WorldWideScience

Sample records for high efficiency indium

  1. High-efficiency indium tin oxide/indium phosphide solar cells

    Science.gov (United States)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  2. Development of wide-band gap indium gallium nitride solar cells for high-efficiency photovoltaics

    Science.gov (United States)

    Jani, Omkar K.

    Main objective of the present work is to develop wide-band gap InGaN solar cells in the 2.4--2.9 eV range that can be an integral component of photovoltaic devices to achieve efficiencies greater than 50%. The III-nitride semiconductor material system, which consists of InN, GaN, AlN and their alloys, offers a substantial potential in developing ultra-high efficiency photovoltaics mainly due to its wide range of direct-band gap, and other electronic, optical and mechanical properties. However, this novel InGaN material system poses challenges from theoretical, as well as technological standpoints, which are further extended into the performance of InGaN devices. In the present work, these challenges are identified and overcome individually to build basic design blocks, and later, optimized comprehensively to develop high-performance InGaN solar cells. One of the major challenges from the theoretical aspect arises due to unavailability of a suitable modeling program for InGaN solar cells. As spontaneous and piezoelectric polarization can substantially influence transport of carriers in the III-nitrides, these phenomena are studied and incorporated at a source-code level in the PC1D simulation program to accurately model InGaN solar cells. On the technological front, InGaN with indium compositions up to 30% (2.5 eV band gap) are developed for photovoltaic applications by controlling defects and phase separation using metal-organic chemical vapor deposition. InGaN with band gap of 2.5 eV is also successfully doped to achieve acceptor carrier concentration of 1018 cm-3. A robust fabrication scheme for III-nitride solar cells is established to increase reliability and yield; various schemes including interdigitated grid contact and current spreading contacts are developed to yield low-resistance Ohmic contacts for InGaN solar cells. Preliminary solar cells are developed using a standard design to optimize the InGaN material, where the band gap of InGaN is progressively

  3. Development of high-efficiency solar cells on copper indium selenide single crystals (cadmium sulfide, zinc oxide)

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Lap Sum

    1996-12-31

    Photovoltaic cells with a ZnO/CdS/CuInSe{sub 2} structure were fabricated on bulk CuInSe{sub 2} substrates. Conversion efficiencies of more than or near 10 per cent were obtained on cells with an active area and without the use of antireflection coating. Copper indium selenide single crystals can be used as absorbers in thin film solar cells. In this study, the single crystals were grown by a horizontal Bridgman method. An annealing of the CuInSe{sub 2} substrate before the CdS deposition was found to be essential in obtaining high photovoltaic performance.

  4. Hydrogenated indium oxide window layers for high-efficiency Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, Timo, E-mail: timo.jaeger@empa.ch; Romanyuk, Yaroslav E.; Nishiwaki, Shiro; Bissig, Benjamin; Pianezzi, Fabian; Fuchs, Peter; Gretener, Christina; Tiwari, Ayodhya N. [Empa – Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Thin Films and Photovoltaics, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Döbeli, Max [ETH Zürich, Swiss Federal Institute of Technology, Laboratory of Ion Beam Physics, Otto-Stern-Weg 5, 8093 Zürich (Switzerland)

    2015-05-28

    High mobility hydrogenated indium oxide is investigated as a transparent contact for thin film Cu(In,Ga)Se{sub 2} (CIGS) solar cells. Hydrogen doping of In{sub 2}O{sub 3} thin films is achieved by injection of H{sub 2}O water vapor or H{sub 2} gas during the sputter process. As-deposited amorphous In{sub 2}O{sub 3}:H films exhibit a high electron mobility of ∼50 cm{sup 2}/Vs at room temperature. A bulk hydrogen concentration of ∼4 at. % was measured for both optimized H{sub 2}O and H{sub 2}-processed films, although the H{sub 2}O-derived film exhibits a doping gradient as detected by elastic recoil detection analysis. Amorphous IOH films are implemented as front contacts in CIGS based solar cells, and their performance is compared with the reference ZnO:Al electrodes. The most significant feature of IOH containing devices is an enhanced open circuit voltage (V{sub OC}) of ∼20 mV regardless of the doping approach, whereas the short circuit current and fill factor remain the same for the H{sub 2}O case or slightly decrease for H{sub 2}. The overall power conversion efficiency is improved from 15.7% to 16.2% by substituting ZnO:Al with IOH (H{sub 2}O) as front contacts. Finally, stability tests of non-encapsulated solar cells in dry air at 80 °C and constant illumination for 500 h demonstrate a higher stability for IOH-containing devices.

  5. Control of indium tin oxide anode work function modified using Langmuir-Blodgett monolayer for high-efficiency organic photovoltaics

    Science.gov (United States)

    Yokokura, Yuya; Dogase, Tomomichi; Shinbo, Tatsuki; Nakayashiki, Yuya; Takagi, Yusuke; Ueda, Kazuyoshi; Sarangerel, Khayankhyarvaa; Delgertsetseg, Byambasuren; Ganzorig, Chimed; Sakomura, Masaru

    2017-08-01

    The use of Langmuir-Blodgett (LB) monolayers to modify the indium tin oxide (ITO) work function and thus improve the performance of zinc phthalocyanine (ZnPc)/fullerene (C60)-based and boron subphthalocyanine chloride (SubPc)/C60-based small molecule organic photovoltaic devices (OPVs) was examined. In general, LB precursor compounds contain one or more long alkyl chain substituents that can act as spacers to prevent electrical contact with adjoining electrode surfaces. As one example of such a compound, arachidic acid (CH3(CH2)18COOH) was inserted in the forms of one-layer, three-layer or five-layer LB films between the anode ITO layer and the p-type layer in ZnPc-C60-based OPVs to investigate the effects of the long alkyl chain group when it acts as an electrically insulating spacer. The short-circuit current density (Jsc) values of the OPVs with the three- and five-layer inserts (1.78 mA.cm-2 and 0.61 mA.cm-2, respectively) were reduced dramatically, whereas the Jsc value for the OPV with the single-layer insertion (2.88 mA.cm-2) was comparable to that of the OPV without any insert (3.14 mA.cm-2). The ITO work function was shifted positively by LB deposition of a surfactant compound, C9F19C2H4-O-C2H4-COOH (PFECA), which contained a fluorinated head group. This positive effect was maintained even after formation of an upper p-type organic layer. The Jsc and open-circuit voltage (Voc) of the SubPc-C60-based OPV with the LB-modified ITO layers were effectively enhanced. As a result, a 42% increase in device efficiency was achieved.

  6. Tuning indium tin oxide work function with solution-processed alkali carbonate interfacial layers for high-efficiency inverted organic photovoltaic cells.

    Science.gov (United States)

    Chen, Fei; Chen, Qi; Mao, Lin; Wang, Yixin; Huang, Xun; Lu, Wei; Wang, Bing; Chen, Liwei

    2013-12-01

    Selective electron collection by an interfacial layer modified indium tin oxide cathode is critically important for achieving high-efficiency inverted structure organic photovoltaic (OPV) cells. Here, we demonstrate that solution-processed alkali carbonates, such as Li2CO3, Na2CO3, K2CO3, Rb2CO3, Cs2CO3, are good interfacial layer materials. Both carbonate concentration and annealing conditions can affect cathode work function and surface roughness. By proper optimization, different alkali carbonates can be almost equally effective as the cathode interfacial layer. Furthermore, good device performance can be achieved at a low annealing temperature (cells on plastic substrates. This work indicates that alkali carbonates, not just cesium carbonate, are valid choices as the cathode interlayer in inverted OPV devices.

  7. Local indium segregation and band structure in high efficiency green light emitting InGaN/GaN diodes

    OpenAIRE

    Jinschek, Joerg R.; Erni, Rolf; Gardner, Nathan F.; Kim, Andrew Y.; Kisielowski, Christian

    2004-01-01

    GaN/InGaN light emitting diodes (LEDs) are commercialized for lighting applications because of the cost efficient way that they produce light of high brightness1,2. Nevertheless, there is significant room for improving their external emission efficiency3 from typical values below 10 percent4 to more than 50 percent5, which are obtainable by use of other materials systems that, however, do not cover the visible spectrum. In particular, green-light emitting diodes fall short in this respec...

  8. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers.

    Science.gov (United States)

    van Dam, Dick; van Hoof, Niels J J; Cui, Yingchao; van Veldhoven, Peter J; Bakkers, Erik P A M; Gómez Rivas, Jaime; Haverkort, Jos E M

    2016-12-27

    Photovoltaic cells based on arrays of semiconductor nanowires promise efficiencies comparable or even better than their planar counterparts with much less material. One reason for the high efficiencies is their large absorption cross section, but until recently the photocurrent has been limited to less than 70% of the theoretical maximum. Here we enhance the absorption in indium phosphide (InP) nanowire solar cells by employing broadband forward scattering of self-aligned nanoparticles on top of the transparent top contact layer. This results in a nanowire solar cell with a photovoltaic conversion efficiency of 17.8% and a short-circuit current of 29.3 mA/cm(2) under 1 sun illumination, which is the highest reported so far for nanowire solar cells and among the highest reported for III-V solar cells. We also measure the angle-dependent photocurrent, using time-reversed Fourier microscopy, and demonstrate a broadband and omnidirectional absorption enhancement for unpolarized light up to 60° with a wavelength average of 12% due to Mie scattering. These results unambiguously demonstrate the potential of semiconductor nanowires as nanostructures for the next generation of photovoltaic devices.

  9. Atom-efficient metal-catalyzed cross-coupling reaction of indium organometallics with organic electrophiles.

    Science.gov (United States)

    Pérez, I; Sestelo, J P; Sarandeses, L A

    2001-05-09

    The novel metal-catalyzed cross-coupling reaction of indium organometallics with organic electrophiles is described. Triorganoindium compounds (R(3)In) containing alkyl, vinyl, aryl, and alkynyl groups are efficiently prepared from the corresponding lithium or magnesium organometallics by reaction with indium trichloride. The cross-coupling reaction of R(3)In with aryl halides and pseudohalides (iodide 2, bromide 5, and triflate 4), vinyl triflates, benzyl bromides, and acid chlorides proceeds under palladium catalysis in excellent yields and with high chemoselectivity. Indium organometallics also react with aryl chlorides as under nickel catalysis. In the cross-coupling reaction the triorganoindium compounds transfer, in a clear example of atom economy, all three of the organic groups attached to the metal, as shown by the necessity of using only 34 mol % of indium. The feasibility of using R(3)In in reactions with different electrophiles, along with the high yields and chemoselectivities obtained, reveals indium organometallics to be useful alternatives to other organometallics in cross-coupling reactions.

