WorldWideScience

Sample records for high elevation lakes

  1. Tissue contaminants and associated transcriptional response in trout liver from high elevation lakes of Washington

    Science.gov (United States)

    Moran, P.W.; Aluru, N.; Black, R.W.; Vijayan, M.M.

    2007-01-01

    The consistent cold temperatures and large amount of precipitation in the Olympic and Cascade ranges of Washington State are thought to enhance atmospheric deposition of contaminants. However, little is known about contaminant levels in organisms residing in these remote high elevation lakes. We measured total mercury and 28 organochlorine compounds in trout collected from 14 remote lakes in the Olympic, Mt. Rainer, and North Cascades National Parks. Mercury was detected in trout from all lakes sampled (15 to 262 ??g/kg ww), while two organochlorines, total polychlorinated biphenyls (tPCB) and dichlorodiphenyldichloroethylene (DDE), were also detected in these fish tissues (<25 ??g/kg ww). In sediments, organochlorine levels were below detection, while median total and methyl mercury were 30.4 and 0.34 ??g/ kg dry weight (ww), respectively. Using fish from two lakes, representing different contaminant loading levels (Wilcox lake: high; Skymo lake: low), we examined transcriptional response in the liver using a custom-made low-density targeted rainbow trout cDNA microarray. We detected significant differences in liver transcriptional response, including significant changes in metabolic, endocrine, and immune-related genes, in fish collected from Wilcox Lake compared to Skymo Lake. Overall, our results suggest that local urban areas contribute to the observed contaminant patterns in these high elevation lakes, while the transcriptional changes point to a biological response associated with exposure to these contaminants in fish. Specifically, the gene expression pattern leads us to hypothesize a role for mercury in disrupting the metabolic and reproductive pathways in fish from high elevation lakes in western Washington. ?? 2007 American Chemical Society.

  2. Paleolimnological records of nitrogen deposition in shallow, high-elevation lakes of Grand Teton National Park, Wyoming, USA

    Science.gov (United States)

    Spaulding, Sarah A.; Otu, Megan K.; Wolfe, Alexander P.; Baron, Jill S.

    2015-01-01

    Reactive nitrogen (Nr) from anthropogenic sources has been altering ecosystem function in lakes of the Rocky Mountains, other regions of western North America, and the Arctic over recent decades. The response of biota in shallow lakes to atmospheric deposition of Nr, however, has not been considered. Benthic algae are dominant in shallow, high-elevation lakes and are less sensitive to nutrient inputs than planktonic algae. Because the benthos is typically more nutrient rich than the water column, shallow lakes are not expected to show evidence of anthropogenic Nr. In this study, we assessed sedimentary evidence for regional Nr deposition, sediment chronology, and the nature of algal community response in five shallow, high-elevation lakes in Grand Teton National Park (GRTE). Over 140 diatom taxa were identified from the sediments, with a relatively high species richness of taxa characteristic of oligotrophic conditions. The diatom assemblages were dominated by benthic taxa, especially motile taxa. The GRTE lakes demonstrate assemblage-wide shifts in diatoms, including 1) synchronous and significant assemblage changes centered on ~1960 AD; 2) pre-1960 assemblages differed significantly from post-1960 assemblages; 3) pre-1960 diatom assemblages fluctuated randomly, whereas post- 1960 assemblages showed directional change; 4) changes in δ15N signatures were correlated with diatom community composition. These results demonstrate recent changes in shallow high18 elevation lakes that are most correlated with anthropogenic Nr. It is also possible, however, that the combined effect of Nr deposition and warming is accelerating species shifts in benthic diatoms. While uncertainties remain about the potential synergy of Nr deposition and warming, this study adds shallow lakes to the growing list of impacted high-elevation localities in western North America.

  3. Characterization of cyanobacterial communities from high-elevation lakes in the Bolivian Andes

    Science.gov (United States)

    Fleming, Erich D.; Prufert-Bebout, Leslie

    2010-06-01

    The Bolivian Altiplano is a harsh environment for life with high solar irradiation (visible and UVR), below freezing temperatures, and some of the lowest precipitation rates on the planet. However, microbial life is visibly abundant in small isolated refugia of spring or snowmelt-fed lakes. In this study, we characterized the cyanobacterial composition of a variety of microbial mats present in three lake systems: Laguna Blanca, Laguna Verde (elevation 4300 m), and a summit lake in the Licancabur Volcano cone (elevation 5970 m). These lakes and their adjacent geothermal springs present an interesting diversity of environments within a geographically small region (5 km2). From these sites, 78 cyanobacterial cultures were isolated in addition to ˜400 cyanobacterial 16S rRNA gene sequences from environmental genomic DNA. Based on microscopy, cultivation, and molecular analyses, these communities contained many heterocytous, nitrogen-fixing cyanobacteria (e.g., Calothrix, Nostoc, Nodularia) as well as a large number of cyanobacteria belonging to the form-genus Leptolyngbya. More than a third (37%) of all taxa in this study were new species (≤96% 16S rRNA gene sequence identity), and 11% represented new and novel taxa distantly related (≤93% identity) to any known cyanobacteria. This is one of the few studies to characterize cyanobacterial communities based on both cultivation-dependent and cultivation-independent analyses.

  4. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    Science.gov (United States)

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  5. Potential Influence of Climate Change on the Acid-Sensitivity of High-Elevation Lakes in the Georgia Basin, British Columbia

    Directory of Open Access Journals (Sweden)

    Donna Strang

    2015-01-01

    Full Text Available Global climate models predict increased temperature and precipitation in the Georgia Basin, British Colmbia; however, little is known about the impacts on high-elevation regions. In the current study, fifty-four high-elevation lakes (754–2005 m a.s.l. were studied to investigate the potential influence of climate change on surface water acid-sensitivity. Redundancy analysis indicated that the concentration of nitrate, dissolved organic carbon, and associated metals was significantly influenced by climate parameters. Furthermore, these components differed significantly between biogeoclimatic zones. Modelled soil base cation weathering for a subset of the study lakes (n=11 was predicted to increase by 9% per 1°C increase in temperature. Changes in temperature and precipitation may potentially decrease the pH of surface waters owing to changes in anthropogenic deposition and organic acid production. In contrast, increased soil base cation weathering may increase the critical load (of acidity of high-elevation lakes. Ultimately, the determining factor will be whether enhanced base cation weathering is sufficient to buffer changes in natural and anthropogenic acidity. Mountain and high-elevation regions are considered early warning systems to climate change; as such, future monitoring is imperative to assess the potential ramifications of climate change on the hydrochemistry and acid-sensitivity of these surface waters.

  6. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    Science.gov (United States)

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-01-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  7. The Elevation to Area Relationship of Lake Behnke

    Directory of Open Access Journals (Sweden)

    Kaitlin Deutsch

    2012-01-01

    Full Text Available The objective of this project was to determine the area-to-depth relationship in Lake Behnke, which acts as the principal stormwater drainage basin for the University of South Florida campus in Tampa, Florida. Data previously collected in a stormwater management study by Jeffery Earhart illustrated a linear correlation between the lake's area and depth; however, that study was conducted in 1998, and this present work serves to double check that correlation. We analyzed a bathymetric map of Lake Behnke that displayed several contour lines indicating depth and approximated the area inside each closed curve with a contour integral. The resulting relationship between area and elevation was determined to be more parabolic than linear.

  8. Water level changes of high altitude lakes in Himalaya–Karakoram ...

    Indian Academy of Sciences (India)

    2Department of Geology, University of Pune, Pune 411 007, India. 3Chhattisgarh Council of .... influenced by three climate patterns as categorized by precipitation regime: (1) ... Water level changes of high altitude lakes in Himalaya–Karakoram. 1535 ...... mate warming and growth of high elevation inland lakes on the ...

  9. Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator

    Science.gov (United States)

    Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.

    2017-12-01

    Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.

  10. High-mountain lakes provide a seasonal niche for migrant American dippers

    Science.gov (United States)

    J. M. Garwood; K. L. Pope; R. M. Bourque; M. D. Larson

    2009-01-01

    We studied summer use of high elevation lakes by American Dippers (Cinclus mexicanus) in the Trinity Alps Wilderness, California by conducting repeated point-count surveys at 16 study lakes coupled with a 5-year detailed survey of all available aquatic habitats in a single basin. We observed American Dippers during 36% of the point-count surveys...

  11. Factors Affecting Elevated Arsenic and Methyl Mercury Concentrations in Small Shield Lakes Surrounding Gold Mines near the Yellowknife, NT, (Canada Region.

    Directory of Open Access Journals (Sweden)

    Adam James Houben

    Full Text Available Gold mines in the Yellowknife, NT, region--in particular, the Giant Mine--operated from 1949-99, releasing 237,000 tonnes of waste arsenic trioxide (As2O3 dust, among other compounds, from gold ore extraction and roasting processes. For the first time, we show the geospatial distribution of roaster-derived emissions of several chemical species beyond the mine property on otherwise undisturbed taiga shield lakes within a 25 km radius of the mine, 11 years after its closing. Additionally, we demonstrate that underlying bedrock is not a significant source for the elevated concentrations in overlying surface waters. Aquatic arsenic (As concentrations are well above guidelines for drinking water (10 μg/L and protection for aquatic life (5 μg/L, ranging up to 136 μg/L in lakes within 4 km from the mine, to 2.0 μg/L in lakes 24 km away. High conversion ratios of methyl mercury were shown in lakes near the roaster stack as well, with MeHg concentrations reaching 44% of total mercury. The risk of elevated exposures by these metals is significant, as many lakes used for recreation and fishing near the City of Yellowknife are within this radius of elevated As and methyl Hg concentrations.

  12. Carbonate deposition, Pyramid Lake subbasin, Nevada: 1. Sequence of formation and elevational distribution of carbonate deposits (Tufas)

    Science.gov (United States)

    Benson, L.

    1994-01-01

    During the late Quarternary, the elevation of terrace cutting and carbonate deposition in the Pyramid Lake subbasin were controlled by constancy of lake level imposed by spill to adjoining subbasins. Sill elevations are 1177-1183 m (Mud Lake Slough Sill), 1207 m (Emerson Pass Sill), and 1265 m (Darwin Pass Sill). Carbonate deposition was favored by: (1) hydrologic closure, (2) proximity to a source of calcium, (3) elevated water temperature, and (4) a solid substrate. The thickness and aspect of tufa are a function oflake-level dynamics. Relatively thin sheets and pendant sheets were deposited during a rising or falling lake. The upper parts of thick reef-form tufas have a horizontal aspect and were deposited in a lake which was stabilized by spill to the Carson Desert subbasin. The lower parts of the reef-form tufas are thinner and their outer surface has a vertical aspect, indicating that the lower part formed in a receding lake. The thickest and most complete sequences of tufa are mounds that border the Pyramid Lake shore. The tops of the tallest mounds reach the elevation of the Darwin Pass Sill and many mounds have been eroded to the elevations of the Mud Lake Slough Sill of the Emerson Pass Sill. The sequence of tufa formation (from oldest to youngest) displayed in these mounds is: (1) a beachrock containing carbonate-cemented volcanic cobbles, (2) broken and eroded old spheroids that contain thinolitic tufa and an outer rind of dense laminated tufa, (3) large cylindrical (tubular) tufas capped by (4) coatings of old dense tufas, and (5) several generations of old branching tufa commonly associated with thin, platy tufas and coatings of thinolitic tufa, (6) young spheroids that contain poorly oriented young thinolitic tufa in the center and several generations of radially oriented young thinolitic tufas near the outer edge, (7) a transitional thinolite-to-branching tufa, (8) two or more layers of young branching tufa, (9) a 0.5-cm-thick layer of fine

  13. On elevated fluoride and boron concentrations in groundwaters associated with the Lake Saint-Martin impact structure, Manitoba

    International Nuclear Information System (INIS)

    Desbarats, Alexandre J.

    2009-01-01

    Hydrogeological investigations conducted by the Geological Survey of Canada in the Lake Saint-Martin region of Manitoba have confirmed earlier reports of naturally elevated F - and B concentrations in local groundwaters. Fluoride and B concentrations are highly correlated (r 2 = 0.905) and reach 15.1 mg/L and 8.5 mg/L, respectively. Virtually all groundwaters with F - concentrations greater than the drinking water limit of 1.5 mg/L are from wells within the Lake Saint-Martin impact structure, a 208 Ma complex crater 23 km in diameter underlying a large part of the study area. The high-F - groundwaters can be classified into two groups according to their anionic and isotopic compositions. Group I samples consist of Na-mixed anion groundwaters, with Cl greater than 100 mg/L and highly depleted 18 O compositions indicative of recharge under much cooler climatic conditions than at present. Samples belonging to this group exhibit a striking relationship to crater morphology, and are found in an arcuate belt within the southern rim of the impact structure. Group II high-F - samples consist of Na-HCO 3 -SO 4 groundwaters, with little Cl, and less depleted 18 O compositions. Samples belonging to this group are associated with groundwaters recharged locally, on a low ridge within the impact structure. This paper traces the probable source of high-F - groundwaters to phosphatic pellets in shales of the Winnipeg Formation, a regional basal clastic unit which sub-crops at shallow depth beneath the crater rim as a result of more than 200 m of structural uplift associated with the impact event. This extensive aquifer is known elsewhere in southern Manitoba for its naturally-softened groundwaters and locally elevated F - concentrations. Group I groundwaters are interpreted as discharge from the Winnipeg Formation where it abuts against crater-fill deposits. Group II high-F - groundwaters are interpreted as modern recharge from within the impact structure, displacing Group I

  14. Chemical evidences of the effects of global change in high elevation lakes in Central Himalaya, Nepal

    Science.gov (United States)

    Tartari, Gianni; Lami, Andrea; Rogora, Michela; Salerno, Franco

    2016-04-01

    It is well known that the lakes integrate the pressure of their surrounding terrestrial environment and the climatic variability. Both the water column and sediments are capable to accumulate signals of global change, such as warming of the deep layers or mutation of diverse biological records (e.g., fossil diatoms) and the nutrient loads variability affecting the trophic state. Typically, the biological responses to climate change have been studied in several types of lakes, while documented changes in water chemistry are much rare. A long term study of 20 high altitude lakes located in central southern Himalaya (Mt Everest) conducted since the 90s has highlighted a general change in the chemical composition of the lake water: a substantial rise in the ionic content was observed, particularly pronounced in the case of sulphate. In a couple of these lakes, monitored on an annual basis, the sulphate concentrations increased over 4-fold. A change in the composition of atmospheric wet deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes, were excluded. The chemical changes proved to be mainly related to the sulphide oxidation processes occurring in the bedrocks or the hydrographic basins. In particular, the oxidation processes, considered as the main factor causing the sulphate increase, occurred in subglacial environments characterized by higher glacier velocities causing higher glacier shrinkage. Associated to this mechanism, the exposure of fresh mineral surfaces to the atmosphere may have contributed also to increases in the alkalinity of lakes. Weakened monsoon of the past two decades may have partially contributed to the solute enrichment of the lakes through runoff waters. The almost synchronous response of the lakes studied, which differs in terms of the presence of glaciers in their basins, highlights the fact that the increasing ionic content of lake

  15. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    Science.gov (United States)

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  16. Extraction and representation of nested catchment areas from digital elevation models in lake-dominated topography

    Science.gov (United States)

    Mackay, D. Scott; Band, Lawrence E.

    1998-04-01

    This paper presents a new method for extracting flow directions, contributing (upslope) areas, and nested catchments from digital elevation models in lake-dominated areas. Existing tools for acquiring descriptive variables of the topography, such as surface flow directions and contributing areas, were developed for moderate to steep topography. These tools are typically difficult to apply in gentle topography owing to limitations in explicitly handling lakes and other flat areas. This paper addresses the problem of accurately representing general topographic features by first identifying distinguishing features, such as lakes, in gentle topography areas and then using these features to guide the search for topographic flow directions and catchment marking. Lakes are explicitly represented in the topology of a watershed for use in water routing. Nonlake flat features help guide the search for topographic flow directions in areas of low signal to noise. This combined feature-based and grid-based search for topographic features yields improved contributing areas and watershed boundaries where there are lakes and other flat areas. Lakes are easily classified from remotely sensed imagery, which makes automated representation of lakes as subsystems within a watershed system tractable with widely available data sets.

  17. A previously unrecognized path of early Holocene base flow and elevated discharge from Lake Minong to Lake Chippewa across eastern Upper Michigan

    Science.gov (United States)

    Loope, Walter L.; Jol, Harry M.; Fisher, Timothy G.; Blewett, William L.; Loope, Henry M.; Legg, Robert J.

    2014-01-01

    It has long been hypothesized that flux of fresh meltwater from glacial Lake Minong in North America's Superior Basin to the North Atlantic Ocean triggered rapid climatic shifts during the early Holocene. The spatial context of recent support for this idea demands a reevaluation of the exit point of meltwater from the Superior Basin. We used ground penetrating radar (GPR), foundation borings from six highway bridges, a GIS model of surface topography, geologic maps, U.S. Department of Agriculture–Natural Resources Conservation Service soils maps, and well logs to investigate the possible linkage of Lake Minong with Lake Chippewa in the Lake Michigan Basin across eastern Upper Michigan. GPR suggests that a connecting channel lies buried beneath the present interlake divide at Danaher. A single optical age hints that the channel aggraded to 225 m as elevated receipt of Lake Agassiz meltwater in the Superior Basin began to wane GIS model of Minong's shoreline are consistent with another transgression of Minong after ca. 9.5 ka. At the peak of the latter transgression, the southeastern rim of the Superior Basin (Nadoway Drift Barrier) failed, ending Lake Minong. Upon Minong's final drop, aggradational sediments were deposited at Danaher, infilling the prior breach.

  18. Spatial distribution and temporal development of high-mountain lakes in western Austria

    Science.gov (United States)

    Merkl, Sarah; Emmer, Adam; Mergili, Martin

    2015-04-01

    elevation at the cost of moraine-dammed lakes. Multi-temporal analysis of selected near-glacial lakes reveals cases where lakes have appeared as proglacial lakes, but lost contact to the glacier within few decades or even years, or have even been decoupled from the glacial water supply. This goes hand in hand with rapid changes of lake shape and size, with merging or separating of lakes, and with the disappearance of short-lived lakes or lake systems. Consequently, we distinguish three stages of lake development: (a) a pro-glacial, (b) a periglacial and (c) a non-glacial stage. The dynamics - and also the susceptibility of a lake to sudden drainage - decrease substantially from (a) to (c). Lakes in the stages (a) and (b) are less prominent in our study area, compared to other glacierized high-mountain regions, leading us to the conclusion that (1) the current threat to the population by GLOFs is lower but (2) the future development of emerging lakes has to be monitored carefully.

  19. A post-Calumet shoreline along southern Lake Michigan

    Science.gov (United States)

    Capps, D.K.; Thompson, T.A.; Booth, R.K.

    2007-01-01

    The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan's late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ???184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ???2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ?? 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does. ?? 2006 Springer Science+Business Media B.V.

  20. High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA.

    Directory of Open Access Journals (Sweden)

    Curtis J Hayden

    Full Text Available Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems--and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA and bacteria (AOB in 9 high-altitude lakes (2289-3160 m in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r(2 = 0.32, p<0.1, whereas AOA abundance was inversely correlated with lake elevation (r(2 = 0.43, p<0.05. We also measured low rates of ammonia oxidation--indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes.

  1. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    Science.gov (United States)

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  2. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    Science.gov (United States)

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Preliminary Study of the Effect of the Proposed Long Lake Valley Project Operation on the Transport of Larval Suckers in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Wood, Tamara M.

    2009-01-01

    A hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to explore the effects of the operation of proposed offstream storage at Long Lake Valley on transport of larval suckers through the Upper Klamath and Agency Lakes system during May and June, when larval fish leave spawning sites in the Williamson River and springs along the eastern shoreline and become entrained in lake currents. A range in hydrologic conditions was considered, including historically high and low outflows and inflows, lake elevations, and the operation of pumps between Upper Klamath Lake and storage in Long Lake Valley. Two wind-forcing scenarios were considered: one dominated by moderate prevailing winds and another dominated by a strong reversal of winds from the prevailing direction. On the basis of 24 model simulations that used all combinations of hydrology and wind forcing, as well as With Project and No Action scenarios, it was determined that the biggest effect of project operations on larval transport was the result of alterations in project management of the elevation in Upper Klamath Lake and the outflow at the Link River and A Canal, rather than the result of pumping operations. This was because, during the spring time period of interest, the amount of water pumped between Upper Klamath Lake and Long Lake Valley was generally small. The dominant effect was that an increase in lake elevation would result in more larvae in the Williamson River delta and in Agency Lake, an effect that was enhanced under conditions of wind reversal. A decrease in lake elevation accompanied by an increase in the outflow at the Link River had the opposite effect on larval concentration and residence time.

  4. Terrestrial CDOM in Lakes of Yamal Peninsula: Connection to Lake and Lake Catchment Properties

    Directory of Open Access Journals (Sweden)

    Yury Dvornikov

    2018-01-01

    Full Text Available In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM absorption at 440 nm (a(440CDOM and absorption slope (S300–500 in lakes using field sampling and optical remote sensing data for an area of 350 km2 in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a(λCDOM data from 18 lakes sampled in the field to 356 lakes in the study area (model R2 = 0.79. Values of a(440CDOM in 356 lakes varied from 0.48 to 8.35 m−1 with a median of 1.43 m−1. This a(λCDOM dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R2 = 0.61. Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440CDOM = 5.3 m−1. Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440CDOM = 3.8 m−1 compared to lakes located on higher terraces.

  5. A radioanalytical study of radionuclides in a dysoligotrophic lake in Southern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, M; Roos, P; Holm, E [Lund University Hospital, Lund, (Sweden). The Jubileum Institute, Department of Radiation Physics; Peck, G [University of Melbourne, Parkville, VIC (Australia). School of Physics, Marine Chemistry Laboratory

    1998-07-01

    Unusually high activity concentration of various artificial radionuclides (from nuclear test fallout and the Chernobyl accident) and some natural radionuclides, have been discovered in lakes with high amounts of humic substances. These lakes tend to have low pH, at times down to pH 5. The lake, Svartsjoen, in the southern part of Sweden is one of these lakes. The food chain and resulting concentration factors in Svartsjoen were investigated and compared to results for other 'normal' lakes. Fish and water samples were collected and analysed for {sup 137}Cs {sup 239+240}Pu, {sup 241}Am and {sup 210}Po during a 4-month visit to Lund. The level of {sup 239/240}Pu in the water of Svartsjoen was found to be elevated. The work on fish from the lake indicates that these elevated levels are not transferred into the food chain. It appears that the humic substances could be blocking plutonium from entering the food chain.

  6. A radioanalytical study of radionuclides in a dysoligotrophic lake in Southern Sweden

    International Nuclear Information System (INIS)

    Eriksson, M.; Roos, P.; Holm, E.; Peck, G.

    1998-01-01

    Unusually high activity concentration of various artificial radionuclides (from nuclear test fallout and the Chernobyl accident) and some natural radionuclides, have been discovered in lakes with high amounts of humic substances. These lakes tend to have low pH, at times down to pH 5. The lake, Svartsjoen, in the southern part of Sweden is one of these lakes. The food chain and resulting concentration factors in Svartsjoen were investigated and compared to results for other 'normal' lakes. Fish and water samples were collected and analysed for 137 Cs 239+240 Pu, 241 Am and 210 Po during a 4-month visit to Lund. The level of 239/240 Pu in the water of Svartsjoen was found to be elevated. The work on fish from the lake indicates that these elevated levels are not transferred into the food chain. It appears that the humic substances could be blocking plutonium from entering the food chain

  7. Basic limnology of fifty-one lakes in Costa Rica.

    Science.gov (United States)

    Haberyan, Kurt A; Horn, Sally P; Umaña, Gerardo

    2003-03-01

    We visited 51 lakes in Costa Rica as part of a broad-based survey to document their physical and chemical characteristics and how these relate to the mode of formation and geographical distribution of the lakes. The four oxbow lakes were low in elevation and tended to be turbid, high in conductivity and CO2, but low in dissolved O2; one of these, L. Gandoca, had a hypolimnion essentially composed of sea water. These were similar to the four wetland lakes, but the latter instead had low conductivities and pH, and turbidity was often due to tannins rather than suspended sediments. The thirteen artificial lakes formed a very heterogenous group, whose features varied depending on local factors. The thirteen lakes dammed by landslides, lava flows, or lahars occurred in areas with steep slopes, and were more likely to be stratified than most other types of lakes. The eight lakes that occupy volcanic craters tended to be deep, stratified, clear, and cool; two of these, L. Hule and L. Río Cuarto, appeared to be oligomictic (tending toward meromictic). The nine glacial lakes, all located above 3440 m elevation near Cerro Chirripó, were clear, cold, dilute, and are probably polymictic. Cluster analysis resulted in three significant groups of lakes. Cluster 1 included four calcium-rich lakes (average 48 mg l-1), Cluster 2 included fourteen lakes with more Si than Ca+2 and higher Cl- than the other clusters, and Cluster 3 included the remaining thirty-three lakes that were generally less concentrated. Each cluster included lakes of various origins located in different geographical regions; these data indicate that, apart from the high-altitude glacial lakes and lakes in the Miravalles area, similarity in lake chemistry is independent of lake distribution.

  8. Analysis of High Resolution Satellite imagery to acsees Glacier Mass Balance and Lake Hazards in Sikkim Himalayas

    Science.gov (United States)

    Bhushan, S.; Shean, D. E.; Haritashya, U. K.; Arendt, A. A.; Syed, T. H.; Setiawan, L.

    2017-12-01

    Glacial lake outburst floods can impact downstream communities due to the sudden outflux of huge quantities of stored water. In this study, we develop a hazard assessment of the moraine dammed glacial lakes in Sikkim Himalayas by analyzing the morphometry of proglacial features, and the surface velocity and mass balance of glaciers. We generated high-resolution digital elevation models (DEMs) using the open-source NASA Ames Stereo Pipeline (ASP) and use other open-source tools to calculate surface velocity and patterns of glacier downwasting over time. Geodetic glacier mass balance is obtained for three periods using high-resolution WorldView/GeoEye stereo DEMs (8 m posting, 2014-2016), Cartosat-1 stereo DEMs (10 m, 2006-2008) and SRTM (30 m, 2000). Initial results reveal a region-wide mass balance of -0.31±0.13 m w.eq.a-1 for the 2007-2015 period, with some debris covered glaciers showing a very low mass loss rate. Additionally, 12 annual glacier velocity fields spanning from 1991 to 2017.derived from Landsat imagery are used to explore the relationship between glacier dynamics and changes in proglacial lakes. Multi-temporal glacial lake mapping is conducted using Landsat and Cartosat imagery. Avalanche and rockfall modeling are combined with morphometric analysis of the proglacial lake area to assess the likelihood of glacial lake dam failure. The above parameters are integrated into a decision tree approach enabling categorization of moraine-dammed lakes according to their potential for outburst events.

  9. Lake acidification in the Adirondack Mountains of New York causes and consequences

    Science.gov (United States)

    Carl L. Schofield

    1976-01-01

    Current and historic geographic distributions of acidity in Adirondack lakes were examined in relation to regional edaphic, climatic, and physiographic features. Acid conditions are currently predominant in high elevation drainage lakes having small watershed/surface area ratios. Comparable levels of acidity were found only in small seepage lakes and bog ponds during...

  10. Remote Sensing-Derived Bathymetry of Lake Poopó

    Directory of Open Access Journals (Sweden)

    Adalbert Arsen

    2013-12-01

    Full Text Available Located within the Altiplano at 3,686 m above sea level, Lake Poopó is remarkably shallow and very sensitive to hydrologic recharge. Progressive drying has been observed in the entire Titicaca-Poopó-Desaguadero-Salar de Coipasa (TPDS system during the last decade, causing dramatic changes to Lake Poopó’s surface and its regional water supplies. Our research aims to improve understanding of Lake Poopó water storage capacity. Thus, we propose a new method based on freely available remote sensing data to reproduce Lake Poopó bathymetry. Laser ranging altimeter ICESat (Ice, Cloud, and land Elevation Satellite is used during the lake’s lowest stages to measure vertical heights with high precision over dry land. These heights are used to estimate elevations of water contours obtained with Landsat imagery. Contour points with assigned elevation are filtered and grouped in a points cloud. Mesh gridding and interpolation function are then applied to construct 3D bathymetry. Complementary analysis of Moderate Resolution Imaging Spectroradiometer (MODIS surfaces from 2000 to 2012 combined with bathymetry gives water levels and storage evolution every 8 days.

  11. An Investigation of the Impacts of Climate and Environmental Change on Alpine Lakes in the Uinta Mountains, Utah

    Science.gov (United States)

    Moser, K. A.; Hundey, E. J.; Porinchu, D. F.

    2007-12-01

    Aquatic systems in alpine and sub-alpine areas of the western United States are potentially impacted by atmospheric pollution and climate change. Because these mountainous regions are an important water resource for the western United States, it is critical to monitor and protect these systems. The Uinta Mountains are an east- west trending mountain range located on the border between Utah, Wyoming and Colorado and downwind of the Wasatch Front, Utah, which is characterized by a rapidly expanding population, as well as mining and industry. This alpine area provides water to many areas in Utah, and contributes approximately nine percent of the water supply to the Upper Colorado River. Our research is focused on determining the impacts of climate change and pollution on alpine lakes in the Uinta Mountains. The results presented here are based on limnological measurements made at 64 Uinta Mountain lakes spanning a longitude gradient of one degree and an elevation gradient of 3000 feet. At each lake maximum depth, conductivity, salinity, pH, Secchi depth, temperature, alkalinity, and concentrations of major anions, cations and trace metals were measured. Principal Components Analysis (PCA) was performed to determine relationships between these variables and to examine the variability of the values of these variables. Our results indicate that steep climate gradients related to elevation and longitude result in clear differences in limnological properties of the study sites, with high elevation lakes characterized by greater amounts of nitrate and nitrite compared to low elevation sites. As well, diatoms in these lakes indicate that many high elevation sites are mesotrophic to eutrophic, which is unexpected for such remote aquatic ecosystems. We hypothesize that elevated nitrate and nitrite levels at high elevation sites are related to atmospherically derived nitrogen, but are being exacerbated relative to lower elevation sites by greater snow cover and reduced plant

  12. Long-term patterns of chironomid assemblages in a high elevation stream/lake network (Switzerland – Implications to global change

    Directory of Open Access Journals (Sweden)

    Brigitte Lods-Crozet

    2012-10-01

    Full Text Available A long-term monitoring program was initiated in 2002 on running and standing waters in a high elevation cirque landscape (Macun in the Swiss National Park. The region comprises contrasting basins with different water sources, a glacier-fed basin and two precipitation-fed basins. Sampling of 26 permanent and temporary ponds (or small lakes and of interconnecting streams (10 sites was conducted from 2002 to 2010. Pond macroinvertebrate assemblages were dominated by chironomids with 42 taxa. The Orthocladiinae were the dominant subfamily in richness and abundance with 22 taxa. The greatest diversity was found in ponds located in the south and outlet basins. The inter-year variability for the same pond is high, but no clear temporal trend was noticed in ponds frequently monitored ponds. The Orthocladiinae subfamily was also the richest in the stream sites where 33 taxa were collected. The north and south basins were separated on the basis of chironomid assemblages. The chironomid assemblages in the stream network shows a temporal trend from 2002 but it cannot be linked to any clear change at the community structure level. The higher richness and abundance in stream sites and ponds of the south basin could be related to a greater heterogeneity in water physico-chemistry and substrata, and by the presence of Bryophyta. The understanding of the environmental factors that influence faunal assemblages is crucial for the protection of this sensitive alpine pond network where a relatively high overall regional diversity (49 taxa is detected. From the literature, temperature is recognized as the driving force on changes in chironomid assemblages in alpine systems. Our results support the use of chironomids as flagship indicators in the assessment of climatic change in alpine landscapes.doi: 10.5324/fn.v31i0.1361.Published online: 17 October 2012.

  13. High speed elevator s rise high rise building; Chokoso biru wo kakenoboru elevator

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, K. [Mitsubishi Electric Corp., Tokyo (Japan)

    1994-10-20

    The world`s fastest (750 m/min) elevators are operating in Yokohama Landmark Tower. This paper describes how engineers solved the technological problems to realize the high-speed elevator. Buildings in Japan have become higher and higher. At the present, this Tower is the highest in Japan (296 m, 70 stories). The Ministry of Construction is going to start a research team to study construction of buildings of the order of 1,000 m high. An important issue for a skyscraper is how to reduce the elevator space adapting to the increase of the number of inhabitants in the building. The basic solution is to increase the elevator speed and to plan the best elevator moving line. The 120 kW AC motor direct-driven winding machine that withstands the superhigh-speed suspending load was developed. Vibrations from the motor and the mechanical system are minimized and the touch-down tolerances for the elevator cage are controlled to {plus_minus}15 mm. The safety devices of the elevator include the emergency stopper of special ceramic material and the hydraulic shock absorber with the optimum reduction characteristic. 2 refs., 3 figs.

  14. Response of lake chemistry to atmospheric deposition and climate in selected Class I wilderness areas in the western United States, 1993-2009

    Science.gov (United States)

    Mast, M. Alisa

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, conducted a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. Understanding how and why lake chemistry is changing in mountain areas is essential for effectively managing and protecting high-elevation aquatic ecosystems. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) were evaluated over a similar period of record. A main objective of the study was to determine if changes in atmospheric deposition of contaminants in the Rocky Mountain region have resulted in measurable changes in the chemistry of high-elevation lakes. A second objective was to investigate linkages between lake chemistry and air temperature and precipitation to improve understanding of the sensitivity of mountain lakes to climate variability.

  15. Correlates of mercury in fish from lakes near Clyde Forks, Ontario, Canada

    International Nuclear Information System (INIS)

    Ethier, A.L.M.; Scheuhammer, A.M.; Bond, D.E.

    2008-01-01

    Subsurface soils near Clyde Forks, Ontario, Canada, can have naturally high concentrations of mercury (Hg) from local geological sources. To investigate Hg in local aquatic food webs, Hg was measured in fish dorsal muscle (mainly yellow perch [YP] and pumpkinseed sunfish [PS]) and surface sediments from 10 regional lakes. Water chemistry, along with fork length, weight, and stable isotopes (δ 15 N, δ 13 C, δ 34 S) in fish were also measured. No lake sediments had elevated (>0.3 μg/g dw) Hg, and average Hg concentrations in fish were not sufficiently high ( 13 C), and certain lake variables (e.g., pH for YP). PS with more pelagic feeding habits had higher δ 34 S and Hg than those with more littoral feeding habits. Potential biological linkages between fish Hg and δ 34 S, a parameter that may be related to the lake sulphate-reducing bacteria activity, requires further investigation. - Fish from lakes near a localized geological Hg source do not have elevated Hg concentrations

  16. Lake Roosevelt fisheries and limnological research. Annual report 1996

    International Nuclear Information System (INIS)

    Cichosz, T.A.; Shields, J.P.; Underwood, K.D.; Scholz, A.; Tilson, M.B.

    1997-05-01

    The Lake Roosevelt Monitoring/Data Collection Program resulted from a merger between the Lake Roosevelt Monitoring Program and the Lake Roosevelt Data Collection Project. This project will model biological responses to reservoir operations, evaluate the effects of releasing hatchery origin kokanee salmon and rainbow trout on the fishery, and evaluate the success of various stocking strategies. In 1996, limnological, reservoir operation, zooplankton, and tagging data were collected. Mean reservoir elevation, storage volume and water retention time were reduced in 1996 relative to the last five years. In 1996, Lake Roosevelt reached a yearly low of 1,227 feet above mean sea level in April, a yearly high of 1,289 feet in July, and a mean yearly reservoir elevation of 1,271.4 feet. Mean monthly water retention times in Lake Roosevelt during 1996 ranged from 15.7 days in May to 49.2 days in October. Average zooplankton densities and biomass were lower in 1996 than 1995. Daphnia spp. and total zooplankton densities peaked during the summer, whereas minimum densities occurred during the spring. Approximately 300,000 kokanee salmon and 400,000 rainbow trout were released into Lake Roosevelt in 1996. The authors estimated 195,628 angler trips to Lake Roosevelt during 1996 with an economic value of $7,629,492

  17. Lake Roosevelt Fisheries and Limnological Research : 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cichosz, Thomas A.; Underwood, Keith D.; Shields, John; Scholz, Allan; Tilson, Mary Beth

    1997-05-01

    The Lake Roosevelt Monitoring/Data Collection Program resulted from a merger between the Lake Roosevelt Monitoring Program and the Lake Roosevelt Data Collection Project. This project will model biological responses to reservoir operations, evaluate the effects of releasing hatchery origin kokanee salmon and rainbow trout on the fishery, and evaluate the success of various stocking strategies. In 1996, limnological, reservoir operation, zooplankton, and tagging data were collected. Mean reservoir elevation, storage volume and water retention time were reduced in 1996 relative to the last five years. In 1996, Lake Roosevelt reached a yearly low of 1,227 feet above mean sea level in April, a yearly high of 1,289 feet in July, and a mean yearly reservoir elevation of 1,271.4 feet. Mean monthly water retention times in Lake Roosevelt during 1996 ranged from 15.7 days in May to 49.2 days in October. Average zooplankton densities and biomass were lower in 1996 than 1995. Daphnia spp. and total zooplankton densities peaked during the summer, whereas minimum densities occurred during the spring. Approximately 300,000 kokanee salmon and 400,000 rainbow trout were released into Lake Roosevelt in 1996. The authors estimated 195,628 angler trips to Lake Roosevelt during 1996 with an economic value of $7,629,492.

  18. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    Science.gov (United States)

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  19. First observations of elevated ducts associated with intermittent turbulence in the stable boundary layer over Bosten Lake, China

    Science.gov (United States)

    Sun, Zheng; Ning, Hui; Song, Shihui; Yan, Dongmei

    2016-10-01

    Nocturnal radiative cooling is a main driver for atmospheric duct formation. Within this atmospheric process, the impacts of intermittent turbulence on ducting have seldom been studied. In this paper, we reported two confusing ducting events observed in the early morning in August 2014 over Bosten Lake, China, when a stable boundary layer (SBL) still survived, by using tethered high-resolution GPS radiosondes. Elevated ducts with strong humidity inversions were observed during the balloon ascents but were absent during observations made upon the balloon descents several minutes later. This phenomenon was initially hypothesized to be attributable to turbulence motions in the SBL, and the connection between the turbulence event and the radar duct was examined by the statistical Thorpe method. Turbulence patches were detected from the ascent profiles but not from the descent profiles. The possible reasons for the duct formation and elimination were discussed in detail. The turbulent transport of moisture in the SBL and the advection due to airflows coming from the lake are the most probable reasons for duct formation. In one case, the downward transport of moisture by turbulence mixing within a Kelvin-Helmholtz billow at the top of the low-level jet resulted in duct elimination. In another case, the passage of density currents originating from the lake may have caused the elimination of the duct. Few studies have attempted to associate intermittent turbulence with radar ducts; thus, this work represents a pioneering study into the connection between turbulent events and atmospheric ducts in a SBL.

  20. Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees

    Science.gov (United States)

    Bartrons, M.; Camarero, L.; Catalan, J.

    2010-05-01

    Nitrogen deposition in remote areas has increased, but the effect on ecosystems is still poorly understood. For aquatic systems, knowledge of the main processes driving the observed variation is limited, as is knowledge of how changes in nitrogen supply affect lake biogeochemical and food web processes. Differences in dissolved inorganic nitrogen (DIN) between lakes cannot be understood without considering catchment characteristics. In mountains, catchment features (e.g., thermal conditions, land cover) vary considerably with elevation. The isotopic composition of nitrogen (δ15N) is increasingly used to study aquatic ecosystem dynamics. Here we explore the variability of δ15N in DIN in high mountain lakes and show that environmental conditions that change with altitude can affect the isotopic ratio. We measured ammonium and nitrate δ15N values in atmospheric deposition, epilimnetic water, deep chlorophyll maximum water (DCMW) and sediment pore water (SPW) from eight mountain lakes in the Pyrenees, both above and below the treeline. Lakes showed relatively uniform δ15N-NH4+ values in SPW (2.2±1.6‰), with no variation corresponding to catchment or lake characteristics. We suggest that organic matter diagenesis under similar sediment conditions is responsible for the low variation between the lakes. In the water column, the range of δ15N values was larger for ammonium (-9.4‰ to 7.4‰) than for nitrate (-11.4‰ to -3.4‰), as a result of higher variation both between and within lakes (epilimnetic vs. DCM water). For both compounds part of the difference correlated with altitude or catchment features (e.g., scree proportion). Based on concentration, chemical and isotopic tendencies, we suggest that patterns arise from the distinct relative contributions of two types of water flow paths to the lakes: one from snowpack melting, with little soil interaction; and another highly influenced by soil conditions. The snow-type flow path contributes low DIN

  1. NO3 uptake in shallow, oligotrophic, mountain lakes: The influence of elevated NO3 concentrations

    Science.gov (United States)

    Nydick, K.R.; LaFrancois, B.M.; Baron, Jill S.

    2004-01-01

    Nutrient enrichment experiments were conducted in 1.2-m deep enclosures in 2 shallow, oligotrophic, mountain lakes. 15N-NO3 isotope tracer was used to compare the importance of phytoplankton and benthic compartments (epilithon, surface sediment [epipelon], and subsurface sediment) for NO3 uptake under high and low NO3 conditions. NO3 uptake approached saturation in the high-N lake, but not in the low-N lake. The capacity of phytoplankton and benthic compartments to take up NO3 differed among treatments and between lakes, and depended on water-column nutrient conditions and the history of NO3 availability. Phytoplankton productivity responded strongly to addition of limiting nutrients, and NO3 uptake was related to phytoplankton biomass and photosynthesis. However, more NO3 usually was taken up by benthic compartments (57–92% combined) than by phytoplankton, even though the response of benthic algal biomass to nutrient additions was less pronounced than that of phytoplankton and benthic NO3 uptake was unrelated to benthic algal biomass. In the low-N lake where NO3 uptake was unsaturated, C content or % was related to NO3 uptake in benthic substrates, suggesting that heterotrophic bacterial processes could be important in benthic NO3 uptake. These results suggest that phytoplankton are most sensitive to nutrient additions, but benthic processes are important for NO3 uptake in shallow, oligotrophic lakes.

  2. Processes affectin the chemistry of waters passing through a high elevator Sierra Nevada watershed. [U. S. A

    Energy Technology Data Exchange (ETDEWEB)

    Nodvin, S.C.

    1987-01-01

    The Eastern Brook Lakes watershed is located in the Sierra Nevada Mountains of California and spans and elevational range from 3060 to 3780 m. Changes in stream and lake chemistries along spatial and temporal flowpaths demonstrate that both terrestrial and aquatic processes were important in regulating surface water chemistries within the 250 ha watershed. Streams generally showed increasing pH, alkalinity, and conductance values with decreasing elevation. Large changes in stream chemistries occurred over short distances at locations such as alpine meadows. During the spring, stream alkalinities and conductance values decreased while stream pH values increased with time. pH values reached their maximim in June when alkalinity and conductance values were at their minimum values. Internal lake processes strongly influenced the chemistry of Upper Eastern Brook Lake. During spring and summer, lake waters exhibited near-neutral pH, low conductance (10-12 ..mu..S/cm), low alkalinity (100-120 ..mu..Eq/L), and undetectable ammonium. Under the ice, major changes in lake chemistry occurred associated with oxygen depletion in the hypolimnion. pH values decreased with time towards a minimum of 6.3 at 6 m depth. Other parameters increased w time and depth under the ice, reaching maximum values as follows: conductance > 80 ..mu..S/cm/sup -1/ Gran's alkalinity > 370 ..mu..Eq/L/sup -1/, and ammonium > 50 /sup m/u/sup E/q/L/sup -1/. 5 figures, 10 references.

  3. Climate simulation and flood risk analysis for 2008-40 for Devils Lake, North Dakota

    Science.gov (United States)

    Vecchia, Aldo V.

    2008-01-01

    Devils Lake and Stump Lake in northeastern North Dakota receive surface runoff from a 3,810-square-mile drainage basin, and evaporation provides the only major water loss unless the lakes are above their natural spill elevation to the Sheyenne River. In September 2007, flow from Devils Lake to Stump Lake had filled Stump Lake and the two lakes consisted of essentially one water body with an elevation of 1,447.1 feet, about 3 feet below the existing base flood elevation (1,450 feet) and about 12 feet below the natural outlet elevation to the Sheyenne River (1,459 feet).Devils Lake could continue to rise, causing extensive additional flood damages in the basin and, in the event of an uncontrolled natural spill, downstream in the Red River of the North Basin. This report describes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, to evaluate future flood risk for Devils Lake and provide information for developing updated flood-insurance rate maps and planning flood-mitigation activities such as raising levees or roads.In about 1980, a large, abrupt, and highly significant increase in precipitation occurred in the Devils Lake Basin and elsewhere in the Northern Great Plains, and wetter-than-normal conditions have persisted through the present (2007). Although future precipitation is impossible to predict, paleoclimatic evidence and recent research on climate dynamics indicate the current wet conditions are not likely to end anytime soon. For example, there is about a 72-percent chance wet conditions will last at least 10 more years and about a 37-percent chance wet conditions will last at least 30 more years.A stochastic simulation model for Devils Lake and Stump Lake developed in a previous study was updated and used to generate 10,000 potential future realizations, or traces, of precipitation, evaporation, inflow, and lake levels given existing conditions on September 30, 2007, and randomly

  4. Limnology and cyanobacterial diversity of high altitude lakes of ...

    Indian Academy of Sciences (India)

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ...

  5. Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees

    Directory of Open Access Journals (Sweden)

    M. Bartrons

    2010-05-01

    Full Text Available Nitrogen deposition in remote areas has increased, but the effect on ecosystems is still poorly understood. For aquatic systems, knowledge of the main processes driving the observed variation is limited, as is knowledge of how changes in nitrogen supply affect lake biogeochemical and food web processes. Differences in dissolved inorganic nitrogen (DIN between lakes cannot be understood without considering catchment characteristics. In mountains, catchment features (e.g., thermal conditions, land cover vary considerably with elevation. The isotopic composition of nitrogen (δ15N is increasingly used to study aquatic ecosystem dynamics. Here we explore the variability of δ15N in DIN in high mountain lakes and show that environmental conditions that change with altitude can affect the isotopic ratio.

    We measured ammonium and nitrate δ15N values in atmospheric deposition, epilimnetic water, deep chlorophyll maximum water (DCMW and sediment pore water (SPW from eight mountain lakes in the Pyrenees, both above and below the treeline. Lakes showed relatively uniform δ15N-NH4+ values in SPW (2.2±1.6‰, with no variation corresponding to catchment or lake characteristics. We suggest that organic matter diagenesis under similar sediment conditions is responsible for the low variation between the lakes.

    In the water column, the range of δ15N values was larger for ammonium (−9.4‰ to 7.4‰ than for nitrate (−11.4‰ to −3.4‰, as a result of higher variation both between and within lakes (epilimnetic vs. DCM water. For both compounds part of the difference correlated with altitude or catchment features (e.g., scree proportion. Based on concentration, chemical and isotopic tendencies, we suggest that patterns arise from the distinct relative contributions of two types of water flow paths to the lakes: one from snowpack melting, with little soil

  6. Air-water gas exchange of chlorinated pesticides in four lakes spanning a 1,205 meter elevation range in the Canadian Rocky Mountains.

    Science.gov (United States)

    Wilkinson, Andrew C; Kimpe, Lynda E; Blais, Jules M

    2005-01-01

    Concentrations of selected persistent organic pollutants (POPs) in air and water were measured from four lakes that transect the Canadian Rocky Mountains. These data were used in combination with wind velocity and temperature-adjusted Henry's law constants to estimate the direction and magnitude of chemical exchange across the air-water interface of these lakes. Bow Lake (1,975 m above sea level [masl]) was studied during the summers of 1998 through 2000; Donald (770 masl) was studied during the summer of 1999; Dixon Dam Lake (946 masl) and Kananaskis Lake (1,667 masl) were studied during the summer of 2000. Hexachlorobenzene (HCB) and dieldrin volatilized from Bow Lake in spring and summer of 1998 to 2000 at a rate of 0.92 +/-1.1 and 0.55+/-0.37 ng m(-2) d(-1), respectively. The alpha-endosulfan deposited to Bow Lake at a rate of 3.4+/-2.2 ng m(-2) d(-1). Direction of gas exchange for gamma-hexachlorocyclohexane (gamma-HCH) changed from net deposition in 1998 to net volatilization in 1999, partly because of a surge in y-HCH concentrations in the water at Bow Lake in 1999. Average gamma-HCH concentrations in air declined steadily over the three-year period, from 0.021 ng m(-3) in 1998, to 0.0023 ng m(-3) in 2000, and to volatilization in 1999 and 2000. Neither the concentrations of organochlorine compounds (OCs) in air and water, nor the direction and rate of air-water gas exchange correlate with temperature or elevation. In general, losses of pesticides by outflow were greater than the amount exchanged across the air-water interface in these lakes.

  7. Natural Environmental Hazards Reflected in High-Altitude Patagonian Lake Sediments (lake Caviahue, Argentina)

    Science.gov (United States)

    Müller, Anne; Scharf, Burkhard; von Tümpling, Wolf; Pirrung, Michael

    2009-03-01

    Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout as well as from river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue Volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.

  8. Petrology of the Fort Smith - Great Slave Lake radiometric high near Pilot Lake, N.W.T

    International Nuclear Information System (INIS)

    Burwash, R.A.; Cape, D.F.

    1981-01-01

    Near Pilot Lake, the east boundary of the Fort Smith - Great Slave Lake radiometric high coincides with the contact of a well-foliated, porphyroblastic microcline-plagioclase-quartz-garnet-biotite gneiss (Pilot Lake Gneiss) with a hybrid assemblage of quartzite, mica schist, garnet-cordierite gneiss, and minor amphibolite (Variable Paragneiss). Anomalously high concentrations of uranium and thorium are associated with mafic-rich, lenticular bodies with a mineral assemblage biotite + monazite + zircon + ilmenite + hematite +- plagioclase +- quartz, within both the Variable Paragneiss and the Pilot Lake Gneiss. Corundum and spinel occur in the mafic lenses and sillimanite, kyanite, and hypersthene in other inclusions of the Pilot Lake Gneiss. The ilmenite-magnetite--monazite-zircon-apatite assemblage is interpreted as a 'black sand' concentration in a clastic sedimentary sequence subsequently metamorphosed by a regional granulite facies event. A granite pluton intruded during the same orogenic cycle assimilated the clastic metasedimentary rocks containing black sand interlayers, becoming enriched in thorium from the monazite. A second metamorphic event at lower P-T conditions, accompanied by strong cataclasis, developed the texture of the Pilot Lake Gneiss as now observed. Shearing within the gneiss locally concentrated hematite + quartz + uranium. Regional tectonic extrapolations suggest that the pyroxene granulite event was Kenoran and the later amphibolite event Hudsonian. (author)

  9. Long term picoplankton dynamics in a warm-monomictic, tropical high altitude lake

    Directory of Open Access Journals (Sweden)

    Alfonso LUGO VÁZQUEZ

    2009-08-01

    Full Text Available Long term analyses of the microbial loop, centred on the picoplankton dynamics, were carried out over a five-year (1998 to 2002 period in Lake Alchichica (Puebla, Mexico, a high altitude tropical athalassohaline lake. The hydrodynamics of the lake followed a warm-monomictic pattern with mixing at a minimum temperature during the early dry season while the stratification was pronounced in the late dry season and throughout the rainy season; anoxic conditions in the hypolimnion lasted <9 months. The annual mean concentrations of chlorophyll-a were below 4 μg L-1 in 1998, 1999 and 2001, however, 6.1 and 5.2 μg L-1 in 2000 and 2002, respectively. Total picoplankton, TPP, displayed a temporal pattern that followed the mixing-stratification cycle. The highest TPP values (the whole water column ≥5×106 cells mL-1 were found during mixing and early stratification (January-March. The minimum numbers were present during late stratification (October-November. The maximum TPP numbers were observed within the layer 0-20 m, which corresponded to the epilimnion during the stratification period. Neither the thermocline nor the deep chlorophyll maximum showed an elevated TPP concentration. In the hypolimnion, TPP numbers were low (frequently <1×106 cells mL-1 apparently as a result of the long period of anoxia. Notwithstanding autotrophic picoplankton (APP contributed even ≥30% of TPP (2001 to 2002; no significant correlation was found between TPP and chlorophyll-a.

  10. Notes on nesting herons and other birds of interest at Lake ...

    African Journals Online (AJOL)

    At high water the lake covers some 800 ha along the 520 m elevation contour. Lake Kalemawe is not included in the gazetteer in Britton (1980) and no mention can be traced of it in the bird literature of the 1980s and 1990s although it has been counted by the Tanzania Bird Atlas Project (TBAP) team in the recent past, and ...

  11. Lake sturgeon population characteristics in Rainy Lake, Minnesota and Ontario

    Science.gov (United States)

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake contains a native population of lake sturgeon Acipenser fulvescens that has been largely unstudied. The aims of this study were to document the population characteristics of lake sturgeon in Rainy Lake and to relate environmental factors to year-class strength for this population. Gill-netting efforts throughout the study resulted in the capture of 322 lake sturgeon, including 50 recaptures. Lake sturgeon in Rainy Lake was relatively plump and fast growing compared with a 32-population summary. Population samples were dominated by lake sturgeon between 110 and 150 cm total length. Age–structure analysis of the samples indicated few younger (<10 years) lake sturgeon, but the smallest gill net mesh size used for sampling was 102 mm (bar measure) and would not retain small sturgeon. Few lake sturgeon older than age 50 years were captured, and maximum age of sampled fish was 59 years. Few correlations existed between lake sturgeon year-class indices and both annual and monthly climate variables, except that mean June air temperature was positively correlated with year-class strength. Analysis of Rainy Lake water elevation and resulting lake sturgeon year-class strength indices across years yielded consistent but weak negative correlations between late April and early June, when spawning of lake sturgeon occurs. The baseline data collected in this study should allow Rainy Lake biologists to establish more specific research questions in the future.

  12. Subaqueous geology and a filling model for Crater Lake, Oregon

    Science.gov (United States)

    Nathenson, M.; Bacon, C.R.; Ramsey, D.W.

    2007-01-01

    Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time

  13. Morphology and morphometry of upland lakes over lateritic crust, Serra dos Carajás, southeastern Amazon region.

    Science.gov (United States)

    Silva, Marcio S DA; Guimarães, José T F; Souza Filho, Pedro W M; Nascimento Júnior, Wilson; Sahoo, Prafulla K; Costa, Francisco R DA; Silva Júnior, Renato O; Rodrigues, Tarcísio M; Costa, Marlene F DA

    2018-05-17

    High-resolution satellite images, digital elevation models, bathymetric and sedimentological surveys coupled with statistical analysis were used to understand the physical environment and discuss their influence on water quality of the five upland lakes of Serra Sul dos Carajás, southeast Amazonia. The lakes have mid-altitude ranges (elevation), very small (catchment) and shallow to very shallow (central basins). Based on the length, area and volume, Violão and TI (Três Irmãs)-3 lakes may present large vertical movements of the water due to wind action and weakly stratified waters. Trophic conditions based on depth and shore development (Ld) parameters must be used with caution, since Amendoim Lake is relatively deep, but it is oligotrophic to ultra-oligotrophic. Ld values suggest that the lakes are circular to subcircular and are likely formed by solution process, as also suggested by volume development. TI-2 Lake is only presenting convex central basin and has highest dynamic ratio (DR), thus it may have high sedimentation and erosion rates. Based on the relationship between studied parameters, morphometric index and DR likely influence temperature and dissolved oxygen of waters of TI-2 Lake due to its depth profile and wind-induced surface mixing. Nevertheless, water quality parameters are controlled by catchment characteristics of the lakes.

  14. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    Science.gov (United States)

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  15. Antarctic Active Subglacial Lake Inventory from ICESat Altimetry, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains lake boundaries, volume changes, and gridded elevations for 124 active subglacial lakes beneath the Antarctic ice sheet. Lakes were identified...

  16. Lake Generated Microseisms at Yellowstone Lake as a Record of Ice Phenology

    Science.gov (United States)

    Mohd Mokhdhari, A. A.; Koper, K. D.; Burlacu, R.

    2017-12-01

    It has recently been shown that wave action in lakes produces microseisms, which generate noise peaks in the period range of 0.8-1.2 s as recorded by nearby seismic stations. Such noise peaks have been observed at seven seismic stations (H17A, LKWY, B208, B944, YTP, YLA, and YLT) located within 2 km of the Yellowstone Lake shoreline. Initial work using 2016 data shows that the variations in the microseism signals at Yellowstone Lake correspond with the freezing and thawing of lake ice: the seismic noise occurs more frequently in the spring, summer, and fall, and less commonly in the winter. If this can be confirmed, then lake-generated microseisms could provide a consistent measure of the freezing and melting dates of high-latitude lakes in remote areas. The seismic data would then be useful in assessing the effects of climate change on the ice phenology of those lakes. In this work, we analyze continuous seismic data recorded by the seven seismic stations around Yellowstone Lake for the years of 1995 to 2016. We generate probability distribution functions of power spectral density for each station to observe the broad elevation of energy near a period of 1 s. The time dependence of this 1-s seismic noise energy is analyzed by extracting the power spectral density at 1 s from every processed hour. The seismic observations are compared to direct measurements of the dates of ice-out and freeze-up as reported by rangers at Yellowstone National Park. We examine how accurate the seismic data are in recording the freezing and melting of Yellowstone Lake, and how the accuracy changes as a function of the number of stations used. We also examine how sensitive the results are to the particular range of periods that are analyzed.

  17. High elevation white pines educational website

    Science.gov (United States)

    Anna W. Schoettle; Michele Laskowski

    2011-01-01

    The high elevation five-needle white pines are facing numerous challenges ranging from climate change to invasion by a non-native pathogen to escalation of pest outbreaks. This website (http://www.fs.fed.us/rm/highelevationwhitepines/) serves as a primer for managers and the public on the high elevation North American five-needle pines. It presents information on each...

  18. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure

    Science.gov (United States)

    Preston, Daniel L.; Caine, Nel; McKnight, Diane M.; Williams, Mark W.; Hell, Katherina; Miller, Matthew P.; Hart, Sarah J.; Johnson, Pieter T.J.

    2016-01-01

    High-elevation aquatic ecosystems are highly vulnerable to climate change, yet relatively few records are available to characterize shifts in ecosystem structure or their underlying mechanisms. Using a long-term dataset on seven alpine lakes (3126 to 3620 m) in Colorado, USA, we show that ice-off dates have shifted seven days earlier over the past 33 years and that spring weather conditions – especially snowfall – drive yearly variation in ice-off timing. In the most well-studied lake, earlier ice-off associated with increases in water residence times, thermal stratification, ion concentrations, dissolved nitrogen, pH, and chlorophyll-a. Mechanistically, low spring snowfall and warm temperatures reduce summer stream flow (increasing lake residence times) but enhance melting of glacial and permafrost ice (increasing lake solute inputs). The observed links among hydrological, chemical, and biological responses to climate factors highlight the potential for major shifts in the functioning of alpine lakes due to forecasted climate change.

  19. Distribution of polycyclic aromatic hydrocarbons in the food web of a high mountain lake, Pyrenees, Catalonia, Spain.

    Science.gov (United States)

    Vives, Ingrid; Grimalt, Joan O; Ventura, Marc; Catalan, Jordi

    2005-06-01

    We investigated the contents of polycyclic aromatic hydrocarbons (PAHs) in the food web organisms included in the diet of brown trout from a remote mountain lake. The preferential habitat and trophic level of the component species have been assessed from the signature of stable isotopes (delta13C and delta15N). Subsequently, the patterns of accumulation and transformation of these hydrocarbons in the food chain have been elucidated. Most of the food web organisms exhibit PAH distributions largely dominated by phenanthrene, which agrees with its predominance in atmospheric deposition, water, and suspended particles. Total PAH levels are higher in the organisms from the littoral habitat than from the deep sediments or the pelagic water column. However, organisms from deep sediments exhibit higher proportions of higher molecular weight PAH than those in other lake areas. Distinct organisms exhibit specific features in their relative PAH composition that point to different capacities for uptake and metabolic degradation. Brown trout show an elevated capacity for metabolic degradation because they have lower PAH concentrations than food and they are enriched strongly in lower molecular weight compounds. The PAH levels in trout highly depend on organisms living in the littoral areas. Fish exposure to PAH, therefore, may vary from lake to lake according to the relative contribution of littoral organisms to their diet.

  20. Survey and assessment of post volcanic activities of a young caldera lake, Lake Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel

    2009-05-01

    Full Text Available Cuicocha is a young volcano adjacent to the inactive Pleistocene Cotacachi volcano complex, located in the western cordilleras of the Ecuadorian Andes. A series of eruptions with intensive ash emission and collapse of the caldera occurred around 4500–3000 y BP. A crater 3.2 km in diameter and a maximum depth of 450 m was formed. Further eruptions of the volcano occurred 1300 y BP and formed four smaller domes within the caldera. Over the last few hundred years, a caldera lake has developed, with a maximum depth of 148 m. The lake water is characterized by sodium carbonate with elevated concentrations of manganese, calcium and chloride. Nowadays, an emission of gases, mainly CO2, and an input of warm spring water occur in Lake Cuicocha. The zone of high activity is in the western basin of the lake at a depth of 78 m, and continuous gas emissions with sediment resuspension were observed using sonar. In the hypolimnion of the lake, CO2 accumulation occurs up to 0.2% saturation, but the risk of a limnic eruption can be excluded at present. The lake possesses monomictic stratification behaviour, and during overturn an intensive gas exchange with the atmosphere occurs. Investigations concerning the sedimentation processes of the lake suggest only a thin sediment layer of up to 10–20 cm in the deeper lake basin; in the western bay, in the area of gas emissions, the lake bottom is partly depleted of sediment in the form of holes, and no lake colmation exists. Decreases in the lake water level of about 30 cm y−1 indicate a percolation of water into fractures and fissures of the volcano, triggered by a nearby earthquake in 1987.

  1. Juvenile Lost River and shortnose sucker year class strength, survival, and growth in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California—2016 Monitoring Report

    Science.gov (United States)

    Burdick, Summer M.; Ostberg, Carl O.; Hoy, Marshal S.

    2018-04-20

    and 2016, but about twice as high for Lost River suckers and suckers having intermediate Prob[LRS] in 2016 than in 2015. Indices of apparent August–September survival were lower in 2016 (0.41) than in 2015 (1.07) for shortnose suckers and suckers identified as having intermediate Prob [LRS] (0.14 in 2016 and 1.69 in 2015). Indices of apparent August—September survival were similar in 2016 (0.16) and 2015 (0.07) for Lost River suckers. Indices of apparent survival were lower for age-0 Lost River suckers than age-0 shortnose suckers in both years. Although samples sizes are small, a declining trend in the ratio of Lost River to shortnose suckers from 28/23 (1.22) as age-0 fish in September of 2015 to 1/9 (0.11) as age-1 fish in June of 2016 is consistent with higher over winter apparent mortality for Lost River suckers than shortnose suckers in Upper Klamath Lake.Shortnose sucker year class strength was greater in years with high Willow Creek inflows and Clear Lake surface elevation during the spawning season, indicating that access to spawning habitat was an important contributing factor. In previous sampling, age-0 sucker catch per unit effort (CPUE) was relatively high in 2011 and 2012, moderately high in 2013, and zero in 2014 and 2015. The 2011 and 2012 year classes continued to be detected, but the 2013 year class went undetected for the first time in 2016. The 2014 year class continued to be undetected in 2016. Three suckers with one annulus each on fin rays were captured in Clear Lake in 2016. Although these fish are potential representatives of the 2015 year class, they were small for their age, indicating they may have hatched in 2016. Age-0 shortnose and Lost River suckers were captured in Clear Lake in 2016, indicating new cohorts of both taxa were produced. Moderate to abundant year classes were produced in 2011, 2012, and 2016 when lake surface elevation greater than 1,378.9 m (4,524 ft) during the February–June spawning season. Also in 2011 and 2016

  2. Evidence of high-elevation amplification versus Arctic amplification.

    Science.gov (United States)

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-12

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world's high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

  3. Glacial lake inventory and lake outburst potential in Uzbekistan.

    Science.gov (United States)

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. High spatio-temporal resolution observations of crater-lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    Science.gov (United States)

    Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,

    2016-01-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  5. Mid Holocene lake level and shoreline behavior during the Nipissing phase of the upper Great Lakes at Alpena, Michigan, USA

    Science.gov (United States)

    Thompson, T.A.; Lepper, K.; Endres, A.L.; Johnston, J.W.; Baedke, S.J.; Argyilan, E.P.; Booth, R.K.; Wilcox, D.A.

    2011-01-01

    The Nipissing phase was the last pre-modern high-water stage of the upper Great Lakes. Represented as either a one- or two-peak highstand, the Nipissing occurred following a long-term lake-level rise. This transgression was primarily an erosional event with only the final stage of the transgression preserved as barriers, spits, and strandplains of beach ridges. South of Alpena, Michigan, mid to late Holocene coastal deposits occur as a strandplain between Devils Lake and Lake Huron. The landward part of this strandplain is a higher elevation platform that formed during the final stage of lake-level rise to the Nipissing peak. The pre-Nipissing shoreline transgressed over Devils Lake lagoonal deposits from 6.4 to 6.1. ka. The first beach ridge formed ~ 6. ka, and then the shoreline advanced toward Lake Huron, producing beach ridges about every 70. years. This depositional regression produced a slightly thickening wedge of sediment during a lake-level rise that formed 20 beach ridges. The rise ended at 4.5. ka at the Nipissing peak. This peak was short-lived, as lake level fell > 4. m during the following 500. years. During this lake-level rise and subsequent fall, the shoreline underwent several forms of shoreline behavior, including erosional transgression, aggradation, depositional transgression, depositional regression, and forced regression. Other upper Great Lakes Nipissing platforms indicate that the lake-level change observed at Alpena of a rapid pre-Nipissing lake-level rise followed by a slower rise to the Nipissing peak, and a post-Nipissing rapid lake-level fall is representative of mid Holocene lake level in the upper Great Lakes. ?? 2011 Elsevier B.V.

  6. Climatology and potential effects of an emergency outlet, Devils Lake Basin, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, Aldo V.; Osborne, Leon; Fay, James T.

    2000-01-01

    The Devils Lake Basin is a 3,810-square-mile subbasin in the Red River of the North Basin.  At an elevation of about 1,447 feet above sea level, Devils Lake begins to spill into Stump Lake; and at an elevation of about 1,459 feet above sea level, the combined lakes begin to spill through Tolna Coulee into the Sheyenne River. Since the end of glaciation about 10,000 years ago, Devils Lake has fluctuated between spilling and being dry.  Research by the North Dakota Geological Survey indicates Devils Lake has overflowed into the Sheyenne River at least twice during the past 4,000 years and has spilled into the Stump Lakes several times (Bluemle, 1991; Murphy and others, 1997).  John Bluemle, North Dakota State Geologist, concluded the natural condition for Devils Lake is either rising or falling, and the lake should not be expected to remain at any elevation for a long period of time. Recent conditions indicate the lake is in a rising phase.  The lake rose 24.7 feet from February 1993 to August 1999, and flood damages in the Devils Lake Basin have exceeded $300 million.  These damages, and the potential for additional damages, have led to an effort to develop an outlet to help control lake levels.  Therefore, current and accurate climatologic and hydrologic data are needed to assess the viability of the various options to reduce flood damages at Devils Lake.

  7. What do we know about Indonesian tropical lakes? Insights from high frequency measurement

    Science.gov (United States)

    Budi Santoso, Arianto; Triwisesa, Endra; Fakhrudin, Muh.; Harsono, Eko; Agita Rustini, Hadiid

    2018-02-01

    When measuring ecological variables in lakes, sampling frequency is critical in capturing an environmental pattern. Discrete sampling of traditional monitoring programs is likely to result in vital knowledge gaps in understanding any processes particularly those with fine temporal scale characteristics. The development of high frequency measurements offer a sophisticated range of information in recording any events in lakes at a finer time scale. We present physical indices of a tropical deep Lake Maninjau arrayed from OnLine Monitoring System (OLM). It is revealed that Lake Maninjau mostly has a diurnal thermal stratification pattern. The calculated lake stability (Schmidt stability), however, follows a seasonal pattern; low in December-January and around August, and high in May and September. Using a 3D numerical model simulation (ELCOM), we infer how wind and solar radiation intensity control lake’s temperature profiles. In this review, we highlight the needs of high frequency measurement establishment in Indonesian tropical lakes to better understand the unique processes and to support the authorities’ decision making in maximizing the provision of ecosystem services supplied by lakes and reservoirs.

  8. First evidence of grass carp recruitment in the Great Lakes Basin

    Science.gov (United States)

    Chapman, Duane C.; Davis, J. Jeremiah; Jenkins, Jill A.; Kocovsky, Patrick M.; Miner, Jeffrey G.; Farver, John; Jackson, P. Ryan

    2013-01-01

    We use aging techniques, ploidy analysis, and otolith microchemistry to assess whether four grass carp Ctenopharyngodon idella captured from the Sandusky River, Ohio were the result of natural reproduction within the Lake Erie Basin. All four fish were of age 1 +. Multiple lines of evidence indicate that these fish were not aquaculture-reared and that they were most likely the result of successful reproduction in the Sandusky River. First, at least two of the fish were diploid; diploid grass carp cannot legally be released in the Great Lakes Basin. Second, strontium:calcium (Sr:Ca) ratios were elevated in all four grass carp from the Sandusky River, with elevated Sr:Ca ratios throughout the otolith transect, compared to grass carp from Missouri and Arkansas ponds. This reflects the high Sr:Ca ratio of the Sandusky River, and indicates that these fish lived in a high-strontium environment throughout their entire lives. Third, Sandusky River fish were higher in Sr:Ca ratio variability than fish from ponds, reflecting the high but spatially and temporally variable strontium concentrations of southwestern Lake Erie tributaries, and not the stable environment of pond aquaculture. Fourth, Sr:Ca ratios in the grass carp from the Sandusky River were lower in their 2011 growth increment (a high water year) than the 2012 growth increment (a low water year), reflecting the observed inverse relationship between discharge and strontium concentration in these rivers. We conclude that these four grass carp captured from the Sandusky River are most likely the result of natural reproduction within the Lake Erie Basin.

  9. Changes in Rongbuk lake and Imja lake in the Everest region of Himalaya

    Science.gov (United States)

    Chen, W.; Doko, T.; Liu, C.; Ichinose, T.; Fukui, H.; Feng, Q.; Gou, P.

    2014-12-01

    The Himalaya holds the world record in terms of range and elevation. It is one of the most extensively glacierized regions in the world except the Polar Regions. The Himalaya is a region sensitive to climate change. Changes in the glacial regime are indicators of global climate changes. Since the second half of the last century, most Himalayan glaciers have melted due to climate change. These changes directly affected the changes of glacial lakes in the Himalayan region due to the glacier retreat. New glacial lakes are formed, and a number of them have expanded in the Everest region of the Himalayas. This paper focuses on the two glacial lakes which are Imja Lake, located at the southern slope, and Rongbuk Lake, located at the northern slope in the Mt. Everest region, Himalaya to present the spatio-temporal changes from 1976 to 2008. Topographical conditions between two lakes were different (Kruskal-Wallis test, p < 0.05). Rongbuk Lake was located at 623 m higher than Imja Lake, and radiation of Rongbuk Lake was higher than the Imja Lake. Although size of Imja Lake was larger than the Rongbuk Lake in 2008, the growth speed of Rongbuk Lake was accelerating since 2000 and exceeds Imja Lake in 2000-2008. This trend of expansion of Rongbuk Lake is anticipated to be continued in the 21st century. Rongbuk Lake would be the biggest potential risk of glacial lake outburst flood (GLOF) at the Everest region of Himalaya in the future.

  10. Inorganic Nitrogen Deposition and Its Impacts on N:P-Ratios and Lake Productivity

    Directory of Open Access Journals (Sweden)

    Dag O. Hessen

    2013-03-01

    Full Text Available The pronounced increase in the cycling and deposition of biologically reactive dissolved inorganic nitrogen (DIN over large areas globally not only cause increased concentrations of DIN in surface waters, but it will also affect nutrient ratios in rivers, lakes and coastal areas. This review addresses the flux and fate of DIN, focusing NO3 in lakes of boreal and alpine catchments. Not only DIN-deposition, but also catchment properties strongly affect the concentrations of NO3 in lakes, as well as NO3:total P (TP ratios. This ratio displays an extreme variability, and does also serve as an indicator of shift between N and P-limitation of aquatic autotrophs. A high share of forests and bogs in the catchment generally decreases NO3:total P ratios, while alpine and subalpine catchments with sparse vegetation cover may have high NO3:total P ratios, especially in regions with high DIN-deposition. Several empirical and experimental studies indicate a shift from an initial N to P-limitation, but for N-limited lakes, an increased growth of phytoplankton, periphytes and macrophytes may be accredited to elevated inputs of DIN. An intensified P-limitation may also be a consequence of elevated DIN-deposition. This P-limitation may again yield higher C:P-ratios in autotrophs with negative impacts on grazers and higher trophic levels.

  11. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    Science.gov (United States)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2017-07-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  12. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009

    Science.gov (United States)

    Li, Chunlan; Wang, Jun; Hu, Richa; Yin, Shan; Bao, Yuhai; Li, Yuwei

    2018-06-01

    Hulun Lake is the largest freshwater lake in northern Inner Mongolia and even minor changes in its level may have major effects on the ecology of the lake and the surrounding area. In this study, we used high-precision elevation data for the interval from 2003-2009 measured by the Geoscience Laser Altimetry System (GLAS) on board the Ice, Cloud, and land Elevation Satellite (ICESat) to assess annual and seasonal water level variations of Hulun Lake. The altimetry data of 32 satellite tracks were processed using the RANdom SAmple Consensus algorithm (RANSAC) to eliminate elevation outliers, and subsequently the Normalized Difference Water Index (NDWI) was used to delineate the area of the lake. From 2003-2009, the shoreline of Hulun Lake retreated westwards, which was especially notable in the southern part of the lake. There was only a small decrease in water level, from 530.72 m to 529.22 m during 2003-2009, an average rate of 0.08 m/yr. The area of the lake decreased at a rate of 49.52 km2/yr, which was mainly the result of the shallow bathymetry in the southern part of the basin. The decrease in area was initially rapid, then much slower, and finally rapid again. Generally, the lake extent and water level decreased due to higher temperatures, intense evaporation, low precipitation, and decreasing runoff. And their fluctuations were caused by a decrease in intraannual temperature, evaporation, and a slight increase in precipitation. Overall, a combination of factors related to climate change were responsible for the variations of the water level of Hulun Lake during the study interval. The results improve our understanding of the impact of climate change on Hulun Lake and may facilitate the formulation of response strategies.

