylinder module is superior in thermal energy storage compared with the reference module even though fewer PCM was contained and the latent heat loss is considerable. The pipe diameter is an important parameter when using this kind of PCM cylinder module in water tanks.

  19. Encapsulation of Aloe Vera and Its Effect During Yogur Incubation

    Directory of Open Access Journals (Sweden)

    Ricardo Adolfo Parra Huertas

    2014-11-01

    Full Text Available The yogurt is milk derivative highly consumed around the world,as well as aloe vera. Both have reports tocontribute to human health. The purpose of this research is to determine the effect of the addition of capsules with aloe vera during the incubation of yogurt. Aloeverawas encapsulated in alginate at two different concentrations, 1% and 2%,addingthe capsules from the moment of incubation and comparing the effect of the addition of capsules withthe non-addition of them. For these samples were determined: pH, acidity, syneresis, lactic acid bacteria count, sensory evaluation and proximate analysis. The results indicated that for the three treatments pH values and acid behaved similarly to each characteristic of the yogurt during incubation. The lactic acid bacteria count indicated that treatment with capsules containing 2% sodium alginate had higher counts. Sensorially, three treatments had a favorable acceptability; proximate analysis had favorable values . In conclusion,the tests showed the viability of encapsulated aloe vera in the manufacture of yogurt during incubation time without being affected by the concentration of sodium alginate.

  20. Micro-fabricated Liquid Encapsulated Energy Harvester with Polymer Barrier Layer as Liquid Electret Interface

    International Nuclear Information System (INIS)

    Bu, L; Xu, H Y; Xu, B J; Song, L

    2014-01-01

    This paper addresses the electret discharge issue for liquid based electret energy harvesters. An interface structure of PDMS/PTFE polymer barrier layer between liquid and electrets is introduced, achieving 75% charge retain rate over 100h, compared with 0% without the proposed layer over 100h. Further, the PDMS/PTFE layer is introduced into liquid encapsulated energy harvester (LEEH) and is compatible with micro-fabrication process. The retain rate of device voltage is about 47%∼65% over 100h. At 100h after corona charging, the device generates maximally 3.7V, 0.55μW @1Hz rotation

  1. Photoinduced charge transfer within polyaniline-encapsulated quantum dots decorated on graphene.

    Science.gov (United States)

    Nguyen, Kim Truc; Li, Dehui; Borah, Parijat; Ma, Xing; Liu, Zhaona; Zhu, Liangliang; Grüner, George; Xiong, Qihua; Zhao, Yanli

    2013-08-28

    A new method to enhance the stability of quantum dots (QDs) in aqueous solution by encapsulating them with conducting polymer polyaniline was reported. The polyaniline-encapsulated QDs were then decorated onto graphene through π-π interactions between graphene and conjugated polymer shell of QDs, forming stable polyaniline/QD/graphene hybrid. A testing electronic device was fabricated using the hybrid in order to investigate the photoinduced charge transfer between graphene and encapsulated QDs within the hybrid. The charge transfer mechanism was explored through cyclic voltammetry and spectroscopic studies. The hybrid shows a clear response to the laser irradiation, presenting a great advantage for further applications in optoelectronic devices.

  2. Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency.

    Science.gov (United States)

    Lima, Adriel M; Pizzol, Carine Dal; Monteiro, Fabíola B F; Creczynski-Pasa, Tânia B; Andrade, Gislaine P; Ribeiro, Anderson O; Perussi, Janice R

    2013-08-05

    The hydrophobicity of some photosensitizers can induce aggregation in biological systems, which consequently reduces photodynamic activity. The conjugation of photosensitizers with nanocarrier systems can potentially be used to overcome this problem. The objective of this study was to prepare and characterise hypericin-loaded solid lipid nanoparticles (Hy-SLN) for use in photodynamic therapy (PDT). SLN were prepared using the ultrasonication technique, and their physicochemical properties were characterised. The mean particle size was found to be 153 nm, with a low polydispersity index of 0.28. One of the major advantages of the SLN formulation is its high entrapment efficiency (EE%). Hy-SLN showed greater than 80% EE and a drug loading capacity of 5.22% (w/w). To determine the photodynamic efficiency of Hy before and after encapsulation in SLN, the rate constants for the photodecomposition of two (1)O2 trapping reagents, DPBF and AU, were determined. These rate constants exhibited an increase of 60% and 50% for each method, respectively, which is most likely due to an increase in the lifetime of the triplet state caused by the increase in solubility. Hy-SLN presented a 30% increase in cell uptake and a correlated improvement of 26% in cytotoxicity. Thus, all these advantages suggest that Hy-loaded SLN has potential for use in PDT. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The encapsulation of an amphiphile into polystyrene microspheres of narrow size distribution

    Directory of Open Access Journals (Sweden)

    Pellach Michal

    2011-12-01

    Full Text Available Abstract Encapsulation of compounds into nano- or microsized organic particles of narrow size distribution is of increasing importance in fields of advanced imaging and diagnostic techniques and drug delivery systems. The main technology currently used for encapsulation of molecules within uniform template particles while retaining their size distribution is based on particle swelling methodology, involving penetration of emulsion droplets into the particles. The swelling method, however, is efficient for encapsulation only of hydrophobic compounds within hydrophobic template particles. In order to be encapsulated, the molecules must favor the hydrophobic phase of an organic/aqueous biphasic system, which is not easily achieved for molecules of amphiphilic character. The following work overcomes this difficulty by presenting a new method for encapsulation of amphiphilic molecules within uniform hydrophobic particles. We use hydrogen bonding of acid and base, combined with a pseudo salting out effect, for the entrapment of the amphiphile in the organic phase of a biphasic system. Following the entrapment in the organic phase, we demonstrated, using fluorescein and (antibiotic tetracycline as model molecules, that the swelling method usually used only for hydrophobes can be expanded and applied to amphiphilic molecules.

  4. Encapsulating spent nuclear fuel

    International Nuclear Information System (INIS)

    Fleischer, L.R.; Gunasekaran, M.

    1979-01-01

    A system is described for encapsulating spent nuclear fuel discharged from nuclear reactors in the form of rods or multi-rod assemblies. The rods are completely and contiguously enclosed in concrete in which metallic fibres are incorporated to increase thermal conductivity and polymers to decrease fluid permeability. This technique provides the advantage of acceptable long-term stability for storage over the conventional underwater storage method. Examples are given of suitable concrete compositions. (UK)

  5. The effect of colloidal silica nanoparticles encapsulated fluorescein dye using micelle entrapment method

    Science.gov (United States)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul

    2018-05-01

    The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.

  6. Leaching characteristics of encapsulated controlled low-strength materials containing arsenic-bearing waste precipitates from refractory gold bioleaching.