  10. Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM.

    Science.gov (United States)

    Lee, Cheol-Hee; Jeong, Mi-Kyung; Kilicaslan, M Fatih; Lee, Jong-Hyeon; Hong, Hyun-Seon; Hong, Soon-Jik

    2013-03-01

    In this study, a method which is environmentally sound, time and energy efficient has been used for recovery of indium from used liquid crystal display (LCD) panels. In this method, indium tin oxide (ITO) glass was crushed to micron size particles in seconds via high energy ball milling (HEBM). The parameters affecting the amount of dissolved indium such as milling time, particle size, effect time of acid solution, amount of HCl in the acid solution were tried to be optimized. The results show that by crushing ITO glass to micron size particles by HEBM, it is possible to extract higher amount of indium at room temperature than that by conventional methods using only conventional shredding machines. In this study, 86% of indium which exists in raw materials was recovered about in a very short time.

  11. Preparation for Ultra High Pure Indium Metal for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Shashwat V. Joshi

    2014-11-01

    Full Text Available Ultra high pure Indium metal is extensively used in optoelectronic devices. Indium and its alloys become potential candidates in aerospace, defense and communication sectors. Purification of Indium has been done by Instrolec-200 Refiner followed by Directional Melting/ Freezing and Solidification Systems. Major targeted impurities are Metallic impurities Ag, Al, As, Bi, Ca, Cu, Fe, Ga, Ge, Mg, Pb, Sb, Si, Sn, and Zn. Purified Indium is characterized by analytical techniques Inductively Coupled Plasma- Optical Emission Spectrophotometry and Inductively Coupled Plasma- Mass Spectrometry.

  12. High quality factor indium oxide mechanical microresonators

    Energy Technology Data Exchange (ETDEWEB)

    Bartolomé, Javier, E-mail: j.bartolome@fis.ucm.es; Cremades, Ana; Piqueras, Javier [Department of Materials Physics, Faculty of Physics, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2015-11-09

    The mechanical resonance behavior of as-grown In{sub 2}O{sub 3} microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than 10{sup 5} and minimum detectable forces of the order of 10{sup −16} N/Hz{sup 1/2} demonstrate their potential as mechanical microresonators for real applications. Measurements at low-vacuum using the SEM environmental operation mode were performed to study the effect of extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.

  13. Preparation of 5N high purified indium by the method of chemical purification-electrolysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The application of indium requires high purity indium as material. 5N high purity indium had been prepared by the method of a combination of chemically smelting and electrolysis. Smelting time was 10 min, the abstraction rate of cadmium was 80%-90% when used solution of I2-KI and glycerine to smelt indium. 4N metal indium was used as anode, high purity indium as cathode, In2(SO4)3-H2SO4 system as electrolyte, and In content is 100 g/L, pH 2-3 and current density 80-100 A/m2. The thallium was removed by smelting indium using 15% NH4Cl-glycerine solution for 20 min and tin by smelting indium using NaOH and NaNO3 for 20 min. The removed rate of tin was 60%.The product quality of indium reached national standard of 5N high purity indium.

  14. Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates

    Science.gov (United States)

    Han, Yu; Li, Qiang; Lau, Kei May

    2016-12-01

    We report the characteristics of indium gallium arsenide stacked quantum structures inside planar indium phosphide nanowires grown on exact (001) silicon substrates. The morphological evolution of the indium phosphide ridge buffers inside sub-micron trenches has been studied, and the role of inter-facet diffusion in this process is discussed. Inside a single indium phosphide nanowire, we are able to stack quantum structures including indium gallium arsenide flat quantum wells, quasi-quantum wires, quantum wires, and ridge quantum wells. Room temperature photoluminescence measurements reveal a broadband emission spectrum centered at 1550 nm. Power dependent photoluminescence analysis indicates the presence of quasi-continuum states. This work thus provides insights into the design and growth process control of multiple quantum wells in wire structures for high performance nanowire lasers on a silicon substrate with 1550 nm band emission.

  15. The development of 6.7% efficient copper zinc indium selenide devices from copper zinc indium sulfide nanocrystal inks

    Science.gov (United States)

    Graeser, Brian K.

    As solar cell absorber materials, alloys of CuIn(S,Se)2 and Zn(S,Se) provide an opportunity to reduce the usage of indium along with the ability to tune the band gap. Here we report successful synthesis of alloyed (CuInS2)0.5(ZnS)0.5 nanocrystals by a method that solely uses oleylamine as the liquid medium for synthesis. The reactive sintering of a thin film of these nanocrystals via selenization at 500 °C results in a uniform composition alloy (CuIn(S,Se)2)0.5(Zn(S,Se)) 0.5 layer with micron size grains. Due to the large amount of zinc in the film, the sintered grains exhibit the zinc blende structure instead of the usual chalcopyrite structure of CuIn(S,Se)2 films. The use of the selenide films as a p-type absorber layer has yielded solar cells with total area power conversion efficiencies as high as 6.7% (7.4% based on active area). These preliminary results are encouraging and indicate that with further optimization this class of materials has promise as the absorber layer in solar cells.

  16. Design of a Three-Layer Antireflection Coating for High Efficiency Indium Phosphide Solar Cells Using a Chemical Oxide as First Layer

    Science.gov (United States)

    Moulot, Jacques; Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Bailey, Sheila

    1995-01-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or

  17. Equation of state of liquid Indium under high pressure

    Directory of Open Access Journals (Sweden)

    Huaming Li

    2015-09-01

    Full Text Available We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  18. Efficient Indium-Mediated Dehalogenation of Aromatics in Ionic Liquid Media

    Directory of Open Access Journals (Sweden)

    Flavia C. Zacconi

    2012-12-01

    Full Text Available An efficient indium-mediated dehalogenation reaction of haloaromatics and haloheteroaromatics in ionic liquids has been studied. This method is simple and effective in the presence of [bmim]Br. Furthermore, this methodology is environmentally friendly compared with conventional ones.

  19. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  20. THE DEVELOPMENT OF 6.7% EFFICIENT COPPER ZINC INDIUM SELENIDE DEVICES FROM COPPER ZINC INDIUM SULFIDE NANOCRYSTAL INKS

    OpenAIRE

    Graeser, Brian Kemp

    2014-01-01

    As solar cell absorber materials, alloys of CuIn(S,Se)2 and Zn(S,Se) provide an opportunity to reduce the usage of indium along with the ability to tune the band gap. Here we report successful synthesis of alloyed (CuInS2 )0.5(ZnS)0.5 nanocrystals by a method that solely uses oleylamine as the liquid medium for synthesis. The reactive sintering of a thin film of these nanocrystals via selenization at 500 °C results in a uniform composition alloy (CuIn(S,Se)2 )0.5 (Zn(S,Se)) 0.5 layer with mic...

  1. Electron Transport Layer-Free Inverted Organic Solar Cells Fabricated with Highly Transparent Low-Resistance Indium Gallium Zinc Oxide/Ag/Indium Gallium Zinc Oxide Multilayer Electrode

    Science.gov (United States)

    Kim, Jun Ho; Kwon, Sung-Nam; Na, Seok-In; Kim, Sun-Kyung; Yoo, Young-Zo; Im, Hyeong-Seop; Seong, Tae-Yeon

    2017-04-01

    Inverted organic solar cells (OSCs) have been fabricated with conventional Sn-doped indium oxide (ITO) and amorphous indium gallium zinc oxide (a-IGZO)/Ag/a-IGZO (39 nm/19 nm/39 nm) (a-IAI) electrodes and their electrical characteristics characterized. The ITO and optimized a-IAI electrodes showed high transmittance of 96% and 88% at 500 nm, respectively. The carrier concentration and sheet resistance of the ITO and a-IAI films were 8.46 × 1020 cm-3 and 7.96 × 1021 cm-3 and 14.18 Ω/sq and 4.24 Ω/sq, respectively. Electron transport layer (ETL)-free OSCs with the a-IAI electrode exhibited power conversion efficiency (PCE) of 2.66%, similar to that of ZnO ETL-based OSCs with ITO electrode (3.27%). However, the ETL-free OSCs with the a-IAI electrode showed much higher PCE than the ETL-free OSCs with the ITO electrode (0.84%). Ultraviolet photoelectron spectroscopy results showed that the work function of the a-IAI electrode was 4.15 eV. This improved performance was attributed to the various roles of the a-IAI electrode, e.g., as an effective ETL and a hole blocking layer.

  2. Experimental validation of a mass- efficiency model for an indium liquid-metal ion source

    CERN Document Server

    Tajmar, M

    2003-01-01

    A model is derived linking microdroplet emission of a liquid-metal ion source (LMIS) to the actual current-voltage characteristic and operating temperature. All parameters were experimentally investigated using an indium LMIS, confirming the relationships found. The model allows for the first time the optimisation of a LMIS for low droplet emission at high emission currents. This is very important for application as a thruster, which has been developed at ARC Seibersdorf research. It can be also used to extrapolate droplet emission values along the current-voltage characteristic. (orig.)

  3. High efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, G.

    1984-05-18

    The surgeon wants to have phlebograms with good contrast, which should show only the deep venous system and leaks to the superficial system, that means, the insufficient communicating veins and the inflow of the big and small saphenous vein into the deep vein must be visible. The most frequent causes for X-ray-prints of bad quality are: a too high position of the stowing, too high puncture at the back of the foot, bad focussing without showing the ankle joint or the popliteal region and too narrow sections of the X-ray-films as well as too late exposures with fullfilling of the total superficial venous system and extreme superposition on the film.