  13. High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes.

    Science.gov (United States)

    Bartrons, Mireia; Catalan, Jordi; Casamayor, Emilio O

    2012-11-01

    Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than

  14. Perspectives for an integrated understanding of tropical and temperate high-mountain lakes

    Directory of Open Access Journals (Sweden)

    Jordi Catalan

    2016-03-01

    Full Text Available High mountain lakes are extreme freshwater ecosystems and excellent sentinels of current global change. They are likely among the most comparable ecosystems across the world. The largest contrast occurs between lakes in temperate and tropical areas. The main difference arises from the seasonal patterns of heat exchange and the external loadings (carbon, phosphorus, metals. The consequence is a water column structure based on temperature, in temperate lakes, and oxygen, in tropical lakes. This essential difference implies that, in tropical lakes, one can expect a more sustained productivity throughout the year; a higher nutrient internal loading based on the mineralization of external organic matter; higher nitrification-denitrification potential related to the oxyclines; and a higher metal mobilization due to the permanently reduced bottom layer. Quantifying and linking these and other biogeochemical pathways to particular groups of organisms is in the current agenda of high-mountain limnology. The intrinsic difficulties of the taxonomic study of many of the organisms inhabiting these systems can be now overcome with the use of molecular techniques. These techniques will not only provide a much less ambiguous taxonomic knowledge of the microscopic world, but also will unveil new biogeochemical pathways that are difficult to measure chemically and will solve biogeographical puzzles of the distribution of some macroscopic organism, tracing the relationship with other areas. Daily variability and vertical gradients in the tropics are the main factors of phytoplankton species turnover in tropical lakes; whereas seasonality is the main driver in temperate communities. The study of phytoplankton in high-mountain lakes only makes sense in an integrated view of the microscopic ecosystem. A large part of the plankton biomass is in heterotrophic, and mixotrophic organisms and prokaryotes compete for dissolved resources with eukaryotic autotrophs. In fact

  15. Particle-tracking investigation of the retention of sucker larvae emerging from spawning grounds in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Wood, Tamara M.; Wherry, Susan A.; Simon, David C.; Markle, Douglas F.

    2014-01-01

    from smaller to larger fish away from sources in the river and springs, as simulated by the particle-tracking model; the smallest fish were caught at different times near the Williamson River, in the northwestern part of the lake, and in the southernmost part of the lake. This again suggests that fish may be spawning at places other than the river and eastern springs, that our understanding of larval transport is incomplete, or both. The model was used to run 96 numerical “experiments” in which lake elevation, river discharge, and wind forcing were varied systematically in order to investigate the sensitivity of particle retention to each variable, and with particular emphasis on the idea of managing lake elevation to control emigration. The estimates of particle retention cannot be equated directly to retention of fish larvae, primarily because there was no mortality included in the simulations, but the relative comparison of retention and emigration around the matrix of experimental conditions provided several “big picture” results: - Variables that cannot be controlled—winds and discharge—had the largest effect on retention. For example, at the lowest river discharge (20 cubic meters per second), simulated retention was high regardless of wind or lake elevation, whereas at the highest river discharge (100 cubic meters per second), retention was low regardless of wind or lake elevation. - When river discharge and wind were held constant, a higher elevation delayed the onset of the most rapid exit of particles by 1 (from the springs) to 4 (from the river) days, but did not determine overall retention. Only under the combination of conditions consisting of low discharge (50 cubic meters per second or less) and strong wind reversals for several days was there a consistent effect of lake elevation on overall retention several weeks into the simulation, and, under those conditions, retention was at the high end of the possible range regardless of lake

  16. Ice-dammed lake drainage evolution at Russell Glacier, west Greenland

    Science.gov (United States)

    Carrivick, Jonathan L.; Tweed, Fiona S.; Ng, Felix; Quincey, Duncan J.; Mallalieu, Joseph; Ingeman-Nielsen, Thomas; Mikkelsen, Andreas B.; Palmer, Steven J.; Yde, Jacob C.; Homer, Rachel; Russell, Andrew J.; Hubbard, Alun

    2017-11-01

    Glaciological and hydraulic factors that control the timing and mechanisms of glacier lake outburst floods (GLOFs) remain poorly understood. This study used measurements of lake level at fifteen minute intervals and known lake bathymetry to calculate lake outflow during two GLOF events from the northern margin of Russell Glacier, west Greenland. We used measured ice surface elevation, interpolated subglacial topography and likely conduit geometry to inform a melt enlargement model of the outburst evolution. The model was tuned to best-fit the hydrograph’s rising limb and timing of peak discharge in both events; it achieved Mean Absolute Errors of Lake water temperature, which strongly governed the enlargement rate, preconditioned the high peak discharge and short duration of these floods. We hypothesize that both GLOFs were triggered by ice dam flotation, and localised hydraulic jacking sustained most of their early-stage outflow, explaining the particularly rapid water egress in comparison to that recorded at other ice-marginal lakes. As ice overburden pressure relative to lake water hydraulic head diminished, flow became confined to a subglacial conduit. This study has emphasised the inter-play between ice dam thickness and lake level, drainage timing, lake water temperature and consequently rising stage lake outflow and flood evolution.

  17. Critical Loads of Acid Deposition for Wilderness Lakes in the Sierra Nevada (California) Estimated by the Steady-State Water Chemistry Model

    Science.gov (United States)

    Glenn D. Shaw; Ricardo Cisneros; Donald Schweizer; James O. Sickman; Mark E. Fenn

    2014-01-01

    Major ion chemistry (2000-2009) from 208 lakes (342 sample dates and 600 samples) in class I and II wilderness areas of the Sierra Nevada was used in the Steady-State Water Chemistry (SSWC) model to estimate critical loads for acid deposition and investigate the current vulnerability of high elevation lakes to acid deposition. The majority of the lakes were dilute (...

  18. Supraglacial Lakes in the Percolation Zone of the Western Greenland Ice Sheet: Formation and Development using Operation IceBridge Snow Radar and ATM (2009-2014)

    Science.gov (United States)

    Chen, C.; Howat, I. M.; de la Peña, S.

    2015-12-01

    Surface meltwater lakes on the Greenland Ice Sheet have appeared at higher elevations, extending well into the percolation zone, under recent warming, with the largest expansion occurring in the western Greenland Ice Sheet. The conditions that allow lakes to form atop firn are poorly constrained, but the formation of new lakes imply changes in the permeability of the firn at high elevations, promoting meltwater runoff. We explore the formation and evolution of new surface lakes in this region above 1500 meters, using a combination of satellite imagery and repeat Snow (2-6.5 GHz) radar echograms and LIDAR measurements from NASA's Operation IceBridge of 2009-2014. We identify conditions for surface lake formation at their farthest inland extent and suggest behaviors of persistence and lake drainage are due to differences in regional ice dynamics.

  19. 76 FR 50918 - Final Flood Elevation Determinations

    Science.gov (United States)

    2011-08-17

    ... in feet (NGVD) + Elevation in feet (NAVD) Depth in feet State City/town/county Source of flooding... affected [caret] Elevation in meters (MSL) Modified Jones County, Texas, and Incorporated Areas Docket No.: FEMA-B-1122 Lake Fort Phantom Hill Just downstream of County +1642 City of Abilene, Highway 1082...

  20. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    Science.gov (United States)

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  1. Modeling Lake Storage Dynamics to support Arctic Boreal Vulnerability Experiment (ABoVE)

    Science.gov (United States)

    Vimal, S.; Lettenmaier, D. P.; Smith, L. C.; Smith, S.; Bowling, L. C.; Pavelsky, T.

    2017-12-01

    The Arctic and Boreal Zone (ABZ) of Canada and Alaska includes vast areas of permafrost, lakes, and wetlands. Permafrost thawing in this area is expected to increase due to the projected rise of temperature caused by climate change. Over the long term, this may reduce overall surface water area, but in the near-term, the opposite is being observed, with rising paludification (lake/wetland expansion). One element of NASA's ABoVE field experiment is observations of lake and wetland extent and surface elevations using NASA's AirSWOT airborne interferometric radar, accompanied by a high-resolution camera. One use of the WSE retrievals will be to constrain model estimates of lake storage dynamics. Here, we compare predictions using the lake dynamics algorithm within the Variable Infiltration Capacity (VIC) land surface scheme. The VIC lake algorithm includes representation of sub-grid topography, where the depth and area of seasonally-flooded areas are modeled as a function of topographic wetness index, basin area, and slope. The topography data used is from a new global digital elevation model, MERIT-DEM. We initially set up VIC at sites with varying permafrost conditions (i.e., no permafrost, discontinuous, continuous) in Saskatoon and Yellowknife, Canada, and Toolik Lake, Alaska. We constrained the uncalibrated model with the WSE at the time of the first ABoVE flight, and quantified the model's ability to predict WSE and ΔWSE during the time of the second flight. Finally, we evaluated the sensitivity of the VIC-lakes model and compared the three permafrost conditions. Our results quantify the sensitivity of surface water to permafrost state across the target sites. Furthermore, our evaluation of the lake modeling framework contributes to the modeling and mapping framework for lake and reservoir storage change evaluation globally as part of the SWOT mission, planned for launch in 2021.

  2. Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica

    Science.gov (United States)

    Peters, Nial; Oppenheimer, Clive; Killingsworth, Drea Rae; Frechette, Jed; Kyle, Philip

    2014-08-01

    Several studies at Erebus volcano have recorded pulsatory behavior in many of the observable properties of its active lava lake. A strong correlation between the variations in surface speed of the lake and the composition of gas emitted has previously been noted. While previous studies have shown that the SO2 flux and the surface elevation exhibit pulsatory behavior with a similar period to that of the surface speed and gas composition, suggesting they are linked, a lack of overlap between the different measurements has prevented direct comparisons from being made. Using high time-resolution measurements of surface elevation, surface speed, gas composition, and SO2 flux, we demonstrate for the first time an unambiguous link between the cyclic behavior in each of these properties. We also show that the variation in gas composition may be explained by a subtle change in oxygen fugacity. The cycles are found to be in-phase with each other, with a small but consistent lag of 1-3 min between the peaks in surface elevation and surface speed. Explosive events are found to have no observable effect on the pulsatory behavior beyond the ˜5 min period required for lake refill. The close correspondences between the varying lake surface motion, gas flux and composition, and modeled oxygen fugacity suggest strong links between magma degassing, redox change, and the fluid dynamics of the shallow magmatic system.

  3. Stable isotope ratios in swale sequences of Lake Superior as indicators of climate and lake level fluctuations during the Late Holocene

    Science.gov (United States)

    Sharma, Shruti; Mora, G.; Johnston, J.W.; Thompson, T.A.

    2005-01-01

    Beach ridges along the coastline of Lake Superior provide a long-term and detailed record of lake level fluctuations for the past 4000 cal BP. Although climate change has been invoked to explain these fluctuations, its role is still in debate. Here, we reconstruct water balance by employing peat samples collected from swale deposits present between beach ridge sequences at two locations along the coastline of Lake Superior. Carbon isotope ratios for Sphagnum remains from these peat deposits are used as a proxy for water balance because the presence or absence of water films on Sphagnum controls the overall isotope discrimination effects. Consequently, increased average water content in Sphagnum produces elevated ??13C values. Two maxima of Sphagnum ??13C values interpreted to reflect wetter conditions prevailed from 3400 to 2400 cal BP and from about 1900 to 1400 cal BP. There are two relatively short drier periods as inferred from low Sphagnum ??13C values: one is centered at about 2300 cal BP, and one begins at 1400 cal BP. A good covariance was found between Sphagnum ??13C values and reconstructed lake-levels for Lake Michigan in which elevated carbon isotope values correlate well with higher lake levels. Based on this covariance, we conclude that climate exerts a strong influence on lake levels in Lake Superior for the past 4000 cal BP. ?? 2005 Elsevier Ltd. All rights reserved.

  4. Mercury Dynamics in Aquatic Food Webs of the Finger Lakes, New York

    Science.gov (United States)

    Cleckner, L.; Razavi, N. R.; Halfman, J. D.; Cushman, S. F.; Foust, J.; Gilman, B.

    2016-12-01

    Mercury (Hg) contamination of fish is a global concern due to the deleterious health effects in humans and wildlife associated with ingesting fish with elevated concentrations. A key to understanding elevated fish Hg concentrations is to examine methyl Hg dynamics at the base of food webs, including algae and zooplankton. Predicting determinants of methyl Hg concentrations in lower trophic level biota remains an active area of research. This study was conducted to assess Hg concentrations in biota of the Finger Lakes (New York, USA), a region where fisheries are an important economic driver, but where no comprehensive assessment of food web Hg dynamics has been completed to date. Sources of Hg in the region include atmospheric pollution from an active coal-fired power plant. The objectives of this study were to: 1) determine if fish Hg concentrations were of concern, 2) assess differences in Hg accumulation among lakes and determine predictors of fish Hg concentrations, and 3) evaluate the predictive power of monthly zooplankton methyl Hg concentrations on fish Hg concentrations. From May - October 2015, suspended particulate matter, zooplankton, and benthos were sampled monthly in five of the Finger Lakes (Honeoye, Canandaigua, Seneca, Cayuga, and Owasco Lakes). Fish were sampled once over the same study period and species were targeted from all trophic levels. Results for top predatory fish including Lake Trout (Salvelinus namaycush), Largemouth Bass (Micropterus salmoides), and Walleye (Sander vitreus) showed significant differences among lakes, and elevated concentrations are above US Environmental Protection Agency's screening value (300 ng/g wet weight). No clear pattern in Hg levels among lakes was evident in lower trophic level fishes such as Yellow Perch (Perca flavescens) and Golden Shiner (Notemigonus crysoleucas), but concentrations were low. Benthivorous Brown Bullhead (Ameiurus nebulosus) exhibited significant differences in Hg among lakes with

  5. Recent glacier retreat and lake formation in the Querecocha watershed, Cordillera Blanca, Peru

    Science.gov (United States)

    López Moreno, J.; Valero-Garces, B.; Revuelto, J.; Azorín-Molina, C.; Bazo, J.; Cochachin, A.; Fontaneda, S.; Mark, B. G.

    2013-12-01

    In the Andes, and specifically in the Peruvian mountains a marked decrease of the glaciated area has occurred since the end of the Little Ice Age, and it has been accelerated since the last decades of the 20th century. As a result of the glacier retreat new pro-glaciar lakes are originated, and often the area and volume of existing ones increases. The study of these newly-formed lakes and their recent evolution may provide a better understanding of the hydrological and geomorphological evolution of deglaciated areas, and a better evaluation of the risk of glacial lakes outburst floods (GLOFS). In this work, we use 26 annual Landsat Thematic Mapper images from 1975 to 2010 to determine changes of the glaciated surface, snow line elevation and lakes formation in the headwaters of the Querecocha watershed in Cordillera Blanca (Perú). We also present the information derived from 10 short sediment cores (up to 50 cm long) retrieved along several transects in Yanamarey Lake. Both data sets inform of the sediment yield and lake development in recently deglaciated environments of the Andes. Results demonstrate that only one third of the surface covered by ice in 1975 remained in 2010. In this period, snowline has shifted up more than 100 meters in elevation in both, Yanamarey North and South areas respectively. At the same time, new lakes have been formed very quickly in these deglaciated areas. Preliminary 137Cs dating of Yanamarey sediment core indicates that at least the top 50 cm of the lake sequence deposited after 1960. This is coherent with the Landsat image of 1975 that showed the current surface of the lake still covered by ice. The high sediment rate (> 1 cm/yr) in the lake demonstrates the very high sediment yield in these geomorphically active settings. The sediment cores are composed of cm-thick sequences defined by grain-size (silt-clay) common in proglacial lakes reflecting the variability of hydrological response associated to the glacier retreat in the

  6. Exploratory Hydrocarbon Drilling Impacts to Arctic Lake Ecosystems

    Science.gov (United States)

    Thienpont, Joshua R.; Kokelj, Steven V.; Korosi, Jennifer B.; Cheng, Elisa S.; Desjardins, Cyndy; Kimpe, Linda E.; Blais, Jules M.; Pisaric, Michael FJ.; Smol, John P.

    2013-01-01

    Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the

  7. Biogeochemistry of Lakes in Western Papua, Indonesia - First Results of a Pilot Study.

    Science.gov (United States)

    Kallmeyer, J.; Nomosatryo, S.; Henny, C.; Kopalit, H.

    2016-12-01

    Despite years of exploration for mineral and hydrocarbon resources, the lakes of Western Papua have received very little attention from a limnogeologic perspective. In some cases not even the maximum water depth of the lakes is published. The only research carried out so far focused on the fish and invertebrate fauna of the lakes, because the macrofauna of Papuan Lakes is significantly different from other islands of western Indonesia. Most lakes harbor numerous endemic species. We carried out a first limnogeologic pilot campaign in spring 2016 to measure water column profiles and take short (max 80 cm long) sediment cores.Lake Sentani is seated in Mesozoic mafic bedrock and consists of four separate basins with maximum water depths of 30 to 40 m. Three basins are connected by shallow sills and one by a natural canal. Although all four basins share almost identical surface water chemistry and exhibit sub- to anoxic bottom waters, each basin has its distinct water column stratification and sediment geochemistry. Despite its coastal location and minimal elevation we could not identify an influx of seawater into the lake. Lake Ayamaru is located further inland on a densely forested karstified carbonate platform. The lake level has dropped significantly in recent years due to water loss into the karst, further reduction of open water surface is caused by massive growth of Pistia. Currently the lake has a maximum depth of around 2 m. Its sediment is mainly composed of carbonate minerals and methane saturated. Due to the carbonate bedrock the lake is highly alkaline (up to 20 meq/L) despite its very low salinity. The initial analyses show that these lakes offer unique biogeochemical conditions that require further in-depth studies.Our research will expand to lakes Anggi Giji and Anggi Gida, which are at almost 2000 m elevation. They have maximum depths of around 200 m and much colder surface waters (12-20°C) compared to the other two lakes that have about 30

  8. Effects of the exotic zebra mussel (Dreissena polymorpha) on metal cycling in Lake Erie

    International Nuclear Information System (INIS)

    Klerks, P.L.; Fraleigh, P.C.; Lawniczak, J.E.

    1997-01-01

    This research demonstrated the impact of high densities of the zebra mussel (Dreissena polymorpha) on the cycling of copper, nickel, and zinc in a lake environment. Experiments with mussels on sedimentation traps in western Lake Erie and with mussels in flow-through tanks receiving Lake Erie water showed that zebra mussels remove metals from the water column, incorporate metals in their tissues, and deposit metals on the lake bottom. Removal of metals from the water column was estimated at 10-17%·day -1 of the amounts present. This material was largely deposited on the lake bottom; zebra mussels more than doubled the rate at which metals were being added to the lake bottom. Metal biodeposition rates were extremely high (e.g., 50 mg Zn·m -2 ·day -1 ) in high-turbidity areas with elevated metal levels. Two factors contributed to metal biodeposition by zebra mussels. First, their production of feces and pseudofeces increased the rate at which suspended matter was being added to the sediment (accounting for 92% of the increased metal biodeposition). Second, the material coming out of suspension had higher metal concentrations when zebra mussels were present (constituting 8% of the increased biodeposition). (author)

  9. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes.

    Science.gov (United States)

    McCrackin, Michelle L; Elser, James J

    2010-02-01

    Microbially mediated denitrification is an important process that may ameliorate the effects of nitrogen (N) loading by permanently removing excess N inputs. In this study, we measured the rate of denitrification and nitrous oxide (N2O) production during denitrification in sediments from 32 Norwegian lakes at the high and low ends of a gradient of atmospheric N deposition. Denitrification and N2O production rates averaged 41.7 and 1.1 micromol N x m(-2) x h(-1), respectively, for high-deposition lakes. There was no detectable denitrification or N2O production in low-deposition lakes. Epilimnetic nitrate concentration was strongly correlated with denitrification rate (r2 = 0.67). We also measured the denitrification rate in response to experimental additions of organic carbon, nitrate, and phosphorus. Experimental nitrate additions stimulated denitrification in sediments of all lakes, regardless of N deposition level. In fact, the rate of denitrification in nitrate-amended treatments was the same magnitude for lakes in both deposition areas. These findings suggest that lake sediments possess considerable capacity to remove nitrate and that this capacity has not been saturated under conditions of chronic N loading. Further, nitrous oxide was nearly 3% of the total gaseous product during denitrification in high-deposition lakes, a fraction that is comparable to polluted marine sediments. Our findings suggest that, while lakes play an important role in N removal in the landscape, they may be a source of N2O emissions, especially in areas subject to elevated N inputs.

  10. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China.

    Science.gov (United States)

    Sun, Shiwei; Kang, Shichang; Huang, Jie; Li, Chengding; Guo, Junming; Zhang, Qianggong; Sun, Xuejun; Tripathee, Lekhendra

    2016-06-01

    The Tibetan Plateau is home to the largest aggregate of glaciers outside the Polar Regions and is a source of fresh water to 1.4 billion people. Yet little is known about the transportation and cycling of Hg in high-elevation glacier basins on Tibetan Plateau. In this study, surface snow, glacier melting stream water and lake water samples were collected from the Qiangyong Glacier Basin. The spatiotemporal distribution and transportation of Hg from glacier to lake were investigated. Significant diurnal variations of dissolved Hg (DHg) concentrations were observed in the river water, with low concentrations in the morning (8:00am-14:00pm) and high concentrations in the afternoon (16:00pm-20:00pm). The DHg concentrations were exponentially correlated with runoff, which indicated that runoff was the dominant factor affecting DHg concentrations in the river water. Moreover, significant decreases of Hg were observed during transportation from glacier to lake. DHg adsorption onto particulates followed by the sedimentation of particulate-bound Hg (PHg) could be possible as an important Hg removal mechanism during the transportation process. Significant decreases in Hg concentrations were observed downstream of Xiao Qiangyong Lake, which indicated that the high-elevation lake system could significantly affect the distribution and transportation of Hg in the Qiangyong Glacier Basin. Copyright © 2016. Published by Elsevier B.V.

  11. Mercury in fish from the Pinchi Lake Region, British Columbia, Canada

    International Nuclear Information System (INIS)

    Weech, S.A.; Scheuhammer, A.M.; Elliott, J.E.; Cheng, K.M.

    2004-01-01

    Water, surface sediments, and <40 cm rainbow trout (Oncorhynchus mykiss) and northern pikeminnow (Ptychocheilus oregonensis) were collected from Pinchi Lake, British Columbia, and from several nearby reference lakes. Hg concentrations in sediment samples from Pinchi L. were highly elevated compared to sediments from reference lakes, especially in sites adjacent to and downstream of a former Hg mine. In both fish species examined, Hg concentration was positively related to age and/or fork length. In northern pikeminnow, Hg concentrations were also positively related to trophic level (δN). Hg concentrations in both fish species were highest in Pinchi L., and were higher in pikeminnow than in rainbow trout of similar size. Average Hg concentrations in small rainbow trout from all lakes, including Pinchi L., were lower than dietary levels reported to cause reproductive impairment in common loons (Gavia immer); however, Hg levels in small pikeminnow from Pinchi L. were sufficiently high to be of concern. The risk for Hg toxicity in the study area is greatest for animals that consume larger piscivorous fish such as larger northern pikeminnow or lake trout, which are known from previous studies to contain higher Hg concentrations

  12. Assessment of oxidative stress and histopathology in juvenile northern pike (Esox lucius) inhabiting lakes downstream of a uranium mill

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Jocelyn M. [Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3 (Canada); Janz, David M., E-mail: david.janz@usask.ca [Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4 (Canada)

    2009-05-17

    Lakes receiving effluent from the Key Lake uranium mill in northern Saskatchewan contain elevated trace metals, some of which are associated with increased reactive oxygen species (ROS) in cells and tissues causing oxidative stress. The potential for oxidative stress was assessed in juvenile (age 1+) northern pike (Esox lucius) collected from two exposure (high and low) and one reference lake near the Key Lake operation. The concentrations of total, reduced and oxidized glutathione and the ratio of oxidized to reduced glutathione in liver and kidney did not differ significantly among pike collected from exposure and reference lakes, with the exception of low exposure pike kidney that had significantly greater oxidized glutathione and ratio of oxidized to reduced glutathione. The concentrations of by-products of lipid peroxidation (malondialdehyde and 4-hydroxyalkenal) were significantly greater in kidney of pike collected from the reference lake compared to both exposure lakes. The activity of the antioxidant enzyme glutathione peroxidase in liver was greater in pike collected from the high exposure lake compared to the reference lake. Histopathological evaluations revealed greater pathology in reference lake pike as indicated by a greater number of pyknotic and fragmented nuclei and dilated tubules as well as a thickening of Bowman's capsule in kidney, and as a thickening of the primary filament epithelial padding in gills. In liver, hepatocyte morphology, including transsectional area and degree of vacuolation, differed among lakes without any clear signs of pathology. Trace metal analyses of muscle showed that eight elements (arsenic, cobalt, copper, iron, molybdenum, selenium, thallium, and uranium) were significantly elevated in pike collected from both exposure lakes compared to reference. These results provide only limited evidence of oxidative stress in exposure pike tissues and no evidence of histopathology despite indications that trace metals, most

  13. Assessment of oxidative stress and histopathology in juvenile northern pike (Esox lucius) inhabiting lakes downstream of a uranium mill

    International Nuclear Information System (INIS)

    Kelly, Jocelyn M.; Janz, David M.

    2009-01-01

    Lakes receiving effluent from the Key Lake uranium mill in northern Saskatchewan contain elevated trace metals, some of which are associated with increased reactive oxygen species (ROS) in cells and tissues causing oxidative stress. The potential for oxidative stress was assessed in juvenile (age 1+) northern pike (Esox lucius) collected from two exposure (high and low) and one reference lake near the Key Lake operation. The concentrations of total, reduced and oxidized glutathione and the ratio of oxidized to reduced glutathione in liver and kidney did not differ significantly among pike collected from exposure and reference lakes, with the exception of low exposure pike kidney that had significantly greater oxidized glutathione and ratio of oxidized to reduced glutathione. The concentrations of by-products of lipid peroxidation (malondialdehyde and 4-hydroxyalkenal) were significantly greater in kidney of pike collected from the reference lake compared to both exposure lakes. The activity of the antioxidant enzyme glutathione peroxidase in liver was greater in pike collected from the high exposure lake compared to the reference lake. Histopathological evaluations revealed greater pathology in reference lake pike as indicated by a greater number of pyknotic and fragmented nuclei and dilated tubules as well as a thickening of Bowman's capsule in kidney, and as a thickening of the primary filament epithelial padding in gills. In liver, hepatocyte morphology, including transsectional area and degree of vacuolation, differed among lakes without any clear signs of pathology. Trace metal analyses of muscle showed that eight elements (arsenic, cobalt, copper, iron, molybdenum, selenium, thallium, and uranium) were significantly elevated in pike collected from both exposure lakes compared to reference. These results provide only limited evidence of oxidative stress in exposure pike tissues and no evidence of histopathology despite indications that trace metals, most

  14. Contrasting the genetic patterns of microbial communities in Soda lakes with and without cyanobacterial bloom

    OpenAIRE

    Andreote, A. P. D.; Dini-Andreote, F.; Rigonato, J.; Machineski, G. S.; Souza, B. C. E.; Barbiéro, Laurent; Rezende, A. T.; Fiore, M. F.

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved...

  15. Lake responses following lanthanum-modified bentonite clay (Phoslock®) application: an analysis of water column lanthanum data from 16 case study lakes.

    Science.gov (United States)

    Spears, Bryan M; Lürling, Miquel; Yasseri, Said; Castro-Castellon, Ana T; Gibbs, Max; Meis, Sebastian; McDonald, Claire; McIntosh, John; Sleep, Darren; Van Oosterhout, Frank

    2013-10-01

    Phoslock(®) is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La concentrations associated with the use of Phoslock(®) across 16 case study lakes. Impact-recovery trajectories associated with total lanthanum (TLa) and filterable La (FLa) concentrations in surface and bottom waters were quantified over a period of up to 60 months following Phoslock(®) application. Both surface and bottom water TLa and FLa concentrations were 0.8 mEq L(-1)), but higher (up to 0.12 mg L(-1)) in lakes characterised by very low alkalinity. The effects of elevated La(3+) concentrations following Phoslock(®) applications in lakes of very low alkalinity requires further evaluation. The implications for the use of Phoslock(®) in eutrophication management are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Precise topography assessment of Lop Nur Lake Basin using GLAS altimeter

    International Nuclear Information System (INIS)

    Wang, Longfei; Gong, Huaze; Shao, Yun

    2014-01-01

    Lop Nur is a dried-up salt lake lying in the eastern part of Tarim basin, which used to be the second largest lagon in China. The ''ear'' rings in Lop Nur attract many interests and are regarded as the lake shorelines during its recession. The topography of the lake basin is important in understanding the formation of the ''ear'' rings. In this paper, elevation data along three transects obtained from laser altimeter were taken as the basic material of the topography in Lop Nur. Elevation data of laser altimeter show great consistency between adjacent passes. Orthometric height (OH) derived from altimetry data and the geoid model are used to analyze the elevation characteristic along ''ear'' rings. The result shows the ''ear'' rings are basically identical in elevation, supporting the statement that ''ear'' rings are former lake shorelines. A discrepancy of approximately 1 meter in OH is observed on the same ''ear'' ring, lower in the north and higher in the south, which is found for the first time. Possible explanations could be deformation of ground surface due to earthquake or tectonic movement after the ''ear'' rings are formed, or tilt of water surface due to wind stress or lake current during the formation of the rings

  17. Characterizing the Frequency and Elevation of Rapid Drainage Events in West Greenland

    Science.gov (United States)

    Cooley, S.; Christoffersen, P.

    2016-12-01

    Rapid drainage of supraglacial lakes on the Greenland Ice Sheet is critical for the establishment of surface-to-bed hydrologic connections and the subsequent transfer of water from surface to bed. Yet, estimates of the number and spatial distribution of rapidly draining lakes vary widely due to limitations in the temporal frequency of image collection and obscureness by cloud. So far, no study has assessed the impact of these observation biases. In this study, we examine the frequency and elevation of rapidly draining lakes in central West Greenland, from 68°N to 72.6°N, and we make a robust statistical analysis to estimate more accurately the likelihood of lakes draining rapidly. Using MODIS imagery and a fully automated lake detection method, we map more than 500 supraglacial lakes per year over a 63000 km2 study area from 2000-2015. Through testing four different definitions of rapidly draining lakes from previously published studies, we find that the number of rapidly draining lakes varies from 3% to 38%. Logistic regression between rapid drainage events and image sampling frequency demonstrates that the number of rapid drainage events is strongly dependent on cloud-free observation percentage. We then develop three new drainage criteria and apply an observation bias correction that suggests a true rapid drainage probability between 36% and 45%, considerably higher than previous studies without bias assessment have reported. We find rapid-draining lakes are on average larger and disappear earlier than slow-draining lakes, and we also observe no elevation differences for the lakes detected as rapidly draining. We conclude a) that methodological problems in rapid drainage research caused by observation bias and varying detection methods have obscured large-scale rapid drainage characteristics and b) that the lack of evidence for an elevation limit on rapid drainage suggests surface-to-bed hydrologic connections may continue to propagate inland as climate warms.

  18. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    Science.gov (United States)

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. © 2016 John Wiley & Sons Ltd.

  19. Spatiotemporal patterns of high-mountain lakes and related hazards in western Austria

    Czech Academy of Sciences Publication Activity Database

    Emmer, Adam; Merkl, S.; Mergili, M.

    2015-01-01

    Roč. 246, oct (2015), s. 602-616 ISSN 0169-555X Institutional support: RVO:67179843 Keywords : lake development * geoenvironmental change * GLOF * high-mountain lakes * susceptibility analysis Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 2.813, year: 2015

  20. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Directory of Open Access Journals (Sweden)

    Nicole A. Vander Schaaf

    2015-07-01

    Full Text Available The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  1. Hydrologic and Isotopic Sensitivity of Alpine Lakes to Climate Change in the Medicine Bow Mountains, Wyoming

    Science.gov (United States)

    Liefert, D. T.; Shuman, B. N.; Mercer, J.; Parsekian, A.; Williams, D. G.

    2017-12-01

    Climate reconstructions show that global average temperatures were 0.5°C higher than today during the mid-Holocene, falling well within projections for increases in global average temperature presented in the latest Intergovernmental Panel on Climate Change report. Despite the consensus for the prediction of a warmer climate, however, it is unclear how snowmelt from high-elevation watersheds will be affected by such a change. Snowmelt contributes substantially to major rivers in the western United States, and much of the water flows through lakes in the highest-elevation watersheds. Our water balance models show that modern alpine lakes with seasonably unstable water levels can desiccate primarily through groundwater outflow, resulting in increased groundwater storage that likely sustains baseflow in mountain streams once snowmelt has subsided in late summer. However, contribution of freshwater from alpine lakes to streams may vary over time as changes in climate alters snowpack, rates of evaporation, and the abundance of snowmelt-fed lakes. As such, alpine lakes with seasonally unstable water levels today may have dried out entirely during the mid-Holocene warm period and may dry out in the future as temperatures increase. To investigate the response of alpine lakes to temperatures of the mid-Holocene, we collected 9 sediment cores from closed-basin alpine lakes in the Medicine Bow Mountains of southern Wyoming that lose most their volumes each summer. We use radiocarbon-dating of charcoal in basal sediments to determine lake formation age, abundance of conifer needles to infer relative forest cover, and a δ18O carbonate record to determine changes in the ratio of evaporation to precipitation in an alpine lake that existed throughout the Holocene. Warming likely changed watershed hydrology through a) decreased snowpack and earlier snowmelt, b) increased evaporation, and c) increased transpiration associated with expanded forest cover and longer growing seasons

  2. Localized enrichment of polycyclic aromatic hydrocarbons in soil, spruce needles, and lake sediments linked to in-situ bitumen extraction near Cold Lake, Alberta

    International Nuclear Information System (INIS)

    Korosi, J.B.; Irvine, G.; Skierszkan, E.K.; Doyle, J.R.; Kimpe, L.E.; Janvier, J.; Blais, J.M.

    2013-01-01

    The extraction of bitumen from the Alberta oil sands using in-situ technologies is expanding at a rapid rate; however, investigations into the environmental impacts of oil sands development have focused on surface mining in the Athabasca region. We measured polycyclic aromatic hydrocarbons (PAH) in soils, spruce needles, and lake sediment cores in the Cold Lake oil sands region to provide a historical and spatial perspective on PAH contamination related to in-situ extraction activities. A pronounced increase in PAH concentrations was recorded in one of two study lakes (Hilda Lake) corresponding to the onset of commercial bitumen production in ∼1985. Distance from extraction rigs was not an important predictor of PAH concentrations in soils, although two samples located near installations were elevated in alkyl PAHs. Evidence of localized PAH contamination in Hilda Lake and two soil samples suggests that continued environmental monitoring is justified to assess PAH contamination as development intensifies. -- Highlights: •In-situ bitumen extraction linked to rise in alkyl PAHs in one of two study lakes. •Alkyl PAHs elevated in two soil samples. •PAH contamination likely related to effluent sources, not atmospheric deposition. -- PAHs in sediments and soils were generally low in areas adjacent to in-situ bitumen extraction rigs in the Cold Lake Alberta oil sands, but evidence of localized contamination at some sites was evident

  3. Venous Lake of the Lips Treated Using Photocoagulation with High-Intensity Diode Laser

    Science.gov (United States)

    Galletta, Vivian C.; de Paula Eduardo, Carlos; Migliari, Dante A.

    2010-01-01

    Abstract Objective: To evaluate the effectiveness of photocoagulation with high-intensity diode laser in the treatment of venous lake (VL) lesions. Background Data: VL is a common vascular lesion characterized by elevated, usually dome-shaped papules, ranging in color from dark blue to dark purple, seen more frequently in elderly patients. They often occur as single lesions on the ears, face, lips, or neck. Once formed, lesions persist throughout life. Although these lesions are usually asymptomatic, they can bleed if injured. Methods: Seventeen patients (7 men and 10 women) with VL on the lip were treated using a noncontact diode laser (wavelength 808 nm, power output 2–3 W in continuous wave). Results: After only one irradiation exposure, all lesions were successfully treated. Healing was completed in approximately 2 to 3 weeks, and none of the patients experienced complications. Postoperative discomfort and scarring were not present or were minimal. Conclusion: Photocoagulation with high-intensity diode laser is an effective, bloodless procedure for the treatment of VL. PMID:19811083

  4. Effects of the exotic zebra mussel (Dreissena polymorpha) on metal cycling in Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Klerks, P.L. [Univ. of Southwestern Louisiana, Dept. of Biology, Lafayette, Louisiana (United States)]. E-mail: klerks@usl.edu; Fraleigh, P.C.; Lawniczak, J.E. [Univ. of Toledo, Dept. of Biology, Toledo, Ohio (United States)

    1997-07-15

    This research demonstrated the impact of high densities of the zebra mussel (Dreissena polymorpha) on the cycling of copper, nickel, and zinc in a lake environment. Experiments with mussels on sedimentation traps in western Lake Erie and with mussels in flow-through tanks receiving Lake Erie water showed that zebra mussels remove metals from the water column, incorporate metals in their tissues, and deposit metals on the lake bottom. Removal of metals from the water column was estimated at 10-17%{center_dot}day{sup -1} of the amounts present. This material was largely deposited on the lake bottom; zebra mussels more than doubled the rate at which metals were being added to the lake bottom. Metal biodeposition rates were extremely high (e.g., 50 mg Zn{center_dot}m{sup -2}{center_dot}day{sup -1}) in high-turbidity areas with elevated metal levels. Two factors contributed to metal biodeposition by zebra mussels. First, their production of feces and pseudofeces increased the rate at which suspended matter was being added to the sediment (accounting for 92% of the increased metal biodeposition). Second, the material coming out of suspension had higher metal concentrations when zebra mussels were present (constituting 8% of the increased biodeposition). (author)

  5. Climate change impacts on high-elevation hydroelectricity in California

    Science.gov (United States)

    Madani, Kaveh; Guégan, Marion; Uvo, Cintia B.

    2014-03-01

    While only about 30% of California's usable water storage capacity lies at higher elevations, high-elevation (above 300 m) hydropower units generate, on average, 74% of California's in-state hydroelectricity. In general, high-elevation plants have small man-made reservoirs and rely mainly on snowpack. Their low built-in storage capacity is a concern with regard to climate warming. Snowmelt is expected to shift to earlier in the year, and the system may not be able to store sufficient water for release in high-demand periods. Previous studies have explored the climate warming effects on California's high-elevation hydropower by focusing on the supply side (exploring the effects of hydrological changes on generation and revenues) ignoring the warming effects on hydroelectricity demand and pricing. This study extends the previous work by simultaneous consideration of climate change effects on high-elevation hydropower supply and pricing in California. The California's Energy-Based Hydropower Optimization Model (EBHOM 2.0) is applied to evaluate the adaptability of California's high-elevation hydropower system to climate warming, considering the warming effects on hydroelectricity supply and pricing. The model's results relative to energy generation, energy spills, reservoir energy storage, and average shadow prices of energy generation and storage capacity expansion are examined and discussed. These results are compared with previous studies to emphasize the need to consider climate change effects on hydroelectricity demand and pricing when exploring the effects of climate change on hydropower operations.

  6. Factors influencing release of phosphorus from sediments in a high productive polymictic lake system.

    Science.gov (United States)

    Solim, S U; Wanganeo, A

    2009-01-01

    Phosphorus (P) release rates from bottom sediments are high (20.6 mg/m(2)/day) in Dal Lake (India), a polymictic hyper-eutrophic lake. These gross release rates occur over a period of 72 days during summer only. Likewise, a net internal load of 11.3 tons was obtained from mass balance estimates. Significant proportion i.e. approximately 80% of 287.3 tons/yr of nitrate nitrogen (NO(3)-N) load is either eliminated by denitrification or gets entrapped for a short period in high macrophyte biomass of 3.2 kg/m(2) f.w., which eventually get decomposed and nitrogen (N) is released back. These processes result in low lake water NO(3)-N concentrations which potentially influence sediment phosphorus (P) release. Especially, nitrate nitrogen (NO(3)-N) 500 microg/L in the lake waters were associated with high P concentrations. Phosphorus was also observed to increase significantly in relation to temperature and pH, and it seems likely that release of phosphorus and ammonical nitrogen (NH(4)-N) depend on decomposition of rich reserves of organic matter (893 tons d.w. in superficial 10-cm bottom sediment layer). Lake P concentrations were significantly predicted by a multivariate regression model developed for the lake. This study describes significance of various lake water variables in relation to P-release from bottom sediments.

  7. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming

    Science.gov (United States)

    Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; Veblen, Thomas T; Smith, Jeremy M.; Kueppers, Lara M.

    2017-01-01

    Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long life spans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively.Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers.Empirically observed, warming-driven declines in recruitment led to rapid modelled population declines at the low-elevation, ‘warm edge’ of subalpine forest and slow emergence of populations beyond the high-elevation, ‘cool edge’. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modelled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above tree line, and, ultimately, expansion into the alpine.Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts.

  8. Drastic lake level changes of Lake Van (eastern Turkey) during the past ca. 600 ka: climatic, volcanic and tectonic control

    Science.gov (United States)

    Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.

    2013-12-01

    Lake Van is the largest soda lake in the world with a present surface of 3,574 km2 and a maximum water depth of 450 m. Sedimentary deposits in the lake preserve one of the most complete record of continental climate in the Middle East since the Middle Pleistocene. We studied these deposits to characterize the evolution of the lake level and its possible relationships with changes in climate, volcanic, and regional tectonics since the formation of the lake ca. 600 ka ago. Changes in lake level were determined based on high-resolution seismic reflection profiles showing erosional surfaces, changes in stratal geometries such as downward shifts in coastal onlap, and recognition of distinctive stratigraphic features such as prograding delta clinoforms. Our results show that Lake Van has undergone drastic changes in surface elevation by as much as 600 meters over the past ca. 600 ka. Five major lowstands occurred at ca. ~600 ka, ca. 365-340 ka, ca 290-230 ka; ca. 150-130 ka; and ca. 30-14 ka. During a first period (A) (ca. 600-ca 230 ka) lake levels changed drastically by hundreds of m but at longer time intervals between low and high stands. Changes occurred more frequently but mostly by a few tens of m during the past ca. 230 ka years where we can distinguish a first period (B1) of stepwise transgressions between ca. 230 and 150 ka followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise again during period B2 lasting until ca 30 ka. During the past 30 ka a regression and a final transgression each lasted ca. 15 ka years. The major lowstand periods in Lake Van occurred during glacial periods, arguing for a climatic control of these lake-level fluctuations (i.e., significantly reduced precipitation leading to lake level low stands). Although climate forcing may have been the dominant cause for the drastic lake level changes of Lake Van, volcanic and tectonic forcing factors are also invoked. For example, the number of distinct tephra layers

  9. Ice-Dammed Lake Drainage Evolution at Russell Glacier, West Greenland

    Directory of Open Access Journals (Sweden)

    Jonathan L. Carrivick

    2017-11-01

    Full Text Available KEY POINTS/HIGHLIGHTSTwo rapid ice-dammed lake drainage events gauged and ice dam geometry measured.A melt enlargement model is developed to examine the evolution of drainage mechanism(s.Lake temperature dominated conduit melt enlargement and we hypothesize a flotation trigger.Glaciological and hydraulic factors that control the timing and mechanisms of glacier lake outburst floods (GLOFs remain poorly understood. This study used measurements of lake level at 15 min intervals and known lake bathymetry to calculate lake outflow during two GLOF events from the northern margin of Russell Glacier, west Greenland. We used measured ice surface elevation, interpolated subglacial topography and likely conduit geometry to inform a melt enlargement model of the outburst evolution. The model was tuned to best-fit the hydrograph rising limb and timing of peak discharge in both events; it achieved Mean Absolute Errors of <5%. About one third of the way through the rising limb, conduit melt enlargement became the dominant drainage mechanism. Lake water temperature, which strongly governed the enlargement rate, preconditioned the high peak discharge and short duration of these floods. We hypothesize that both GLOFs were triggered by ice dam flotation, and localized hydraulic jacking sustained most of their early-stage outflow, explaining the particularly rapid water egress in comparison to that recorded at other ice-marginal lakes. As ice overburden pressure relative to lake water hydraulic head diminished, flow became confined to a subglacial conduit. This study has emphasized the inter-play between ice dam thickness and lake level, drainage timing, lake water temperature and consequently rising stage lake outflow and flood evolution.

  10. Denitrification and Biodiversity of Denitrifiers in a High-Mountain Mediterranean Lake

    Directory of Open Access Journals (Sweden)

    Antonio Castellano-Hinojosa

    2017-10-01

    Full Text Available Wet deposition of reactive nitrogen (Nr species is considered a main factor contributing to N inputs, of which nitrate (NO3− is usually the major component in high-mountain lakes. The microbial group of denitrifiers are largely responsible for reduction of nitrate to molecular dinitrogen (N2 in terrestrial and aquatic ecosystems, but the role of denitrification in removal of contaminant nitrates in high-mountain lakes is not well understood. We have used the oligotrophic, high-altitude La Caldera lake in the Sierra Nevada range (Spain as a model to study the role of denitrification in nitrate removal. Dissolved inorganic Nr concentration in the water column of la Caldera, mainly nitrate, decreased over the ice-free season which was not associated with growth of microbial plankton or variations in the ultraviolet radiation. Denitrification activity, estimated as nitrous oxide (N2O production, was measured in the water column and in sediments of the lake, and had maximal values in the month of August. Relative abundance of denitrifying bacteria in sediments was studied by quantitative polymerase chain reaction of the 16S rRNA and the two phylogenetically distinct clades nosZI and nosZII genes encoding nitrous oxide reductases. Diversity of denitrifiers in sediments was assessed using a culture-dependent approach and after the construction of clone libraries employing the nosZI gene as a molecular marker. In addition to genera Polymorphum, Paracoccus, Azospirillum, Pseudomonas, Hyphomicrobium, Thauera, and Methylophaga, which were present in the clone libraries, Arthrobacter, Burkholderia, and Rhizobium were also detected in culture media that were not found in the clone libraries. Analysis of biological activities involved in the C, N, P, and S cycles from sediments revealed that nitrate was not a limiting nutrient in the lake, allowed N2O production and determined denitrifiers’ community structure. All these results indicate that

  11. Denitrification and Biodiversity of Denitrifiers in a High-Mountain Mediterranean Lake

    Science.gov (United States)

    Castellano-Hinojosa, Antonio; Correa-Galeote, David; Carrillo, Presentación; Bedmar, Eulogio J.; Medina-Sánchez, Juan M.

    2017-01-01

    Wet deposition of reactive nitrogen (Nr) species is considered a main factor contributing to N inputs, of which nitrate (NO3−) is usually the major component in high-mountain lakes. The microbial group of denitrifiers are largely responsible for reduction of nitrate to molecular dinitrogen (N2) in terrestrial and aquatic ecosystems, but the role of denitrification in removal of contaminant nitrates in high-mountain lakes is not well understood. We have used the oligotrophic, high-altitude La Caldera lake in the Sierra Nevada range (Spain) as a model to study the role of denitrification in nitrate removal. Dissolved inorganic Nr concentration in the water column of la Caldera, mainly nitrate, decreased over the ice-free season which was not associated with growth of microbial plankton or variations in the ultraviolet radiation. Denitrification activity, estimated as nitrous oxide (N2O) production, was measured in the water column and in sediments of the lake, and had maximal values in the month of August. Relative abundance of denitrifying bacteria in sediments was studied by quantitative polymerase chain reaction of the 16S rRNA and the two phylogenetically distinct clades nosZI and nosZII genes encoding nitrous oxide reductases. Diversity of denitrifiers in sediments was assessed using a culture-dependent approach and after the construction of clone libraries employing the nosZI gene as a molecular marker. In addition to genera Polymorphum, Paracoccus, Azospirillum, Pseudomonas, Hyphomicrobium, Thauera, and Methylophaga, which were present in the clone libraries, Arthrobacter, Burkholderia, and Rhizobium were also detected in culture media that were not found in the clone libraries. Analysis of biological activities involved in the C, N, P, and S cycles from sediments revealed that nitrate was not a limiting nutrient in the lake, allowed N2O production and determined denitrifiers’ community structure. All these results indicate that denitrification could be a

  12. Polonium-210 accumulates in a lake receiving coal mine discharges-anthropogenic or natural?

    Science.gov (United States)

    Nelson, A W; Eitrheim, E S; Knight, A W; May, D; Wichman, M D; Forbes, T Z; Schultz, M K

    2017-02-01

    Coal is an integral part of global energy production; however, coal mining is associated with numerous environmental health impacts. It is well documented that coal-mine waste can contaminate the environment with naturally-occurring radionuclides from the uranium-238 ( 238 U) decay series. However, the behavior of the final radionuclide in the 238 U-series, i.e., polonium-210 ( 210 Po) arising from coal-mine waste-water discharge is largely unexplored. Here, results of a year-long (2014-2015) field study, in which the concentrations of 210 Po in sediments and surface water of a lake that receives coal-mine waste-water discharge in West Virginia are presented. Initial measurements identified levels of 210 Po in the lake sediments that were in excess of that which could be attributed to ambient U-series parent radionuclides; and were indicative of discharge site contamination of the lake ecosystem. However, control sediment obtained from a similar lake system in Iowa (an area with no coal mining or unconventional drilling) suggests that the levels of 210 Po in the lake are a natural phenomenon; and are likely unrelated to waste-water treatment discharges. Elevated levels of 210 Po have been reported in lake bottom sediments previously, yet very little information is available on the radioecological implications of 210 Po accumulation in lake bottom sediments. The findings of this study suggest that (Monthly Energy Review, 2016) the natural accumulation and retention of 210 Po in lake sediments may be a greater than previously considered (Chadwick et al., 2013) careful selection of control sites is important to prevent the inappropriate attribution of elevated levels of NORM in lake bottom ecosystems to industrial sources; and (Van Hook, 1979) further investigation of the source-terms and potential impacts on elevated 210 Po in lake-sediment ecosystems is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Duration and severity of Medieval drought in the Lake Tahoe Basin

    Science.gov (United States)

    Kleppe, J.A.; Brothers, D.S.; Kent, G.M.; Biondi, F.; Jensen, S.; Driscoll, N.W.

    2011-01-01

    Droughts in the western U.S. in the past 200 years are small compared to several megadroughts that occurred during Medieval times. We reconstruct duration and magnitude of extreme droughts in the northern Sierra Nevada from hydroclimatic conditions in Fallen Leaf Lake, California. Stands of submerged trees rooted in situ below the lake surface were imaged with sidescan sonar and radiocarbon analysis yields an age estimate of ∼1250 AD. Tree-ring records and submerged paleoshoreline geomorphology suggest a Medieval low-stand of Fallen Leaf Lake lasted more than 220 years. Over eighty more trees were found lying on the lake floor at various elevations above the paleoshoreline. Water-balance calculations suggest annual precipitation was less than 60% normal from late 10th century to early 13th century AD. Hence, the lake’s shoreline dropped 40–60 m below its modern elevation. Stands of pre-Medieval trees in this lake and in Lake Tahoe suggest the region experienced severe drought at least every 650–1150 years during the mid- and late-Holocene. These observations quantify paleo-precipitation and recurrence of prolonged drought in the northern Sierra Nevada.

  14. High-coercivity minerals from North African Humid Period soil material deposited in Lake Yoa (Chad)

    Science.gov (United States)

    Just, J.; Kroepelin, S.; Wennrich, V.; Viehberg, F. A.; Wagner, B.; Rethemeyer, J.; Karls, J.; Melles, M.

    2015-12-01

    The Holocene is a period of fundamental climatic change in North Africa. Humid conditions during the so-called African Humid Period (AHP) have favored the formation of big lake systems. Only very few of these lakes persist until today. One of them is Lake Yoa (19°03'N/20°31'E) in the Ounianga Basin, Chad, which maintains its water level by ground water inflow. Here we present the magnetic characteristics together with proxies for lacustrine productivity and biota of a sediment core (Co1240) from Lake Yoa, retrieved in 2010 within the framework of the Collaborative Research Centre 806 - Our Way to Europe (Deutsche Forschungsgemeinschaft). Magnetic properties of AHP sediments show strong indications for reductive diagenesis. An up to ~ 80 m higher lake level is documented by lacustrine deposits in the Ounianga Basin, dating to the early phase of the AHP. The higher lake level and less strong seasonality restricted deep mixing of the lake. Development of anoxic conditions consequently lead to the dissolution of iron oxides. An exception is an interval with high concentration of high-coercivity magnetic minerals, deposited between 7800 - 8120 cal yr BP. This interval post-dates the 8.2 event, which was dry in Northern Africa and probably caused a reduced vegetation cover. We propose that the latter resulted in the destabilization of soils around Lake Yoa. After the re-establishment of humid conditions, these soil materials were eroded and deposited in the lake. Magnetic minerals appear well preserved in the varved Late Holocene sequence, indicating (sub-) oxic conditions in the lake. This is surprising, because the occurrence of varves is often interpreted as an indicator for anoxic conditions of the lake water. However, the salinity of lake water rose strongly after the AHP. We therefore hypothesize that the conservation of varves and absence of benthic organisms rather relates to the high salinity than to anoxic conditions.

  15. High-speed elevator ELEXCIA{sub TM}; Kosoku elevator EXEXCIA{sub TM}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    New series high-speed elevator ELEXCIA{sub TM} was put on sale in November 1999. In ELEXCIA{sub TM}, the car and door as well as the newly developed hoist and control device were improved in compactness, lightweight, silence, and riding quality. The major features of the high-speed elevator are as follows: (1) The use of an outer rotor-type permanent magnetic synchronous motor (PMSM) in a hoist reduced the mass of the hoist (by about 40% as compared with the conventional one). (2) The use of a double-structured car side plate and floor enabled a silent car. (3) Improved door performance. The introduction of a PMSM motor and latest inverter control processor door into a door gave smoother movement than the previous one. (4) Brightly easy-to-view and white LED-type operation buttons are used in the hoistway door and car. (translated by NEDO)

  16. Water Quality and Evaluation of Pesticides in Lakes in the Ridge Citrus Region of Central Florida

    Science.gov (United States)

    Choquette, Anne F.; Kroening, Sharon E.

    2009-01-01

    Water chemistry, including major inorganic constituents, nutrients, and pesticide compounds, was compared between seven lakes surrounded by citrus agriculture and an undeveloped lake on the Lake Wales Ridge (herein referred to as the Ridge) in central Florida. The region has been recognized for its vulnerability to the leaching of agricultural chemicals into the subsurface due to factors including soils, climate, and land use. About 40 percent of Florida's citrus cultivation occurs in 'ridge citrus' areas characterized by sandy well drained soils, with the remainder in 'flatwoods citrus' characterized by high water tables and poorly drained soils. The lakes on the Ridge are typically flow-through lakes that exchange water with adjacent and underlying aquifer systems. This study is the first to evaluate the occurrence of pesticides in lakes on the Ridge, and also represents one of the first monitoring efforts nationally to focus on regional-scale assessment of current-use pesticides in small- to moderate-sized lakes (5 to 393 acres). The samples were collected between December 2003 and September 2005. The lakes in citrus areas contained elevated concentrations of major inorganic constituents (including alkalinity, total dissolved solids, calcium, magnesium, sodium, potassium, chloride, and sulfate), total nitrogen, pH, and pesticides compared to the undeveloped lake. Nitrate (as N) and total nitrogen concentrations were typically elevated in the citrus lakes, with maximum values of 4.70 and 5.19 mg/L (milligrams per liter), respectively. Elevated concentrations of potassium, nitrate, and other inorganic constituents in the citrus lakes likely reflect inputs from the surficial ground-water system that originated predominantly from agricultural fertilizers, soil amendments, and inorganic pesticides. A total of 20 pesticide compounds were detected in the lakes, of which 12 compounds exceeded the standardized reporting level of 0.06 ug/L (microgram per liter). Those

  17. Dam-breach analysis and flood-inundation mapping for Lakes Ellsworth and Lawtonka near Lawton, Oklahoma

    Science.gov (United States)

    Rendon, Samuel H.; Ashworth, Chad E.; Smith, S. Jerrod

    2012-01-01

    Dams provide beneficial functions such as flood control, recreation, and reliable water supplies, but they also entail risk: dam breaches and resultant floods can cause substantial property damage and loss of life. The State of Oklahoma requires each owner of a high-hazard dam, which the Federal Emergency Management Agency defines as dams for which failure or misoperation probably will cause loss of human life, to develop an emergency action plan specific to that dam. Components of an emergency action plan are to simulate a flood resulting from a possible dam breach and map the resulting downstream flood-inundation areas. The resulting flood-inundation maps can provide valuable information to city officials, emergency managers, and local residents for planning the emergency response if a dam breach occurs. Accurate topographic data are vital for developing flood-inundation maps. This report presents results of a cooperative study by the city of Lawton, Oklahoma, and the U.S. Geological Survey (USGS) to model dam-breach scenarios at Lakes Ellsworth and Lawtonka near Lawton and to map the potential flood-inundation areas of such dam breaches. To assist the city of Lawton with completion of the emergency action plans for Lakes Ellsworth and Lawtonka Dams, the USGS collected light detection and ranging (lidar) data that were used to develop a high-resolution digital elevation model and a 1-foot contour elevation map for the flood plains downstream from Lakes Ellsworth and Lawtonka. This digital elevation model and field measurements, streamflow-gaging station data (USGS streamflow-gaging station 07311000, East Cache Creek near Walters, Okla.), and hydraulic values were used as inputs for the dynamic (unsteady-flow) model, Hydrologic Engineering Center's River Analysis System (HEC-RAS). The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum

  18. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    Science.gov (United States)

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  19. Lake trout otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems

    Science.gov (United States)

    Black, B.A.; Von Biela, V.R.; Zimmerman, C.E.; Brown, Randy J.

    2013-01-01

    High-latitude ecosystems are among the most vulnerable to long-term climate change, yet continuous, multidecadal indicators by which to gauge effects on biology are scarce, especially in freshwater environments. To address this issue, dendrochronology (tree-ring analysis) techniques were applied to growth-increment widths in otoliths from lake trout (Salvelinus namaycush) from the Chandler Lake system, Alaska (68.23°N, 152.70°W). All otoliths were collected in 1987 and exhibited highly synchronous patterns in growth-increment width. Increments were dated, the widths were measured, and age-related growth declines were removed using standard dendrochronology techniques. The detrended time series were averaged to generate an annually resolved chronology, which continuously spanned 1964–1984. The chronology positively and linearly correlated with August air temperature over the 22-year interval (p fish metabolic rate or lake productivity. Given the broad distribution of lake trout within North America, this study suggests that otolith chronologies could be used to examine responses between freshwater ecosystems and environmental variability across a range of temporal and spatial scales.

  20. High frequency and large deposition of acid fog on high elevation forest.

    Science.gov (United States)

    Igawa, Manabu; Matsumura, Ko; Okochi, Hiroshi

    2002-01-01

    We have collected and analyzed fogwater on the mountainside of Mt. Oyama (1252 m) in the Tanzawa Mountains of Japan and observed the fog event frequency from the base of the mountain with a video camera. The fog event frequency increased with elevation and was observed to be present 46% of the year at the summit. The water deposition via throughfall increased with elevation because of the increase in fogwater interception and was about twice that via rain at the summit, where the air pollutant deposition via throughfall was several times that via rainwater. The dry deposition and the deposition via fogwater were dominant factors in the total ion deposition at high elevation sites. In a fog event, nitric acid, the major acid component on the mountain, is formed during the transport of the air mass from the base of the mountain along the mountainside, where gases including nitric acid deposit and are scavenged by fogwater. Therefore, high acidity caused by nitric acid and relatively low ion strength are observed in the fogwater at high elevation sites.

  1. High-speed elevators controlled by inverters

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yoshio; Takahashi, Hideaki; Nakamura, Kiyoshi; Kinoshita, Hiroshi

    1988-10-25

    The super-high-speed elevator with superiority to 300m/min of speed, requires both the large capacity power and wide range speed controls. Therefore, in order to materialize the smooth and quiet operation characteristics, by applying the inverter control, the low torque ripple control in the low frequency range and high frequency large capacity inverting for lowering the motor in noise are necessary with their being assured of reliability. To satisfy the above necessary items, together with the development of a sine wave pulse width and frequency modulation (PWM/PFM) control system, to more precisely enable the sine wave electric current control, and 3kHz switching power converter, using a 800A power transistor module, a supervoltage control circuit under the extraordinary condition was designed. As a result of commercializing a 360m/min super-high speed inverter elevator, the power source unit, due to the effect of high power factor, could be reduced by 30% in capacity and also the higher harmonic wave including ratio could be considerably lowered to the inferiority to 5%. 2 references, 7 figures, 1 table.

  2. Climate variability during the deglaciation and Holocene in a high-altitude alpine lake deduced from the sedimentary record from Laguna Seca, Sierra Nevada, southern Iberian Peninsula

    Science.gov (United States)

    Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Anderson, R. Scott

    2017-04-01

    High-resolution X-ray fluorescence (XRF), magnetic susceptibility (MS), color and lithological analyses have been carried out on a 3.6 m-long sediment core from Laguna Seca, a high-elevation dry lake from Sierra Nevada mountain range, southern Spain. This is the longest sedimentary record retrieved from an alpine lake in southern Iberian Peninsula. Besides, alpine lakes are very sensitive environments to climate changes and previous studies showed that Laguna Seca could provide an excellent record to identify millennial-scale climate variations during deglaciation and the whole Holocene. XRF analyses, in particular high calcium and low K/Ca ratios, show aridity phases, very well represented during Last Glacial Maximum (LGM) and the Younger Dryas (YD). Arid events are also shown at ca. 8.1 ka BP, ca. 4.4 ka BP and the latest Holocene. On the other hand, negative values in calcium and positive values in K/Ca appear in the Bølling-Allerød (BA) and during the early Holocene until ca. 6 ka BP, indicating more humidity and higher run-off. A progressive aridification trend is also observed in the Holocene, changing from more humid conditions during the early Holocene to more aridity during the late Holocene.

  3. Microbiology of Lonar Lake and other soda lakes

    Science.gov (United States)

    Paul Antony, Chakkiath; Kumaresan, Deepak; Hunger, Sindy; Drake, Harold L; Murrell, J Colin; Shouche, Yogesh S

    2013-01-01

    Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalkaliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. Soda lake microorganisms harbor several biotechnologically relevant enzymes and biomolecules (for example, cellulases, amylases, ectoine) and there is the need to augment bioprospecting efforts in soda lake environments with new integrated approaches. Importantly, some saline and alkaline lake ecosystems around the world need to be protected from anthropogenic pressures that threaten their long-term existence. PMID:23178675

  4. Inventory of montane-nesting birds in Katmai and Lake Clark national parks and preserves

    Science.gov (United States)

    Ruthrauff, Daniel R.; Tibbitts, Lee; Gill, Robert E.; Handel, Colleen M.

    2007-01-01

    As part of the National Park Service’s Inventory and Monitoring Program, biologists from the U. S. Geological Survey’s Alaska Science Center conducted an inventory of birds in montane regions of Katmai and Lake Clark National Parks and Preserves during 2004–2006. We used a stratified random survey design to allocate samples by ecological subsection. To survey for birds, we conducted counts at 468 points across 29, 10-km x 10-km (6.2-mi x 6.2-mi) sample plots in Katmai and 417 points across 25, 10-km x 10-km sample plots in Lake Clark. We detected 92 and 104 species in Katmai and Lake Clark, respectively, including 40 species of conservation concern. We detected three species not previously recorded in Katmai (Ring-necked Duck [Aythya collaris], Lesser Scaup [Aythya affinis], and White-tailed Ptarmigan [Lagopus leucurus]) and two species not previously recorded in Lake Clark (Northern Flicker [Colaptes auratus ] and Olive-sided Flycatcher [Contopus cooperi]). The most commonly detected species in both parks was Golden-crowned Sparrow (Zonotrichia atricapilla); Fox Sparrow (Passerella iliaca) and American Pipit (Anthus rubescens) were abundant and widely-distributed as well. We defined sites as low (100–350 m), middle (351–600 m), or high (601–1,620 m) elevation based on the distribution of vegetation cover, and similarly categorized the 34 most-commonly detected species based on the mean elevation of sample points at which they were detected. High elevation (i.e., alpine) sites were characterized by high percent cover of dwarf shrub and bare ground habitat and supported species like Rock Ptarmigan (L. mutus), American Golden-Plover (Pluvialis dominica), Wandering Tattler (Tringa incana), Surfbird (Aphriza virgata), and Snow Bunting (Plectrophenax nivalis), all species of conservation concern. This inventory represents the first systematic survey of birds nesting in montane regions of both parks. Results from this inventory can form the foundation of

  5. Holocene climate on the Modoc Plateau, northern California, USA: The view from Medicine Lake

    Science.gov (United States)

    Starratt, Scott W.

    2009-01-01

    Medicine Lake is a small (165 ha), relatively shallow (average 7.3 m), intermediate elevation (2,036 m) lake located within the summit caldera of Medicine Lake volcano, Siskiyou County, California, USA. Sediment cores and high-resolution bathymetric and seismic reflection data were collected from the lake during the fall of 1999 and 2000. Sediments were analyzed for diatoms, pollen, density, grain size (sand/mud ratio), total organic carbon (TOC), and micro-scale fabric analysis. Using both 14C (AMS) dating and tephrochronology, the basal sediments were estimated to have been deposited about 11,400 cal year BP, thus yielding an estimated average sedimentation rate of about 20.66 cm/1,000 year. The lowermost part of the core (11,400–10,300 cal year BP) contains the transition from glacial to interglacial conditions. From about 11,000–5,500 cal year BP, Medicine Lake consisted of two small, steep-sided lakes or one lake with two steep-sided basins connected by a shallow shelf. During this time, both the pollen (Abies/Artemisia ratio) and the diatom (Cyclotella/Navicula ratio) evidences indicate that the effective moisture increased, leading to a deeper lake. Over the past 5,500 years, the pollen record shows that effective moisture continued to increase, and the diatom record indicates fluctuations in the lake level. The change in the lake level pattern from one of the increasing depths prior to about 6,000 cal year BP to one of the variable depths may be related to changes in the morphology of the Medicine Lake caldera associated with the movement of magma and the eruption of the Medicine Lake Glass Flow about 5,120 cal year BP. These changes in basin morphology caused Medicine Lake to flood the shallow shelf which surrounds the deeper part of the lake. During this period, the Cyclotella/Navicula ratio and the percent abundance of Isoetes vary, suggesting that the level of the lake fluctuated, resulting in changes in the shelf area

  6. [Limnology of high mountain tropical lake, in Ecuador: characteristics of sediments and rate of sedimentation].

    Science.gov (United States)

    Gunkel, Günter

    2003-06-01

    Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (limnological study was therefore undertaken at Lake San Pablo, Ecuador, to analyze the basic limnological processes of the lake, which has a tendency for eutrophication. Sediment quality of San Pablo Lake is given under consideration of horizontal and vertical distribution using sediment cores. Significance of sediments for eutrophication process of lakes is demonstrated using phosphorus concentration of sediments as well as the phosphorus retention capacity of the sediments by ratio Fe/P. Dating of the sediments is done using 137Cs and 210Pb, but the activity of 137Cs in the sediment was very low nearly at the detection level. Sedimentation rate is determined to be 3.5 mm/year and the sediment cores represent about 110 years. P concentration of the sediments is high (approximately 5 g/kg dry substance), and P retention capacity by Fe is insufficient (Fe/P = 4). The sediment quality did not change significantly during the past decades, and the trophic state of San Pablo Lake was already less or more eutrophic 110 years ago. The contamination of the lake sediments by heavy metals is insignificant.

  7. Plastic responses to elevated temperature in low and high elevation populations of three grassland species.

    Science.gov (United States)

    Frei, Esther R; Ghazoul, Jaboury; Pluess, Andrea R

    2014-01-01

    Local persistence of plant species in the face of climate change is largely mediated by genetic adaptation and phenotypic plasticity. In species with a wide altitudinal range, population responses to global warming are likely to differ at contrasting elevations. In controlled climate chambers, we investigated the responses of low and high elevation populations (1200 and 1800 m a.s.l.) of three nutrient-poor grassland species, Trifolium montanum, Ranunculus bulbosus, and Briza media, to ambient and elevated temperature. We measured growth-related, reproductive and phenological traits, evaluated differences in trait plasticity and examined whether trait values or plasticities were positively related to approximate fitness and thus under selection. Elevated temperature induced plastic responses in several growth-related traits of all three species. Although flowering phenology was advanced in T. montanum and R. bulbosus, number of flowers and reproductive allocation were not increased under elevated temperature. Plasticity differed between low and high elevation populations only in leaf traits of T. montanum and B. media. Some growth-related and phenological traits were under selection. Moreover, plasticities were not correlated with approximate fitness indicating selectively neutral plastic responses to elevated temperature. The observed plasticity in growth-related and phenological traits, albeit variable among species, suggests that plasticity is an important mechanism in mediating plant responses to elevated temperature. However, the capacity of species to respond to climate change through phenotypic plasticity is limited suggesting that the species additionally need evolutionary adaptation to adjust to climate change. The observed selection on several growth-related and phenological traits indicates that the study species have the potential for future evolution in the context of a warming climate.

  8. Regional distribution and relevance in paleonvironmental studies of lakes in the Tatra Mts. (Western Carpathians

    Directory of Open Access Journals (Sweden)

    Joanna POCIASK-KARTECZKA

    2014-11-01

    Full Text Available Scientific limnological research in the Tatra Mountains were initiated by Stanislaw Staszic in the early XIX century.  After the World War II, the evolution of Tatra lakes was investigated by Kondracki, Klimaszewski, Baumgart-Kotarba and. Extensive paleolimnological investigations in the Tatra Mountains were started by the group of scientists led by K. Starmach in the beginning of the second half of the 20th century. There has been not much research concerned to the regional distribution of lakes and their properties in the Tatra Mountains (Pociask-Karteczka 2013. Very early division of lakes presented A. Gadomski (1922, which distinguished four types of lakes: a tarns (cirque lake or corrie loch, b bedrock-dammed lakes, c moraine lakes. This division was concerned in subsequent publications (Choiński 2007. M. Lukniš (1973, 1985 recognized additional types: kettles and landslide-dammed lakes and M. Klimaszewski (1988 – inter-sheepback lakes. J. Pacl and K. Wit-Jóźwik in Klima Tatier (Pacl, Wit-Jóźwik 1974 were focused on the temperature of water in lakes in Polish and Slovak parts and M. Borowiak (2000a,b provided a comprehensive analysis of types, dimensions, temperature and chemical composition of water in lakes in the Tatra Mountains.According to present day state of knowledge, one may distinguish following genetic types of lakes: I glacial, II not-glacial. There are four types of the glacial origin lakes in the Tatra Mountains (Fig. 1: a tarns (cirque lakes or corrie loch, b bedrock-moraine dammed lakes, c inter-sheepback lakes, d moraine lakes, e kettles.Most of lakes in the Tatra Mountains are tarns and bedrock-moraine dammed lakes, and they are located at the elevation over 1400 m a.s.l. in the Western Tatra Mountains, and over 1600 m a.s.l. in the High Tatra Mountains. Some of them are paternoster lakes – a series of stair-stepped lakes formed in individual rock basins aligned down the course of a glaciated valley. Lakes in

  9. Stable carbon isotopes in high-productive littoral areas of Lake Constance

    International Nuclear Information System (INIS)

    Chondrogianni, C.

    1992-01-01

    The investigation attempted to extend understanding of C fractionation in aquatic systems and to facilitate the interpretation of palaeolimnological isotope data. Particular interest was taken in the aspect of bicarbonate assimilation at high productivity and in the exchange processes between water and atmosphere. Littoral areas of lakes were chosen as areas of investigation as they offer a high-productivity environment with large populations of submersed macrophytes and periphytes. To get a better picture of the factors influencing C fractionation, litteral and pellagial regions were compared on the one hand and a mesotrophic (Ueberlingersee) and a eutrophic (Gnadensee) lake section on the other hand. Further factors of differentiation between the two lake parts were: Volume, the proportional share of the litteral area, and water exchange. Two main fields of interest were investigated: - Determination of the C isotope ratio (δ 13 C) in the dissolved bicarbonate of water in the sediments of a single year for the purpose of calibrating its fractionation in the basis of the present chemical and physical status of the lake water (water programme). - Determination of δ 13 C in selected carbonate components from sedimentary cores in order to find out about palaeolimnological events in the areas of investigation (sediment programme). (orig.) [de

  10. Study of environmental isotope distribution in the Aswan High Dam Lake (Egypt) for estimation of evaporation of lake water and its recharge to adjacent groundwater

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Nada, A.; Awad, M.; Hamza, M.; Salem, W.M.