    Science.gov (United States)

    Bouzalakos, S; Dudeney, A W L; Chan, B K C

    2016-07-01

    We report on the leaching of heavy elements from cemented waste flowable fill, known as controlled low-strength materials (CLSM), for potential mine backfill application. Semi-dynamic tank leaching tests were carried out on laboratory-scale monoliths cured for 28 days and tested over 64 days of leaching with pure de-ionised water as leachant. Mineral processing waste include flotation tailings from a Spanish nickel-copper sulphide concentrate, and two bioleach neutralisation precipitates (from processing at 35°C and 70°C) from a South African arsenopyrite concentrate. Encapsulated CLSM formulations were evaluated to assess the reduction in leaching by encapsulating a 'hazardous' CLSM core within a layer of relatively 'inert' CLSM. The effect of each bioleach waste in CLSM core and tailings in CLSM encapsulating medium, are assessed in combination and in addition to CLSM with ordinary silica sand. Results show that replacing silica sand with tailings, both as core and encapsulating matrix, significantly reduced leachability of heavy elements, particularly As (from 0.008-0.190 mg/l to 0.008-0.060 mg/l), Ba (from 0.435-1.540 mg/l to 0.050-0.565 mg/l), and Cr (from 0.006-0.458 mg/l to 0.004-0.229 mg/l), to below the 'Dutch List' of groundwater contamination intervention values. Arsenic leaching was inherently high from both bioleach precipitates but was significantly reduced to below guideline values with encapsulation and replacing silica sand with tailings. Tailings proved to be a valuable encapsulating matrix largely owing to small particle size and lower hydraulic conductivity reducing diffusion transport of heavy elements. Field-scale trials would be necessary to prove this concept of encapsulation in terms of scale and construction practicalities, and further geochemical investigation to optimise leaching performance. Nevertheless, this work substantiates the need for alternative backfill techniques for sustainable management of hazardous finely-sized bulk

  7. Cell-based delivery of glucagon-like peptide-1 using encapsulated mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wallrapp, Christine; Thoenes, Eric; Thürmer, Frank

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) CellBeads are cell-based implants for the sustained local delivery of bioactive factors. They consist of GLP-1 secreting mesenchymal stem cells encapsulated in a spherically shaped immuno-isolating alginate matrix. A highly standardized and reproducible encapsulation...... and quality control is performed in compliance with good manufacturing practice and fulfils all regulatory requirements for human clinical use. GLP-1 CellBeads combine the neuro- and cardioprotective properties of both GLP-1 and mesenchymal stem cells. First promising results were obtained from preclinical...... method is described for the manufacturing of homogeneous CellBeads. Viability and sustained secretion was shown for the recombinant GLP-1 and the cell endogenous bioactive factors like vascular endothelial growth factor, neurotrophin 3 (NT-3) and glial cell line-derived neurotrophic factor. Manufacturing...

  8. Effect of Encapsulation on Antimicrobial Activity of Herbal Extracts with Lysozyme

    Directory of Open Access Journals (Sweden)

    Petra Matouskova

    2016-01-01

    Full Text Available Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch. Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus and two Gram-negative (Escherichia coli and Serratia marcescens bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries.

  9. Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst.

    Science.gov (United States)

    Liu, Jiangyong; Wang, Zihao; Jian, Panming; Jian, Ruiqi

    2018-05-01

    A tailor-made catalyst with cobalt oxide particles encapsulated into ZSM-5 zeolites (Co 3 O 4 @HZSM-5) was prepared via a hydrothermal method with the conventional impregnated Co 3 O 4 /SiO 2 catalyst as the precursor and Si source. Various characterization results show that the Co 3 O 4 @HZSM-5 catalyst has well-organized structure with Co 3 O 4 particles compatibly encapsulated in the zeolite crystals. The Co 3 O 4 @HZSM-5 catalyst was employed as an efficient catalyst for the selective oxidation of styrene to benzaldehyde with hydrogen peroxide as a green and economic oxidant. The effect of various reaction conditions including reaction time, reaction temperature, different kinds of solvents, styrene/H 2 O 2 molar ratio and catalyst dosage on the catalytic performance were systematically investigated. Under the optimized reaction condition, the yield of benzaldehyde can achieve 78.9% with 96.8% styrene conversion and 81.5% benzaldehyde selectivity. Such an excellent catalytic performance can be attributed to the synergistic effect between the confined reaction environment and the proper acidic property. In addition, the reaction mechanism with Co 3 O 4 @HZSM-5 as the catalyst for the selective oxidation of styrene to benzaldehyde was reasonably proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Solid-Phase Immunoassay of Polystyrene-Encapsulated Semiconductor Coreshells for Cardiac Marker Detection

    Directory of Open Access Journals (Sweden)

    Sanghee Kim

    2012-01-01

    Full Text Available A solid-phase immunoassay of polystyrene-encapsulated semiconductor nanoparticles was demonstrated for cardiac troponin I (cTnI detection. CdSe/ZnS coreshells were encapsulated with a carboxyl-functionalized polystyrene nanoparticle to capture the target antibody through a covalent bonding and to eliminate the photoblinking and toxicity of semiconductor luminescent immunosensor. The polystyrene-encapsulated CdSe/ZnS fluorophores on surface-modified glass chip identified cTnI antigens at the level of ~ng/mL. It was an initial demonstration of diagnostic chip for monitoring a cardiovascular disease.

  11. Synthesis and characterization of aba-type copolymers for encapsulation of bovine hemoglobin

    International Nuclear Information System (INIS)

    Lima, Felipe F.; Andrade, Cristina T.

    2012-01-01

    The use of biopolymers for the development of oxygen carriers has been extensively investigated. In this work, three different ABA triblock copolymers were synthesized and used to encapsulate purified bovine hemoglobin, using a double emulsion technique. The effect of polymer composition, homogenization velocity, and addition of a surfactant, on the protein entrapment was evaluated. These copolymers, which have a hydrophilic block, achieved higher values of encapsulation efficiency than the corresponding homopolymers. The increase in homogenization strength also promoted an increase in encapsulation efficiency. Capsules formation occurred even in the absence of PVA. (author)

  12. Use of integrin-linked kinase to extend function of encapsulated pancreatic tissue

    International Nuclear Information System (INIS)

    Blanchette, James O; Langer, Steven J; Leinwand, Leslie L; Sahai, Suchit; Topiwala, Pritesh S; Anseth, Kristi S

    2010-01-01

    We have studied the impact of overexpression of an intracellular signaling protein, integrin-linked kinase (ILK), on the survival and function of encapsulated islet tissue used for the treatment of type 1 diabetes. The dimensions of the encapsulated tissue can impact the stresses placed on the tissue and ILK overexpression shows the ability to extend function of dissociated cells as well as intact islets. These results suggest that lost cell-extracellular matrix interactions in cell encapsulation systems can lead to decreased insulin secretion and ILK signaling is a target to overcome this phenomenon. (communication)

  13. Use of integrin-linked kinase to extend function of encapsulated pancreatic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Blanchette, James O [Department of Chemical Engineering, University of South Carolina, Columbia, SC (United States); Langer, Steven J; Leinwand, Leslie L [Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO (United States); Sahai, Suchit; Topiwala, Pritesh S [Biomedical Engineering Program, University of South Carolina, Columbia, SC (United States); Anseth, Kristi S, E-mail: blanchej@cec.sc.ed [Howard Hughes Medical Institute, Boulder, CO (United States)

    2010-12-15

    We have studied the impact of overexpression of an intracellular signaling protein, integrin-linked kinase (ILK), on the survival and function of encapsulated islet tissue used for the treatment of type 1 diabetes. The dimensions of the encapsulated tissue can impact the stresses placed on the tissue and ILK overexpression shows the ability to extend function of dissociated cells as well as intact islets. These results suggest that lost cell-extracellular matrix interactions in cell encapsulation systems can lead to decreased insulin secretion and ILK signaling is a target to overcome this phenomenon. (communication)

  14. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    Science.gov (United States)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  15. Device for encapsulating radioactive materials

    International Nuclear Information System (INIS)

    Suthanthiran, K.