  4. Light extraction efficiency enhancement in light-emitting diodes with indium tin oxide nano-craters

    Institute of Scientific and Technical Information of China (English)

    Zheng Huaiwen; Zhang Yiyun; Yang Hua; Xue Bin; Wu Kui; Li Jing; Wang Guohong

    2012-01-01

    A simple and low cost method is described which improves extraction efficiency.The indium tin oxide (ITO) textured film was fabricated by using the self-assembly method and dry-etching.The surface morphologies and surface roughness were observed by using an atomic force microscope.The Ⅰ-Ⅴ characteristics,output power and polar radiation pattern of the LEDs with and without textured ITO were measured for comparison.Cylinders and craters were formed on the ITO surface after the etching,the height of which increased with etching time.The output power of the devices is proportional to the etching time.Total internal reflection of light on the ITO-GaN interface is reduced due to the appearance of cylinders and craters,and their increasing height.Thus,the output power is improved.

  5. Fabrication of efficient thermoacoustic device with an interdigitated-like electrode on indium tin oxide glass

    Science.gov (United States)

    Tsai, Ming-shan; Yang, Ko-kang; Chen, Sy-hann; Ting, Chen-ching; Jiang, I.-min

    2016-10-01

    A thermoacoustic device was fabricated on indium tin oxide (ITO) glass, exhibiting an interdigitated-like electrode pattern. Our fabrication method enhanced the sound performance by approximately 20 dB compared with that of plain ITO film. Two approaches were adopted in this study to enhance the sound pressure level (SPL). One was to decrease the heat capacity per unit area of the device by reducing the thickness of the conductor film, and the other was to increase the thermal diffusivity of the device by applying a thin Au film on the electrode. We observed that heat generated by electron accumulation on ITO protrusions resulted in a large temperature oscillation of the surroundings and induced an SPL increase. A 4 nm Au film coating on the fabricated thermoacoustic device assisted thermal energy exchange with close-proximity air, improving the efficiency by an SPL of 7 dB.

  6. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    Directory of Open Access Journals (Sweden)

    Graham S Baldwin

    Full Text Available The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  7. Effect of impurity on high pressure behavior of nano indium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Chitnis, Abhishek, E-mail: abhishekchitnis87@gmail.com; Garg, Nandini; Mishra, A. K.; Pandey, K. K.; Sharma, Surinder M. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai– 400085 (India); Singhal, Anshu [Chemistry Division, Bhabha Atomic Research Centre, Mumbai –400085 (India)

    2015-06-24

    Angle dispersive x-ray diffraction studies were carried out on a mixture of nano particles of indium titanate, indium oxide, and disordered TiO{sub 2} upto pressures of ∼ 45 GPa. Our studies show that indium titanate undergoes a partial decomposition to its constituent high pressure oxides. However, concomitantly a very small fraction of indium titanate transforms to a denser phase at ∼ 27.5 GPa. This transformation to new phase was found to be irreversible. At this pressure even cubic In{sub 2}O{sub 3} transformed to the In{sub 2}O{sub 3} (II) (iso-structural to Rh{sub 2}O{sub 3} (II)) phase, without any signature of the intermediate corundum phase. The high pressure In{sub 2}O{sub 3} (II) phase transforms to the corundum structure on release of pressure. These studies indicate that the presence of a large fraction of seed impurities could have facilitated the decomposition of indium titanate into its constituent oxides at the cost of its incomplete transformation to the high pressure denser phase.

  8. Efficient and Selective Reduction of Aromatic Nitro Compounds to Aromatic Amines by NbCl{sub 5}/Indium System

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Woo; Kim, Duckil; Kim, Hyung Min; Kang, Sung Ho [Korea Univ., Seoul (Korea, Republic of)

    2012-09-15

    Aromatic amines find applicability in diverse fields including dyes, pharmaceuticals, agrochemicals, and photographic materials. To date, there are a variety of methods, which can be used to convert aromatic nitro compounds to their corresponding amines. Some of them include Cp{sub 2}TiCl{sub 2}/In, Al/NH{sub 4}Cl, (NH{sub 4}){sub 2}SO{sub 4}/NaBH{sub 4}, NiCl{sub 2}6H{sub 2}O/In, HI, Sm/I{sub 2}, In/NH{sub 4}Cl, B{sub 4}H{sub 10}/Pd/C, Co{sub 2}(CO){sub 8}/H{sub 2}O and In/HCl. However, most methods still lack the desired chemo-selectivity when other reducible functional groups are present in the nitroarene and often require long reaction times, or harsh reaction conditions. Consequently, efficient and selective methods for the reduction of aromatic nitro compounds continue to be developed. It has been reported that NbCl{sub 5}/Zn system is used as a reagent for reducing sulfoxides, epoxides, and amine N-oxides.12 Because of the close resemblance of indium to zinc in several respects, including first ionization potential, we considered that NbCl{sub 5}/In system can be an efficient reducing agent for the conversion of aromatic nitro compounds to the corresponding amines. Recently, indium metal has attracted much attention for its unique properties such as low toxicity and high stability in water and air compared with other metals. In continuation of our interest in exploring the utility of metal-metal salt system in organic synthesis, we would like to report an efficient and chemo-selective method for the reduction of various aromatic nitro compounds to the corresponding amines by treatment with NbCl{sub 5}/In system (eq. 1). The new reduction system was generated by the addition of indium powder to a stirred solution of niobium(V) chloride in THF under sonication. The generation of low-valent niobium species was examined at room temperature with an excess of indium metal. The observations suggest that this procedure can be applied for the chemo

  9. Phosphasalen indium complexes showing high rates and isoselectivities in rac-lactide polymerizations

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Dominic; White, Andrew J.P. [Department of Chemistry, Imperial College London (United Kingdom); Forsyth, Craig M. [School of Chemistry, Monash University, Clayton, VIC (Australia); Bown, Mark [CSIRO Manufacturing, Bayview Avenue, Clayton, VIC (Australia); Williams, Charlotte K. [Department of Chemistry, Oxford University (United Kingdom)

    2017-05-02

    Polylactide (PLA) is the leading bioderived polymer produced commercially by the metal-catalyzed ring-opening polymerization of lactide. Control over tacticity to produce stereoblock PLA, from rac-lactide improves thermal properties but is an outstanding challenge. Here, phosphasalen indium catalysts feature high rates (30±3 m{sup -1} min{sup -1}, THF, 298 K), high control, low loadings (0.2 mol %), and isoselectivity (P{sub i}=0.92, THF, 258 K). Furthermore, the phosphasalen indium catalysts do not require any chiral additives. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Enhanced efficiency of Schottky-barrier solar cell with periodically nonhomogeneous indium gallium nitride layer

    Science.gov (United States)

    Anderson, Tom H.; Mackay, Tom G.; Lakhtakia, Akhlesh

    2017-01-01

    A two-dimensional finite-element model was developed to simulate the optoelectronic performance of a Schottky-barrier solar cell. The heart of this solar cell is a junction between a metal and a layer of n-doped indium gallium nitride (InξGaN) alloy sandwiched between a reflection-reducing front window and a periodically corrugated metallic back reflector. The bandgap of the InξGaN layer was varied periodically in the thickness direction by varying the parameter ξ∈(0,1). First, the frequency-domain Maxwell postulates were solved to determine the spatial profile of photon absorption and, thus, the generation of electron-hole pairs. The AM1.5G solar spectrum was taken to represent the incident solar flux. Next, the drift-diffusion equations were solved for the steady-state electron and hole densities. Numerical results indicate that a corrugated back reflector of a period of 600 nm is optimal for photon absorption when the InξGaN layer is homogeneous. The efficiency of a solar cell with a periodically nonhomogeneous InξGaN layer may be higher by as much as 26.8% compared to the analogous solar cell with a homogeneous InξGaN layer.

  11. High Efficiency Pb-In Binary Metal Perovskite Solar Cells.

    Science.gov (United States)

    Wang, Zhao-Kui; Li, Meng; Yang, Ying-Guo; Hu, Yun; Ma, Heng; Gao, Xing-Yu; Liao, Liang-Sheng

    2016-08-01

    Mixed Pb-In perovskite solar cells are fabricated by using lead(II) chloride and indium(III) chloride with methylammonium iodide. A maximum power conversion efficiency as high as 17.55% is achieved owing to the high quality of perovskites with multiple ordered crystal orientations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High Performance Indium-Doped ZnO Gas Sensor

    Directory of Open Access Journals (Sweden)

    Junjie Qi

    2015-01-01

    Full Text Available Gas sensors for ethanol and acetone based on ZnO nanobelts with doping element indium were fabricated. Excellent sensitivity accompanied with short response time (10 s and recovery time (23 s to 150 ppm ethanol is obtained. For In-doped sensors, a minimum concentration of 37.5 ppm at 275°C in acetone was observed with an average sensitivity of 714.4, which is 7 times larger than that of the pure sensors and much larger than that reported response (16 of Co-doped ZnO nanofibers to acetone. These results indicate that doping elements can improve gas sensitivity, which is associated with oxygen space and valence ions. In-doped ZnO nanobelts exhibit higher sensitivity to acetone than that to ethanol. These results indicate that doped ZnO nanobelts can successfully distinguish acetone and ethanol, which can be put into various practical applications.

  13. Highly sensitive photodetectors based on hybrid 2D-0D SnS{sub 2}-copper indium sulfide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yun; Zhan, Xueying; Xu, Kai; Yin, Lei; Cheng, Zhongzhou; Jiang, Chao; Wang, Zhenxing, E-mail: wangzx@nanoctr.cn, E-mail: hej@nanoctr.cn; He, Jun, E-mail: wangzx@nanoctr.cn, E-mail: hej@nanoctr.cn [CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China)

    2016-01-04

    Both high speed and efficiency of photoelectric conversion are essential for photodetectors. As an emerging layered metal dichalcogenide (LMD), tin disulfide owns intrinsic faster photodetection ability than most other LMDs but poor light absorption and low photoelectric conversion efficiency. We develop an efficient method to enhance its performance by constructing a SnS{sub 2}-copper indium sulfide hybrid structure. As a result, the responsivity reaches 630 A/W, six times stronger than pristine SnS{sub 2} and much higher than most other LMDs photodetectors. Additionally, the photocurrents are enhanced by more than 1 order of magnitude. Our work may open up a pathway to improve the performance of photodetectors based on LMDs.