    1993-01-01

    Oxygen-18 ( 18 O) and deuterium isotopes were used to estimate the evaporation from the Aswan High Dam Lake and to investigate the inter-relation between the lake water and adjacent groundwater. According to stable isotopic analysis of samples taken in 1988 and 1989, the lake can be divided into two sections. In the first section extending between Abu Simbel and a point between El-Alaki and Krosko, a remarkable vertical gradient of 18 O and deuterium isotopic composition was observed. The second northern sector extending to the High Dam is characterised by a lower vertical isotopic gradient. In this sector in general, higher values of 18 O and deuterium contents were found at the top and lower values at the bottom. Also a strong horizontal increase of the heavy isotope content was observed. Thus, in the northern section evaporation is of dominating influence on the isotopic composition of the lake water. With the help of an evaporation pan experiment it was possible to calibrate the evaporative isotope enrichment in the lake and to facilitate a preliminary estimate of evaporative losses of lake water. The evaporation from the lake was estimated to be about 19% of the input water flow rate. The groundwater around the lake was investigated and samples from production wells and piezometers were subjected to isotopic analysis. The results indicate that recent recharge to the groundwater aquifer is limited to wells near to the lake and up to a maximum distance of about 10 km. The contribution of recent Nile water to the groundwater in these wells was estimated to range between 23 and 70%. Beyond this distance, palaeowater was observed with highly depleted deuterium and 18 O contents, which was also confirmed by 14c dating. The age of palaeo groundwater in this area can reach values of more than 26,000 years. Recommendations are given for efficient water management of the lake water. (Author)

  11. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    John S. Irving; R. P. Breckenridge

    1992-12-01

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface

  12. Detection of subglacial lakes in airborne radar sounding data from East Antarctica.

    Science.gov (United States)

    Carter, S. P.; Blankenship, D. D.; Peters, M. E.; Morse, D. L.

    2004-12-01

    Airborne ice penetrating radar is an essential tool for the identification of subglacial lakes. With it, we can measure the ice thickness, the amplitude of the reflected signal from the base of the ice, the depth to isochronous surfaces and, with high quality GPS, the elevation of the ice surface. These four measurements allow us to calculate the reflection coefficient from the base of the ice, the hydrostatic head, the surface slope and basal temperature. A subglacial lake will be characterized by: a consistently high reflection coefficient from the base of the ice, a nearly flat hydraulic gradient at a relative minimum in the hydraulic potential, an exceptionally smooth ice surface, and an estimated basal temperature that is at or near the pressure melting point of ice. We have developed a computerized algorithm to identify concurrences of the above-mentioned criteria in the radar data sets for East Antarctica collected by the University of Texas (UT). This algorithm is henceforth referred to as the "lake detector". Regions which meet three or more of the above mentioned criteria are identified as subglacial lakes, contingent upon a visual inspection by the human operator. This lake detector has added over 40 lakes to the most recent inventory of subglacial lakes for Antarctica. In locations where the UT flight lines approach or intersect flight lines from other airborne radar surveys, there is generally good agreement between the "lake detector" lakes and lakes identified in these data sets. In locations where the "lake detector" fails to identify a lake which is present in another survey, the most common failing is the estimated basal temperature. However, in some regions where a bright, smooth basal reflector is shown to exist, the lake detector may be failing due to a persistent slope in the hydraulic gradient. The nature of these "frozen" and "sloping" lakes is an additional focus of this presentation.

  13. Towards monitoring surface and subsurface lakes on the Greenland Ice Sheet using Sentinel-1 SAR and Landsat-8 OLI imagery

    Science.gov (United States)

    Miles, Katie E.; Willis, Ian C.; Benedek, Corinne L.; Williamson, Andrew G.; Tedesco, Marco

    2017-07-01

    Supraglacial lakes are an important component of the Greenland Ice Sheet’s mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR) satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days versus daily) but a higher spatial resolution (25-40 m versus 250-500 m), is then used together with a fully-automated lake drainage detection algorithm. Rapid (days) and slow (> 4 days) drainages are investigated for both small (summer. Drainage events of small lakes occur at lower elevations (mean 159 m), and slightly earlier (mean 4.5 days) in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1270 m mean elevation). Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively). These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1593 m and 1185 m, respectively). Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  14. A new empirical method to predict carbon dioxide evasion from boreal lakes

    Science.gov (United States)

    Hastie, Adam; Lauerwald, Ronny; Weyhenmeyer, Gesa; Sobek, Sebastian; Regnier, Pierre

    2016-04-01

    Carbon dioxide evasion from lakes (F CO2) is an important component of the global carbon budget. In this study, empirical models have been developed to predict CO2 partial pressure (pCO2) in boreal lakes at the 0.5° grid scale, with the aim of producing the first map of F CO2 from these high latitude aquatic systems. Approximately 57,000 samples of lake pCO2 from Sweden and Finland were used to train the models. Significant seasonality in pCO2 was identified and thus data were split into two categories based on water temperature; 0-4.5° C and >4.5° C. The lake pCO2 data and various globally available, environmental parameters such as elevation, terrestrial net primary production (NPP) and climate (temperature T, rainfall R) were spatially aggregated to a 0.5° resolution. Preliminary results from multiple regression analyses suggest that a significant proportion of the variability in boreal lake pCO2 can be explained using these globally available parameters. For water temperatures above 4.5° C, the explained proportion of the variability in lake pCO2 is particularly high (r2= 0.7). Following further refinement and validation, a map of estimated lake pCO2 for the entire boreal region will be established. This map will then be combined with lake surface area data from the GLObal WAter BOdies database (GLOWABO, Verpoorter et al., 2014), and a calculation of gas exchange velocity k to produce the first map of boreal lake F CO2. Finally, IPCC projections of the selected environmental predictors (T, NPP, and R) will be used to estimate future F CO2 from boreal lakes and their sensitivity to climate change.

  15. Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador

    Directory of Open Access Journals (Sweden)

    G. Gunkel

    2008-01-01

    Full Text Available Volcanic lakes within calderas should be viewed as high-risk systems, and an intensive lake monitoring must be carried out to evaluate the hazard of potential limnic or phreatic-magmatic eruptions. In Ecuador, two caldera lakesLakes Quilotoa and Cuicocha, located in the high Andean region >3000 a.s.l. – have been the focus of these investigations. Both volcanoes are geologically young or historically active, and have formed large and deep calderas with lakes of 2 to 3 km in diameter, and 248 and 148 m in depth, respectively. In both lakes, visible gas emissions of CO2 occur, and an accumulation of CO2 in the deep water body must be taken into account.

    Investigations were carried out to evaluate the hazards of these volcanic lakes, and in Lake Cuicocha intensive monitoring was carried out for the evaluation of possible renewed volcanic activities. At Lake Quilotoa, a limnic eruption and diffuse CO2 degassing at the lake surface are to be expected, while at Lake Cuicocha, an increased risk of a phreatic-magmatic eruption exists.

  16. Analysis of hepatic deiodinase 2 mRNA levels in natural fish lake populations exposed to different levels of putative thyroid disrupters

    International Nuclear Information System (INIS)

    Jarque, Sergio; Bosch, Carme; Casado, Marta; Grimalt, Joan O.; Raldúa, Demetrio; Piña, Benjamin

    2014-01-01

    Hepatic mRNA levels of the dio2 gene (deiodinase 2), implicated in thyroid hormone homeostasis, were analyzed in trout from six remote lakes in the Pyrenees (Spain) and the Tatra Mountains (Slovakia). Highest levels corresponded to fish from the two coldest lakes in Pyrenees, whereas relatively low levels were found in the Tatra lakes. These values correlated with the presence of highly-brominated polybrominated diphenyl ethers (PBDE) congeners in the muscle of the same animals, reflecting the distribution of these compounds across European mountain ranges. In contrast, cyp1a expression levels, diagnostic for the presence of dioxin-like pollutants, mirrored the distribution of semi-volatile organochlorine compounds, indicating the specificity of the two types of biological responses. Exposure to PDBEs is known to increase transcription of dio2 and other thyroid-related genes in laboratory experiments; we propose that our data reflects the same phenomenon in natural populations, driven by anthropogenic pollutants at the environmental concentrations. - Highlights: • Hepatic deiodinase 2 (dio2) mRNA levels vary among mountain lake trout populations. • High dio2 expression correlated with elevated levels of PBDE 153 and 154 in muscle. • Expression patterns of dio2 and cyp1a diverge among the same fish populations. • Elevated biological responses associated to high loads of specific pollutants. • These data indicate that thyroid disruption may occur in remote ecosystems. - Deionidase dio2 expression as a marker for exposure to putative thyroid disruptors in mountain lake trout

  17. Nourishment of perched sand dunes and the issue of erosion control in the Great Lakes

    Science.gov (United States)

    Marsh, William M.

    1990-09-01

    Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973 1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.

  18. lakemorpho: Calculating lake morphometry metrics in R.

    Science.gov (United States)

    Hollister, Jeffrey; Stachelek, Joseph

    2017-01-01

    Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data collected, but access is challenging as it is often stored on individual computers (or worse, in filing cabinets) and is available only to the primary investigators. The vast majority of lakes fall into a third category in which the data are not available. This makes broad scale modelling of lake ecology a challenge as some of the key information about in-lake processes are unavailable. While this valuable in situ information may be difficult to obtain, several national datasets exist that may be used to model and estimate lake morphometry. In particular, digital elevation models and hydrography have been shown to be predictive of several lake morphometry metrics. The R package lakemorpho has been developed to utilize these data and estimate the following morphometry metrics: surface area, shoreline length, major axis length, minor axis length, major and minor axis length ratio, shoreline development, maximum depth, mean depth, volume, maximum lake length, mean lake width, maximum lake width, and fetch. In this software tool article we describe the motivation behind developing lakemorpho , discuss the implementation in R, and describe the use of lakemorpho with an example of a typical use case.

  19. Flood-inundation maps for Lake Champlain in Vermont and in northern Clinton County, New York

    Science.gov (United States)

    Flynn, Robert H.; Hayes, Laura

    2016-06-30

    extents against the inundation area extents determined for the May 2011 flood (which incorporated documented high-water marksfrom the flood of May 201) (Bjerklie and others, 2014).A digital elevation model (DEM) was created by USGS, within a geographic information system (GIS), from the recently flown and processed light detection and ranging(lidar) data (2013–2014) in Vermont and the lake shore area of northern Clinton County in New York. The lidar data have a vertical accuracy of 0.3 to 0.6-ft (9.6 to 18.0-centimeters [cm]) and a horizontal resolution of 2.3 to 4.6 ft (0.7 to 1.4 meters). This DEM was used in determining the floodboundary for 11 flood stages at 0.5-ft intervals from 100.0 to104.0 ft (NGVD 29) and 1-ft intervals from 104.0 to 106.0 ft (NGVD 29) as referenced to the USGS lake gage 04295000, Richelieu River (Lake Champlain) at Rouses Point, N.Y. In addition, the May 2011 flood-inundation area for elevation103.20 ft (NGVD 29) (102.77 ft, North American Vertical Datum [NAVD] 88) was determined from this DEM. The May 2011 flood is the highest recorded lake water level (stage)at the Rouses Point, N.Y., lake gage. Flood stages greater than 101.5 ft (NGVD 29) exceed the “major flood stage”as defined by the NationalWeather Service for USGS lake gage 04295000.The availability of these maps, along with Internet information regarding current stage from the USGS lake gage and forecasted high-flow stages from the NationalWeather Service, will provide emergency management personnel and residents with information that is critical for flood responseactivities such as evacuations and road closures, as well as for post-flood recovery eforts.

  20. Hydrodynamic Modeling of Nokoué Lake in Benin

    Directory of Open Access Journals (Sweden)

    Josué Zandagba

    2016-12-01

    Full Text Available Nokoué Lake is a complex ecosystem, the understanding of which requires control of physical processes that have occurred. For this, the Surface Water Modeling System (SMS hydrodynamic model was calibrated and validated on the water depth data. The results of these simulations show a good match between the simulated and observed data for bottom roughness and turbulent exchange coefficients, of 0.02 m−1/3·s and 20 m2/s respectively. Once the ability of the model to simulate the hydrodynamics of the lake is testified, the model is used to simulate water surface elevation, exchanged flows and velocities. The simulation shows that the tidal amplitude is maximum at the inlet of the channel and decreases gradually from the inlet towards the lagoon’s main body. The propagation of the tidal wave is characterized by the dephasing and the flattening of the amplitude tide, which increases as we move away from the channel. This dephasing is characterized by a high and low tides delay of about 1 or 4 h and also depends on the tide amplitude and location. The velocities inside the lake are very low and do not exceed 0.03 m/s. The highest are obtained at the entrance of the channel. In a flood period, in contrast with the low-water period, incoming flows are higher than outflows, reinforced by the amplitude of the tide. An average renewal time of the lake has been estimated and corresponds during a flood period to 30 days for an average amplitude tide and 26.3 days on a high amplitude tide. In a low water period it is 40.2 days for an average amplitude tide and 30 days for a high amplitude tide. From the results obtained, several measures must be taken into account for the rational management of the lake water resources. These include a dam construction at the lake upstream, to control the river flows, and the dredging of the channel to facilitate exchanges with the sea.

  1. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Priscu, John C; Xiong, Jinbo; Conrad, Ralf; Vick-Majors, Trista; Chu, Haiyan; Hou, Juzhi

    2016-03-01

    Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogens were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly 2000 km on the Tibetan Plateau. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Climatology, hydrology, and simulation of an emergency outlet, Devils Lake basin, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, A.V.; Osborne, Leon; Wood, Carrie M.; Fay, James T.

    2000-01-01

    Devils Lake is a natural lake in northeastern North Dakota that is the terminus of a nearly 4,000-square-mile subbasin in the Red River of the North Basin. The lake has not reached its natural spill elevation to the Sheyenne River (a tributary of the Red River of the North) in recorded history. However, geologic evidence indicates a spill occurred sometime within the last 1,800 years. From 1993 to 1999, Devils Lake rose 24.5 feet and, at the present (August 2000), is about 13 feet below the natural spill elevation. The recent lake-level rise has caused flood damages exceeding $300 million and triggered development of future flood-control options to prevent further infrastructure damage and reduce the risk of a potentially catastrophic uncontrolled spill. Construction of an emergency outlet from the west end of Devils Lake to the Sheyenne River is one flood-control option being considered. This report describes the climatologic and hydrologic causes of the recent lake level rise, provides information on the potential for continued lake-level rises during the next 15 years, and describes the potential effectiveness of an emergency outlet in reducing future lake levels and in reducing the risk of an uncontrolled spill. The potential effects of an outlet on downstream water quantity and quality in the upper Sheyenne River also are described.

  3. Vascular flora of saline lakes in the southern high plains of Texas and eastern New Mexico

    Science.gov (United States)

    Rosen, David J.; Conway, Warren C.; Haukos, David A.; Caskey, Amber D.

    2013-01-01

    Saline lakes and freshwater playas form the principal surface hydrological feature of the High Plains of the Southern Great Plains. Saline lakes number less than 50 and historically functioned as discharge wetlands with relatively consistent water availability due to the presence of one or more springs. Currently, less than ten saline lakes contain functional springs. A survey of vascular plants at six saline lakes in the Southern High Plains of northwest Texas and one in eastern New Mexico during May and September 2009 resulted in a checklist of 49 species representing 16 families and 40 genera. The four families with the most species were Asteraceae (12), Amaranthaceae (8), Cyperaceae (5), and Poaceae (12). Non-native species (Bromus catharticus, Poa compressa, Polypogon monspeliensis, Sonchus oleraceus, Kochia scoparia, and Tamarix ramosissima) accounted for 10% of the total species recorded. Whereas nearly 350 species of vascular plants have been identified in playas in the Southern High Plains, saline lakes contain a fraction of this species richness. The Southern High Plains saline lake flora is regionally unique, containing taxa not found in playas, with species composition that is more similar to temperate desert wetlands of the Intermountain Region and Gulf Coastal Plain of North America.

  4. The role of solar UV radiation in the ecology of alpine lakes.

    Science.gov (United States)

    Sommaruga, R

    2001-09-01

    Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.

  5. Modern limnology of two lakes in the Tibetan Plateau - evidence from in-situ monitoring

    Science.gov (United States)

    Wang, M.; Li, X.; Lei, L.; He, Y.; Hou, J.

    2013-12-01

    The mechanisms of climate change in the Tibetan Plateau, known as the Third Pole, receive more and more attention due to its unique geographic location and the influence of multiple climate systems. Among the paleoclimate archives, widespread lakes provide abundant information on past climate changes and have been investigated for decades. Though many high-quality paleolimnological records have been reported in the Tibetan Plateau, little is known about the modern limnological processes in most Tibetan lakes as most lakes are difficult to access and not ready for long-term monitoring. We have installed a series of temperature data logger at different water levels in two Tibetan lakes, Bangong Co and Dagze Co in July 2012 to monitor hourly variability of temperature profile. Bangong Co (33.5°N, 79.8°E, 4245 m asl) is a freshwater lake (salinity ~0.5 g/L) in the westernmost Tibetan Plateau, receiving melt water from mountain glaciers in the basin. Dagze Co (31.9°N, 87.5°E, 4470 m asl) is saline lake (salinity ~15 g/L) in the central Tibetan Plateau, mostly fed by precipitation. In combination with the climate data in the nearby weather stations, we wish to understand the modern limnological processes in the two lakes and their potential effect on the lake biology, sedimentation, and sedimentary biomarkers. Based on the data collected for the first calendar year (Jul 2012 ~ Aug 2013), we anticipate to understand: 1) the influence of climate on the hydrological processes in high elevation lakes; 2) the difference in the metalimnion in meltwater-fed lake (Bangong Co) and precipitation-fed lake (Dagze Co) and their potential effect on the lake biology; 3) the difference in the spring turnover and fall turnover and the effect of meltwater and salinity.

  6. Accumulation of lead (Pb) in brown trout (Salmo trutta) from a lake downstream a former shooting range.

    Science.gov (United States)

    Mariussen, Espen; Heier, Lene Sørlie; Teien, Hans Christian; Pettersen, Marit Nandrup; Holth, Tor Fredrik; Salbu, Brit; Rosseland, Bjørn Olav

    2017-01-01

    An environmental survey was performed in Lake Kyrtjønn, a small lake within an abandoned shooting range in the south of Norway. In Lake Kyrtjønn the total water concentrations of Pb (14µg/L), Cu (6.1µg/L) and Sb (1.3µg/L) were elevated compared to the nearby reference Lake Stitjønn, where the total concentrations of Pb, Cu and Sb were 0.76, 1.8 and 0.12µg/L, respectively. Brown trout (Salmo trutta) from Lake Kyrtjønn had very high levels of Pb in bone (104mg/kg w.w.), kidney (161mg/kg w.w.) and the gills (137mg/kg d.w), and a strong inhibition of the ALA-D enzyme activity were observed in the blood (24% of control). Dry fertilized brown trout eggs were placed in the small outlet streams from Lake Kyrtjønn and the reference lake for 6 months, and the concentrations of Pb and Cu in eggs from the Lake Kyrtjønn stream were significantly higher than in eggs from the reference. More than 90% of Pb accumulated in the egg shell, whereas more than 80% of the Cu and Zn accumulated in the egg interior. Pb in the lake sediments was elevated in the upper 2-5cm layer (410-2700mg/kg d.w), and was predominantly associated with redox sensitive fractions (e.g., organic materials, hydroxides) indicating low potential mobility and bioavailability of the deposited Pb. Only minor amounts of Cu and Sb were deposited in the sediments. The present work showed that the adult brown trout, as well as fertilized eggs and alevins, may be subjected to increased stress due to chronic exposure to Pb, whereas exposure to Cu, Zn and Sb were of less importance. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Shoreline Erosion and Slope Failure Detection over Southwest Lakeshore Michigan using Temporal Radar and Digital Elevation Model

    Science.gov (United States)

    Sataer, G.; Sultan, M.; Yellich, J. A.; Becker, R.; Emil, M. K.; Palaseanu, M.

    2017-12-01

    Throughout the 20th century and into the 21st century, significant losses of residential, commercial and governmental property were reported along the shores of the Great Lakes region due to one or more of the following factors: high lake levels, wave actions, groundwater discharge. A collaborative effort (Western Michigan University, University of Toledo, Michigan Geological Survey [MGS], United States Geological Survey [USGS], National Oceanographic and Atmospheric Administration [NOAA]) is underway to examine the temporal topographic variations along the shoreline and the adjacent bluff extending from the City of South Haven in the south to the City of Saugatuck in the north within the Allegan County. Our objectives include two main tasks: (1) identification of the timing of, and the areas, witnessing slope failure and shoreline erosion, and (2) investigating the factors causing the observed failures and erosion. This is being accomplished over the study area by: (1) detecting and measuring slope subsidence rates (velocities along line of site) and failures using radar interferometric persistent scatter (PS) techniques applied to ESA's European Remote Sensing (ERS) satellites, ERS-1 and -2 (spatial resolution: 25 m) that were acquired in 1995 to 2007, (2) extracting temporal high resolution (20 cm) digital elevation models (DEM) for the study area from temporal imagery acquired by Unmanned Aerial Vehicles (UAVs), and applying change detection techniques to the extracted DEMs, (3) detecting change in elevation and slope profiles extracted from two LIDAR Coastal National Elevation Database (CoNED) DEMs (spatial resolution: 0.5m), acquired on 2008 and 2012, and (4) spatial and temporal correlation of the detected changes in elevation with relevant data sets (e.g., lake levels, precipitation, groundwater levels) in search of causal effects.

  8. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    Science.gov (United States)

    Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta

    2017-01-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  9. Isotopic chemical weathering behaviour of Pb derived from a high-Alpine Holocene lake-sediment record

    Science.gov (United States)

    Gutjahr, Marcus; Süfke, Finn; Gilli, Adrian; Anselmetti, Flavio; Glur, Lukas; Eisenhauer, Anton

    2017-04-01

    Several studies assessing the chemical weathering systematics of Pb isotopes provided evidence for the incongruent release of Pb from source rocks during early stages of chemical weathering, resulting in runoff compositions more radiogenic (higher) than the bulk source-rock composition [e.g. 1]. Deep NW Atlantic seawater Pb isotope records covering the last glacial-interglacial transition further support these findings. Clear excursions towards highly radiogenic Pb isotopic input in the deep NW Atlantic seen during the early Holocene, hence after the large-scale retreat of the Laurentide Ice Sheet in North America, are interpreted to be controlled by preferential release of radiogenic Pb from U- and Th-rich mineral phases during early stages of chemical weathering that are less resistant to chemical dissolution than other rock-forming mineral phases [2-4]. To date, however, no terrestrial Pb isotope record exists that could corroborate the evidence from deep marine sites for efficient late deglacial weathering and washout of radiogenic Pb. We present a high-resolution adsorbed Pb isotope record from a sediment core retrieved from Alpine Lake Grimsel (1908 m.a.s.l.) in Switzerland, consisting of 117 Pb compositions over the past 10 kyr. This high-Alpine study area is ideally located for incipient and prolonged chemical weathering studies. The method used to extract the adsorbed lake Pb isotope signal is identical to previous marine approaches targeting the authigenic Fe-Mn oxyhydroxides fraction within the lake sediments [5, 6]. The Pb isotope compositions are further accompanied by various elemental ratios derived from the same samples that equally trace climatic boundary conditions in the Grimsel Lake area. The Pb isotopic composition recorded in Lake Grimsel is remarkably constant throughout the majority of the Holocene until ˜2.5 ka BP, despite variable sediment composition and -age, and isotopically relatively close to the signature of the granitic source rock

  10. Toward Monitoring Surface and Subsurface Lakes on the Greenland Ice Sheet Using Sentinel-1 SAR and Landsat-8 OLI Imagery

    Directory of Open Access Journals (Sweden)

    Katie E. Miles

    2017-07-01

    Full Text Available Supraglacial lakes are an important component of the Greenland Ice Sheet's mass balance and hydrology, with their drainage affecting ice dynamics. This study uses imagery from the recently launched Sentinel-1A Synthetic Aperture Radar (SAR satellite to investigate supraglacial lakes in West Greenland. A semi-automated algorithm is developed to detect surface lakes from Sentinel-1 images during the 2015 summer. A combined Landsat-8 and Sentinel-1 dataset, which has a comparable temporal resolution to MODIS (3 days vs. daily but a higher spatial resolution (25–40 vs. 250–500 m, is then used together with a fully automated lake drainage detection algorithm. Rapid (<4 days and slow (>4 days drainages are investigated for both small (<0.125 km2, the minimum size detectable by MODIS and large (≥0.125 km2 lakes through the summer. Drainage events of small lakes occur at lower elevations (mean 159 m, and slightly earlier (mean 4.5 days in the melt season than those of large lakes. The analysis is extended manually into the early winter to calculate the dates and elevations of lake freeze-through more precisely than is possible with optical imagery (mean 30 August; 1,270 m mean elevation. Finally, the Sentinel-1 imagery is used to detect subsurface lakes and, for the first time, their dates of appearance and freeze-through (mean 9 August and 7 October, respectively. These subsurface lakes occur at higher elevations than the surface lakes detected in this study (mean 1,593 and 1,185 m, respectively. Sentinel-1 imagery therefore provides great potential for tracking melting, water movement and freezing within both the firn zone and ablation area of the Greenland Ice Sheet.

  11. The importance of geomorphic and hydrologic factors in shaping the sensitivity of alpine/subalpine lake volumes to shifts in climate

    Science.gov (United States)

    Mercer, J.; Liefert, D. T.; Shuman, B. N.; Befus, K. M.; Williams, D. G.; Kraushaar, B.

    2017-12-01

    Alpine and subalpine lakes are important components of the hydrologic cycle in mountain ecosystems. These lakes are also highly sensitive to small shifts in temperature and precipitation. Mountain lake volumes and their contributions to mountain hydrology may change in response to even minor declines in snowpack or increases in temperature. However, it is still not clear to what degree non-climatic factors, such as geomorphic setting and lake geometry, play in shaping the sensitivity of high elevation lakes to climate change. We investigated the importance of lake geometry and groundwater connectivity to mountain lakes in the Snowy Range, Wyoming using a combination of hydrophysical and hydrochemical methods, including stable water isotopes, to better understand the role these factors play in controlling lake volume. Water isotope values in open lakes were less sensitive to evaporation compared to those in closed basin lakes. Lake geometry played an important role, with wider, shallower lakes being more sensitive to evaporation over time. Groundwater contributions appear to play only a minor role in buffering volumetric changes to lakes over the growing season. These results confirm that mountain lakes are sensitive to climate factors, but also highlight a significant amount of variability in that sensitivity. This research has implications for water resource managers concerned with downstream water quantity and quality from mountain ecosystems, biologists interested in maintaining aquatic biodiversity, and paleoclimatologists interested in using lake sedimentary information to infer past climate regimes.

  12. Assessment of glacial lake development and prospects of outburst susceptibility: Chamlang South Glacier, eastern Nepal Himalaya

    Directory of Open Access Journals (Sweden)

    Damodar Lamsal

    2016-01-01

    Full Text Available Chamlang South Tsho has been identified as one of the six high-priority glacial lakes in terms of glacial lake outburst flood (GLOF danger in Nepal Himalaya, despite the fact that no detailed investigations of the lake had been hitherto undertaken. We conducted detailed mapping of the lake and its surroundings along with field surveys in October 2009 to determine the developmental history of Chamlang South Tsho and to assess its potential for GLOF. The lake expanded rapidly between 1964 (0.04 km2 and 2000 (0.86 km2 and has been stable ever since. Future lake expansion is improbable as its sides are confined by relatively stable landforms. The lake is 87-m deep with a water volume of approximately 34.9–35.6 × 106 m3. Hanging glaciers on the steep surrounding mountain slopes and prominent seepage water in the terminal moraine dam could be potential triggers for a future outburst flood. Additionally, the debris-covered dead-ice dam, which is higher than the lake water level, is narrow and low; therefore, it could be overtopped easily by surge waves. Furthermore, the pronounced difference in elevation between the lake and the base of the terminal moraine dam makes the lake susceptible for a large flood.

  13. BATHYMETRIC STUDY OF WADI EL-RAYAN LAKES, EGYPT

    Directory of Open Access Journals (Sweden)

    Radwan Gad Elrab ABD ELLAH

    2016-12-01

    Full Text Available Bathymetry is a technique of measuring depths to determine the morphometry of water bodies. The derivation of bathymetry from the surveys is one of the basic researches of the aquatic environment, which has several practical implications to on the lake environment and it's monitoring. Wadi El-Rayan, as Ramsar site, is a very important wetland, in Egypt, as a reservoir for agricultural drainage water, fisheries and tourism. The Lakes are man-made basins in the Fayoum depression. Wadi El-Rayan Lakes are two reservoirs (upper Lake and Lower Lake, at different elevations. The Upper Lake is classified as open basin, while the Lower Lake is a closed basin, with no significant obvious water outflow. During recent decades, human impact on Wadi El-Rayan Lakes has increased due to intensification of agriculture and fish farming. Analyses of bathyemtric plans from 1996, 2010 and 2016 showed, the differences between morphometric parameters of the Upper Lake were generally small, while the Lower Lake changes are obvious at the three periods. The small fluctuate, in the features of Upper Lake is due to the water balance between the water inflow and water. The Lower Lake has faced extreme water loss through last twenty years is due to the agricultural lands and fish farms extended in the depression. The Upper Lake is rich in Lakeshores macrophyets, while decline the water plants in the Lower Lake. With low water levels, in the Lower Lake, the future continuity of the Lake system is in jeopardy

  14. Modelling groundwater discharge areas using only digital elevation models as input data

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2006-10-01

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  15. Chemical indicators of anthropogenic impacts in sediments of the pristine karst lakes.

    Science.gov (United States)

    Mikac, I; Fiket, Z; Terzić, S; Barešić, J; Mikac, N; Ahel, M

    2011-08-01

    The anthropogenic impact on the pristine karst lakes was investigated using combination of specific parameters, including multielemental analysis of major inorganic constituents (Al, K, Fe) and trace metals (Li, Ag, Cd, Sn, Pb, Bi, Cr, Co, Ni, Cu, Zn and Sb), polycyclic aromatic hydrocarbons (PAHs) and anionic surfactants of linear alkylbenzene sulfonate (LAS) type. The study was performed in the Plitvice Lakes National Park, situated in a sparsely populated area of the northwestern Dinarides, central Croatia. Dated cores of recent sediments from the two biggest lakes, Lake Prosce and Lake Kozjak, were analysed for the selected contaminants using highly specific methods, involving inductively coupled plasma mass spectrometry (ICP/MS), gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). The concentration of inorganic constituents reflected primarily the geological background of the area as well as geomorphological and geochemical characteristics of the Plitvice Lakes. Due to the higher terrigenous input, the concentration of all elements was significantly higher in the Lake Prosce. The concentration of toxic metals was relatively low in both lakes, except for Cd (>1 mg kg(-1)) and Pb (up to 40 mg kg(-1)). The vertical profiles of these metals suggested that elevated concentrations of Cd were of natural origin, derived from the erosion of the Jurassic dolomite bedrock, while Pb was predominately of recent anthropogenic origin. A similar distribution pattern, suggesting the same prevailing mechanism of input, was observed for pyrolytic PAHs. The characteristic diagnostic PAH ratios revealed that higher PAHs prevailingly originated from the combustion of biomass and fossil fuels. LAS, which represent highly specific indicators of untreated wastewaters, were found in rather high concentrations in the recent sediment layers (up to 4.7 mg kg(-1)), suggesting that contaminated household and hotel wastewaters reach the

  16. Evidence for the Importance of Atmospheric Nitrogen Deposition to Eutrophic Lake Dianchi, China

    Science.gov (United States)

    Zhan, X.; Bo, Y.; Zhou, F.; Liu, X.; Paerl, H. W.; Shen, J.; Wang, R.; Li, F. R.; Tao, S.; Yanjun, D.; Tang, X.

    2017-12-01

    Elevated atmospheric nitrogen (N) deposition has significantly influenced aquatic ecosystems, especially with regard to their N budgets and phytoplankton growth potentials. Compared to a considerable number of studies on oligotrophic lakes and oceanic waters, little evidence for the importance of N deposition has been generated for eutrophic lakes, even though emphasis has been placed on reducing external N inputs to control eutrophication in these lakes. Our high-resolution observations of atmospheric depositions and riverine inputs of biologically reactive N species into eutrophic Lake Dianchi (the sixth largest freshwater lake in China) shed new light onto the contribution of N deposition to total N loads. Annual N deposition accounted for 15.7% to 16.6% of total N loads under variable precipitation conditions, 2-fold higher than previous estimates (7.6%) for the Lake Dianchi. The proportion of N deposition to total N loads further increased to 27-48% in May and June when toxic blooms of the ubiquitous non-N2 fixing cyanobacteria Microcystis spp. are initiated and proliferate. Our observations reveal that reduced N (59%) contributes a greater amount than oxidized N to total N deposition, reaching 56-83% from late spring to summer. Progress toward mitigating eutrophication in Lake Dianchi and other bloom-impacted eutrophic lakes will be difficult without reductions in ammonia emissions and subsequent N deposition.

  17. 77 FR 66788 - Proposed Flood Elevation Determinations

    Science.gov (United States)

    2012-11-07

    ... Town of Clarkstown. Old Mill Road. Approximately 600 feet +150 +151 downstream of Rockland Lake. Golf..., Orangetown/Town of Town of Orangetown. Clarkstown corporate limit. At the downstream side +67 +66 of Old Mill... and modified elevations, and communities affected for Rockland County, New York (All Jurisdictions...

  18. Monitoring plant tissue nitrogen isotopes to assess nearshore inputs of nitrogen to Lake Crescent, Olympic National Park, Washington

    Science.gov (United States)

    Cox, Stephen E.; Moran, Patrick W.; Huffman, Raegan L.; Fradkin, Steven C.

    2016-05-31

    Mats of filamentous-periphytic algae present in some nearshore areas of Lake Crescent, Olympic National Park, Washington, may indicate early stages of eutrophication from nutrient enrichment of an otherwise highly oligotrophic lake. Natural abundance ratios of stable isotopes of nitrogen (δ15N) measured in plant tissue growing in nearshore areas of the lake indicate that the major source of nitrogen used by these primary producing plants is derived mainly from atmospherically fixed nitrogen in an undeveloped forested ecosystem. Exceptions to this pattern occurred in the Barnes Point area where elevated δ15N ratios indicate that effluent from septic systems also contribute nitrogen to filamentous-periphytic algae growing in the littoral zone of that area. Near the Lyre River outlet of Lake Crescent, the δ15N of filamentous-periphytic algae growing in close proximity to the spawning areas of a unique species of trout show little evidence of elevated δ15N indicating that nitrogen from on-site septic systems is not a substantial source of nitrogen for these plants. The δ15N data corroborate estimates that nitrogen input to Lake Crescent from septic sources is comparatively small relative to input from motor vehicle exhaust and vegetative sources in undeveloped forests, including litterfall, pollen, and symbiotic nitrogen fixation. The seasonal timing of blooms of filamentous-periphytic algal near the lake shoreline is also consistent with nitrogen exported from stands of red alder trees (Alnus rubra). Isotope biomonitoring of filamentous-periphytic algae may be an effective approach to monitoring the littoral zone for nutrient input to Lake Crescent from septic sources.

  19. Integrated Application of Remote Sensing, GIS and Hydrological Modeling to Estimate the Potential Impact Area of Earthquake-Induced Dammed Lakes

    Directory of Open Access Journals (Sweden)

    Bo Cao

    2017-10-01

    Full Text Available Dammed lakes are an important secondary hazard caused by earthquakes. They can induce further damage to nearby humans. Current hydrology calculation research on dammed lakes usually lacks spatial expressive ability and cannot accurately conduct impact assessment without the support of remote sensing, which obtains important characteristic information of dammed lakes. The current study aims to address the issues of the potential impact area estimate of earthquake-induced dammed lakes by combining remote sensing (RS, a geographic information system (GIS, and hydrological modeling. The Tangjiashan dammed lake induced by the Wenchuan earthquake was selected as the case for study. The elevation-versus-reservoir capacity curve was first calculated using the seed-growing algorithm based on digital elevation model (DEM data. The simulated annealing algorithm was applied to train the hydrological modeling parameters according to the historical hydrologic data. Then, the downstream water elevation variational process under different collapse capacity conditions was performed based on the obtained parameters. Finally, the downstream potential impact area was estimated by the highest water elevation values at different hydrologic sections. Results show that a flood with a collapse elevation of at least 680 m will impact the entire downstream region of Beichuan town. We conclude that spatial information technology combined with hydrological modeling can accurately predict and demonstrate the potential impact area with limited data resources. This paper provides a better guide for future immediate responses to dammed lake hazard mitigation.

  20. Methane emissions from permafrost thaw lakes limited by lake drainage.

    NARCIS (Netherlands)

    van Huissteden, J.; Berrittella, C.; Parmentier, F.J.W.; Mi, Y.; Maximov, T.C.; Dolman, A.J.

    2011-01-01

    Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane. They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs,). Their expansion is enhanced by

  1. Introducing TEX86 as a Water pH Proxy for Alkaline Lakes on the Tibetan Plateau

    Science.gov (United States)

    Wang, M.; Tian, Q.; Li, X.; Liang, J.; Yue, H.; Hou, J.

    2017-12-01

    Lake water pH represents one of the most important indicators for lake evolution and factors influencing the evolution of aquatic ecosystem, however, which is less studied on the Tibetan Plateau (TP). Applicability of diatom assemblages, an effective proxy of lake water pH variation in freshwater lakes, is highly limited on the TP because the widespread distribution of alkaline lakes is unfavorable for preservation of diatom shells. Glycerol dialkyl glycerol tetraethers (GDGTs) are a series of specific membrane lipids biosynthesized by archaea and bacteria, which appear to be a promising method to reflect lake water pH variation. Here we present the distribution of iGDGTs compounds in surface sediments across the TP to discuss the effect of various environmental factors on iGDGTs distribution. The results show that TEX86 is a promising proxy for lake water pH in high-elevation alkaline lakes, as water pH appears to be the most important factor to affect the cyclization of iGDGTs. We proposed the water pH calibration for lakes (salinitywater pH. The TEX86-derived pH at Bangong Co varied from 8.69 to 9.49 since the last 16 kyr BP, which is generally consistent with precipitation isotope variation that was reconstructed from leaf wax D/H ratios in the same sediment core, suggesting the lake water pH was mainly controlled by local hydrology. We believe that TEX86 will be able to infer past water pH of alkaline lakes over TP and could be a potentially useful tool for reconstructing pH in alkaline lakes worldwide after regional calibrated.

  2. Lake Mixing Regime Influences Arsenic Transfer from Sediments into the Water Column and Uptake in Plankton

    Science.gov (United States)

    Gawel, J.; Barrett, P. M.; Hull, E.; Burkart, K.; McLean, J.; Hargrave, O.; Neumann, R.

    2017-12-01

    The former ASARCO copper smelter in Ruston, WA, now a Superfund site, contaminated a large area of the south-central Puget Sound region with arsenic over its almost 100-year history. Arsenic, a priority Superfund contaminant and carcinogen, is a legacy pollutant impacting aquatic ecosystems in urban lakes downwind of the ASARCO emissions stack. We investigated the impact of lake mixing regime on arsenic transfer from sediments into lake water and aquatic biota. We regularly collected water column and plankton samples from four study lakes for two years, and deployed sediment porewater peepers and sediment traps to estimate arsenic flux rates to and from the sediments. In lakes with strong seasonal stratification, high aqueous arsenic concentrations were limited to anoxic hypolimnetic waters while low arsenic concentrations were observed in oxic surface waters. However, in polymictic, shallow lakes, we observed elevated arsenic concentrations throughout the entire oxic water column. Sediment flux estimates support higher rates of arsenic release from sediments and vertical transport. Because high arsenic in oxic waters results in spatial overlap between arsenate, a phosphate analog, and lake biota, we observed enhanced trophic transfer of arsenic in polymictic, shallow study lakes, with higher arsenic accumulation (up to an order of magnitude) in both phytoplankton and zooplankton compared to stratified lakes. Chemical and physical mechanisms for higher steady-state arsenic concentrations will be explored. Our work demonstrates that physical mixing processes coupled with sediment/water redox status exert significant control over bioaccumulation, making shallow, periodically-mixed urban lakes uniquely vulnerable to environmental and human health risks from legacy arsenic contamination.

  3. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  4. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    Science.gov (United States)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  5. Dynamic interactions between glacier and glacial lake in the Bhutan Himalaya

    Science.gov (United States)

    Tsutaki, S.; Fujita, K.; Yamaguchi, S.; Sakai, A.; Nuimura, T.; Komori, J.; Takenaka, S.; Tshering, P.

    2012-04-01

    A number of supraglacial lakes formed on the termini of debris-covered glaciers in the Bhutan Himalaya as a result of glacier retreat due to climate change. The terminal part of the lake-terminating glaciers flow faster than that of the land-terminating glaciers because the basal ice motion is enhanced by high subglacial water pressure generated by lake water. Increased ice flux caused by the accelerated glacier flow could be dissipated through the calving process which reduced the glacier thickness. It is important to understand the interaction between lake formation and glacier dynamics. Although glacier flow velocity has been measured by remote-sensing analysis in several regions of the Himalayas, glacier thinning rates have not been observed by neither in-situ nor remote-sensing approaches. The lack of field data raises limitation to interpretations for glacier dynamics. We investigate the influence of the presence/absence of glacial lakes on glacier dynamics and changes in surface elevation. We study two debris-covered glaciers in the Lunana region, the Bhutan Himalaya. Thorthormi Glacier is a land-terminating glacier with some supraglacial lakes while Lugge Glacier is a lake-terminating glaciers. We surveyed the surface elevation of debris-covered areas of the two glaciers in 2004 and 2011 by a differential GPS. Change in surface elevation of the lake-terminating Lugge Glacier (-5.4--2.4 m yr-1) was much more negative than that of the land-terminating Thorthormi Glacier (-3.3-0.6 m yr-1). Surface flow speed of the Thorthormi Glacier measured during 2002-2004 was faster in the upper reaches (~90 m yr-1) and reduced toward the downstream (40 m yr-1). In contrast, the surface flow speed at the Lugge Glacier measured in the same periods was 40-55 m yr-1 and the greatest at the lower most part. Observed spatial distribution of surface flow velocity at both glaciers were evaluated by a two-dimensional numerical flow model. Calculated emergence velocities are 1

  6. Tree-ring reconstruction of the level of Great Salt Lake, USA

    Science.gov (United States)

    R. Justin DeRose; Shih-Yu Wang; Brendan M. Buckley; Matthew F. Bekker

    2014-01-01

    Utah's Great Salt Lake (GSL) is a closed-basin remnant of the larger Pleistocene-age Lake Bonneville. The modern instrumental record of the GSL-level (i.e. elevation) change is strongly modulated by Pacific Ocean coupled ocean/atmospheric oscillations at low frequency, and therefore reflects the decadalscale wet/dry cycles that characterize the region. A within-...

  7. Lasting Effects of Glacial Lake Outburst Floods on Subglacial Drainage Networks

    Science.gov (United States)

    Robbins, M.; Hendy, I. L.; Bassis, J. N.; Aciego, S.; Stevenson, E. I.

    2017-12-01

    Supraglacial lakes forming in the ablation zone around the Greenland Ice Sheet will likely migrate toward higher elevations as polar temperatures rise through the 21st century. Present understanding of lake drainage shows it can temporarily enhance ice sheet motion, but other possible effects and interactions - especially with older pre-existing subglacial reservoirs - remain unexamined. Here we investigate possible enduring effects of the record high 2012 melt year on the en/subglacial hydrologic network, how this network responds to immediate high fluxes of water from floods, and how these phenomena might connect to previously isolated subglacial pools. Lake Hullet is a large ice dammed lake situated in south Greenland 22km up-ice from where Kiattuut Sermiat (KS) branches from a larger outlet glacier. Lake Hullet rests on bedrock and is contained by a bedrock ridge. It drains roughly annually through Lake Hullet's hydrologic network in a glacial lake outburst flood (GLOF) when water level rises such that it can flow over the obstructive ridge. Subglacial water samples collected from the toe of KS in July 2013 pre-flood were dated using U isotopes with 222Rn concentrations as well as noble gas ratios. These two independent methods reveal an exceedingly old water age of > 1000 years, indicating existence of isolated enduring subglacial meltwater pool(s). A comparison field study at the KS toe in August and September 2015 re-examined glacial hydrochemistry in a time series. 2015 222Rn concentrations are lower than 2013 values, suggesting less water-rock interaction, a reduction in residence time, and a proximal meltwater source. Increased water volume from the record high 2012 melt year may have enlarged the existing en/subglacial drainage network further into the ice sheet releasing meltwater with longer residence times beneath the ice, with effects lasting into subsequent melt seasons due to the stability of channels maintained from recurrent floods. These

  8. Excess unsupported sup(210)Pb in lake sediment from Rocky Mountain lakes

    International Nuclear Information System (INIS)

    Norton, S.A.; Hess, C.T.; Blake, G.M.; Morrison, M.L.; Baron, J.

    1985-01-01

    Sediment cores from four high-altitude (approximately 3200 m) lakes in Rocky Mountain National Park, Colorado, were dated by sup(210)Pb chronology. Background (supported) sup(210)Pb activities for the four cores range from 0.26 to 0.93 Beq/g dry weight, high for typical oligotrophic lakes. Integrated unsupported sup(210)Pb ranges from 0.81 (a typical value for most lakes) to 11.0 Beq/cmsup(2). The sup(210)Pb activity in the surface sediments ranges from 1.48 to 22.2 Beq/g dry weight. Sedimentation from Lake Louise, the most unusual of the four, has 22.2 Beq/g dry weight at the sediment surface, an integrated unsupported sup(210)Pb=11.0 Beq/cmsup(2), and supported sup(210)Pb=0.74 Beq/g dry weight. sup(226)Ra content of the sediment is insufficient to explain either the high unsupported sup(210)Pb or the sup(222)Rn content of the water column of Lake Louise, which averaged 96.2 Beq/L. We concluded that sup(222)Rn-rich groundwater entering the lake is the source of the high sup(222)Rn in the water column. This, in turn, is capable of supporting the unusually high sup(210)Pb flux to the sediment surface. Groundwater with high sup(222)Rn may control the sup(210)Pb budget of lakes where sediment cores have integrated unsupported sup(210)Pb greater than 2 Beq/cmsup(2)

  9. Miscanti-1: Human occupation during the arid Mid-Holocene event in the high-altitude lakes of the Atacama Desert, South America

    Science.gov (United States)

    Núñez, Lautaro; Loyola, Rodrigo; Cartajena, Isabel; López, Patricio; Santander, Boris; Maldonado, Antonio; de Souza, Patricio; Carrasco, Carlos

    2018-02-01

    This paper presents an interdisciplinary study of the Miscanti-1 archaeological site, located in the Holocene terrace deposits accumulated on the eastern margin of Miscanti Lake (4120 m.a.s.l.), northern Chile (23.7° S, 67.7° W). The human response to environmental and climatic variability in the Mid-Holocene (9500-4500 cal yr BP) is discussed through the zooarchaeological, lithic and paleoenvironmental records. We propose that, due to the increased aridity of the period, Miscanti Lake became a brackish paleowetland that attracted discrete groups of hunter-gatherers from lower elevation Andean areas. In contrast with the high frequency of human occupations known for the humid Late Pleistocene and Early Holocene (12600-9500 yr cal BP), the Miscanti-1 site is one of the few occupations recorded in the Atacama Highlands during the Mid-Holocene period. Data analysis suggests logistic and short-term campsite use for hunting the wild camelids that were attracted by the wetlands and fresh water (8100-8300 yr cal BP). In contrast to previous proposals for this period, we propose that access to high altitude environments did not cease, but was made possible by a shift to highly scheduled mobility and a specialized bifacial technology. Finally, the temporal and spatial links of Miscanti-1 are discussed in a regional context.

  10. Sedimentation and erosion in Lake Diefenbaker, Canada: solutions for shoreline retreat monitoring.

    Science.gov (United States)

    Sadeghian, Amir; de Boer, Dirk; Lindenschmidt, Karl-Erich

    2017-09-15

    This study looks into sedimentation and erosion rates in Lake Diefenbaker, a prairie reservoir, in Saskatchewan, Canada, which has been in operation since 1968. First, we looked at the historical data in all different formats over the last 70 years, which includes data from more than 20 years before the formation of the lake. The field observations indicate high rates of shoreline erosion, especially in the upstream portion as a potential region for shoreline retreat. Because of the great importance of this waterbody to the province, monitoring sedimentation and erosion rates is necessary for maintaining the quality of water especially after severe floods which are more common due to climate change effects. Second, we used Google Maps Elevation API, a new tool from Google that provides elevation data for cross sections drawn between two points, by drawing 24 cross sections in the upstream area extending 250 m from each bank. This feature from Google can be used as an easy and fast monitoring tool, is free of charge, and provides excellent control capabilities for monitoring changes in cross-sectional profiles.

  11. Stimulating a Great Lakes coastal wetland seed bank using portable cofferdams: implications for habitat rehabilitation

    Science.gov (United States)

    Kowalski, K.P.; Wilcox, D.A.; Wiley, M.J.

    2009-01-01

    Coastal wetland seed banks exposed by low lake levels or through management actions fuel the reestablishment of emergent plant assemblages (i.e., wetland habitat) critical to Great Lakes aquatic biota. This project explored the effectiveness of using portable, water-filled cofferdams as a management tool to promote the natural growth of emergent vegetation from the seed bank in a Lake Erie coastal wetland. A series of dams stretching approximately 450??m was installed temporarily to isolate hydrologically a 10-ha corner of the Crane Creek wetland complex from Lake Erie. The test area was dewatered in 2004 to mimic a low-water year, and vegetation sampling characterized the wetland seed bank response at low, middle, and high elevations in areas open to and protected from bird and mammal herbivory. The nearly two-month drawdown stimulated a rapid seed-bank-driven response by 45 plant taxa. Herbivory had little effect on plant species richness, regardless of the location along an elevation gradient. Inundation contributed to the replacement of immature emergent plant species with submersed aquatic species after the dams failed and were removed prematurely. This study revealed a number of important issues that must be considered for effective long-term implementation of portable cofferdam technology to stimulate wetland seed banks, including duration of dewatering, product size, source of clean water, replacement of damaged dams, and regular maintenance. This technology is a potentially important tool in the arsenal used by resource managers seeking to rehabilitate the functions and values of Great Lakes coastal wetland habitats.

  12. Effects of genotype, elevated CO2 and elevated O3 on aspen phytochemistry and aspen leaf beetle Chrysomela crotchi performance

    Science.gov (United States)

    Leanne M. Vigue; Richard L. Lindroth

    2010-01-01

    Trembling aspen Populus tremuloides Michaux is an important forest species in the Great Lakes region and displays tremendous genetic variation in foliar chemistry. Elevated carbon dioxide (CO2) and ozone (O3) may also influence phytochemistry and thereby alter the performance of insect herbivores such as...

  13. Mechanical Constraints on Flight at High Elevation Decrease Maneuvering Performance of Hummingbirds.

    Science.gov (United States)

    Segre, Paolo S; Dakin, Roslyn; Read, Tyson J G; Straw, Andrew D; Altshuler, Douglas L

    2016-12-19

    High-elevation habitats offer ecological advantages including reduced competition, predation, and parasitism [1]. However, flying organisms at high elevation also face physiological challenges due to lower air density and oxygen availability [2]. These constraints are expected to affect the flight maneuvers that are required to compete with rivals, capture prey, and evade threats [3-5]. To test how individual maneuvering performance is affected by elevation, we measured the free-flight maneuvers of male Anna's hummingbirds in a large chamber translocated to a high-elevation site and then measured their performance at low elevation. We used a multi-camera tracking system to identify thousands of maneuvers based on body position and orientation [6]. At high elevation, the birds' translational velocities, accelerations, and rotational velocities were reduced, and they used less demanding turns. To determine how mechanical and metabolic constraints independently affect performance, we performed a second experiment to evaluate flight maneuvers in an airtight chamber infused with either normoxic heliox, to lower air density, or nitrogen, to lower oxygen availability. The hypodense treatment caused the birds to reduce their accelerations and rotational velocities, whereas the hypoxic treatment had no significant effect on maneuvering performance. Collectively, these experiments reveal how aerial maneuvering performance changes with elevation, demonstrating that as birds move up in elevation, air density constrains their maneuverability prior to any influence of oxygen availability. Our results support the hypothesis that changes in competitive ability at high elevations are the result of mechanical limits to flight performance [7]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Basic limnology of fifty-one lakes in Costa Rica

    Directory of Open Access Journals (Sweden)

    Kurt A. Haberyan

    2003-03-01

    Full Text Available We visited 51 lakes in Costa Rica as part of a broad-based survey to document their physical and chemical characteristics and how these relate to the mode of formation and geographical distribution of the lakes. The four oxbow lakes were low in elevation and tended to be turbid, high in conductivity and CO2 , but low in dissolved O2 ; one of these, L. Gandoca, had a hypolimnion essentially composed of sea water. These were similar to the four wetland lakes, but the latter instead had low conductivities and pH, and turbidity was often due to tannins rather than suspended sediments. The thirteen artificial lakes formed a very heterogenous group, whose features varied depending on local factors. The thirteen lakes dammed by landslides, lava flows, or lahars occurred in areas with steep slopes, and were more likely to be stratified than most other types of lakes. The eight lakes that occupy volcanic craters tended to be deep, stratified, clear, and cool; two of these, L. Hule and L. Río Cuarto, appeared to be oligomictic (tending toward meromictic. The nine glacial lakes, all located above 3440 m elevation near Cerro Chirripó, were clear, cold, dilute, and are probably polymictic. Cluster analysis resulted in three significant groups of lakes. Cluster 1 included four calcium-rich lakes (average 48 mg l-1, Cluster 2 included fourteen lakes with more Si than Ca+2 and higher Cl- than the other clusters, and Cluster 3 included the remaining thirty-three lakes that were generally less concentrated. Each cluster included lakes of various origins located in different geographical regions; these data indicate that, apart from the high-altitude glacial lakes and lakes in the Miravalles area, similarity in lake chemistry is independent of lake distribution.Se visitaron 51 lagos en Costa Rica como parte de un sondeo de lagos más amplio, con el fin de documentar sus carácteristicas físicas y químicas y las relaciones entre estas carácteristicas y el modo

  15. Investigation of Residence and Travel Times in a Large Floodplain Lake with Complex Lake-River Interactions: Poyang Lake (China

    Directory of Open Access Journals (Sweden)

    Yunliang Li

    2015-04-01

    Full Text Available Most biochemical processes and associated water quality in lakes depends on their flushing abilities. The main objective of this study was to investigate the transport time scale in a large floodplain lake, Poyang Lake (China. A 2D hydrodynamic model (MIKE 21 was combined with dye tracer simulations to determine residence and travel times of the lake for various water level variation periods. The results indicate that Poyang Lake exhibits strong but spatially heterogeneous residence times that vary with its highly seasonal water level dynamics. Generally, the average residence times are less than 10 days along the lake’s main flow channels due to the prevailing northward flow pattern; whereas approximately 30 days were estimated during high water level conditions in the summer. The local topographically controlled flow patterns substantially increase the residence time in some bays with high spatial values of six months to one year during all water level variation periods. Depending on changes in the water level regime, the travel times from the pollution sources to the lake outlet during the high and falling water level periods (up to 32 days are four times greater than those under the rising and low water level periods (approximately seven days.

  16. Bathymetric map and area/capacity table for Castle Lake, Washington

    Science.gov (United States)

    Mosbrucker, Adam R.; Spicer, Kurt R.

    2017-11-14

    The May 18, 1980, eruption of Mount St. Helens produced a 2.5-cubic-kilometer debris avalanche that dammed South Fork Castle Creek, causing Castle Lake to form behind a 20-meter-tall blockage. Risk of a catastrophic breach of the newly impounded lake led to outlet channel stabilization work, aggressive monitoring programs, mapping efforts, and blockage stability studies. Despite relatively large uncertainty, early mapping efforts adequately supported several lake breakout models, but have limited applicability to current lake monitoring and hazard assessment. Here, we present the results of a bathymetric survey conducted in August 2012 with the purpose of (1) verifying previous volume estimates, (2) computing an area/capacity table, and (3) producing a bathymetric map. Our survey found seasonal lake volume ranges between 21.0 and 22.6 million cubic meters with a fundamental vertical accuracy representing 0.88 million cubic meters. Lake surface area ranges between 1.13 and 1.16 square kilometers. Relationships developed by our results allow the computation of lake volume from near real-time lake elevation measurements or from remotely sensed imagery.

  17. Radionuclide dating ({sup 21}Pb, {sup 137}Cs, {sup 241}Am) of recent lake sediments in a highly active geodynamic setting (Lakes Puyehue and Icalma-Chilean Lake District)

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, F. [Processus et Bilan en Domaine Sedimentaire, UMR CNRS 8110, Bat. SN5, UST Lille 1, F-59655 Villeneuve d' Ascq (France); Geodynamique des Chaines Alpines, UMR CNRS 5025, Bat. Belledonne, Universite de Savoie, F-73373 Le Bourget du Lac (France); Magand, O. [Laboratoire de Glaciologie et Geophysique de l' Environnement, UMR CNRS 5183, 54 rue Moliere, F-38402 Saint Martin d' Heres Cedex (France)]. E-mail: magand@lgge.obs.ujf-grenoble.fr; Chapron, E. [Renard Centre of Marine Geology, University of Gent, Department of Geology and Soil Science, Krijgslaan 281 S8, B-9000 Gent (Belgium); Bertrand, S. [U.R. Argiles et Paleoclimats, University of Liege, Allee du 6 Aout, B18, ULG-Sart-Tilman, B-4000 Liege (Belgium); Boes, X. [U.R. Argiles et Paleoclimats, University of Liege, Allee du 6 Aout, B18, ULG-Sart-Tilman, B-4000 Liege (Belgium); Charlet, F. [Renard Centre of Marine Geology, University of Gent, Department of Geology and Soil Science, Krijgslaan 281 S8, B-9000 Gent (Belgium); Melieres, M.-A. [Laboratoire de Glaciologie et Geophysique de l' Environnement, UMR CNRS 5183, 54 rue Moliere, F-38402 Saint Martin d' Heres Cedex (France)

    2006-08-01

    This study presents an attempt to use radionuclide profiles to date four short sediment cores taken from two Chilean lakes located in a highly active geodynamic setting. In such settings, sediment series commonly contain earthquake-triggered reworked layers and/or volcanic ash layers. All of these layers affect the vertical distribution of radionuclides. The drawing up of accurate chronologies is made even more problematic by the low fallout rates of both natural ({sup 21}Pb) and artificial ({sup 137}Cs, {sup 241}Am) radionuclides. However, radionuclide profiles can be 'corrected' by subtracting the influence of instantaneous deposits that have been identified from detailed sedimentological studies. Thus, radionuclides can be used to provide approximate dates for sediment. Independent confirmation of these dates can be provided by varve counting and/or the recognition of historical events. For Lake Puyehue, this approach has allowed particular sediment features to be related to the effects of the 1960 Chilean earthquake (Mw 9.5) on the lake basin and its catchment area. For Lake Icalma, there is a good agreement between radionuclide dates and the dates of the three tephra layers formed during large eruptions of the Llaima volcano in 1946, 1917 and 1883. For both lakes, artificial radionuclide fallout, which culminated in 1965, provides more robust chronological information than {sup 21}Pb dating.

  18. Silver and lead in high-altitude lake sediments: Proxies for climate changes and human activities

    International Nuclear Information System (INIS)

    Garçon, Marion; Chauvel, Catherine; Chapron, Emmanuel; Faïn, Xavier; Lin, Mingfang; Campillo, Sylvain; Bureau, Sarah; Desmet, Marc; Bailly-Maître, Marie-Christine; Charlet, Laurent

    2012-01-01

    High-altitude lake sediments are often used as archives for environmental changes and their chemical and isotopic compositions provide significant constraints on natural and anthropogenic long-term changes that have occurred in their catchment area. Here, trace-element concentrations and Pb isotopes are presented for two sedimentary cores from Lake Blanc Huez in the French Alps, to trace the impact of climate changes and human activities over the Holocene. Lead and Ag contents are very high and clearly dominated by input from a Pb–Ag vein located a few meters from the lakeshore, a vein that also buffers the Pb isotopes. Mining of this vein in medieval times is recorded in the corresponding lake sediments with high Ag content coupled with high Pb/U ratio. These chemical characteristics can be used to constrain the major Holocene climate changes. Significant advances of glaciers next to the lake produced sediments with Ag and Pb concentration peaks and high Pb/U ratios due to accelerated erosion of the Pb–Ag vein, similar to the effects of the medieval mining. In contrast, reduced glacier activity led to the formation of organic-rich sediments with high U and As contents and low Pb/U ratios. More generally, the observed combination of chemical changes could be used elsewhere to decipher environmental changes over long periods of time.

  19. Cytophotometric differentiation of high elevation spruces: physiological and ecological implications

    International Nuclear Information System (INIS)

    Berlyn, G.P.; Royte, J.L.; Anoruo, A.O.

    1990-01-01

    Red and black spruce and their hybrids can be determined by morphological indices; however, the criteria are somewhat subjective and increasingly difficult to use at higher elevations. Although the chromosome number is identical (2n = 24), red spruce has twice as much nuclear DNA (48 pg) than black spruce (24 pg) and thus the species and their hybrids can also be separated by cytophotometry. This is relevant to spruce decline studies because black spruce is much more resistant to high elevation environmental stresses, both natural and anthropogenic. It also has implications for the effect of climatic changes on the composition of high elevation spruce-fir forests because red spruce can outcompete black spruce under more mesic conditions. Four elevation transects sampling spruce on the east and west sides of Mount Washington (New Hampshire) and Camels Hump (Vermont) and a single transect on the southwest side of Whiteface Mountain (New York) were made to investigate the degree of hybridization and introgression between these two species. A positive correlation was found between increased elevation and increased black spruce genes on Mount Washington and Camels Hump. Pure black spruce was found on Mount Washington from 1356 m to 1582 m. No pure black or red spruce was found on Camels Hump although the proportion of red spruce alleles was significantly greater on Camels Hump. All trees sampled at all elevations on Whiteface Mountain were pure red spruce. Thus the proportion of black spruce alleles in high elevation spruce populations decreases from east to west. This closely parallels the increase in spruce decline which increases from east to west. (author)

  20. Effect of permafrost thaw on the dynamics of lakes recharged by ice-jam floods: case study in Yukon Flats, Alaska

    Science.gov (United States)

    Steve M. Jepsen,; Walvoord, Michelle Ann; Voss, Clifford I.; Rover, Jennifer R.

    2016-01-01

    Large river floods are a key water source for many lakes in fluvial periglacial settings. Where permeable sediments occur, the distribution of permafrost may play an important role in the routing of floodwaters across a floodplain. This relationship is explored for lakes in the discontinuous permafrost of Yukon Flats, interior Alaska, using an analysis that integrates satellite-derived gradients in water surface elevation, knowledge of hydrogeology, and hydrologic modeling. We observed gradients in water surface elevation between neighboring lakes ranging from 0.001 to 0.004. These high gradients, despite a ubiquitous layer of continuous shallow gravel across the flats, are consistent with limited groundwater flow across lake basins resulting from the presence of permafrost. Permafrost impedes the propagation of floodwaters in the shallow subsurface and constrains transmission to “fill-and-spill” over topographic depressions (surface sills), as we observed for the Twelvemile-Buddy Lake pair following a May 2013 ice-jam flood on the Yukon River. Model results indicate that permafrost table deepening of 1–11 m in gravel, depending on watershed geometry and subsurface properties, could shift important routing of floodwater to lakes from overland flow (fill-and-spill) to shallow groundwater flow (“fill-and-seep”). Such a shift is possible in the next several hundred years of ground surface warming, and may bring about more synchronous water level changes between neighboring lakes following large flood events. This relationship offers a potentially useful tool, well-suited to remote sensing, for identifying long-term changes in shallow groundwater flow resulting from thawing of permafrost.

  1. Spatial variations in water composition at a northern Canadian lake impacted by mine drainage

    International Nuclear Information System (INIS)

    Moncur, M.C.; Ptacek, C.J.; Blowes, D.W.; Jambor, J.L.

    2006-01-01

    Release of acid drainage from mine-waste disposal areas is a problem of international scale. Contaminated surface water, derived from mine wastes, originates both as direct surface runoff and, indirectly, as subsurface groundwater flow. At Camp Lake, a small Canadian Shield lake that is in northern Manitoba and is ice-covered 6 months of the year, direct and indirect release of drainage from an adjacent sulfide-rich tailings impoundment has severely affected the quality of the lake water. Concentrations of the products from sulfide oxidation are extremely high in the pore waters of the tailings impoundment. Groundwater and surface water derived from the impoundment discharge into a semi-isolated shallow bay in Camp Lake. The incorporation of this aqueous effluent has altered the composition of the lake water, which in turn has modified the physical limnology of the lake. Geochemical profiles of the water column indicate that, despite its shallow depth (6 m), the bay is stratified throughout the year. The greatest accumulation of dissolved metals and SO 4 is in the lower portion of the water column, with concentrations up to 8500 mg L -1 Fe, 20,000 mg L -1 SO 4 , 30 mg L -1 Zn, 100 mg L -1 Al, and elevated concentrations of Cu, Cd, Pb and Ni. Meromictic conditions and very high solute concentrations are limited to the bay. Outside the bay, solute concentrations are lower and some stratification of the water column exists. Identification of locations and composition of groundwater discharge relative to lake bathymetry is a fundamental aspect of understanding chemical evolution and physical stability of mine-impacted lakes

  2. Lake trout in northern Lake Huron spawn on submerged drumlins

    Science.gov (United States)

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  3. Evolution of alkaline lakes - Lake Van case study

    Science.gov (United States)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Lake Van in Eastern Anatolia (Turkey) is the largest terminal soda lake on Earth. The lake sedimentary profile covers ca. 600 ka (Stockhecke et al. 2014) Based on lithological changes, the presence of freshwater microfossils and close-to-freshwater pH value in the pore water, members of ICDP PALEOVAN concluded that Lake Van might have started as an open lake. Here we show paleontological and geochemical evidence in favour of this idea and constrain the time, when Lake Van likely transformed into a closed lake. Additionally we provide the first conceptual model of how this closure may have happened. Our archives of choice are inorganic and biogenic carbonates, separated by wet sieving. We identified microfossil assemblages (fraction > 125 µm) and performed high-resolution oxygen isotope (delta18O) and elemental (Mg/Ca, Sr/Ca) analyses of the fraction plants growing in the photic zone as food supply. These two aspects point to an increasing salinity in a shallowing lake. The delta18O values of inorganic carbonates are relatively low during the initial phase of Lake Van and increase abruptly (ca. 7‰) after 530 ka BP. At approximately the same time combination of Sr/Ca and Mg/Ca data suggest first occurrence of aragonite. Again, these findings suggest geochemical changes of the lake water concurrent with transition documented by microfossils. Comparison between Lake Van and Lake Ohrid (Lacey et al. 2016) delta18O data, precludes regional climate change (e.g.: increased evaporation) as the main driver of observed changes. With no evidence for increased volcanic or tectonic activity (e.g.: tephra layers, deformation structures, slumping) in the Lake Van sedimentary profile around 530 ka, it seems unlikely that a pyroclastic flow blocked the outflow of the lake. Alternatively, a portion of inflow has been diverged which might have caused a change in the hydrological balance and lake level falling below its outlet. However, as no geomorphological data confirming this

  4. A High Elevation Climate Monitoring Network: Strategy and Progress

    Science.gov (United States)

    Redmond, K. T.

    2004-12-01

    Populations living at low elevations are critically dependent on processes and resources at higher elevations. Most western U.S. streamflow begins as mountain snowmelt. Observational evidence and theoretical considerations indicate that climate variations in a given geographic domain can and do exhibit different characteristics and temporal behavior at different elevations. Subtleties in the interplay between topography and airflow can significantly affect precipitation patterns. However, there are very few systematic, long-term, in-situ, climate quality, high-altitude observational time series with hourly resolution for the western North American mountains to investigate these issues at the proper scales. Climate at high elevations is severely undersampled, a consequence of the harsh physical environment, and demands on sensors, maintenance, access, communications, time, and budgets. Costs are higher, human presence is limited, AC power is often not available, and there are permitting and aesthetic constraints. The observational strategy should include these main elements: 1) All major mountain ranges should be sampled. 2) Along-axis and cross-axis sampling for major mountain chains. 3) Approximately 5-10 sites per state (1 per 56000 sq km to 1 per 28000 sq km). 4) Highest sites as high as possible within each state, but at both high relative and absolute elevations. 5) Free air exposures at higher sites. 6) Utilize existing measurements and networks, and extend existing records, when possible. 7) AC power to prevent ice/rime when practical. 8) Temperature, relative humidity, wind speed and direction, solar radiation as main elements, others as feasible. 9) Hourly readings, and real time communication whenever possible. 10) Absence of local artificial influences, site stable for next 5-10 decades. 11) Current and historical measurements accessible via World Wide Web when possible. 12) Hydro measurements (precipitation, snow water content and depth) are not

  5. Mercury biomagnification in three geothermally-influenced lakes differing in chemistry and algal biomass

    International Nuclear Information System (INIS)

    Verburg, Piet; Hickey, Christopher W.; Phillips, Ngaire

    2014-01-01

    Accumulation of Hg in aquatic organisms is influenced not only by the contaminant load but also by various environmental variables. We compared biomagnification of Hg in aquatic organisms, i.e., the rate at which Hg accumulates with increasing trophic position, in three lakes differing in trophic state. Total Hg (THg) concentrations in food webs were compared in an oligotrophic, a mesotrophic and a eutrophic lake with naturally elevated levels of Hg associated with geothermal water inputs. We explored relationships of physico-chemistry attributes of lakes with Hg concentrations in fish and biomagnification in the food web. Trophic positions of biota and food chain length were distinguished by stable isotope 15 N. As expected, THg in phytoplankton decreased with increasing eutrophication, suggesting the effect of biomass dilution. In contrast, THg biomagnification and THg concentrations in trout were controlled by environmental physico-chemistry and were highest in the eutrophic lake. In the more eutrophic lake frequent anoxia occurred, resulting in favorable conditions for Hg transfer into and up the food chain. The average concentration of THg in the top predator (rainbow trout) exceeded the maximum recommended level for consumption by up to 440%. While there were differences between lakes in food chain length between plankton and trout, THg concentration in trout did not increase with food chain length, suggesting other factors were more important. Differences between the lakes in biomagnification and THg concentration in trout correlated as expected from previous studies with eight physicochemical variables, resulting in enhanced biomagnification of THg in the eutrophic lake. - Highlights: • Relationships between Hg biomagnification and 11 variables in 3 lakes. • Hg in trout too high for consumption in two geothermally-influenced lakes. • Hg biomagnification was highest in the most eutrophic lake. • First study to compare Hg biomagnification in lakes

  6. Mercury biomagnification in three geothermally-influenced lakes differing in chemistry and algal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Verburg, Piet, E-mail: piet.verburg@niwa.co.nz; Hickey, Christopher W.; Phillips, Ngaire

    2014-09-15

    Accumulation of Hg in aquatic organisms is influenced not only by the contaminant load but also by various environmental variables. We compared biomagnification of Hg in aquatic organisms, i.e., the rate at which Hg accumulates with increasing trophic position, in three lakes differing in trophic state. Total Hg (THg) concentrations in food webs were compared in an oligotrophic, a mesotrophic and a eutrophic lake with naturally elevated levels of Hg associated with geothermal water inputs. We explored relationships of physico-chemistry attributes of lakes with Hg concentrations in fish and biomagnification in the food web. Trophic positions of biota and food chain length were distinguished by stable isotope {sup 15}N. As expected, THg in phytoplankton decreased with increasing eutrophication, suggesting the effect of biomass dilution. In contrast, THg biomagnification and THg concentrations in trout were controlled by environmental physico-chemistry and were highest in the eutrophic lake. In the more eutrophic lake frequent anoxia occurred, resulting in favorable conditions for Hg transfer into and up the food chain. The average concentration of THg in the top predator (rainbow trout) exceeded the maximum recommended level for consumption by up to 440%. While there were differences between lakes in food chain length between plankton and trout, THg concentration in trout did not increase with food chain length, suggesting other factors were more important. Differences between the lakes in biomagnification and THg concentration in trout correlated as expected from previous studies with eight physicochemical variables, resulting in enhanced biomagnification of THg in the eutrophic lake. - Highlights: • Relationships between Hg biomagnification and 11 variables in 3 lakes. • Hg in trout too high for consumption in two geothermally-influenced lakes. • Hg biomagnification was highest in the most eutrophic lake. • First study to compare Hg biomagnification in

  7. Water sediment, and nutrient budgets, and bathymetric survey of Old and New Gillespie Lakes, Macoupin County, Illinois, May 1996-April 1997; with a discussion of lake-management practices

    Science.gov (United States)

    Johnson, Gary P.

    1999-01-01

    The Gillespie Lakes system serves as a drinking water source for the town of Gillespie, Illinois, and is a major recreational focus for the area. As part of an investigation of a concern that the lakes are being adversely affected by excessive sediment and nutrient in flows, this report presents hydrologic, sediment, and nutrient budgets for Old Gillespie Lake and New Gillespie Lake, calculated by the U.S. Geological Survey with data collected during May 1996-April 1997 in cooperation with the Illinois Environmental Protection Agency and the city of Gillespie, Illinois. Bathymetric data also were collected in the two lakes to produce maps of the lake bed elevations. The influx of sediment, phosphorus, and nitrogen into Old Gillespie Lake during the study period was 4,063, 6.02, and 52.3 tons, respectively. Old Gillespie Lake retained 92 percent of the inflowing sediment (which agrees with theoretical calculations of trapping efficiency for Old Gillespie Lake), 84 percent of the inflowing phosphorus, and 87 percent of the inflowing nitrogen. The influx of sediment, phosphorus, and nitrogen into New Gillespie Lake during the study period was 4,792, 7.56, and 64.3 tons, respectively. Old Gillespie Lake retained 95 percent of the inflowing sediment (which agrees with theoretical calculations of trapping efficiency for New Gillespie Lake), 82 percent of the inflowing phosphorus, and 81 percent of the inflowing nitrogen. The loads per area of phosphorus and nitrogen to the Gillespie Lakes were 1.06 tons/mi2 and 9.26 tons/mi2, respectively. For row crops of corn and soybeans, the literature reports ranges of loads per area of phosphorus of 0.15 to 1.43 tons/mi2 and of nitrogen of 0.86 to 11.43 tons/mi2. Therefore, loads to the Gillespie Lakes are relatively high for the given cropping practices, and application of best management practices may substantially reduce the per area loads of these nutrients. Considering these loads and retention of sediment and nutrients, a

  8. High-altitude diving in river otters: coping with combined hypoxic stresses.

    Science.gov (United States)

    Crait, Jamie R; Prange, Henry D; Marshall, Noah A; Harlow, Henry J; Cotton, Clark J; Ben-David, Merav

    2012-01-15

    River otters (Lontra canadensis) are highly active, semi-aquatic mammals indigenous to a range of elevations and represent an appropriate model for assessing the physiological responses to diving at altitude. In this study, we performed blood gas analyses and compared blood chemistry of river otters from a high-elevation (2357 m) population at Yellowstone Lake with a sea-level population along the Pacific coast. Comparisons of oxygen dissociation curves (ODC) revealed no significant difference in hemoglobin-oxygen (Hb-O(2)) binding affinity between the two populations - potentially because of demands for tissue oxygenation. Instead, high-elevation otters had greater Hb concentrations (18.7 g dl(-1)) than sea-level otters (15.6 g dl(-1)). Yellowstone otters displayed higher levels of the vasodilator nitric oxide (NO), and half the concentration of the serum protein albumin, possibly to compensate for increased blood viscosity. Despite compensation in several hematological and serological parameters, theoretical aerobic dive limits (ADL) were similar between high-elevation and sea-level otters because of the lower availability of O(2) at altitude. Our results suggest that recent disruptions to the Yellowstone Lake food web could be detrimental to otters because at this high elevation, constraints on diving may limit their ability to switch to prey in a deep-water environment.