    1994-01-01

    A capsule for encapsulating radioactive material for radiation treatment comprising two or more interfitting sleeves, wherein each sleeve comprises a closed bottom portion having a circumferential wall extending therefrom, and an open end located opposite the bottom portion. The sleeves are constructed to fit over one another to thereby establish an effectively sealed capsule container. 3 figs

  16. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.-S.; Yao Jie; Durst, Richard A.

    2006-01-01

    Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy

  17. Nutritional value of micro-encapsulated fish oils in rats

    DEFF Research Database (Denmark)

    Rosenquist, Annemette; Hølmer, Gunhild Kofoed

    1996-01-01

    The nutritional value of a micro-encapsulated fish oil product has been investigated. Three groups of 10 male Wistar rats each were fed dietscontaining 20% (w/w) of fat, and only the type and form of the fat added was different. In the test groups 5% (w/w) of fish oil either as such or in amicro......-encapsulated form was incorporated in the diets. The remaining fat was lard supplemented with corn oil to a dietary content of linoleic acid at10% (w/w). The control group received lard and corn oil only. A mixture similar to the dry matter in the micro-encapsulated product was alsoadded to the diets not containing...... this product. The uptake of marine (n-3) polyunsaturated fatty acids (PUFA) from both types of fish oil supplementwas reflected in the fatty acid profiles of liver phosphatidyl cholines (PC), phosphatidyl ethanolamines (PE), triglycerides (TG) and cardiolipin (CL).A suppression of the elongation of linoleic...

  18. Polymeric nanoparticles encapsulating white tea extract for nutraceutical application.

    Science.gov (United States)

    Sanna, Vanna; Lubinu, Giuseppe; Madau, Pierluigi; Pala, Nicolino; Nurra, Salvatore; Mariani, Alberto; Sechi, Mario

    2015-02-25

    With the aim to obtain controlled release and to preserve the antioxidant activity of the polyphenols, nanoencapsulation of white tea extract into polymeric nanoparticles (NPs) based on poly(ε-caprolactone) (PCL) and alginate was successfully performed. NPs were prepared by nanoprecipitation method and were characterized in terms of morphology and chemical properties. Total polyphenols and catechins contents before and after encapsulation were determined. Moreover, in vitro release profiles of encapsulated polyphenols from NPs were investigated in simulated gastrointestinal fluids. The antioxidant activity and stability of encapsulated extract were further evaluated. Interestingly, NPs released 20% of the polyphenols in simulated gastric medium, and 80% after 5 h at pH 7.4, showing a good capacity to control the polyphenols delivery. Furthermore, DPPH(•) assay confirmed that white tea extract retained its antioxidant activity and NPs protected tea polyphenols from degradation, thus opening new perspectives for the exploitation of white tea extract-loaded NPs for nutraceutical applications.

  19. Sputtered Encapsulation as Wafer Level Packaging for Isolatable MEMS Devices: A Technique Demonstrated on a Capacitive Accelerometer

    Directory of Open Access Journals (Sweden)

    Azrul Azlan Hamzah

    2008-11-01

    Full Text Available This paper discusses sputtered silicon encapsulation as a wafer level packaging approach for isolatable MEMS devices. Devices such as accelerometers, RF switches, inductors, and filters that do not require interaction with the surroundings to function, could thus be fully encapsulated at the wafer level after fabrication. A MEMSTech 50g capacitive accelerometer was used to demonstrate a sputtered encapsulation technique. Encapsulation with a very uniform surface profile was achieved using spin-on glass (SOG as a sacrificial layer, SU-8 as base layer, RF sputtered silicon as main structural layer, eutectic gold-silicon as seal layer, and liquid crystal polymer (LCP as outer encapsulant layer. SEM inspection and capacitance test indicated that the movable elements were released after encapsulation. Nanoindentation test confirmed that the encapsulated device is sufficiently robust to withstand a transfer molding process. Thus, an encapsulation technique that is robust, CMOS compatible, and economical has been successfully developed for packaging isolatable MEMS devices at the wafer level.

  20. Direct observation and analysis of yolk-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki [JEOL Ltd., SM Business Unit, Tokyo (Japan); Young Jeong, Hu [Graduate School of EEWS, WCU/BK21+, KAIST, Daejeon 305-701 (Korea, Republic of); Galeano, Carolina; Schüth, Ferdi [Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Mülheim (Germany); Terasaki, Osamu, E-mail: terasaki@mmk.su.se, E-mail: terasaki@kaist.ac.kr [Graduate School of EEWS, WCU/BK21+, KAIST, Daejeon 305-701 (Korea, Republic of); Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on Porous Materials, Stockholm University, SE-10691 Stockholm (Sweden)

    2014-11-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO{sub 2}, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  1. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liang [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Sun, Hongrui [English Teaching Department, School of Basic Courses, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 (China); Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China)

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  2. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    International Nuclear Information System (INIS)

    Hu, Liang; Sun, Hongrui; Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying; Wang, Siling

    2015-01-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  3. Unique coexistence of dispersion stability and nanoparticle chemisorption in alkylamine/alkylacid encapsulated silver nanocolloids.

    Science.gov (United States)

    Aoshima, Keisuke; Hirakawa, Yuya; Togashi, Takanari; Kurihara, Masato; Arai, Shunto; Hasegawa, Tatsuo

    2018-04-17

    Surface encapsulation of metal nanoparticles (NPs) is fundamental to achieve sufficient dispersion stability of metal nanocolloids, or metal nanoink. However, the feature is incompatible with surface reactive nature of the metal NPs, although these features are both essential to realizing the functional applications into printed electronics technologies. Here we show that two different kinds of encapsulation for silver NPs (AgNPs) by alkylamine and alkylacid together are the key to achieve unique compatibility between the high dispersion stability as dense nanoclolloids and the AgNP chemisorption printing on activated patterned polymer surfaces. Advanced confocal dynamic light scattering study reveals that an additive trace amount of oleic acid is the critical parameter for controlling the dispersion and coagulative (or surface-reactive) characteristics of the silver nanocolloids. The composition of the disperse media is also important for obtaining highly concentrated but low-viscosity silver nanocolloids that show very stable dispersion. The results demonstrate that the high-resolution AgNP chemisorption printing is possible only by using unique silver nanocolloids composed of an exceptional balance of ligand formulation and dispersant composition.