  14. High-performance fused indium gallium arsenide/silicon photodiode

    Science.gov (United States)

    Kang, Yimin

    Modern long haul, high bit rate fiber-optic communication systems demand photodetectors with high sensitivity. Avalanche photodiodes (APDs) exhibit superior sensitivity performance than other types of photodetectors by virtual of its internal gain mechanism. This dissertation work further advances the APD performance by applying a novel materials integration technique. It is the first successful demonstration of wafer fused InGaAs/Si APDs with low dark current and low noise. APDs generally adopt separate absorption and multiplication (SAM) structure, which allows independent optimization of materials properties in two distinct regions. While the absorption material needs to have high absorption coefficient in the target wavelength range to achieve high quantum efficiency, it is desirable for the multiplication material to have large discrepancy between its electron and hole ionization coefficients to reduce noise. According to these criteria, InGaAs and Si are the ideal materials combination. Wafer fusion is the enabling technique that makes this theoretical ideal an experimental possibility. APDs fabricated on the fused InGaAs/Si wafer with mesa structure exhibit low dark current and low noise. Special device fabrication techniques and high quality wafer fusion reduce dark current to nano ampere level at unity gain, comparable to state-of-the-art commercial III/V APDs. The small excess noise is attributed to the large difference in ionization coefficients between electrons and holes in silicon. Detailed layer structure designs are developed specifically for fused InGaAs/Si APDs based on principles similar to those used in traditional InGaAs/InP APDs. An accurate yet straightforward technique for device structural parameters extraction is also proposed. The extracted results from the fabricated APDs agree with device design parameters. This agreement also confirms that the fusion interface has negligible effect on electric field distributions for devices fabricated

  15. Large-grained copper indium diselenide crystal growth by computer-controlled high-pressure liquid-encapsulated directional solidification

    Science.gov (United States)

    Schwerdtfeger, C. R.; Ciszek, T. F.

    1992-12-01

    Large-grained copper indium diselenide crystal growth by computer-controlled high-pressure liquid-encapsulated directional solidification is presented. A supply of good quality angle crystals is essential to characterization of the fundamental material properties. [AIP

  16. Defects, strain relaxation, and compositional grading in high indium content InGaN epilayers grown by molecular beam epitaxy

    Science.gov (United States)

    Bazioti, C.; Papadomanolaki, E.; Kehagias, Th.; Walther, T.; Smalc-Koziorowska, J.; Pavlidou, E.; Komninou, Ph.; Karakostas, Th.; Iliopoulos, E.; Dimitrakopulos, G. P.

    2015-10-01

    We investigate the structural properties of a series of high alloy content InGaN epilayers grown by plasma-assisted molecular beam epitaxy, employing the deposition temperature as variable under invariant element fluxes. Using transmission electron microscopy methods, distinct strain relaxation modes were observed, depending on the indium content attained through temperature adjustment. At lower indium contents, strain relaxation by V-pit formation dominated, with concurrent formation of an indium-rich interfacial zone. With increasing indium content, this mechanism was gradually substituted by the introduction of a self-formed strained interfacial InGaN layer of lower indium content, as well as multiple intrinsic basal stacking faults and threading dislocations in the rest of the film. We show that this interfacial layer is not chemically abrupt and that major plastic strain relaxation through defect introduction commences upon reaching a critical indium concentration as a result of compositional pulling. Upon further increase of the indium content, this relaxation mode was again gradually succeeded by the increase in the density of misfit dislocations at the InGaN/GaN interface, leading eventually to the suppression of the strained InGaN layer and basal stacking faults.

  17. High indium non-polar InGaN clusters with infrared sensitivity grown by PAMBE

    Directory of Open Access Journals (Sweden)

    Shruti Mukundan

    2015-03-01

    Full Text Available Studies on the optical properties of InGaN alloy of relatively higher indium content are of potential interest to understand the effect of indium content on the optical band gap of epitaxial InGaN. We report the growth of self assembled non-polar high indium clusters of In0.55Ga0.45N over non-polar (11-20 a-plane In0.17Ga0.83N epilayer grown on a-plane (11-20GaN/(1-102 r-plane sapphire substrate using plasma assisted molecular beam epitaxy (PAMBE. Such structures are potential candidates for high brightness LEDs emitting in longer wavelengths. The high resolution X-ray diffraction studies revealed the formation of two distinct compositions of InxGa1−xN alloys, which were further confirmed by photoluminescence studies. A possible mechanism for the formation of such structure was postulated which was supported with the results obtained by energy dispersive X-ray analysis. The structure hence grown when investigated for photo-detecting properties, showed sensitivity to both infrared and ultraviolet radiations due to the different composition of InGaN region.

  18. High indium non-polar InGaN clusters with infrared sensitivity grown by PAMBE

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B., E-mail: sbk@mrc.iisc.ernet.in; Shinde, Satish; Nanda, K. K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Roul, Basanta [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Maiti, R.; Ray, S. K. [Department of Physics, Indian Institute of Technology, Kharagpur (India)

    2015-03-15

    Studies on the optical properties of InGaN alloy of relatively higher indium content are of potential interest to understand the effect of indium content on the optical band gap of epitaxial InGaN. We report the growth of self assembled non-polar high indium clusters of In{sub 0.55}Ga{sub 0.45}N over non-polar (11-20) a-plane In{sub 0.17}Ga{sub 0.83}N epilayer grown on a-plane (11-20)GaN/(1-102) r-plane sapphire substrate using plasma assisted molecular beam epitaxy (PAMBE). Such structures are potential candidates for high brightness LEDs emitting in longer wavelengths. The high resolution X-ray diffraction studies revealed the formation of two distinct compositions of In{sub x}Ga{sub 1−x}N alloys, which were further confirmed by photoluminescence studies. A possible mechanism for the formation of such structure was postulated which was supported with the results obtained by energy dispersive X-ray analysis. The structure hence grown when investigated for photo-detecting properties, showed sensitivity to both infrared and ultraviolet radiations due to the different composition of InGaN region.

  19. High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel

    Science.gov (United States)

    Jeong, Jae Kyeong; Jeong, Jong Han; Yang, Hui Won; Park, Jin-Seong; Mo, Yeon-Gon; Kim, Hye Dong

    2007-09-01

    The authors report the fabrication of high performance thin film transistors (TFTs) with an amorphous indium gallium zinc oxide (a-IGZO) channel, which was deposited by cosputtering using a dual IGZO and indium zinc oxide (IZO) target. The effect of the indium content on the device performance of the a-IGZO TFTs was investigated. At a relatively low IZO power of 400W, the field-effect mobility (μFE) and subthreshold gate swing (S) of the a-IGZO TFTs were dramatically improved to 19.3cm2/Vs and 0.35V/decade, respectively, compared to those (11.2cm2/Vs and 1.11V/decade) for the TFTs with the a-IGZO channel (reference sample) prepared using only the IGZO target. The enhancement in the subthreshold IDS-VGS characteristics at an IZO power of 400W compared to those of the reference sample was attributed to the reduction of the interface trap density rather than the reduction of the bulk defects of the a-IGZO channel.

  20. Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes

    KAUST Repository

    Wu, Hui

    2011-01-12

    Tin-doped indium oxide (ITO) has found widespread use in solar cells, displays, and touch screens as a transparent electrode; however, two major problems with ITO remain: high reflectivity (up to 10%) and insufficient flexibility. Together, these problems severely limit the applications of ITO films for future optoelectronic devices. In this communication, we report the fabrication of ITO nanofiber network transparent electrodes. The nanofiber networks show optical reflectivity as low as 5% and high flexibility; the nanofiber networks can be bent to a radius of 2 mm with negligible changes in the sheet resistance. © 2010 American Chemical Society.

  1. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2to CO

    KAUST Repository

    Rasul, Shahid

    2014-12-23

    The challenge in the electrochemical reduction of aqueous carbon dioxide is in designing a highly selective, energy-efficient, and non-precious-metal electrocatalyst that minimizes the competitive reduction of proton to form hydrogen during aqueous CO2 conversion. A non-noble metal electrocatalyst based on a copper-indium (Cu-In) alloy that selectively converts CO2 to CO with a low overpotential is reported. The electrochemical deposition of In on rough Cu surfaces led to Cu-In alloy surfaces. DFT calculations showed that the In preferentially located on the edge sites rather than on the corner or flat sites and that the d-electron nature of Cu remained almost intact, but adsorption properties of neighboring Cu was perturbed by the presence of In. This preparation of non-noble metal alloy electrodes for the reduction of CO2 provides guidelines for further improving electrocatalysis.

  2. TiO2 nanocrystals shell layer on highly conducting indium tin oxide nanowire for photovoltaic devices.

    Science.gov (United States)

    Han, Hyun Soo; Kim, Ju Seong; Kim, Dong Hoe; Han, Gil Sang; Jung, Hyun Suk; Noh, Jun Hong; Hong, Kug Sun

    2013-04-21

    We demonstrated a highly efficient conducting indium tin oxide (ITO) core-TiO2 nanocrystals shell nanowire array for a photoelectrode in dye-sensitized solar cells with regard to light harvest and charge collection. The TiO2 shell layer, consisting of anatase nanocrystals of ~2 nm, were successfully formed on a single crystalline ITO nanowire prepared via a vapor transport method using repetitive TiCl4 aqueous solution treatments at 50 °C. We found that the nanocrystal size and number of Cl(-) ions remaining on the formed shell layer critically influence the dye loading properties. Moreover, these factors can be controlled by means of a post-annealing process. We also found that the dye loading and the back electron transport from the conductive ITO nanowire to the electrolyte mainly determine the final cell performance. The proposed double-shell layer structure consisting of dense and porous layers showed significantly improved cell performance.

  3. High stability of amorphous hafnium-indium-zinc-oxide thin film transistor

    Science.gov (United States)

    Chong, Eugene; Jo, Kyoung Chul; Lee, Sang Yeol

    2010-04-01

    Time dependence of the threshold voltage (Vth) shift in amorphous hafnium-indium-zinc oxide (a-HIZO) thin film transistor has been reported under on-current bias temperature stress measured at 60 °C. X-ray photoelectron spectroscopy results show the decrease in oxygen vacancies by Hf metal cations in a-HIZO systems after annealing process. High stability of a-HIZO systems has been observed due to low charge injection from the channel layer. Hf metal cations have been effectively incorporated into the IZO thin films as a suppressor against both the oxygen deficiencies and the carrier generation.