  9. Anaglyph, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed

  10. Development of Simulator for High-Speed Elevator System

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyung Min; Kim, Sung Jun; Sul, Seung Ki; Seok, Ki Riong [Seoul National University, Seoul(Korea); Kwon, Tae Seok [Hanyang University, Seoul(Korea); Kim, Ki Su [Konkuk University, Seoul(Korea); Shim, Young Seok [Inha University, incheon(Korea)

    2002-02-01

    This paper describes the dynamic load simulator for high-speed elevator system, which can emulate 3-mass system as well as equivalent 1-mass system 1-mass system. In order to implement the equivalent inertia of entire elevator system, the conventional simulators have generally utilized the mechanical inertia(flywheel) with large radius, which makes the entire system large and heavy. In addition, the mechanical inertia should be replaced each time in order to test another elevator system. In this paper, the dynamic load simulation methods using electrical inertia are presented so that the volume and weight of simulator system are greatly reduced and the adjustment of inertia value can be achieved easily by software. Experimental results show the feasibility of this simulator system. (author). 5 refs., 7 figs., 2 tabs.

  11. Trace elements in sediment samples of the Aswan High Dam Lake

    International Nuclear Information System (INIS)

    Sherief, M.K.; Awadallah, R.M.; Grass, F.

    1981-01-01

    Main and trace elements in Nile sediments of the Aswan High Dam Lake were investigated by means of Instrumental Activation Analysis. It was shown that the composition of the Nile sediments changes in accordance with the large gradients in flow rate and with elution and absorption processes. Particles containing Ca, Ba, Hf, Ti, V, and Na are sedimented preferentially near the headwater of Lake Nubia, whereas some elements are rather uniformly distributed, e.g. Fe, Co, Sm, and Eu, and some, such as Al, Sc, Cs, Th, La, and Ce, show a distinct increase downstream. Some elements do not fit into any of these three groups. (author)

  12. Development of a CE-QUAL-W2 temperature model for Crystal Springs Lake, Portland, Oregon

    Science.gov (United States)

    Buccola, Norman L.; Stonewall, Adam J.

    2016-05-19

    During summer 2014, lake level, streamflow, and water temperature in and around Crystal Springs Lake in Portland, Oregon, were measured by the U.S. Geological Survey and the City of Portland Bureau of Environmental Services to better understand the effect of the lake on Crystal Springs Creek and Johnson Creek downstream. Johnson Creek is listed as an impaired water body for temperature by the Oregon Department of Environmental Quality (ODEQ), as required by section 303(d) of the Clean Water Act. A temperature total maximum daily load applies to all streams in the Johnson Creek watershed, including Crystal Springs Creek. Summer water temperatures downstream of Crystal Springs Lake and the Golf Pond regularly exceed the ODEQ numeric criterion of 64.4 °F (18.0 °C) for salmonid rearing and migration. To better understand temperature contributions of this system, the U.S. Geological Survey developed two-dimensional hydrodynamic water temperature models of Crystal Springs Lake and the Golf Pond. Model grids were developed to closely resemble the bathymetry of the lake and pond using data from a 2014 survey. The calibrated models simulated surface water elevations to within 0.06 foot (0.02 meter) and outflow water temperature to within 1.08 °F (0.60 °C). Streamflow, water temperature, and lake elevation data collected during summer 2014 supplied the boundary and reference conditions for the model. Measured discrepancies between outflow and inflow from the lake, assumed to be mostly from unknown and diffuse springs under the lake, accounted for about 46 percent of the total inflow to the lake.

  13. Plant diversity on high elevation islands – drivers of species richness and endemism

    Directory of Open Access Journals (Sweden)

    Severin D.H. Irl

    2016-10-01

    Full Text Available High elevation islands elicit fascination because of their large array of endemic species and strong environmental gradients. First, I define a high elevation island according to geographic and environmental characteristics. Then, within this high elevation island framework, I address local disturbance effects on plant distribution, drivers of diversity and endemism on the island scale, and global patterns of treeline elevation and climate change. Locally, introduced herbivores have strong negative effects on the summit scrub of my model island La Palma (Canary Islands, while roads have unexpected positive effects on endemics. On the island scale, topography and climate drive diversity and endemism. Hotspots of endemicity are found in summit regions – a general pattern on high elevation islands. The global pattern of treeline elevation behaves quite differently on islands than on the mainland. A thorough literature review and climate projections suggest that climate change will profoundly affect oceanic island floras.

  14. High-resolution passive sampling of dissolved methane in the water column of lakes in Greenland

    Science.gov (United States)

    Goldman, A. E.; Cadieux, S. B.; White, J. R.; Pratt, L. M.

    2013-12-01

    Arctic lakes are important participants in the global carbon cycle, releasing methane in a warming climate and contributing to a positive feedback to climate change. In order to yield detailed methane budgets and understand the implications of warming on methane dynamics, high-resolution profiles revealing methane behavior within the water column need to be obtained. Single day sampling using disruptive techniques has the potential to result in biases. In order to obtain high-resolution, undisturbed profiles of methane concentration and isotopic composition, this study evaluates a passive sampling method over a multi-day equilibration period. Selected for this study were two small lakes (Gatos Research Methane Carbon Isotope Analyzer. PDB sampling and pump sampling resulted in statistically similar concentrations (R2=0.89), ranging from 0.85 to 135 uM from PDB and 0.74 to 143 uM from pump sampling. In anoxic waters of the lake, where concentrations were high enough to yield robust isotopic results on the LGR MCIA, δ13C were also similar between the two methods, yielding -73‰ from PDB and -74‰ from pump sampling. Further investigation will produce results for a second lake and methane carbon and hydrogen isotopic composition for both lakes. Preliminary results for this passive sampling method are promising. We envision the use of this technique in future studies of dissolved methane and expect that it will provide a more finely resolved vertical profile, allowing for a more complete understanding of lacustrine methane dynamics.

  15. Sedimentary lipid biomarkers in the magnesium rich and highly alkaline Lake Salda (south-western Anatolia

    Directory of Open Access Journals (Sweden)

    Jérôme Kaiser

    2016-06-01

    Full Text Available Lake Salda located in south-western Anatolia is characterized by the presence of living stromatolites and by a low diversity of both phytoplankton and zooplankton due to high pH and magnesium concentration. The most abundant, free sedimentary lipids of the uppermost centimetres of the lake sediments were studied as potential environmental biomarkers, and proxies based on glycerol dialkyl glycerol tetraethers (GDGT were tested in this extreme environment. Dinosterol and tetrahymanol are potentially relevant biomarkers for the dinoflagellate Peridinium cinctum and ciliates, respectively. C20:1 and C25:2 highly branched isoprenoid (HBI alkenes, and n-C17 alkane and n-C17:1 alkene are considered as representing, respectively, diatoms and Cyanobacteria involved in the formation of the stromatolites. Isoprenoid GDGT-0 is assumed to be derived mainly from Euryarchaeota (methanogens, and crenarchaeol from Thaumarchaeota. Allochthonous organic material is represented by long-chain n-alkanes and n-alkanols derived from land plant leaf waxes, as well as branched GDGTs produced by soil bacteria. While pH and temperature proxies based on branched GDGTs are likely not applicable in Lake Salda, TEX86 (tetraether index of tetraethers consisting of 86 carbons, a proxy based on isoprenoid GDGTs, potentially allows estimating mean annual lake surface temperature. Interestingly, C23 and C25 1,2 diols, which have a yet unknown origin, were found for the first time in lake sediments. This study represents the first investigation of sedimentary lipid distribution in an alkaline and magnesium-rich lake in Anatolia, and provides a basis for future biomarker-based paleoenvironmental reconstruction of Lake Salda.

  16. High-resolution lake sediment reconstruction of industrial impact in a world-class mining and smelting center, Sudbury, Ontario, Canada

    International Nuclear Information System (INIS)

    Schindler, Michael; Kamber, Balz S.

    2013-01-01

    Highlights: • High-resolution sampling of a lake-sediment core. • Resolution of historical events in a smelter-impacted area. • Perturbation of Cu and Ni in a sediment core. • Fingerprinting sediments and pollutants using Pb isotopes and trace elements. - Abstract: A lake sediment core from Vermillion Lake, Sudbury, Ontario was tightly sampled and analyzed for a wide range of trace elements as well as for Pb isotopes. The data resolve multiple historical events in the 140-a history of logging and mining in the Sudbury area in unprecedented detail. Lead-210 data, 137 Cs activity and historical information on the start of anthropogenic activities in the Sudbury area were combined to derive an age model for the sedimentary column. Using the age information, it is possible to identify sediment sections enriched and depleted in trace metal(loid)s, particularly Ni and Cu, the two most relevant metals in the Sudbury area. Maxima and minima in the chronology of Ni and Cu coincide well with local production values for both elements until environmental regulations in the 1990s resulted in a decrease in their emission and drainage into Vermillion Lake. Differences in the deposition rates of Ni and Cu, trace-metal distribution patterns throughout the sedimentary column, Pb-isotope data, and comparison with data for local rocks and ores in the Sudbury area were used to identify the sources of pollutants in the early and late periods of mining activities. In addition, the environmental impact on the sediment itself was also studied via the variation of water content and organic matter. Finally, a surficial Fe–Mn-enriched layer with elevated concentrations of the oxy-anions (PO 4 ) 3− , (AsO 4 ) 4− , and (MoO 4 ) 2− was identified. This can be distinguished from accumulation of Zn and an increase in the Y / Ho ratio in the upper core sections, which likely imply increasing drainage of fertilizers into the Vermillion River watershed. The chemistry, mineralogy, and

  17. Lake Roosevelt Fisheries Evaluation Program, Part A; Fisheries Creel Survey and Population Status Analysis, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Spotts, Jim; Shields, John; Underwood, Keith

    2002-05-01

    The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. Creel and angler surveys estimated that anglers made 196,775 trips to Lake Roosevelt during 1998, with an economic value of $8.0 million dollars, based on the Consumer Price Index (CPI). In 1998 it was estimated that 9,980 kokanee salmon, 226,809 rainbow trout, 119,346 walleye, and over 14,000 smallmouth bass and other species were harvested. Creel data indicates that hatchery reared rainbow trout contribute substantially to the Lake Roosevelt fishery. The contribution of kokanee salmon to the creel has not met the expectations of fishery managers to date, and is limited by entrainment from the reservoir, predation, and possible fish culture obstacles. The 1998 Lake Roosevelt Fisheries Creel and Population Analysis Annual Report includes analyses of the relative abundance of fish species, and reservoir habitat relationships (1990-1998). Fisheries surveys (1990-1998) indicate that walleye and burbot populations appear to be increasing, while yellow perch, a preferred walleye prey species, and other prey species are decreasing in abundance. The long term decreasing abundance of yellow perch and other prey species are suspected to be the result of the lack of suitable multiple reservoir elevation spawning and rearing refugia for spring spawning reservoir prey species, resulting from seasonal spring-early summer reservoir elevation manipulations, and walleye predation. Reservoir water management is both directly, and indirectly influencing the success of mitigation hatchery production of kokanee salmon and rainbow trout. Tag return data suggested excessive entrainment occurred in

  18. An overview of the recent palaeolimnology of selected lakes in the Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Simon M. HUTCHINSON

    2011-06-01

    Full Text Available Lakesediments can act as sensitive monitors of environmental change and human impacts. The Romanian Carpathians hold a significant number of glacial lakes and transverse a region of considerable environmental concerns, but relatively sparse environmental data and little recent lake sediment based research. Findings from selected lakes in two of the highest sections of these mountains inRomaniaare presented. In addition the palaeolimnological record held in the surficial sediments of other lower elevations sites in theEastern Carpathiansis also discussed. These sites are situated in contrasting sites comprising a volcanic crater lake (Lacul Sfânta Ana,HarghitaMountains and a lake dammed by land sliding (Lacul Iezer-Feredeu, Obcina Feredeului. 

  19. Glacial lake monitoring in the Karakoram Range using historical Landsat Thematic Mapper archive (1982 - 2014)

    Science.gov (United States)

    Chan, J. Y. H.; Kelly, R. E. J.; Evans, S. G.

    2014-12-01

    Glacierized regions are one of the most dynamic land surface environments on the planet (Evans and Delaney, In Press). They are susceptible to various types of natural hazards such as landslides, glacier avalanches, and glacial lake outburst floods (GLOF). GLOF events are increasingly common and present catastrophic flood hazards, the causes of which are sensitive to climate change in complex high mountain topography (IPCC, 2013). Inundation and debris flows from GLOF events have repeatedly caused significant infrastructure damages and loss of human lives in the high mountain regions of the world (Huggel et al, 2002). The research is designed to develop methods for the consistent detection of glacier lakes formation during the Landsat Thematic Mapper (TM) era (1982 - present), to quantify the frequency of glacier lake development and estimate lake volume using Landsat imagery and digital elevation model (DEM) data. Landsat TM scenes are used to identify glacier lakes in the Shimshal and Shaksgam valley, particularly the development of Lake Virjeab in year 2000 and Kyagar Lake in 1998. A simple thresholding technique using Landsat TM infrared bands, along with object-based segmentation approaches are used to isolate lake extent. Lake volume is extracted by intersecting the lake extent with the DEM surface. Based on previous studies and DEM characterization in the region, Shuttle Radar Topography Mission (SRTM) DEM is preferred over Advanced Spaceborne Thermal Emission and Reflection (ASTER) GDEM due to higher accuracy. Calculated errors in SRTM height estimates are 5.81 m compared with 8.34 m for ASTER. SRTM data are preferred because the DEM measurements were made over short duration making the DEM internally consistent. Lake volume derived from the Landsat TM imagery and DEM are incorporated into a simple GLOF model identified by Clague and Matthews (1973) to estimate the potential peak discharge (Qmax) of a GLOF event. We compare the simple Qmax estimates with

  20. An evaluation of the chemical, radiological, and ecological conditions of West Lake on the Hanford site

    Energy Technology Data Exchange (ETDEWEB)

    Poston, T.M.; Price, K.L.; Newcomer, D.R.

    1991-03-01

    West Lake and its immediate surrounding basin represent a unique habitat that is dominated by highly saline water and soil. The basin offers a valuable research site for studies of a rare and complex wetland area in the desert. This report is an evaluation of the chemical, radiological, and ecological conditions at West Lake and describes how ground water influences site properties. The scope of this evaluation consisted of a sampling program in 1989 and a review of data from the perspective of assessing the impact of Hanford Site operations on the physical, chemical, and ecological conditions of West Lake and its surrounding basin. The water level in West Lake fluctuates in relation to changes in the water table. The connection between West Lake and ground water is also supported by the presence of {sup 3}H and {sup 99}Tc in the ground water and in the lake. There are relatively high concentrations of uranium in West Lake; the highest concentrations are found in the northernmost isolated pool. Analyses of water, sediment, vegetation, and soil indicate possible shifts of isotropic ratios that indicate a reduction of {sup 235}U. Uranium-236 was not detected in West Lake water; its presence would indicate neutron-activated {sup 235}U from fuel reprocessing at Hanford. Trace metals are found at elevated concentrations in West Lake. Arsenic, chromium, copper, and zinc were found at levels in excess of US Environmental Protection Agency water quality criteria. Levels of radiological and chemical contamination in the West Lake basin are relatively low. Concentrations of fission isotopes exceed those that could be explained by atmospheric fallout, but fall short of action levels for active waste management areas. 31 refs., 8 figs., 18 tabs.

  1. An evaluation of the chemical, radiological, and ecological conditions of West Lake on the Hanford site

    International Nuclear Information System (INIS)

    Poston, T.M.; Price, K.L.; Newcomer, D.R.

    1991-03-01

    West Lake and its immediate surrounding basin represent a unique habitat that is dominated by highly saline water and soil. The basin offers a valuable research site for studies of a rare and complex wetland area in the desert. This report is an evaluation of the chemical, radiological, and ecological conditions at West Lake and describes how ground water influences site properties. The scope of this evaluation consisted of a sampling program in 1989 and a review of data from the perspective of assessing the impact of Hanford Site operations on the physical, chemical, and ecological conditions of West Lake and its surrounding basin. The water level in West Lake fluctuates in relation to changes in the water table. The connection between West Lake and ground water is also supported by the presence of 3 H and 99 Tc in the ground water and in the lake. There are relatively high concentrations of uranium in West Lake; the highest concentrations are found in the northernmost isolated pool. Analyses of water, sediment, vegetation, and soil indicate possible shifts of isotropic ratios that indicate a reduction of 235 U. Uranium-236 was not detected in West Lake water; its presence would indicate neutron-activated 235 U from fuel reprocessing at Hanford. Trace metals are found at elevated concentrations in West Lake. Arsenic, chromium, copper, and zinc were found at levels in excess of US Environmental Protection Agency water quality criteria. Levels of radiological and chemical contamination in the West Lake basin are relatively low. Concentrations of fission isotopes exceed those that could be explained by atmospheric fallout, but fall short of action levels for active waste management areas. 31 refs., 8 figs., 18 tabs

  2. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level.

    Science.gov (United States)

    Havens, K E; Jin, K R; Rodusky, A J; Sharfstein, B; Brady, M A; East, T L; Iricanin, N; James, R T; Harwell, M C; Steinman, A D

    2001-04-04

    In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S.), the Governing Board of the South Florida Water Management District (SFWMD) authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000) of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms). Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater) until August. Furthermore, a vascular plant-dominated assemblage (Vallisneria, Potamogeton, and Hydrilla) that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga) in 2000. Hence, the lake"s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the previous

  3. Observing a catastrophic thermokarst lake drainage in northern Alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, Christopher D.

    2015-01-01

    The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.

  4. Perspective View with Landsat Overlay, Lakes Managua and Nicaragua

    Science.gov (United States)

    2002-01-01

    This perspective view shows Lakes Managua and Nicaragua near the Pacific coast of Nicaragua. Lake Managua is the 65-kilometer (40-mile)-long fresh water lake in the foreground of this south-looking view, emptying via the Tipitapa River into the much larger Lake Nicaragua in the distance. The capital city of Managua, with a population of more than 500,000, is located along the southern shore of Lake Managua, the area with the highest population density in Nicaragua.The physical setting of Lake Managua is dominated by the numerous volcanic features aligned in a northwest-southeast axis. The cone-like feature in the foreground is Momotombo, a 1,280-meter (4,199-foot)-high stratovolcano located on the northwest end of the lake. Two water-filled volcanic craters (Apoyegue and Jiloa volcanoes) reside on the Chiltepe Peninsula protruding into the lake from the west. Two volcanoes can also be seen on the island of Ometepe in Lake Nicaragua: El Maderas rising to 1,394 meters (4,573 feet) and the active El Conception at 1,610 meters (5,282 feet).This three-dimensional perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced false-color Landsat 7 satellite image. Colors are from Landsat bands 5, 4, and 2 as red, green and blue, respectively. Topographic expression is exaggerated two times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, S.D.Elevation data used in this image was acquired by the SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar

  5. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Lescord, Gretchen L., E-mail: glescord@gmail.com [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kidd, Karen A. [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kirk, Jane L. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada); O' Driscoll, Nelson J. [Acadia University, 15 University Ave, Wolfville, NS B4P 2R6 (Canada); Wang, Xiaowa; Muir, Derek C.G. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada)

    2015-03-15

    In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ{sup 13}C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ{sup 15}N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota. - Highlights: • Mercury (Hg) in Arctic char and invertebrates

  6. Modelling groundwater discharge areas using only digital elevation models as input data

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science

    2006-10-15

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  7. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    We examined the relationship between environmental factors and the richness of submerged macrophytes species in 73 Danish lakes, which are mainly small, shallow, and have mesotrophic to hypertrophic conditions. We found that mean species richness per lake was only 4.5 in acid lakes of low...... alkalinity but 12.3 in lakes of high alkalinity due to a greater occurrence of the species-rich group of elodeids. Mean species richness per lake also increased significantly with increasing Secchi depth. No significant relationship between species richness and lake surface area was observed among the entire...... group of lakes or a subset of eutrophic lakes, as the growth of submerged macrophytes in large lakes may be restricted by wave action in shallow water and light restriction in deep water. In contrast, macrophyte species richness increased with lake surface area in transparent lakes, presumably due...

  8. Survival of migrating sea trout (Salmo trutta ) smolts during their passage of an artificial lake in a Danish lowland stream

    DEFF Research Database (Denmark)

    Schwinn, Michael; Aarestrup, Kim; Baktoft, Henrik

    2017-01-01

    Artificial lake development is often used as a management tool to reduce nutrient runoff to coastal waters. Denmark has restored more than 10 000 ha of wetlands and lakes in the last 14 years as a consequence of ‘Action Plans for the Aquatic Environment’, which aim to meet the demands...... of the European Union’s Water Framework Directive. Juvenile, seaward migrating salmonids are highly affected by impounded waterbodies, as they are subjected to extraordinary high mortalities due to predation and altered habitat. From 2005 to 2015, survival and migration patterns of wild brown trout (Salmo trutta....... Water temperature and discharge were key environmental factors affecting survival of the smolts during the passage of the lake. Furthermore, smolt survival was negatively correlated with condition factor. This elevated level of smolt mortality may seriously compromise self-sustaining anadromous salmonid...

  9. Lake responses following lanthanum-modified bentonite clay (Phoslock) application: an analysis of water column lanthanum data from 16 case study lakes

    NARCIS (Netherlands)

    Spears, B.M.; Lürling, M.F.L.L.W.; Yasseri, S.; Castro-Castellon, A.T.; Gibbs, M.; Meis, S.; McDonald, C.; McIntosh, J.; Sleep, D.; Oosterhout, van F.

    2013-01-01

    Phoslock is a lanthanum (La) modified bentonite clay that is being increasingly used as a geo-engineering tool for the control of legacy phosphorus (P) release from lake bed sediments to overlying waters. This study investigates the potential for negative ecological impacts from elevated La

  10. New paleoreconstruction of transgressive stages in the northern part of Lake Ladoga, NW Russia.

    Science.gov (United States)

    Terekhov, Anton; Sapelko, Tatyana

    2016-04-01

    Lake Ladoga is one of the largest lakes in the world and the largest in Europe. The watershed of lake Ladoga covers the North-Western part of European Russia and the Eastern Finland. Lake basin is on the border between the Baltic shield and the East European Platform. The most consistent paleoreconstructions of Lake Ladoga history are based on bottom sediments of smaller lakes, which used to be a part of Ladoga in the past. The stages of Ladoga evolution are directly connected with the history of the Baltic Ice Lake (BIL) and of the Ancylus Lake. Water level of these lakes was significant higher than nowadays level. Lake Ladoga in its present limits used to be an Eastern gulf of BIL and Ancylus Lake. The preceding paleoreconstructions of Ladoga water level oscillations were undertaken by G. de Geer, J. Ailio, E. Hyyppä, K. Markov, D. Kvasov, D. Malakhovskiy, M. Ekman, G. Lak, N. Davydova, M. Saarnisto, D. Subetto and others. The new data on multivariate analysis of bottom sediments of lakes which used to belong to Ladoga, collected in the last few years, allows to create several maps of Ladoga transgressive stages in Late Glacial period and post-glacial time. A series of maps showing the extent of Ladoga transgression was created based on lake sediments multivariate analysis and a GIS-modeling using the digital elevation data with an accuracy of several meters and an open-source software (QGIS and SAGA). Due to post-glacial rebound of the lake watershed territory, GIS-modeling should comprise the extent of the glacioisostatic uplift, so the chart of a present-day uplift velocity for Fennoscandia of Ekman and Mäkinen was used. The new digital elevation models were calculated for several moments in the past, corresponding to the most probable dates of smaller lakes isolation from Lake Ladoga. Then, the basin of Ladoga was "filled" with water into GIS program to the levels sufficient for the smaller lakes to join and to split-off. The modern coastlines of Ladoga and

  11. Geophysical problems of radiocesium removal from running shallow lakes

    International Nuclear Information System (INIS)

    Tarasiuk, N.; Spirkauskaite, N.; Gvozdaite, R. and others

    2002-01-01

    Natural processes of radiocesium removal from three selected running shallow (mean depth -0.7-4.2 m) lakes (Zuvintas, Asavas-Asavelis, Juodis) in Lithuania during 1999-2001 are studied. Lake sediments are of a sapropelic and peat type, rich in organics (47-68 %). 137 Cs activity concentrations in surface sediments varied in the range 100-360 Bq kg -1 . A sum of exchangeable and potentially mobile fractions of 137 Cs activity concentrations in lake sediments is assessed to vary in the range 10-34 %. The 137 CS enrichment coefficient defined as a ratio of annual sums of seasonal values of water-soluble 137 Cs activity concentrations in rivers outflowing from and in flowing to lakes was assessed to be equal for selected lakes from 1.4 to 2.5. A course of seasonal data demonstrates the efficiency of lake self cleaning from radiocesium to be minimum in winter owing to the priority of lake surface flows and the temperature stratification, suppressing the water column vertical mixing. It is suggested that elevated radiocesium activity concentrations in the outflowing rivers during a winter-spring transitional period are due to the presence of lake bottom flows. Lake isothermal stratification, inducing the water column vertical mixing during warm seasons, reinforces lake self cleaning processes. Considerations on the seasonal variations of the depth of the anoxic level in sediments, as well as on the vertical mixing of the surface sediments owing to the methane production, are discussed. (author)

  12. Three new Psammothidium species from lakes of Olympic and Cascade Mountains in Washington State, USA

    Science.gov (United States)

    Enache, Mihaela D.; Potapova, Marina; Sheibley, Rich; Moran, Patrick

    2013-01-01

    Populations of several Psammothidium species were found in core sediments from nine remote, high elevation, ultraoligotrophic and oligotrophic, Olympic and Cascade Mountain lakes. Three of these species, P. lacustre, P. alpinum, and P. nivale, are described here as new. The morphology of the silica frustules of these species was documented using light and scanning electron microscopy. We discuss the similarities and differences with previously described Psammothidium species.

  13. Geochemical response of a closed-lake basin to 20th century recurring droughts/wet intervals in the subtropical Pampean Plains of South America

    Directory of Open Access Journals (Sweden)

    Daniel ARIZTEGUI

    2004-02-01

    Full Text Available Laguna Mar Chiquita is a highly variable closed saline lake located in the Pampean Plains of central Argentina. Presently is the largest saline lake in South America (∼ 6,000 km2 and also one of the largest in the world. During the 20th century the hydrological balance of the region was characterized by contrasting scenarios. Well-defined wet or dry climatic phases had ruled the lake level fluctuations and the rivers discharge, mainly controlling the geochemical composition of sediments. Sediments accumulated during positive hydrological balances (i.e., high lake level are mainly composed of allogenic mineral due to higher riverine inputs into the lake. This fluvial-dominated lake phases are recorded as sediments enriched in Al2O3, SiO2, K2O, Fe2O3 and TiO2 and in trace elements such as Co, Cr, Cs, Rb, Sc, Hf, Ta, Th as well as rare earth elements (REE. Sediments accumulated during dry phases (i.e., low lake levels and high salinity are evaporite mineral-rich with elevated concentrations of CaO, MnO, MgO, and P2O5. High contents of As and U are probably due to a co-precitation during high evaporative phases. The calibration of the sediment chemical composition of Laguna Mar Chiquita to well-defined water-level fluctuations of the 20th century shows that elemental geochemistry can be a useful proxy to study former lake-water fluctuations. It may further provide a comparative model to evaluate past environmental conditions in other saline lacustrine basins.

  14. A review of mercury in Lake Victoria, East Africa: implications for human and ecosystem health.

    Science.gov (United States)

    Campbell, Linda; Dixon, D G; Hecky, R E

    2003-01-01

    Lake Victoria, East Africa, has been the site of many recent studies measuring mercury (Hg) concentrations in water, fish, sediment, soil, and humans. Most of these studies were motivated by concerns about Hg contamination from processing of gold ore on the southern shores. Total Hg (THg) concentrations in fish were usually below permissible World Health Organization (WHO) concentrations and international marketing limits and do not threaten the lucrative export industry. Nile perch 3-10 kg and most >10 kg had THg concentrations above the WHO threshold concentrations for at-risk groups (200 ng/g). Elevated THg concentrations in large Nile perch are not of major concern because Nile perch are rarely consumed by the people living on Lake Victoria and very large Nile perch are becoming increasingly rare in catches. Water THg concentrations were below Canadian drinking water guidelines but were elevated relative to those in the northern Great Lakes. Sediment and soil THg concentrations were within inter-national guidelines and are comparable to those in northern latitudes but are lower than those in the Amazon basin. Biomass burning and soil erosion are estimated to be the major sources of THg for the lake and probably constitute a larger source of THg than gold mining in Tanzania.THg concentrations in urine and hair from human volunteers indicate that while gold miners and frequent skin-bleaching cream users are at risk of inorganic mercury poisoning, the rest of the population, including fishermen, is not. Human exposure assessments demonstrated that fish consumption and soil geophagy constitute major sources of THg for humans, but the total estimated daily intake of THg was below the Health Canada tolerable daily intake (TDI) limits. The use of beauty creams containing high inorganic Hg concentrations, however, caused the estimated THg exposure to exceed the TDI. The high THg content in the hair of regular cream users supports this assessment. The nutritional

  15. THE LATE QUATERNARY TECTONO-STRATIGRAPHIC EVOLUTION OF THE LAKE VAN, TURKEY

    Directory of Open Access Journals (Sweden)

    Naci GÖRÜR

    2015-12-01

    the lack of sufficient datings of the terrace sequences around La- ke Van, we cannot correlate them unequivocally. However, the absence of large-scale cycli- city within a given terrace sequence in each locality suggests that deposition of each terrace occurred during a separate lake level fluctuation each reaching to higher level than the mo- dern lake level followed by a regression. The available age data suggest that high lake levels, reaching up to 1760 m asl, occurred during the last interglacial (MIS 5; 123-71 ka BP, 26- 24 ka BP, 22-21 ka BP and 10-6 ka BP. The younging of the terrace deposits along with the decrease in elevation suggests either a gradual decline of lake level with time, or the effect of the cumulative uplift with time or both. The fluctuating lake level was probably due to a combination of climatic, volcanic and tectonic processes. Considering the hydrologically clo- sed nature of the lake, climate probably played more important role than the others. Since the formation of the youngest terrace sediments of 6 ka BP, perhaps the climate in the basin has been mostly relatively more arid and evaporative. During the entire history of the lake (last 600 ka, geology of the area has been characterized by the neotectonic régime of Turkey with active dip- and strike-slip faults, resulting in the offshore lake the characteristic slump struc- tures and convolute beddings, and eruptions of mainly the Nemrut Volcano.

  16. Zooplankton communities in a large prealpine lake, Lake Constance: comparison between the Upper and the Lower Lake

    Directory of Open Access Journals (Sweden)

    Gerhard MAIER

    2005-08-01

    reproduction of zooplanktivorous European whitefish, Coregonus lavaretus, which feeds highly selectively on large cladocerans and which is of great economic significance for the whole region. Another possibility could be that the lack of large Cladocera in the Lower Lake is a result of strong fish predation which could be a consequence of lake morphology.

  17. High-levels of microplastic pollution in a large, remote, mountain lake

    International Nuclear Information System (INIS)

    Free, Christopher M.; Jensen, Olaf P.; Mason, Sherri A.; Eriksen, Marcus; Williamson, Nicholas J.; Boldgiv, Bazartseren

    2014-01-01

    Highlights: • We quantified pelagic microplastic pollution in Lake Hovsgol, Mongolia. • Lake Hovsgol is more polluted with microplastics than Lakes Huron and Superior. • Microplastics came from consumer goods; no microbeads/few pellets were observed. • Microplastics were sourced from population centers and distributed by the winds. • Without waste management, even small populations can heavily pollute large lakes. - Abstract: Despite the large and growing literature on microplastics in the ocean, little information exists on microplastics in freshwater systems. This study is the first to evaluate the abundance, distribution, and composition of pelagic microplastic pollution in a large, remote, mountain lake. We quantified pelagic microplastics and shoreline anthropogenic debris in Lake Hovsgol, Mongolia. With an average microplastic density of 20,264 particles km −2 , Lake Hovsgol is more heavily polluted with microplastics than the more developed Lakes Huron and Superior in the Laurentian Great Lakes. Fragments and films were the most abundant microplastic types; no plastic microbeads and few pellets were observed. Household plastics dominated the shoreline debris and were comprised largely of plastic bottles, fishing gear, and bags. Microplastic density decreased with distance from the southwestern shore, the most populated and accessible section of the park, and was distributed by the prevailing winds. These results demonstrate that without proper waste management, low-density populations can heavily pollute freshwater systems with consumer plastics

  18. A caveat regarding diatom-inferred nitrogen concentrations in oligotrophic lakes

    Science.gov (United States)

    Arnett, Heather A.; Saros, Jasmine E.; Mast, M. Alisa

    2012-01-01

    Atmospheric deposition of reactive nitrogen (Nr) has enriched oligotrophic lakes with nitrogen (N) in many regions of the world and elicited dramatic changes in diatom community structure. The lakewater concentrations of nitrate that cause these community changes remain unclear, raising interest in the development of diatom-based transfer functions to infer nitrate. We developed a diatom calibration set using surface sediment samples from 46 high-elevation lakes across the Rocky Mountains of the western US, a region spanning an N deposition gradient from very low to moderate levels (phosphorus, and hypolimnetic water temperature were related to diatom distributions. A transfer function was developed for nitrate and applied to a sedimentary diatom profile from Heart Lake in the central Rockies. The model coefficient of determination (bootstrapping validation) of 0.61 suggested potential for diatom-inferred reconstructions of lakewater nitrate concentrations over time, but a comparison of observed versus diatom-inferred nitrate values revealed the poor performance of this model at low nitrate concentrations. Resource physiology experiments revealed that nitrogen requirements of two key taxa were opposite to nitrate optima defined in the transfer function. Our data set reveals two underlying ecological constraints that impede the development of nitrate transfer functions in oligotrophic lakes: (1) even in lakes with nitrate concentrations below quantification (<1 μg L−1), diatom assemblages were already dominated by species indicative of moderate N enrichment; (2) N-limited oligotrophic lakes switch to P limitation after receiving only modest inputs of reactive N, shifting the controls on diatom species changes along the length of the nitrate gradient. These constraints suggest that quantitative inferences of nitrate from diatom assemblages will likely require experimental approaches.

  19. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    Science.gov (United States)

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  20. Results of photochemical modeling sensitivity analyses in the Lake Michigan region: Current status of Lake Michigan Ozone Control Program (LMOP) modeling

    Energy Technology Data Exchange (ETDEWEB)

    Dolwick, P.D. [Lake Michigan Air Directors Consortium, Des Plaines, IL (United States); Kaleel, R.J. [Illinois Environmental Protection Agency, Springfield, IL (United States); Majewski, M.A. [Wisconsin Dept. of Natural Resources, Madison, WI (United States)

    1994-12-31

    The four states that border Lake Michigan are cooperatively applying a state-of-the-art nested photochemical grid model to assess the effects of potential emission control strategies on reducing elevated tropospheric ozone concentrations in the region to levels below the national ambient air quality standard. In order to provide an extensive database to support the application of the photochemical model, a substantial data collection effort known as the Lake Michigan Ozone Study (LMOS) was completed during the summer of 1991. The Lake Michigan Ozone Control Program (LMOP) was established by the States of Illinois, Wisconsin, Michigan, and Indiana to carry out the application of the modeling system developed from the LMOS, in terms of developing the attainment demonstrations required from this area by the Clean Air Act Amendments of 1990.

  1. Monitoring the Fluctuation of Lake Qinghai Using Multi-Source Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Wenbin Zhu

    2014-10-01

    Full Text Available The knowledge of water storage variations in ungauged lakes is of fundamental importance to understanding the water balance on the Tibetan Plateau. In this paper, a simple framework was presented to monitor the fluctuation of inland water bodies by the combination of satellite altimetry measurements and optical satellite imagery without any in situ measurements. The fluctuation of water level, surface area, and water storage variations in Lake Qinghai were estimated to demonstrate this framework. Water levels retrieved from ICESat (Ice, Cloud, and and Elevation Satellite elevation data and lake surface area derived from MODIS (Moderate Resolution Imaging Spectroradiometer product were fitted by linear regression during the period from 2003 to 2009 when the overpass time for both of them was coincident. Based on this relationship, the time series of water levels from 1999 to 2002 were extended by using the water surface area extracted from Landsat TM/ETM+ images as inputs, and finally the variations of water volume in Lake Qinghai were estimated from 1999 to 2009. The overall errors of water levels retrieved by the simple method in our work were comparable with other globally available test results with r = 0.93, MAE = 0.07 m, and RMSE = 0.09 m. The annual average rate of increase was 0.11 m/yr, which was very close to the results obtained from in situ measurements. High accuracy was obtained in the estimation of surface areas. The MAE and RMSE were only 6 km2, and 8 km2, respectively, which were even lower than the MAE and RMAE of surface area extracted from Landsat TM images. The estimated water volume variations effectively captured the trend of annual variation of Lake Qinghai. Good agreement was achieved between the estimated and measured water volume variations with MAE = 0.4 billion m3, and RMSE = 0.5 billion m3, which only account for 0.7% of the total water volume of Lake Qinghai. This study demonstrates that it is feasible to monitor

  2. Trends in lake chemistry in response to atmospheric deposition and climate in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming, 1993-2009

    Science.gov (United States)

    Mast, M. Alisa; Ingersoll, George P.

    2011-01-01

    In 2010, the U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, began a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. The purpose of this report is to describe trends in the chemical composition of these high-elevation lakes. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) are evaluated over a similar period of record to determine likely drivers of changing lake chemistry. Sulfate concentrations in precipitation decreased over the past two decades at high-elevation monitoring stations in the Rocky Mountain region. The trend in deposition chemistry is consistent with regional declines in sulfur dioxide emissions resulting from installation of emission controls at large stationary sources. Trends in nitrogen deposition were not as widespread as those for sulfate. About one-half of monitoring stations showed increases in ammonium concentrations, but few showed significant changes in nitrate concentrations. Trends in nitrogen deposition appear to be inconsistent with available emission inventories, which indicate modest declines in nitrogen emissions in the Rocky Mountain region since the mid-1990s. This discrepancy may reflect uncertainties in emission inventories or changes in atmospheric transformations of nitrogen species that may be affecting deposition processes. Analysis of long-term climate records indicates that average annual mean air temperature minimums have increased from 0.57 to 0.75 °C per decade in mountain areas of the region with warming trends being more pronounced in Colorado. Trends in annual precipitation were not evident over the period 1990 to 2006, although wetter than average years during 1995 to 1997 and drier years during 2001 to 2004 caused a notable decline in precipitation

  3. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. L. [Texas AgriLife Research, College Station, TX (United States); Roelke, Daniel [Texas AgriLife Research, College Station, TX (United States); Brooks, Bryan [Texas AgriLife Research, College Station, TX (United States); Grover, James [Texas AgriLife Research, College Station, TX (United States)

    2010-10-11

    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism's ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae

  4. Host-pathogen metapopulation dynamics suggest high elevation refugia for boreal toads

    Science.gov (United States)

    Mosher, Brittany A.; Bailey, Larissa L.; Muths, Erin L.; Huyvaert, Kathryn P

    2018-01-01

    Emerging infectious diseases are an increasingly common threat to wildlife. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease that has been linked to amphibian declines around the world. Few studies exist that explore amphibian-Bd dynamics at the landscape scale, limiting our ability to identify which factors are associated with variation in population susceptibility and to develop effective in situdisease management. Declines of boreal toads (Anaxyrus boreas boreas) in the Southern Rocky Mountains are largely attributed to chytridiomycosis but variation exists in local extinction of boreal toads across this metapopulation. Using a large-scale historic dataset, we explored several potential factors influencing disease dynamics in the boreal toad-Bd system: geographic isolation of populations, amphibian community richness, elevational differences, and habitat permanence. We found evidence that boreal toad extinction risk was lowest at high elevations where temperatures may be sub-optimal for Bd growth and where small boreal toad populations may be below the threshold needed for efficient pathogen transmission. In addition, boreal toads were more likely to recolonize high elevation sites after local extinction, again suggesting that high elevations may provide refuge from disease for boreal toads. We illustrate a modeling framework that will be useful to natural resource managers striving to make decisions in amphibian-Bdsystems. Our data suggest that in the southern Rocky Mountains high elevation sites should be prioritized for conservation initiatives like reintroductions.

  5. Eruptive behavior of the Marum/Mbwelesu lava lake, Vanuatu and comparisons with lava lakes on Earth and Io

    Science.gov (United States)

    Radebaugh, Jani; Lopes, Rosaly M.; Howell, Robert R.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2016-08-01

    Observations from field remote sensing of the morphology, kinematics and temperature of the Marum/Mbwelesu lava lake in the Vanuatu archipelago in 2014 reveal a highly active, vigorously erupting lava lake. Active degassing and fountaining observed at the 50 m lava lake led to large areas of fully exposed lavas and rapid ( 5 m/s) movement of lava from the centers of upwelling outwards to the lake margins. These rapid lava speeds precluded the formation of thick crust; there was never more than 30% non-translucent crust. The lava lake was observed with several portable, handheld, low-cost, near-infrared imagers, all of which measured temperatures near 1000 °C and one as high as 1022 °C, consistent with basaltic temperatures. Fine-scale structure in the lava fountains and cooled crust was visible in the near infrared at 5 cm/pixel from 300 m above the lake surface. The temperature distribution across the lake surface is much broader than at more quiescent lava lakes, peaking 850 °C, and is attributed to the highly exposed nature of the rapidly circulating lake. This lava lake has many characteristics in common with other active lava lakes, such as Erta Ale in Ethiopia, being confined, persistent and high-temperature; however it was much more active than is typical for Erta Ale, which often has > 90% crust. Furthermore, it is a good analogue for the persistent, high-temperature lava lakes contained within volcanic depressions on Jupiter's moon Io, such as Pele, also believed from spacecraft and ground-based observations to exhibit similar behavior of gas emission, rapid overturn and fountaining.

  6. Modelling of soil depth and lake sediments. An application of the GeoEditor at the Forsmark site

    International Nuclear Information System (INIS)

    Vikstroem, Maria

    2005-02-01

    This report aims at describing the modelled soil depth according to three layers with different hydrogeological properties at the Forsmark site, based on available data from boreholes, observation points, seismic data and radar profiles. For the lakes in the area, the sediment has been modelled according to six layers of the most common deposits in the area. The peat layer at Stenroesmossen has also been visualized. The program used in the modelling of soil depths is the GeoEditor, which is an ArcView3.3-extension. The input data used in the model consist of 1,532 points based on seismic measurements, 31 profiles of interpreted ground penetrating radar data, 119 boreholes and 472 observation points. The western and south eastern part of the area has a low data density. In the southern parts the data density with respect to estimated bedrock elevation is low. Observation points in this area are generally not very deep and do not describe the actual bedrock elevation. They do, however, describe the minimum soil depth at each location. A detailed topographical DEM, bathymetry and map of Quaternary deposits were also used. The model is based on a three-layer-principle where each layer is assumed to have similar hydrological characteristics. The uppermost layer, Z1, is characterized by the impact from surface processes, roots and biological activity. The bottom layer, Z3, is characterized by contact with the bedrock. The middle layer, Z2, is assumed to have different hydraulic qualities than Z1 and Z3. The lake sediments have been modelled according to six classes of typical deposits. The modelled soil depths show a relatively high bedrock elevation and thus small total soil depth in the major part of the area. The median soil depth has been calculated to 1.9 m, based on model results in areas with higher data density. The maximum modelled soil depth is about 13 m, just north of Lake Stocksjoen. Generally, the sediment layers in the lakes of the area consists of a

  7. Impacts of urban sprawl on the area of downtown lakes in a highly developing city on central China

    Science.gov (United States)

    Zhang, W.; Zhang, Y.

    2016-12-01

    Wuhan city in central China is full of water resources and numerous lakes are located. Downtown lakes have significant ecological value and ornamental value for urban inhabitants in Wuhan. Under the rapid process of urban sprawl, downtown lakes are occupied by impervious areas. This research uses Landsat images to extract land uses from 1991 to 2013 in Wuhan city , and attempts to find out how urban sprawl affects the water body area decline in space. Two largest downtown lakes in Wuhan city, Donghu Lake located in central city and Tangxunhu Lake located in suburbs, are taken as case study area. A direction change index (DCI) is proposed to evaluate the changes of a specific land use in different directions. The results reveal that two downtown lakes are undergoing rapid water body area decline from 1991 to 2013, with decline rate are -0.022 in Donghu watershed and -0.011 in Tangxunhu watershed. 68.26% and 62.50% of the reduced water body is occupied by built-up land in Donghu watershed and Tangxunhu watershed, respectively. According to DCI, the water body reduce is highly correlated with built-up land increase in all direction. Moreover, it is found that in the Donghu watershed the north-west part suffered significant water body area decline, which is close to central city. While in Tangxunhu watershed, the area of water body declined in north-west, south-west and north-east part, and the area obstructed from central city by the lake was suffering less water body area decline. It is concluded that the water body area of downtown lakes are highly affected by the process of urban sprawl, and the lakes in central districts trends to suffer higher descend than that of the downtown lake located in suburbs. Meanwhile, even for the same downtown lake, the area orientating and close to the central city may suffer more rapid decline than the area that does not orientate to the central city.

  8. Effects of Hypolimnetic Oxygenation on Mercury Cycling in Twin Lake, Washington

    Science.gov (United States)

    Beutel, M.; Dent, S.; Reed, B.; Moore, B.; Yonge, D.; Shallenberger, E.

    2010-12-01

    The accumulation of mercury in freshwater aquatic food webs is a widespread health concern. Nearly one-third of US lakes have fish consumption advisories in place due to elevated concentrations of mercury in fish tissue. Mercury, primarily from fossil fuel combustion, is widely deposited across the landscape in the form of ionic mercury. The deposited ionic mercury can be transformed to toxic methylmercury by anaerobic bacteria in anoxic waters and sediments. Once produced, methylmercury is taken up by algae and seston, and then biomagnified up the aquatic food web with levels increasing in successive trophic levels. This presentation summarizes three years (2008-2010) of mercury monitoring at North and South Twin Lakes, moderately deep (maximum depth ~15 m) meso-eutrophic lakes located on the Colville Indian Reservation in eastern Washington State. The objective of the study was to evaluate spatial and temporal patterns of the total and methyl mercury in the water column and zooplankton before and after the implementation of hypolimnetic oxygenation in North Twin Lake in 2009. The working hypothesis was that maintenance of an oxic hypolimnion would repress methylmercury enrichment in bottom waters, and subsequent uptake into zooplankton. Initial results confirm that oxygenation repressed hypolimnetic enrichment of methylmercury. In 2008, prior to oxygenation, peak levels of methylmercury in anaerobic bottom waters of North and South Twin Lakes were 0.4-0.6 ng/L. In 2009 levels were less than 0.05 ng/L in oxygenated North Twin Lake, but were again elevated in anaerobic bottom waters of South Twin Lake. Interestingly, during a two-week oxygenation test in North Twin Lake in the fall of 2008, bottom waters exhibited a short-term and reversible loss of methylmercury that correlated with a decrease in dissolved iron and manganese. Regarding zooplankton, total mercury was higher in zooplankton from oxygenated North Twin Lake relative to non-oxygenated South Twin Lake

  9. Stereo Pair, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR

  10. Liming the acid lake Hovvatn, Norway: a whole-ecosystem study

    Energy Technology Data Exchange (ETDEWEB)

    Raddum, G G; Brettum, P; Matzow, D; Nilssen, J P; Skov, A; Sveaelv, T; Wright, R F

    1986-12-01

    Hovvatn, a 1 sq. km. chronically-acidified lake in southernmost Norway, was treated with 200 tonne of powdered limestone in March 1981. An additional 40 tonne were added to a 0.046 sq km pond (Pollen) draining into Hovvatn. The lakes were stocked with brown trout in June 1981 and in each subsequent year. At ice-out pH rose from 4.4 to 6.3 (Hovvatn) and 7.5 (Pollen), Ca and alkalinity increased, and total Al decreased by 120 ..mu..g/l. None of the other major ions exhibited significant changes in concentration. Total organic C and P increased after liming. The phytoplankton community was dominated by chrysophytes and did not change significantly following liming. The zooplankton community was typical of acid lakes prior to liming. There was a clear succession in species dominance following treatment, although no new species immigrated to the lakes. Zoobenthos changed from a community characterized by low abundance and reduced number of species to increased abundance of oligochaetes, mayflies and chironomids. Hovvatn and Pollen were barren of fish prior to stocking. The stocked fish showed remarkably high growth rate during the first years. Liming apparently improved conditions for zoobenthos, enhancing the processing of fine detritus which in turn resulted in elevated levels of TOC and P in the lakewaters during the first year after liming. The oligotrophication process typical of acid lakes was temporarily reversed by liming. The interactions between groups of organisms in Hovvatn and Pollen indicates that many years are required before a new steady-state can be attained following liming. 61 references.

  11. Hurricane Effects on a Shallow Lake Ecosystem and Its Response to a Controlled Manipulation of Water Level

    Directory of Open Access Journals (Sweden)

    Karl E. Havens

    2001-01-01

    Full Text Available In order to reverse the damage to aquatic plant communities caused by multiple years of high water levels in Lake Okeechobee, Florida (U.S., the Governing Board of the South Florida Water Management District (SFWMD authorized a "managed recession" to substantially lower the surface elevation of the lake in spring 2000. The operation was intended to achieve lower water levels for at least 8 weeks during the summer growing season, and was predicted to result in a large-scale recovery of submerged vascular plants. We treated this operation as a whole ecosystem experiment, and assessed ecological responses using data from an existing network of water quality and submerged plant monitoring sites. As a result of large-scale discharges of water from the lake, coupled with losses to evaporation and to water supply deliveries to agriculture and other regional users, the lake surface elevation receded by approximately 1 m between April and June. Water depths in shoreline areas that historically supported submerged plant communities declined from near 1.5 m to below 0.5 m. Low water levels persisted for the entire summer. Despite shallow depths, the initial response (in June 2000 of submerged plants was very limited and water remained highly turbid (due at first to abiotic seston and later to phytoplankton blooms. Turbidity decreased in July and the biomass of plants increased. However, submerged plant biomass did not exceed levels observed during summer 1999 (when water depths were greater until August. Furthermore, a vascular plant-dominated assemblage (Vallisnera, Potamogeton, and Hydrilla that occurred in 1999 was replaced with a community of nearly 98% Chara spp. (a macro-alga in 2000. Hence, the lake’s submerged plant community appeared to revert to an earlier successional stage despite what appeared to be better conditions for growth. To explain this unexpected response, we evaluated the impacts that Hurricane Irene may have had on the lake in the

  12. Modelling Periglacial Processes on Low-Relief High-Elevation Surfaces

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Knudsen, Mads Faurschou; Egholm, D.L.

    history in many regions of the world. The glacial buzzsaw concept suggests that intense glacial erosion focused at the equilibrium-line altitude (ELA) leads to a concentration in surface area close to the ELA. However, even in predominantly glacial landscapes, such as the Scandinavian Mountains, the high...... as a function of mean annual air temperature and sediment thickness. This allows us to incorporate periglacial processes into a long-term landscape evolution model where surface elevation, sediment thickness, and climate evolve over time. With this model we are able to explore the slow feedbacks between...... evolution model can be used for obtaining more insight into the conditions needed for formation of low-relief surfaces at high elevation. Anderson, R. S. Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming. Geomorphology, 46, 35...

  13. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change

    Directory of Open Access Journals (Sweden)

    Sophie eCharvet

    2012-12-01

    Full Text Available High Arctic meromictic lakes are extreme environments characterized by cold temperatures, low nutrient inputs from their polar desert catchments and prolonged periods of low irradiance and darkness. These lakes are permanently stratified with an oxygenated freshwater layer (mixolimnion overlying a saline, anoxic water column (monimolimnion. The physical and chemical properties of the deepest known lake of this type in the circumpolar Arctic, Lake A, on the far northern coast of Ellesmere Island, Canada, have been studied over the last 15 years, but little is known about the lake’s biological communities. We applied high-throughput sequencing of the V4 region of the 18S ribosomal RNA gene to investigate the protist communities down the water column at three sampling times: under the ice at the end of winter in 2008, during an unusual period of warming and ice-out the same year, and again under the ice in mid-summer 2009. Sequences of many protist taxa occurred throughout the water column at all sampling times, including in the deep anoxic layer where growth is highly unlikely. Furthermore, there were sequences for taxonomic groups including diatoms and marine taxa, which have never been observed in Lake A by microscopic analysis. However the sequences of other taxa such as ciliates, chrysophytes, Cercozoa and Telonema varied with depth, between years and during the transition to ice-free conditions. These results imply that there are seasonally active taxa in the surface waters of the lake that are sensitive to depth and change with time. DNA from these taxa is superimposed upon background DNA from multiple internal and external sources that is preserved in the deep, cold, largely anoxic water column.

  14. Lake-level frequency analysis for Devils Lake, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  15. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    Science.gov (United States)

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  16. High-resolution paleolimnology opens new management perspectives for lakes adaptation to climate warming

    Directory of Open Access Journals (Sweden)

    Marie-Elodie ePerga

    2015-07-01

    Full Text Available Varved lake sediments provide opportunities for high-resolution paleolimnological investigations that may extend monitoring surveys in order to target priority management actions under climate warming. This paper provides the synthesis of an international research program relying on >150 years-long, varved records for three managed perialpine lakes in Europe (Lakes Geneva, Annecy and Bourget. The dynamics of the dominant, local human pressures, as well as the ecological responses in the pelagic, benthic and littoral habitats were reconstructed using classical and newly developed paleo-proxies. Statistical modelling achieved the hierarchization of the drivers of their ecological trajectories. All three lakes underwent different levels of eutrophication in the first half of the XXth century, followed by re-oligotrophication. Climate warming came along with a 2°C increase in air temperature over the last century, to which lakes were unequally thermally vulnerable. Unsurprisingly, phosphorous concentration has been the dominant ecological driver over the last century. Yet, other human-influenced, local environmental drivers (fisheries management practices, river regulations have also significantly inflected ecological trajectories. Climate change has been impacting all habitats at rates that, in some cases, exceeded those of local factors. The amplitude and ecological responses to similar climate change varied between lakes, but, at least for pelagic habitats, rather depended on the intensity of local human pressures than on the thermal effect of climate change. Deep habitats yet showed higher sensitivity to climate change but substantial influence of river flows. As a consequence, adapted local management strategies, fully integrating nutrient inputs, fisheries management and hydrological regulations, may enable mitigating the deleterious consequences of ongoing climate change on these ecosystems.

  17. Pleistocene lake level changes in Western Mongolia

    Science.gov (United States)

    Borodavko, P. S.

    2009-04-01

    Global cooling in the Early Pleistocene caused extensive continental glaciation in the northern hemisphere including the arid areas of Central Asia. The reduction of temperatures (particularly summer temperatures) reduced evaporation and strengthened the importance of precipitation. The simultaneity of "lakes periods" (pluvials) and stages of glaciation is established experience confirmed by investigations in the west of North America and Russia. In the Mongolian Great Lakes Depression new evidence for similar conditions is found. The Great Lakes Depression is one of the largest in Central Asia, and is divided into 2 main Lakes basins: Hyargas Lake Basin and Uvs Lake Basin. The basin is 600-650 km in length with a width of 200-250 km in the north and 60-100 km in the south. Total catchment area is about 186600 km2. The elevation of the basin floor is from 1700 m a.s.l. to 760 m a.s.l., decreasing to the north and south-east. The depression extends south-north and is bounded by mountains: Tannu-Ola to the north, Hangai to the east; Gobi Altai to the south and Mongolian Altay to the west. The maximum elevation of the mountains is 4000 m a.s.l. There are some mountains with an elevation between 2000 and 3000 m a.s.l in the lake catchment. These mountains are not glaciated today. The geological record [1] suggests the Great Lakes Depression already existed in the Mesozoic, but assumed its modern form only during the Pliocene-Quaternary when tectonic movements caused the uplift of the surrounding mountains. A phase of tectonic stability occurred during the Late Quaternary. The depression is filled by Quaternary fluvial, aeolian and lacustrine deposits (e.g. sand, pebbles). The Neogene deposits are represented by coloured clay, marl, sand and sandstone [1]. Hyargas Lake is the end base level of erosion of the lake group consisting of the Hara-Us Nur, Dorgon, Hara Nur and Airag lakes. Hyargas is one of the largest lakes in Mongolia, with a water surface of 1,407 km2. The

  18. Land Cover Change Detection in Urban Lake Areas Using Multi-Temporary Very High Spatial Resolution Aerial Images

    Directory of Open Access Journals (Sweden)

    Wenyuan Zhang

    2018-01-01

    Full Text Available The availability of very high spatial resolution (VHR remote sensing imagery provides unique opportunities to exploit meaningful change information in detail with object-oriented image analysis. This study investigated land cover (LC changes in Shahu Lake of Wuhan using multi-temporal VHR aerial images in the years 1978, 1981, 1989, 1995, 2003, and 2011. A multi-resolution segmentation algorithm and CART (classification and regression trees classifier were employed to perform highly accurate LC classification of the individual images, while a post-classification comparison method was used to detect changes. The experiments demonstrated that significant changes in LC occurred along with the rapid urbanization during 1978–2011. The dominant changes that took place in the study area were lake and vegetation shrinking, replaced by high density buildings and roads. The total area of Shahu Lake decreased from ~7.64 km2 to ~3.60 km2 during the past 33 years, where 52.91% of its original area was lost. The presented results also indicated that urban expansion and inadequate legislative protection are the main factors in Shahu Lake’s shrinking. The object-oriented change detection schema presented in this manuscript enables us to better understand the specific spatial changes of Shahu Lake, which can be used to make reasonable decisions for lake protection and urban development.

  19. Visual observations of historical lake trout spawning grounds in western Lake Huron

    Science.gov (United States)

    Nester, Robert T.; Poe, Thomas P.

    1987-01-01

    Direct underwater video observations were made of the bottom substrates at 12 spawning grounds formerly used by lake trout Salvelinus namaycush in western Lake Huron to evaluate their present suitability for successful reproduction by lake trout. Nine locations examined north of Saginaw Bay in the northwestern end of the lake are thought to provide the best spawning habitat. The substrate at these sites consisted of angular rough cobble and rubble with relatively deep interstitial spaces (a?Y 0.5 m), small amounts of fine sediments, and little or no periphytic growth. Conditions at the three other sampling locations south of Saginaw Bay seemed much less suitable for successful reproduction based on the reduced area of high-quality substrate, shallow interstitial spaces, high infiltration of fine sediments, and greater periphytic growth.

  20. Lead pollution in a large, prairie-pothole lake (Rush Lake, WI, USA): Effects on abundance and community structure of indigenous sediment bacteria

    International Nuclear Information System (INIS)

    Grandlic, Christopher J.; Geib, Ian; Pilon, Renee; Sandrin, Todd R.

    2006-01-01

    Rush Lake (WI, USA), the largest prairie-pothole lake east of the Mississippi River, has been contaminated with lead pollution as a result of over 140 years of waterfowl hunting. We examined: (1) the extent of lead pollution in Rush Lake sediments and (2) whether lead pollution in Rush Lake is affecting the abundance and community structure of indigenous sediment bacteria. Sediment lead concentrations did not exceed 59 mg Pb kg -1 dry sediment. No relationship was observed between sediment lead concentration and the abundance of aerobic (P = 0.498) or anaerobic (P = 0.416) heterotrophic bacteria. Similarly, lead did not appear to affect bacterial community structure when considering both culturable and nonculturable community members. In contrast, the culturable fraction of sediment bacteria in samples containing 59 mg Pb kg -1 exhibited a unique community structure. While factors other than lead content likely play roles in determining bacterial community structure in the sediments of Rush Lake, these data suggest that the culturable fraction of sediment bacterial communities is affected by elevated lead levels. - Low levels of lead pollution in Rush Lake are not impinging upon the abundance of indigenous sediment bacteria, but may be affecting the community structure of the culturable fraction of these bacteria

  1. Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1)

    Science.gov (United States)

    Layden, Aisling; MacCallum, Stuart N.; Merchant, Christopher J.

    2016-06-01

    A tuning method for FLake, a one-dimensional (1-D) freshwater lake model, is applied for the individual tuning of 244 globally distributed large lakes using observed lake surface water temperatures (LSWTs) derived from along-track scanning radiometers (ATSRs). The model, which was tuned using only three lake properties (lake depth, snow and ice albedo and light extinction coefficient), substantially improves the measured mean differences in various features of the LSWT annual cycle, including the LSWTs of saline and high altitude lakes, when compared to the observed LSWTs. Lakes whose lake-mean LSWT persists below 1 °C for part of the annual cycle are considered to be seasonally ice-covered. For trial seasonally ice-covered lakes (21 lakes), the daily mean and standard deviation (2σ) of absolute differences between the modelled and observed LSWTs are reduced from 3.07 °C ± 2.25 °C to 0.84 °C ± 0.51 °C by tuning the model. For all other trial lakes (14 non-ice-covered lakes), the improvement is from 3.55 °C ± 3.20 °C to 0.96 °C ± 0.63 °C. The post tuning results for the 35 trial lakes (21 seasonally ice-covered lakes and 14 non-ice-covered lakes) are highly representative of the post-tuning results of the 244 lakes. For the 21 seasonally ice-covered lakes, the modelled response of the summer LSWTs to changes in snow and ice albedo is found to be statistically related to lake depth and latitude, which together explain 0.50 (R2adj, p = 0.001) of the inter-lake variance in summer LSWTs. Lake depth alone explains 0.35 (p = 0.003) of the variance. Lake characteristic information (snow and ice albedo and light extinction coefficient) is not available for many lakes. The approach taken to tune the model, bypasses the need to acquire detailed lake characteristic values. Furthermore, the tuned values for lake depth, snow and ice albedo and light extinction coefficient for the 244 lakes provide some guidance on improving FLake LSWT modelling.

  2. Recovery after local extinction: factors affecting re-establishment of alpine lake zooplankton.

    Science.gov (United States)

    Knapp, Roland A; Sarnelle, Orlando

    2008-12-01

    The introduction of fishes into naturally fishless mountain lakes often results in the extirpation of large-bodied zooplankton species. The ability to predict whether or not particular species will recover following fish removal is critically important for the design and implementation of lake restoration efforts but is currently not possible because of a lack of information on what factors affect recovery. The objective of this study was to identify the factors influencing recovery probability in two large-bodied zooplankton species following fish removal. We predicted that (1) Daphnia melanica would have a higher probability of recovery than Hesperodiaptomus shoshone due to differences in reproductive mode (D. melanica is parthenogenetic, H. shoshone is obligately sexual), (2) recovery probability would be a decreasing function of fish residence time due to the negative relationship between fish residence time and size of the egg bank, and (3) recovery probability would be an increasing function of lake depth as a consequence of a positive relationship between lake depth and egg bank size. To test these predictions, we sampled contemporary zooplankton populations and collected paleolimnological data from 44 naturally fishless lakes that were stocked with trout for varying lengths of time before reverting to a fishless condition. D. melanica had a significantly higher probability of recovery than did H. shoshone (0.82 vs. 0.54, respectively). The probability of recovery for H. shoshone was also significantly influenced by lake depth, fish residence time, and elevation, but only elevation influenced the probability of recovery in D. melanica. These results are consistent with between-species differences in reproductive mode combined with the much greater longevity of diapausing eggs in D. melanica than in H. shoshone. Our data also suggest that H. shoshone will often fail to recover in lakes with fish residence times exceeding 50 years.

  3. Computational fluid dynamics simulations of the Late Pleistocene Lake Bonneville flood

    Science.gov (United States)

    Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel

    2018-01-01

    At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s−1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y−1 Pa−1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the

  4. Computational Fluid Dynamics simulations of the Late Pleistocene Lake Bonneville Flood

    Science.gov (United States)

    Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel

    2018-06-01

    At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s-1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y-1 Pa-1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the outflow to grow from 10

  5. Circulation and sedimentation in a tidal-influenced fjord lake: Lake McKerrow, New Zealand

    Science.gov (United States)

    Pickrill, R. A.; Irwin, J.; Shakespeare, B. S.

    1981-01-01

    Lake McKerrow is a tide-influenced fjord lake, separated from the open sea by a Holocene barrier spit. Fresh, oxygenated waters of the epilimnion overlie saline, deoxygenated waters of the hypolimnion. During winter, water from the Upper Hollyford River interflows along the pycnocline, depositing coarse silt on the steep delta and transporting finer sediment down-lake. An extensive sub-lacustrine channel system on the foreset delta slope is possibly maintained by turbidity currents. Saline waters of the hypolimnion are periodically replenished. During high tides and low lake levels saline water flows into the lake and downslope into the lake basin as a density current in a well defined channel.

  6. Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India.

    Science.gov (United States)

    Singh, Y; Khattar, Jis; Singh, D P; Rahi, P; Gulati, A

    2014-09-01

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ultra-oligotrophic. Based on morphology and 16S rRNA gene sequence, a total of 20 cyanobacterial species belonging to 11 genera were identified. Canonical correspondence analysis distinguished three groups of species with respect to their occurrence and nutrient/physical environment demand. The first group, which included Nostoc linckia, N. punctiforme, Nodularia sphaerocarpa, Geitlerinema acutissimum, Limnothrix redekii, Planktothrix agardhii and Plank. clathrata, was characteristic of water with high nutrient content and high temperature. The second group, including Gloeocapsopsis pleurocapsoides, Leptolyngbya antarctica, L. frigida, Pseudanabaena frigida and N. spongiaeforme, occurred in oligotrophic water with high pH and low temperature. The distribution of third group of Cyanobium parvum, Synechocystis pevalekii, L. benthonica, L. foveolarum, L. lurida, L. valderiana, Phormidium autumnale and P. chalybeum could not be associated with a particular environmental condition because of their presence in all sampling sites.

  7. Simulation of the effects of Devils Lake outlet alternatives on future lake levels and water quality in the Sheyenne River and Red River of the North

    Science.gov (United States)

    Vecchia, Aldo V.

    2011-01-01

    Since 1992, Devils Lake in northeastern North Dakota has risen nearly 30 feet, destroying hundreds of homes, inundating thousands of acres of productive farmland, and costing more than $1 billion for road raises, levee construction, and other flood mitigation measures. In 2011, the lake level is expected to rise at least another 2 feet above the historical record set in 2010 (1,452.0 feet above the National Geodetic Vertical Datum of 1929), cresting less than 4 feet from the lake's natural spill elevation to the Sheyenne River (1,458.0 feet). In an effort to slow the rising lake and reduce the chance of an uncontrolled spill, the State of North Dakota is considering options to expand a previously constructed outlet from the west end of Devils Lake or construct a second outlet from East Devils Lake. Future outlet discharges from Devils Lake, when combined with downstream receiving waters, need to be in compliance with applicable Clean Water Act requirements. This study was completed by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health Division of Water Quality, to evaluate the various outlet alternatives with respect to their effect on downstream water quality and their ability to control future lake levels.

  8. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    Science.gov (United States)

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  9. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  10. Comparison of groundwater quality from forested (Waimarino River), urban (Turangi), and natural wetland (South Taupo Wetlands) subcatchments at the southern end of Lake Taupo

    International Nuclear Information System (INIS)

    Rosen, M.R.; Reeves, R.R.; Eser, P.; Chague-Goff, C.; Coshell, L.

    1998-01-01

    Comparison of groundwater quality of three different land uses, (1) exotic pine plantation ready for harvest (Waimarino River Catchment), (2) an urban area characterised by a land treatment facility for sewage effluent from Turangi (Turangi oxidation ponds), and (3) a natural wetland (South Taupo Wetlands) demonstrates that groundwater quality in the southern region of the Lake Taupo catchment is controlled by both natural and human influences in the area. Comparative water quality issues can be summarised as follows. (1) Naturally high concentrations of reduced iron and manganese are present in all three study areas, with the highest concentrations found in the natural wetland area and around the Turangi land treatment facility. (2) Concentrations of sodium, chloride, potassium, and ammonium in the groundwater down-gradient of the Turangi oxidation ponds are elevated relative to the other two study areas. Stable isotopic signatures also show that the groundwater has been influenced by surface water from the oxidation ponds, mostly due to additional evaporation caused by the relatively long residence time of the water (125 days) in the oxidation ponds. Elevated concentrations of ammonium also occur in deep groundwater under the forest areas of the Waimarino River catchment. (3) The water at all three sites is generally unsuitable for drinking supplies due to naturally elevated concentrations of reduced iron and manganese in the groundwater and elevated concentrations of ammonium at many monitoring sites, particularly around the Turangi land treatment site and the Waimarino deep aquifer monitoring sites. Aeration followed by settling or filtration of the groundwater could significantly reduce the concentrations of iron and manganese. (4) Elevated concentrations of reduced iron and manganese are unlikely to affect the water quality of Lake Taupo as all reduced iron and manganese will be oxidised once the water reaches the lake and precipitate as oxyhydroxide minerals

  11. Second-Year Results from the Circumarctic Lakes Observation Network (CALON) Project

    Science.gov (United States)

    Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Eisner, W. R.; Frey, K. E.; Gaglioti, B.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.

    2013-12-01

    Beginning in April 2012, over 55 lakes in northern Alaska were instrumented as the initial phase of CALON, a project designed to document landscape-scale variability in physical and biogeochemical processes of Arctic lakes developed atop permafrost. The current network has nine observation nodes along two latitudinal transects that extend from the Arctic Ocean south 200 km to the foothills of the Brooks Range. At each node, six representative lakes of differing area and depth were instrumented at different intensity levels, and a suite of instruments were deployed to collect field measurements on lake physiochemistry, lake-surface and terrestrial climatology, and lake bed and permafrost temperature. Each April, sensors measuring water temperature and water depth are deployed through the ice and water samples are collected. Sensors are downloaded from lakes and meteorological stations in August, recording a timeline of lake regimes and events from ice decay to the summertime energy and water balance. In general, lake ice thickness increased with latitude. In 2012, ice on deeper (>2 m) lakes was about 1.4 m thick in the Arctic Foothills and 1.7 m thick near the Arctic Ocean coast. Lake ice thickness was about 20 cm thicker in winter 2013 although winter temperatures were several degrees warmer than the previous year; this is likely due to a thinner snow cover in 2013. Lake ice elevations agree with this general trend, showing higher absolute elevation in April 2013 compared to 2012 for most of the surveyed lakes. Regionally, ice-off occurs 2-4 weeks later on lakes near the coast, although there is significant inter-lake variability related to lake depth. Following ice-off, rapid lake warming occurs and water temperature varies synchronously in response to synoptic weather variations and associated changes in net radiation and turbulent heat fluxes. Average mid-summer (July) lake temperatures spanned a relatively wide range in 2012 from 7°C to 18°C, with higher

  12. Horizontal vibration suppression method suitable for super-high-speed elevators; Chokosoku elevator ni tekishita kago yokoshindo yokusei hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    Muto, N. [Hitachi, Ltd., Tokyo (Japan); Kagomiya, K.; Kurosawa, T.; Konya, M> ; Ando, T. [Hitachi Building System Co. Ltd., Tokyo (Japan)

    1998-03-01

    Horizontal vibrations of elevator cars mainly occur because a car swings as roller guides installed at corners of a car frame move on a winding guide rail at high speeds. Rider comfort in high speed elevators is worsened by these vibrations. Conventional active dampers suppressing horizontal vibrations using ac servo motors make cars heavier so driving power becomes larger, and they are not easily applied to existing elevators. An active damping control method suited to super-high-speed elevators is which can solve these problems. The method suppresses vibrations by generating only enough magnetic force needed to suppress them only when vibrations of the car franc are produced. The vibrations are detected using acceleration detectors and magnets installed on left and right sides of the car frame. A computer simulator was made to analyze phenomena of car vibrations and to verify effects of the proposed magnetic damping controller. It was found that the vibrations generated on the cabin floor were remarkably large when left and right sides at the upper and lower parts of the car frame were swung by sine waves with the same phase. The vibrations bad two resonant modes. Results obtained with the computer simulator and a full scale running simulator showed that the acceleration on the cabin floor, even at the resonant frequencies, could be reduced by the magnetic damping control to around 0.1m/s{sup 2} which would provide a comfortable ride. 10 refs., 14 figs.

  13. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    Science.gov (United States)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  14. Devils Lake Climate, Weather, and Water Decision Support System

    Science.gov (United States)

    Horsfall, F. M.; Kluck, D. R.; Brewer, M.; Timofeyeva, M. M.; Symonds, J.; Dummer, S.; Frazier, M.; Shulski, M.; Akyuz, A.