  4. Analysis of Double-encapsulated Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Hales, Jason Dean [Idaho National Laboratory; Medvedev, Pavel G [Idaho National Laboratory; Novascone, Stephen Rhead [Idaho National Laboratory; Perez, Danielle Marie [Idaho National Laboratory; Williamson, Richard L [Idaho National Laboratory

    2014-09-01

    In an LWR fuel rod, the cladding encapsulates the fuel, contains fission products, and transfers heat directly to the water coolant. In some situations, it may be advantageous to separate the cladding from the coolant through use of a secondary cladding or capsule. This may be done to increase confidence that the fuel or fission products will not mix with the coolant, to provide a mechanism for controlling the rod temperature, or to place multiple experimental rodlets within a single housing. With an axisymmetric assumption, it is possible to derive closed-form expressions for the temperature profile in a fuel rod using radially-constant thermal conductivity in the fuel. This is true for both a traditional fuel-cladding rod and a double-encapsulated fuel (fuel, cladding, capsule) configuration. Likewise, it is possible to employ a fuel performance code to analyse both a traditional and a double-encapsulated fuel. In the case of the latter, two sets of gap heat transfer conditions must be imposed. In this work, we review the equations associated with radial heat transfer in a cylindrical system, present analytic and computational results for a postulated power and gas mixture history for IFA-744, and describe the analysis of the AFC-2A, 2B metallic fuel alloy experiments at the Advanced Test Reactor, including the effect of a release of fission products into the cladding-capsule gap. The computational results for these two cases were obtained using BISON, a fuel performance code under development at Idaho National Laboratory.

  5. Strain screening, fermentation, separation, and encapsulation for production of nattokinase functional food.

    Science.gov (United States)

    Wei, Xuetuan; Luo, Mingfang; Xie, Yuchun; Yang, Liangrong; Li, Haojian; Xu, Lin; Liu, Huizhou

    2012-12-01

    This study presents a novel and integrated preparation technology for nattokinase functional food, including strain screening, fermentation, separation, and encapsulation. To rapidly screen a nattokinase-productive strain, PCR-based screening method was combined with fibrinolytic activity-based method, and a high productive strain, Bacillus subtilis LSSE-22, was isolated from Chinese soybean paste. Reduction of poly-γ-glutamic acid (γ-PGA) concentration may contribute to separation of nattokinase and reduction of late-onset anaphylaxis risk. Chickpeas were confirmed as the favorable substrate for enhancement of nattokinase production and reduction of γ-PGA yield. Using cracked chickpeas, the nattokinase activity reached 356.25 ± 17.18 FU/g (dry weight), which is much higher than previous reports. To further reduce γ-PGA concentration, ethanol fractional extraction and precipitation were applied for separation of nattokinase. By extraction with 50 % and precipitation with 75 % ethanol solution, 4,000.58 ± 192.98 FU/g of nattokinase powders were obtained, and the activity recovery reached 89 ± 1 %, while γ-PGA recovery was reduced to 21 ± 2 %. To improve the nattokinase stability at acidic pH condition, the nattokinase powders were encapsulated, and then coated with methacrylic acid-ethyl acrylate copolymer. After encapsulation, the nattokinase was protected from being denatured under various acid conditions, and pH-responsible controlled release at simulated intestinal fluid was realized.

  6. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold.

    Science.gov (United States)

    Moshaverinia, Alireza; Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H; Shi, Songtao

    2014-02-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications.

  7. Ultra-tiny ZnMn2O4 nanoparticles encapsulated in sandwich-like carbon nanosheets for high-performance supercapacitors

    Science.gov (United States)

    Guan, Yongxin; Feng, Yangyang; Mu, Yanping; Fang, Ling; Zhang, Huijuan; Wang, Yu

    2016-11-01

    Known as an excellent energy storage material, ZnMn2O4 has a wide range of applications in supercapacitors. In this report, a special sandwich-like structure of ZnMn2O4/C has been first designed and synthesized via a simple hydrothermal method and subsequent calcinations. The designed special sandwich-like structure can benefit ion exchange and remit the probable volume changes during a mass of electrochemical reactions. Furthermore, the porous carbon nanosheets, derived from low-cost glucose, can effectively increase ion flux. Therefore, the novel sandwich-like ZnMn2O4 nanoparticles encapsulated in carbon nanosheets can undoubtedly demonstrate an exceptional electrochemical performance for SCs. In this work, the composite material with porous sandwich-like structure exhibits excellent cyclic stability for 5000 cycles (˜5% loss) and high specific capacitance of 1786 F g-1.

  8. Multiple encapsulation of LANL waste using polymers. Final report

    International Nuclear Information System (INIS)

    Schwartz, R.L.

    1994-01-01

    Polymer encapsulation of lead shielding/blasting grit (surrogate) mixed waste was optimized at bench scale using melamine formaldehyde, polyurethane, and butadiene thermosetting polymers. Three pellet-based intermediate waste forms, and a final waste form, were prepared, each providing an additional level of integrity. Encapsulated waste integrity was measured by chemical and physical techniques. Compliance was established using the Toxicity Characteristic Leaching Procedure. Equipment appropriate to pilot-scale demonstration of program techniques was investigated. A preliminary equipment list and layout, and process block flow diagram were prepared

  9. Plastic Encapsulated Microcircuits (PEMs) Reliability Guide

    Science.gov (United States)

    Sandor, M.

    2000-01-01

    It is reported by some users and has been demonstrated by others via testing and qualification that the quality and reliability of plastic-encapsulated microcircuits (PEMs) manufactured today are excellent in commercial applications and closely equivalent, and in some cases superior to their hemetic counterparts.

  10. Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods.

    Science.gov (United States)

    Liu, Jinzhang; Notarianni, Marco; Rintoul, Llew; Motta, Nunzio

    2014-01-01

    One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

  11. Experimental Study of 5-fluorouracil Encapsulated Ethosomes Combined with CO2 Fractional Laser to Treat Hypertrophic Scar.

    Science.gov (United States)

    Zhang, Zhen; Chen, Jun; Huang, Jun; Wo, Yan; Zhang, Yixin; Chen, Xiangdong

    2018-01-18

    This study is designed to explore permeability of ethosomes encapsulated with 5-florouracil (5-FU) mediated by CO 2 fractional laser on hypertrophic scar tissues. Moreover, therapeutic and duration effect of CO 2 fractional laser combined with 5-FU encapsulated ethosomes in rabbit ear hypertrophic scar model will be evaluated. The permeated amount of 5-FU and retention contents of 5-FU were both determined by high-performance liquid chromatography (HPLC). Fluorescence intensities of ethosomes encapsulated with 5-FU (5E) labeled with Rodanmin 6GO (Rho) were measured by confocal laser scanning microscopy (CLSM). The permeability promotion of 5E labeled with Rho in rabbit ear hypertrophic scar mediated by CO 2 fractional laser was evaluated at 0 h, 6 h, 12 h, 24 h, 3 days and 7 days after the irradiation. The opening rates of the micro-channels were calculated according to CLSM. The therapeutic effect of 5EL was evaluated on rabbit ear hypertrophic scar in vivo. Relative thickness of rabbit ear hypertrophic scar before and after the treatment was measured by caliper method. Scar elevation index (SEI) of rabbit ear hypertrophic scar was measured using H&E staining. The data showed that the penetration amount of 5EL group was higher than 5E group (4.15 ± 2.22 vs. 0.73 ± 0.33; p 5E group (107.61 ± 13.27 vs. 20.73 ± 3.77; p 5E group (24.42 ± 4.37 vs.12.25 ± 1.64; p 5E group at different time points (1, 6, and 24 h). The opening rates of the micro-channels were decreased gradually within 24 h, and micro-channels were closed completely 3 days after the irradiation by CO 2 fractional laser. The relative thickness and SEI of rabbit ear hypertrophic scar after 7 days of treatment in the 5EL group were significantly lower than the 5E group. CO 2 fractional laser combined with topical 5E can be effective in the treatment of hypertrophic scar in vivo and supply a novel therapy method for human hypertrophic scar.