  4. Study of high indium InXGa1-XN alloys with synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Chee Wee Liu

    2013-02-01

    Full Text Available InGaN thin films with near entire indium composition range have been successfully grown on GaN/sapphire (0001 by molecular beam epitaxy (MBE. X-ray absorption fine structure  have been used to study the local structure of some typical InxGa1-xN alloys with high indium (In composition of x=0.78 and 0.86. A detailed analysis of the extended x-ray absorption fine structure of In K-edge by using the IFEFFIT program, and the chemical bonds of In-N are obtained. The x-ray absorption near-edge structure of In K- and L-edge and N K-edge are investigated, and the electronic structure of InxGa1-xN are determined with these high In content InxGa1-xN ternary compounds. The calculated XANES spectra of N K-edge, based on first principle method, are consistent with the observed spectra.

  5. High performance visible-near-infrared PbS-quantum-dots/indium Schottky diodes for photodetectors

    Science.gov (United States)

    Mi, Longfei; Wang, Hui; Zhang, Yan; Yao, Xudong; Chang, Yajing; Li, Guopeng; Li, Guohua; Jiang, Yang

    2017-02-01

    Here we fabricate self-powered photodetectors based on PbS-quantum-dots/indium Schottky barrier diodes successfully. These devices exhibit excellent repeatability and stability at a high frequency (up to1 MHz), and show a typical fast rise time/fall time of ˜0.8 μs/3.2 μs. They also show excellent rectification ratios up to 104 with bias from -0.5 V to +0.5 V in the dark and a pronounced photovoltaic performance under light illumination. Moreover, the devices demonstrate high sensitivity in weak light illumination detection (detectivity) approaching 1012 Jones and low noise currents <1 pAHz-1/2. These findings suggest great application potential of PbS-quantum-dots for advanced fast response, low noise current, high detectivity and high stability photodetectors.

  6. Easy and efficient (111)indium labeling of long-term stored DTPA conjugated protein.

    Science.gov (United States)

    Nalla, Amarnadh; Buch, Inge; Hesse, Birger

    2011-01-01

    The labelling efficiency of long-term stored DTPA-conjugates has not been reported previously even though DTPA has been in extensive use as metal chelator in the development of radiopharmaceuticals and contrast agents. DTPA is often used as a bifunctional chelating agent conjugated to tumor targeting vehicles such as monoclonal antibodies and receptor directed peptides. The purpose of this study was to monitor the labelling efficiency of a DTPA-conjugate on long-term storage using 111In-chloride at two different temperatures and incubation times for the In-labelling. Cyclic-diethylene-triamine-pentaacetic acid (cDTAP) was conjugated to a polyclonal immunoglobulin-G (IgG) in borate buffer, pH 8.2 at +4?C for 4 hours. Then the DTPA-conjugate was dialyzed against 50 mmol/l sodium citrate buffer saline, pH 6.0 and stored at -80° C in aliquots of 1 mg/0.5 ml. The DTPA-conjugate was labeled with 111In-chloride in citrate buffer, pH 6. The labelling reaction was incubated at room temperature (RT) for 30 min and at +4?C for 90 min. Determination of labelling efficiency was performed using ITLC and an instant chromatography scanner equipped with a NaI crystal. The labelling efficiency of the DTPA-conjugate was monitored every third month for 12 months. The median labelling efficiencies varied between 92 and 96% during the whole period. The two combinations of incubation times and temperatures (30 min at RT and 90 min at +4°C) had no affect on labelling efficiency of the DTPA-conjugate, stored for 12 months. Our study shows that 111In-labelling can easily be performed within 30 min at RT for thermo-stable proteins like polyclonal, DTPA-conjugated IgG stored long-term at -80°C with a high 111In-labelling efficiency.

  7. A solid-state dye-sensitized solar cell with a high voltage using indium hexacyanoferrate as a redox mediator

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Y.C.; Chen, L.C.; Ho, K.C. [National Taiwan Univ., Taipei, Taiwan (China). Dept. of Chemical Engineering

    2006-07-01

    In this study, the Prussian blue analogue indium hexacyanoferrate (InHCF) was used as the redox mediator to fabricate a high-voltage solid-state titanium oxide (TiO{sub 2}) dye-sensitized solar cell (DSSC). The aim of the study was to develop a solid-state TiO{sub 2} solar cell with a high voltage. TiO{sub 2} film was deposited onto a fluoride-doped tin oxide (FTO) conducting glass using a general sol-gel procedure. The solid-state cell was assembled with a KCI-saturated poly-2-acylamido-2-methylpropane sulfonic acid (AMPS) electrolyte (K-PAMPS). Cathodic and anodic peak potentials were average to obtain the formal redox potential of the couple in the K-PAMPS, which was estimated at 0.87 V vs. Ag/AgC1/saturated KCI. A memory effect was attributed to the poor contact between the InHCF mediator and the dye sensitizer. Contact problems and solid-state diffusion were identified as factors causing lower efficiency of 0.15 per cent. It was concluded that the imperfect dye/InHCF contact and the slow diffusion of K{sup +} in the InHCF thin film were responsible for the lower efficiency ratio. 5 refs., 3 figs.

  8. Easy and Efficient 111Indium Labeling of Long-Term Stored DTPA Conjugated Protein

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Buch, Inge; Hesse, Birger

    2011-01-01

    targeting vehicles such as monoclonal antibodies and receptor directed peptides. The purpose of this study was to monitor the labelling efficiency of a DTPA-conjugate on long-term storage using 111In-chloride at two different temperatures and incubation times for the In-labelling. Method: Cyclic......-diethylene-triamine-pentaacetic acid (cDTAP) was conjugated to a polyclonal immunoglobulin-G (IgG) in borate buffer, pH 8.2 at +4?C for 4 hours. Then the DTPA-conjugate was dialyzed against 50 mmol/l sodium citrate buffer saline, pH 6.0 and stored at -80° C in aliquots of 1 mg/0.5 ml. The DTPA-conjugate was labeled with 111In...... months. Conclusion: Our study shows that 111In-labelling can easily be performed within 30 min at RT for thermo-stable proteins like polyclonal, DTPA-conjugated IgG stored long-term at -80°C with a high 111In-labelling efficiency....

  9. High efficiency incandescent lighting

    Science.gov (United States)

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  10. Extraction of indium from indium-zinc concentrates

    Institute of Scientific and Technical Information of China (English)

    LI Shi-qing; TANG Mo-tang; HE Jing; YANG Sheng-hai; TANG Chao-bo; CHEN Yong-ming

    2006-01-01

    A new process for extracting indium from indium-zinc concentrates was proposed. The process can directly extract indium from removed copper solution by D2EHPA, and cancel the stage of removing iron in the traditional process because of using iron and part of zinc in the In-Zn concentrates for direct preparing high quality Mn-Zn soft magnetic ferrites. The technologies in the processes, such as leaching the neutral leached residues with high concentrated acid at high temperature, reduction ferric and removing copper, and extracting indium, were investigated. The results show that total recovery ratio of indium is increased from less than 70% in the traditional process to more than 95%. This process has the advantages of largely simplifying the procedure of indium extraction, zero draining off of iron residue and zero emitting of SO2. So this is a clean production process.

  11. Titanium dioxide/zinc indium sulfide hetero-junction: An efficient photoanode for the dye-sensitized solar cell

    Science.gov (United States)

    Hou, Wenjing; Xiao, Yaoming; Han, Gaoyi; Zhang, Ying; Chang, Yunzhen

    2016-10-01

    A facile strategy is developed for the fabrication of titanium dioxide/zinc indium sulfide (TiO2/ZnIn2S4) hetero-junction photoanode with an adjustable ZnIn2S4 doping content and application in the dye-sensitized solar cell (DSSC). Comparing to the pure TiO2, TiO2/ZnIn2S4 hetero-junction materials demonstrate an enhanced light utilizing efficiency, a reduced recombination rate of electron-hole pairs, and an accelerated migration process of photoinduced electrons. Due to above merits, DSSC based on TiO2/ZnIn2S4 hetero-junction photoanode achieves a greatly enhanced short-circuit current density, leading to an improved photoelectric conversion efficiency of 8.09% under full sunlight illumination (100 mW cm-2, AM 1.5 G), which is almost 14.43% higher than that of the pure TiO2-based DSSC (7.07%).

  12. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard;

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  13. Easy and efficient (111)Indium labeling of long-term stored DTPA conjugated protein

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Buch, Inge; Hesse, Birger

    2011-01-01

    targeting vehicles such as monoclonal antibodies and receptor directed peptides. The purpose of this study was to monitor the labelling efficiency of a DTPA-conjugate on long-term storage using 111In-chloride at two different temperatures and incubation times for the In-labelling. Method: Cyclic......-diethylene-triamine-pentaacetic acid (cDTAP) was conjugated to a polyclonal immunoglobulin-G (IgG) in borate buffer, pH 8.2 at +4oC for 4 hours. Then the DTPA-conjugate was dialyzed against 50 mmol/l sodium citrate buffer saline, pH 6.0 and stored at -80o C in aliquots of 1 mg/0.5 ml. The DTPA-conjugate was labeled with 111In...... months. Conclusion: Our study shows that 111In-labelling can easily be performed within 30 min at RT for thermo-stable proteins like polyclonal, DTPA-conjugated IgG stored long-term at -80oC with a high 111In-labelling effi- ciency....

  14. Highly efficient sorghum transformation

    OpenAIRE

    Liu, Guoquan; Godwin, Ian D.

    2012-01-01

    A highly efficient microprojectile transformation system for sorghum (Sorghum bicolor L.) has been developed by using immature embryos (IEs) of inbred line Tx430. Co-bombardment was performed with the neomycin phosphotransferase II (nptII) gene and the green fluorescent protein (gfp) gene, both under the control of the maize ubiquitin1 (ubi1) promoter. After optimization of both tissue culture media and parameters of microprojectile transformation, 25 independent transgenic events were obtain...

  15. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, N G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Gudage, Y G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Ghosh, A [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Vyas, J C [Technical and Prototype Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai (MS) (India); Singh, F [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Tripathi, A [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India)

    2008-02-07

    We have examined the effect of swift heavy ions using 100 MeV Au{sup 8+} ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10{sup -4} {omega} cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.

  16. Submillimeter sources for radiometry using high power Indium Phosphide Gunn diode oscillators

    Science.gov (United States)

    Deo, Naresh C.