    2010-12-01

    North Dakota’s Devils Lake area represents an example of a community struggling with a serious climate-related problem. The Devils Lake water level elevation has been rising since 1993 due to a prolonged wet period, and it is now approaching the spill stage into the Cheyenne River and ultimately into the Red River of the North. The impacts of the rising water have already caused significant disruption to the surrounding communities, and even greater impacts will be seen if the lake reaches the spill elevation. These impacts include flooding, water quality issues, impacts to agriculture and ecosystems, and impacts to local and regional economies. National Oceanic and Atmospheric Administration (NOAA), through the National Weather Service (NWS), the National Environmental Satellite, Data, and Information Service (NESDIS), and the Office of Oceanic and Atmospheric Research (OAR), provides the U.S. public with climate, water, and weather services, including meteorological, hydrological and climate data, warnings, and forecasts of weather and climate from near- to longer-term timescales. In support of the people of Devils Lake, the surrounding communities, the people of North Dakota, and the other Federal agencies with responsibilities in the area, NOAA launched the first ever climate-sensitive decision support web site (www.devilslake.noaa.gov) in July 2010. The website is providing integrated weather, water, and climate information for the area, and has links to information from other agencies, such as USGS, to help decision makers as they address this ongoing challenge. This paper will describe the website and other ongoing activities by NOAA in support of this community.

  15. Distribution of 137Cs and 226Ra in the sediments of Aswan High Dam lake

    International Nuclear Information System (INIS)

    Ismail, S.S.; Unfried, E.; Grass, F.

    1994-01-01

    Sediment samples of the High Dam lake were investigated for their 137 Cs, 226 Ra, 228 Th, and 40 K content, using low-level γ-spectroscopy. The results show that at the beginning of the lake (500 km from the High Dam), where sediments consist mostly of sand, the level of 137 Cs is very low (0.1 Bq*kg -1 ). The maximum value (22.3 Bq*kg -1 ) was found 40 km from the wall of the High Dam, where the composition of the sediments is nearly 50% clays. The distribution of the natural nuclides 226 Ra, 228 Th and 40 K shows a different trend. (author) 9 refs.; 9 figs.; 1 tab

  16. Assessing element-specific patterns of bioaccumulation across New England lakes

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y., E-mail: celia.chen@dartmouth.edu

    2012-04-01

    improve our capacity to identify consistent patterns of bioaccumulation and drivers of elevated trace element concentrations under naturally high levels of variability. - Highlights: Black-Right-Pointing-Pointer We assessed bioaccumulation of MeHg and 5 trace elements across trophic levels Black-Right-Pointing-Pointer Patterns were compared across multiple sample dates in 7 New England lakes Black-Right-Pointing-Pointer Each element had a unique pattern of bioaccumulation, consistent across lakes Black-Right-Pointing-Pointer Characterizing such patterns requires spatial and temporal replication in sampling.

  17. Assessing element-specific patterns of bioaccumulation across New England lakes

    International Nuclear Information System (INIS)

    Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y.

    2012-01-01

    improve our capacity to identify consistent patterns of bioaccumulation and drivers of elevated trace element concentrations under naturally high levels of variability. - Highlights: ► We assessed bioaccumulation of MeHg and 5 trace elements across trophic levels ► Patterns were compared across multiple sample dates in 7 New England lakes ► Each element had a unique pattern of bioaccumulation, consistent across lakes ► Characterizing such patterns requires spatial and temporal replication in sampling

  18. Rapid thinning and collapse of lake calving Yakutat Glacier, Southeast Alaska

    Science.gov (United States)

    Trussel, Barbara Lea

    Glaciers around the globe are experiencing a notable retreat and thinning, triggered by atmospheric warming. Tidewater glaciers in particular have received much attention, because they have been recognized to contribute substantially to global sea level rise. However, lake calving glaciers in Alaska show increasingly high thinning and retreat rates and are therefore contributors to sea level rise. The number of such lake calving systems is increasing worldwide as land-terminating glaciers retreat into overdeepened basins and form proglacial lakes. Yakutat Glacier in Southeast Alaska is a low elevation lake calving glacier with an accumulation to total area ratio of 0.03. It experienced rapid thinning of 4.43 +/- 0.06 m w.e. yr-1 between 2000-2010 and terminus retreat of over 15 km since the beginning of the 20th century. Simultaneously, adjacent Yakutat Icefield land-terminating glaciers thinned at lower but still substantial rates (3.54 +/- 0.06 m w.e. yr -1 for the same time period), indicating lake calving dynamics help drive increased mass loss. Yakutat Glacier sustained a ˜3 km long floating tongue for over a decade, which started to disintegrate into large tabular icebergs in 2010. Such floating tongues are rarely seen on temperate tidewater glaciers. The floating ice was weakened by surface ablation, which then allowed rifts to form and intersect. Ice velocity from GPS measurements showed that the ice on the floating tongue was moving substantially faster than grounded ice, which was attributed to rift opening between the floating and grounded ice. Temporal variations of rift opening were determined from time-lapse imagery, and correlated well with variations in ice speeds. Larger rift opening rates occurred during and after precipitation or increased melt episodes. Both of these events increased subglacial discharge and could potentially increase the subaqueous currents towards the open lake and thus increase drag on the ice underside. Simultaneously

  19. The post-mining context at Decazeville-Firmi concession (Aveyron, France): analysis of impacts resulting from the cessation of pumping at the central shaft. Survey of various scenarios related to the water level of the pit lake in the Grande Decouverte

    International Nuclear Information System (INIS)

    Cojean, R.; Franco, N.; Lazarewicz, J.C.; Blachere, A.; Lefort, D.; Sorgi, C.

    2005-01-01

    Within the frame of the Survey related to the cessation of mine workings in Decazeville-Firmi concession, various impacts resulting from the cessation of pumping at the Central Shaft were assessed. Mainly these impacts are related to groundwater behaviour in the abandoned underground coal mines, hydro-chemistry of waters discharged to the environment, ground stability concerns and coal gas emanations. This analysis allowed the choice of the most appropriate elevation of the pit lake level in the Grande Decouverte, with the necessity to continue the pumping. Two main objectives were reached. The elected elevation is high enough to result in a permanent chemical stratification, which allows the pumping of the superficial waters and its discharge to natural watercourses without any treatment. The elected elevation is low enough to avoid any problem of inflow of water or ground stability at some particular places which might have been threatened by the rising of the piezometric level of the mining aquifer. Lastly, the elected elevation of the pit lake allows a quality scenery design around the pit lake. (authors)

  20. The post-mining context at Decazeville-Firmi concession (Aveyron, France): analysis of impacts resulting from the cessation of pumping at the central shaft. Survey of various scenarios related to the water level of the pit lake in the Grande Decouverte

    Energy Technology Data Exchange (ETDEWEB)

    Cojean, R. [Ecole des Mines de Paris, Institut des Geosciences, Centre de Geologie de l' Ingenieur, UMLV, 77 - Marne-la-Vallee (France); Franco, N. [Charbonnages de France, Dir. Technique Nationale, 42 - Saint-Etienne (France); Lazarewicz, J.C. [Charbonnages de France, Dir. Technique Nationale, 13 - Meyreuil (France); Blachere, A.; Lefort, D. [Bureau d' Etudes CESAME, 42 - Fraisses (France); Sorgi, C. [INERIS, 60 - Verneuil-en-Halatte (France)

    2005-07-01

    Within the frame of the Survey related to the cessation of mine workings in Decazeville-Firmi concession, various impacts resulting from the cessation of pumping at the Central Shaft were assessed. Mainly these impacts are related to groundwater behaviour in the abandoned underground coal mines, hydro-chemistry of waters discharged to the environment, ground stability concerns and coal gas emanations. This analysis allowed the choice of the most appropriate elevation of the pit lake level in the Grande Decouverte, with the necessity to continue the pumping. Two main objectives were reached. The elected elevation is high enough to result in a permanent chemical stratification, which allows the pumping of the superficial waters and its discharge to natural watercourses without any treatment. The elected elevation is low enough to avoid any problem of inflow of water or ground stability at some particular places which might have been threatened by the rising of the piezometric level of the mining aquifer. Lastly, the elected elevation of the pit lake allows a quality scenery design around the pit lake. (authors)

  1. Simulation on spread of fire smoke in the elevator shaft for a high-rise building

    Directory of Open Access Journals (Sweden)

    Yunchun Xia

    2014-01-01

    Full Text Available Spread of fire smoke in the elevator shaft of a high-rise building is influenced by many driving facts. We simulate smoke spreading in the elevator shaft, stair room, and pre-chamber with and without different supplied pressurized air. The simulation shows that smoke moves very fast in the elevator shaft. When a 12 floor high-rise building is in fire, smoke can fill up the elevator shaft in less than 1.5 min after a fire started, temperature in the elevator shaft can be higher than 187°C in 5 min, and the concentration of CO can also reach a high level. The elevator shaft has a very low visibility in less than about 100 s.

  2. Coupling of HEC-HMS and HEC-ResSim in Modeling the Fluctuation of Water Level in Devils Lake Using Heterogeneous Data

    Science.gov (United States)

    Munna, H. S.; Lim, Y. H.

    2010-12-01

    Devils Lake, located in Ramsey and Benson County in North Dakota is a sub-basin of the Red River of the North. Although it lies entirely within the Red River Basin, it has no natural outlet at current water levels. Since its inception during the glacier period, Devils Lake has been either rising or falling over the last 10,000 years. Geologic evidence shows that the water level in Devils Lake has fluctuated widely from completely dry (about 1400 feet AMSL) to overflowing into the Sheyenne River (about 1459 feet AMSL). The uncontrolled growth of the lake has been an alarming issue for North Dakota for the past few years as it causes continuous flooding in the surrounding areas. A hydro-climatic model that can provide simulations of the water level of this lake for a 20 or 50 year time frame can be a useful decision making tool. In a mission to achieve that, heterogeneous data obtained from various sources were used to model the lake. Runoff from precipitation is one of the major inputs to the lake and to model that, eight major watersheds that feed directly to the lake were identified using Digital Elevation Models (DEMs) of thirty meter resolution in ArcGIS environment. Hydrology and Arc Hydro tools were used to delineate the watersheds and sub-basins to generate the runoff using the HEC HMS model. The precipitation time series data collected from both NASA and ground stations were used separately to calibrate the runoff model. The generation of time series runoff values for individual basins for four consecutive years (2001-2004) was applied into HEC-ResSim, a reservoir simulation model, to estimate the lake level series considering the elevation-area-storage relationship and evaporation series from previous USGS studies. It is eminent that seepage under the lake played a key role in calibrating the model with observed elevations. The value of seepage flow was varied over increasing elevations as it depends on the height of water column. The model showed an

  3. On the radiocesium behavior in a small humic lake (Lithuania)

    International Nuclear Information System (INIS)

    Tarasiuk, N.; Koviazina, E.; Karpicz, R.; Moisejenkova, A.; Astrauskiene, N.

    2009-01-01

    Peculiarities of radiocesium contamination of a small humic lake, which became meromictic some thirty-five years ago due to the inflow of a large amount of humic water, are presented. The lake consists of two separate water layers, which do not intermix. A lower water layer of the lake below some 3-m depth is stagnant and anaerobic, and radiocesium load of the sediments is mainly caused by nuclear weapons fallout. The radiocesium load of the sediments of the upper monomictic water layer is significantly larger due to additional contamination after the Chernobyl accident. Radiocesium activity concentrations in lake water increase with depth, and even in the surface layer, they are commonly the largest among the neighboring lakes with transparent water. It is shown that bottom areas of the monomictic part of the lake with the elevated radiocesium deepening into sediments are related to the favorite sites of the tench (Tinca tinca) winter torpor. Sediment bioturbation and redistribution due to tench activities distort naturally formed radiocesium vertical profiles and they cannot be used for estimations of sedimentation rates and sediment chronology. The studied lake can be useful as an analogous model in analyzing structural and radiological consequences of humic water inflows to closed lakes. Concerning extreme radiological situations in closed humic lakes related to their specific vertical structure, they may be treated as critical objects in assessing the risk to humans after radionuclide deposition events. (authors)

  4. Using historical aerial photography and softcopy photogrammetry for waste unit mapping in L Lake

    International Nuclear Information System (INIS)

    Christel, L.M.

    1997-10-01

    L Lake was developed as a cooling water reservoir for the L Reactor at the Savannah River Site. The construction of the lake, which began in the fall of 1984, altered the structure and function of Steel Creek. Completed in the fall of 1985, L Lake has a capacity of 31 million cubic meters and a normal pool of 58 meters. When L Reactor operations ceased in 1988, the water level in the lake still had to be maintained. Site managers are currently trying to determine the feasibility of draining or drawing down the lake in order to save tax dollars. In order to understand the full repercussions of such an undertaking, it was necessary to compile a comprehensive inventory of what the lake bottom looked like prior to filling. Aerial photographs, acquired nine days before the filling of the lake began, were scanned and used for softcopy photogrammetry processing. A one-meter digital elevation model was generated and a digital orthophoto mosaic was created as the base map for the project. Seven categories of features, including the large waste units used to contain the contaminated soil removed from the dam site, were screen digitized and used to generate accurate maps. Other map features include vegetation waste piles, where contaminated vegetation from the flood plain was contained, and ash piles, which are sites where vegetation debris was burned and then covered with clean soil. For all seven categories, the area of disturbance totaled just over 63 hectares. When the screen digitizing was completed, the elevation at the centroid of each disturbance was determined. When the information is used in the Savannah River Site Geographical Information System, it can be used to visualize the various L Lake draw-down scenarios suggested by site managers and hopefully, to support evaluations of the cost effectiveness for each proposed activity

  5. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers

    Science.gov (United States)

    MacDonald, Lauren A.; Wolfe, Brent B.; Turner, Kevin W.; Anderson, Lesleigh; Arp, Christopher D.; Birks, Jean; Bouchard, Frédéric; Edwards, Thomas W.D.; Farquharson, Nicole; Hall, Roland I.; McDonald, Ian; Narancic, Biljana; Ouimet, Chantal; Pienitz, Reinhard; Tondu, Jana; White, Hilary

    2017-01-01

    Numerous studies utilizing remote sensing imagery and other methods have documented that thermokarst lakes are undergoing varied hydrological transitions in response to recent climate changes, from surface area expansion to drainage and evaporative desiccation. Here, we provide a synthesis of hydrological conditions for 376 lakes of mainly thermokarst origin across high-latitude North America. We assemble surface water isotope compositions measured during the past decade at five lake-rich landscapes including Arctic Coastal Plain (Alaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), northwestern Hudson Bay Lowlands (Manitoba), and Nunavik (Quebec). These landscapes represent the broad range of thermokarst environments by spanning gradients in meteorological, permafrost, and vegetation conditions. An isotope framework was established based on flux-weighted long-term averages of meteorological conditions for each lake to quantify water balance metrics. The isotope composition of source water and evaporation-to-inflow ratio for each lake were determined, and the results demonstrated a substantial array of regional and subregional diversity of lake hydrological conditions. Controls on lake water balance and how these vary among the five landscapes and with differing environmental drivers are assessed. Findings reveal that lakes in the Hudson Bay Lowlands are most vulnerable to evaporative desiccation, whereas those in Nunavik are most resilient. However, we also identify the complexity in predicting hydrological responses of these thermokarst landscapes to future climate change.

  6. Lake Sturgeon, Acipenser fulvescens, movements in Rainy Lake, Minnesota and Ontario

    Science.gov (United States)

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake, Minnesota-Ontario, contains a native population of Lake Sturgeon (Acipenser fulvescens) that has gone largely unstudied. The objective of this descriptive study was to summarize generalized Lake Sturgeon movement patterns through the use of biotelemetry. Telemetry data reinforced the high utilization of the Squirrel Falls geographic location by Lake Sturgeon, with 37% of the re-locations occurring in that area. Other spring aggregations occurred in areas associated with Kettle Falls, the Pipestone River, and the Rat River, which could indicate spawning activity. Movement of Lake Sturgeon between the Seine River and the South Arm of Rainy Lake indicates the likelihood of one integrated population on the east end of the South Arm. The lack of re-locations in the Seine River during the months of September and October may have been due to Lake Sturgeon moving into deeper water areas of the Seine River and out of the range of radio telemetry gear or simply moving back into the South Arm. Due to the movements between Minnesota and Ontario, coordination of management efforts among provincial, state, and federal agencies will be important.

  7. High-sensitivity Cardiac Troponin Elevation after Electroconvulsive Therapy (ECT)

    Science.gov (United States)

    Duma, Andreas; Pal, Swatilika; Johnston, Joshua; Helwani, Mohammad A.; Bhat, Adithya; Gill, Bali; Rosenkvist, Jessica; Cartmill, Christopher; Brown, Frank; Miller, J. Philip; Scott, Mitchell G; Sanchez-Conde, Francisco; Jarvis, Michael; Farber, Nuri B.; Zorumski, Charles F.; Conway, Charles; Nagele, Peter

    2017-01-01

    Background While electroconvulsive therapy (ECT) is widely regarded as a life-saving and safe procedure, evidence regarding its effects on myocardial cell injury are sparse. The objective of this investigation was to determine incidence and magnitude of new cardiac troponin elevation after ECT using a novel high-sensitivity cardiac troponin I (hscTnI) assay. Methods This was a prospective cohort study in adult patients undergoing ECT in a single academic center (up to three ECT treatments per patient). The primary outcome was new hscTnI elevation after ECT, defined as an increase of hscTnI >100% after ECT compared to baseline with at least one value above the limit of quantification (10 ng/L). 12-lead ECG and hscTnI values were obtained prior to and 15–30 minutes after ECT; in a subset of patients an additional 2-hour hscTnI value was obtained. Results The final study population was 100 patients and a total of 245 ECT treatment sessions. Eight patients (8/100, 8%) experienced new hscTnI elevation after ECT with a cumulative incidence of 3.7% (9/245 treatments; one patient had two hscTnI elevations), two of whom had a non-ST-elevation myocardial infarction (incidence 2/245, 0.8%). Median hscTnI concentrations did not increase significantly after ECT. Tachycardia and/or elevated systolic blood pressure developed after approximately two thirds of ECT treatments. Conclusions ECT appears safe from a cardiac standpoint in a large majority of patients. A small subset of patients with pre-existing cardiovascular risk factors, however, may develop new cardiac troponin elevation after ECT, the clinical relevance of which is unclear in the absence of signs of myocardial ischemia. PMID:28166110

  8. Organic sedimentation in modern lacustrine systems: A case study from Lake Malawi, East Africa

    Science.gov (United States)

    Ellis, Geoffrey S.; Barry J. Katz,; Christopher A. Scholz,; Peter K. Swart,

    2015-01-01

    This study examines the relationship between depositional environment and sedimentary organic geochemistry in Lake Malawi, East Africa, and evaluates the relative significance of the various processes that control sedimentary organic matter (OM) in lacustrine systems. Total organic carbon (TOC) concentrations in recent sediments from Lake Malawi range from 0.01 to 8.80 wt% and average 2.83 wt% for surface sediments and 2.35 wt% for shallow core sediments. Hydrogen index (HI) values as determined by Rock-Eval pyrolysis range from 0 to 756 mg HC g−1 TOC and average 205 mg HC g−1 TOC for surface sediments and 228 mg HC g−1 TOC for shallow core samples. On average, variations in primary productivity throughout the lake may account for ~33% of the TOC content in Lake Malawi sediments (as much as 1 wt% TOC), and have little or no impact on sedimentary HI values. Similarly, ~33% to 66% of the variation in TOC content in Lake Malawi sediments appears to be controlled by anoxic preservation of OM (~1–2 wt% TOC), although some component of the water depth–TOC relationship may be due to physical sediment transport processes. Furthermore, anoxic preservation has a minimal effect on HI values in Lake Malawi sediments. Dilution of OM by inorganic sediment may account for ~16% of variability in TOC content in Lake Malawi sediments (~0.5 wt% TOC). The effect of inputs of terrestrial sediment on the organic character of surface sediments in these lakes is highly variable, and appears to be more closely related to the local depositional environment than the regional flux of terrestrial OM. Total nitrogen and TOC content in surface sediments collected throughout the lake are found to be highly correlated (r2 = 0.95), indicating a well-homogenized source of OM to the lake bottom. The recurring suspension and deposition of terrestrial sediment may account for significant amounts of OM deposited in offshore regions of the lake. This process effectively separates denser

  9. Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling

    Science.gov (United States)

    Van Den Hoek, Jamon; Read, Jordan S.; Winslow, Luke A.; Montesano, Paul; Markfort, Corey D.

    2015-01-01

    Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hsare examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless

  10. Climate Change Altered Disturbance Regimes in High Elevation Pine Ecosystems

    Science.gov (United States)

    Logan, J. A.

    2004-12-01

    Insects in aggregate are the greatest cause of forest disturbance. Outbreaks of both native and exotic insects can be spectacular events in both their intensity and spatial extent. In the case of native species, forest ecosystems have co-evolved (or at least co-adapted) in ways that incorporate these disturbances into the normal cycle of forest maturation and renewal. The time frame of response to changing climate, however, is much shorter for insects (typically one year) than for their host forests (decades or longer). As a result, outbreaks of forest insects, particularly bark beetles, are occurring at unprecedented levels throughout western North America, resulting in the loss of biodiversity and potentially entire ecosystems. In this talk, I will describe one such ecosystem, the whitebark pine association at high elevations in the north-central Rocky Mountains of the United States. White bark pines are keystone species, which in consort with Clark's nutcracker, build entire ecosystems at high elevations. These ecosystems provide valuable ecological services, including the distribution and abundance of water resources. I will briefly describe the keystone nature of whitebark pine and the historic role of mountain pine beetle disturbance in these ecosystems. The mountain pine beetle is the most important outbreak insect in forests of the western United States. Although capable of spectacular outbreak events, in historic climate regimes, outbreak populations were largely restricted to lower elevation pines; for example, lodgepole and ponderosa pines. The recent series of unusually warm years, however, has allowed this insect to expand its range into high elevation, whitebark pine ecosystems with devastating consequences. The aspects of mountain pine beetle thermal ecology that has allowed it to capitalize so effectively on a warming climate will be discussed. A model that incorporates critical thermal attributes of the mountain pine beetle's life cycle was

  11. Lake trout otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems

    Science.gov (United States)

    Black, B.A.; Von Biela, V.R.; Zimmerman, C.E.; Brown, Randy J.

    2013-01-01

    High-latitude ecosystems are among the most vulnerable to long-term climate change, yet continuous, multidecadal indicators by which to gauge effects on biology are scarce, especially in freshwater environments. To address this issue, dendrochronology (tree-ring analysis) techniques were applied to growth-increment widths in otoliths from lake trout (Salvelinus namaycush) from the Chandler Lake system, Alaska (68.23°N, 152.70°W). All otoliths were collected in 1987 and exhibited highly synchronous patterns in growth-increment width. Increments were dated, the widths were measured, and age-related growth declines were removed using standard dendrochronology techniques. The detrended time series were averaged to generate an annually resolved chronology, which continuously spanned 1964–1984. The chronology positively and linearly correlated with August air temperature over the 22-year interval (p otolith chronologies could be used to examine responses between freshwater ecosystems and environmental variability across a range of temporal and spatial scales.

  12. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    Science.gov (United States)

    Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  13. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    Science.gov (United States)

    Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  14. Interconnectedness during high water maintains similarity in fish assemblages of island floodplain lakes in the Amazonian Basin

    Directory of Open Access Journals (Sweden)

    Carlos Edwar de C. Freitas

    2010-01-01

    Full Text Available We conducted a study to test the hypothesis that interconnectedness among island floodplain lakes and the adjacent Solimões River during the flood stage of the hydrologic cycle is enough to maintain similarity in fish species assemblages. Gill net samples were collected during high and low water periods for three consecutive years (July 2004 to July 2006 in four lakes on Paciência Island. Two lakes, Piranha and Ressaca, are connected to the river all year, and the other two, Preto and Cacau, which are in the center of the island, are isolated during low water periods. The abundance, species richness and evenness of the fish assemblages in these lakes did not differ according to their relative positions or the season of the hydrological cycle, which confirmed our hypothesis. However, fish abundance during the dry season was greater than in the flood season. Apparently, the short period of full connection between the lakes is enough to allow the colonization of all fish species, but not to cause similar abundances. Our study indicates that persistence of the species composition of island floodplain lakes is primarily due to the annual replenishment of fish to the lakes during the flood season.

  15. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    Science.gov (United States)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  16. Temperature and cyanobacterial bloom biomass influence phosphorous cycling in eutrophic lake sediments.

    Directory of Open Access Journals (Sweden)

    Mo Chen

    Full Text Available Cyanobacterial blooms frequently occur in freshwater lakes, subsequently, substantial amounts of decaying cyanobacterial bloom biomass (CBB settles onto the lake sediments where anaerobic mineralization reactions prevail. Coupled Fe/S cycling processes can influence the mobilization of phosphorus (P in sediments, with high releases often resulting in eutrophication. To better understand eutrophication in Lake Taihu (PRC, we investigated the effects of CBB and temperature on phosphorus cycling in lake sediments. Results indicated that added CBB not only enhanced sedimentary iron reduction, but also resulted in a change from net sulfur oxidation to sulfate reduction, which jointly resulted in a spike of soluble Fe(II and the formation of FeS/FeS2. Phosphate release was also enhanced with CBB amendment along with increases in reduced sulfur. Further release of phosphate was associated with increases in incubation temperature. In addition, CBB amendment resulted in a shift in P from the Fe-adsorbed P and the relatively unreactive Residual-P pools to the more reactive Al-adsorbed P, Ca-bound P and organic-P pools. Phosphorus cycling rates increased on addition of CBB and were higher at elevated temperatures, resulting in increased phosphorus release from sediments. These findings suggest that settling of CBB into sediments will likely increase the extent of eutrophication in aquatic environments and these processes will be magnified at higher temperatures.

  17. Influence of Large Lakes on Methane Greenhouse Forcing in the Early Eocene

    Science.gov (United States)

    Whiteside, J. H.; Granberg, D. L.; Kasprak, A. H.; Taylor, K. W.; Pancost, R. D.

    2011-12-01

    Long-duration elevated global temperatures and increased atmospheric pCO2 levels (~1000-2000 ppm) characterized the earliest portion of the Eocene (Ypressian; ~55 to 49 Ma). This extended period of global warmth was also punctuated by a series of short (sub-precessional) hyperthermal events in which atmospheric CO2 (>2000 ppm) and global temperatures rose with unprecedented and (as of yet) unexplained rapidity. This interval is perhaps the best temporal analog for assessing contemporary response of the biosphere and global carbon cycle to increased CO2 emissions. Although these hyperthermals appear paced by 100 Ka and 1 Ma scale orbital (eccentricity) cycles in the marine realm, high frequency forcing processes have not yet been examined, and long continental records have yet to be explored for their expression. To identify sub-eccentricity (Messel Shale, (Darmstadt, Germany.) We demonstrate that in addition to the expected 100 Ka eccentricity cycle, the 40 Ka cycle of obliquity is also an important component of climate variability as reflected in the lacustrine carbon cycle and hence a potential driver of global carbon cycling. We further investigated carbon cycle dynamics by examining biomarker evidence for changes in the terrestrial methane cycle during this time interval. Due to their increased volumes (>60,000 km2), highly stratified and cyclically anoxic lakes of the Eocene could have provided enough methane to alter global radiative forcing. This is consistent with our data, which demonstrate that the GRF and Messel Shale both exhibit strongly reducing conditions as well as abundant methanogen and methanotroph biomarkers. Further, the GRF lacustrine environment was highly stratified with, at times, euxinic waters extending into the photic zone, as inferred from the presence of isorenieratene derivatives. Thus, the GRF was likely an area of elevated methanogenic activity during this time. Increasing input of terrestrial matter into the GRF correlates with

  18. High resolution analysis of northern Patagonia lake sediments

    Science.gov (United States)

    Jarvis, S. W.; Croudace, I. W.; Langdon, P. G.; Rindby, A.

    2009-04-01

    Sediment cores covering the period from the last glacial maximum through the Holocene to the present have been collected from sites in the Chacubuco valley, southern Chile (around 47°08'S, 72°25'W, to the east of the North Patagonian Icecap). Cores were taken from five lakes and one recently dried lake bed. Short cores (0.2 to 0.5m), covering approximately the last two hundred years, were taken from all the lakes. Additionally, long sequences were obtained from one of the lakes and from the dried lake bed, the latter sequence extending back to the last glacial maximum as indicated by thick clay at the base. Each of the lakes are small-medium sized and are open systems situated at 300-1000m above sea level. The shorter cores comprise predominantly clastic gyttja but show a number of distinct changes in colour and chemical composition that suggest major environmental changes over the period of sediment accumulation. This is also reflected in variations in the loss on ignition of samples from the cores and in elemental profiles produced by scanning the cores with the Itrax micro-XRF corescanner at 200μm resolution. The long sequence from the dried lake bed has very low organic content glacial clay at the base, interpreted as last glacial maximum basal clay following determination in the field that this layer exceeded 2m in thickness. Similar sediments occur within a stratigraphically discrete section of approximately 14cm and may relate to a stadial event. The latter section also shows a drop in organic content and appears to be glacial clay incorporating some coarse sandy components indicative of detrital input from the catchment. The second long sequence, from a carbonate lake, includes two mineral layers indicating increased detrital input from the catchment. The deeper and thicker of these layers appears similar to the 14cm layer in the first long sequence, while the upper layer comprises a fine grain size indicative of rock flour and hence also of glacial

  19. Elevated preoperative blood pressures in adult surgical patients are highly predictive of elevated home blood pressures.

    Science.gov (United States)

    Schonberger, Robert B; Nwozuzu, Adambeke; Zafar, Jill; Chen, Eric; Kigwana, Simon; Monteiro, Miriam M; Charchaflieh, Jean; Sophanphattana, Sophisa; Dai, Feng; Burg, Matthew M

    2018-04-01

    Blood pressure (BP) measurement during the presurgical assessment has been suggested as a way to improve longitudinal detection and treatment of hypertension. The relationship between BP measured during this assessment and home blood pressure (HBP), a better indicator of hypertension, is unknown. The purpose of the present study was to determine the positive predictive value of presurgical BP for predicting elevated HBP. We prospectively enrolled 200 patients at a presurgical evaluation clinic with clinic blood pressures (CBPs) ≥130/85 mm Hg, as measured using a previously validated automated upper-arm device (Welch Allyn Vital Sign Monitor 6000 Series), to undergo daily HBP monitoring (Omron Model BP742N) between the index clinic visit and their day of surgery. Elevated HBP was defined, per American Heart Association guidelines, as mean systolic HBP ≥135 mm Hg or mean diastolic HBP ≥85 mm Hg. Of the 200 participants, 188 (94%) returned their home blood pressure monitors with valid data. The median number of HBP recordings was 10 (interquartile range, 7-14). Presurgical CBP thresholds of 140/90, 150/95, and 160/100 mm Hg yielded positive predictive values (95% confidence interval) for elevated HBP of 84.1% (0.78-0.89), 87.5% (0.81-0.92), and 94.6% (0.87-0.99), respectively. In contrast, self-reported BP control, antihypertensive treatment, availability of primary care, and preoperative pain scores demonstrated poor agreement with elevated HBP. Elevated preoperative CBP is highly predictive of longitudinally elevated HBP. BP measurement during presurgical assessment may provide a way to improve longitudinal detection and treatment of hypertension. Copyright © 2018 American Heart Association. Published by Elsevier Inc. All rights reserved.

  20. Spatial dynamics of thermokarst and thermo-erosion at lakes and ponds in North Siberia and Northwest Alaska using high-resolution remote sensing

    Science.gov (United States)

    Grosse, G.; Tillapaugh, M.; Romanovsky, V. E.; Walter, K. M.; Plug, L. J.

    2008-12-01

    Formation, growth, and drainage of thermokarst lakes in ice-rich permafrost deposits are important factors of landscape dynamics in extent Arctic lowlands. Monitoring of spatial and temporal dynamics of such lakes will allow an assessment of permafrost stability and enhance the capabilities for modelling and quantifying biogeochemical processes related to permafrost degradation in a warming Arctic. In this study we use high-resolution remote sensing and GIS to analyze the development of thermokarst lakes and ponds in two study regions in North Siberia and Northwest Alaska. The sites are 1) the Cherskii region in the Kolyma lowland (Siberia) and 2) the Kitluk River area on the northern Seward Peninsula (Alaska). Both regions are characterized by continuous permafrost, a highly dissected and dynamic thermokarst landscape, uplands of Late Pleistocene permafrost deposits with high excess ice contents, and a large total volume of permafrost-stored carbon. These ice-rich Yedoma or Yedoma-like deposits are highly vulnerable to permafrost degradation forced by climate warming or other surface disturbance. Time series of high- resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Time series of high-resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Processes identified include thaw slumping, wave undercutting of frozen sediments or peat blocks and subsequent mass wasting, thaw collapse of near-shore zones, sinkhole formation and ice-wedge tunnelling, and gully formation by thermo-erosion. We use GIS-based tools to relate the remote sensing results to field data (ground ice content, topography, lithology, and relative age

  1. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations

    Science.gov (United States)

    Surdu, Cristina M.; Duguay, Claude R.; Fernández Prieto, Diego

    2016-05-01

    Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than 10 months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions - polar oases - with longer growing seasons and greater biological productivity and diversity are secluded from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997-2011) of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath, and Landsat acquisitions were analyzed. Results show that melt onset occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer ice minimum and water-clear-of-ice (WCI) dates, with greater changes being observed for polar-oasis lakes (9-24 days earlier WCI dates for lakes located in polar oases and 2-20 days earlier WCI dates for polar-desert lakes). Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes, which preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.

  2. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  3. Functional role of long-lived flowers in preventing pollen limitation in a high elevation outcrossing species.

    Science.gov (United States)

    Arroyo, Mary T K; Pacheco, Diego Andrés; Dudley, Leah S

    2017-11-01

    Low pollinator visitation in harsh environments may lead to pollen limitation which can threaten population persistence. Consequently, avoidance of pollen limitation is expected in outcrossing species subjected to habitually low pollinator service. The elevational decline in visitation rates on many high mountains provides an outstanding opportunity for addressing this question. According to a recent meta-analysis, levels of pollen limitation in alpine and lowland species do not differ. If parallel trends are manifested among populations of alpine species with wide elevational ranges, how do their uppermost populations contend with lower visitation? We investigated visitation rates and pollen limitation in high Andean Rhodolirium montanum . We test the hypothesis that lower visitation rates at high elevations are compensated for by the possession of long-lived flowers. Visitation rates decreased markedly over elevation as temperature decreased. Pollen limitation was absent at the low elevation site but did occur at the high elevation site. While initiation of stigmatic pollen deposition at high elevations was not delayed, rates of pollen arrival were lower, and cessation of pollination, as reflected by realized flower longevity, occurred later in the flower lifespan. Comparison of the elevational visitation decline and levels of pollen limitation indicates that flower longevity partially compensates for the lower visitation rates at high elevation. The functional role of flower longevity, however, was strongly masked by qualitative pollen limitation arising from higher abortion levels attributable to transference of genetically low-quality pollen in large clones. Stronger clonal growth at high elevations could counterbalance the negative fitness consequences of residual pollen limitation due to low visitation rates and/or difficult establishment under colder conditions. Visitation rates on the lower part of the elevational range greatly exceeded community rates

  4. Elevated CO2 compensates for water stress in northern red oak

    Science.gov (United States)

    Patricia T. Tomlinson; Paul D. Anderson

    1996-01-01

    Global climate change models predict decreased rainfall in association with elevated CO2 in the western Lakes States region. Currently, the western edge of northern red oak (Quercus rubra L.) distribution coincides with the most xeric conditions of its ecological range. Decreased rainfall and water availability could alter...

  5. Increased microsporidian parasitism of the crayfish Orconectes virilis in an experimentally acidified lake. [Thelohania contejeani

    Energy Technology Data Exchange (ETDEWEB)

    France, R.L.; Graham, L.

    1985-10-01

    Orconectes virilis has been identified as a host of the microsporidian Thelohania contejeani in four lakes in the Experimental Lakes Area (ELA), northwestern Ontario. Prevalence of parasitism increased from 1.7% in autumn 1979, to 6.5% and 7.7% in autumns 1980 and 1981 concomitant with experimental acidification of Lake 223 to pH 5.1. By comparison, mean infection rates observed within three reference lakes were between 0.3 to 0.6%. Enhanced microsporidosis is believed to have contributed to a reduction in annual crayfish survival rates for the Lake 223 population of 8% in 1979 and 18% in 1980 compared to averages calculated for the non-acidified lakes. Hypotheses to explain the ten-fold increase in Thelohania parasitism in Lake 223 over background levels for the ELA region include a) increased probagative ability due to elevated rate of crayfish cannibalism or low pH-favored parasite life cycle, and b) decreased host resistance when under sublethal stress.

  6. Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet

    International Nuclear Information System (INIS)

    Tedesco, Marco; Alexander, Patrick; Willis, Ian C; Banwell, Alison F; Arnold, Neil S; Hoffman, Matthew J

    2013-01-01

    Supraglacial lake drainage on the Greenland ice sheet opens surface-to-bed connections, reduces basal friction, and temporarily increases ice flow velocities by up to an order of magnitude. Existing field-based observations of lake drainages and their impact on ice dynamics are limited, and focus on one specific draining mechanism. Here, we report and analyse global positioning system measurements of ice velocity and elevation made at five locations surrounding two lakes that drained by different mechanisms and produced different dynamic responses. For the lake that drained slowly (>24 h) by overtopping its basin, delivering water via a channel to a pre-existing moulin, speedup and uplift were less than half those associated with a lake that drained rapidly (∼2 h) through hydrofracturing and the creation of new moulins in the lake bottom. Our results suggest that the mode and associated rate of lake drainage govern the impact on ice dynamics. (letter)

  7. A Systematic Study of Zerbar Lake Restoration

    Science.gov (United States)

    Hosseini, Reza; Oveis Torabi, Seyed; Forman Asgharzadeh, Deonna

    2017-04-01

    The beautiful lake of Zerbar, located near Marivan City at the west of Iran, is a freshwater lake with an area of 20 km2 and average depth of 5 meters. The lake is created by regional tectonic activities and is mainly fed with natural spring water from bottom. During the past three decades, regional development has caused much disturbance to the natural environment of the lake and its watershed. Rescuing the lake is crucial to the sustainability of the whole region. The study of Zerbar Restoration was performed with the aim to restore its health indicators. Variety of human activities in the watershed, as well as the multidisciplinary nature of lake restoration studies, made it necessary to develop a systematic approach to conduct the study. In Step I of restoration studies, satellite images were investigated to identify the historical changes of watershed during the past 30 years. Meanwhile, documents since 50 years ago were studied. Results indicate that farmland and graze land areas have been relatively constant during the past 50 years. Also, the area of lake, its riparian canes and floating plants have not changed much. In fact, the only significant land use change observed was the significant spread of Marivan City that has stretched toward the lake. The main physical variation to the lake has been elevating the southern edge of the lake by a constructing a landfill dam which was done to control the lake's overflow discharge for irrigation of downstream farmland development. Step II consists of studies performed by disciplines of water resources, hydrogeology, water quality, wetland and watershed ecology, agriculture, animal farming and fishery. Study results indicate that eutrophication (TSL>100), mainly caused by sewage from Marivan City and the surrounding rural areas has been the main reason for lake ecosystem degradation. DPSIR framework, as a novel approach in lake restoration, was applied to synthesize the study results of different disciplines in a

  8. LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models

    Directory of Open Access Journals (Sweden)

    WIM Thiery

    2014-02-01

    Full Text Available The African great lakes are of utmost importance for the local economy (fishing, as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E, East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP. Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the model's performance. Simulations are performed over the freshwater layer only (60 m and over the average lake depth (240 m, since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.

  9. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    OpenAIRE

    Minho Yoon; Gyuyong Kim; Youngsun Kim; Taegyu Lee; Gyeongcheol Choe; Euichul Hwang; Jeongsoo Nam

    2017-01-01

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W?B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressi...

  10. Simulation of the effects of different inflows on hydrologic conditions in Lake Houston with a three-dimensional hydrodynamic model, Houston, Texas, 2009–10

    Science.gov (United States)

    Rendon, Samuel H.; Lee, Michael T.

    2015-12-08

    Lake Houston, an important water resource for the Houston, Texas, area, receives inflows from seven major tributaries that compose the San Jacinto River Basin upstream from the reservoir. The effects of different inflows from the watersheds drained by these tributaries on the residence time of water in Lake Houston and closely associated physical and chemical properties including lake elevation, salinity, and water temperature are not well known. Accordingly, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, developed a three-dimensional hydrodynamic model of Lake Houston as a tool for evaluating the effects of different inflows on residence time of water in the lake and associated physical and chemical properties. The Environmental Fluid Dynamics Code (EFDC), a grid-based, surface-water modeling package for simulating three-dimensional circulation, mass transport, sediments, and biogeochemical processes, was used to develop the model of Lake Houston. The Lake Houston EFDC model was developed and calibrated by using 2009 data and verified by using 2010 data. Three statistics (mean error, root mean square error, and the Nash-Sutcliffe model efficiency coefficient) were used to evaluate how well the Lake Houston EFDC model simulated lake elevation, salinity, and water temperature. The residence time of water in reservoirs is associated with various physical and chemical properties (including lake elevation, salinity, and water temperature). Simulated and measured lake-elevation values were compared at USGS reservoir station 08072000 Lake Houston near Sheldon, Tex. The accuracy of simulated salinity and water temperature values was assessed by using the salinity (computed from measured specific conductance) and water temperature at two USGS monitoring stations: 295826095082200 Lake Houston south Union Pacific Railroad Bridge near Houston, Tex., and 295554095093401 Lake Houston at mouth of Jack’s Ditch near Houston, Tex. Specific conductance

  11. Unraveling the complex local-scale flows influencing ozone patterns in the southern Great Lakes of North America

    Directory of Open Access Journals (Sweden)

    I. Levy

    2010-11-01

    Full Text Available This study examines the complexity of various processes influencing summertime ozone levels in the southern Great Lakes region of North America. Results from the Border Air Quality and Meteorology (BAQS-Met field campaign in the summer of 2007 are examined with respect to land-lake differences and local meteorology using a large array of ground-based measurements, aircraft data, and simulation results from a high resolution (2.5 km regional air-quality model, AURAMS.

    Analyses of average ozone mixing ratio from the entire BAQS-Met intensive campaign period support previous findings that ozone levels are higher over the southern Great Lakes than over the adjacent land. However, there is great heterogeneity in the spatial distribution of surface ozone over the lakes, particularly over Lake Erie during the day, with higher levels located over the southwestern end of the lake. Model results suggest that some of these increased ozone levels are due to local emission sources in large nearby urban centers. While an ozone reservoir layer is predicted by the AURAMS model over Lake Erie at night, the land-lake differences in ozone mixing ratios are most pronounced during the night in a shallow inversion layer of about 200 m above the surface. After sunrise, these differences have a limited effect on the total mass of ozone over the lakes and land during the day, though they do cause elevated ozone levels in the lake-breeze air in some locations.

    The model also predicts a mean vertical circulation during the day with an updraft over Detroit-Windsor and downdraft over Lake St. Clair, which transports ozone up to 1500 m above ground and results in high ozone over the lake.

    Oscillations in ground-level ozone mixing ratios were observed on several nights and at several ground monitoring sites, with amplitudes of up to 40 ppbv and time periods of 15–40 min. Several possible mechanisms for these oscillations are discussed, but a

  12. High-frequency remote monitoring of large lakes with MODIS 500 m imagery

    Science.gov (United States)

    McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.

    2012-01-01

    Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.

  13. Air temperature variability in a high-elevation Himalayan catchment

    NARCIS (Netherlands)

    Heynen, Martin; Miles, Evan; Ragettli, Silvan; Buri, Pascal; Immerzeel, Walter W.; Pellicciotti, Francesca

    2016-01-01

    Air temperature is a key control of processes affecting snow and glaciers in high-elevation catchments, including melt, snowfall and sublimation. It is therefore a key input variable to models of land-surface-atmosphere interaction. Despite this importance, its spatial variability is poorly

  14. Dynamics of chromophoric dissolved organic matter influenced by hydrological conditions in a large, shallow, and eutrophic lake in China.

    Science.gov (United States)

    Zhou, Yongqiang; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Niu, Cheng

    2015-09-01

    High concentrations of chromophoric dissolved organic matter (CDOM) are terrestrially derived from upstream tributaries to Lake Taihu, China, and are influenced by hydrological conditions of the upstream watershed. To investigate how the dynamics of CDOM in Lake Taihu are influenced by upstream inflow runoff, four sampling cruises, differing in hydrological conditions, were undertaken in the lake and its three major tributaries, rivers Yincun, Dapu, and Changdou. CDOM absorption, fluorescence spectroscopy, chemical oxygen demand (COD), and stable isotope δ(13)C and δ(15)N measurements were conducted to characterize the dynamics of CDOM. The mean absorption coefficient a(350) collected from the three river profiles (5.15 ± 1.92 m(-1)) was significantly higher than that of the lake (2.95 ± 1.88 m(-1)), indicating that the upstream rivers carried a substantial load of CDOM to the lake. This finding was substantiated by the exclusively terrestrial signal exhibited by the level of δ(13)C (-26.23 ± 0.49‰) of CDOM samples collected from the rivers. Mean a(350) and COD in Lake Taihu were significantly higher in the wet season than in the dry season (t test, p CDOM in the lake is strongly influenced by hydrological conditions of the watershed. Four components were identified by parallel factor analysis, including two protein-like components (C1 and C2), a terrestrial humic-like component (C3), and a microbial humic-like (C4) component. The contribution percentage of the two humic-like components relative to the summed fluorescence intensity of the four components (C humic) increased significantly from the dry to the wet season. This seasonal difference in contribution further substantiated that an enhanced rainfall followed by an elevated inflow runoff in the lake watershed in the wet season may result in an increase in humic-like substances being discharged into the lake compared to that in the dry season. This finding was further supported by an

  15. Biomass and species structure of the phytoplankton of an high mountain lake (Lake Paione Superiore, Central Alps, Italy

    Directory of Open Access Journals (Sweden)

    Roberta BETTINETTI

    1999-08-01

    Full Text Available In the framework of the EU MOLAR Project on “Measuring and modelling the dynamic response of remote mountain lake ecosystems to environmental change” a three whole-year study (1996-1998 on the composition and dynamics of phytoplankton community of the high mountain lake, acid sensitive Lago Paione Superiore (LPS was carried out. The data were analyzed and compared with those gathered during the years 1991-1993. The phytoplankton was made up by nanoplanktonic unicellular algae, the only exception being the colonial Dinobryon sertularia. Just four species, belonging to Chrysophyceae (Chromulina sp., Dinobryon sertularia and Mallomonas alveolata and to Dinophyceae (Gymnodinium sp. were important as biomass and density, and they were always present throughout the year. The prevalence of potentially mixotrophic species suggests an adaptive strategy to the low environmental concentrations of inorganic carbon and phosphorus. The seasonal variations of the total biomass were similar to those observed in the previous years. The total number of species has increased; this could be related with the recent increase of the pH and of the alkalinity.

  16. Lake Roosevelt Fisheries Monitoring Program; Artificial Imprinting and Smoltification in Juvenile Kokanee Salmon Implications for Operating Lake Roosevelt Kokanee Salmon Hatcheries; 1994 Supplement Report.

    Energy Technology Data Exchange (ETDEWEB)

    Tilson, Mary Beth; Scholz, Allan T.; White, Ronald J. (Eastern Washington University, Upper Columbia United Tribes Fisheries Research Center, Cheney, WA)

    1995-02-01

    At the kokanee salmon hatcheries on Lake Roosevelt, constructed as partial mitigation for effects from Grand Coulee Dam, adult returns have been poor. The reason may be in the imprinting or in the smoltification. A study was initiated in 1992 to determine if there was a critical period for thyroxine induced alfactory imprinting in kokanee salmon; experiments were conducted on imprinting to morpholine and phenethyl alcohol. Other results showed that chemical imprinting coincided with elevated thyroxine levels in 1991 kokanee exposed to synthetic chemicals in 1992. In this report, imprinting experiments were repeated; results showed that imprinting occurred concomitant with elevated thyroxine levels in 1991 kokanee exposed to synthetic chemicals in 1992 and tested in 1994 as age 3 spawners. Imprinting also occurred at the same time as thyroxine peaks in 1992 kokanee exposed to synthetic chemicals in 1993 and tested as age 2 spawners. In both groups fish that had the highest whole body thyroxine content (swimup stage) also had the highest percentage of fish that were attracted to their exposure odor in behavioral tests. So, kokanee salmon imprinted to chemical cues during two sensitive periods during development, at the alevin/swimup and smolt stages. A field test was conducted in Lake Roosevelt on coded wire tagged fish. Smoltification experiments were conducted from 1992 to 1994. Recommendations are made for the Lake Roosevelt kokanee hatcheries.

  17. Subbottom seismic profiling survey of Lake Azuei, Haiti: Seismic signature of paleo-shorelines in a transpressional environment and possible tectonic implications

    Science.gov (United States)

    Sloan, H.; Cormier, M. H.; Boisson, D.; Brown, B.; Guerrier, K.; Hearn, C. K.; Heil, C. W., Jr.; Hines, L.; Kelly, R. P.; King, J. W.; Knotts, P.; Lucier, O. F.; Momplaisir, R.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.; Wattrus, N. J.

    2017-12-01

    The left-lateral Enriquillo-Plantain Garden Fault (EPGF) is one of two major transform faults that form the North American-Caribbean plate boundary. GPS measurements indicate that relative motion evolves from nearly pure strike-slip in western Haiti to highly transpressional near Lake Azuei in eastern Haiti, where the EPGF may terminate against a south-dipping oblique reverse fault. Lake Azuei, one of the largest lakes in the Caribbean region (10 km x 23 km), is surrounded by two high-elevation sierras (> 2,000 m). Because the lake has no outlet to the sea, its level is sensitive to variations in precipitation and is thought to have fluctuated by 10's of meters during the Holocene. A rise of 5 m over the past 10 years has had a devastating impact, submerging villages, farmland, and roads. A grid of high-resolution ( 10 cm) subbottom seismic (CHIRP) profiles acquired in January 2017 captures the subtle signature of the 5 m-deep shoreline and also images a prominent paleo-shoreline at 10 m water depth. This 10 m paleo-shoreline is well expressed in the CHIRP data suggesting it was occupied for a long period of time. It is buried beneath a thin (water depths of 14 m and 17 m, each bottomed 80-90 cm below the lakebed into a distinctively coarser bed. On-going radiometric dating is expected to constrain the age of this distinctive layer. Should this layer be tied to the perduring 10-m lowstand of the lake, determining its age could help quantify vertical deformation rates around Lake Azuei.

  18. Permian salt dissolution, alkaline lake basins, and nuclear-waste storage, Southern High Plains, Texas and New Mexico

    International Nuclear Information System (INIS)

    Reeves, C.C. Jr.; Temple, J.M.

    1986-01-01

    Areas of Permian salt dissolution associated with 15 large alkaline lake basins on and adjacent to the Southern High Plains of west Texas and eastern New Mexico suggest formation of the basins by collapse of strata over the dissolution cavities. However, data from 6 other alkaline basins reveal no evidence of underlying salt dissolution. Thus, whether the basins were initiated by subsidence over the salt dissolution areas or whether the salt dissolution was caused by infiltration of overlying lake water is conjectural. However, the fact that the lacustrine fill in Mound Lake greatly exceeds the amount of salt dissolution and subsidence of overlying beds indicates that at least Mound Lake basin was antecedent to the salt dissolution. The association of topography, structure, and dissolution in areas well removed from zones of shallow burial emphasizes the susceptibility of Permian salt-bed dissolution throughout the west Texas-eastern New Mexico area. Such evidence, combined with previous studies documenting salt-bed dissolution in areas surrounding a proposed high-level nuclear-waste repository site in Deaf Smith County, Texas, leads to serious questions about the rationale of using salt beds for nuclear-waste storage

  19. Geomorphic and sedimentologic evidence for the separation of Lake Superior from Lake Michigan and Huron

    Science.gov (United States)

    Johnston, J.W.; Thompson, T.A.; Wilcox, D.A.; Baedke, S.J.

    2007-01-01

    A common break was recognized in four Lake Superior strandplain sequences using geomorphic and sedimentologic characteristics. Strandplains were divided into lakeward and landward sets of beach ridges using aerial photographs and topographic surveys to identify similar surficial features and core data to identify similar subsurface features. Cross-strandplain, elevation-trend changes from a lowering towards the lake in the landward set of beach ridges to a rise or reduction of slope towards the lake in the lakeward set of beach ridges indicates that the break is associated with an outlet change for Lake Superior. Correlation of this break between study sites and age model results for the strandplain sequences suggest that the outlet change occurred sometime after about 2,400 calendar years ago (after the Algoma phase). Age model results from one site (Grand Traverse Bay) suggest an alternate age closer to about 1,200 calendar years ago but age models need to be investigated further. The landward part of the strandplain was deposited when water levels were common in all three upper Great Lakes basins (Superior, Huron, and Michigan) and drained through the Port Huron/Sarnia outlet. The lakeward part was deposited after the Sault outlet started to help regulate water levels in the Lake Superior basin. The landward beach ridges are commonly better defined and continuous across the embayments, more numerous, larger in relief, wider, have greater vegetation density, and intervening swales contain more standing water and peat than the lakeward set. Changes in drainage patterns, foreshore sediment thickness and grain size help in identifying the break between sets in the strandplain sequences. Investigation of these breaks may help identify possible gaps in the record or missing ridges in strandplain sequences that may not be apparent when viewing age distributions and may justify the need for multiple age and glacial isostatic adjustment models. ?? 2006 Springer Science

  20. Serum creatine kinase elevations in ultramarathon runners at high altitude.

    Science.gov (United States)

    Magrini, Danielle; Khodaee, Morteza; San-Millán, Iñigo; Hew-Butler, Tamara; Provance, Aaron J

    2017-05-01

    Creatine kinase (CK) is a sensitive enzyme marker for muscle damage in athletes. Elevated CK levels have been reported in many endurance physical activities. The consequence and possible long-term sequela of the CK elevation in athletes is unknown. There is a paucity of literature stating actual numerical values of CK associated with competing in an ultramarathon with extreme environmental conditions. Our hypothesis was that the serum CK levels increase significantly as a result of running a 161 km ultramarathon at high altitude. This was a prospective observational study of participants of the Leadville 100 ultramarathon race in Leadville, Colorado at high altitude (2800-3840 m) in August 2014. We collected blood samples from sixty-four volunteer runners before and eighty-three runners immediately after the race. Out of 669 athletes who started the race, 352 successfully completed the race in less than the 30-hour cut-off time (52%). The majority of runners were male (84%). We were able to collect both pre- and post-race blood samples from 36 runners. Out of these 36 runners, the mean pre-race CK was increased from 126 ± 64 U/L to 14,569 ± 14,729 U/L (p athletes' age, BMI, or finishing time. Significant elevation of CK level occurs as a result of running ultramarathons. The majority of athletes with significantly elevated CK levels were asymptomatic and required no major medical attention.

  1. Lake Michigan Offshore Wind Feasibility Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30

    recording wind data technology at a at a high confidence level as compared to traditional anemometer cup technology. • During storms, mean Turbulent Kinetic Energy (TKE) increases with height above water; • Sufficient wind resources exist over Lake Michigan to generate 7,684 kWh of power using a 850 kW rated turbine at elevations between 90 - 125 meters, a height lower than originally anticipated for optimum power generation; • Based on initial assessments, wind characteristics are not significantly different at distant (thirty-two mile) offshore locations as compared to near-shore (six mile) locations; • Significant cost savings can be achieved in generation wind energy at lower turbine heights and locating closer to shore. • Siting must be sufficiently distant from shore to minimize visual impact and to address public sentiment about offshore wind development; • Project results show that birds and bats do frequent the middle of Lake Michigan, bats more so than birds; • Based on the wind resource assessment and depths of Lake Michigan encountered during the project, future turbine placement will most likely need to incorporate floating or anchored technology; • The most appropriate siting of offshore wind energy locations will enable direct routing of transmission cables to existing generating and transmission facilities located along the Michigan shoreline; • Wind turbine noise propagation from a wind energy generating facility at a five mile offshore location will not be audible at the shoreline over normal background sound levels.

  2. Geochemical monitoring of volcanic lakes. A generalized box model for active crater lakes

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2011-06-01

    Full Text Available

    In the past, variations in the chemical contents (SO42−, Cl−, cations of crater lake water have not systematically demonstrated any relationships with eruptive activity. Intensive parameters (i.e., concentrations, temperature, pH, salinity should be converted into extensive parameters (i.e., fluxes, changes with time of mass and solutes, taking into account all the internal and external chemical–physical factors that affect the crater lake system. This study presents a generalized box model approach that can be useful for geochemical monitoring of active crater lakes, as highly dynamic natural systems. The mass budget of a lake is based on observations of physical variations over a certain period of time: lake volume (level, surface area, lake water temperature, meteorological precipitation, air humidity, wind velocity, input of spring water, and overflow of the lake. This first approach leads to quantification of the input and output fluxes that contribute to the actual crater lake volume. Estimating the input flux of the "volcanic" fluid (Qf- kg/s –– an unmeasurable subsurface parameter –– and tracing its variations with time is the major focus during crater lake monitoring. Through expanding the mass budget into an isotope and chemical budget of the lake, the box model helps to qualitatively characterize the fluids involved. The (calculated Cl− content and dD ratio of the rising "volcanic" fluid defines its origin. With reference to continuous monitoring of crater lakes, the present study provides tips that allow better calculation of Qf in the future. At present, this study offers the most comprehensive and up-to-date literature review on active crater lakes.

  3. Restoration of Eutrophic Lakes with Fluctuating Water Levels: A 20-Year Monitoring Study of Two Inter-Connected Lakes

    Directory of Open Access Journals (Sweden)

    Meryem Beklioğlu

    2017-02-01

    Full Text Available Eutrophication continues to be the most important problem preventing a favorable environmental state and detrimentally impacting the ecosystem services of lakes. The current study describes the results of analyses of 20 year monitoring data from two interconnected Anatolian lakes, Lakes Mogan and Eymir, receiving sewage effluents and undergoing restoration. The first step of restoration in both lakes was sewage effluent diversion. Additionally, in hypertrophic Lake Eymir, biomanipulation was conducted, involving removal of benthi-planktivorous fish and prohibition of pike fishing. The monitoring period included high (H and low (L water levels (WL enabling elucidation of the effects of hydrological changes on lake restoration. In shallower Lake Mogan, macrophyte abundance increased after the sewage effluent diversion in periods with low water levels even at turbid water. In comparatively deeper Lake Eymir, the first biomanipulation led to a clear water state with abundant macrophyte coverage. However, shortly after biomanipulation, the water clarity declined, coinciding with low water level (LWL periods during which nutrient concentrations increased. A second biomanipulation was conducted, mostly during high water level (HWL period, resulting in a major decrease in nutrient concentrations and clearer water, but without an expansion of macrophytes. We conclude that repetitive fish removal may induce recovery but its success may be confounded by high availability of nutrients and adverse hydrological conditions.

  4. Evaluation of Water Quality in Shallow Lakes, Case Study of Lake Uluabat

    Directory of Open Access Journals (Sweden)

    Saadet İLERİ

    2014-04-01

    Full Text Available Lake Uluabat, located 20 km south of the Marmara Sea, between 42° 12' North latitude, 28° 40'East longitude and is located in the province of Bursa. The Lake is one of the richest lakes in terms of aquatic plants besides fish and bird populations in Turkey. In this study, water quality of the Lake was monitored from June 2008 to May 2009 during the 12 month period with the samples taken from 8 points in the lake and spatial and temporal variations of the parameters were examined. pH, temperature (T, electrical conductivity (EC, dissolved oxygen (DO, suspended solids (SS, secchi depth (SD, water level (WL, nitrate nitrogen (NO3-N, total nitrogen (TN, phosphate-phosphorus (PO4-P, total phosphorus (TP, alkalinity, chemical oxygen demand (COD and chlorophyll-a (Chl-a were the monitoring parameters. As a result, concentrations of the parameters were found at high levels especially the 1st, 4th, 5th, and 8th stations and temporally were found at high levels often in the summer. According to the results of analysis of variance, regional and temporal variations of all parameters were found important except SS and NO3-N

  5. Glacier Melting Increases the Solute Concentrations of Himalayan Glacial Lakes.

    Science.gov (United States)

    Salerno, Franco; Rogora, Michela; Balestrini, Raffaella; Lami, Andrea; Tartari, Gabriele A; Thakuri, Sudeep; Godone, Danilo; Freppaz, Michele; Tartari, Gianni

    2016-09-06

    Over the past two decades, we observed a substantial rise in ionic content that was mainly determined by the sulfate concentration at 20 remote high elevation lakes located in central southern Himalaya. At LCN9, which was monitored on an annual basis for the last 20 years, the sulfate concentrations increased over 4-fold. Among the main causes, we exclude a change in the composition of wet atmospheric deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes. Glacier retreat likely was the main factor responsible for the observed increase of sulfate concentrations. We attribute this chemical changes mainly to the sulfide oxidation processes that occur in subglacial environments. Moreover, we observe that the weakened monsoon of the past two decades has only partially contributed to the lakes enrichment through runoff waters that are more concentrated in solutes or lowering the water table, resulting in more rock exposed to air and enhanced mineral oxidation.

  6. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    Science.gov (United States)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Crowe, Sean; Fowle, David; Haffner, Douglas; King, John; Marwoto, Ristiyanti; Melles, Martin; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Wattrus, Nigel

    2014-05-01

    Lake Towuti (2.5°S, 121°E) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 MYr) tectonic lakes in central Sulawesi, Indonesia. Lake Towuti's location in central Indonesia provides a unique opportunity to reconstruct long-term paleoclimate change in a crucially important yet understudied region- the Indo-Pacific warm pool (IPWP), heart of the El Niño-Southern Oscillation. The Malili Lakes have extraordinarily high rates of floral and faunal endemism, and the lakes are surrounded by one of the most diverse tropical forests on Earth. Drilling in Lake Towuti will identify the age and origin of the lake and the environmental and climatic context that shaped the evolution of this unique lacustrine and terrestrial ecosystem. The ultramafic (ophiolitic) rocks and lateritic soils surrounding Lake Towuti provide metal substrates that feed a diverse, exotic microbial community, analogous to the microbial ecosystems that operated in the Archean Oceans. Drill core will provide unique insight into long-term changes in this ecosystem, as well as microbial processes operating at depth in the sediment column. High-resolution seismic reflection data (CHIRP and airgun) combined with numerous long sediment piston cores collected from 2007-2013 demonstrate the enormous promise of Lake Towuti for an ICDP drilling campaign. Well-stratified sequences of up to 150 m thickness, uninterrupted by unconformities or erosional truncation, are present in multiple sub-basins within Towuti, providing ideal sites for long-term environmental, climatic, and limnological reconstructions. Multiproxy analyses of our piston cores document a continuous and detailed record of moisture balance variations in Lake Towuti during the past 60 kyr BP. In detail our datasets show that wet conditions and rainforest ecosystems in central Indonesia persisted during Marine Isotope Stage 3 (MIS3) and the Holocene, and were interrupted by severe

  7. Combining high-resolution satellite images and altimetry to estimate the volume of small lakes

    Science.gov (United States)

    Baup, F.; Frappart, F.; Maubant, J.

    2014-05-01

    This study presents an approach to determining the volume of water in small lakes (manager of the lake. Three independent approaches are developed to estimate the lake volume and its temporal variability. The first two approaches (HRBV and ABV) are empirical and use synchronous ground measurements of the water volume and the satellite data. The results demonstrate that altimetry and imagery can be effectively and accurately used to monitor the temporal variations of the lake (R2ABV = 0.98, RMSEABV = 5%, R2HRBV = 0.90, and RMSEABV = 7.4%), assuming a time-varying triangular shape for the shore slope of the lake (this form is well adapted since it implies a difference inferior to 2% between the theoretical volume of the lake and the one estimated from bathymetry). The third method (AHRBVC) combines altimetry (to measure the lake level) and satellite images (of the lake surface) to estimate the volume changes of the lake and produces the best results (R2AHRBVC = 0.98) of the three methods, demonstrating the potential of future Sentinel and SWOT missions to monitor small lakes and reservoirs for agricultural and irrigation applications.

  8. Glacial lakes in Austria - Distribution and formation since the Little Ice Age

    Science.gov (United States)

    Buckel, J.; Otto, J. C.; Prasicek, G.; Keuschnig, M.

    2018-05-01

    Glacial lakes constitute a substantial part of the legacy of vanishing mountain glaciation and act as water storage, sediment traps and sources of both natural hazards and leisure activities. For these reasons, they receive growing attention by scientists and society. However, while the evolution of glacial lakes has been studied intensively over timescales tied to remote sensing-based approaches, the longer-term perspective has been omitted due a lack of suitable data sources. We mapped and analyzed the spatial distribution of glacial lakes in the Austrian Alps. We trace the development of number and area of glacial lakes in the Austrian Alps since the Little Ice Age (LIA) based on a unique combination of a lake inventory and an extensive record of glacier retreat. We find that bedrock-dammed lakes are the dominant lake type in the inventory. Bedrock- and moraine-dammed lakes populate the highest landscape domains located in cirques and hanging valleys. We observe lakes embedded in glacial deposits at lower locations on average below 2000 m a.s.l. In general, the distribution of glacial lakes over elevation reflects glacier erosional and depositional dynamics rather than the distribution of total area. The rate of formation of new glacial lakes (number, area) has continuously accelerated over time with present rates showing an eight-fold increase since LIA. At the same time the total glacier area decreased by two-thirds. This development coincides with a long-term trend of rising temperatures and a significant stepping up of this trend within the last 20 years in the Austrian Alps.

  9. Great Bear Lake, N.W.T. - 1963, No. 13 in 1964 Data Record Series, Canadian Oceanographic Data Center (NODC Accession 7500188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Great Bear Lake has an area of 29,500 km^2 and it is the fourth largest lake in North America. It is situated at an elevation of 169 m (515 ft) and has a maximum...

  10. Initial Time Of Two High Altitude Crater Lakes (Nevado De Toluca, Central Mexico Recorded In Subfossil Cladocera

    Directory of Open Access Journals (Sweden)

    Szeroczyńska Krystyna

    2015-12-01

    Full Text Available The objective of this study was the recognition and reconstruction of the origin of two high altitude lakes and the ecological conditions of their early existence based on subfossil Cladocera and chemical analyses. The study focused on the oldest lacustrine sediments from Lake Sol and Lake Luna, located in the crater of Volcano Nevado de Toluca (Central Mexico. The Nevado de Toluca crater developed approximately 12 ka yr BP. According to the literature, the volcano was last active approximately 3.3 ka yr BP, and the lakes developed after that eruption. The remains of nine Cladocera species were found in the bottom sediments of both lakes. The most dominant taxa were two endemic littoral species: Alona manueli and Iliocryptus nevadensis. The total frequency of Cladocera specimens in both of the sediment cores was very low. No Cladocera remains were recorded in the sediment layer at depths between 123–103 m from Lake Luna. The results of the lithological and geochemical analyses showed that this sediment layer was composed of allochthonous material, probably originating from slid down from the volcanic cone. This was suggested by the content of silica (up to 13%, iron (up to 12%, and titanium (up to 4%. The Cladocera remains recorded in the bottom sediments suggested that both reservoirs developed as freshwater lakes at the beginning of the sedimentation. The calibrated radiocarbon dates obtained for the bottom samples were 4040 to 3990 yr BP for Lake Luna (129 cm and 4485 to 4485 yr BP for Lake Sol (89 cm. The obtained ages were older than the dates of the last eruption, which occurred approximately 3300 yr BP. This result was likely related to the type of radiocarbon dated materials (charcoals.

  11. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    Science.gov (United States)

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study

  12. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic.

    Science.gov (United States)

    Korosi, Jennifer B; Griffiths, Katherine; Smol, John P; Blais, Jules M

    2018-06-02

    Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment cores to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate warming on mercury sequestration is challenging due to temporal overlap between warming temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short cores (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate warming due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate warming, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate warming may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with warming. Our results provide insights into the role of climate warming and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Paleohydrology on Mars constrained by mass balance and mineralogy of pre-Amazonian sodium chloride lakes

    Science.gov (United States)

    Melwani Daswani, M.; Kite, E. S.

    2017-09-01

    Chloride-bearing deposits on Mars record high-elevation lakes during the waning stages of Mars' wet era (mid-Noachian to late Hesperian). The water source pathways, seasonality, salinity, depth, lifetime, and paleoclimatic drivers of these widespread lakes are all unknown. Here we combine reaction-transport modeling, orbital spectroscopy, and new volume estimates from high-resolution digital terrain models, in order to constrain the hydrologic boundary conditions for forming the chlorides. Considering a T = 0°C system, we find that (1) individual lakes were >100 m deep and lasted decades or longer; (2) if volcanic degassing was the source of chlorine, then the water-to-rock ratio or the total water volume were probably low, consistent with brief excursions above the melting point and/or arid climate; (3) if the chlorine source was igneous chlorapatite, then Cl-leaching events would require a (cumulative) time of >10 years at the melting point; and (4) Cl masses, divided by catchment area, give column densities 0.1-50 kg Cl/m2, and these column densities bracket the expected chlorapatite-Cl content for a seasonally warm active layer. Deep groundwater was not required. Taken together, our results are consistent with Mars having a usually cold, horizontally segregated hydrosphere by the time chlorides formed.

  14. Digital elevation models for site investigation programme in Oskarshamn. Site description version 1.2

    International Nuclear Information System (INIS)

    Brydsten, Lars; Stroemgren, Maarten

    2005-06-01

    In the Oskarshamn area, a digital elevation model has been produced using elevation data from many elevation sources on both land and sea. Many elevation model users are only interested in elevation models over land, so the model has been designed in three versions: Version 1 describes land surface, lake water surface, and sea bottom. Version 2 describes land surface, sediment levels at lake bottoms, and sea bottoms. Version 3 describes land surface, sediment levels at lake bottoms, and sea surface. In cases where the different sources of data were not in point form 'such as existing elevation models of land or depth lines from nautical charts' they have been converted to point values using GIS software. Because data from some sources often overlaps with data from other sources, several tests were conducted to determine if both sources of data or only one source would be included in the dataset used for the interpolation procedure. The tests resulted in the decision to use only the source judged to be of highest quality for most areas with overlapping data sources. All data were combined into a database of approximately 3.3 million points unevenly spread over an area of about 800 km 2 . The large number of data points made it difficult to construct the model with a single interpolation procedure, the area was divided into 28 sub-models that were processed one by one and finally merged together into one single model. The software ArcGis 8.3 and its extension Geostatistical Analysis were used for the interpolation. The Ordinary Kriging method was used for interpolation. This method allows both a cross validation and a validation before the interpolation is conducted. Cross validation with different Kriging parameters were performed and the model with the most reasonable statistics was chosen. Finally, a validation with the most appropriate Kriging parameters was performed in order to verify that the model fit unmeasured localities. Since both the quality and the

  15. Scanning SRXF analysis and isotopes of uranium series from bottom sediments of Siberian lakes for high-resolution climate reconstructions

    International Nuclear Information System (INIS)

    Goldberg, E.L.; Grachev, M.A.; Chebykin, E.P.; Phedorin, M.A.; Kalugin, I.A.; Khlystov, O.M.; Zolotarev, K.V.

    2005-01-01

    High-resolution scanning X-ray Fluorescence Analysis with Synchrotron Radiation (SRXFA) was applied to investigate the downcore distribution of elements in Lake Baikal and Lake Teletskoye. Physical modeling of river runoff taking into account the chemistry of U series isotopes and their concentrations in sediments allowed a decade-scale reconstruction of Holocene (0-11 ky) river input to Lake Baikal. Holocene moisture peaks in East Siberia are synchronous with abrupt spells in the Atlantic. The multi-element data from Lake Teletskoye were used to predict the function of geochemical response to climate change in plainland Altai and to reconstruct the trends of annual (winter) air temperatures and atmospheric precipitation for the past 500 years

  16. Evaluating the response of Lake Prespa (SW Balkan) to future climate change projections from a high-resolution model

    Science.gov (United States)

    van der Schriek, Tim; Varotsos, Konstantinos V.; Giannakopoulos, Christos

    2017-04-01

    precipitation over the Prespa catchment were simulated with this high horizontal resolution (12 × 12 km) regional climate model. Lake temperatures were derived from surface temperatures based on physical models, while water levels were calculated with the lake water balance model. Climate simulations indicate that annual- and wet season catchment precipitation does not significantly change by the end of the century. The median precipitation decreases, while precipitation variability increases. The percentage of annual precipitation falling in the wet season increases by 5-10%, indicating a stronger seasonality in the precipitation regime. Summer (lake) temperatures and lake surface evaporation will rise significantly under both explored climate change scenarios. Lake impact projections indicate that evaporation changes will cause the water level of Lake Megali Prespa to fall by 5m to 840-839m. The increased precipitation variability will cause large inter-annual water level fluctuations. Average water level may fall even further if: (1) drier summers lead to more water abstraction for irrigation, and (2) there is a reduction in winter snowfall/accumulation and thus less discharge. These findings are of key importance for developing sustainable lake water resource management in a region that is highly vulnerable to future climate change and already experiences significant water stress. Research paves the way for innovative management adaptation strategies focussed on decreasing water abstraction, for example through introducing smart irrigation and selecting more water efficient crops.