  12. Modulation of Rat Cecal Microbiota by Administration of Raffinose and Encapsulated Bifidobacterium breve

    OpenAIRE

    Dinoto, Achmad; Suksomcheep, Akarat; Ishizuka, Satoshi; Kimura, Hanae; Hanada, Satoshi; Kamagata, Yoichi; Asano, Kozo; Tomita, Fusao; Yokota, Atsushi

    2006-01-01

    To investigate the effects of administration of raffinose and encapsulated Bifidobacterium breve JCM 1192T cells on the rat cecal microbiota, in a preclinical synbiotic study groups of male WKAH/Hkm Slc rats were fed for 3 weeks with four different test diets: basal diet (group BD), basal diet supplemented with raffinose (group RAF), basal diet supplemented with encapsulated B. breve (group CB), and basal diet supplemented with both raffinose and encapsulated B. breve (group RCB). The bacteri...

  13. Fluorescent probe encapsulated hydrogel microsphere for selective and reversible detection of Hg{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhenhu; Wang, Fang; Qiang, Jian; Zhang, Zhijie; Chen, Yahui; Wang, Yong; Zhang, Wei; Chen, Xiaoqiang

    2017-03-15

    We developed a simple and sensitive hydrogel sensor in the form of microspheres by using fluorescence probe encapsulated within a hydrogel matrix for the detection of Hg{sup 2+}. The traditional fluorescence probes suspended in solution are not transportable and recoverable. To overcome these disadvantages, we devised poly(ethylene glycol) diacrylate-based hydrogel microspheres in which fluorescence probe (R19S) was embedded at high density. The functionalized hydrogel microspheres were prepared by combining a microfluidic device with UV light. The hydrogel microspheres-based sensor exhibited good selectivity to Hg{sup 2+} among various metal ions and high sensitivity with a detection limit of 90 nM. Furthermore, after binding with Hg{sup 2+}, the R19S encapsulated hydrogel microspheres can be separated from testing samples easily and treated with the solution containing KI to remove Hg{sup 2+} and realize reusable detection. The current work may offer a new method for Hg{sup 2+} recognition with a more efficient manner.

  14. Synthesis carbon-encapsulated NiZn ferrite nanocomposites by in-situ starch coating route combined with hydrogen thermal reduction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fuming [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Xie, Yu, E-mail: xieyu_121@163.com [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, Chinese Academy of Sciences, Beijing 100190 (China); Duan, Junhong; Hua, Helin [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Gao, Yunhua [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, TIPC, Chinese Academy of Sciences, Beijing 100190 (China); Huang, Yan; Pan, Jianfei; Ling, Yun [Department of Materials Chemistry, Nanchang Hangkong University, Nanchang 330063 (China)

    2015-05-05

    Carbon-encapsulated NiZn ferrite magnetic nanocomposites were successfully synthesized by an inexpensive and environment-friendly method of in-situ starch coating route combined with hydrogen thermal reduction. The nanocomposites were characterized in detail by X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and vibrate sample magnetometer (VSM) and so on techniques. XRD, FT-IR, TGA and TEM images indicate the formation of carbon-encapsulated NiZn ferrite magnetic nanocomposites. XRD patterns reveal that the crystalline structure of the nanocomposites is cubic spinel and taenite emerges under the hydrogen thermal reductive ambient. FT-IR spectra suggest that there are interactions on the NiZn ferrite nanocomposites and a spinel-type structure corresponding to NiZn ferrite has formed. TGA shows that the weight loss of the nanocomposites can be divided into three stages in the course of heat decomposition. TEM observations reveal that the carbon-encapsulated NiZn ferrite magnetic nanocomposites have an intact core–shell structure. Under the magnetic field, the nanocomposites exhibited the ferrimagnetic behavior. The saturated magnetization (M{sub s}) of carbon-encapsulated NiZn ferrite nanocomposites calcined at 400 °C can reach a high value up to 72.67 emu/g, and the saturated magnetization (M{sub s}) decreases as the annealing temperature goes up, while the coercivity (Hc), magnetic residual (Mr) magnetic parameters practically fixed on 115.15 Oe and 7.85 emu/g. - Graphical abstract: Carbon-encapsulated NiZn ferrite magnetic nanocomposites were successfully synthesized by an inexpensive and environment-friendly method of in-situ starch coating route combined with hydrogen thermal reduction (Fig. 1). The nanocomposites were characterized and the experimental results were discussed. Under applied magnetic field, the nanocomposites exhibited the ferromagnetic behavior

  15. Understanding High Rate Behavior Through Low Rate Analog

    Science.gov (United States)

    2014-04-28

    challenges in high rate character- isation of polymers. The most important is that, owing to their low stress wavespeed, the structural response of...box’ tool, to provide supporting date for the rate dependent mechanical character- isation . Experiments were performed on a TA instruments Q800

  16. Cyclic water-trimer encapsulation into D2 (22)-C84 fullerene

    Science.gov (United States)

    Slanina, Zdeněk; Uhlík, Filip; Nagase, Shigeru; Akasaka, Takeshi; Lu, Xing; Adamowicz, Ludwik

    2018-03-01

    The cyclic water-trimer encapsulations into D2 (22)-C84 fullerene are evaluated. The encapsulation energy is computed at the M06-2X/6-31++G∗∗ level and it is found that the trimer storage in C84 yields the potential-energy gain of 10.4 kcal/mol. The encapsulated trimer can have two different forms, either the conformation known with the free gas-phase water trimer or the arrangement with the three non-hydrogen bonded H atoms on the same side of the O-O-O plane. The latter endohedral isomer is lower in the potential energy by 0.071 kcal/mol and forms about 57% of their equilibrium mixture at room temperature.

  17. Encapsulated magnetite particles for biomedical application

    CERN Document Server

    Landfester, K

    2003-01-01

    The process of miniemulsification allows the generation of small, homogeneous, and stable droplets containing monomer or polymer precursors and magnetite which are then transferred by polymer reactions to the final polymer latexes, keeping their particular identity without serious exchange kinetics involved. It is shown that the miniemulsion process can excellently be used for the formulation of polymer-coated magnetic nanoparticles which can further be used for biomedical applications. The use of high shear, appropriate surfactants, and the addition of a hydrophobe in order to suppress the influence of Ostwald ripening are key factors for the formation of the small and stable droplets in miniemulsion and will be discussed. Two different approaches based on miniemulsion processes for the encapsulation of magnetite into polymer particles will be presented in detail.

  18. Accelerated/abbreviated test methods of the low-cost silicon solar array project. Study 4, task 3: Encapsulation

    Science.gov (United States)

    Kolyer, J. M.; Mann, N. R.

    1977-01-01

    Methods of accelerated and abbreviated testing were developed and applied to solar cell encapsulants. These encapsulants must provide protection for as long as 20 years outdoors at different locations within the United States. Consequently, encapsulants were exposed for increasing periods of time to the inherent climatic variables of temperature, humidity, and solar flux. Property changes in the encapsulants were observed. The goal was to predict long term behavior of encapsulants based upon experimental data obtained over relatively short test periods.