    1990-01-01

    A study aimed at developing high frequency millimeter wave and submillimeter wave local oscillator sources in the 60-600 GHz range was conducted. Sources involved both fundamental and harmonic-extraction type Indium Phosphide Gunn diode oscillators as well as varactor multipliers. In particular, a high power balanced-doubler using varactor diodes was developed for 166 GHz. It is capable of handling 100 mW input power, and typically produced 25 mW output power. A high frequency tripler operating at 500 GHz output frequency was also developed and cascaded with the balanced-doubler. A dual-diode InP Gunn diode combiner was used to pump this cascaded multiplier to produce on the order of 0.5 mW at 500 GHz. In addition, considerable development and characterization work on InP Gunn diode oscillators was carried out. Design data and operating characteristics were documented for a very wide range of oscillators. The reliability of InP devices was examined, and packaging techniques to enhance the performance were analyzed. A theoretical study of a new class of high power multipliers was conducted for future applications. The sources developed here find many commercial applications for radio astronomy and remote sensing.

  17. Efficiency droop in indium gallium nitride light emitters: An introduction to photon quenching processes

    Science.gov (United States)

    Sarkissian, Raymond

    This thesis contains work from two separate projects, a study of the efficiency of light emitting diodes, and a tapered-fiber approach to photonic crystal integrated photonics. The first part of this thesis describes an experimental investigation of the quantum efficiency of InGaN-based light emitters. Blue and Green LEDs that utilize InGaN quantum wells for their active medium suffer from a reduction in efficiency with increasing bias. This phenomenon is called efficiency droop. In this thesis experimental evidence for significant quenching of photon population in InGaN is presented and its relevance to the efficiency droop problem in InGaN-based light emitting structures is discussed. An equilibrium rate equation model is set up to demonstrate that radiative efficiency for this loss mechanism not only has a similar dependence on carrier density as Auger recombination process, but it also possesses the right order of magnitude making it difficult to distinguish between the two and possibly leading to errors in interpretation. The impact of photon quenching processes on device performance is emphasized by demonstrating loss of efficiency for spectral regions where there is experimental evidence for photon quenching. We have observed this phenomenon for both c-plane and m-plane light emitting structures. Both structures exhibit droop-like behavior for spectral regions where there is evidence for photon quenching. We have also observed and characterized the dynamical Stark effect for an m-plane light emitter considered in this manuscript. Our results revealed localization centers with a corresponding band-edge energy of 388nm and an excitonic binding energy of 17.81mev. Furthermore, fabrication of a photonic crystal waveguide fiber taper coupler is demonstrated with a peak coupling efficiency of 97 %. All four ports of the device are accessible providing an opportunity for investigation of simultaneous interaction of different light sources inside the photonic

  18. Deep-UV plasmonics of indium (Conference Presentation)

    Science.gov (United States)

    Kumamoto, Yasuaki; Saito, Yuika; Taguchi, Atsushi; Honda, Mitsuhiro; Kawata, Satoshi

    2016-09-01

    Deep-UV (DUV) plasmonics can expand the possibilities of DUV-based techniques (i.e. UV lithography, UV spectroscopy, UV imaging, UV disinfection). Here we present that indium is useful for research of DUV plasmonics. According to dielectric function, indium and aluminum are low-loss, DUV plasmonic metals, of which the imaginary parts are far smaller than those of other metals (i.e. rhodium, platinum) in the DUV range. Additionally, the real parts in the whole DUV range are close to but smaller than -2, allowing efficient generation of surface plasmon polaritons on an indium or aluminum nanosphere. In comparison to aluminum, indium provides a distinctive feature for fabricating DUV-resonant substrates. It is highly apt to form a grainy deposition film on a standard, optically transparent substrate (i.e. fused silica). The surface plasmon resonance wavelength becomes promptly tailored by simply varying the deposition thickness of the films, resulting in different grain sizes. Thus, we fabricated indium-coated substrates having different plasmon resonance wavelengths by varying the deposition thicknesses from 10 to 50 nm. DUV resonance Raman scattering of adenine molecules was best enhanced using the 25 nm deposition thickness substrates by the factor of 2. Furthermore, the FDTD calculation simulated the electromagnetic field enhancement over a grainy, indium-coated fused silica substrate. Both results indicate how indium plays an indispensable role in study of DUV plasmonics.

  19. Fluxless Bonding Processes Using Silver-Indium System for High Temperature Electronics and Silver Flip-Chip Interconnect Technology

    OpenAIRE

    Wu, Yuan-Yun

    2015-01-01

    In this dissertation, fluxless silver (Ag)-indium (In) binary system bonding and Ag solid-state bonding are used between different bonded pairs which have large thermal expansion coefficient (CTE) mismatch and flip-chip interconnect bonding application. In contrast to the conventional soldering process, fluxless bonding technique eliminates contamination and reliability problems caused by flux to fabricate high quality joints. Due to large CTE mismatch, high quality joints are important to ma...

  20. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mukesh [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States); Sigdel, A.K. [Department of Physics and Astronomy, University of Denver, Denver, CO 80208 (United States); National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Gennett, T.; Berry, J.J.; Perkins, J.D.; Ginley, D.S. [National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Packard, C.E., E-mail: cpackard@mines.edu [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401 (United States); National Center for Photovoltaics, National Renewal Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States)

    2013-10-15

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter–material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity–growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  1. Aqueous solution route to high-aspect-ratio zinc oxide nanostructures on indium tin oxide substrates.

    Science.gov (United States)

    Ku, Chen-Hao; Wu, Jih-Jen

    2006-07-06

    High-aspect-ratio ZnO nanowires and nanotubes are formed on indium tin oxide (ITO) substrates using a three-step route at low temperatures. The three steps, including successive ionic layer absorption and reaction (SILAR) deposition of the ZnO seed layer, hydrothermal annealing of the seed layer, and chemical bath deposition (CBD) of the one-dimensional (1D) ZnO nanostructures, are all conducted in aqueous solutions at temperatures below 120 degrees C. Both the hydrothermal annealing of the SILAR seed layer and the low-concentration precursor solution employed in the CBD process are crucial in order to synthesize the uniform and high-aspect-ratio ZnO nanostructures on the ITO substrate. TEM analyses reveal that both the nanowire and the nanotube possess the single-crystal structure and are grown along [001] direction. Room-temperature cathodoluminescence spectrum of the 1D ZnO nanostructures shows a sharp ultraviolet emission at 375 nm and a broad green-band emission.

  2. High-efficiency CARM

    Energy Technology Data Exchange (ETDEWEB)

    Bratman, V.L.; Kol`chugin, B.D.; Samsonov, S.V.; Volkov, A.B. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)

    1995-12-31

    The Cyclotron Autoresonance Maser (CARM) is a well-known variety of FEMs. Unlike the ubitron in which electrons move in a periodical undulator field, in the CARM the particles move along helical trajectories in a uniform magnetic field. Since it is much simpler to generate strong homogeneous magnetic fields than periodical ones for a relatively low electron energy ({Brit_pounds}{le}1-3 MeV) the period of particles` trajectories in the CARM can be sufficiently smaller than in the undulator in which, moreover, the field decreases rapidly in the transverse direction. In spite of this evident advantage, the number of papers on CARM is an order less than on ubitron, which is apparently caused by the low (not more than 10 %) CARM efficiency in experiments. At the same time, ubitrons operating in two rather complicated regimes-trapping and adiabatic deceleration of particles and combined undulator and reversed guiding fields - yielded efficiencies of 34 % and 27 %, respectively. The aim of this work is to demonstrate that high efficiency can be reached even for a simplest version of the CARM. In order to reduce sensitivity to an axial velocity spread of particles, a short interaction length where electrons underwent only 4-5 cyclotron oscillations was used in this work. Like experiments, a narrow anode outlet of a field-emission electron gun cut out the {open_quotes}most rectilinear{close_quotes} near-axis part of the electron beam. Additionally, magnetic field of a small correcting coil compensated spurious electron oscillations pumped by the anode aperture. A kicker in the form of a sloping to the axis frame with current provided a control value of rotary velocity at a small additional velocity spread. A simple cavity consisting of a cylindrical waveguide section restricted by a cut-off waveguide on the cathode side and by a Bragg reflector on the collector side was used as the CARM-oscillator microwave system.

  3. Easy and Efficient 111Indium Labeling of Long-Term Stored DTPA Conjugated Protein

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Buch, Inge; Hesse, Birger

    2011-01-01

    The labelling efficiency of long-term stored DTPA-conjugates has not been reported previously even though DTPA has been in extensive use as metal chelator in the development of radiopharmaceuticals and contrast agents. DTPA is often used as a bifunctional chelating agent conjugated to tumor...... targeting vehicles such as monoclonal antibodies and receptor directed peptides. The purpose of this study was to monitor the labelling efficiency of a DTPA-conjugate on long-term storage using 111In-chloride at two different temperatures and incubation times for the In-labelling. Method: Cyclic......-diethylene-triamine-pentaacetic acid (cDTAP) was conjugated to a polyclonal immunoglobulin-G (IgG) in borate buffer, pH 8.2 at +4?C for 4 hours. Then the DTPA-conjugate was dialyzed against 50 mmol/l sodium citrate buffer saline, pH 6.0 and stored at -80° C in aliquots of 1 mg/0.5 ml. The DTPA-conjugate was labeled with 111In...

  4. Temporal and voltage stress stability of high performance indium-zinc-oxide thin film transistors

    Science.gov (United States)

    Song, Yang; Katsman, Alexander; Butcher, Amy L.; Paine, David C.; Zaslavsky, Alexander

    2017-10-01

    Thin film transistors (TFTs) based on transparent oxide semiconductors, such as indium zinc oxide (IZO), are of interest due to their improved characteristics compared to traditional a-Si TFTs. Previously, we reported on top-gated IZO TFTs with an in-situ formed HfO2 gate insulator and IZO active channel, showing high performance: on/off ratio of ∼107, threshold voltage VT near zero, extracted low-field mobility μ0 = 95 cm2/V·s, and near-perfect subthreshold slope at 62 mV/decade. Since device stability is essential for technological applications, in this paper we report on the temporal and voltage stress stability of IZO TFTs. Our devices exhibit a small negative VT shift as they age, consistent with an increasing carrier density resulting from an increasing oxygen vacancy concentration in the channel. Under gate bias stress, freshly annealed TFTs show a negative VT shift during negative VG gate bias stress, while aged (>1 week) TFTs show a positive VT shift during negative VG stress. This indicates two competing mechanisms, which we identify as the field-enhanced generation of oxygen vacancies and the field-assisted migration of oxygen vacancies, respectively. A simplified kinetic model of the vacancy concentration evolution in the IZO channel under electrical stress is provided.