  17. Glacial lakes in South Tyrol: distribution, evolution and potential for GLOFs

    Science.gov (United States)

    Schug, Marie-Claire; Mergili, Martin

    2017-04-01

    All over the world glaciers are currently retreating, leading to the formation or growth of glacial lakes. Some of these lakes are susceptible to sudden drainage. In order to assess the danger of glacial lake outburst floods (GLOFs) in South Tyrol in the Italian Alps, we present (i) an inventory of lakes, (ii) an analysis of the development of selected glacial lakes since 1945, and (iii) the susceptibility to and the possible impact areas of GLOFs. The inventory includes 1010 lakes that are larger than 250 m2 at an elevation above 2000 m asl, most of them of glacial origin. These lakes are mapped manually from orthophotos. Apart from collecting information on the spatial distribution of these lakes, the inventory lists dam material, glacier contact, and further parameters. 89% of the lakes in the investigation area are impounded by bedrock, whereas 93% of the lakes are detached from the associated glacier. The majority of lakes is small to medium sized (selected lakes are analyzed in detail in the field and from multi-temporal orthophotos, including the development of lake size and surroundings in the period since 1945. The majority of the selected lakes, however, was first recorded on orthophotos from the early 1980s. Eight of ten lakes grew significantly in that period. But when the lakes detached from the glacier until the early 2000s, the growth slowed down or ceased. Based on the current development of the selected lakes we conclude that the close surroundings of these lakes have stabilised and the lakes' susceptibility to an outburst has thus decreased. We further conduct broad-scale analyses of the susceptibility of the mapped lakes to GLOFs, and of the potential reach of possible GLOFs. The tool r.glachaz is used to determine the potentially dangerous lakes. Even though some few lakes require closer attention, the overall susceptibility to GLOFs in South Tyrol is relatively low, as most lakes are impounded by bedrock. In some cases, GLOFs caused by impact

  18. Increase of urban lake salinity by road deicing salt

    International Nuclear Information System (INIS)

    Novotny, Eric V.; Murphy, Dan; Stefan, Heinz G.

    2008-01-01

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds

  19. Lakes, Lagerstaetten, and Evolution

    Science.gov (United States)

    Kordesch, E. G.; Park, L. E.

    2001-12-01

    The diversity of terrestrial systems is estimated to be greater than in the marine realm. However no hard data yet exists to substantiate this claim. Ancient lacustrine deposits may preserve an exceptionally diverse fossil fauna and aid in determining continental faunal diversities. Fossils preserved in lake deposits, especially those with exceptional preservation (i.e. Konservat Lagerstaetten), may represent a dependable method for determining species diversity changes in the terrestrial environment because of their faunal completeness. Important Konservat Lagerstaetten, such as the Green River Formation (US) and Messel (Germany), both Eocene in age, are found in lake sediments and show a remarkable faunal diversity for both vertebrates and invertebrates. To date information from nearly 25 lake lagerstaetten derived from different types of lake basins from the Carboniferous to the Miocene have been collected and described. Carboniferous sites derive from the cyclothems of Midcontinent of the US while many Cenozoic sites have been described from North and South America as well as Europe and Australia. Asian sites contain fossils from the Mesozoic and Cenozoic. With this data, insight into the evolutionary processes associated with lake systems can be examined. Do lakes act as unique evolutionary crucibles in contrast to marine systems? The speciation of cichlid fishes in present-day African lakes appears to be very high and is attributed to the diversity of environments found in large rift lakes. Is this true of all ancient lakes or just large rift lakes? The longevity of a lake system may be an important factor in allowing speciation and evolutionary processes to occur; marine systems are limited only in the existence of environments as controlled by tectonics and sea level changes, on the order of tens of millions of years. Rift lakes are normally the longest lived in the millions of years. Perhaps there are only certain types of lakes in which speciation of

  20. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  1. Lake sediments as natural seismographs: Earthquake-related deformations (seismites) in central Canadian lakes

    Science.gov (United States)

    Doughty, M.; Eyles, N.; Eyles, C. H.; Wallace, K.; Boyce, J. I.

    2014-11-01

    Central Canada experiences numerous intraplate earthquakes but their recurrence and source areas remain obscure due to shortness of the instrumental and historic records. Unconsolidated fine-grained sediments in lake basins are 'natural seismographs' with the potential to record ancient earthquakes during the last 10,000 years since the retreat of the Laurentide Ice Sheet. Many lake basins are cut into bedrock and are structurally-controlled by the same Precambrian basement structures (shear zones, terrane boundaries and other lineaments) implicated as the source of ongoing mid-plate earthquake activity. A regional seismic sub-bottom profiling of lakes Gull, Muskoka, Joseph, Rousseau, Ontario, Wanapitei, Fairbanks, Vermilion, Nipissing, Georgian Bay, Mazinaw, Simcoe, Timiskaming, Kipawa, Parry Sound and Lake of Bays, encompassing a total of more than 2000 kilometres of high-resolution track line data supplemented by multibeam and sidescan sonar survey records show a consistent sub-bottom stratigraphy of relatively-thick lowermost lateglacial facies composed of interbedded semi-transparent mass flow facies (debrites, slumps) and rhythmically-laminated silty-clays. Mass flows together with cratered ('kettled') lake floors and associated deformations reflect a dynamic ice-contact glaciolacustrine environment. Exceptionally thick mass flow successions in Lake Timiskaming along the floor of the Timiskaming Graben within the seismically-active Western Quebec Seismic Zone (WQSZ), point to a higher frequency of earthquakes and slope failure during deglaciation and rapid glacio-isostatic rebound though faulting continues into the postglacial. Lateglacial faulting, diapiric deformation and slumping of coeval lateglacial sediments is observed in Parry Sound, Lake Muskoka and Lake Joseph, which are all located above prominent Precambrian terrane boundaries. Lateglacial sediments are sharply overlain by relatively-thin rhythmically-laminated and often semi

  2. Microbial food web components, bulk metabolism, and single-cell physiology of piconeuston in surface microlayers of high-altitude lakes

    Directory of Open Access Journals (Sweden)

    Hugo eSarmento

    2015-05-01

    Full Text Available Sharp boundaries in the physical environment are usually associated with abrupt shifts in organism’s abundance, activity and diversity. Aquatic surface microlayers (SML form a steep gradient between two contrasted environments, the atmosphere and surface waters, where they regulate the gas exchange between both environments. They usually harbor an abundant and active microbial life: the neuston. Few ecosystems are subjected to such a high UVR regime as high altitude lakes during summer. Here, we measured bulk estimates of heterotrophic activity, community structure and single-cell physiological properties by flow cytometry in 19 high-altitude remote Pyrenean lakes and compared the biological processes in the SML with those in the underlying surface waters. Phototrophic picoplankton (PPP populations, were generally present in high abundances and in those lakes containing PPP populations with phycoerythrin (PE, total PPP abundance was higher at the SML. Heterotrophic nanoflagellates (HNF were also more abundant in the SML. Bacteria in the SµL had lower leucine incorporation rates, lower percentages of live cells, and higher numbers of highly-respiring cells, likely resulting in a lower growth efficiency. No simple and direct linear relationships could be found between microbial abundances or activities and environmental variables, but factor analysis revealed that, despite their physical proximity, microbial life in SML and underlying waters was governed by different and independent processes. Overall, we demonstrate that piconeuston in high altitude lakes has specific features different from those of the picoplankton, and that they are highly affected by potential stressful environmental factors, such as high UVR radiation.

  3. Is Lake Chabot Eutrophic?

    Science.gov (United States)

    Pellegrini, K.; Logan, J.; Esterlis, P.; Lew, A.; Nguyen, M.

    2013-12-01

    Introduction/Abstract: Lake Chabot is an integral part of the East Bay watershed that provides habitats for animals and recreation for humans year-round. Lake Chabot has been in danger of eutrophication due to excessive dumping of phosphorous and nitrogen into the water from the fertilizers of nearby golf courses and neighboring houses. If the lake turned out to be eutrophified, it could seriously impact what is currently the standby emergency water supply for many Castro Valley residents. Eutrophication is the excessive richness of nutrients such as nitrogen and phosphorus in a lake, usually as a result of runoff. This buildup of nutrients causes algal blooms. The algae uses up most of the oxygen in the water, and when it dies, it causes the lake to hypoxify. The fish in the lake can't breathe, and consequently suffocate. Other oxygen-dependant aquatic creatures die off as well. Needless to say, the eutrophication of a lake is bad news for the wildlife that lives in or around it. The level of eutrophication in our area in Northern California tends to increase during the late spring/early summer months, so our crew went out and took samples of Lake Chabot on June 2. We focused on the area of the lake where the water enters, known on the map as Honker Bay. We also took readings a ways down in deeper water for comparison's sake. Visually, the lake looked in bad shape. The water was a murky green that glimmered with particulate matter that swirled around the boat as we went by. In the Honker Bay region where we focused our testing, there were reeds bathed in algae that coated the surface of the lake in thick, swirling patterns. Surprisingly enough, however, our test results didn't reveal any extreme levels of phosphorous or nitrogen. They were slightly higher than usual, but not by any significant amount. The levels we found were high enough to stimulate plant and algae growth and promote eutrophication, but not enough to do any severe damage. After a briefing with a

  4. Snowmelt in a High Latitude Mountain Catchment: Effect of Vegetation Cover and Elevation

    Science.gov (United States)

    Pomeroy, J. W.; Essery, R. L.; Ellis, C. R.; Hedstrom, N. R.; Janowicz, R.; Granger, R. J.

    2004-12-01

    The energetics and mass balance of snowpacks in the premelt and melt period were compared from three elevation bands in a high latitude mountain catchment, Wolf Creek Research Basin, Yukon. Elevation is strongly correlated with vegetation cover and in this case the three elevation bands (low, middle, high) correspond to mature spruce forest, dense shrub tundra and sparse tundra (alpine). Measurements of radiation, ground heat flux, snow depth, snowfall, air temperature, wind speed were made on a half-hourly basis at the three elevations for a 10 year period. Sondes provided vertical gradients of air temperature, humidity, wind speed and air pressure. Snow depth and density surveys were conducted monthly. Comparisons of wind speed, air temperature and humidity at three elevations show that the expected elevational gradients in the free atmosphere were slightly enhanced just above the surface canopies, but that the climate at the snow surface was further influenced by complex canopy effects. Premelt snow accumulation was strongly affected by intercepted snow in the forest and blowing snow sublimation in the sparse tundra but not by the small elevational gradients in snowfall. As a result the maximum premelt SWE was found in the mid-elevation shrub tundra and was roughly double that of the sparse tundra or forest. Minimum variability of SWE was observed in the forest and shrub tundra (CV=0.25) while in the sparse tundra variability doubled (CV=0.5). Snowmelt was influenced by differences in premelt accumulation as well as differences in the net energy fluxes to snow. Elevation had a strong effect on the initiation of melt with the forest melt starting on average 16 days before the shrub tundra and 19 days before the sparse tundra. Mean melt rates showed a maximum in middle elevations and increased from 860 kJ/day in the forest to 1460 kJ/day in the sparse tundra and 2730 kJ/day in the shrub tundra. The forest canopy reduced melt while the shrub canopy enhanced it

  5. Recent lake ice-out phenology within and among lake districts of Alaska, U.S.A.

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido

    2013-01-01

    The timing of ice-out in high latitudes is a fundamental threshold for lake ecosystems and an indicator of climate change. In lake-rich regions, the loss of ice cover also plays a key role in landscape and climatic processes. Thus, there is a need to understand lake ice phenology at multiple scales. In this study, we observed ice-out timing on 55 large lakes in 11 lake districts across Alaska from 2007 to 2012 using satellite imagery. Sensor networks in two lake districts validated satellite observations and provided comparison with smaller lakes. Over this 6 yr period, the mean lake ice-out for all lakes was 27 May and ranged from 07 May in Kenai to 06 July in Arctic Coastal Plain lake districts with relatively low inter-annual variability. Approximately 80% of the variation in ice-out timing was explained by the date of 0°C air temperature isotherm and lake area. Shoreline irregularity, watershed area, and river connectivity explained additional variation in some districts. Coherence in ice-out timing within the lakes of each district was consistently strong over this 6 yr period, ranging from r-values of 0.5 to 0.9. Inter-district analysis of coherence also showed synchronous ice-out patterns with the exception of the two arctic coastal districts where ice-out occurs later (June–July) and climatology is sea-ice influenced. These patterns of lake ice phenology provide a spatially extensive baseline describing short-term temporal variability, which will help decipher longer term trends in ice phenology and aid in representing the role of lake ice in land and climate models in northern landscapes.

  6. Elevation-based upscaling of organic carbon stocks in High-Arctic permafrost terrain

    DEFF Research Database (Denmark)

    Weiss, Niels; Faucherre, Samuel; Lampiris, Nikos

    2017-01-01

    Accurate quantity and distribution estimates of permafrost soil organic carbon (SOC) stocks are needed to project potential feedbacks to climate, following warming. Still, upscaling from local field observations to regional estimates to circumarctic assessments remains a challenge. Here we explore...... elevation-based upscaling techniques for High-Arctic permafrost SOC stocks. We combine two detailed, high-resolution SOC inventories on Spitsbergen (Svalbard) with regional validation data. We find a clear relationship between elevation and SOC content, and use this observed exponential correlation, as well...... as discrete elevation classes, as upscaling models for Spitsbergen. We estimate the total amount of permafrost SOC currently present in soils on Spitsbergen to be 105.36 Tg (0.11 Pg), with a mean SOC content of 2.84 ± 0.74 kg C m−2 (mean ± 95% confidence interval). Excluding glaciers and permanent snowfields...

  7. Choking Lake Winnipeg

    Science.gov (United States)

    Byrne, J. M.; Little, L. J.; Dodgson, K. A.; MacDonald, R. J.; Graham, J.

    2009-12-01

    The problems of waterway eutrophication and coastal zone hypoxia are reaching epidemic proportions. Fresh water and coastal marine environments around the world are suffering unprecedented pollution loadings. We are developing an education program to address the dramatic need for public, community and K-12 education about the harsh impacts of elevated nutrient loads on fresh and marine water environments. The Lake Winnipeg watershed is adopted as the poster child of fresh water eutrophication in western North America. The watershed, one of the largest on the continent, is in rapid decline due to pollution, population pressures and water diversion. A concerted education program is needed to change personal and society actions that negatively impact the Winnipeg watershed; and the confluence of the watershed - Lake Winnipeg. But the education program goes beyond Lake Winnipeg. Negative impacts of nutrient loads are adversely affecting environments right to the oceans. Major dead zones that are expanding on our continental shelves due to nutrient overloading threaten to coalesce into extensive regions of marine life die-off. This presentation outlines the documentary education production process under development. We are building a series of Public Service Announcements (PSAs) for national television networks. The PSAs will direct educators, stakeholders and citizens to an associated website with educational video clips detailing the issues of eutrophication and hypoxia. The video clips or webisodes, present interviews with leading scientists. The discussions address the causes of the problems, and presents workable solutions to nutrient overloads from a variety of sources. The webisodes are accompanied by notes and advice to teachers on ways and means to use the webisodes in classrooms. The project is fully funed by a group of Canadian Community Foundations, with the understanding the work wil be available free to educators anywhere in the world. Our education

  8. GIS-based pollution hazard mapping and assessment framework of shallow lakes: southeastern Pampean lakes (Argentina) as a case study.

    Science.gov (United States)

    Romanelli, A; Esquius, K S; Massone, H E; Escalante, A H

    2013-08-01

    The assessment of water vulnerability and pollution hazard traditionally places particular emphasis on the study on groundwaters more than on surface waters. Consequently, a GIS-based Lake Pollution Hazard Index (LPHI) was proposed for assessing and mapping the potential pollution hazard for shallow lakes due to the interaction between the Potential Pollutant Load and the Lake Vulnerability. It includes easily measurable and commonly used parameters: land cover, terrain slope and direction, and soil media. Three shallow lake ecosystems of the southeastern Pampa Plain (Argentina) were chosen to test the usefulness and applicability of this suggested index. Moreover, anthropogenic and natural medium influence on biophysical parameters in these three ecosystems was examined. The evaluation of the LPHI map shows for La Brava and Los Padres lakes the highest pollution hazard (≈30 % with high to very high category) while Nahuel Rucá Lake seems to be the less hazardous water body (just 9.33 % with high LPHI). The increase in LPHI value is attributed to a different loading of pollutants governed by land cover category and/or the exposure to high slopes and influence of slope direction. Dissolved oxygen and biochemical oxygen demand values indicate a moderately polluted and eutrophized condition of shallow lake waters, mainly related to moderate agricultural activities and/or cattle production. Obtained information by means of LPHI calculation result useful to perform a local diagnosis of the potential pollution hazard to a freshwater ecosystem in order to implement basic guidelines to improve lake sustainability.

  9. A multi-source satellite data approach for modelling Lake Turkana water level: calibration and validation using satellite altimetry data

    Directory of Open Access Journals (Sweden)

    N. M. Velpuri

    2012-01-01

    Full Text Available Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of inter- and intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellite-driven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE of 0.80 during the validation period (2004–2009. Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1–2 m. The lake level fluctuated in the range up to 4 m between the years 1998–2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated

  10. A multi-source satellite data approach for modelling Lake Turkana water level: Calibration and validation using satellite altimetry data

    Science.gov (United States)

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2012-01-01

    Lake Turkana is one of the largest desert lakes in the world and is characterized by high degrees of interand intra-annual fluctuations. The hydrology and water balance of this lake have not been well understood due to its remote location and unavailability of reliable ground truth datasets. Managing surface water resources is a great challenge in areas where in-situ data are either limited or unavailable. In this study, multi-source satellite-driven data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, and a digital elevation dataset were used to model Lake Turkana water levels from 1998 to 2009. Due to the unavailability of reliable lake level data, an approach is presented to calibrate and validate the water balance model of Lake Turkana using a composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data. Model validation results showed that the satellitedriven water balance model can satisfactorily capture the patterns and seasonal variations of the Lake Turkana water level fluctuations with a Pearson's correlation coefficient of 0.90 and a Nash-Sutcliffe Coefficient of Efficiency (NSCE) of 0.80 during the validation period (2004-2009). Model error estimates were within 10% of the natural variability of the lake. Our analysis indicated that fluctuations in Lake Turkana water levels are mainly driven by lake inflows and over-the-lake evaporation. Over-the-lake rainfall contributes only up to 30% of lake evaporative demand. During the modelling time period, Lake Turkana showed seasonal variations of 1-2m. The lake level fluctuated in the range up to 4m between the years 1998-2009. This study demonstrated the usefulness of satellite altimetry data to calibrate and validate the satellite-driven hydrological model for Lake Turkana without using any in-situ data. Furthermore, for Lake Turkana, we identified and outlined opportunities and challenges of using a calibrated satellite-driven water balance

  11. Determining the Frequency of Dry Lake Bed Formation in Semi-Arid Mongolia From Satellite Data

    Directory of Open Access Journals (Sweden)

    Yuta Demura

    2017-12-01

    Full Text Available In the Mongolian Plateau, the desert steppe, mountains, and dry lake bed surfaces may affect the process of dust storm emissions. Among these three surface types, dry lake beds are considered to contribute a substantial amount of global dust emissions and to be responsible for “hot spots” of dust outbreaks. The land cover types in the study area were broadly divided into three types, namely desert steppe, mountains, and dry lake beds, by a classification based on Normalized Difference Water Index (NDWI calculated from MODIS Terra satellite images, and Digital Elevation Model (DEM. This dry lake beds extracting method using remote sensing offers a new technique for identifying dust hot spots and potential untapped groundwater in the dry lands of the Gobi region. In the study area, frequencies of dry lake bed formation were calculated during the period of 2001 to 2014. The potential dry lake area corresponded well with the length of the river network based on hydrogeological characterization (R2 = 0.77, p < 0.001. We suggest that the threshold between dry lake bed areas and the formation of ephemeral lakes in semi-arid regions is eight days of total precipitation.

  12. Rehabilitation of Mohawk Lake: Brantford's crown jewel

    International Nuclear Information System (INIS)

    Farrell, C.W.; Kube, D.J.

    1994-01-01

    Mohawk Lake in Brantford, Ontario had been receiving contaminants from various industrial and municipal sources since the late 1800s. The lake suffered a slow death with the absence of any watershed management plan. A citizen committee was established in 1990 to rehabilitate the lake so that its recreational and resource potential could be fully realized. In 1993, the committee obtained government funding to carry out a detailed baseline environmental study of the lake. Lake sediments were found to consist of an upper horizon of poorly consolidated, organic-rich, odoriferous material overlying a more compact sandy layer. Lake water was characterized by high concentrations of nutrients and metals, and high biological oxygen demand. Sediments also had high concentrations of heavy metals and low concentrations of such organic contaminants as pyrene, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls. The most distinct contaminant appeared to be petroleum hydrocarbons at 0.5-1% concentration. It was determined that lake rehabilitation would require removal of these sediments. Tests indicated that the sediments were non-hazardous non-registrable solid waste, and the preferred removal option was hydraulic dredging into settlement ponds along the undeveloped south shore of the lake. A sediment trap was recommended to be installed at the entrance of the lake, along with a constructed wetland to remove a variety of water pollutants. The sediment dredging, dewatering, trap and wetland installation, and land remediation of the sediment disposal area are estimated to cost ca $3.75 million, and the work will require at least 18 months to complete. 1 fig

  13. An approach to hydrogeological modeling of a large system of groundwater-fed lakes and wetlands in the Nebraska Sand Hills, USA

    Science.gov (United States)

    Rossman, Nathan R.; Zlotnik, Vitaly A.; Rowe, Clinton M.

    2018-05-01

    The feasibility of a hydrogeological modeling approach to simulate several thousand shallow groundwater-fed lakes and wetlands without explicitly considering their connection with groundwater is investigated at the regional scale ( 40,000 km2) through an application in the semi-arid Nebraska Sand Hills (NSH), USA. Hydraulic heads are compared to local land-surface elevations from a digital elevation model (DEM) within a geographic information system to assess locations of lakes and wetlands. The water bodies are inferred where hydraulic heads exceed, or are above a certain depth below, the land surface. Numbers of lakes and/or wetlands are determined via image cluster analysis applied to the same 30-m grid as the DEM after interpolating both simulated and estimated heads. The regional water-table map was used for groundwater model calibration, considering MODIS-based net groundwater recharge data. Resulting values of simulated total baseflow to interior streams are within 1% of observed values. Locations, areas, and numbers of simulated lakes and wetlands are compared with Landsat 2005 survey data and with areas of lakes from a 1979-1980 Landsat survey and the National Hydrography Dataset. This simplified process-based modeling approach avoids the need for field-based morphology or water-budget data from individual lakes or wetlands, or determination of lake-groundwater exchanges, yet it reproduces observed lake-wetland characteristics at regional groundwater management scales. A better understanding of the NSH hydrogeology is attained, and the approach shows promise for use in simulations of groundwater-fed lake and wetland characteristics in other large groundwater systems.

  14. Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management

    DEFF Research Database (Denmark)

    Trolle, Dennis; Hamilton, David P.; Pilditch, Conrad A.

    2011-01-01

    To quantify the effects of a future climate on three morphologically different lakes that varied in trophic status from oligo-mesotrophic to highly eutrophic, we applied the one-dimensional lake ecosystem model DYRESM-CAEDYM to oligo-mesotrophic Lake Okareka, eutrophic Lake Rotoehu, both in the t....... Therefore, future climate effects should be taken into account in the long-term planning and implementation of lake management as strategies may need to be refined and adapted to preserve or improve the present-day lake water quality....

  15. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    Science.gov (United States)

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  16. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Minho Yoon

    2017-07-01

    Full Text Available Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  17. Uranium Geochemistry in Hypersaline Soda Lakes in Eastern Mongolia

    Science.gov (United States)

    Linhoff, B. S.; Bennett, P.; Puntsag, T.

    2007-12-01

    Extremely high concentrations of uranium were discovered in water samples from hypersaline soda lakes in eastern Mongolia. The origin and fate of uranium in these lakes was examined using geochemical analyses and modeling, using samples collected from five lakes, six wells and one stream. Samples were analyzed for strontium and uranium isotopes, cations and trace metals, anions, alkalinity, and unstable field parameters. The lakes are small, shallow (chlorine to bromine ratios implying groundwater discharges to lake water and is subsequently evaporated. Evaporation is intense with lake waters having average chlorine concentrations 300 times that of well waters. Uranium in well samples is higher than typical for shallow groundwaters (7-101ppb) suggesting discharging groundwater as a probable source of uranium in lake water. Concentrations of uranium in lake water ranges from 57-14,900ppb making these lakes possibly the highest naturally occurring uranium concentration reported. Lake water alkalinity is strongly correlated to uranium abundance suggesting uranium is complexed with carbonate as the aqueous species UO2CO3. Consequently, the extremely high alkalinity of the most alkaline lake (pH = 9.8, 1288.8 meq alk/L) also has the highest uranium concentrations. Stable strontium isotopes were used to assess the degree of water rock interactions and the presence of 90Sr was checked for to test the possibility of input of nuclear fallout. 90Sr was not detected in lake water samples suggesting the high uranium is of natural origins. A large difference in the 87Sr/86Sr ratio was found between groundwater and lake water samples. Groundwater samples displayed large variation in the 87Sr/86Sr ratio (0.70612-0.709776) whereas lake water samples averaged a high radiogenic ratio (0.709432). The large variation in the strontium isotopes in groundwater samples suggests varying degrees of water rock interactions, however the least radiogenic samples likely are derived from

  18. Zooplankton abundance, species composition and ecology of tropical high-mountain crater lake Wonchi, Ethiopia

    Directory of Open Access Journals (Sweden)

    Fasil Degefu

    2014-11-01

    Full Text Available The highlands of Ethiopia represent some of the remnants of undisturbed aquatic ecosystems; they are however highly threatened by significant socio–economic developments and associated anthropogenic impacts. Lake Wonchi is one of the few remaining fairly pristine high–mountain crater lakes in the central highlands and has never been investigated in detail. We present a first study on zooplankton taxa composition, abundance and biomass conducted over more than one year including the underlying environmental drivers. The lake is basic (pH 7.9-8.9, dilute (specific conductivity 185-245 µS cm-1 and oligotrophic with mean trophic status index of 36. The zooplankton community composition showed low species richness comprising a total of fourteen taxa with six cladocerans, one copepod and seven rotifers. Simpson´s index of diversity with values between 0.6 and 0.8 pointed towards a homogenous taxa occurrence within the single sample units. The overall mean (±SD standing biomass of zooplankton was 62.02±25.76 mg dry mass m-3,which is low compared to other highland and rift valley lakes in Ethiopia. Cyclopoid copepods, in particular Thermocyclops ethiopiensis were the most abundant group and contributed 50% to the total zooplankton abundance followed by cladocerans (38% and rotifers (12%. Non-metric multi-dimensional scaling resulted in a 3-dimensional model, which revealed similar community composition on successive sampling dates except in December/January and May. Temperature, alkalinity, conductivity and nitrate-N had significant influence on this seasonal pattern. A weak, but significant positive correlation (r=0.482, N=20, P=0.037 between Chlorophyll a and zooplankton biomass mirrors a bottom-up effect of phytoplankton biomass on zooplankton dynamics. The zooplankton of Lake Wonchi displayed some degree of segregation along the epi– and metalimnion during this study, but diel vertical migration was not observed. The results show that fish

  19. Sanctuaries for lake trout in the Great Lakes

    Science.gov (United States)

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  20. A High-Resolution Biogenic Silica Record From Lake Titicaca, Peru-Bolivia: South American Millennial-Scale Climate Variability From 18-60 Kya

    Science.gov (United States)

    Ekdahl, E. J.; Fritz, S. C.; Stevens, L. R.; Baker, P. A.; Seltzer, G. O.

    2004-12-01

    Sediments recovered from a deep basin in Lake Titicaca, Peru-Boliva, were analyzed for biogenic silica (BSi) content by extraction of freeze dried sediments in 1% sodium carbonate. Sediments were dated using an age model developed from multiple 14C dates on bulk sediments. The BSi record shows distinct fluctuations in concentration and accumulation rate from 18 to 60 kya. Multi-taper method spectral analysis reveals a significant millennial-scale component to these fluctuations centered at 1370 years. High BSi accumulation rates correlate with enhanced benthic diatom preservation, suggesting that the BSi record is related to variations in lake water level. Modern-day Lake Titicaca lake level and precipitation are strongly related to northern equatorial Atlantic sea surface temperatures, with cooler SSTs related to wetter conditions. Subsequently, the spectral behavior of the GRIP ice core δ 18O record was investigated in order to estimate coherency and linkages between North Atlantic and tropical South American climate. GRIP data exhibit a significant 1370-year spectral peak which comprises approximately 26% of the total variability in the record. Despite a high degree of coherency between millennial-scale periodicities in Lake Titicaca BSi and GRIP δ 18O records, the Lake Titicaca silica record does not show longer term cooling cycles characteristic of D-O cycles found in the GRIP record. Rather, the Lake Titicaca record is highly periodic and more similar in nature to several Antarctic climate proxy records. These results suggest that while South American tropical climate varies in phase with North Atlantic climate, additional forcing mechanisms are manifest in the region which may include tropical Pacific and Southern Ocean variability.

  1. New insights on water level variability for Lake Turkana for the past 15 ka and at 150 ka from relict beaches

    Science.gov (United States)

    Forman, S. L.; Wright, D.

    2015-12-01

    Relict beaches adjacent to Lake Turkana provide a record of water level variability for the Late Quaternary. This study focused on deciphering the geomorphology, sedimentology, stratigraphy and 14C chronology of strand plain sequences in the Kalokol and Lothagam areas. Nine >30 m oscillations in water level were documented between ca. 15 and 4 ka. The earliest oscillation between ca. 14.5 and 13 ka is not well constrained with water level to at least 70 m above the present surface and subsequently fell to at least 50 m. Lake level increased to ~ 90 m between ca. 11.2 and 10.4 ka, post Younger Dryas cooling. Water level fell by >30 m by 10.2 ka, with another potential rise at ca. 8.5 ka to >70 m above current level. Lake level regressed by > 40 m at 8.2 ka coincident with cooling in the equatorial Eastern Atlantic Ocean. Two major >70 m lake level oscillations centered at 6.6 and 5.2 ka may reflect enhanced convection with warmer sea surface temperatures in the Western Indian Ocean. The end of the African Humid Period occurred from ca. 8.0 to 4.5 ka and was characterized by variable lake level (± > 40 m), rather than one monotonic fall in water level. This lake level variability reflects a complex response to variations in the extent and intensity of the East and West African Monsoons near geographic and topographic limits within the catchment of Lake Turkana. Also, for this closed lake basin excess and deficits in water input are amplified with a cascading lake effect in the East Rift Valley and through the Chew Bahir Basin. The final regression from a high stand of > 90 m began at. 5.2 ka and water level was below 20 m by 4.5 ka; and for the remainder of the Holocene. This sustained low stand is associated with weakening of the West African Monsoon, a shift of the mean position of Congo Air Boundary west of the Lake Turkana catchment and with meter-scale variability in lake level linked to Walker circulation across the Indian Ocean. A surprising observation is

  2. Diurnal variability and biogeochemical reactivity of mercury species in an extreme high-altitude lake ecosystem of the Bolivian Altiplano.

    Science.gov (United States)

    Alanoca, L; Amouroux, D; Monperrus, M; Tessier, E; Goni, M; Guyoneaud, R; Acha, D; Gassie, C; Audry, S; Garcia, M E; Quintanilla, J; Point, D

    2016-04-01

    Methylation and demethylation represent major transformation pathways regulating the net production of methylmercury (MMHg). Very few studies have documented Hg reactivity and transformation in extreme high-altitude lake ecosystems. Mercury (Hg) species concentrations (IHg, MMHg, Hg°, and DMHg) and in situ Hg methylation (M) and MMHg demethylation (D) potentials were determined in water, sediment, floating organic aggregates, and periphyton compartments of a shallow productive Lake of the Bolivian Altiplano (Uru Uru Lake, 3686 m). Samples were collected during late dry season (October 2010) and late wet season (May 2011) at a north (NS) and a south (SS) site of the lake, respectively. Mercury species concentrations exhibited significant diurnal variability as influenced by the strong diurnal biogeochemical gradients. Particularly high methylated mercury concentrations (0.2 to 4.5 ng L(-1) for MMHgT) were determined in the water column evidencing important Hg methylation in this ecosystem. Methylation and D potentials range were, respectively, production in both water (up to 0.45 ng MMHg L(-1) day(-1)) and sediment compartments (2.0 to 19.7 ng MMHg g(-1) day(-1)). While the sediment compartment appears to represent a major source of MMHg in this shallow ecosystem, floating organic aggregates (dry season, SS) and Totora's periphyton (wet season, NS) were found to act as a significant source (5.8 ng MMHg g(-1) day(-1)) and a sink (-2.1 ng MMHg g(-1) day(-1)) of MMHg, respectively. This work demonstrates that high-altitude productive lake ecosystems can promote MMHg formation in various compartments supporting recent observations of high Hg contents in fish and water birds.

  3. Cyanotoxins in arctic lakes of southwestern Greenland and the potential for toxin transfer within-lake and across the aquatic-terrestrial boundary

    Science.gov (United States)

    Trout-Haney, J. V.; Cottingham, K. L.

    2015-12-01

    Arctic lakes are often characterized as low-resource environments in which the autotrophic community is limited by factors such as nutrients, temperature, and light. Studies of cyanotoxins have traditionally focused on nutrient-rich lakes with conspicuous blooms, however toxigenic cyanobacteria are confined to neither high nutrient environments nor planktonic taxa. We quantified the occurrence of cyanotoxins across 19 arctic lakes of varying size and depth in the Kangerlussuaq region of southwestern Greenland. Whole lake water microcystins (MC) were detected in all lakes and ranged from low (100 ng/L) concentrations. Benthic colonial cyanobacteria of the genus Nostoc are a prominent feature of certain lakes in this region, with estimated densities ranging between 500 and >500,000 colonies per lake. MC were present in the tissue of Nostoc colonies (95% CI, 1638.9 - 3237.6 pg MC (g wet weight)-1) and were actively released by colonies into surrounding water in laboratory trials. These results highlight the potential importance of toxic benthic cyanobacteria in lake ecosystems. Further, we investigated the transfer of these cyanotoxins to other organisms in the lake as well as several mechanisms (i.e., emerging insects, aerosols) that may influence the movement of toxins into the terrestrial ecosystem. The presence and movement of cyanotoxins in the coupled terrestrial-aquatic ecosystem demonstrate that high-latitude lakes can support toxigenic cyanobacteria, and that we may be underestimating the potential for these systems to develop high levels of toxicity in the future.

  4. High-resolution pattern of mangrove species distribution is controlled by surface elevation

    Science.gov (United States)

    Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.

    2018-03-01

    Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.

  5. Geomicrobiology of sublacustrine thermal vents in Yellowstone Lake: Geochemical controls on microbial community structure and function

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2015-10-01

    Full Text Available Yellowstone Lake (Yellowstone National Park, WY, USA is a large high-altitude (2200 m, fresh-water lake, which straddles an extensive caldera and is the center of significant geothermal activity. The primary goal of this interdisciplinary study was to evaluate the microbial populations inhabiting thermal vent communities in Yellowstone Lake (Yellowstone Lake using 16S rRNA gene and random metagenome sequencing, and to determine how geochemical attributes of vent waters influence the distribution of specific microorganisms and their metabolic potential. Thermal vent waters and associated microbial biomass were sampled during two field seasons (2007 - 2008 using a remotely operated vehicle (ROV. Sublacustrine thermal vent waters (circa 50 - 90 oC contained elevated concentrations of numerous constituents associated with geothermal activity including dissolved hydrogen, sulfide, methane and carbon dioxide. Microorganisms associated with sulfur-rich filamentous ‘streamer’ communities of Inflated Plain and West Thumb (pH range 5 - 6 were dominated by bacteria from the Aquificales, but also contained thermophilic archaea from the Crenarchaeota and Euryarchaeota. Novel groups of methanogens and members of the Korarchaeota were observed in vents from West Thumb and Elliot’s Crater (pH 5 - 6. Conversely, metagenome sequence from Mary Bay vent sediments did not yield large assemblies, and contained diverse thermophilic and nonthermophilic bacterial relatives. Analysis of functional genes associated with the major vent populations indicated a direct linkage to high concentrations of carbon dioxide, reduced sulfur (sulfide and/or elemental S, hydrogen and methane in the deep thermal ecosystems. Our observations show that sublacustrine thermal vents in Yellowstone Lake support novel thermophilic communities, which contain microorganisms with functional attributes not found to date in terrestrial geothermal systems of YNP.

  6. Distribution and interannual variability of supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor Mountains, Central Asia

    International Nuclear Information System (INIS)

    Qiao, Liu; Mayer, Christoph; Liu, Shiyin

    2015-01-01

    Supraglacial lakes are widely formed on debris-covered glaciers in the Khan Tengri-Tumor Mountains (KTTM), Tianshan, Central Asia. Study of their distribution characters based on regional-wide remote sensing investigations is still lacking, but it can promote our understanding about the influence of supraglacial lakes on the surface melting, hydrology and dynamics of debris-covered glaciers in this region. This study presents results of the supraglacial lake inventory in the KTTM region, based on multi-year Landsat images. We focus on the glacio-geomorphological characters of the supraglacial lakes and their late summer conditions, since all suitable Landsat images were acquired between August and September during 1990–2011. With a minimum threshold extent of 3600 m 2 for conservative mapping results, we totally mapped 775 supraglacial lakes and 38 marginal glacial lakes on eight huge debris-covered glaciers. Supraglacial lakes are concentrated on the Tumor Glacier and the South Inylchek Glacier, two biggest glaciers in this region. Although most supraglacial lakes are short-lived, a number of lakes can be repeatedly identified between different Landsat images. Detailed investigation of these ‘perennial’ lakes on the Tumor Glacier indicates that their filling frequency and area contributions have increased since 2005. Analysis of the area-elevation distributions for all mapped supraglacial lakes shows that they predominantly occur close to the altitude of 3250 m a.s.l., as high as the lowest reach of clean ice where surface debris begins to appear, and can further develop upglacier to a limit of about 3950 m a.s.l.. Total and mean area of supraglacial lakes in the KTTM region during the late summer seasons show great variability between years. Correlation analysis between the annual lake area and the observed nearby meteorological conditions suggests that warmer springs seem related to the draining of some supraglacial lakes during the following seasons, due

  7. Morphology, volcanism, and mass wasting in Crater Lake, Oregon

    Science.gov (United States)

    Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.

    2002-01-01

    Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation

  8. The Geologic History of Lake of the Woods, Minnesota, Reconstructed Using Seismic-Reflection Imaging and Sediment Core Analysis

    Science.gov (United States)

    Hougardy, Devin D.

    The history of glacial Lake Agassiz is complex and has intrigued researchers for over a century. Over the course of its ˜5,000 year existence, the size, shape, and location of Lake Agassiz changed dramatically depending on the location of the southern margin of the Laurentide Ice Sheet (LIS), the location and elevation of outflow channels, and differential isostatic rebound. Some of the best-preserved sequences of Lake Agassiz sediments are found in remnant lake basins where erosional processes are less pronounced than in adjacent higher-elevation regions. Lake of the Woods (LOTW), Minnesota, is among the largest of the Lake Agassiz remnant lakes and is an ideal location for Lake Agassiz sediment accumulation. High-resolution seismic-reflection (CHIRP) data collected from the southern basin of LOTW reveal up to 28 m of stratified lacustrine sediment deposited on top of glacial diamicton and bedrock. Five seismic units (SU A-E) were identified and described based on their reflection character, reflection configuration, and external geometries. Three prominent erosional unconformities (UNCF 1-3) underlie the upper three seismic units and indicate that deposition at LOTW was interrupted by a series of relatively large fluctuations in lake level. The lowermost unconformity (UNCF-1) truncates uniformly draped reflections within SU-B at the margins of the basin, where as much as four meters of sediment were eroded. The drop in lake level is interpreted to be contemporaneous with the onset of the low-stand Moorhead phase of Lake Agassiz identified from subaerial deposits in the Red River Valley, Rainy River basin, and Lake Winnipeg. A rise in lake level, indicated by onlapping reflections within SU-C onto UNCF-1, shifted the wave base outwards and as much as 11 m of sediment were deposited (SU-C) in the middle of the basin before a second drop, and subsequent rise, in lake level resulted in the formation of UNCF-2. Reflections in the lower part of SU-D onlap onto UNCF-2

  9. A high-resolution, 60 kyr record of the relative geomagnetic field intensity from Lake Towuti, Indonesia

    Science.gov (United States)

    Kirana, Kartika Hajar; Bijaksana, Satria; King, John; Tamuntuan, Gerald Hendrik; Russell, James; Ngkoimani, La Ode; Dahrin, Darharta; Fajar, Silvia Jannatul

    2018-02-01

    Past changes in the Earth's magnetic field can be highlighted through reconstructions of magnetic paleointensity. Many magnetic field variation features are global, and can be used for the detailed correlation and dating of sedimentary records. On the other hand, sedimentary magnetic records also exhibit features on a regional, rather than a global scale. Therefore, the development of regional scale magnetic field reconstructions is necessary to optimize magnetic paleointensity dating. In this paper, a 60 thousand year (kyr) paleointensity record is presented, using the core TOW10-9B of Lake Towuti, located in the island of Sulawesi, Indonesia, as a part of the ongoing research towards understanding the Indonesian environmental history, and reconstructing a high-resolution regional magnetic record from dating the sediments. Located in the East Sulawesi Ophiolite Belt, the bedrock surrounding Lake Towuti consists of ultramafic rocks that render the lake sediments magnetically strong, creating challenges in the reconstruction of the paleointensity record. These sediment samples were subject to a series of magnetic measurements, followed by testing the obtained paleointensity records resulting from normalizing natural remanent magnetization (NRM) against different normalizing parameters. These paleointensity records were then compared to other regional, as well as global, records of magnetic paleointensity. The results show that for the magnetically strong Lake Towuti sediments, an anhysteretic remanent magnetization (ARM) is the best normalizer. A series of magnetic paleointensity excursions are observed during the last 60 kyr, including the Laschamp excursion at 40 kyr BP, that provide new information about the magnetic history and stratigraphy of the western tropical Pacific region. We conclude that the paleointensity record of Lake Towuti is reliable and in accordance with the high-quality regional and global trends.

  10. Monitoring and Assessment of Hydrological and Ecological Changes in Lake Manyas

    Science.gov (United States)

    Curebal, Isa; Efe, Recep; Soykan, Abdullah; Sonmez, Suleyman

    2014-05-01

    Manyas Lake in the northwest of Turkey occupies an area of 165 square kilometers. The surface area of the lake is continuously changing due to human activities, hydrologic and climatic conditions. The objective of this study is to examine the changes in water level and the area of lake and the effects of these changes on the lake's ecosystem and human economic activities. In order to determine the changes lake level measurement data, 1/25000 scale topography maps, rainfall and temperature data and bathymetry maps were used and elevation models were made. During the study period the water level fluctuated between 14.0 and 17.8 meters, and surface area changed between 124,8 km2 and 170,6 km2 respectively. Prior to the construction of a flood barrier at the southern end of the lake in 1992 the maximum surface area of the lake was calculated at 209 km2. Lake Manyas is an important wetland on the route of migration of birds from/to Europe and Africa. 64 ha of the lake and its surroundings along with the entire National Park is a Ramsar site. Irrigated and dry farming is practiced around the lake and fishing is important economic activity. The changes in the water level as result of natural and human factors brought about negative effects on the lake's ecosystem in last ten years. Result of these effects, natural fluctuation of the lake changed and the marshes around the lake destroyed and the bird population decreased. Lowering the water level in the lake is also significantly reduced the number of fish and number of migratory birds. The construction of the flood barrier destroyed vegetation and bird life in about a 25% of area of the lake on the south. The natural ecosystem in this area has been adversely affected. Moreover, when the water level is low due to low rain fall and irrigation, vegetation on the lake's shore line dies and some areas turn to swamp. The fauna and flora are negatively affected by water level changes particularly in the protected National Park

  11. Localities With Elevated Radiation Background in the High Karst Zone of Montenegro

    International Nuclear Information System (INIS)

    Vukotic, P.; Svrkota, R.; Andjelic, T.; Zekic, R.; Antovic, N.

    2011-01-01

    Research aimed to find localities in Montenegro with an elevated terrestrial gamma background was conducted during the period 2008-2009. For this purpose, 138 localities which have geological formations known to contain minerals with potentially high concentrations of U, Th and K, were selected throughout the country for a dosimetric survey. There are four distinctive geotectonic units in Montenegro: the Adriatic-Ionian Zone (JZ), the Budva-Cukali Zone (BZ), the High Karst Zone (VK), and the Durmitor Tectonic Unit (DTJ). The central and southern parts of Montenegro belong to the VK zone, whose geological structure is predominated by Mesozoic carbonate sediments, with occurrences of red and white bauxite formations, Triassic volcanic rocks, Paleogene flysch sediments and Quaternary sediments. In total, 38 localities belonging to the VK zone were selected for field investigations of terrestrial radiation. Knowing from earlier investigations that in Montenegro the average absorbed dose-rate in the air, 1 m above the ground, is 55 nGy/h, it was arbitrarily adopted that only localities with absorbed doses at least 50 % above this average value would be considered as having a relatively elevated radiation background. Field measurements have shown that 12 of the surveyed localities in the VK zone have such elevated dose values, five of them being with the highest dose rates in Montenegro. Among these five sites, the highest dose rate (192 nGy/h) was found at a locality which lies on andesite volcanic rock, while the other four localities (131 - 149 nGy/h) lie on bauxite deposits. Compared to the other areas in the world known to have a high natural radiation background, all of these localities in Montenegro have a moderately elevated radiation level. From the 12 localities with a relatively elevated radiation background, soil samples have been collected and analyzed by gamma spectrometry to determine activity concentrations of 40K, 232Th, 235U, 238U, 226Ra and 137Cs

  12. Assessing the potential environmental impact of Athabasca oil sands development in lakes across Northwest Saskatchewan

    Science.gov (United States)

    Ahad, J. M.; Cumming, B. F.; Das, B.; Sanei, H.

    2011-12-01

    The continued development of Canada's Athabasca oil sands poses a significant environmental challenge. Low buffered boreal lakes located downwind of the prevailing eastward wind direction may be threatened by acidification and elevated inputs of airborne contaminants such as polycyclic aromatic hydrocarbons (PAHs). An accurate assessment of the impact that increased levels of bitumen production may have on lakes in the region requires an understanding of the historic variability within these systems prior to at least the past several decades. Here we report concentrations of PAHs, δ13C and δ15N of organic matter (OM), Rock-Eval pyrolysis analyses, and distributions of n-alkanes in dated sediment cores from ten lakes located across NW Saskatchewan. Concentrations of PAHs were relatively low (combustion of coniferous wood, was generally the most abundant PAH amongst those reported, demonstrating the importance of forest fires as a principal PAH source. Plots of Hydrogen Index (HI) versus Oxygen Index (OI) fell within a relatively narrow range typical for sediments containing a high content of algal-derived OM. Relatively lower C/N ratios and higher abundances of C17 n-alkane in more recent sediments pointed to an increasingly larger component of algal-derived OM. In all ten lakes δ13C showed gradual upcore depletions that fell within the expected range for fossil fuel combustion (i.e., Suess effect), although this alone may not explain the up to ~3% depletion observed in several of the lakes. In conjunction with the other upcore trends these data may suggest a possible increase in primary productivity over the past several decades in many of the lakes studied. δ15N signatures were more variable, showing upcore increases in some lakes and upcore depletions in others. The increasingly lighter values observed in more recent sediments in some lakes suggest a potential input of depleted bioavailable nitrogen, as might be expected from anthropogenic NOx emissions. This

  13. Late Pleistocene to Holocene lake levels of Lake Warner, Oregon (USA) and their effect on archaeological site distribution patterns

    Science.gov (United States)

    Wriston, T.; Smith, G. M.

    2017-12-01

    Few chronological controls are available for the rise and fall of small pluvial lake systems in the Northwestern Great Basin. Within Warner Basin this control was necessary for interpretation of known archaeological sites and for predicting where evidence of its earliest inhabitants might be expected. We trenched along relic beach ridges of Lake Warner, surveyed a stratified sample of the area for archaeological sites, and excavated some sites and a nearby rockshelter. These efforts produced new ages that we used to construct a lake level curve for Lake Warner. We found that the lake filled the valley floor between ca. 30,000 cal yr BP and ca. 10,300 cal yr BP. In nearby basins, several oscillations are evident before ca. 21,100 cal yr BP, but a steep rise to the LGM maximum occurred between 21,000 and 20,000 cal yr BP. Lake Warner likely mirrored these changes, dropped to the valley floor ca. 18,340 cal yr BP, and then rose to its maximum highstand when its waters briefly reached 1454 m asl. After this highstand the lake receded to moderately high levels. Following ca. 14,385 cal yr BP, the lake oscillated between moderate to moderately-high levels through the Bolling-Allerod interstadials and into the Younger Dryas stadial. The basin's first occupants arrived along its shore around this time, while the lake still filled the valley floor. These earliest people carried either Western Stemmed or Clovis projectile points, both of which are found along the lake margin. The lake receded into the valley floor ca. 10,300 cal yr BP and dune development began, ringing wetlands and small lakes that persisted in the footprint of the once large lake. By the time Mazama tephra fell 7,600 cal yr BP it blanketed pre-existing dunes and marsh peats. Our Lake Warner lake level curve facilitates interdisciplinary testing and refinement of it and similar curves throughout the region while helping us understand the history of lake and the people who lived along its shores.

  14. Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula

    Science.gov (United States)

    Davies, Bethan J.; Hambrey, Michael J.; Glasser, Neil F.; Holt, Tom; Rodés, Angél; Smellie, John L.; Carrivick, Jonathan L.; Blockley, Simon P. E.

    2017-12-01

    We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf moraines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonnée valleys, dammed against the ice stream in George VI Sound. Exposure ages from boulders on these shorelines yielded ages of 13.9 to 9.7 ka. Following recession of the ice stream, George VI Ice Shelf formed in George VI Sound. An epishelf lake formed at 15-20 m asl in Ablation and Moutonnée valleys, dated from 9.4 to 4.6 ka, suggesting that the lake was stable and persistent for some 5000 years. Lake-level lowering occurred after this, with the lake level at 12 m at 3.1 ± 0.4 ka and at 5 m asl today. A readvance of the valley glaciers on Alexander Island at 4.4 ± 0.7 ka is recorded by valley glacier moraines overlying epishelf lake sediments. We speculate that the glacier readvance, which occurred during a period of warmth, may have been caused by a dynamic response of the glaciers to a lowering in surface elevation of George VI Ice Shelf.

  15. Microbial ecology of soda lakes: investigating sulfur and nitrogen cycling at Mono Lake, CA, USA

    Science.gov (United States)

    Fairbanks, D.; Phillips, A. A.; Wells, M.; Bao, R.; Fullerton, K. M.; Stamps, B. W.; Speth, D. R.; Johnson, H.; Sessions, A. L.

    2017-12-01

    Soda lakes represent unique ecosystems characterized by extremes of pH, salinity and distinct geochemical cycling. Despite these extreme conditions, soda lakes are important repositories of biological adaptation and have a highly functional microbial system. We investigated the biogeochemical cycling of sulfur and nitrogen compounds in Mono Lake, California, located east of the Sierra Nevada mountains. Mono lake is characterized by hyperalkaline, hypersaline and high sulfate concentrations and can enter prolonged periods of meromixis due to freshwater inflow. Typically, the microbial sulfur cycle is highly active in soda lakes with both oxidation and reduction of sulfur compounds. However, the biological sulfur cycle is connected to many other main elemental cycles such as carbon, nitrogen and metals. Here we investigated the interaction between sulfur and nitrogen cycling in Mono lake using a combination of molecular, isotopic, and geochemical observations to explore the links between microbial phylogenetic composition and functionality. Metagenomic and 16S rRNA gene amplicon sequencing were determined at two locations and five depths in May 2017. 16S rRNA gene amplicon sequencing analysis revealed organisms capable of both sulfur and nitrogen cycling. The relative abundance and distribution of functional genes (dsrA, soxAB, nifH, etc) were also determined. These genetic markers indicate the potential in situ relevance of specific carbon, nitrogen, and sulfur pathways in the water column prior to the transition to meromictic stratification. However, genes for sulfide oxidation, denitrification, and ammonification were present. Genome binning guided by the most abundant dsrA sequences, GC content, and abundance with depth identified a Thioalkalivibrio paradoxus bin containing genes capable of sulfur oxidation, denitrification, and nitrate reduction. The presence of a large number of sulfur and nitrogen cycling genes associated with Thioalkalivibrio paradoxus

  16. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom.

    Science.gov (United States)

    Andreote, Ana P D; Dini-Andreote, Francisco; Rigonato, Janaina; Machineski, Gabriela Silva; Souza, Bruno C E; Barbiero, Laurent; Rezende-Filho, Ary T; Fiore, Marli F

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii . This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  17. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Science.gov (United States)

    Andreote, Ana P. D.; Dini-Andreote, Francisco; Rigonato, Janaina; Machineski, Gabriela Silva; Souza, Bruno C. E.; Barbiero, Laurent; Rezende-Filho, Ary T.; Fiore, Marli F.

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes. PMID:29520256

  18. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Directory of Open Access Journals (Sweden)

    Ana P. D. Andreote

    2018-02-01

    Full Text Available Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600 potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake and by no record of cyanobacterial blooms (Salina Preta, black-water lake. The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  19. Bathymetric survey of Carroll Creek Tributary to Lake Tuscaloosa, Tuscaloosa County, Alabama, 2010

    Science.gov (United States)

    Lee, K.G.; Kimbrow, D.R.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the City of Tuscaloosa, conducted a bathymetric survey of Carroll Creek, on May 12-13, 2010. Carroll Creek is one of the major tributaries to Lake Tuscaloosa and contributes about 6 percent of the surface drainage area. A 3.5-mile reach of Carroll Creek was surveyed to prepare a current bathymetric map, determine storage capacities at specified water-surface elevations, and compare current conditions to historical cross sections. Bathymetric data were collected using a high-resolution interferometric mapping system consisting of a phase-differencing bathymetric sonar, navigation and motion-sensing system, and a data acquisition computer. To assess the accuracy of the interferometric mapping system and document depths in shallow areas of the study reach, an electronic total station was used to survey 22 cross sections spaced 50 feet apart. The data were combined and processed and a Triangulated Irregular Network (TIN) and contour map were generated. Cross sections were extracted from the TIN and compared with historical cross sections. Between 2004 and 2010, the area (cross section 1) at the confluence of Carroll Creek and the main run of LakeTuscaloosa showed little to no change in capacity area. Another area (cross section 2) showed a maximum change in elevation of 4 feet and an average change of 3 feet. At the water-surface elevation of 224 feet (National Geodetic Vertical Datum of 1929), the cross-sectional area has changed by 260 square feet for a total loss of 28 percent of cross-sectional storage area. The loss of area may be attributed to sedimentation in Carroll Creek and (or) the difference in accuracy between the two surveys.

  20. Bathymetry of Lake Erie and Lake Saint Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Erie and Lake Saint Clair has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and...

  1. A new method to generate a high-resolution global distribution map of lake chlorophyll

    Science.gov (United States)

    Sayers, Michael J; Grimm, Amanda G.; Shuchman, Robert A.; Deines, Andrew M.; Bunnell, David B.; Raymer, Zachary B; Rogers, Mark W.; Woelmer, Whitney; Bennion, David; Brooks, Colin N.; Whitley, Matthew A.; Warner, David M.; Mychek-Londer, Justin G.

    2015-01-01

    A new method was developed, evaluated, and applied to generate a global dataset of growing-season chlorophyll-a (chl) concentrations in 2011 for freshwater lakes. Chl observations from freshwater lakes are valuable for estimating lake productivity as well as assessing the role that these lakes play in carbon budgets. The standard 4 km NASA OceanColor L3 chlorophyll concentration products generated from MODIS and MERIS sensor data are not sufficiently representative of global chl values because these can only resolve larger lakes, which generally have lower chl concentrations than lakes of smaller surface area. Our new methodology utilizes the 300 m-resolution MERIS full-resolution full-swath (FRS) global dataset as input and does not rely on the land mask used to generate standard NASA products, which masks many lakes that are otherwise resolvable in MERIS imagery. The new method produced chl concentration values for 78,938 and 1,074 lakes in the northern and southern hemispheres, respectively. The mean chl for lakes visible in the MERIS composite was 19.2 ± 19.2, the median was 13.3, and the interquartile range was 3.90–28.6 mg m−3. The accuracy of the MERIS-derived values was assessed by comparison with temporally near-coincident and globally distributed in situmeasurements from the literature (n = 185, RMSE = 9.39, R2 = 0.72). This represents the first global-scale dataset of satellite-derived chl estimates for medium to large lakes.

  2. Quick Release of Internal Water Storage in a Glacier Leads to Underestimation of the Hazard Potential of Glacial Lake Outburst Floods From Lake Merzbacher in Central Tian Shan Mountains

    Science.gov (United States)

    Shangguan, Donghui; Ding, Yongjian; Liu, Shiyin; Xie, Zunyi; Pieczonka, Tino; Xu, Junli; Moldobekov, Bolot

    2017-10-01

    Glacial meltwater and ice calving contribute to the flood volume of glacial lakes such as Lake Merzbacher in the Tian Shan Mountains of central Asia. In this study, we simulated the lake's volume by constructing an empirical relationship between the area of Lake Merzbacher, determined from satellite images, and the lake's water storage, derived from digital elevation models. Results showed that the lake water supply rate before Glacial Lake Outburst Floods (GLOFs) generally agreed well with those during the GLOFs from 2009 to 2012 but not in 2008 and 2015. Furthermore, we found that the combination of glacial meltwater and ice calving is not enough to fully explain the supply rate during GLOFs in 1996 and 1999, suggesting other factors affect the supply rate during GLOFs as well. To examine this further, we compared the water supply rate before and during GLOF events in 1999 and 2008. We inferred that quickly released short-term and intermediate-term water storage by glaciers have likely contributed to both flood events in those years. This study highlights the need to improve our understanding of the supply component of outburst floods, such as irregularly released stored water may lead to GLOF events with generally three different types: case I (singular event-triggered englacial water release), case II (glacier melt due to temperature changes), and case III (englacial water release mixed with glacier melt).

  3. Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps

    Directory of Open Access Journals (Sweden)

    C. Huggel

    2003-01-01

    Full Text Available Debris flows triggered by glacier lake outbursts have repeatedly caused disasters in various high-mountain regions of the world. Accelerated change of glacial and periglacial environments due to atmospheric warming and increased anthropogenic development in most of these areas raise the need for an adequate hazard assessment and corresponding modelling. The purpose of this paper is to pro-vide a modelling approach which takes into account the current evolution of the glacial environment and satisfies a robust first-order assessment of hazards from glacier-lake outbursts. Two topography-based GIS-models simulating debris flows related to outbursts from glacier lakes are presented and applied for two lake outburst events in the southern Swiss Alps. The models are based on information about glacier lakes derived from remote sensing data, and on digital elevation models (DEM. Hydrological flow routing is used to simulate the debris flow resulting from the lake outburst. Thereby, a multiple- and a single-flow-direction approach are applied. Debris-flow propagation is given in probability-related values indicating the hazard potential of a certain location. The debris flow runout distance is calculated on the basis of empirical data on average slope trajectory. The results show that the multiple-flow-direction approach generally yields a more detailed propagation. The single-flow-direction approach, however, is more robust against DEM artifacts and, hence, more suited for process automation. The model is tested with three differently generated DEMs (including aero-photogrammetry- and satellite image-derived. Potential application of the respective DEMs is discussed with a special focus on satellite-derived DEMs for use in remote high-mountain areas.

  4. How interactions between top-down and bottom-up controls on carbon cycling affect fluxes within and from lakes

    Science.gov (United States)

    Sadro, S.; Piovia-Scott, J.; Nelson, C.; Sickman, J. O.; Knapp, R.

    2017-12-01

    While the role of inland waters in global carbon cycling has grown clearer in recent decades, the extent to which top-down and bottom-up mechanisms interact to regulate dynamics at the catchment scale is not well understood. The degree to which lakes process, export, or store terrestrial carbon is influenced by hydrological variability, variation in the magnitude of terrestrial organic matter (t-OM) entering a system, the efficiency with which such material is metabolized by bacterioplankton, the extent to which it is incorporated into secondary consumer biomass, and by the effects of food-web structure, such as the presence or absence of top predators. However, how these processes interact to mediate carbon fluxes between terrestrial, aquatic, and atmospheric reservoirs remains unclear. We develop a conceptual model that explores how interactions among these factors ultimately affects carbon dynamics using data from lakes located in the Sierra Nevada mountains of California. The Sierra are an excellent system for studies of carbon cycling because elevation-induced landscape gradients in soil development and vegetation cover provide large natural variation in terrestrial inputs to lakes, while variation in confounding factors such as lake morphometry or trophic state is comparatively small. Dissolved organic carbon concentrations increase 100 fold in lakes spanning the alpine to montane elevation gradient found in the Sierra, and fluorescence characteristics reflect an increasingly terrestrial signature with decreasing elevation. Bacterioplankton make up a large proportion of total ecosystem metabolism in these systems, and their metabolic efficiency is tightly coupled to the composition of dissolved organic matter. Stable isotope food web data (δ13C, Δ14C, and δ2H) and measurements of pCO2 from lakes indicate the magnitude of allochthony, rates if carbon cycling, and ecosystem heterotrophy all increase with the increasingly terrestrial signature of dissolved

  5. Optimal control of suspended sediment distribution model of Talaga lake

    Science.gov (United States)

    Ratianingsih, R.; Resnawati, Azim, Mardlijah, Widodo, B.

    2017-08-01

    Talaga Lake is one of several lakes in Central Sulawesi that potentially to be managed in multi purposes scheme because of its characteristic. The scheme is addressed not only due to the lake maintenance because of its sediment but also due to the Algae farming for its biodiesel fuel. This paper governs a suspended sediment distribution model of Talaga lake. The model is derived from the two dimensional hydrodynamic shallow water equations of the mass and momentum conservation law of sediment transport. An order reduction of the model gives six equations of hyperbolic systems of the depth, two dimension directional velocities and sediment concentration while the bed elevation as the second order of turbulent diffusion and dispersion are neglected. The system is discreted and linearized such that could be solved numerically by box-Keller method for some initial and boundary condition. The solutions shows that the downstream velocity is play a role in transversal direction of stream function flow. The downstream accumulated sediment indicate that the suspended sediment and its changing should be controlled by optimizing the downstream velocity and transversal suspended sediment changing due to the ideal algae growth need.

  6. Digital elevation models for site investigation programme in Oskarshamn. Site description version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars; Stroemgren, Maarten [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science

    2005-06-01

    In the Oskarshamn area, a digital elevation model has been produced using elevation data from many elevation sources on both land and sea. Many elevation model users are only interested in elevation models over land, so the model has been designed in three versions: Version 1 describes land surface, lake water surface, and sea bottom. Version 2 describes land surface, sediment levels at lake bottoms, and sea bottoms. Version 3 describes land surface, sediment levels at lake bottoms, and sea surface. In cases where the different sources of data were not in point form 'such as existing elevation models of land or depth lines from nautical charts' they have been converted to point values using GIS software. Because data from some sources often overlaps with data from other sources, several tests were conducted to determine if both sources of data or only one source would be included in the dataset used for the interpolation procedure. The tests resulted in the decision to use only the source judged to be of highest quality for most areas with overlapping data sources. All data were combined into a database of approximately 3.3 million points unevenly spread over an area of about 800 km{sup 2}. The large number of data points made it difficult to construct the model with a single interpolation procedure, the area was divided into 28 sub-models that were processed one by one and finally merged together into one single model. The software ArcGis 8.3 and its extension Geostatistical Analysis were used for the interpolation. The Ordinary Kriging method was used for interpolation. This method allows both a cross validation and a validation before the interpolation is conducted. Cross validation with different Kriging parameters were performed and the model with the most reasonable statistics was chosen. Finally, a validation with the most appropriate Kriging parameters was performed in order to verify that the model fit unmeasured localities. Since both the

  7. Mercury bioaccumulation in fishes from subalpine lakes of the Wallowa-Whitman National Forest, northeastern Oregon and western Idaho

    Science.gov (United States)

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2013-01-01

    Mercury (Hg) is a globally distributed pollutant that poses considerable risks to human and wildlife health. Over the past 150 years since the advent of the industrial revolution, approximately 80 percent of global emissions have come from anthropogenic sources, largely fossil fuel combustion. As a result, atmospheric deposition of Hg has increased by up to 4-fold above pre-industrial times. Because of their isolation, remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited Hg through freshwater food webs, as well as for evaluating the relative importance of Hg loading versus landscape influences on Hg bioaccumulation. The increase in Hg deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in Hg emissions may propagate to changes in Hg bioaccumulation and ecological risk. In this study, we evaluated Hg concentrations in fishes of high-elevation, sub-alpine lakes in the Wallowa-Whitman National Forest in northeastern Oregon and western Idaho. Our goals were to (1) assess the magnitude of Hg contamination in small-catchment lakes to evaluate the risk of atmospheric Hg to human and wildlife health, (2) quantify the spatial variability in fish Hg concentrations, and (3) determine the ecological, limnological, and landscape factors that are best correlated with fish total mercury (THg) concentrations in these systems. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. Importantly, our top statistical model explained 87 percent of the variability in fish THg concentrations among lakes with four key landscape and limnological variables— catchment conifer density (basal area of conifers within a lake’s catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. The basal area of conifers

  8. Halogenated organic contaminants (HOCs) in sediment from a highly eutrophicated lake, China: occurrence, distribution and mass inventories.

    Science.gov (United States)

    Wang, Ji-Zhong; Liu, Liang-Ying; Zhang, Kai; Liang, Bo; Li, Guo-Lian; Chen, Tian-Hu

    2012-11-01

    Halogenated organic contaminants (HOCs) including 16 polybrominated diphenyl ethers (PBDEs) and 37 polychlorinated biphenyls (PCBs) were determined in 49 surfacial sediments from Chaohu Lake, a highly eutrophicated lake, China. PBDEs were detected in almost samples with the range of the total concentration (defined as Σ(16)PBDEs) from 0.84 to 86.6 ng g(-1). Compared with the occurrence of PBDEs in Pearl River Delta and Yangtze River Delta in China, lower percentage of BDE-209 over the concentration of Σ(16)PBDEs was inferred by the high-volume application of penta-BDE mixture product for local domestic furniture purpose. The total concentration of 37 PCBs (Σ(37)PCBs) ranged from 0.05 to 3.36 ng g(-1) with the most detection of PCB-1, -4, -52 and -71. Both the concentrations of Σ(16)PBDE and Σ(37)PCB poorly correlated with total organic carbon (TOC), suggesting the significant contribution of phytoplankton organic carbons to sediment TOC. The contamination by PBDEs and PCBs in western region of the lake was significantly more serious than in eastern lake. Our findings about the higher residues of PBDEs and PCBs in sediments at the estuary of Nanfei River compared to the other estuaries also supported the conclusion that urban area (Hefei city) was the main source of PBDEs and PCBs. The comparison with the concentration of HOC in the present study with those in other lacustrine sediments around the world suggested the contamination by PBDEs in Chaohu Lake is at middle of the global concentration range, whereas PCBs is at low end of the global range which could be elucidated by local economic development and historical usage of PBDEs and PCBs. The mass inventories of HOCs in the lake were estimated at 561 and 38 kg, which corresponds to only 0.000006% and 0.0001% of these global historical produce volumes, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Sensitivity to acidification of subalpine ponds and lakes in north-western Colorado

    Science.gov (United States)

    Campbell, D.H.; Muths, E.; Turk, J.T.; Corn, P.S.

    2004-01-01

    Although acidifying deposition in western North America is lower than in many parts of the world, many high-elevation ecosystems there are extremely sensitive to acidification. Previous studies determined that the Mount Zirkel Wilderness Area (MZWA) has the most acidic snowpack and aquatic ecosystems that are among the most sensitive in the region. In this study, spatial and temporal variability of ponds and lakes in and near the MZWA were examined to determine their sensitivity to acidification and the effects of acidic deposition during and after snowmelt. Within the areas identified as sensitive to acidification based on bedrock types, there was substantial variability in acid-neutralizing capacity (ANC), which was related to differences in hydrological flowpaths that control delivery of weathering products to surface waters. Geological and topographic maps were of limited use in predicting acid sensitivity because their spatial resolution was not fine enough to capture the variability of these attributes for lakes and ponds with small catchment areas. Many of the lakes are sensitive to acidification (summer and autumn ANC pH value was 5·4, and pH generally remained less than 6·0 throughout early summer in the most sensitive ponds, indicating that biological effects of acidification are possible at levels of atmospheric deposition that occurred during the study. The aquatic chemistry of lakes was dominated by atmospheric deposition and biogeochemical processes in soils and shallow ground water, whereas the aquatic chemistry of ponds was also affected by organic acids and biogeochemical processes in the water column and at the sediment–water interface. These results indicate that conceptual and mechanistic acidification models that have been developed for lakes and streams may be inadequate for predicting acidification in less-understood systems such as ponds.

  10. A 31,000 year record of paleoenvironmental and lake-level change from Harding Lake, Alaska, USA

    Science.gov (United States)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Edwards, Mary E.; Langdon, Catherine T.; Steinman, Byron A.; Finney, Bruce P.

    2014-03-01

    Physical and geochemical proxy analyses of sediment cores from Harding Lake in central Alaska are used to reconstruct paleoenvironmental change and millennial scale fluctuations in lake level for the last ˜31,000 years. We analyzed a composite 422 cm core from the lake depocenter (42.1 m water depth) and identified 4 distinct lithologic units based on variability in dry bulk density, organic matter, biogenic silica, carbon to nitrogen mass ratios (C/N), organic matter carbon isotopes (δ13C), pollen, and elemental abundances via scanning X-ray fluorescence, with age control provided by 16 Accelerator Mass Spectrometry radiocarbon dates and 210Pb dating. In addition, we analyzed a transect of cores from 7.1 m, 10.75 m, 15.91 m, and 38.05 m water depths to identify lake level fluctuations and to characterize sediment compositional changes as a function of water depth. Organic matter content and magnetic susceptibility values in surface sediments from all transect cores show a strong correlation with water depth. Interpretation of four lithologic units with well-dated contacts produced a record of water-depth variations that is consistent with independent climate records from eastern Beringia. Basal coarse-grained sediments (quartz pebble diamicton) were deposited prior to 30,700 calendar years before present (yr BP), possibly from fluvial reworking or deflation during a period of severe aridity. Unit 1 sediments were deposited between 30,700 and 15,700 yr BP and are characterized by a low organic matter content, a high magnetic susceptibility, and low biogenic silica concentrations resulting from very low lake levels, low terrestrial and in-lake productivity and a high flux of clastic sediment. An abrupt increase in organic matter and biogenic silica concentration marks the transition into Unit 2 sediments, which were deposited between 15,700 and 9,400 yr BP when lake levels were higher and variable (relative to Unit 1). The transition to full interglacial

  11. Lake ecosystem response to climate change 8200 years ago. A multi-proxy study at Lake Højby Sø, Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Hede, Mikkel Ulfeldt; Noe-Nygaard, Nanna

    2009-01-01

    of climate and the effects of human activities. These problems also complicate the prediction of possible future climate influence on lake ecology. A way of circumventing these problems is the use of lake sediment records which contain a wealth of information about past lake history over long time scales...... productivity as reflected by high algal pigment accumulation rates in the period c. 8400–7950 cal yr BP. After c. 7950 cal yr BP algal productivity declined somewhat but the lake did not return to its pre-8400 cal yr BP conditions remaining a more productive and nutrient rich lake than before the climate...... was of more importance for lake ecosystem process than the change in air temperature....

  12. Modeling Antarctic Subglacial Lake Filling and Drainage Cycles

    Science.gov (United States)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-01-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  13. Successional change in the Lake Superior fish community: population trends in ciscoes, rainbow smelt, and lake trout, 1958-2008

    Science.gov (United States)

    Gorman, Owen T.

    2012-01-01

    The Lake Superior fish community underwent massive changes in the second half of the 20th century. Those changes are largely reflected in changes in abundance of the adults of principal prey species, the ciscoes (Coregonus spp.), the invasive rainbow smelt (Osmerus mordax), and the principal predator, lake trout (Salvelinus namaycush). To better understand changes in species abundances, a comprehensive series of gillnet and bottom trawl data collected from 1958 to 2008 were examined. In the late 1950s/early 1960s, smelt abundance was at its maximum, wild lake trout was at its minimum, and an abundance of hatchery lake trout was increasing rapidly. The bloater (Coregonus hoyi) was the prevalent cisco in the lake; abundance was more than 300% greater than the next most abundant cisco, shortjaw cisco (C. zenithicus), followed by kiyi (C. kiyi) and lake cisco (C. artedi). By the mid-1960s, abundance of hatchery lake trout was nearing maximum, smelt abundance was beginning to decline, and abundances of all ciscoes declined, but especially that of shortjaw cisco and kiyi. By the late 1970s, recovery of wild lake trout stocks was well underway and abundances of hatchery lake trout and smelt were declining and the ciscoes were reaching their nadir. During 1980–1990, the fish community underwent a dramatic shift in organization and structure. The rapid increase in abundance of wild lake trout, concurrent with a rapid decline in hatchery lake trout, signaled the impending recovery. Rainbow smelt abundance dropped precipitously and within four years, lake cisco and bloater populations rebounded on the heels of a series of strong recruitment events. Kiyi populations showed signs of recovery by 1989, and shortjaw by 2000, though well below historic maximum abundances. High abundance of adult smelt prior to 1980 appears to be the only factor linked to recruitment failure in the ciscoes. Life history traits of the cisco species were examined to better understand their different

  14. Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.

    Science.gov (United States)

    Genkai-Kato, Motomi; Vadeboncoeur, Yvonne; Liboriussen, Lone; Jeppesen, Erik

    2012-03-01

    Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.

  15. Habitat quality and recruitment success of cui-ui in the Truckee River downstream of Marble Bluff Dam, Pyramid Lake, Nevada

    Science.gov (United States)

    Scoppettone, G. Gary; Rissler, Peter H.; Salgado, J. Antonio; Harry, Beverly

    2013-01-01

    We compared cui-ui (Chasmistes cujus) recruitment from two reaches of the Truckee River with histories of severe erosional downcutting caused by a decline in Pyramid Lake surface elevation. In 1975, Marble Bluff Dam (MBD) was constructed 5 kilometers upstream of the extant mouth of the Truckee River to stabilize the upstream reach of the river; the downstream reach of the river remained unstable and consequently unsuitable for cui-ui recruitment. By the early 2000s, there was a decrease in the Truckee River’s slope from MBD to Pyramid Lake after a series of wet years in the 1990s. This was followed by changes in river morphology and erosion abatement. These changes led to the question as to cui-ui recruitment potential in the Truckee River downstream of MBD. In 2012, more than 7,000 cui-ui spawners were passed upstream of MBD, although an indeterminate number of cui-ui spawned downstream of MBD. In this study, we compared cui-ui recruitment upstream and downstream of MBD during a Truckee River low-flow year (2012). Cui-ui larvae emigration to Pyramid Lake began earlier and ended later downstream of MBD. A greater number of cui-ui larvae was produced downstream of MBD than upstream. This also was true for native Tahoe sucker (Catostomus tahoensis) and Lahontan redside (Richardsonius egregius). The improved Truckee River stability downstream of MBD and concomitant cui-ui recruitment success is attributed to a rise in Pyramid Lake's surface elevation. A decline in lake elevation may lead to a shift in stream morphology and substrate composition to the detriment of cui-ui reproductive success as well as the reproductive success of other native fishes.