  19. Paclitaxel Encapsulated in Halloysite Clay Nanotubes for Intestinal and Intracellular Delivery.

    Science.gov (United States)

    Yendluri, Raghuvara; Lvov, Yuri; de Villiers, Melgardt M; Vinokurov, Vladimir; Naumenko, Ekaterina; Tarasova, Evgenya; Fakhrullin, Rawil

    2017-10-01

    Naturally formed halloysite tubules have a length of 1 μm and lumens with a diameter of 12-15 nm which can be loaded with drugs. Halloysite's biocompatibility allows for its safe delivering to cells at a concentration of up to 0.5 mg/mL. We encapsulated the anticancer drug paclitaxel in halloysite and evaluated the drug release kinetics in simulated gastric and intestinal conditions. To facilitate maximum drug release in intestinal tract, halloysite tubes were coated with the pH-responsive polymer poly(methacrylic acid-co-methyl methacrylate). Release kinetics indicated a triggered drug release pattern at higher pH, corresponding to digestive tract environment. Tablets containing halloysite, loaded with paclitaxel, as a compression excipient were formulated with drug release occurring at a sustained rate. In vitro anticancer effects of paclitaxel-loaded halloysite nanotubes were evaluated on human cancer cells. In all the treated cell samples, polyploid nuclei of different sizes and fragmented chromatin were observed, indicating a high therapeutic effect of halloysite formulated paclitaxel. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Evaluation of antinociceptive activity of nanoliposome-encapsulated and free-form diclofenac in rats and mice.

    Science.gov (United States)

    Goh, Jun Zheng; Tang, Sook Nai; Chiong, Hoe Siong; Yong, Yoke Keong; Zuraini, Ahmad; Hakim, Muhammad Nazrul

    2015-01-01

    Diclofenac is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits anti-inflammatory, antinociceptive, and antipyretic activities. Liposomes have been shown to improve the therapeutic efficacy of encapsulated drugs. The present study was conducted to compare the antinociceptive properties between liposome-encapsulated and free-form diclofenac in vivo via different nociceptive assay models. Liposome-encapsulated diclofenac was prepared using the commercialized proliposome method. Antinociceptive effects of liposome-encapsulated and free-form diclofenac were evaluated using formalin test, acetic acid-induced abdominal writhing test, Randall-Selitto paw pressure test, and plantar test. The results of the writhing test showed a significant reduction of abdominal constriction in all treatment groups in a dose-dependent manner. The 20 mg/kg liposome-encapsulated diclofenac demonstrated the highest antinociceptive effect at 78.97% compared with 55.89% in the free-form group at equivalent dosage. Both liposome-encapsulated and free-form diclofenac produced significant results in the late phase of formalin assay at a dose of 20 mg/kg, with antinociception percentages of 78.84% and 60.71%, respectively. Significant results of antinociception were also observed in both hyperalgesia assays. For Randall-Sellito assay, the highest antinociception effect of 71.38% was achieved with 20 mg/kg liposome-encapsulated diclofenac, while the lowest antinociceptive effect of 17.32% was recorded with 0 mg/kg liposome formulation, whereas in the plantar test, the highest antinociceptive effect was achieved at 56.7% with 20 mg/kg liposome-encapsulated diclofenac, and the lowest effect was shown with 0 mg/kg liposome formulation of 8.89%. The present study suggests that liposome-encapsulated diclofenac exhibits higher antinociceptive efficacy in a dose-dependent manner in comparison with free-form diclofenac.

  1. Degradation mechanism of AlInGaP light emitting diodes during PMMA encapsulation and operation

    Energy Technology Data Exchange (ETDEWEB)

    Preuss, S.

    2007-11-15

    In this thesis we investigate the degradation mechanism of AlInGaP light emitting diodes (LEDs) during encapsulation and operation. The AlInGaP LEDs are encapsulated using an injection moulding tool. The molded part acts as physical housing as well as tailors the radiation pattern. Thus a narrow light beam with a spread angle of {alpha}=10 has been observed. The LED temperature has been measured by the voltage variation of the LED which is caused by the temperature change at a constant current. Thus the thermal load of the LED chips during the encapsulation process is investigated. To verify the temperature measurement a simulation based on the finite element method has been carried out. The experimental and theoretical data are in good agreement. The LED properties are investigated before and after the encapsulation. The results are compared and we found a reduction of the serial resistance and an enhanced luminous efficiency. The peak emission energy remained constant, but a peak broadening of {delta}E=9meV has been observed. A slight polarisation of the emitted light is an indication for a polarization effect of the polymethylmethacrylat (PMMA) housing. Accelerated degradation experiments using high forward currents are performed to estimate the lifetime of the PMMA encapsulated LEDs. A diffusion model is presented to explain the decay in luminous flux versus degradation time and degradation current. We believe that the reduction of quantum efficiency is caused by p-type dopant diffusion into the active layer where it acts as a non-radiative recombination centre. Using this model we determine the lifetime under the recommended drive current of I=20mA. The resulting lifetime is t=1.5.10{sup 6}h using a reduction of 50% in the luminous flux as failure criteria. (orig.)

  2. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se

    Science.gov (United States)

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng; Chen, Cheng; Sun, Yan; Chen, Zhuoyu; Dang, Wenhui; Tan, Congwei; Liu, Yujing; Yin, Jianbo; Zhou, Yubing; Huang, Shaoyun; Xu, H. Q.; Cui, Yi; Hwang, Harold Y.; Liu, Zhongfan; Chen, Yulin; Yan, Binghai; Peng, Hailin

    2017-07-01

    High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of fundamental research. However, air-stable ultrathin semiconducting materials with superior performances remain elusive at present. Here, we report ultrathin films of non-encapsulated layered Bi2O2Se, grown by chemical vapour deposition, which demonstrate excellent air stability and high-mobility semiconducting behaviour. We observe bandgap values of ˜0.8 eV, which are strongly dependent on the film thickness due to quantum-confinement effects. An ultrahigh Hall mobility value of >20,000 cm2 V-1 s-1 is measured in as-grown Bi2O2Se nanoflakes at low temperatures. This value is comparable to what is observed in graphene grown by chemical vapour deposition and at the LaAlO3-SrTiO3 interface, making the detection of Shubnikov-de Haas quantum oscillations possible. Top-gated field-effect transistors based on Bi2O2Se crystals down to the bilayer limit exhibit high Hall mobility values (up to 450 cm2 V-1 s-1), large current on/off ratios (>106) and near-ideal subthreshold swing values (˜65 mV dec-1) at room temperature. Our results make Bi2O2Se a promising candidate for future high-speed and low-power electronic applications.