  5. Pulse laser assisted MOVPE for InGaN with high indium content

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Norihito [Technical Development and Engineering Center, Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama 235-8501 (Japan); Dept. of Applied Chemistry, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Hida, Kennosuke; Kangawa, Yoshihiro; Kumagai, Yoshinao; Koukitu, Akinori [Dept. of Applied Chemistry, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2004-09-01

    In{sub 0.53}Ga{sub 0.47}N film was grown at 600 C by Nd:YAG pulse laser assisted MOVPE. The optical and structural properties of the film were compared with that grown without laser assistance at the same condition. The results of XRD measurements showed that the crystallinity of the film grown with laser was better than that of the one grown without laser. The surface morphology and cross-sectional SEM image of the film grown with laser revealed that there were no In droplets on the film. The band-edge emission of the film grown with laser at room temperature and 77 K was observed at 840 nm. The results of micro-Raman measurement showed that the film grown with laser had better crystalline structure than that of the film grown without laser and the radiative recombination which contributed to photoluminescence mainly occurred at In{sub 0.53}Ga{sub 0.47}N region. Those results imply that pulse laser enhances the surface migration and reaction of elements in spite of low-growth temperature. We suggest that pulse laser assisted technique is effective for low-temperature growth of InGaN with high indium content. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Pulse laser assisted MOVPE for InGaN with high indium content

    Science.gov (United States)

    Kawaguchi, Norihito; Hida, Ken-Nosuke; Kangawa, Yoshihiro; Kumagai, Yoshinao; Koukitu, Akinori

    2004-09-01

    In0.53Ga0.47N film was grown at 600 °C by Nd:YAG pulse laser assisted MOVPE. The optical and structural properties of the film were compared with that grown without laser assistance at the same condition. The results of XRD measurements showed that the crystallinity of the film grown with laser was better than that of the one grown without laser. The surface morphology and cross-sectional SEM image of the film grown with laser revealed that there were no In droplets on the film. The band-edge emission of the film grown with laser at room temperature and 77 K was observed at 840 nm. The results of micro-Raman measurement showed that the film grown with laser had better crystalline structure than that of the film grown without laser and the radiative recombination which contributed to photoluminescence mainly occurred at In0.53Ga0.47N region. Those results imply that pulse laser enhances the surface migration and reaction of elements in spite of low-growth temperature. We suggest that pulse laser assisted technique is effective for low-temperature growth of InGaN with high indium content.

  7. Highly flexible, transparent, and low resistance indium zinc oxide-Ag-indium zinc oxide multilayer anode on polyethylene terephthalate substrate for flexible organic light light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung-Woo; Jeong, Jin-A; Bae, Jung-Hyeok; Moon, Jong-Min; Choi, Kwang-Hyuk; Jeong, Soon Wook; Park, No-Jin [School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology (KIT), Gumi 730-701 (Korea, Republic of); Kim, Jang-Joo; Lee, Se Hyung [School of Materials Science and Engineering, Seoul National University and Organic Light Emitting Diodes Center, Sillim-dong, Seoul 151-741 (Korea, Republic of); Kang, Jae-Wook [Surface Technology Research Center, Korea Institute of Machinery and Materials, 66 Sangnam-dong, Changwon-si, Gyeongnam, 641-831 (Korea, Republic of); Yi, Min-Su [Department of Materials Science and Engineering, Kyungpook National University, Sangju, Gyeongbuk, 742-711 (Korea, Republic of); Kim, Han-Ki [School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology (KIT), Gumi 730-701 (Korea, Republic of)], E-mail: hkkim@kumoh.ac.kr

    2008-09-01

    The characteristics of indium zinc oxide (IZO)-Ag-IZO multilayer grown on a polyethylene terephthalate (PET) substrate were investigated for flexible organic light-emitting diodes (OLEDs). The IZO-Ag-IZO (IAI) multilayer anode exhibited a remarkably reduced sheet resistance of 6.93 {omega}/{open_square} and a high transmittance of 84.8%, despite the very thin thickness of the IZO (30 nm) layer. In addition, it was shown that electrical and optical properties of IAI anodes are critically dependent on the thickness of the Ag layer, due to the transition of Ag atoms from distinct islands to continuous films at a critical thickness (12 nm). Moreover, the IAI/PET sample showed more stable mechanical properties than an amorphous ITO/PET sample during the bending test due to the existence of a ductile Ag layer. The current density-voltage-luminance characteristics of flexible OLEDs fabricated on an IAI/PET substrate was better than those of flexible OLEDs fabricated on an ITO/PET substrate. This indicates that IAI multilayer anodes are promising flexible and transparent electrodes for flexible OLEDs.

  8. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Whiddon, R.; Zhou, B.; Borggren, J.; Aldén, M.; Li, Z. S., E-mail: Zhongshan.Li@forbrf.lth.se [Division of Combustion Physics, Lund University, P.O. Box 118, S-221 00 Lund (Sweden)

    2015-09-15

    Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 1/2} and 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2} transitions as a function of the calculated TMI seeding concentration over a range of 2–45 ppm. The response was found to be linear over the range 3–22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence.

  9. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide

    NARCIS (Netherlands)

    Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C.

    2016-01-01

    Flexible large-area organic light-emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin-doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are h

  10. Indium triflate in 1-isobutyl-3-methylimidazolium dihydrogenphosphate: an efficient and green catalytic system for Friedel-Crafts acylation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hoang, Huy Manh; Chau, Duy-Khiem Nguyen;

    2015-01-01

    Indium triflate in the ionic liquid, 1-isobutyl-3-methylimidazolium dihydrogen phosphate ([i-BMIM]H2PO4), was found to show enhanced catalytic activity in the Friedel–Crafts acylation of various aromatic compounds with acid anhydrides. The catalytic system was easily recovered and reused without ...

  11. High-Throughput Synthesis, Screening, and Scale-Up of Optimized Conducting Indium Tin Oxides.

    Science.gov (United States)

    Marchand, Peter; Makwana, Neel M; Tighe, Christopher J; Gruar, Robert I; Parkin, Ivan P; Carmalt, Claire J; Darr, Jawwad A

    2016-02-08

    A high-throughput optimization and subsequent scale-up methodology has been used for the synthesis of conductive tin-doped indium oxide (known as ITO) nanoparticles. ITO nanoparticles with up to 12 at % Sn were synthesized using a laboratory scale (15 g/hour by dry mass) continuous hydrothermal synthesis process, and the as-synthesized powders were characterized by powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray analysis, and X-ray photoelectron spectroscopy. Under standard synthetic conditions, either the cubic In2O3 phase, or a mixture of InO(OH) and In2O3 phases were observed in the as-synthesized materials. These materials were pressed into compacts and heat-treated in an inert atmosphere, and their electrical resistivities were then measured using the Van der Pauw method. Sn doping yielded resistivities of ∼ 10(-2) Ω cm for most samples with the lowest resistivity of 6.0 × 10(-3) Ω cm (exceptionally conductive for such pressed nanopowders) at a Sn concentration of 10 at %. Thereafter, the optimized lab-scale composition was scaled-up using a pilot-scale continuous hydrothermal synthesis process (at a rate of 100 g/hour by dry mass), and a comparable resistivity of 9.4 × 10(-3) Ω cm was obtained. The use of the synthesized TCO nanomaterials for thin film fabrication was finally demonstrated by deposition of a transparent, conductive film using a simple spin-coating process.

  12. Junction characteristics of indium tin oxide/indium phosphide solar cells

    Science.gov (United States)

    Sheldon, P.; Ahrenkiel, R. K.; Hayes, R. E.; Russell, P. E.; Nottenburg, R. N.; Kazmerski, L. L.

    Efficient indium tin oxide (ITO)/p-InP solar cells have been fabricated. Typical uncorrected efficiencies range from 9-12 percent at AM1 intensities. It is shown that deposition of ITO causes a semi-insulating layer at the InP surface as determined by C-V measurements. The thickness of this layer is approximately 750 A. We believe that this high resistivity region is due to surface accumulation of Fe at the ITO/InP interface.

  13. Energy transfer and light yield properties of a new highly loaded indium(III) β-diketonate organic scintillator system

    Science.gov (United States)

    Buck, C.; Hartmann, F. X.; Motta, D.; Schoenert, S.

    2007-02-01

    We present combined experimental and model studies of the light yield and energy transfer properties of a newly developed high light yield scintillator based on indium(III)-tris(2,4-pentanedionate) in a 2-(4-biphenyl)-5-phenyloxazole (BPO), methoxybenzene organic liquid; of interest to the detection of solar electron neutrino oscillations. Optical measurements are made to understand the energy transfer properties and a model is advanced to treat the unusual conditions of high metal and fluor loadings. Such scintillator types are of interest to the exploration of novel luminescent materials and the development of large-scale detectors for studying fundamental properties of naturally occurring neutrinos.

  14. Highly efficient photochemical HCOOH production from CO2 and water using an inorganic system

    Directory of Open Access Journals (Sweden)

    Satoshi Yotsuhashi

    2012-12-01

    Full Text Available We have constructed a system that uses solar energy to react CO2 with water to generate formic acid (HCOOH at an energy conversion efficiency of 0.15%. It consists of an AlGaN/GaN anode photoelectrode and indium (In cathode that are electrically connected outside of the reactor cell. High energy conversion efficiency is realized due to a high quantum efficiency of 28% at 300 nm, attributable to efficient electron-hole separation in the semiconductor's heterostructure. The efficiency is close to that of natural photosynthesis in plants, and what is more, the reaction product (HCOOH can be used as a renewable energy source.

  15. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    OpenAIRE

    Mario Boehme; Emanuel Ionescu; Ganhua Fu; Wolfgang Ensinger

    2011-01-01

    Conductive nanotubes consisting of indium tin oxide (ITO) were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs) with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless de...

  16. Efficiency enhancement of dye-sensitized solar cell utilizing copper indium sulphide/zinc sulphide quantum dot plasticized cellulose acetate polymer electrolyte

    Science.gov (United States)

    Samsi, N. S.; Effendi, N. A. S.; Zakaria, R.; Ali, A. M. M.