  16. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

    Science.gov (United States)

    Paterson, Gordon; Ryder, Mark; Drouillard, Ken G; Haffner, G Douglas

    2016-01-01

    This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems. © 2015 SETAC.

  17. Ecology of playa lakes

    Science.gov (United States)

    Haukos, David A.; Smith, Loren M.

    1992-01-01

    Between 25,000 and 30,000 playa lakes are in the playa lakes region of the southern high plains (Fig. 1). Most playas are in west Texas (about 20,000), and fewer, in New Mexico, Oklahoma, Kansas, and Colorado. The playa lakes region is one of the most intensively cultivated areas of North America. Dominant crops range from cotton in southern areas to cereal grains in the north. Therefore, most of the native short-grass prairie is gone, replaced by crops and, recently, grasses of the Conservation Reserve Program. Playas are the predominant wetlands and major wildlife habitat of the region.More than 115 bird species, including 20 species of waterfowl, and 10 mammal species have been documented in playas. Waterfowl nest in the area, producing up to 250,000 ducklings in wetter years. Dominant breeding and nesting species are mallards and blue-winged teals. During the very protracted breeding season, birds hatch from April through August. Several million shorebirds and waterfowl migrate through the area each spring and fall. More than 400,000 sandhill cranes migrate through and winter in the region, concentrating primarily on the larger saline lakes in the southern portion of the playa lakes region.The primary importance of the playa lakes region to waterfowl is as a wintering area. Wintering waterfowl populations in the playa lakes region range from 1 to 3 million birds, depending on fall precipitation patterns that determine the number of flooded playas. The most common wintering ducks are mallards, northern pintails, green-winged teals, and American wigeons. About 500,000 Canada geese and 100,000 lesser snow geese winter in the playa lakes region, and numbers of geese have increased annually since the early 1980’s. This chapter describes the physiography and ecology of playa lakes and their attributes that benefit waterfowl.

  18. A Global Lake Ecological Observatory Network (GLEON) for synthesising high-frequency sensor data for validation of deterministic ecological models

    Science.gov (United States)

    David, Hamilton P; Carey, Cayelan C.; Arvola, Lauri; Arzberger, Peter; Brewer, Carol A.; Cole, Jon J; Gaiser, Evelyn; Hanson, Paul C.; Ibelings, Bas W; Jennings, Eleanor; Kratz, Tim K; Lin, Fang-Pang; McBride, Christopher G.; de Motta Marques, David; Muraoka, Kohji; Nishri, Ami; Qin, Boqiang; Read, Jordan S.; Rose, Kevin C.; Ryder, Elizabeth; Weathers, Kathleen C.; Zhu, Guangwei; Trolle, Dennis; Brookes, Justin D

    2014-01-01

    A Global Lake Ecological Observatory Network (GLEON; www.gleon.org) has formed to provide a coordinated response to the need for scientific understanding of lake processes, utilising technological advances available from autonomous sensors. The organisation embraces a grassroots approach to engage researchers from varying disciplines, sites spanning geographic and ecological gradients, and novel sensor and cyberinfrastructure to synthesise high-frequency lake data at scales ranging from local to global. The high-frequency data provide a platform to rigorously validate process- based ecological models because model simulation time steps are better aligned with sensor measurements than with lower-frequency, manual samples. Two case studies from Trout Bog, Wisconsin, USA, and Lake Rotoehu, North Island, New Zealand, are presented to demonstrate that in the past, ecological model outputs (e.g., temperature, chlorophyll) have been relatively poorly validated based on a limited number of directly comparable measurements, both in time and space. The case studies demonstrate some of the difficulties of mapping sensor measurements directly to model state variable outputs as well as the opportunities to use deviations between sensor measurements and model simulations to better inform process understanding. Well-validated ecological models provide a mechanism to extrapolate high-frequency sensor data in space and time, thereby potentially creating a fully 3-dimensional simulation of key variables of interest.

  19. McClean Lake. Site Guide

    International Nuclear Information System (INIS)

    2016-09-01

    Located over 700 kilometers northeast of Saskatoon, Areva's McClean Lake site is comprised of several uranium mines and one of the most technologically advanced uranium mills in the world - the only mill designed to process high-grade uranium ore without dilution. Areva has operated several open-pit uranium mines at the McClean Lake site, and is evaluating future mines at and near the site. The McClean Lake mill has recently undergone a multimillion-dollar upgrade and expansion, which has doubled its annual production capacity of uranium concentrate to 24 million pounds. It is the only facility in the world capable of processing high-grade uranium ore without diluting it. The mill processes the ore from the Cigar Lake mine, the world's second largest and highest-grade uranium mine. The McClean Lake site operates 365 days a year on a week-in/week-out rotation schedule for workers, over 50% of whom reside in northern Saskatchewan communities. Tailings are waste products resulting from milling uranium ore. This waste is made up of leach residue solids, waste solutions and chemical precipitates that are carefully engineered for long-term disposal. The TMF serves as the repository for all resulting tailings. This facility allows proper waste management, which minimizes potential adverse environmental effects. Mining projections indicate that the McClean Lake mill will produce tailings in excess of the existing capacity of the TMF. After evaluating a number of options, Areva has decided to pursue an expansion of this facility. Areva is developing the Surface Access Borehole Resource Extraction (SABRE) mining method, which uses a high-pressure water jet placed at the bottom of the drill hole to extract ore. Areva has conducted a series of tests with this method and is evaluating its potential for future mining operations. McClean Lake maintains its certification in ISO 14001 standards for environmental management and OHSAS 18001 standards for occupational health

  20. Quantifying aquatic insect deposition from lake to land.

    Science.gov (United States)

    Dreyer, Jamin; Townsend, Philip A; Hook, James C; Hoekman, David; Vander Zanden, M Jake; Gratton, Claudio

    2015-02-01

    Adjacent ecosystems are influenced by organisms that move across boundaries, such as insects with aquatic larval stages and terrestrial adult stages, which transport energy and nutrients from water to land. However, the ecosystem-level effect of aquatic insects on land has generally been ignored, perhaps because the organisms themselves are individually small. At the naturally productive Lake Mývatn, Iceland, we used two readily measured quantities: total insect emergence from water and relative insect density on land, to demonstrate an approach for estimating aquatic insect deposition (e.g., kg N x m(-2) x yr(-1)) to shore. Estimates from emergence traps between 2008 and 20.11 indicated a range of 0.15-3.7 g x m(-2) x yr(-1), or a whole-lake emergence of 3.1-76 Mg/yr; all masses are given as dry mass. Using aerial infall trap measurements of midge relative abundance over land, we developed a local-maximum decay function model to predict proportional midge deposition with distance from the lake. The dispersal model predicted midge abundance with R2 = 0.89, a pattern consistent among years, with peak midge deposition occurring 20-25 m inland and 70% of midges deposited within 100 m of shore. During a high-midge year (2008), we estimate midge deposition within the first 50 m of shoreline to be 100 kg xha(-1) x yr(-1), corresponding to inputs of 10 kg N x ha(-1) x yr(-1) and 1 kg P x ha(-1) x yr(-1), or about three to five times above background terrestrial N deposition rates. Consistent with elevated N input where midges are most dense, we observed that soil available nitrate in resin bags decreases with increasing distance from the lake. Our approach, generalizable to other systems, shows that aquatic insects can be a major source of nutrients to terrestrial ecosystems and have the capacity to significantly affect ecosystem processes.

  1. Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models

    Science.gov (United States)

    Flament, T.; Berthier, E.; Rémy, F.

    2014-04-01

    We describe a major subglacial lake drainage close to the ice divide in Wilkes Land, East Antarctica, and the subsequent cascading of water underneath the ice sheet toward the coast. To analyse the event, we combined altimetry data from several sources and subglacial topography. We estimated the total volume of water that drained from Lake CookE2 by differencing digital elevation models (DEM) derived from ASTER and SPOT5 stereo imagery acquired in January 2006 and February 2012. At 5.2 ± 1.5 km3, this is the largest single subglacial drainage event reported so far in Antarctica. Elevation differences between ICESat laser altimetry spanning 2003-2009 and the SPOT5 DEM indicate that the discharge started in November 2006 and lasted approximately 2 years. A 13 m uplift of the surface, corresponding to a refilling of about 0.6 ± 0.3 km3, was observed between the end of the discharge in October 2008 and February 2012. Using the 35-day temporal resolution of Envisat radar altimetry, we monitored the subsequent filling and drainage of connected subglacial lakes located downstream of CookE2. The total volume of water traveling within the theoretical 500-km-long flow paths computed with the BEDMAP2 data set is similar to the volume that drained from Lake CookE2, and our observations suggest that most of the water released from Lake CookE2 did not reach the coast but remained trapped underneath the ice sheet. Our study illustrates how combining multiple remote sensing techniques allows monitoring of the timing and magnitude of subglacial water flow beneath the East Antarctic ice sheet.

  2. A computationally efficient depression-filling algorithm for digital elevation models, applied to proglacial lake drainage

    NARCIS (Netherlands)

    Berends, Constantijn J.; Van De Wal, Roderik S W

    2016-01-01

    Many processes govern the deglaciation of ice sheets. One of the processes that is usually ignored is the calving of ice in lakes that temporarily surround the ice sheet. In order to capture this process a "flood-fill algorithm" is needed. Here we present and evaluate several optimizations to a

  3. Characteristics of surface O3 over Qinghai Lake area in Northeast Tibetan Plateau, China

    International Nuclear Information System (INIS)

    Shen, Zhenxing; Cao, Junji; Zhang, Leiming; Zhao, Zhuzi; Dong, Jungang; Wang, Linqing; Wang, Qiyuan; Li, Guohui; Liu, Suixin; Zhang, Qian

    2014-01-01

    Surface O 3 was monitored continuously during Aug. 12, 2010 to Jul. 21, 2011 at a high elevation site (3200 m above sea level) in Qinghai Lake area (36°58′37″N, 99°53′56″E) in Northeast Tibetan Plateau, China. Daily average O 3 ranged from 21.8 ppbv to 65.3 ppbv with an annual average of 41.0 ppbv. Seasonal average of O 3 followed a decreasing order of summer > autumn > spring > winter. Diurnal variations of O 3 showed low concentrations during daytime and high concentrations during late night and early morning. An intensive campaign was also conducted during Aug. 13–31, 2010 to investigate correlations between meteorological or chemical conditions and O 3 . It was found that O 3 was poorly correlated with solar radiation due to the insufficient NO x in the ambient air, thus limiting O 3 formation under strong solar radiation. In contrast, high O 3 levels always coincided with strong winds, suggesting that stratospheric O 3 and long range transport might be the main sources of O 3 in this rural area. Back-trajectory analysis supported this hypothesis and further indicated the transport of air masses from northwest, northeast and southeast directions. - Highlights: • Surface O 3 was measured in Qinghai Lake area in Northeast Tibetan Plateau, China. • The O 3 chemical formation was under a strong NOx-limited in Qinghai Lake areas. • Stratospheric O 3 and transport might be the main sources of O 3 in this area

  4. Impact of marine inundation after a period of drought on the lakeshore vegetation of Lake St Lucia, South Africa : resilience of estuarine vegetation

    NARCIS (Netherlands)

    Sieben, E. J. J.; Ellery, W. N.; Dullo, B. W.; Grootjans, A. P.

    The shore of Lake St Lucia in the vicinity of Catalina Bay, in the southern part of the lake, receives freshwater input as surface and groundwater seepage from the adjacent elevated coastal plain. Vegetation, water quality and landform were recorded on the lakeshore and on the dry lakebed near one

  5. Origin and Formation of Giant Mounds in Lake Ladoga (Russia) from High-Resolution Seismic Reflection Data

    Science.gov (United States)

    Gromig, R.; Lebas, E.; Krastel, S.; Averes, T.; Wagner, B.; Melles, M.; Fedorov, G.

    2017-12-01

    In the framework of the German-Russian project `PLOT - Paleolimnological Transect' (for an overview of the project see Gromig et al., this meeting), a pilot seismic survey was carried out in Lake Ladoga (Russia) in late summer 2013. In total, 1500 km of seismic reflection profiles have been acquired using a mini-GI gun and a 32-channel seismic streamer. The high-resolution of the seismic data allows us to document in detail the sedimentary processes that occurred in the lake during the preglacial and postglacial history. The seismic stratigraphic architecture of the lake shows, from top to bottom, acoustically well-stratified Holocene muds overlaying rather transparent postglacial varves. These sediment successions are usually bordered by a hard reflector underneath, which may represent coarse-grained sediments or a till. The nature of the material composing the uppermost units have been tied to coring information from core Co1309, which was retrieved during the same survey. Of particular interest, are the single to composite, giant (kilometer-scale) mounds directly overlying the hard reflector. Internal architecture of the mounds reveals a complex formation history, with mound types showing significant structural deformation of different degrees; and other mound types showing a central deformation area, which strongly contrasts with the titled reflections or undisturbed stratification visible at the edges. The deepest seismic unit underlying the mounds is characterized by well-bedded, tilted reflectors in the southeastern part of the lake, while clear synclines are identified in the northwestern part of the lake. An erosional truncation separates the deepest unit from the overlying ones. In the work presented here, we focus on the understanding of the origin and the formation of the giant mounds with respect to the glacial history of Lake Ladoga.

  6. Lake surface water temperatures of European Alpine lakes (1989-2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set

    Science.gov (United States)

    Riffler, M.; Wunderle, S.

    2014-05-01

    Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Thus, the Global Climate Observing System (GCOS) lists LWT as an Essential Climate Variable (ECV). Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European (pre-alpine) water bodies based on the extensive AVHRR 1 km data record (1989-2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and Metop-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. Especially data from NOAA-16 and prior satellites were prone to noise, e.g., due to transmission errors or fluctuations in the instrument's thermal state. This has resulted in partly corrupted thermal calibration data and may cause errors of up to several Kelvin in the final resulting LSWT. Thus, a multi-stage correction scheme has been applied to the data to minimize these artefacts. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with operational analysis and reanalysis data from the European Centre for Medium Range Weather Forecasts. The resulting LSWTs were

  7. Lake trout rehabilitation in Lake Erie: a case history

    Science.gov (United States)

    Cornelius, Floyd C.; Muth, Kenneth M.; Kenyon, Roger

    1995-01-01

    Native lake trout (Salvelinus namaycush) once thrived in the deep waters of eastern Lake Erie. The impact of nearly 70 years of unregulated exploitation and over 100 years of progressively severe cultural eutrophication resulted in the elimination of lake trout stocks by 1950. Early attempts to restore lake trout by stocking were unsuccessful in establishing a self-sustaining population. In the early 1980s, New York's Department of Environmental Conservation, Pennsylvania's Fish and Boat Commission, and the U.S. Fish and Wildlife Service entered into a cooperative program to rehabilitate lake trout in the eastern basin of Lake Erie. After 11 years of stocking selected strains of lake trout in U.S. waters, followed by effective sea lamprey control, lake trout appear to be successfully recolonizing their native habitat. Adult stocks have built up significantly and are expanding their range in the lake. Preliminary investigations suggest that lake trout reproductive habitat is still adequate for natural reproduction, but natural recruitment has not been documented. Future assessments will be directed toward evaluation of spawning success and tracking age-class cohorts as they move through the fishery.

  8. Palaeolimnological evidence of vulnerability of Lake Neusiedl (Austria) toward climate related changes since the last "vanished-lake" stage.

    Science.gov (United States)

    Tolotti, Monica; Milan, Manuela; Boscaini, Adriano; Soja, Gerhard; Herzig, Alois

    2013-04-01

    The palaeolimnological reconstruction of secular evolution of Euroepan Lakes with key socio-economical relevance respect to large (climate change) and local scale (land use, tourism) environmental changes, represents one of the objectives of the project EuLakes (European Lakes Under Environmental Stressors, Supporting lake governance to mitigate the impact of climate change, Reg. N. 2CE243P3), launched in 2010 within the Central European Inititiative. The project consortium comprises lakes of different morphology and prevalent human uses, including the meso-eutrophic Lake Neusiedl, the largest Austrian lake (total area 315 km2), and the westernmost shallow (mean depth 1.2 m) steppe lake of the Euro-Asiatic continent. The volume of Lake Neusiedl can potentially change over the years, in relation with changing balance between atmospheric precipitation and lake water evapotranspiration. Changing water budget, together with high lake salinity and turbidity, have important implications over the lake ecosystem. This contribution illustrates results of the multi-proxi palaeolimnological reconstruction of ecologial changes occurred in Lake Neusiedl during the last ca. 140 years, i.e. since the end of the last "vanished-lake" stage (1865-1871). Geochemical and biological proxies anticipate the increase in lake productivity of ca. 10 years (1950s) respect to what reported in the literature. Diatom species composition indicate a biological lake recovery in the late 1980s, and suggest a second increment in lake productivity since the late 1990s, possibly in relation with the progressive increase in the nitrogen input from agriculture. Abundance of diatoms typical of brackish waters indicated no significant long-term change in lake salinity, while variations in species toleranting dessiccation confirm the vulnerability of Lake Neusiedl toward climate-driven changes in the lake water balance. This fragility is aggravated by the the semi-arid climate conditions of the catchemnt

  9. Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines

    Science.gov (United States)

    Diego Galván, J.; Büntgen, Ulf; Ginzler, Christian; Grudd, Håkan; Gutiérrez, Emilia; Labuhn, Inga; Julio Camarero, J.

    2015-01-01

    The growth/climate relationship of theoretically temperature-controlled high-elevation forests has been demonstrated to weaken over recent decades. This is likely due to new tree growth limiting factors, such as an increasing drought risk for ecosystem functioning and productivity across the Mediterranean Basin. In addition, declining tree growth sensitivity to spring temperature may emerge in response to increasing drought stress. Here, we evaluate these ideas by assessing the growth/climate sensitivity of 1500 tree-ring width (TRW) and 102 maximum density (MXD) measurement series from 711 and 74 Pinus uncinata trees, respectively, sampled at 28 high-elevation forest sites across the Pyrenees and two relict populations of the Iberian System. Different dendroclimatological standardization and split period approaches were used to assess the high- to low-frequency behavior of 20th century tree growth in response to temperature means, precipitation totals and drought indices. Long-term variations in TRW track summer temperatures until about 1970 but diverge afterwards, whereas MXD captures the recent temperature increase in the low-frequency domain fairly well. On the other hand summer drought has increasingly driven TRW along the 20th century. Our results suggest fading temperature sensitivity of Iberian high-elevation P. uncinata forest growth, and reveal the importance of summer drought that is becoming the emergent limiting factor of tree ring width formation in many parts of the Mediterranean Basin.

  10. Mining, metallurgy and the historical origin of mercury pollution in lakes and watercourses in Central Sweden.

    Science.gov (United States)

    Bindler, Richard; Yu, Ruilian; Hansson, Sophia; Classen, Neele; Karlsson, Jon

    2012-08-07

    In Central Sweden an estimated 80% of the lakes contain fish exceeding health guidelines for mercury. This area overlaps extensively with the Bergslagen ore region, where intensive mining of iron ores and massive sulfide ores occurred over the past millennium. Although only a few mines still operate today, thousands of mineral occurrences and mining sites are documented in the region. Here, we present data on long-term mercury pollution in 16 sediment records from 15 lakes, which indicate that direct release of mercury to lakes and watercourses was already significant prior to industrialization (mines. Although the timing and magnitude of the historical increases in mercury are heterogeneous among lakes, the data provide unambiguous evidence for an incidental release of mercury along with other mining metals to lakes and watercourses, which suggests that the present-day problem of elevated mercury concentrations in the Bergslagen region can trace its roots back to historical mining.

  11. Soil nematodes show a mid-elevation diversity maximum and elevational zonation on Mt. Norikura, Japan.

    Science.gov (United States)

    Dong, Ke; Moroenyane, Itumeleng; Tripathi, Binu; Kerfahi, Dorsaf; Takahashi, Koichi; Yamamoto, Naomichi; An, Choa; Cho, Hyunjun; Adams, Jonathan

    2017-06-08

    Little is known about how nematode ecology differs across elevational gradients. We investigated the soil nematode community along a ~2,200 m elevational range on Mt. Norikura, Japan, by sequencing the 18S rRNA gene. As with many other groups of organisms, nematode diversity showed a high correlation with elevation, and a maximum in mid-elevations. While elevation itself, in the context of the mid domain effect, could predict the observed unimodal pattern of soil nematode communities along the elevational gradient, mean annual temperature and soil total nitrogen concentration were the best predictors of diversity. We also found nematode community composition showed strong elevational zonation, indicating that a high degree of ecological specialization that may exist in nematodes in relation to elevation-related environmental gradients and certain nematode OTUs had ranges extending across all elevations, and these generalized OTUs made up a greater proportion of the community at high elevations - such that high elevation nematode OTUs had broader elevational ranges on average, providing an example consistent to Rapoport's elevational hypothesis. This study reveals the potential for using sequencing methods to investigate elevational gradients of small soil organisms, providing a method for rapid investigation of patterns without specialized knowledge in taxonomic identification.

  12. Estimating Spring Condensation on the Great Lakes

    Science.gov (United States)

    Meyer, A.; Welp, L.

    2017-12-01

    The Laurentian Great Lakes region provides opportunities for shipping, recreation, and consumptive water use to a large part of the United States and Canada. Water levels in the lakes fluctuate yearly, but attempts to model the system are inadequate because the water and energy budgets are still not fully understood. For example, water levels in the Great Lakes experienced a 15-year low period ending in 2013, the recovery of which has been attributed partially to decreased evaporation and increased precipitation and runoff. Unlike precipitation, the exchange of water vapor between the lake and the atmosphere through evaporation or condensation is difficult to measure directly. However, estimates have been constructed using off-shore eddy covariance direct measurements of latent heat fluxes, remote sensing observations, and a small network of monitoring buoys. When the lake surface temperature is colder than air temperature as it is in spring, condensation is larger than evaporation. This is a relatively small component of the net annual water budget of the lakes, but the total amount of condensation may be important for seasonal energy fluxes and atmospheric deposition of pollutants and nutrients to the lakes. Seasonal energy fluxes determine, and are influenced by, ice cover, water and air temperatures, and evaporation in the Great Lakes. We aim to quantify the amount of spring condensation on the Great Lakes using the National Center for Atmospheric Prediction North American Regional Reanalysis (NCEP NARR) Data for Winter 2013 to Spring 2017 and compare the condensation values of spring seasons following high volume, high duration and low volume, low duration ice cover.

  13. Wynoochee Lake and dam flood storage reevaluation study

    International Nuclear Information System (INIS)

    Lynch, C.J.

    1993-01-01

    With the desire to increase the revenue generating potential of the Wynoochee Lake and Dam Project the cities of Tacoma and Aberdeen, Washington, have pursued the potential for retrofitting a hydropower plant at the dam. The feasibility of the hydropower plant is dependent on higher average head for power generation. This paper discusses the Corps of Engineers reevaluation of the winter flood control requirements with the aim of raising the elevation of the winter operating pool

  14. Quantifying the Variability of CH4 Emissions from Pan-Arctic Lakes with Lake Biogeochemical and Landscape Evolution Models

    Science.gov (United States)

    Tan, Z.; Zhuang, Q.

    2014-12-01

    Recent studies in the arctic and subarctic show that CH4 emissions from pan-arctic lakes are playing much more significant roles in the regional carbon cycling than previously estimated. Permafrost thawing due to pronounced warming at northern high latitudes affects lake morphology, changing its CH4 emissions. Thermokarst can enlarge the extent of artic lakes, exposing stable ancient carbon buried in the permafrost zone for degradation and changing a previously known carbon sink to a large carbon source. In some areas, the thawing of subarctic discontinuous and isolated permafrost can diminish thermokarst lakes. To date, few models have considered these important hydrological and biogeochemical processes to provide adequate estimation of CH4 emissions from these lakes. To fill this gap, we have developed a process-based climate-sensitive lake biogeochemical model and a landscape evolution model, which have been applied to quantify the state and variability of CH4 emissions from this freshwater system. Site-level experiments show the models are capable to capture the spatial and temporal variability of CH4 emissions from lakes across Siberia and Alaska. With the lake biogeochemical model solely, we estimate that the magnitude of CH4 emissions from lakes is 13.2 Tg yr-1 in the north of 60 ºN at present, which is on the same order of CH4 emissions from northern high-latitude wetlands. The maximum increment is 11.8 Tg CH4 yr-1 by the end of the 21st century when the worst warming scenario is assumed. We expect the landscape evolution model will improve the existing estimates.

  15. Impacts of Climate Change on Tibetan Lakes: Patterns and Processes

    Directory of Open Access Journals (Sweden)

    Dehua Mao

    2018-02-01

    Full Text Available High-altitude inland-drainage lakes on the Tibetan Plateau (TP, the earth’s third pole, are very sensitive to climate change. Tibetan lakes are important natural resources with important religious, historical, and cultural significance. However, the spatial patterns and processes controlling the impacts of climate and associated changes on Tibetan lakes are largely unknown. This study used long time series and multi-temporal Landsat imagery to map the patterns of Tibetan lakes and glaciers in 1977, 1990, 2000, and 2014, and further to assess the spatiotemporal changes of lakes and glaciers in 17 TP watersheds between 1977 and 2014. Spatially variable changes in lake and glacier area as well as climatic factors were analyzed. We identified four modes of lake change in response to climate and associated changes. Lake expansion was predominantly attributed to increased precipitation and glacier melting, whereas lake shrinkage was a main consequence of a drier climate or permafrost degradation. These findings shed new light on the impacts of recent environmental changes on Tibetan lakes. They suggest that protecting these high-altitude lakes in the face of further environmental change will require spatially variable policies and management measures.

  16. Microplastics in Taihu Lake, China.

    Science.gov (United States)

    Su, Lei; Xue, Yingang; Li, Lingyun; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-09-01

    In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 10(6)-6.8 × 10(6) items/km(2) in plankton net samples, 3.4-25.8 items/L in surface water, 11.0-234.6 items/kg dw in sediments and 0.2-12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100-1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    Science.gov (United States)

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  18. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    Science.gov (United States)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  19. Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i

    Science.gov (United States)

    Patrick, Matthew R.; Swanson, Don; Orr, Tim R.

    2016-01-01

    Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.

  20. Long-distance flights and high-risk breeding by nomadic waterbirds on desert salt lakes.

    Science.gov (United States)

    Pedler, Reece D; Ribot, Raoul F H; Bennett, Andrew T D

    2018-02-01

    Understanding and conserving mobile species presents complex challenges, especially for animals in stochastic or changing environments. Nomadic waterbirds must locate temporary water in arid biomes where rainfall is highly unpredictable in space and time. To achieve this they need to travel over vast spatial scales and time arrival to exploit pulses in food resources. How they achieve this is an enduring mystery.  We investigated these challenges in the colonial-nesting Banded Stilt (Cladorhynchus leucocephalus), a nomadic shorebird of conservation concern. Hitherto, Banded Stilts were hypothesized to have only 1-2 chances to breed during their long lifetime, when flooding rain fills desert salt lakes, triggering mass-hatching of brine shrimp. Over 6 years, we satellite tagged 57 individuals, conducted 21 aerial surveys to detect nesting colonies on 14 Australian desert salt lakes, and analyzed 3 decades of Landsat and MODIS satellite imagery to quantify salt-lake flood frequency and extent. Within days of distant inland rainfall, Banded Stilts flew 1,000-2,000 km to reach flooded salt lakes. On arrival, females laid over half their body weight in eggs. We detected nesting episodes across the species' range at 7 times the frequency reported during the previous 80 years. Nesting colonies of thousands formed following minor floods, yet most were subsequently abandoned when the water rapidly evaporated prior to egg hatching. Satellite imagery revealed twice as many flood events sufficient for breeding-colony initiation as recorded colonies, suggesting that nesting at remote sites has been underdetected. Individuals took risk on uncertain breeding opportunities by responding to frequent minor flood events between infrequent extensive flooding, exemplifying the extreme adaptability and trade-offs of species exploiting unstable environments. The conservation challenges of nest predation by overabundant native gulls and anthropogenic modifications to salt lakes filling

  1. Determining the high variability of pCO2 and pO2 in the littoral zone of a subtropical coastal lake

    Directory of Open Access Journals (Sweden)

    Denise Tonetta

    2014-09-01

    Full Text Available The aquatic metabolism comprises production and mineralization of organic matter through biological processes, such as primary production and respiration that can be estimated by gases concentration in the water column. AIM: The study aimed to assess the temporal variability of pCO2 and pO2 in the littoral zone of a subtropical coastal lake. Our hypotheses are i high variability in meteorological conditions, such as temperature and light, drive the high variability in pCO2 and pO2, and ii the lake is permanently heterotrophic due to the low phosphorus concentration. METHODS: We estimated pCO2 from pH-alkalinity method, and pO2 from dissolved oxygen concentration and water temperature measured in free-water during 24 hours in the autumn, winter, spring and summer. RESULTS: Our findings showed that limnological variables had low temporal variability, while the meteorological variables and pCO2 presented a high coefficient of variation, which is representative of each climatic season. In autumn and winter, it was recorded that the lake was supersaturated in CO2 relative to the atmosphere, while in spring and summer CO2 concentration was below the concentration found in the atmosphere. Over 24 hours, pCO2 also showed high variability, with autumn presenting higher concentration during the night when compared to daytime. Water temperature and chlorophyll a were negatively correlated with pCO2, while pO2 was positively correlated with wind and light. CONCLUSION: Agreeing with our first hypothesis, pCO2 showed an expressive temporal variation in a subtropical lake associated to the high variability in meteorological conditions. On the other hand, our second hypothesis was not confirmed, since Peri Lake exported CO2 to the atmosphere in some periods and in others, CO2 was removed from the atmosphere.

  2. The diversity of benthic mollusks of Lake Victoria and Lake Burigi ...

    African Journals Online (AJOL)

    Molluscan diversity, abundance and distribution in sediments of Lake Victoria and its satellite lake, Lake Burigi, were investigated. The survey was carried out in January and February 2002 for Lake Victoria and in March and April 2002 for Lake Burigi. Ten genera were recorded from four zones of Lake Victoria while only ...

  3. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  4. Dependence of Wetland Vegetation on Hydrological Regime in a Large Floodplain Lake (Poyang Lake) in the Middle Yangtze River

    Science.gov (United States)

    Zhang, Q.; Tan, Z.; Xu, X.

    2017-12-01

    Exemplified in the Yangtze River floodplain lake, Poyang Lake, investigations were carried out to examine the dependence of vegetation on hydrological variables. The Lake is one of the few lakes that remain naturally connected to the Yangtze River. The Lake surface expanses to 4000 km2 in wet seasons, and reduces to less than 1000 km2 in dry seasons, creating some 3000 km2 vital wetland habitats for many animals. Remote sensing was used to obtain the spatial distribution of wetland vegetations. A lake hydrodynamic model using MIKE 21 was employed to determine the variability of wetland inundation. In-situ high time frequency observations of climate, soil moisture, and groundwater depth were also conducted in a typical wetland transect of 1 km long. Vegetations were sampled periodically to obtain species composition, diversity and biomass. Results showed that the spatial distribution of vegetation highly depended on the inundation duration and depth. Optimal hydrological variables existed for the typical vegetations in Poyang Lake wetland. Numerical simulations using HYDRUS-1D further demonstrated that both groundwater depth and soil moisture had significant effects on the growth of vegetation and the water demand in terms of transpiration, even in a wet climate zone such as middle Yangtze River. It was found that the optimal groundwater depths existed for both above- and belowground biomass. Simulation scenarios indicated that climate changes and human modification of hydrology would affect the water usage of vegetation and may cause a strategic adaptation of the vegetation to the stressed hydrological conditions. The study revealed new knowledge on the high dependence of wetland vegetation on both surface water regime and groundwater depths, in wet climate zone. Outcomes of this study may provide support for an integrated management of balancing water resources development and wetland sustainability maintenance in Poyang Lake, and other floodplain wetlands, with

  5. Monitoring of Heavy Metal Loading into the Wetlands South of Lake ...

    African Journals Online (AJOL)

    Wetlands impacted by gold mining activities in the South Lake Victoria basin show elevated heavy metal contents in soil and sediment, particularly Cu (13-415 mg/kg), Pb (24-94 mg/kg), Zn (9-80 mg/kg), Cr (19-77 mg/kg), Ni (12-37 mg/kg) and Hg (0.19-1.76 mg/kg), contrary to non-impacted wetlands, which contain ...

  6. Lake Chapala change detection using time series

    Science.gov (United States)

    López-Caloca, Alejandra; Tapia-Silva, Felipe-Omar; Escalante-Ramírez, Boris

    2008-10-01

    The Lake Chapala is the largest natural lake in Mexico. It presents a hydrological imbalance problem caused by diminishing intakes from the Lerma River, pollution from said volumes, native vegetation and solid waste. This article presents a study that allows us to determine with high precision the extent of the affectation in both extension and volume reduction of the Lake Chapala in the period going from 1990 to 2007. Through satellite images this above-mentioned period was monitored. Image segmentation was achieved through a Markov Random Field model, extending the application towards edge detection. This allows adequately defining the lake's limits as well as determining new zones within the lake, both changes pertaining the Lake Chapala. Detected changes are related to a hydrological balance study based on measuring variables such as storage volumes, evapotranspiration and water balance. Results show that the changes in the Lake Chapala establish frail conditions which pose a future risk situation. Rehabilitation of the lake requires a hydrologic balance in its banks and aquifers.

  7. Microbial ecology of acid strip mine lakes in southern Indiana

    International Nuclear Information System (INIS)

    Gyure, R.A.

    1986-01-01

    In this study, the author examined the limnology and microbial ecology of two acid strip mine lakes in the Greene-Sullivan State Forest near Dugger, Indiana. Reservoir 29 is a larger lake (225 ha) with water column pH of 2.7 and sediment pH of 3.8. Lake B, a smaller (20 ha) lake to the south of Reservoir 29, also has an acidic water column (pH 3.4) but more neutral sediments (pH 6.2). Both have very high sulfate concentrations: 20-30 mM in the water column and as high as 100 mM in the hypolimnion of Lake B. Low allochthonous carbon and nutrient input characterize these lakes as oligotrophic, although algal biomass is higher than would be expected for this trophic status. In both lakes, algal populations are not diverse, with a few species of single-celled Chlorophyta and euglenoids dominating. Algal biomass is concentrated in a thin 10 cm layer at the hypolimnion/metalimnion interface, although light intensity at this depth is low and severely limits productivity. Bacterial activity based on 14 C-glucose incorporation is highest in the hypolimnion of both lakes, and sulfate-reduction is a dominant process in the sediments. Rates of sulfate-reduction compare with those in other freshwater environments, but are not as high as rates measured in high sulfate systems like saltmarsh and marine sediments

  8. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery

    International Nuclear Information System (INIS)

    Fujita, Koji; Sakai, Akiko; Nuimura, Takayuki; Yamaguchi, Satoru; Sharma, Rishi R

    2009-01-01

    Changes in the area and bathymetry of Imja Glacial Lake and in the elevation of its damming moraine, Khumbu region, Nepal Himalaya are investigated. Previously reported changes in the lake area have been updated by multi-temporal ASTER images, which revealed a decreased expansion rate after 2000. A provisional expansion of the lake observed in 2004, from which some studies concluded an accelerated lake expansion due to global warming, has, from 2005, subsided to the glacier surface. Bathymetric changes for the period 1992-2002 that were first obtained for Himalayan glacial lakes suggest that the melting of debris-covered ice beneath the lake is insignificant in terms of the increase in lake volume, and that the retreat of a glacier in contact with the lake by calving is essential for the lake's expansion. Changes in the height of a damming moraine for the period 2001-2007 suggest a continuous surface lowering near the lake, though the lowering rates are smaller than those for the period 1989-1994.

  9. Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush

    Science.gov (United States)

    Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles C.; Bentzen, Paul

    2016-01-01

    BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake

  10. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes

    International Nuclear Information System (INIS)

    Klinck, J.S.; Green, W.W.; Mirza, R.S.; Nadella, S.R.; Chowdhury, M.J.; Wood, C.M.; Pyle, G.G.

    2007-01-01

    Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca 2+ , principally that elevated dietary Ca 2+ reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut

  11. Branchial cadmium and copper binding and intestinal cadmium uptake in wild yellow perch (Perca flavescens) from clean and metal-contaminated lakes

    Energy Technology Data Exchange (ETDEWEB)

    Klinck, J.S. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada)], E-mail: klinckjs@mcmaster.ca; Green, W.W.; Mirza, R.S. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada); Department of Biology, Nipissing University, North Bay, Ont. P1B 8L7 (Canada); Nadella, S.R.; Chowdhury, M.J.; Wood, C.M. [Department of Biology, McMaster University, Hamilton, Ont. L8S 4K1 (Canada); Pyle, G.G. [Department of Biology, Nipissing University, North Bay, Ont. P1B 8L7 (Canada)

    2007-08-30

    Branchial binding kinetics and gastro-intestinal uptake of copper and cadmium where examined in yellow perch (Perca flavescens) from a metal-contaminated lake (Hannah Lake, Sudbury, Ontario, Canada) and an uncontaminated lake (James Lake, North Bay, Ontario, Canada). An in vivo approach was taken for gill binding comparisons while an in vitro gut binding assay was employed for gastro-intestinal tract (GIT) uptake analysis. By investigating metal uptake at the gill and the gut we cover the two main routes of metal entry into fish. Comparisons of water and sediment chemistries, metal burdens in benthic invertebrate, and metal burdens in the livers of perch from the two study lakes clearly show that yellow perch from Hannah L. are chronically exposed to a highly metal-contaminated environment compared to a reference lake. We found that metal-contaminated yellow perch showed no significant difference in gill Cd binding compared to reference fish, but they did show significant decreases in new Cd binding and absorption in their GITs. The results show that gill Cd binding may involve low-capacity, high-affinity binding sites, while gastro-intestinal Cd uptake involves binding sites that are high-capacity, low-affinity. From this we infer that Cd may be more critically controlled at the gut rather than gills. Significant differences in branchial Cu binding (increased binding) were observed in metal-contaminated yellow perch. We suggest that chronic waterborne exposure to Cu (and/or other metals) may be the dominant influence in gill Cu binding rather than chronic exposure to high Cu diets. We give supporting evidence that Cd is taken up in the GIT, at least in part, by a similar pathway as Ca{sup 2+}, principally that elevated dietary Ca{sup 2+} reduces Cd binding and uptake. Overall our study reveals that metal pre-exposure via water and diet can alter uptake kinetics of Cu and Cd at the gill and/or the gut.

  12. Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Burton, E.; Duran, A.; Gonder, J.

    2014-06-01

    Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

  13. Interaction of hydrological regime and vegetation in a seasonally flooded lake wetland (Poyang Lake) in China

    Science.gov (United States)

    Zhang, Qi

    2017-04-01

    Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetlands. To explore the influences of hydrological conditions on the spatial distribution of wetland vegetation, an experimental transect in Poyang Lake wetland, the largest freshwater lake in China, was selected as a study area. In-situ high time frequency observations of climate, soil moisture, groundwater level and surface water level were simultaneously conducted. Vegetation was sampled periodically to obtain species composition, diversity and biomass. Results show that significant hydrological gradient exists along the experimental transect. Both groundwater level and soil moisture demonstrate high correlation with the distribution of different communities of vegetation. Above- and belowground biomass present Gaussian models along the gradient of groundwater depth in growing seasons. It was found that the optimal average groundwater depths for above- and belowground biomass are 0.8 m and 0.5 m, respectively. Numerical simulations using HYDRUS-1D further indicated that the groundwater depths had significant influences on the water usage by vegetation, which suggested the high dependence of wetland vegetation on groundwater, even in a wet climate zone such as Poyang Lake. The study revealed new knowledge on the interaction of hydrological regime and wetland vegetation, and provided scientific support for an integrated management of balancing wetland ecology and water resources development in Poyang Lake, and other lake floodplain wetlands, with strong human interferences.

  14. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    Science.gov (United States)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for

  15. Potentially dangerous glacial lakes in Kyrgyzstan - Research overview of 2004-2015

    Science.gov (United States)

    Jansky, Bohumir; Yerokhin, Sergey; Sobr, Miroslav; Engel, Zbynek; Cerny, Michal; Falatkova, Kristyna; Kocum, Jan; Benes, Vojtech

    2016-04-01

    Global warming causes intensive melting and retreat of glaciers in most of high mountains all over the world. This process is also evident in the mountain regions of central Tien Shan. Glacier melt water affects changes in hydrological regime of water streams and causes overfilling of high mountain lake basins. The dams of many lakes are very unstable and can burst open. To determine the degree of such risk, it is necessary to analyse the genesis of lakes, to characterize the morphology of the lake basins and to know the particularities of their hydrological regime. According to the latest inventory within territory of Kyrgyzstan, a total of 1328 lakes have been identified as potentially dangerous, 12 lakes are considered as currently dangerous, other 25 feature high potential hazard. Since 1952 more than 70 disastrous cases of lake outburst have been registered. The hazardous alpine lakes are studied in Kyrgyzstan systematically since 1966. Since 2004, Czech-Kyrgyz research team has been operating in Kyrgyzstan in the field of dangerous glacial lakes. Projects were focused primarily on high-mountain glacial lakes risk assessment, propositions of risk mitigation measures, establishment of permanent research station near one of the studied glacier complexes, preparation of risk analysis for selected endangered valleys, evaluation of climatic and hydrological data and glacier development within observed regions. The most significant portion of data and information has been gathered during field work, complemented by satellite image analysis and surveillance flights over the monitored sites.

  16. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    Science.gov (United States)

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  17. Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa

    Science.gov (United States)

    Munyaneza, Omar; Wali, Umaru G.; Uhlenbrook, Stefan; Maskey, Shreedhar; Mlotha, McArd J.

    Satellite radar altimetry measures the time required for a pulse to travel from the satellite antenna to the earth’s surface and back to the satellite receiver. Altimetry on inland lakes generally shows some deviation from in situ level measurements. The deviation is attributed to the geographically varying corrections applied to account for atmospheric effects on radar waves. This study was focused on verification of altimetry data for Lake Kivu (2400 km 2), a large inland lake between Rwanda and the Democratic Republic of Congo (DRC) and estimating the lake water levels using bathymetric data combined with satellite images. Altimetry data obtained from ENVISAT and ERS-2 satellite missions were compared with water level data from gauging stations for Lake Kivu. Gauge data for Lake Kivu were collected from the stations ELECTROGAZ and Rusizi. ENVISAT and ERS-2 data sets for Lake Kivu are in good agreement with gauge data having R2 of 0.86 and 0.77, respectively. A combination of the two data sets improved the coefficient of determination to 95% due to the improved temporal resolution of the data sets. The calculated standard deviation for Lake Kivu water levels was 0.642 m and 0.701 m, for ENVISAT and ERS-2 measurements, respectively. The elevation-surface area characteristics derived from bathymetric data in combination with satellite images were used to estimate the lake level gauge. Consequently, the water level of Lake Kivu could be estimated with an RMSE of 0.294 m and an accuracy of ±0.58 m. In situations where gauges become malfunctioning or inaccessible due to damage or extreme meteorological events, the method can be used to ensure data continuity.

  18. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion

    Science.gov (United States)

    Ma, Ning; Szilagyi, Jozsef; Niu, Guo-Yue; Zhang, Yinsheng; Zhang, Teng; Wang, Binbin; Wu, Yanhong

    2016-06-01

    Previous studies have shown that the majority of the lakes in the Tibetan Plateau (TP) started to expand rapidly since the late 1990s. However, the causes are still not well known. For Nam Co, being a closed lake with no outflow, evaporation (EL) over the lake surface is the only way water may leave the lake. Therefore, quantifying EL is key for investigating the mechanism of lake expansion in the TP. EL can be quantified by Penman- and/or bulk-transfer-type models, requiring only net radiation, temperature, humidity and wind speed for inputs. However, interpolation of wind speed data may be laden with great uncertainty due to extremely sparse ground meteorological observations, the highly heterogeneous landscape and lake-land breeze effects. Here, evaporation of Nam Co Lake was investigated within the 1979-2012 period at a monthly time-scale using the complementary relationship lake evaporation (CRLE) model which does not require wind speed data. Validations by in-situ observations of E601B pan evaporation rates at the shore of Nam Co Lake as well as measured EL over an adjacent small lake using eddy covariance technique suggest that CRLE is capable of simulating EL well since it implicitly considers wind effects on evaporation via its vapor transfer coefficient. The multi-year average of annual evaporation of Nam Co Lake is 635 mm. From 1979 to 2012, annual evaporation of Nam Co Lake expressed a very slight decreasing trend. However, a more significant decrease in EL occurred during 1998-2008 at a rate of -12 mm yr-1. Based on water-level readings, this significant decrease in lake evaporation was found to be responsible for approximately 4% of the reported rapid water level increase and areal expansion of Nam Co Lake during the same period.

  19. Three Gorges Dam: Impact of Water Level Changes on the Density of Schistosome-Transmitting Snail Oncomelania hupensis in Dongting Lake Area, China.

    Directory of Open Access Journals (Sweden)

    Jin-Yi Wu

    Full Text Available Schistosomiasis remains an important public health issue in China and worldwide. Oncomelania hupensis is the unique intermediate host of schistosoma japonicum, and its change influences the distribution of S. japonica. The Three Gorges Dam (TGD has substantially changed the ecology and environment in the Dongting Lake region. This study investigated the impact of water level and elevation on the survival and habitat of the snails.Data were collected for 16 bottomlands around 4 hydrological stations, which included water, density of living snails (form the Anxiang Station for Schistosomiasis Control and elevation (from Google Earth. Based on the elevation, sixteen bottomlands were divided into 3 groups. ARIMA models were built to predict the density of living snails in different elevation areas.Before closure of TGD, 7 out of 9 years had a water level beyond the warning level at least once at Anxiang hydrological station, compared with only 3 out of 10 years after closure of TGD. There were two severe droughts that happened in 2006 and 2011, with much fewer number of flooding per year compared with other study years. Overall, there was a correlation between water level changing and density of living snails variation in all the elevations areas. The density of living snails in all elevations areas was decreasing after the TGD was built. The relationship between number of flooding per year and the density of living snails was more pronounced in the medium and high elevation areas; the density of living snails kept decreasing from 2003 to 2014. In low elevation area however, the density of living snails decreased after 2003 first and turned to increase after 2011. Our ARIMA prediction models indicated that the snails would not disappear in the Dongting Lake region in the next 7 years. In the low elevation area, the density of living snails would increase slightly, and then stabilize after the year 2017. In the medium elevation region, the change of

  20. The structuring role of fish in Greenland lakes: an overview based on contemporary and paleoecological studies of 87 lakes from the low and the high Arctic

    DEFF Research Database (Denmark)

    Jeppesen, Erik; Lauridsen, Torben L.; Christoffersen, Kirsten S.

    2017-01-01

    largest between fishless lakes and lakes hosting only sticklebacks (Gasterosteus aculeatus), while lakes with both Arctic charr (Salvelinus arcticus) and stickleback revealed a more modest response, indicating that presence of charr modulates the predation effect of sticklebacks. It is predicted that more...

  1. Biomonitoring of heavy metals pollution in Lake Burullus, Northern ...

    African Journals Online (AJOL)

    aghomotsegin

    and they probably reduced the effect of high concentrations of these metals on the lake ... 31° 07' E. It's a shallow brackish lake connected with the sea by a ... The concentration of heavy metals in water (µg/l) at 15 stations at Lake Burullus.

  2. Fate and transport of petroleum hydrocarbons in the subsurface near Cass Lake, Minnesota

    Science.gov (United States)

    Drennan, Dina M.; Bekins, Barbara A.; Warren, Ean; Cozzarelli, Isabelle M.; Baedecker, Mary Jo; Herkelrath, William N.; Delin, Geoffrey N.; Rosenbauer, Robert J.; Campbell, Pamela L.

    2010-01-01

    The U.S. Geological Survey (USGS) investigated the natural attenuation of subsurface petroleum hydrocarbons leaked over an unknown number of years from an oil pipeline under the Enbridge Energy Limited Partnership South Cass Lake Pumping Station, in Cass Lake, Minnesota. Three weeks of field work conducted between May 2007 and July 2008 delineated a dissolved plume of aromatic hydrocarbons and characterized the biodegradation processes of the petroleum. Field activities included installing monitoring wells, collecting sediment cores, sampling water from wells, and measuring water-table elevations. Geochemical measurements included concentrations of constituents in both spilled and pipeline oil, dissolved alkylbenzenes and redox constituents, sediment bioavailable iron, and aquifer microbial populations. Groundwater in this area flows east-southeast at approximately 26 meters per year. Results from the oil analyses indicate a high degree of biodegradation, characterized by nearly complete absence of n-alkanes. Cass Lake oil samples were more degraded than two oil samples collected in 2008 from the similarly contaminated USGS Bemidji, Minnesota, research site 40 kilometers away. Based on 19 ratios developed for comparing oil sources, the conclusion is that the oils at the two sites appear to be from the same hydrocarbon source. In the Cass Lake groundwater plume, benzene concentrations decrease by three orders of magnitude within 150 meters (m) downgradient from the oil body floating on the water table (between well MW-10 and USGS-4 well nest). The depths of the highest benzene concentrations increase with distance downgradient from the oil, a condition typical of plumes in shallow, unconfined aquifers. Background groundwater, which is nearly saturated with oxygen, becomes almost entirely anaerobic in the plume. As at the Bemidji site, the most important biodegradation processes are anaerobic and dominated by iron reduction. The similarity between the Cass Lake and

  3. High net CO2 and CH4 release at a eutrophic shallow lake on a formerly drained fen

    Science.gov (United States)

    Franz, Daniela; Koebsch, Franziska; Larmanou, Eric; Augustin, Jürgen; Sachs, Torsten

    2016-05-01

    Drained peatlands often act as carbon dioxide (CO2) hotspots. Raising the groundwater table is expected to reduce their CO2 contribution to the atmosphere and revitalise their function as carbon (C) sink in the long term. Without strict water management rewetting often results in partial flooding and the formation of spatially heterogeneous, nutrient-rich shallow lakes. Uncertainties remain as to when the intended effect of rewetting is achieved, as this specific ecosystem type has hardly been investigated in terms of greenhouse gas (GHG) exchange. In most cases of rewetting, methane (CH4) emissions increase under anoxic conditions due to a higher water table and in terms of global warming potential (GWP) outperform the shift towards CO2 uptake, at least in the short term.Based on eddy covariance measurements we studied the ecosystem-atmosphere exchange of CH4 and CO2 at a shallow lake situated on a former fen grassland in northeastern Germany. The lake evolved shortly after flooding, 9 years previous to our investigation period. The ecosystem consists of two main surface types: open water (inhabited by submerged and floating vegetation) and emergent vegetation (particularly including the eulittoral zone of the lake, dominated by Typha latifolia). To determine the individual contribution of the two main surface types to the net CO2 and CH4 exchange of the whole lake ecosystem, we combined footprint analysis with CH4 modelling and net ecosystem exchange partitioning.The CH4 and CO2 dynamics were strikingly different between open water and emergent vegetation. Net CH4 emissions from the open water area were around 4-fold higher than from emergent vegetation stands, accounting for 53 and 13 g CH4 m-2 a-1 respectively. In addition, both surface types were net CO2 sources with 158 and 750 g CO2 m-2 a-1 respectively. Unusual meteorological conditions in terms of a warm and dry summer and a mild winter might have facilitated high respiration rates. In sum, even after 9

  4. Influence of permafrost on lake terraces of Lake Heihai (NE Tibetan Plateau)

    Science.gov (United States)

    Lockot, Gregori; Hartmann, Kai; Wünnemann, Bernd

    2013-04-01

    The Tibetan Plateau (TP) is one of the key regions for climatic global change. Besides the poles the TP is the third highest storage of frozen water in glaciers. Here global warming is three times higher than in the rest of the world. Additionally the TP provides water for billions of people and influences the moisture availability from the Indian and East Asian monsoon systems. During the Holocene extent and intensity of the monsoonal systems changed. Hence, in the last decades, a lot of work was done to reconstruct timing and frequency of monsoonal moisture, to understand the past and give a better forecast for the future. Comparative workings often show very heterogeneous patterns of timing and frequency of the Holocene precipitation and temperature maximum, emphasizing the local importance of catchment dynamics. In this study we present first results of lake Heihai (36°N, 93°15'E, 4500m a.s.l.), situated at the north-eastern border of the TP. The lake is surrounded by a broad band of near-shore lake sediments, attesting a larger lake extent in the past. These sediments were uplifted by permafrost, reaching nowadays heights ca. +8 meters above present lake level. Due to the uplift one of the main inflows was blocked and the whole hydrology of the catchment changed. To quantify the uplift of permafrost Hot Spot Analysis were accomplished at a DEM of the near-shore area. As a result regions of high permafrost uplift and those which mirror the original height of lake ground were revealed. The most obvious uplift took place in the northern and western part of the lake, where the four uplift centers are located. In contrast the southern and eastern areas show a rather degraded pattern (probably by fluvial erosion, thermokarst, etc.). The ancient lake bottom, without permafrost uplift was estimated to be 4-6 meters above the modern lake level. For a better understanding of permafrost interaction inside the terrace bodies a 5m sediment profile was sampled and

  5. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    Science.gov (United States)

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  6. Solar and atmospheric forcing on mountain lakes.

    Science.gov (United States)

    Luoto, Tomi P; Nevalainen, Liisa

    2016-10-01

    We investigated the influence of long-term external forcing on aquatic communities in Alpine lakes. Fossil microcrustacean (Cladocera) and macrobenthos (Chironomidae) community variability in four Austrian high-altitude lakes, determined as ultra-sensitive to climate change, were compared against records of air temperature, North Atlantic Oscillation (NAO) and solar forcing over the past ~400years. Summer temperature variability affected both aquatic invertebrate groups in all study sites. The influence of NAO and solar forcing on aquatic invertebrates was also significant in the lakes except in the less transparent lake known to have remained uniformly cold during the past centuries due to summertime snowmelt input. The results suggest that external forcing plays an important role in these pristine ecosystems through their impacts on limnology of the lakes. Not only does the air temperature variability influence the communities but also larger-scale external factors related to atmospheric circulation patterns and solar activity cause long-term changes in high-altitude aquatic ecosystems, through their connections to hydroclimatic conditions and light environment. These findings are important in the assessment of climate change impacts on aquatic ecosystems and in greater understanding of the consequences of external forcing on lake ontogeny. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Remote assessment of reserve capacity of outburst alpine lakes

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2016-01-01

    Full Text Available Results of distant satellite sounding (the TERRA satellite of high-mountainous areas and digital models SRTM 4.1 and ASTER DEM G2 of the same relief were used to calculate the following parameters of high-mountain dammed glacial lakes: area, depth, the water volume, excess of the dam above the water level. It is important for estimation of the water volume that can be dangerous for a break-through of a dammed lake. Formulas deduced to calculate the depth and volume of a lake for several sections of its area were tested and proposed. It is demonstrated that the regression equation V = Hmax × F, where Hmax is maximum depth of the lake, can be used as the parameterization of the formula «lake volume V equals the product of the area F on average depth D». More precise values of the coefficients a and b in the formula V = aFb were also obtained. Parameters and the water volumes of lakes were estimated for the river Gunt (right tributary of Pyanj River basin. According to [28], there are 428 high-mountain lakes in this region with their total area ≥ 2500 m2. For basin Inflow of melted snow and glacier water caused by the rise of mean summer air temperatures in 1931–2015 was estimated for the lake Rivankul basin (the Pamir Mountains.

  8. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    Science.gov (United States)

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  9. Eutrophication in the Yunnan Plateau lakes: the influence of lake morphology, watershed land use, and socioeconomic factors.

    Science.gov (United States)

    Liu, Wenzhi; Li, Siyue; Bu, Hongmei; Zhang, Quanfa; Liu, Guihua

    2012-03-01

    Lakes play an important role in socioeconomic development and ecological balance in China, but their water quality has deteriorated considerably in recent decades. In this study, we investigated the spatial-temporal variations of eutrophication parameters (secchi depth, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll-a, trophic level index, and trophic state index) and their relationships with lake morphology, watershed land use, and socioeconomic factors in the Yunnan Plateau lakes. Results indicated that about 77.8% of lakes were eutrophic according to trophic state index. The plateau lakes showed spatial variations in water quality and could be classified into high-nutrient and low-nutrient groups. However, because watersheds were dominated by vegetation, all eutrophication parameters except chlorophyll-a showed no significant differences between the wet and dry seasons. Lake depth, water residence time, volume, and percentage of built-up land were significantly related to several eutrophication parameters. Agricultural land use and social-economic factors had no significant correlation with all eutrophication parameters. Stepwise regression analyses demonstrated that lake depth and water residence time accounted for 73.8% to 87.6% of the spatial variation of single water quality variables, respectively. Redundancy analyses indicated that lake morphology, watershed land use, and socioeconomic factors together explained 74.3% of the spatial variation in overall water quality. The results imply that water quality degradation in the plateau lakes may be mainly due to the domestic and industrial wastewaters. This study will improve our understanding of the determinants of lake water quality and help to design efficient strategies for controlling eutrophication in the plateau region.

  10. Elevated plasma cholecystokinin at high altitude: metabolic implications for the anorexia of acute mountain sickness.

    Science.gov (United States)

    Bailey, D M; Davies, B; Milledge, J S; Richards, M; Williams, S R; Jordinson, M; Calam, J

    2000-01-01

    The aims of the present study were to measure the satiety neuropeptide cholecystokinin (CCK) in humans at terrestrial high altitude to investigate its possible role in the pathophysiology of anorexia, cachexia, and acute mountain sickness (AMS). Nineteen male mountaineers aged 38 +/- 12 years participated in a 20 +/- 5 day trek to Mt. Kanchenjunga basecamp (BC) located at 5,100 m, where they remained for 7 +/- 5 days. Subjects were examined at rest and during a maximal exercise test at sea-level before/after the expedition (SL1/SL2) and during the BC sojourn. There was a mild increase in Lake Louise AMS score from 1.1 +/- 1.2 points at SL1 to 2.3 +/- 2.3 points by the end of the first day at BC (P anorexia on Day 2 compared with those with a normal appetite. While there was no relationship between the increase in CCK and AMS score at BC, a more pronounced increase in resting CCK was observed in subjects with AMS (> or =3 points at the end of Day 1 at BC) compared with those without (+98.9 +/- 1.4 pmol/L(-1) vs. +67.6 +/- 37.2 pmol/L(-1), P < 0.05). Caloric intake remained remarkably low during the stay at BC (8.9 +/- 1.4 MJ.d(-1)) despite a progressive decrease in total body mass (-4.5 +/- 2.1 kg after 31 +/- 13 h at BC, P < 0.05 vs. SL1/SL2), which appeared to be due to a selective loss of torso adipose tissue. These findings suggest that the satiogenic effects of CCK may have contributed to the observed caloric deficit and subsequent cachexia at high altitude despite adequate availability of palatable foods. The metabolic implications of elevated CCK in AMS remain to be elucidated.

  11. Exploration of High elevation liana colonies on Mt. Slamet, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    WS Hoover

    2009-12-01

    Full Text Available One hundred forty–five individual lianas were distributed on 2 East facing ridges on the second highest mountain on Java, Mt. Slamet (3418 m., Central Java, Indonesia. Twenty one colonies were observed on small flat areas on ridges. The liana species observed include: Embelia pergamacea, Toddalia asiatica, Elaeagnus latifolia, Schefflera lucida, Vaccinium laurifolium and Lonicera javanica. Diameter of each liana was measured and liana density/flat area calculated. Floristic collecting was under- taken within the elevational gradient of liana distribution. Data suggest an ecotone transition from lower to upper mon- tane forest is observed between 2200 and 2300 m, though forest types are difficult to determine due to disturbance caused by fire at the upper elevations. Observing lianas at these unusuall high elevations with near pluvial rainfall, con- tradict established scientific theory concerning global distribution and abundance of lianas.  

  12. Methods of evaluating ore processing and effluent treatment for Cigar Lake ore at the Rabbit Lake Mill

    International Nuclear Information System (INIS)

    Edwards, C.R.

    2002-01-01

    Cigar Lake is the second-largest, high grade uranium orebody in the world. Mineable reserves for Cigar Lake Phase 1 are estimated at 191 million pounds U 3 O 8 with a grade of 25.6% U 3 O 8 . Subject to regulatory approval, Cameco intends to process the majority of ore from Cigar Lake in the Rabbit Lake mill. Cameco initiated a programme to study the processing of Cigar Lake ore and the treatment of the resulting waste streams. Laboratory and follow-up pilot scale ore leaching tests with Cigar Lake ore samples were performed. Tailings and effluents were generated from the products of the pilot scale leach tests. Mill process tailings were blended with ground waste rock. Using these materials, geotechnical and geochemical properties, including long term tailings pore water characteristics, will be evaluated. In addition, proposed changes to the mill waste treatment operations were developed to deal with increased levels of arsenic and radium in the waste streams. This paper describes the methods and techniques Cameco used in this programme. (author)

  13. Toxicity of acid mine pit lake water remediated with limestone and phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Neil, L.L.; McCullough, C.D.; Lund, M.A.; Evans, L.H.; Tsvetnenko, Y. [Edith Cowan University, Joondalup, WA (Australia)

    2009-11-15

    Pit lakes are increasingly common worldwide and have potential to provide many benefits. However, lake water toxicity may require remediation before beneficial end uses can be realised. Three treatments to remediate AMD (pH similar to 4.8) pit lake water containing elevated concentrations of Al and Zn from Collie, Western Australia were tested in mesocosms. Treatments were: (a) limestone neutralisation (L), (b) phosphorus amendment (P), and c) combined limestone neutralisation and phosphorus amendment (L+P). Laboratory bioassays with Ceriodaphnia cf. dubia, Chlorella protothecoides and Tetrahymena thermophila assessed remediation. Limestone neutralisation increased pH and reduced heavy metal concentrations by 98% (Al) to 14% (Mg), removing toxicity to the three test species within 2 months. Phosphorus amendment removed toxicity after 6 months of treatment. However, phosphorus amendment to prior limestone neutralisation failed to reduce toxicity more than limestone neutralisation alone. Low concentrations of both phosphorus and nitrogen appear to limit phytoplankton population growth in all treatments.

  14. Toxicity of acid mine pit lake water remediated with limestone and phosphorus.

    Science.gov (United States)

    Neil, Luke L; McCullough, Clint D; Lund, Mark A; Evans, Louis H; Tsvetnenko, Yuri

    2009-11-01

    Pit lakes are increasingly common worldwide and have potential to provide many benefits. However, lake water toxicity may require remediation before beneficial end uses can be realised. Three treatments to remediate AMD (pH approximately 4.8) pit lake water containing elevated concentrations of Al and Zn from Collie, Western Australia were tested in mesocosms. Treatments were: (a) limestone neutralisation (L), (b) phosphorus amendment (P), and (c) combined limestone neutralisation and phosphorus amendment (L+P). Laboratory bioassays with Ceriodaphnia cf. dubia, Chlorella protothecoides and Tetrahymena thermophila assessed remediation. Limestone neutralisation increased pH and reduced heavy metal concentrations by 98% (Al) to 14% (Mg), removing toxicity to the three test species within 2 months. Phosphorus amendment removed toxicity after 6 months of treatment. However, phosphorus amendment to prior limestone neutralisation failed to reduce toxicity more than limestone neutralisation alone. Low concentrations of both phosphorus and nitrogen appear to limit phytoplankton population growth in all treatments.

  15. Effects of Cd and Ni toxicity to Ceratophyllum demersum under environmentally relevant conditions in soft and hard water including a German lake

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, Elisa, E-mail: Elisa.Andresen@uni-konstanz.de [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); Opitz, Judith, E-mail: Daniela.Opitz@uni-konstanz.de [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); Thomas, George, E-mail: George.Thomas@uni-konstanz.de [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); Stärk, Hans-Joachim, E-mail: Ha-Jo.Staerk@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig (Germany); Dienemann, Holger, E-mail: Holger.Dienemann@smul.sachsen.de [Saxon State Company for Environment and Agriculture, Business Domain 5 (Laboratory), Department 53, Bitterfelder Str. 25, D-04849 Bad Düben (Germany); Jenemann, Kerstin, E-mail: Kerstin.Jenemann@smul.sachsen.de [Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Abteilung Wasser, Boden, Wertstoffe, Zur Wetterwarte 11, D-01109 Dresden (Germany); Dickinson, Bryan C., E-mail: Bryan.Dickinson@gmail.com [Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138 (United States); Küpper, Hendrik, E-mail: Hendrik.Kuepper@uni-konstanz.de [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice (Czech Republic)

    2013-10-15

    Highlights: •Hardly any macrophytic growth occurred in an oligotrophic hard water lake in Germany. •All parameters were optimal, besides elevated, nanomolar concentrations of Ni and Cd. •We cultivated submerged macrophytes in real and simulated hard and soft lake water. •Nanomolar Cd and Ni inhibited the plants’ photosynthetic light reactions in soft water. •The inhibition was synergistic, i.e. stronger than the addition of Cd and Ni effects. -- Abstract: Even essential trace elements are phytotoxic over a certain threshold. In this study, we investigated whether heavy metal concentrations were responsible for the nearly complete lack of submerged macrophytes in an oligotrophic lake in Germany. We cultivated the rootless aquatic model plant Ceratophyllum demersum under environmentally relevant conditions like sinusoidal light and temperature cycles and a low plant biomass to water volume ratio. Experiments lasted for six weeks and were analysed by detailed measurements of photosynthetic biophysics, pigment content and hydrogen peroxide production. We established that individually non-toxic cadmium (3 nM) and slightly toxic nickel (300 nM) concentrations became highly toxic when applied together in soft water, severely inhibiting photosynthetic light reactions. Toxicity was further enhanced by phosphate limitation (75 nM) in soft water as present in many freshwater habitats. In the investigated lake, however, high water hardness limited the toxicity of these metal concentrations, thus the inhibition of macrophytic growth in the lake must have additional reasons. The results showed that synergistic heavy metal toxicity may change ecosystems in many more cases than estimated so far.

  16. Effects of Cd and Ni toxicity to Ceratophyllum demersum under environmentally relevant conditions in soft and hard water including a German lake

    International Nuclear Information System (INIS)

    Andresen, Elisa; Opitz, Judith; Thomas, George; Stärk, Hans-Joachim; Dienemann, Holger; Jenemann, Kerstin; Dickinson, Bryan C.; Küpper, Hendrik

    2013-01-01

    Highlights: •Hardly any macrophytic growth occurred in an oligotrophic hard water lake in Germany. •All parameters were optimal, besides elevated, nanomolar concentrations of Ni and Cd. •We cultivated submerged macrophytes in real and simulated hard and soft lake water. •Nanomolar Cd and Ni inhibited the plants’ photosynthetic light reactions in soft water. •The inhibition was synergistic, i.e. stronger than the addition of Cd and Ni effects. -- Abstract: Even essential trace elements are phytotoxic over a certain threshold. In this study, we investigated whether heavy metal concentrations were responsible for the nearly complete lack of submerged macrophytes in an oligotrophic lake in Germany. We cultivated the rootless aquatic model plant Ceratophyllum demersum under environmentally relevant conditions like sinusoidal light and temperature cycles and a low plant biomass to water volume ratio. Experiments lasted for six weeks and were analysed by detailed measurements of photosynthetic biophysics, pigment content and hydrogen peroxide production. We established that individually non-toxic cadmium (3 nM) and slightly toxic nickel (300 nM) concentrations became highly toxic when applied together in soft water, severely inhibiting photosynthetic light reactions. Toxicity was further enhanced by phosphate limitation (75 nM) in soft water as present in many freshwater habitats. In the investigated lake, however, high water hardness limited the toxicity of these metal concentrations, thus the inhibition of macrophytic growth in the lake must have additional reasons. The results showed that synergistic heavy metal toxicity may change ecosystems in many more cases than estimated so far

  17. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake

    Science.gov (United States)

    Li, Yanhong; Zhao, Mingliang; Li, Fadong

    2018-03-01

    Soil respiration in wetlands surrounding lakes is a vital component of the soil carbon cycle in arid regions. However, information remains limited on the soil respiration around highly saline lakes during the plant growing season. Here, we aimed to evaluate diurnal and seasonal variation in soil respiration to elucidate the controlling factors in the wetland of Ebinur Lake, Xinjiang Uygur Autonomous Region, western China. We used a soil carbon flux automatic analyzer (LI-840A) to measure soil respiration rates during the growing season (April to November) in two fields covered by reeds and tamarisk and one field with no vegetation (bare soil) from 2015 to 2016. The results showed a single peak in the diurnal pattern of soil respiration from 11:00 to 17:00 for plots covered in reeds, tamarisk, and bare soil, with minimum values being detected from 03:00 to 07:00. During the growing season, the soil respiration of reeds and tamarisk peaked during the thriving period (4.16 and 3.75 mmol•m-2•s-1, respectively), while that of bare soil peaked during the intermediate growth period (0.74 mmol•m-2•s-1). The soil respiration in all three plots was lowest during the wintering period (0.08, 0.09, and-0.87 mmol•m-2•s-1, respectively). Air temperature and relative humidity significantly influenced soil respiration. A significant linear relationship was detected between soil respiration and soil temperature for reeds, tamarisk, and bare soil. The average Q10 of reeds and tamarisk were larger than that of bare soil. However, soil moisture content was not the main factor controlling soil respiration. Soil respiration was negatively correlated with soil pH and soil salinity in all three plot types. In contrast, soil respiration was positively correlated with organic carbon. Overall, CO2 emissions and greenhouse gases had a relatively weak effect on the wetlands surrounding the highly saline Ebinur Lake.

  18. Reconstructing Heat Fluxes Over Lake Erie During the Lake Effect Snow Event of November 2014

    Science.gov (United States)

    Fitzpatrick, L.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Spence, C.; Chen, J.; Shao, C.; Posselt, D. J.; Wright, D. M.; Lofgren, B. M.; Schwab, D. J.

    2017-12-01

    The extreme North American winter storm of November 2014 triggered a record lake effect snowfall (LES) event in southwest New York. This study examined the evaporation from Lake Erie during the record lake effect snowfall event, November 17th-20th, 2014, by reconstructing heat fluxes and evaporation rates over Lake Erie using the unstructured grid, Finite-Volume Community Ocean Model (FVCOM). Nine different model runs were conducted using combinations of three different flux algorithms: the Met Flux Algorithm (COARE), a method routinely used at NOAA's Great Lakes Environmental Research Laboratory (SOLAR), and the Los Alamos Sea Ice Model (CICE); and three different meteorological forcings: the Climate Forecast System version 2 Operational Analysis (CFSv2), Interpolated observations (Interp), and the High Resolution Rapid Refresh (HRRR). A few non-FVCOM model outputs were also included in the evaporation analysis from an atmospheric reanalysis (CFSv2) and the large lake thermodynamic model (LLTM). Model-simulated water temperature and meteorological forcing data (wind direction and air temperature) were validated with buoy data at three locations in Lake Erie. The simulated sensible and latent heat fluxes were validated with the eddy covariance measurements at two offshore sites; Long Point Lighthouse in north central Lake Erie and Toledo water crib intake in western Lake Erie. The evaluation showed a significant increase in heat fluxes over three days, with the peak on the 18th of November. Snow water equivalent data from the National Snow Analyses at the National Operational Hydrologic Remote Sensing Center showed a spike in water content on the 20th of November, two days after the peak heat fluxes. The ensemble runs presented a variation in spatial pattern of evaporation, lake-wide average evaporation, and resulting cooling of the lake. Overall, the evaporation tended to be larger in deep water than shallow water near the shore. The lake-wide average evaporations

  19. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2006-12-01

    This project expands on the study 'A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation' published in SKB TR-04-09. As the title suggests, this older model focuses on lakes (existing and future lakes). This newer study extends the model to examine progress of terrestrial objects such as mires or arable land. Furthermore, this newer model could simulate progress of the areas close to the objects. These areas are divided according to their watershed boundaries. If two or more objects are situated along the same brook, the lower situated area is defined as its catchments minus the catchments of the closest higher situated object. The model encourages the study of an object situated in the sea from the time of deglaciation (c. 10,000 BP) to the time for the object due to positive shore displacement is situated on land or that a lake object has progressed to a wetland, however not longer than 18,000 AP. The model focuses on the object and its location in 100-year steps. The model is written in VisualBasic and is divided into two modules, a marine module and a lake module. The marine module deals with shoreline displacement, erosion and accumulation of postglacial fine-grained sediments and erosion of glacial clay. Inputs to the marine module are a digital elevation model (DEM), a digital map showing the extension of the objects and a marine quaternary map. The two maps are in raster formats with exactly the same formats (extension and cell sizes) as the DEM. For each time step the water depths at each pixel are calculated using a shore displacement equation. Next, the water depth changes due to sediment dynamics are calculated using the following rules; accumulation of fine-grained sediments are allowed if the pixel is situated within a future lake object; erosion of fine-grained sediment is allowed if the pixel is not within a future lake object and the marine quaternary map shows occurrence of postglacial sediments and

  20. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden)

    2006-12-15

    This project expands on the study 'A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation' published in SKB TR-04-09. As the title suggests, this older model focuses on lakes (existing and future lakes). This newer study extends the model to examine progress of terrestrial objects such as mires or arable land. Furthermore, this newer model could simulate progress of the areas close to the objects. These areas are divided according to their watershed boundaries. If two or more objects are situated along the same brook, the lower situated area is defined as its catchments minus the catchments of the closest higher situated object. The model encourages the study of an object situated in the sea from the time of deglaciation (c. 10,000 BP) to the time for the object due to positive shore displacement is situated on land or that a lake object has progressed to a wetland, however not longer than 18,000 AP. The model focuses on the object and its location in 100-year steps. The model is written in VisualBasic and is divided into two modules, a marine module and a lake module. The marine module deals with shoreline displacement, erosion and accumulation of postglacial fine-grained sediments and erosion of glacial clay. Inputs to the marine module are a digital elevation model (DEM), a digital map showing the extension of the objects and a marine quaternary map. The two maps are in raster formats with exactly the same formats (extension and cell sizes) as the DEM. For each time step the water depths at each pixel are calculated using a shore displacement equation. Next, the water depth changes due to sediment dynamics are calculated using the following rules; accumulation of fine-grained sediments are allowed if the pixel is situated within a future lake object; erosion of fine-grained sediment is allowed if the pixel is not within a future lake object and the marine quaternary map shows occurrence of postglacial

  1. Predicting future glacial lakes in Austria using different modelling approaches

    Science.gov (United States)

    Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus

    2017-04-01

    Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers

  2. ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya

    Science.gov (United States)

    Wessels, R.L.; Kargel, J.S.; Kieffer, H.H.