  3. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    International Nuclear Information System (INIS)

    Ha, Phuong Thu; Tran, Dai Lam; Nguyen, Xuan Phuc; Le, Mai Huong; Ha Tran, Thi Hong; Hoang, Thi My Nhung; Huong Le, Thi Thu; Duong, Tuan Quang

    2012-01-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50–100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa). (paper)

  4. Preparation of keratin-based microcapsules for encapsulation of hydrophilic molecules.

    Science.gov (United States)

    Rajabinejad, Hossein; Patrucco, Alessia; Caringella, Rosalinda; Montarsolo, Alessio; Zoccola, Marina; Pozzo, Pier Davide

    2018-01-01

    The interest towards microcapsules based on non-toxic, biodegradable and biocompatible polymers, such as proteins, is increasing considerably. In this work, microcapsules were prepared using water soluble keratin, known as keratoses, with the aim of encapsulating hydrophilic molecules. Keratoses were obtained via oxidizing extraction of pristine wool, previously degreased by Soxhlet. In order to better understand the shell part of microcapsules, pristine wool and obtained keratoses were investigated by FT-IR, gel-electrophoresis and HPLC. Production of the microcapsules was carried out by a sonication method. Thermal properties of microcapsules were investigated by DSC. Microencapsulation and dye encapsulation yields were obtained by UV-spectroscopy. Morphological structure of microcapsules was studied by light microscopy, SEM, and AFM. The molecular weights of proteins analyzed using gel-electrophoresis resulted in the range of 38-62kDa. The results confirmed that the hydrophilic dye (Telon Blue) was introduced inside the keratoses shells by sonication and the final microcapsules diameter ranged from 0.5 to 4µm. Light microscope investigation evidenced the presence of the dye inside the keratoses vesicles, confirming their capability of encapsulating hydrophilic molecules. The microcapsule yield and dye encapsulation yield were found to be 28.87±3% and 83.62±5% respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    Science.gov (United States)

    Thu Ha, Phuong; Huong Le, Mai; Nhung Hoang, Thi My; Thu Huong Le, Thi; Quang Duong, Tuan; Tran, Thi Hong Ha; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-09-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50-100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa).

  6. Encapsulation of Multiple Microalgal Cells via a Combination of Biomimetic Mineralization and LbL Coating.

    Science.gov (United States)

    Kim, Minjeong; Choi, Myoung Gil; Ra, Ho Won; Park, Seung Bin; Kim, Yong-Joo; Lee, Kyubock

    2018-02-13

    The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO₃ crystals; layer-by-layer (LbL) coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO₃ crystal size, which is dependent on CaCl₂/Na₂CO₃ concentration. The microalgal cells could be embedded in CaCO₃ crystals by a two-step process: heterogeneous nucleation of crystal on the cell surface followed by cell embedment by the subsequent growth of crystal. The surfaces of the microalgal cells were highly favorable for the crystal growth of calcite; thus, micrometer-sized microalgae could be perfectly occluded in the calcite crystal without changing its rhombohedral shape. The surfaces of the microcapsules, moreover, could be decorated with gold nanoparticles, Fe₃O₄ magnetic nanoparticles, and carbon nanotubes (CNTs), by which we would expect the functionalities of a light-triggered release, magnetic separation, and enhanced mechanical and electrical strength, respectively. This approach, entailing the encapsulation of microalgae in semi-permeable and hollow polymer microcapsules, has the potential for application to microbial-cell immobilization for high-biomass-concentration cultivation as well as various other bioapplications.

  7. High burn rate solid composite propellants

    Science.gov (United States)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  8. Multilayer emulsions as a strategy for linseed oil and α-lipoic acid micro-encapsulation: study on preparation and in vitro characterization.

    Science.gov (United States)

    Huang, Juan; Wang, Qiang; Li, Tong; Xia, Nan; Xia, Qiang

    2018-01-04

    Linseed oil and α-lipoic acid are bioactive ingredients, which play an important role in human nutrition and health. However, their application in functional foods is limited because of their instabilities and poor solubilities in hydrophilic matrices. Multilayer emulsions are particularly useful to protect encapsulated bioactive ingredients. The aim of this study was to fabricate multilayer emulsions by a high-pressure homogenization method to encapsulate linseed oil and α-lipoic acid simultaneously. Tween 20 and lecithin were used as surfactants to stabilize the oil droplets of primary emulsions. Multilayer emulsions were produced by using an electrostatic layer-by-layer deposition process of lecithin-chitosan membranes. Thermal treatment exhibited that chitosan encapsulation could improve the thermal stability of primary emulsions. During in vitro digestion, it was found that chitosan encapsulation had little effect on the lipolysis of linseed oil and bioaccessibility of α-lipoic acid. The oxidation stability of linseed oil in multilayer emulsions was improved effectively by chitosan encapsulation and α-lipoic acid. Chitosan encapsulation could inhibit the degradation of α-lipoic acid. A physical stability study indicated that multilayer emulsions had good centrifugal, dilution and storage stabilities. Multilayer emulsion is an effective delivery system to incorporate linseed oil and α-lipoic acid into functional foods and beverages. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  9. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    Science.gov (United States)

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-03-01

    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  10. Treatment of Diabetes with Encapsulated Islets

    NARCIS (Netherlands)

    de Vos, Paul; Spasojevic, Milica; Faas, Marijke M.; Pedraz, JL; Orive, G

    2010-01-01

    Cell encapsulation has been proposed for the treatment of a wide variety of diseases since it allows for transplantation of cells in the absence of undesired immunosuppression. The technology has been proposed to be a solution for the treatment of diabetes since it potentially allows a mandatory

  11. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    International Nuclear Information System (INIS)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory's (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types of commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes

  12. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory`s (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types of commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes.

  13. Amidase encapsulated O-carboxymethyl chitosan nanoparticles for vaccine delivery.

    Science.gov (United States)

    Smitha, K T; Sreelakshmi, M; Nisha, N; Jayakumar, R; Biswas, Raja

    2014-02-01

    This work reports the development of amidase encapsulated O-carboxymethyl chitosan nanoparticles (Ami-O-CMC NPs) of 300±50 nm size by ionic cross-linking method. The prepared Ami-O-CMC NPs had an encapsulation efficiency of 55.39%. Haemolysis assay and cytotoxicity studies proved the hemocompatibility and cytocompatibility of the prepared NPs. The sustained release of Ami from the NPs is expected to prolong its immunogenicity and in turn lead to development of better protective immunity against Staphylococcus aureus infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, C.A., E-mail: Camilla.stitt@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hart, M., E-mail: oxford.mike@gmail.com [Diamond Light Source Limited, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, Oxfordshire OX11 0QX (United Kingdom); Harker, N.J., E-mail: nicholas.harker@esrf.fr [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hallam, K.R., E-mail: k.r.hallam@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); MacFarlane, J., E-mail: james.macfarlane@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Banos, A., E-mail: antonis.banos@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Paraskevoulakos, C., E-mail: cp13846@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Butcher, E., E-mail: ed.j.butcher@nnl.co.uk [National Nuclear Laboratory, Seascale, Cumbria CA20 1 PG (United Kingdom); Padovani, C., E-mail: cristiano.padovani@nda.gov.uk [Radioactive Waste Management Limited (formerly the Radioactive Waste Management Directorate of the UK Nuclear Decommissioning Authority), Curie Avenue, Didcot, Oxfordshire OX11 0RH (United Kingdom); Scott, T.B., E-mail: t.b.scott@bristol.ac.uk [Interface Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2015-03-21

    Highlights: • Unirradiated Magnox uranium was encapsulated in grout and exposed to hydrogen. • Synchrotron X-ray tomography imaged the uranium corrosion before and after exposure. • Synchrotron X-ray powder diffraction identified the corrosion products; UH{sub 3} and UO{sub 2}. • Uranium encapsulated in grout oxidised via the anoxic U + H{sub 2}O regime. • Successful in-situ, non-invasive examination of pyrophoric and radioactive material - Abstract: How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H{sub 2} corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U + H{sub 2}O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO{sub 2} and UH{sub 3}, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems.

  15. Thermally Induced Encapsulation of Food Nutrients into Phytoferritin through the Flexible Channels without Additives.

    Science.gov (United States)

    Yang, Rui; Tian, Jing; Liu, Yuqian; Yang, Zhiying; Wu, Dandan; Zhou, Zhongkai

    2017-11-22

    The cavity of phytoferritin provides a nanospace to encapsulate and deliver food nutrient molecules. However, tranditional methods to prepare the ferritin-nutrient complexes must undergo acid/alkaline conditions or apply additives. In this work, we provide a novel guideline that thermal treatment at 60 °C can expand ferritin channels by uncoiling the surrounding α-helix. Upon reduction of the temperature to 20 °C, food nutrient rutin can be encapsulated in apo-soybean seed ferritin (apoSSF) at pH 7.0 through channels without disassembly of the protein cage and with no addition of additives. Results indicated that one apoSSF could encapsulate about 10.5 molecules of rutin, with an encapsulation ratio of 8.08% (w/w). In addition, the resulting rutin-loaded SSF complexes were monodispersed in a size of 12 nm in aqueous solution. This work provides a novel pathway for the encapsulation of food nutrient molecules into the nanocavity of ferritin under a neutral pH condition induced by thermal treatment.

  16. Whey microbeads as a matrix for the encapsulation and immobilisation of riboflavin and peptides.

    Science.gov (United States)

    O'Neill, Graham J; Egan, Thelma; Jacquier, Jean Christophe; O'Sullivan, Michael; Dolores O'Riordan, E

    2014-10-01

    Whey microbeads manufactured using a cold-set gelation process, have been used to encapsulate bioactives. In this study whey microbeads were used to encapsulate riboflavin using 2 methods. Riboflavin was added to the microbead forming solution however diffusional losses of riboflavin occurred during the subsequent bead preparation. To overcome riboflavin loss, a second approach to 'load' whey microbeads by soaking in riboflavin was assessed. Significantly (p⩽0.05) higher concentrations of riboflavin were obtained in 'loaded' microbeads (361 mg/L) compared to riboflavin added to the microbead forming solution (48 mg/L). Riboflavin uptake by the microbeads was shown to be via a partition process. As partitioning is often driven by hydrophobic interactions the uptake of amino acids and peptides of varying hydrophobicities by the microbeads was examined. The % encapsulation increased with increasing molecule hydrophobicity with a maximum of 89% encapsulation. Whey microbeads are well suited to act as sorbents for encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Complexation/encapsulation of green tea polyphenols in mixed calcium carbonate and phosphate micro-particles.

    Science.gov (United States)

    Elabbadi, Amal; Jeckelmann, Nicolas; Haefliger, Olivier P; Ouali, Lahoussine

    2011-01-01

    We used a double-jet mixer to encapsulate water-soluble polyphenols, green tea extract (GTE), with calcium-based inorganic materials. The device mixed calcium chloride solutions with a solution of carbonate and phosphate in the presence of a GTE solution, and formed micro-particles which capture the GTE molecules. The micro-particles were analysed by liquid chromatography coupled to tandem mass spectroscopy to determine the encapsulation yield and loading of the different GTE components. We established correlations between (1) the efficiency of the GTE encapsulation and the composition of the mixed anion solutions and (2) the protonation degree of the ions and the molar ratio of calcium cations and carbonate/phosphate anions. An optimal and reproducible GTE loading of about 40% with an encapsulation yield of 65% was observed for a carbonate/phosphate molar composition of 4 : 1. In addition, our experimental results showed that the process is selective and favours the encapsulation of gallated species which form stronger complexes with calcium cations.

  18. Encapsulation of strontium aluminate phosphors to enhance water resistance and luminescence

    International Nuclear Information System (INIS)

    Zhu Yong; Zeng Jianghua; Li Wenyu; Xu Li; Guan Qiu; Liu Yingliang

    2009-01-01

    Strontium aluminate SrAl 2 O 4 :Eu 2+ ,Dy 3+ phosphors are chemically unstable against water or even moisture. To enhance the water resistance of the phosphors, an encapsulation was performed by direct surface reactions with phosphoric acid (H 3 PO 4 ). The morphology, surface structure, surface element composition, water resistance, luminescence, and photoacoustic spectrum of the phosphors before and after encapsulation were discussed. Experimental results showed that phosphors were perfectly encapsulated by amorphous layers in nanoscale and crystalline layers in microscale under different conditions. The water resistance of phosphors was greatly enhanced by the two types of layer. More importantly, the amorphous layers enhanced the luminescence of phosphors markedly. The possible mechanism for the enhancements was also proposed.

  19. Elementary study of encapsulation of radioisotope battery prototype based on 63Ni radio-voltaic effect

    International Nuclear Information System (INIS)

    Gao Hui; Zhang Huaming; Luo Shunzhong; Wang Heyi; Fu Zhonghua

    2012-01-01

    For isotope battery application, it is necessary to encapsulate in a certain method. After having accomplished selection of material composing and proportion, procedure and encapsulating process based on GD3217Y detector. the different types of device come from untouched, loaded by slip of stainless steel with or without 63 Ni isotope were encapsulated respectively. Despite necessary reliability of package has been evaluated in the previous work. in view of specialty due to the incorporation of radioactive isotopes into device, the reliability issue must be further taken into account for actual application. Hence, we emphasize on the comparison about electrical capability of types of devices under the different situations, namely, before and after encapsulation, the natural aging and artificial accelerated aging. The results of the comparison indicate that the adoption of the method of the encapsulation supply effectively stable electrical capability at the condition of ensuring safety of radioactive source besides improving environmental adaptability for device. Further, it offers technological support for the encapsulation of radioisotope battery based on β radio-voltaic effect. (authors)

  20. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization

    DEFF Research Database (Denmark)

    Fonte, Pedro; Araújo, Francisca; Seabra, Vítor

    2015-01-01

    The purpose of this work was to evaluate the influence of the co-encapsulation of lyoprotectants with insulin into PLGA nanoparticles, on the stability of the protein and nanoparticles upon lyophilization. Different lyoprotectants were used, namely trehalose, glucose, sucrose, fructose and sorbitol...... formulations with externally added lyoprotectants, except trehalose, showed crystallinity. FTIR assessment showed that co-encapsulating lyoprotectants better preserved insulin structure upon lyophilization with a spectral area overlap of 82-87%, compared to only 72% in lyoprotectant absence. These results were...... confirmed by circular dichroism spectroscopy. Surprisingly, the simultaneous co-encapsulation and addition of lyoprotectants was detrimental to protein stabilization. The insulin in vitro release studies demonstrated that formulations with co-encapsulated trehalose, glucose, sucrose, fructose and sorbitol...