    2002-01-01

    We demonstrate an application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images to detect and monitor supraglacial lakes on glaciers in the Mount Everest region in Tibet (Xizang) and Nepal. ASTER offers powerful capabilities to monitor supraglacial lakes in terms of (1) surface area, growth and disappearance (spatial resolution = 15 m), (2) turbidity (15 m resolution), and (3) temperature (90 m resolution). Preliminary results show an overall similarity of supraglacial lakes on three glaciers. Lakes have widely varying turbidity as indicated by color in visible/near-infrared bands 1-3, the largest lakes being bright blue (highly turbid), cold (near 0??C) and hydrautically connected with other lakes and supraglacial streams, while small lakes are mostly dark blue (relatively clear water), warmer (>4??C), and appear hydrautically isolated. High levels of turbidity in supraglacial lakes indicate high rates of meltwater input from streams or erosion of ice cliffs, and thus are an indirect measure relating to the activity and hydraulic integration of the lake with respect to other lakes and streams in the glacier.

  3. Characterization of Two Microbial Isolates from Andean Lakes in Bolivia

    Science.gov (United States)

    Demergasso, C.; Blamey, J.; Escudero, L.; Chong, G.; Casamayor, E. O.; Cabrol, N. A.; Grin, E. A.; Hock, A.; Kiss, A.; Borics, G.

    2004-01-01

    We are currently investigating the biological population present in the highest and least explored perennial lakes on earth in the Bolivian and Chilean Andes, including several volcanic crater lakes of more than 6000 m elevation, in combination of microbiological and molecular biological methods. Our samples were collected in saline lakes of the Laguna Blanca Laguna Verde area in the Bolivian Altiplano and in the Licancabur volcano crater (27 deg. 47 min S/67 deg. 47 min. W) in the ongoing project studying high altitude lakes. The main goal of the project is to look for analogies with Martian paleolakes. These Bolivian lakes can be described as Andean lakes following the classification of Chong. We have attempted to isolate pure cultures and phylogenetically characterize prokaryotes that grew under laboratory conditions. Sediment samples taken from the Licancabur crater lake (LC), Laguna Verde (LV), and Laguna Blanca (LB) were analyzed and cultured using enriched liquid media under both aerobic and anaerobic conditions. All cultures were incubated at room temperature (15 to 20 C) and under light exposure. For the reported isolates, 36 hours incubation were necessary for reaching optimal optical densities to consider them viable cultures. Ten serial dilutions starting from 1% inoculum were required to obtain a suitable enriched cell culture to transfer into solid media. Cultures on solid medium were necessary to verify the formation of colonies in order to isolate pure cultures. Different solid media were prepared using several combinations of both trace minerals and carbohydrates sources in order to fit their nutrient requirements. The microorganisms formed individual colonies on solid media enriched with tryptone, yeast extract and sodium chloride. Cells morphology was studied by optical and electronic microscopy. Rodshape morphologies were observed in most cases. Total bacterial genomic DNA was isolated from 50 ml late-exponential phase culture by using the CTAB

  4. The 2014 Lake Askja rockslide tsunami - optimization of landslide parameters comparing numerical simulations with observed run-up

    Science.gov (United States)

    Sif Gylfadóttir, Sigríður; Kim, Jihwan; Kristinn Helgason, Jón; Brynjólfsson, Sveinn; Höskuldsson, Ármann; Jóhannesson, Tómas; Bonnevie Harbitz, Carl; Løvholt, Finn

    2016-04-01

    The Askja central volcano is located in the Northern Volcanic Zone of Iceland. Within the main caldera an inner caldera was formed in an eruption in 1875 and over the next 40 years it gradually subsided and filled up with water, forming Lake Askja. A large rockslide was released from the Southeast margin of the inner caldera into Lake Askja on 21 July 2014. The release zone was located from 150 m to 350 m above the water level and measured 800 m across. The volume of the rockslide is estimated to have been 15-30 million m3, of which 10.5 million m3 was deposited in the lake, raising the water level by almost a meter. The rockslide caused a large tsunami that traveled across the lake, and inundated the shores around the entire lake after 1-2 minutes. The vertical run-up varied typically between 10-40 m, but in some locations close to the impact area it ranged up to 70 m. Lake Askja is a popular destination visited by tens of thousands of tourists every year but as luck would have it, the event occurred near midnight when no one was in the area. Field surveys conducted in the months following the event resulted in an extensive dataset. The dataset contains e.g. maximum inundation, high-resolution digital elevation model of the entire inner caldera, as well as a high resolution bathymetry of the lake displaying the landslide deposits. Using these data, a numerical model of the Lake Askja landslide and tsunami was developed using GeoClaw, a software package for numerical analysis of geophysical flow problems. Both the shallow water version and an extension of GeoClaw that includes dispersion, was employed to simulate the wave generation, propagation, and run-up due to the rockslide plunging into the lake. The rockslide was modeled as a block that was allowed to stretch during run-out after entering the lake. An optimization approach was adopted to constrain the landslide parameters through inverse modeling by comparing the calculated inundation with the observed run

  5. Effectiveness of a refuge for Lake Trout in Western Lake Superior II: Simulation of future performance

    Science.gov (United States)

    Akins, Andrea L; Hansen, Michael J.; Seider, Michael J.

    2015-01-01

    Historically, Lake Superior supported one of the largest and most diverse Lake Trout Salvelinus namaycush fisheries in the Laurentian Great Lakes, but Lake Trout stocks collapsed due to excessive fishery exploitation and predation by Sea Lampreys Petromyzon marinus. Lake Trout stocking, Sea Lamprey control, and fishery regulations, including a refuge encompassing Gull Island Shoal (Apostle Islands region), were used to enable recovery of Lake Trout stocks that used this historically important spawning shoal. Our objective was to determine whether future sustainability of Lake Trout stocks will depend on the presence of the Gull Island Shoal Refuge. We constructed a stochastic age-structured simulation model to assess the effect of maintaining the refuge as a harvest management tool versus removing the refuge. In general, median abundances of age-4, age-4 and older (age-4+), and age-8+ fish collapsed at lower instantaneous fishing mortality rates (F) when the refuge was removed than when the refuge was maintained. With the refuge in place, the F that resulted in collapse depended on the rate of movement into and out of the refuge. Too many fish stayed in the refuge when movement was low (0–2%), and too many fish became vulnerable to fishing when movement was high (≥22%); thus, the refuge was more effective at intermediate rates of movement (10–11%). With the refuge in place, extinction did not occur at any simulated level of F, whereas refuge removal led to extinction at all combinations of commercial F and recreational F. Our results indicate that the Lake Trout population would be sustained by the refuge at all simulated F-values, whereas removal of the refuge would risk population collapse at much lower F (0.700–0.744). Therefore, the Gull Island Shoal Refuge is needed to sustain the Lake Trout population in eastern Wisconsin waters of Lake Superior.

  6. Modern processes of sediment formation in Lake Towuti, Indonesia, as derived from the composition of lake surface sediments

    Science.gov (United States)

    Hasberg, Ascelina; Melles, Martin; Morlock, Marina; Vogel, Hendrik; Russel, James M.; Bijaksana, Satria

    2016-04-01

    In summer 2015, a drilling operation funded by the International Continental Scientific Drilling Program (ICDP) was conducted at Lake Towuti (2.75°S, 121.5°E), the largest tectonically formed lake (surface area: 561 km²) of the Republic Indonesia. The Towuti Drilling Project (TDP) recovered more than 1000 meters of sediment core from three sites. At all three sites replicate cores down to 133, 154, and 174 m below lake floor have penetrated the entire lake sediment record, which is expected to comprise the past ca. 650.000 years continuously. Lake Towutís sediment record thus can provide unique information for instance concerning the climatic and environmental history in the Indo-Pacific-Warm-Pool (IPWP) and concerning the evolutionary biology in SE Asia. For a better understanding of the palaeoenvironmental proxies to be analyzed on the drill cores, the modern processes of sediment formation in the lake and in its catchment - under known environmental conditions - were investigated on a set of 84 lake sediment surface samples. Sampling was conducted by grab sampler (UWITEC Corp., Austria) in a grid of 1 to 4 km resolution that covers the entire lake. The samples were analyzed for inorganic geochemical composition (XRF powder scans and ICP-MS), magnetic susceptibility (Kappabridge), grain-size distribution (laser scanner), biogenic components (smear-slide analyses), biogenic silica contents (leaching), and carbonate, total organic carbon (TOC), nitrogen (TN), and sulfur (TS) concentrations (elemental analyzer). The sediments close to the lake shores and in front of the major river inlets are characterized by mean grain sizes coarser than average and high magnetic susceptibilities presented by high ratios of Cr, Ni, Co, and Zr. This reflects higher energies due to wave action and fluvial sediment supply, as well as the occurrence of magnetic minerals particularly in the sand and gravel fractions of the sediments. In regions of deeper waters and more distal to

  7. Satellite Monitoring and Characterization of the 2010 Rockslide-Dammed Lake Gojal, North Pakistan

    Science.gov (United States)

    Leonard, G. J.; Kargel, J. S.; Crippen, R. E.; Evans, S. G.; Delaney, K. B.; Schneider, J. F.

    2010-12-01

    On January 4, 2010, a landslide blocked the Hunza River at Attabad, northern Pakistan (36.308°N, 74.820°E). The landslide destroyed the village of Attabad killing 19 people, and formed a dam approximately 1200m long, 350 meters wide, and 125 meters high. The flow of the Hunza river was blocked for 144 days, forming Lake Gojal. In addition to inundating several villages and submerging 22 km of the regionally critical Karakoram Highway, >25,000 people have been displaced or remain cut off from overland connection with the rest of the country. Lake overtopping began on May 29 via a 15m deep spillway excavated through the saddle of the dam. Remarkably, the slowly eroding natural structure remains largely intact and currently represents a new geologic feature, although a threat remains from possible catastrophic outburst flooding. We have monitored growth of the lake with multi-temporal satellite imagery collected from ASTER (Advanced Spaceborne Thermal and Reflection Radiometer) and ALI (Advanced Land Imager) sensors. We applied NASA’s ASTER Global Digital Elevation Model (GDEM) and SRTM-3 digital terrain data, along with field data obtained onsite by Schneider, and by Pakistan’s NDMA to derive volumes of the growing lake. Lake size peaked during mid-summer when it was ~22 km long, 12 km2, 119m deep, and contained 540 to 620 Mm3 water (SRTM-3 and GDEM +5m global correction estimates respectively). Our estimates indicated lake volumes three to four times higher than media quotes, and before spillover, were used to improve predictions of possible flood discharge and disaster management planning. Estimates of valley inflow based on a 31-year hydrographic history (Archer, D., 2003, Jour. Hydrology 274, 198-210) are consistent with our volume infilling estimates. As early as April 14 our volume assessments, coupled with hydrographic and seepage data were used to project a spillover date range of May 28-June 2, bracketing the actual overflow date. Additionally, we have

  8. The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps

    Science.gov (United States)

    Nigrelli, Guido; Fratianni, Simona; Zampollo, Arianna; Turconi, Laura; Chiarle, Marta

    2018-02-01

    Temperature is one of the most important aspects of mountain climates. The relationships between air temperature and rockfalls at high-elevation sites are very important to know, but are also very difficult to study. In relation to this, a reliable method to estimate air temperatures at high-elevation sites is to apply the altitudinal temperature lapse rates (ATLR). The aims of this work are to quantify the values and the variability of the hourly ATLR and to apply this to estimated temperatures at high-elevation sites for rockfalls studies. To calculate ATLR prior the rockfalls, we used data acquired from two automatic weather stations that are located at an elevation above 2500 m. The sensors/instruments of these two stations are reliable because subjected to an accurate control and calibration once for year and the raw data have passed two automatic quality controls. Our study has yielded the following main results: (i) hourly ATLR increases slightly with increasing altitude, (ii) it is possible to estimate temperature at high-elevation sites with a good level of accuracy using ATLR, and (iii) temperature plays an important role on slope failures that occur at high-elevation sites and its importance is much more evident if the values oscillate around 0 °C with an amplitude of ±5 °C during the previous time-period. For these studies, it is not enough to improve the knowledge on air temperature, but it is necessary to develop an integrated knowledge of the thermal conditions of different materials involved in these processes (rock, debris, ice, water). Moreover, this integrated knowledge must be acquired by means of sensors and acquisition chains with known metrological traceability and uncertainty of measurements.

  9. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    Science.gov (United States)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing CH4 gas exchange in this lake. Preliminary results indicate that there are two regimes in wind speed that impact k - one at low wind speeds up to ~5 m s-1 and another at higher wind speeds (max ~10 m s-1). The differential wind speeds during night and day may compound the effect of convective mixing and cause the diurnal variation in observed fluxes.

  10. Fecundity, 17ß-estradiol concentrations and expression of vitellogenin and estrogen receptor genes throughout the ovarian cycle in female Eastern mosquitofish from three lakes in Florida

    DEFF Research Database (Denmark)

    Kristensen, T.; Edwards, T. M.; Kohno, S.

    2007-01-01

    Previous studies of Eastern mosquitofish in contaminated Lake Apopka, Florida, have documented reduced sperm count and sexual behaviour in males but increased fecundity and liver weight in females, compared to nearby reference lakes. Liver weight can be an indicator of vitellogenin (Vtg) synthesis...... in fish, such as the mosquitofish. It was therefore hypothesized that estrogenic organochlorine pesticides, present at elevated concentrations in animals from Lake Apopka, could cause the reproductive disorders in males, as well as increase female fecundity. We initiated a test of this hypothesis...... by examining the relationship between 17β-estradiol (E2) tissue concentrations, hepatic estrogen receptor α (ERα) and Vtg A, B and C gene expression and fecundity in sexually mature female Eastern mosquitofish from Lake Apopka and two reference lakes, Lake Woodruff and Lake Orange. We observed that female...

  11. Adult Kawasaki's disease with myocarditis, splenomegaly, and highly elevated serum ferritin levels.

    Science.gov (United States)

    Cunha, Burke A; Pherez, Francisco M; Alexiadis, Varvara; Gagos, Marios; Strollo, Stephanie

    2010-01-01

    erythema. We present a case of adult Kawasaki's disease with myocarditis and splenomegaly. The patient's myocarditis rapidly resolved, and he did not develop coronary artery aneurysms. In addition to splenomegaly, this case of adult Kawasaki's disease is remarkable because the patient had highly elevated serum ferritin levels of 944-1303 ng/mL; (normalfever for> or =5 days with conjunctival suffusion, cervical adenopathy, swelling of the dorsum of the hands/feet, thrombocytosis and otherwise unexplained highly elevated ferritin levels. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China.

    Directory of Open Access Journals (Sweden)

    Qiuyuan Huang

    Full Text Available Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m saline (1.4% lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E. Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.

  13. Principles of lake sedimentology

    International Nuclear Information System (INIS)

    Janasson, L.

    1983-01-01

    This book presents a comprehensive outline on the basic sedimentological principles for lakes, and focuses on environmental aspects and matters related to lake management and control-on lake ecology rather than lake geology. This is a guide for those who plan, perform and evaluate lake sedimentological investigations. Contents abridged: Lake types and sediment types. Sedimentation in lakes and water dynamics. Lake bottom dynamics. Sediment dynamics and sediment age. Sediments in aquatic pollution control programmes. Subject index

  14. Pollen and macroscopic analyses of sediments from two lakes in the High Tatra mountains, Slovakia

    Czech Academy of Sciences Publication Activity Database

    Rybníčková, Eliška; Rybníček, Kamil

    2006-01-01

    Roč. 15, - (2006), s. 345-356 ISSN 0939-6314 R&D Projects: GA ČR(CZ) GA206/96/0531; GA ČR GA206/02/0568 Institutional research plan: CEZ:AV0Z60050516 Keywords : Pollen analyses * macroscopic analyses * high mointain lakes Subject RIV: EF - Botanics Impact factor: 0.649, year: 2006

  15. Mercury in fish from three rift valley lakes (Turkana, Naivasha and Baringo), Kenya, East Africa

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, L.M.; Osano, O.; Hecky, R.E.; Dixon, D.G

    2003-09-01

    Mercury concentrations in Kenyan fish vary with tropic position but, in general, do not pose an unacceptable risk to human consumers of wildlife. -Total mercury (THg) concentrations were measured for various fish species from Lakes Turkana, Naivasha and Baringo in the rift valley of Kenya. The highest THg concentration (636 ng g{sup -1} wet weight) was measured for a piscivorous tigerfish Hydrocynus forskahlii from Lake Turkana. THg concentrations for the Perciformes species, the Nile perch Lates niloticus from Lake Turkana and the largemouth bass Micropterus salmoides from Lake Naivasha ranged between 4 and 95 ng g{sup -1}. The tilapiine species in all lakes, including the Nile tilapia Oreochromis niloticus, had consistently low THg concentrations ranging between 2 and 25 ng g{sup -1}. In Lake Naivasha, the crayfish species, Procambrus clarkii, had THg concentrations similar to those for the tilapiine species from the same lake, which is consistent with their shared detritivore diet. THg concentrations in all fish species were usually consistent with their known trophic position, with highest concentrations in piscivores and declining in omnivores, insectivores and detritivores. One exception is the detritivore Labeo cylindricus from Lake Baringo, which had surprisingly elevated THg concentrations (mean=75 ng g{sup -1}), which was similar to those for the top trophic species (Clarias and Protopterus) in the same lake. Except for two Hydrocynus forskahlii individuals from Lake Turkana, which had THg concentrations near or above the international marketing limit of 500 ng g{sup -1}, THg concentrations in the fish were generally below those of World Health Organization's recommended limit of 200 ng g{sup -1} for at-risk groups.

  16. High contaminant loads in Lake Apopka's riparian wetland disrupt gene networks involved in reproduction and immune function in largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Doperalski, Nicholas J; Prucha, Melinda S; Zhang, Ji-Liang; Kroll, Kevin J; Conrow, Roxanne; Barber, David S; Denslow, Nancy D

    2016-09-01

    Lake Apopka (FL, USA) has elevated levels of some organochlorine pesticides in its sediments and a portion of its watershed has been designated a US Environmental Protection Agency Superfund site. This study assessed reproductive endpoints in Florida largemouth bass (LMB) (Micropterus salmoides floridanus) after placement into experimental ponds adjacent to Lake Apopka. LMB collected from a clean reference site (DeLeon Springs) were stocked at two periods of time into ponds constructed in former farm fields on the north shore of the lake. LMB were stocked during early and late oogenesis to determine if there were different effects of contamination on LMB that may be attributed to their reproductive stage. LMB inhabiting the ponds for ~4months had anywhere from 2 to 800 times higher contaminant load for a number of organochlorine pesticides (e.g. p, p'-DDE, methoxychlor) compared to control animals. Gonadosomatic index and plasma vitellogenin were not different between reproductively-stage matched LMB collected at reference sites compared to those inhabiting the ponds. However, plasma 17β-estradiol was lower in LMB inhabiting the Apopka ponds compared to ovary stage-matched LMB from the St. Johns River, a site used as a reference site. Sub-network enrichment analysis revealed that genes related to reproduction (granulosa function, oocyte development), endocrine function (steroid metabolism, hormone biosynthesis), and immune function (T cell suppression, leukocyte accumulation) were differentially expressed in the ovaries of LMB placed into the ponds. These data suggest that (1) LMB inhabiting the Apopka ponds showed disrupted reproduction and immune responses and that (2) gene expression profiles provided site-specific information by discriminating LMB from different macro-habitats. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China

    International Nuclear Information System (INIS)

    Yuan Guoli; Liu Chen; Chen Long; Yang Zhongfang

    2011-01-01

    The temporal and spatial distribution of heavy metals (Cd, Hg, Pb, As and Cr) in Poyang Lake, the largest freshwater lake (3050 km 2 ) in China, were studied based on the sedimentary profiles. For this purpose, eight sedimentary cores were selected which located at lake area, outfall of lake and the main branch rivers, respectively. High-resolution profiles with interval 2 cm were used for analyzing the concentration of metals, and the ages of them were determined by 210 Pb and 137 Cs isotopic dating. While studying the change of metals concentration with the age in profile, it is found that the concentration of them in sediments was influenced not only by the sources in history but also by the sediment types. Based on this detailed work, the inventory and burden of heavy metals per decade were estimated in lake area during the past 50 years. Significantly, rivers-contribution ratio per decade was estimated to distinguish each river's contribution of heavy metals into lake while river-flux in history and metals concentration in profiles were considered as calculating factors. So, our research provides a proof to well understand the sedimentary history and the inputting history of heavy metals from main rivers into an inland lake.

  18. Geochemical and Thermodinamic Modeling of Segara Anak Lake and the 2009 Eruption of Rinjani Volcano, Lombok, Indonesia

    Directory of Open Access Journals (Sweden)

    Akhmad Solikhin

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i4.106Rinjani is the second highest volcano in Indonesia with an elevation of 3726 m above sea level. The steep and highest cone of Rinjani consists mainly of loose pyroclastic ejecta and contains a crater with a few solfataras. The West of this cone is Segara Anak caldera. The western side of the caldera is occupied by a 230 m deep lake, covering an area of 11 km² and its volume was (before the 2009 eruption estimated 1.02 km3. This is probably the largest hot volcanic lake in the world.The lake water is neutral (pH: 7-8 and its chemistry dominated by chlorides and sulfates with a relatively high TDS (Total Dissolved Solids: 2640 mg/l. This unusual TDS as well as the lake surface temperatures (20 - 22°C well above ambient temperatures (14 - 15°C for this altitude, reflect a strong input of hydrothermal fluids. Numerous hot springs are located along the shore at the foot of Barujari volcanic cone. Bathymetric profiles show also several areas with columns of gas bubbles escaping from the lake floor indicating a significant discharge of CO gas into the lake. The mass and energy balance model of Rinjani Crater Lake produce total heat lost value on the average of 1700 MW. Most of the heating periods of the lake occurred when the heat released by the surface of the lake to the atmosphere was lower than the heat supplied from the hydrothermal system. Peaks of heat losses correspond to period of strong winds. Crater lake monitoring can provide a basic information about deep magmatic activity and surface processes that occur in the volcano. The monitoring also contributes to predict the next eruption in order to improve mitigation of volcanic eruption. Precursory signals of the May 2009 eruption can be seen from significant changes in the temperature and chemistry of some of the hot springs, the increase of Fe concentrations in spring #54, chemical plume of low pH and dissolved oxygen, acidification of Segara

  19. Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA

    Science.gov (United States)

    Rattray, Gordon W.

    2015-01-01

    Groundwater with elevated dissolved-solids concentrations—containing large concentrations of chloride, sodium, sulfate, and calcium—is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.

  20. Genetic diversity of wild and hatchery lake trout populations: Relevance for management and restoration in the Great Lakes

    Science.gov (United States)

    Page, K.S.; Scribner, K.T.; Burnham-Curtis, M.

    2004-01-01

    The biological diversity of lake trout Salvelinus namaycush in the upper Great Lakes was historically high, consisting of many recognizable morphological types and discrete spawning populations. During the 1950s and 1960s, lake trout populations were extirpated from much of the Great Lakes primarily as a result of overfishing and predation by the parasitic sea lamprey Petromyzon marinus. Investigations of how genetic diversity is partitioned among remnant wild lake trout populations and hatchery broodstocks have been advocated to guide lake trout management and conservation planning. Using microsatellite genetic markers, we estimated measures of genetic diversity and the apportionment of genetic variance among 6 hatchery broodstocks and 10 wild populations representing three morphotypes (lean, humper, and siscowet). Analyses revealed that different hatchery broodstocks and wild populations contributed disproportionally to the total levels of genetic diversity. The genetic affinities of hatchery lake trout reflected the lake basins of origin of the wild source populations. The variance in allele frequency over all sampled extant wild populations was apportioned primarily on the basis of morphotype (??MT = 0.029) and secondarily among geographically dispersed populations within each morphotype (??ST = 0.024). The findings suggest that the genetic divergence reflected in recognized morphotypes and the associated ecological and physiological specialization occurred prior to the partitioning of large proglacial lakes into the Great Lakes or as a consequence of higher contemporary levels of gene flow within than among morphotypes. Information on the relative contributions of different broodstocks to total gene diversity within the regional hatchery program can be used to prioritize the broodstocks to be retained and to guide future stocking strategies. The findings highlight the importance of ecological and phenotypic diversity in Great Lakes fish communities and

  1. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Koji; Sakai, Akiko; Nuimura, Takayuki [Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601 (Japan); Yamaguchi, Satoru [Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Prevention, Nagaoka 940-0821 (Japan); Sharma, Rishi R [Department of Hydrology and Meteorology, Ministry of Environment, Science and Technology, Babar Mahal, Kathmandu (Nepal)

    2009-10-15

    Changes in the area and bathymetry of Imja Glacial Lake and in the elevation of its damming moraine, Khumbu region, Nepal Himalaya are investigated. Previously reported changes in the lake area have been updated by multi-temporal ASTER images, which revealed a decreased expansion rate after 2000. A provisional expansion of the lake observed in 2004, from which some studies concluded an accelerated lake expansion due to global warming, has, from 2005, subsided to the glacier surface. Bathymetric changes for the period 1992-2002 that were first obtained for Himalayan glacial lakes suggest that the melting of debris-covered ice beneath the lake is insignificant in terms of the increase in lake volume, and that the retreat of a glacier in contact with the lake by calving is essential for the lake's expansion. Changes in the height of a damming moraine for the period 2001-2007 suggest a continuous surface lowering near the lake, though the lowering rates are smaller than those for the period 1989-1994.

  2. Reduced phosphorus retention by anoxic bottom sediments after the remediation of an industrial acidified lake area: Indications from P, Al, and Fe sediment fractions.

    Science.gov (United States)

    Nürnberg, Gertrud K; Fischer, Rachele; Paterson, Andrew M

    2018-06-01

    Formerly acidified lakes and watersheds can become more productive when recovering from acidity, especially when exposed to anthropogenic disturbance and increased nutrient loading. Occasional toxic cyanobacterial blooms and other signs of eutrophication have been observed for a decade in lakes located in the Sudbury, Ontario, mining area that was severely affected by acid deposition before the start of smelter emission reductions in the 1970s. Oligotrophic Long Lake and its upstream lakes have been exposed to waste water input and development impacts from the City of Greater Sudbury and likely have a legacy of nutrient enrichment in their sediment. Based on observations from other published studies, we hypothesized that P, which was previously adsorbed by metals liberated during acidification caused by the mining activities, is now being released from the sediment as internal P loading contributing to increased cyanobacteria biomass. Support for this hypothesis includes (1) lake observations of oxygen depletion and hypolimnetic anoxia and slightly elevated hypolimnetic total P concentration and (2) P, Al, and Fe fractionation of two sediment layers (0-5, 5-10 cm), showing elevated concentrations of TP and iron releasable P (BD-fraction), decreased concentrations in fractions associated with Al, and fraction ratios indicating decreased sediment adsorption capacity. The comparison with two moderately enriched lakes within 200 km distance, but never directly affected by mining operations, supports the increasing similarity of Long Lake surficial sediment adsorption capacity with that of unaffected lakes. There is cause for concern that increased eutrophication including the proliferation of cyanobacteria of formerly acidic lakes is wide-spread and occurs wherever recovery coincides with anthropogenic disturbances and physical changes related to climate change. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Review Article: Lake and breach hazard assessment for moraine-dammed lakes: an example from the Cordillera Blanca (Peru

    Directory of Open Access Journals (Sweden)

    A. Emmer

    2013-06-01

    Full Text Available Glacial lake outburst floods (GLOFs and related debris flows represent a significant threat in high mountainous areas across the globe. It is necessary to quantify this threat so as to mitigate their catastrophic effects. Complete GLOF hazard assessment incorporates two phases: the probability of water release from a given glacial lake is estimated through lake and breach hazard assessment while the endangered areas are identified during downstream hazard assessment. This paper outlines a number of methods of lake and breach hazard assessment, which can be grouped into three categories: qualitative, of which we outline eight; semi-quantitative, of which we outline two; and quantitative, of which we outline three. It is considered that five groups of critical parameters are essential for an accurate regionally focused hazard assessment method for moraine-dammed lakes in the Cordillera Blanca. These comprise the possibility of dynamic slope movements into the lake, the possibility of a flood wave from a lake situated upstream, the possibility of dam rupture following a large earthquake, the size of the dam freeboard (or ratio of dam freeboard, and a distinction between natural dams and those with remedial work. It is shown that none of the summarised methods uses all these criteria with, at most, three of the five considered by the outlined methods. A number of these methods were used on six selected moraine-dammed lakes in the Cordillera Blanca: lakes Quitacocha, Checquiacocha, Palcacocha, Llaca, Rajucolta, and Tararhua. The results have been compared and show that each method has certain advantages and disadvantages when used in this region. These methods demonstrate that the most hazardous lake is Lake Palcacocha.

  4. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China)

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-01-01

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r2 was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality. PMID:26712772

  5. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication--A Case Study in the Taihu Lake Basin (China).

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-12-24

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r² was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality.

  6. Lake Afdera: a threatened saline lake in Ethiopia | Getahun | SINET ...

    African Journals Online (AJOL)

    Lake Afdera is a saline lake located in the Afar region, Northern Ethiopia. Because of its inaccessibility it is one of the least studied lakes of the country. It supports life including three species of fish of which two are endemic. Recently, reports are coming out that this lake is used for salt extraction. This paper gives some ...

  7. Nitrogen deposition effects on diatom communities in lakes from three National Parks in Washington State

    Science.gov (United States)

    Sheibley, Richard W.; Enache, Mihaela; Swarzenski, Peter W.; Moran, Patrick W.; Foreman, James R.

    2014-01-01

    The goal of this study was to document if lakes in National Parks in Washington have exceeded critical levels of nitrogen (N) deposition, as observed in other Western States. We measured atmospheric N deposition, lake water quality, and sediment diatoms at our study lakes. Water chemistry showed that our study lakes were ultra-oligotrophic with ammonia and nitrate concentrations often at or below detection limits with low specific conductance (−1 year−1 and were variable both within and across the parks. Diatom assemblages in a single sediment core from Hoh Lake (Olympic National Park) displayed a shift to increased relative abundances of Asterionella formosa and Fragilaria tenera beginning in the 1969–1975 timeframe, whereas these species were not found at the remaining (nine) sites. These diatom species are known to be indicative of N enrichment and were used to determine an empirical critical load of N deposition, or threshold level, where changes in diatom communities were observed at Hoh Lake. However, N deposition at the remaining nine lakes does not seem to exceed a critical load at this time. At Milk Lake, also in Olympic National Park, there was some evidence that climate change might be altering diatom communities, but more research is needed to confirm this. We used modeled precipitation for Hoh Lake and annual inorganic N concentrations from a nearby National Atmospheric Deposition Program station, to calculate elevation-corrected N deposition for 1980–2009 at Hoh Lake. An exponential fit to this data was hindcasted to the 1969–1975 time period, and we estimate a critical load of 1.0 to 1.2 kg N ha−1 year−1 for wet deposition for this lake.

  8. The effect of climatic changes on Van lake

    International Nuclear Information System (INIS)

    Dirican, A.

    2002-01-01

    Lake levels are influenced by climatic changes, greenhouse effects and anthropogenic activities. These effects are reflected in the hydrological cycle features over the lake drainage basins. Among the significant hydrological variables, lake levels are influenced by different atmospheric and environmental conditions. During wet periods, there may be water-level rise that may cause some social and economical losses to agriculture and human activities along the lake shores. Such rises become serious in the case of shore line settlements and low lying agricultural land. Lake Van currently faces such problems due to water-level rises in eastern Turkey. Because of, it is a closed basin with no natural and artificial outlet and its water contain high concentrations of soda which prevent the use of its water as a drinking or agricultural water source, Lake Van unique. Under these circumstances, in addition to discussion of early studies air temperature, δ 18 O of precipitation, temperature profile of lake and δ 18 O variation of water column of lake Van were examined

  9. Sediment deposition and sources into a Mississippi River floodplain lake; Catahoula Lake, Louisiana

    Science.gov (United States)

    Latuso, Karen D.; Keim, Richard F.; King, Sammy L.; Weindorf, David C.; DeLaune, Ronald D.

    2017-01-01

    Floodplain lakes are important wetlands on many lowland floodplains of the world but depressional floodplain lakes are rare in the Mississippi River Alluvial Valley. One of the largest is Catahoula Lake, which has existed with seasonally fluctuating water levels for several thousand years but is now in an increasingly hydrologically altered floodplain. Woody vegetation has been encroaching into the lake bed and the rate of this expansion has increased since major human hydrologic modifications, such as channelization, levee construction, and dredging for improvement of navigation, but it remains unknown what role those modifications may have played in altering lake sedimentation processes. Profiles of thirteen 137Cs sediment cores indicate sedimentation has been about 0.26 cm y− 1 over the past 60 years and has been near this rate since land use changes began about 200 years ago (210Pb, and 14C in Tedford, 2009). Carbon sequestration was low (10.4 g m− 2 y− 1), likely because annual drying promotes mineralization and export. Elemental composition (high Zr and Ti and low Ca and K) and low pH of recent (sediments suggest Gulf Coastal Plain origin, but below the recent sediment deposits, 51% of sediment profiles showed influence of Mississippi River alluvium, rich in base cations such as K+, Ca2 +, and Mg2 +. The recent shift to dominance of Coastal Plain sediments on the lake-bed surface suggests hydrologic modification has disconnected the lake from sediment-bearing flows from the Mississippi River. Compared to its condition prior to hydrologic alterations that intensified in the 1930s, Catahoula Lake is about 15 cm shallower and surficial sediments are more acidic. Although these results are not sufficient to attribute ecological changes directly to sedimentological changes, it is likely the altered sedimentary and hydrologic environment is contributing to the increased dominance of woody vegetation.

  10. Global relationships between phosphorus and chlorophyll-a in oxbow lakes

    Science.gov (United States)

    Belcon, A. U.; Bernhardt, E. S.; Fritz, S. C.; Baker, P. A.

    2011-12-01

    Traditional limnological studies have focused on extant, large and deep bodies of fresh water. For over 70 years a strong positive relationship between sestonic chlorophyll-a (Chl-a) and total phosphorus (TP) has been established in temperate lakes with phosphorus generally viewed as the most limiting factor to productivity (Deevey 1940, Schindler 1977). Over the last few decades however, investigations have expanded to include the examination of shallow lakes, particularly in terms of water quality, nutrient content and regime shifts between stable alternate states. Most of these studies, however, have focused on northern, high latitude regions where the lakes are typically postglacial, isolated and fed by small streams. Relatively little work has been done on oxbow lakes which are floodplain lakes and are semi or permanently connected to the river. Oxbow lakes have been shown to serve several important ecologic and economic functions including nurseries for young fish, feeding grounds for top aquatic predators and increasing the biodiversity of the landscape particularly in tropical regions of the world where high precipitation and large rivers have produced thousands of oxbow lakes. In many developing countries oxbow lakes are an important source of revenue through fishing. This study examined the relationship between nutrients and productivity in oxbow lakes globally through a wide-spread literature synthesis. Four hundred and twenty nine oxbow lakes were represented by 205 data points while 285 data points represented 156 non-floodplain lakes. Despite differences in latitude, lake size and climate we find that oxbow lakes globally have a significantly less steep slope in their TP/Chl relationship than non-floodplain lakes do indicating that the same amount of sestonic phosphorus results in lower productivity. Oxbow lakes (TP/Chl): r = 0.7676, slope = 0.7257, Non-floodplain lakes (TP/Chl): r = 0.8096, slope = 1.1309. We theorize that their connection to the

  11. Water quality of Lake Austin and Town Lake, Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Lake Austin and Town Lake are located on the Colorado River in Travis County, central Texas, and serve as a source of water for municipal and industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Lake Austin, located immediately downstream of Lake Travis, extends for more than 20 miles into the western edge of the city of Austin. Town Lake extends through the downtown area of the city of Austin for nearly 6 miles where the Colorado River is impounded by Longhorn Dam.

  12. Characteristics of surface O{sub 3} over Qinghai Lake area in Northeast Tibetan Plateau, China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhenxing, E-mail: zxshen@mail.xjtu.edu.cn [Department of Environmental Sciences and Engineering, Xi' an Jiaotong University, Xi' an (China); Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Cao, Junji [Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Zhang, Leiming [Air Quality Research Division, Environment Canada, Toronto (Canada); Zhao, Zhuzi [Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Dong, Jungang [School of Architecture, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Wang, Linqing [Department of Environmental Sciences and Engineering, Xi' an Jiaotong University, Xi' an (China); Wang, Qiyuan; Li, Guohui; Liu, Suixin [Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Zhang, Qian [Department of Environmental Sciences and Engineering, Xi' an Jiaotong University, Xi' an (China)

    2014-12-01

    Surface O{sub 3} was monitored continuously during Aug. 12, 2010 to Jul. 21, 2011 at a high elevation site (3200 m above sea level) in Qinghai Lake area (36°58′37″N, 99°53′56″E) in Northeast Tibetan Plateau, China. Daily average O{sub 3} ranged from 21.8 ppbv to 65.3 ppbv with an annual average of 41.0 ppbv. Seasonal average of O{sub 3} followed a decreasing order of summer > autumn > spring > winter. Diurnal variations of O{sub 3} showed low concentrations during daytime and high concentrations during late night and early morning. An intensive campaign was also conducted during Aug. 13–31, 2010 to investigate correlations between meteorological or chemical conditions and O{sub 3}. It was found that O{sub 3} was poorly correlated with solar radiation due to the insufficient NO{sub x} in the ambient air, thus limiting O{sub 3} formation under strong solar radiation. In contrast, high O{sub 3} levels always coincided with strong winds, suggesting that stratospheric O{sub 3} and long range transport might be the main sources of O{sub 3} in this rural area. Back-trajectory analysis supported this hypothesis and further indicated the transport of air masses from northwest, northeast and southeast directions. - Highlights: • Surface O{sub 3} was measured in Qinghai Lake area in Northeast Tibetan Plateau, China. • The O{sub 3} chemical formation was under a strong NOx-limited in Qinghai Lake areas. • Stratospheric O{sub 3} and transport might be the main sources of O{sub 3} in this area.

  13. Riparian ecosystem resilience and livelihood strategies under test: lessons from Lake Chilwa in Malawi and other lakes in Africa.

    Science.gov (United States)

    Kafumbata, Dalitso; Jamu, Daniel; Chiotha, Sosten

    2014-04-05

    This paper reviews the importance of African lakes and their management challenges. African inland lakes contribute significantly to food security, livelihoods and national economies through direct exploitation of fisheries, water resources for irrigation and hydropower generation. Because of these key contributions, the ecosystem services provided are under significant stress mainly owing to high demand by increasing populations, negative anthropogenic impacts on lake catchments and high levels of poverty which result in unsustainable use. Climate variability exacerbates the stress on these ecosystems. Current research findings show that the lakes cannot sustain further development activities on the scale seen over the past few decades. Millions of people are at risk of losing livelihoods through impacts on livestock and wildlife. The review further shows that the problems facing these lakes are beyond the purview of current management practices. A much better understanding of the interactions and feedbacks between different components of the lake socio-ecological systems is needed to address the complex challenges of managing these ecosystem services. This review suggests that the three small wetlands of Chad, Chilwa and Naivasha provide an opportunity for testing novel ideas that integrate sustainability of natural resource management with livelihoods in order to inform policy on how future land use and climatic variability will affect both food security and the ecosystem services associated with it.

  14. Volcanic nutrient inputs and trophic state of Lake Caviahue, Patagonia, Argentina

    Science.gov (United States)

    Pedrozo, Fernando L.; Temporetti, Pedro F.; Beamud, Guadalupe; Diaz, Mónica M.

    2008-12-01

    The strategies for eutrophication control, remediation, and policy management are often defined for neutral to alkaline freshwater systems, as they are most suitable for human use. The influence of nutrients on eutrophication in a naturally-acidic lake is poorly known. The main purpose of the present work is to evaluate the significance of volcanic nutrients in the control of the trophic state of the acidic Lake Caviahue, located at North Patagonia, Argentina. Acidic water systems were most studied on artificial acidified lakes, such as mining lakes in Germany or pit lakes in the United States. Lake Caviahue received a very high P load (42-192 ton P/yr) and low N load (14 ton N/yr), mainly as ammonium with quite low N:P ratios (Copahue volcano represents the main natural contribution of nutrients and acidity to the Lake Caviahue. The lake is oligotrophic in terms of CHLa. Neither the transparency nor the nutrient, dissolved or particulate, contents are to date representative of the trophic state of the lake. High P loads do not imply the eutrophication of the lake. We suggest that nitrogen and not phosphorus represents the key control nutrient in volcanically acidified lakes as TON was better related to CHLa observed (0.13-0.36 mg/m 3) in the lake. The pH increased around one unit (pH 2.0-3.0) during the last five years suggesting that the lake has not yet returned to a stable state.

  15. Dispersal limitation does not control high elevational distribution of alien plant species in the southern Sierra Nevada, California

    Science.gov (United States)

    Rundel, Philip W.; Keeley, Jon E.

    2016-01-01

    Patterns of elevational distribution of alien plant species in the southern Sierra Nevada of California were used to test the hypothesis that alien plant species invading high elevations around the world are typically climate generalists capable of growing across a wide elevational range. The Sierra Nevada has been heavily impacted for more than a century and a half, first by heavy grazing up into high elevation meadows, followed by major logging, and finally, by impacts associated with recreational use. The comparative elevational patterns of distribution and growth form were compared for native and alien plant species in the four families (Asteraceae, Brassicaceae, Fabaceae, and Poaceae) that contribute the majority of naturalized aliens in the study area. The distribution of realized climatic niche breadth, as measured by elevational range of occurrence, was virtually identical for alien and native species, with both groups showing a roughly Gaussian distribution peaking with species whose range covers a span of 1500–1999 m. In contrast to alien species, which only rarely occurred at higher elevations, native species showed a distribution of upper elevation limits peaking at 3000–3499 m, an elevation that corresponds to the zone of upper montane and subalpine forests. Consistent with a hypothesis of abiotic limitations, only a few alien species have been ecologically successful invaders at subalpine and alpine elevations above 2500 m. The low diversity of aliens able to become established in these habitats is unlikely due to dispersal limitations, given the long history of heavy grazing pressure at high elevations across this region. Instead, this low diversity is hypothesized to be a function of life history traits and multiple abiotic stresses that include extremes of cold air and soil temperature, heavy snowfall, short growing seasons, and low resource availability. These findings have significant implications for resource managers.

  16. Effects of enhanced ultraviolet radiation-B on maize in arid regions of middle-high elevation

    International Nuclear Information System (INIS)

    Zhang Lei; Wang Lianxi; Li Fusheng

    2009-01-01

    [Objective]The experiment aimed to explore the influence of enhanced ultraviolet radiation-B on maize in arid regions of middle-high elevation for correct assessing the influence of enhanced ultraviolet radiation-B on maize and providing scientific reference to make proper countermeasures.[Method] The location test in field and lift lamp of UV-B were used to observe the changes of maize height , leaf area and number of green leaves under influences of different UV-B radiation. [Result]In arid regions of middle-high elevation, enhanced ultraviolet radiation-B could dwarf maize plant, decrease leaf area, decline number of green leaves and yield. The reason of decreasing leaf area was that enhanced ultraviolet radiation-B shortened leaf length and leaf width while the reason of declining yield was that yield components were all negatively influenced and with the increase of ultraviolet radiation-B, the yield declined dramatically.[Conclusion]The result of this experiment would be good for maize production in arid regions of middle-high elevation

  17. Refuge Lake Reclassification in 620 Minnesota Cisco Lakes under Future Climate Scenarios

    Directory of Open Access Journals (Sweden)

    Liping Jiang

    2017-09-01

    Full Text Available Cisco (Coregonus artedi is the most common coldwater stenothermal fish in Minnesota lakes. Water temperature (T and dissolved oxygen (DO in lakes are important controls of fish growth and reproduction and likely change with future climate warming. Built upon a previous study, this study uses a modified method to identify which of 620 cisco lakes in Minnesota can still support cisco populations under future climate and therefore be classified as cisco refuge lakes. The previous study used oxythermal stress parameter TDO3, the temperature at DO of 3 mg/L, simulated only from deep virtual lakes to classify 620 cisco lakes. Using four categories of virtual but representative cisco lakes in modified method, a one-dimensional water quality model MINLAKE2012 was used to simulate daily T and DO profiles in 82 virtual lakes under the past (1961–2008 and two future climate scenarios. A multiyear average of 31-day largest TDO3 over variable benchmark (VB periods, AvgATDO3VB, was calculated from simulated T and DO profiles using FishHabitat2013. Contour plots of AvgATDO3VB for four categories of virtual lakes were then developed to reclassify 620 cisco lakes into Tier 1 (AvgATDO3VB < 11 °C or Tier 2 refuge lakes, and Tier 3 non-refuge lakes (AvgATDO3VB > 17 °C. About 20% of 620 cisco lakes are projected to be refuge lakes under future climate scenarios, which is a more accurate projection (improving the prediction accuracy by ~6.5% from the previous study since AvgATDO3VB was found to vary by lake categories.

  18. Evaluation of the effects of water hardness and chemical pollutants on the zooplankton community in uranium mining lakes with acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, H.; Ferrari, C.; Nascimento, M.R. [Brazilian Nulcear Energy Commission/Pocos de Caldas Laboratory (Brazil); Rodgher, S. [Universidade Estadual Paulista Julio de Mesquita Filho/Science and Technology Institute (Brazil); Wisniewski, M.J. [Alfenas Federal University/Limnology Laboratory (Brazil)

    2014-07-01

    Several mining lakes are characterized by the inorganic pollution of its waters, known as acid mine drainage (AMD). The current study was developed in order to evaluate the effect of water hardness and chemical pollutants on the richness and density of the zoo-planktonic community species. A seasonal study was conducted in a uranium mining lake affected by AMD. In environmental conditions of extremely high hardness water values (960.3 to 1284,9 mg/l), zoo-planktonic species have indicated resistance to the combined effect of elevated average concentrations of chemical pollutants such as Al (81.9 mg/l), Zn (15.5 mg/l), Mn (102.8 mg/l), U (2.9 mg/l) and low pH values (average = 3.8). Thus, in environments of extreme chemical conditions, such as a uranium mining lake affected by AMD, the hardness showed to be the best predictor of the zoo-planktonic community richness, indicating a protective effect of ions Ca{sup +2} over in special to Bosminopsis deitersi, Bosmina sp., Keratella americana and K. cochlearis. Document available in abstract form only. (authors)

  19. Water Quality and Hydrology of Silver Lake, Barron County, Wisconsin, With Special Emphasis on Responses of a Terminal Lake to Changes in Phosphorus Loading and Water Level

    Science.gov (United States)

    Robertson, Dale M.; Rose, William J.; Fitzpatrick, Faith A.

    2009-01-01

    Silver Lake is typically an oligotrophic-to-mesotrophic, soft-water, terminal lake in northwestern Wisconsin. A terminal lake is a closed-basin lake with surface-water inflows but no surface-water outflows to other water bodies. After several years with above-normal precipitation, very high water levels caused flooding of several buildings near the lake and erosion of soil around much of the shoreline, which has been associated with a degradation in water quality (increased phosphorus and chlorophyll a concentrations and decreased water clarity). To gain a better understanding of what caused the very high water levels and degradation in water quality and collect information to better understand the lake and protect it from future degradation, the U.S. Geological Survey did a detailed study from 2004 to 2008. This report describes results of the study; specifically, lake-water quality, historical changes in water level, water and phosphorus budgets for the two years monitored in the study, results of model simulations that demonstrate how changes in phosphorus inputs affect lake-water quality, and the relative importance of changes in hydrology and changes in the watershed to the water quality of the lake. From 1987 to about 1996, water quality in Silver Lake was relatively stable. Since 1996, however, summer average total phosphorus concentrations increased from about 0.008 milligrams per liter (mg/L) to 0.018 mg/L in 2003, before decreasing to 0.011 mg/L in 2008. From 1996 to 2003, Secchi depths decreased from about 14 to 7.4 feet, before increasing to about 19 feet in 2008. Therefore, Silver Lake is typically classified as oligotrophic to mesotrophic; however, during 2002-4, the lake was classified as mesotrophic to eutrophic. Because productivity in Silver Lake is limited by phosphorus, phosphorus budgets for the lake were constructed for monitoring years 2005 and 2006. The average annual input of phosphorus was 216 pounds: 78 percent from tributary and

  20. Thermokarst lake methanogenesis along a complete talik profile

    Directory of Open Access Journals (Sweden)

    J. K. Heslop

    2015-07-01

    Full Text Available Thermokarst (thaw lakes emit methane (CH4 to the atmosphere formed from thawed permafrost organic matter (OM, but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel that extends through ice-rich yedoma permafrost soils surrounding the lake and into underlying gravel. Our results showed CH4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD: 5.95 ± 1.67 μg C–CH4 g dw−1 d−1; 125.9 ± 36.2 μg C–CH4 g C−1org d−1. High CH4 production potentials were also observed in recently thawed permafrost (1.18 ± 0.61 μg C–CH4g dw−1 d−1; 59.60± 51.5 μg C–CH4 g C−1org d−1 at the bottom of the talik, but the narrow thicknesses (43 cm of this horizon limited its overall contribution to total sediment column CH4 production in the core. Lower rates of CH4 production were observed in sediment horizons representing permafrost that has been thawing in the talik for a longer period of time. No CH4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH4 production is highly variable in thermokarst lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw and shore erosion of yedoma permafrost are important to lake CH4 production.

  1. Thermokarst lake methanogenesis along a complete talik profile

    Science.gov (United States)

    Heslop, J.K.; Walter Anthony, K.M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.; Bondurant, A.; Grosse, G.; Jones, Miriam C.

    2015-01-01

    Thermokarst (thaw) lakes emit methane (CH4) to the atmosphere formed from thawed permafrost organic matter (OM), but the relative magnitude of CH4 production in surface lake sediments vs. deeper thawed permafrost horizons is not well understood. We assessed anaerobic CH4 production potentials from various depths along a 590 cm long lake sediment core that captured the entire sediment package of the talik (thaw bulb) beneath the center of an interior Alaska thermokarst lake, Vault Lake, and the top 40 cm of thawing permafrost beneath the talik. We also studied the adjacent Vault Creek permafrost tunnel that extends through ice-rich yedoma permafrost soils surrounding the lake and into underlying gravel. Our results showed CH4 production potentials were highest in the organic-rich surface lake sediments, which were 151 cm thick (mean ± SD: 5.95 ± 1.67 μg C–CH4 g dw−1 d−1; 125.9 ± 36.2 μg C–CH4 g C−1org d−1). High CH4 production potentials were also observed in recently thawed permafrost (1.18 ± 0.61 μg C–CH4g dw−1 d−1; 59.60± 51.5 μg C–CH4 g C−1org d−1) at the bottom of the talik, but the narrow thicknesses (43 cm) of this horizon limited its overall contribution to total sediment column CH4 production in the core. Lower rates of CH4 production were observed in sediment horizons representing permafrost that has been thawing in the talik for a longer period of time. No CH4 production was observed in samples obtained from the permafrost tunnel, a non-lake environment. Our findings imply that CH4production is highly variable in thermokarst lake systems and that both modern OM supplied to surface sediments and ancient OM supplied to both surface and deep lake sediments by in situ thaw and shore erosion of yedoma permafrost are important to lake CH4 production.

  2. Repeated Fish Removal to Restore Lakes: Case Study of Lake Væng, Denmark—Two Biomanipulations during 30 Years of Monitoring

    Directory of Open Access Journals (Sweden)

    Martin Søndergaard

    2017-01-01

    Full Text Available Biomanipulation by fish removal has been used in many shallow lakes as a method to improve lake water quality. Here, we present and analyse 30 years of chemical and biological data from the shallow and 16 ha large Lake Væng, Denmark, which has been biomanipulated twice with a 20-year interval by removing roach (Rutilus rutilus and bream (Abramis brama. After both biomanipulations, Lake Væng shifted from a turbid, phytoplankton-dominated state to a clear, water macrophyte-dominated state. Chlorophyll a was reduced from 60–80 μg·L−1 to 10–30 μg·L−1 and the coverage of submerged macrophytes, dominated by Elodea canadensis, increased from <0.1% to 70%–80%. Mean summer total phosphorus was reduced from about 0.12 to 0.07 mg·L−1 and total nitrogen decreased from 1.0 to 0.4 mg·L−1. On a seasonal scale, phosphorus and chlorophyll concentrations changed from a summer maximum during turbid conditions to a winter maximum under clear conditions. The future of Lake Væng is uncertain and a relatively high phosphorus loading via the groundwater, and the accumulation of a mobile P pool in the sediment make it likely that the lake eventually will return to turbid conditions. Repeated fish removals might be a relevant management strategy to apply in shallow lakes with a relatively high external nutrient loading.

  3. Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes.

    Science.gov (United States)

    Ginger, Luke J; Zimmer, Kyle D; Herwig, Brian R; Hanson, Mark A; Hobbs, William O; Small, Gaston E; Cotner, James B

    2017-10-01

    Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ 15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ 15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often

  4. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Stuefer, Svetlana

    2013-03-31

    , 2010, and 2011), we selected and monitored two lakes with similar hydrological regimes. Both lakes are located 30 miles south of Prudhoe Bay, Alaska, near Franklin Bluffs. One is an experimental lake, where we installed a snow fence; the other is a control lake, where the natural regime was preserved. The general approach was to compare the hydrologic response of the lake to the snowdrift during the summers of 2010 and 2011 against the baseline conditions in 2009. Highlights of the project included new data on snow transport rates on the Alaska North Slope, an evaluation of the experimental lake's hydrological response to snowdrift melt, and cost assessment of snowdrift‐generated water. High snow transport rates (0.49 kg/s/m) ensured that the snowdrift reached its equilibrium profile by winter's end. Generally, natural snowpack disappeared by the beginning of June in this area. In contrast, snow in the drift lasted through early July, supplying the experimental lake with snowmelt when water in other tundra lakes was decreasing. The experimental lake retained elevated water levels during the entire open‐water season. Comparison of lake water volumes during the experiment against the baseline year showed that, by the end of summer, the drift generated by the snow fence had increased lake water volume by at least 21-29%. We estimated water cost at 1.9 cents per gallon during the first year and 0.8 cents per gallon during the second year. This estimate depends on the cost of snow fence construction in remote arctic locations, which we assumed to be at $7.66 per square foot of snow fence frontal area. The snow fence technique was effective in augmenting the supply of lake water during summers 2010 and 2011 despite low rainfall during both summers. Snow fences are a simple, yet an effective, way to replenish tundra lakes with freshwater and increase water availability in winter. This research project was synergetic with the NETL project, "North Slope Decision

  5. Hydrologic behaviour of the Lake of Monate (Italy): a parsimonious modelling strategy

    Science.gov (United States)

    Tomesani, Giulia; Soligno, Irene; Castellarin, Attilio; Baratti, Emanuele; Cervi, Federico; Montanari, Alberto

    2016-04-01

    The Lake of Monate (province of Varese, Northern Italy), is a unique example of ecosystem in equilibrium. The lake water quality is deemed excellent notwithstanding the intensive agricultural cultivation, industrial assets and mining activities characterising the surrounding areas. The lake has a true touristic vocation and is the only swimmable water body of the province of Varese, which counts several natural lakes. Lake of Monate has no tributary and its overall watershed area is equal to c.a. 6.6 km2 including the lake surface (i.e. 2.6 km2), of which 3.3 out of c.a. 4.0 km2 belong to the topographical watershed, while the remaining 0.7 km2 belong to the underground watershed. The latter is larger than the topographical watershed due to the presence of moraine formations on top of the limestone bedrock. The local administration recently promoted an intensive environmental monitoring campaign that aims to reach a better understanding of the hydrology of the lake and the subsurface water fluxes. The monitoring campaign started in October 2013 and, as a result, several meteoclimatic and hydrologic data have been collected up to now at daily and hourly timescales. Our study focuses on a preliminary representation of the hydrological behaviour of the lake through a modified version of HyMOD, a conceptual 5-parameter lumped rainfall-runoff model based on the probability-distributed soil storage capacity. The modified model is a semi-distributed application of HyMOD that uses the same five parameters of the original version and simulates the rainfall-runoff transformation for the whole lake watershed at daily time scale in terms of: direct precipitation on, and evaporation from, the lake surface; overall lake inflow, by separating the runoff component (topographic watershed) from the groundwater component (overall watershed); lake water-level oscillation; streamflow at the lake outlet. We used the first year of hydrometeorological observations as calibration data and

  6. Shaded Relief with Height as Color, Lake Balbina, near Manaus, Brazil

    Science.gov (United States)

    2002-01-01

    These two images show exactly the same area, Lake Balbina near Manaus, Brazil. The image on the left was created using the best global topographic data set previously available, the U.S. Geological Survey's GTOPO30. In contrast, the much more detailed image on the right was generated with data from the Shuttle Radar Topography Mission, which collected enough measurements to map 80 percent of Earth's landmass at this level of precision.Lake Balbina is a man-made reservoir created to supply hydroelectric power to the city of Manaus, located 125 kilometers (77 miles) to the south. The reservoir is located on the Uatuma River and drains a 19,100-square-kilometer (7,340-square-mile) basin of mostly upland topography where the relief extends from 30 meters (98 feet) to 200 meters(650 feet) in elevation. The lake includes a cluster of approximately 1,500 islands separated by submerged, shallow valleys within a flooded water-surface area of 2,400 square kilometers (920 square miles). Prior to the dam closure on October 1, 1987, the annually averaged flow on thriver was about 450 cubic meters (16,000 cubic feet) per second. Water depths in the full reservoir average 7.4 meters (24 feet). Because the vegetation was not cleared before filling, the lake consists mostly of forest and inundated trunks of dead, leafless trees.For some parts of the globe, Shuttle Radar Topography Mission measurements are 30 times more precise than previously available topographical information, according to NASA scientists. Mission data will be a welcome resource for national and local governments, scientists, commercial enterprises, and members of the public alike. The applications are as diverse as earthquake and volcano studies, flood control, transportation, urban and regional planning, aviation, recreation, and communications. The data's military applications include mission planning and rehearsal, modeling, and simulation.This image combines two types of Shuttle Radar Topography Mission data

  7. Lake Tana's piscivorous Barbus (Cyprinidae, Ethiopia) ecology - evolution - exploitation

    NARCIS (Netherlands)

    Graaf, de M.

    2003-01-01

    The 15 Barbus species of Lake Tana, a large shallow lake located at an altitude of 1830 m in the north-western highlands of Ethiopia, form the only remaining intact species flock of large (max. 100cm) cyprinid fishes. Lake Tana is the source of the Blue Nile and high waterfalls (40 m) at

  8. Lake-wide distribution of Dreissena in Lake Michigan, 1999

    Science.gov (United States)

    Fleischer, Guy W.; DeSorcie, Timothy J.; Holuszko, Jeffrey D.

    2001-01-01

    The Great Lakes Science Center has conducted lake-wide bottom trawl surveys of the fish community in Lake Michigan each fall since 1973. These systematic surveys are performed at depths of 9 to 110 m at each of seven index sites around Lake Michigan. Zebra mussel (Dreissena polymorpha) populations have expanded to all survey locations and at a level to sufficiently contribute to the bottom trawl catches. The quagga (Dreissena bugensis), recently reported in Lake Michigan, was likely in the catches though not recognized. Dreissena spp. biomass ranged from about 0.6 to 15 kg/ha at the various sites in 1999. Dreissenid mussels were found at depths of 9 to 82 m, with their peak biomass at 27 to 46 m. The colonization of these exotic mussels has ecological implications as well as potential ramifications on the ability to sample fish consistently and effectively with bottom trawls in Lake Michigan.

  9. Hydrograph Predictions of Glacial Lake Outburst Floods From an Ice-Dammed Lake

    Science.gov (United States)

    McCoy, S. W.; Jacquet, J.; McGrath, D.; Koschitzki, R.; Okuinghttons, J.

    2017-12-01

    Understanding the time evolution of glacial lake outburst floods (GLOFs), and ultimately predicting peak discharge, is crucial to mitigating the impacts of GLOFs on downstream communities and understanding concomitant surface change. The dearth of in situ measurements taken during GLOFs has left many GLOF models currently in use untested. Here we present a dataset of 13 GLOFs from Lago Cachet Dos, Aysen Region, Chile in which we detail measurements of key environmental variables (total volume drained, lake temperature, and lake inflow rate) and high temporal resolution discharge measurements at the source lake, in addition to well-constrained ice thickness and bedrock topography. Using this dataset we test two common empirical equations as well as the physically-based model of Spring-Hutter-Clarke. We find that the commonly used empirical relationships based solely on a dataset of lake volume drained fail to predict the large variability in observed peak discharges from Lago Cachet Dos. This disagreement is likely because these equations do not consider additional environmental variables that we show also control peak discharge, primarily, lake water temperature and the rate of meltwater inflow to the source lake. We find that the Spring-Hutter-Clarke model can accurately simulate the exponentially rising hydrographs that are characteristic of ice-dammed GLOFs, as well as the order of magnitude variation in peak discharge between events if the hydraulic roughness parameter is allowed to be a free fitting parameter. However, the Spring-Hutter-Clarke model over predicts peak discharge in all cases by 10 to 35%. The systematic over prediction of peak discharge by the model is related to its abrupt flood termination that misses the observed steep falling limb of the flood hydrograph. Although satisfactory model fits are produced, the range in hydraulic roughness required to obtain these fits across all events was large, which suggests that current models do not

  10. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.

    Science.gov (United States)

    García-Robledo, Carlos; Kuprewicz, Erin K; Staines, Charles L; Erwin, Terry L; Kress, W John

    2016-01-19

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.

  11. Evaluation of ground water nutrient loading to Priest Lake, Bonner County, Idaho

    International Nuclear Information System (INIS)

    Freeman, K.M.; Ralston, D.R.

    1994-01-01

    The quality of water of Idaho lakes is of increasing concern, particularly when related to waste disposal and land use practices within the watersheds. This study investigates the Kalispell Bay and Granite Creek areas. Conclusions are as follows: Both areas demonstrate direction of ground water towards Priest Lake. The Kalispell Bay area displays horizontal ground water flow throughout the entire area with an upward hydraulic gradient over a portion of the area. The Granite Creek Area displays strictly horizontal flow; both study areas contain particular sub-areas which display nutrient enrichment, particulary nitrogen, of ground water; the granite Creek study area contains a sub-area displaying both elevated nitrogen concentrations and positive tests for E. coli bacteria. 2 figs., 2 tabs

  12. Large Lakes Dominate CO2 Evasion From Lakes in an Arctic Catchment

    Science.gov (United States)

    Rocher-Ros, Gerard; Giesler, Reiner; Lundin, Erik; Salimi, Shokoufeh; Jonsson, Anders; Karlsson, Jan

    2017-12-01

    CO2 evasion from freshwater lakes is an important component of the carbon cycle. However, the relative contribution from different lake sizes may vary, since several parameters underlying CO2 flux are size dependent. Here we estimated the annual lake CO2 evasion from a catchment in northern Sweden encompassing about 30,000 differently sized lakes. We show that areal CO2 fluxes decreased rapidly with lake size, but this was counteracted by the greater overall coverage of larger lakes. As a result, total efflux increased with lake size and the single largest lake in the catchment dominated the CO2 evasion (53% of all CO2 evaded). By contrast, the contribution from the smallest ponds (about 27,000) was minor (evasion at the landscape scale.

  13. Lake Michigan lake trout PCB model forecast post audit

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  14. Nature of elevated rat intestinal carbohydrase activities after high-carbohydrate diet feeding

    International Nuclear Information System (INIS)

    Tsuboi, K.K.; Kwong, L.K.; Yamada, K.; Sunshine, P.; Koldovsky, O.

    1985-01-01

    Adult rats that were maintained on a low-carbohydrate intake showed rapid increase in the activities of sucrase, maltase, and lactase along the length of the small intestine when they were fed a high-starch diet. In the present study, the authors have identified these activity increases, and showed that they reflect proportional accumulations in enzyme-protein of sucrase-isomaltase, maltase-glucoamylase, and neutral lactase. It was determined that each of these enzymes exists in adult rat intestine in single immunoreactive form and accounts as a group for all sucrase, cellobiase, and most maltase and lactase activities. Dietary change from low to high carbohydrate (starch) resulted in an increase in [ 3 H]leucine accumulation in each of the enzymes, without a change in the amount of label accumulation in total intestinal proteins. The increase in label accumulation in the brush-border carbohydrase pools was matched generally by proportional elevation in the pool concentrations of sucrase-isomaltase and lactase but not maltase. These studies suggest that the elevation of intestinal carbohydrase concentrations induced by high-carbohydrate feeding may involve selective stimulation of their synthesis

  15. Snowmelt timing, phenology, and growing season length in conifer forests of Crater Lake National Park, USA

    Science.gov (United States)

    O'Leary, Donal S.; Kellermann, Jherime L.; Wayne, Chris

    2018-02-01

    Anthropogenic climate change is having significant impacts on montane and high-elevation areas globally. Warmer winter temperatures are driving reduced snowpack in the western USA with broad potential impacts on ecosystem dynamics of particular concern for protected areas. Vegetation phenology is a sensitive indicator of ecological response to climate change and is associated with snowmelt timing. Human monitoring of climate impacts can be resource prohibitive for land management agencies, whereas remotely sensed phenology observations are freely available at a range of spatiotemporal scales. Little work has been done in regions dominated by evergreen conifer cover, which represents many mountain regions at temperate latitudes. We used moderate resolution imaging spectroradiometer (MODIS) data to assess the influence of snowmelt timing and elevation on five phenology metrics (green up, maximum greenness, senescence, dormancy, and growing season length) within Crater Lake National Park, Oregon, USA from 2001 to 2012. Earlier annual mean snowmelt timing was significantly correlated with earlier onset of green up at the landscape scale. Snowmelt timing and elevation have significant explanatory power for phenology, though with high variability. Elevation has a moderate control on early season indicators such as snowmelt timing and green up and less on late-season variables such as senescence and growing season length. PCA results show that early season indicators and late season indicators vary independently. These results have important implications for ecosystem dynamics, management, and conservation, particularly of species such as whitebark pine ( Pinus albicaulis) in alpine and subalpine areas.

  16. Variations in anthropogenic silver in a large Patagonian lake correlate with global shifts in photographic processing technology.

    Science.gov (United States)

    Juncos, Romina; Campbell, Linda; Arcagni, Marina; Daga, Romina; Rizzo, Andrea; Arribére, María; Ribeiro Guevara, Sergio

    2017-04-01

    At the beginning of the 21st century, digital imaging technology replaced the traditional silver-halide film photography which had implications in Ag contamination. Lake Nahuel Huapi is a popular Patagonia tourist destination impacted by municipal silver (Ag) contamination from photographic processing facilities since 1990's. Silver concentrations in a dated sediment core from the lake bottom showed a 10-fold increase above background levels in the second half of the 20th century, then a decrease. This trend corresponds well with published annual global photography industry demand for Ag, which clearly shows the evolution and replacement of the traditional silver-halide film photography by digital imaging technology. There were significant decreases in Ag concentrations in sediments, mussels and fish across the lake between 1998 and 2011. Lower trophic organisms had variable whole-body Ag concentrations, from 0.2-2.6 μg g -1 dry weight (DW) in plankton to 0.02-3.1 μg g -1 DW in benthic macroinvertebrates. Hepatic Ag concentrations in crayfish, mussels and predatory fish were significantly elevated relative to muscle which often have Ag concentrations below the detection limit (0.01-0.05 μg g -1 DW). Trophodynamic analyses using δ 15 N and whole-body invertebrate and muscle Ag concentrations indicated food web biodilution trends. High sedimentation rates in conjunction with the reduction of silver waste products discharged to the lake, as a result of the change to digital image processing technologies, are resulting in unplanned but welcome remediation of the Ag contamination in Lake Nahuel Huapi. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    Science.gov (United States)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  18. Climate Change Adaptation Decision Making for Glacial Lake Outburst Floods From Palcacocha Lake in Peru

    Science.gov (United States)

    Cuellar, A. D.; McKinney, D. C.

    2014-12-01

    Climate change has accelerated glacial retreat in high altitude glaciated regions of Peru leading to the growth and formation of glacier lakes. Glacial lake outburst floods (GLOF) are sudden events triggered by an earthquake, avalanche into the lake or other shock that causes a sudden outflow of water. These floods are catastrophic because of their sudden onset, the difficulty predicting them, and enormous quantity of water and debris rapidly flooding downstream areas. Palcacocha Lake in the Peruvian Andes has experienced accelerated growth since it burst in 1941 and threatens the major city of Huaraz and surrounding communities. Since the 1941 flood stakeholders have advocated for projects to adapt to the increasing threat posed by Palcacocha Lake. Nonetheless, discussions surrounding projects for Palcacocha have not included a rigorous analysis of the potential consequences of a flood, probability of an event, or costs of mitigation projects. This work presents the first step to rationally analyze the risks posed by Palcacocha Lake and the various adaptation projects proposed. In this work the authors use decision analysis to asses proposed adaptation measures that would mitigate damage in downstream communities from a GLOF. We use an existing hydrodynamic model of the at-risk area to determine how adaptation projects will affect downstream flooding. Flood characteristics are used in the HEC-FIA software to estimate fatalities and injuries from an outburst flood, which we convert to monetary units using the value of a statistical life. We combine the monetary consequences of a GLOF with the cost of the proposed projects and a diffuse probability distribution for the likelihood of an event to estimate the expected cost of the adaptation plans. From this analysis we found that lowering the lake level by 15 meters has the least expected cost of any proposal despite uncertainty in the effect of lake lowering on flooding downstream.

  19. Organic contamination in tree swallow (Tachycineta bicolor) nestlings at United States and binational great Lakes Areas of Concern

    Science.gov (United States)

    Custer, Thomas W.; Custer, Christine M.; Dummer, Paul; Goldberg, Diana R.; Franson, J. Christian; Erickson, Richard A.

    2017-01-01

    Contaminant exposure of tree swallows, Tachycineta bicolor, nesting in 27 Areas of Concern (AOCs) in the Great Lakes basin was assessed from 2010 to 2014 to assist managers and regulators in their assessments of Great Lakes AOCs. Contaminant concentrations in nestlings from AOCs were compared with those in nestlings from nearby non-AOC sites. Polychlorinated biphenyl (PCB) and polybrominated diphenyl ether concentrations in tree swallow nestling carcasses at 30% and 33% of AOCs, respectively, were below the mean concentration for non-AOCs. Polycyclic aromatic hydrocarbon (PAH) concentrations in nestling stomach contents and perfluorinated compound concentrations in nestling plasma at 67% and 64% of AOCs, respectively, were below the mean concentration for non-AOCs. Concentrations of PCBs in nestling carcasses were elevated at some AOCs but modest compared with highly PCB-contaminated sites where reproductive effects have been documented. Concentrations of PAHs in diet were sufficiently elevated at some AOCs to elicit a measurable physiological response. Among AOCs, concentrations of the perfluorinated compound perfluorooctane sulfonate in plasma were the highest on the River Raisin (MI, USA; geometric mean 330 ng/mL) but well below an estimated toxicity reference value (1700 ng/mL). Both PAH and PCB concentrations in nestling stomach contents and PCBs in carcasses were significantly correlated with concentrations in sediment previously reported, thereby reinforcing the utility of tree swallows to assess bioavailability of sediment contamination.

  20. Assessing Resiliency in a Large Lake Receiving Mine Tailings Waste: Impacts of Major Environmental Disturbance.

    Science.gov (United States)

    Petticrew, Ellen; Owens, Philip; Albers, Sam

    2016-04-01

    On 4th August 2014, the tailings impoundment of the Mount Polley copper and gold mine in British Columbia failed. Material from the impoundment (surface area = 2.7 km2) flowed into nearby Polley Lake and Hazeltine Creek, before discharging into Quesnel Lake, a large (ca. 100 km long, >500 m deep), relatively pristine lake. Initial estimates suggest that approximately 25 Mm3 of tailings (water and solids) and eroded soils and surficial materials from Hazeltine Creek were delivered to Quesnel Lake, raising the lake by 7.7 cm. Much of this material was deposited at the bottom of Quesnel Lake but a plume of fine-grained sediment (D50 of ca. 1 μm) remained suspended in the water column. The impact of the distribution of this sediment was monitored over the next 15 months using water column profiling for temperature, conductivity, fluorescence and turbidity with depth. The plume movement was regulated by natural processes associated with the physical limnology of this large fjord lake, specifically, seiche events which transferred suspended particles both up-lake, against the flow regime, and down-lake into the Quesnel River. Samples of lake water and bottom sediment taken from the impacted area show elevated levels of total metals and other elements, which may have important ecosystem implications in this watershed. Indeed, the breach occurred at a time when a peak run of sockeye salmon were returning to their natal streams in the Quesnel basin. Zooplankton sampling for metals was initiated in fall 2014 to determine up take of metals into the food web. This poster describes the failure of the impoundment dam and presents results of sampling the aquatic environment over the first fifteen months of impact.