    2017-04-01

    This paper describes the efficiency of solar cells that have been prepared by mixing quantum dots (QD) in gel polymer electrolytes (GPEs) based on plasticized cellulose acetate. Copper indium sulfide/zinc sulfide (CuInS/ZnS) QD was doped into GPEs and was characterized for application in a dye-sensitized solar cell (DSSC). The addition of QD into GPEs increases the conductivity up to 1.6  ×  10-1 S cm-1 at room temperature made them a promising electrolyte for DSSC. Atomic force microscopy analysis affirmed the uniform distribution of QD into the polymer matrix. The photovoltaic efficiency performance of DSSC using QD-doped GPE electrolyte was found to be increased up to 8.02%.

  17. High thermoelectric performance by resonant dopant indium in nanostructured SnTe.

    Science.gov (United States)

    Zhang, Qian; Liao, Bolin; Lan, Yucheng; Lukas, Kevin; Liu, Weishu; Esfarjani, Keivan; Opeil, Cyril; Broido, David; Chen, Gang; Ren, Zhifeng

    2013-08-13

    From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K.

  18. Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics

    Science.gov (United States)

    Chen, Liang; Shao, Hezhu; Zhou, Xufeng; Liu, Guoqiang; Jiang, Jun; Liu, Zhaoping

    2016-06-01

    Rechargeable aqueous metal-ion batteries made from non-flammable and low-cost materials offer promising opportunities in large-scale utility grid applications, yet low voltage and energy output, as well as limited cycle life remain critical drawbacks in their electrochemical operation. Here we develop a series of high-voltage aqueous metal-ion batteries based on `M+/N+-dual shuttles' to overcome these drawbacks. They utilize open-framework indium hexacyanoferrates as cathode materials, and TiP2O7 and NaTi2(PO4)3 as anode materials, respectively. All of them possess strong rate capability as ultra-capacitors. Through multiple characterization techniques combined with ab initio calculations, water-mediated cation intercalation of indium hexacyanoferrate is unveiled. Water is supposed to be co-inserted with Li+ or Na+, which evidently raises the intercalation voltage and reduces diffusion kinetics. As for K+, water is not involved in the intercalation because of the channel space limitation.

  19. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    Science.gov (United States)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  20. Self-aligned coplanar amorphous indium zinc oxide thin-film transistors with high performance

    Science.gov (United States)

    Park, Jae Chul; Lee, Ho-Nyeon

    2015-01-01

    Self-aligned coplanar amorphous indium zinc oxide thin-film transistors (a-IZO TFTs) were fabricated. The a-IZO TFTs had a field-effect mobility of μFE = 24.4 cm2 V-1 s-1, a subthreshold slope of 180 mV/dec, and an on/off ratio of 109. As the channel length decreased, the threshold voltage VTH shifted to more negative voltages, and μFE increased due to the diffused carriers from the contact regions. The intrinsic field-effect mobility was estimated to be 15.05 cm2 V-1 s-1 in the linear mode and 13.28 cm2 V-1 s-1 in saturation mode. Under positive/negative bias-temperature-illumination stress, the shift in VTH was less than ±0.7 V after 11,000 s.

  1. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition.

    Science.gov (United States)

    Boehme, Mario; Ionescu, Emanuel; Fu, Ganhua; Ensinger, Wolfgang

    2011-01-01

    Conductive nanotubes consisting of indium tin oxide (ITO) were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs) with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  2. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    Directory of Open Access Journals (Sweden)

    Mario Boehme

    2011-02-01

    Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  3. High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment

    KAUST Repository

    Nayak, Pradipta K.

    2012-05-16

    Solution-deposited amorphous indium gallium zinc oxide (a-IGZO) thin film transistors(TFTs) with high performance were fabricated using O2-plasma treatment of the films prior to high temperature annealing. The O2-plasma treatment resulted in a decrease in oxygen vacancy and residual hydrocarbon concentration in the a-IGZO films, as well as an improvement in the dielectric/channel interfacial roughness. As a result, the TFTs with O2-plasma treated a-IGZO channel layers showed three times higher linear field-effect mobility compared to the untreated a-IGZO over a range of processing temperatures. The O2-plasma treatment effectively reduces the required processing temperature of solution-deposited a-IGZO films to achieve the required performance.

  4. Hopping conduction via highly localized impurity states of indium in PbTe and its solid solutions. Review

    CERN Document Server

    Ravich, Y I

    2002-01-01

    Results of experimental investigation of the transport phenomena in PbTe and Pb sub 1 sub - sub x Sn sub x Te solid solutions with high contents of In impurity (up to 20 at %) at temperatures up to 400 K have been considered. An analysis of the experimental data has been made on the base of an idea of hopping conductivity via highly localized impurity states creates by indium atoms. The temperature dependences of transport coefficients unusual for the IV-VI-type semiconductors, the change of sing of the thermoelectromotive force at negative Hall coefficient, the positive Nernst-Ettingshausen coefficient are explained. The activation energy of the hoping conductivity, characterizing discrepancy between impurity energy levels the effective wave function radius and the density of localized states as the energy function are found experimentally

  5. Indium (In) Effects to The Efficiency Performance of Ga1-XInxP/GaAs Based Solar Cell Using Silvaco Software Modelling & Simulation

    Science.gov (United States)

    Norizan, M. N.; Zahari, S. M.; Mohamad, I. S.; Osman, R. A. M.; Shahimin, M. M.; Murad, S. A. Z.

    2017-06-01

    Ga1-xInxP composition has been applied to the top cell of multi-junction GaInP/GaAs based solar cell and currently have achieving a conversion efficiency of more than 46%, however its capability is unclear. We performed an analysis using Silvaco simulation method to evaluate the effect of In and the substitution was made to the Ga1-xInxP for the range of x from 0 to 1. We found that the highest efficiency recorded was 17.66% when the composition of Indium was x=1. The efficiency has been increasing about 11.71% from x=0 to x=1 In content. As the composition of In raised, the value of efficiency and short circuit current density, Jsc also become higher (13.60 mA/cm2) by having a greater photon absorption in a wider band gap energy. In addition to that, Voc, Pmax, Vmax, Imax and fill factor was measured to be 2.15 V, 2.44 mW/cm2, 2.0 V, 1.22 mA/cm2 and 83.34 respectively. In conclusion, this study confirms that the existence of In in Ga1-xInxP improves the solar cell efficiency by gaining a higher energy gap and producing more electrons for best achievement in multilayer solar cell applications.

  6. Indium oxide inverse opal films synthesized by structure replication method

    Science.gov (United States)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  7. Adhesive modification of indium-tin-oxide surface for template attachment for deposition of highly ordered nanostructure arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gu, W. [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Liao, L.S., E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Cai, S.D.; Zhou, D.Y.; Jin, Z.M.; Shi, X.B.; Lei, Y.L. [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2012-08-01

    Polyvinyl alcohol (PVA), a very cheap polymer with one hydroxyl group in each repeating unit, was spun coated on the surface of an indium-tin-oxide (ITO) substrate to improve the adhesion between the substrate and a nanoporous anodic aluminum oxide (AAO) template layer for a template-directed fabrication of nanostructures. Compared with dihydroxy-terminated polystyrene (PS-dOH) and a silane coupling agent (KH550), PVA was a superior binder because of its abundant hydroxyl groups for adhesion enhancement and its low cost for applications. As an example, a highly ordered CdSe nanorod array free standing on the ITO substrate was electrochemically deposited by using an ultrathin AAO layer as the template on the PVA modified surface. It was demonstrated that the PVA modified ITO can be reliably used for the template-directed fabrication of nanostructures.

  8. High mobility indium zinc oxide thin film field-effect transistors by semiconductor layer engineering.

    Science.gov (United States)

    Walker, Daniel E; Major, Marton; Yazdi, Mehrdad Baghaie; Klyszcz, Andreas; Haeming, Marc; Bonrad, Klaus; Melzer, Christian; Donner, Wolfgang; von Seggern, Heinz

    2012-12-01

    Indium zinc oxide thin-film transistors are fabricated via a precursor in solution route on silicon substrates with silicon dioxide gate dielectric. It is found that the extracted mobility rises, peaks, and then decreases with increasing precursor concentration instead of rising and saturating. Investigation with scanning probe techniques reveals full thickness variations within the film which are assumed to adversely affect charge transport. Additional layers are coated, and the extracted mobility is observed to increase up to 19.7 cm(2) V(-1) s(-1). The reasons for this are examined in detail by direct imaging with scanning tunneling microscopy and extracting electron density profiles from X-ray reflection measurements. It is found that the optimal concentration for single layer films is suboptimal when coating multiple layers and in fact using many layers of very low concentrations of precursor in the solution, leading to a dense, defect and void free film, affording the highest mobilities. A consistent qualitative model of layer formation is developed explaining how the morphology of the film develops as the concentration of precursor in the initial solution is varied.

  9. High Efficiency Engine Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency

  10. High Efficiency Engine Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency

  11. Unconventional, High-Efficiency Propulsors

    DEFF Research Database (Denmark)

    Andersen, Poul

    1996-01-01

    The development of ship propellers has generally been characterized by search for propellers with as high efficiency as possible and at the same time low noise and vibration levels and little or no cavitation. This search has lead to unconventional propulsors, like vane-wheel propulsors, contra-r...

  12. Process for Patterning Indium for Bump Bonding

    Science.gov (United States)

    Denis, Kevin

    2012-01-01

    An innovation was created for the Cosmology Large Angular Scale Surveyor for integration of low-temperature detector chips with a silicon backshort and a silicon photonic choke through flipchip bonding. Indium bumps are typically patterned using liftoff processes, which require thick resist. In some applications, it is necessary to locate the bumps close to high-aspect-ratio structures such as wafer through-holes. In those cases, liftoff processes are challenging, and require complicated and time-consuming spray coating technology if the high-aspect-ratio structures are delineated prior to the indium bump process. Alternatively, processing the indium bumps first is limited by compatibility of the indium with subsequent processing. The present invention allows for locating bumps arbitrarily close to multiple-level high-aspect-ratio structures, and for indium bumps to be formed without liftoff resist. The process uses the poor step coverage of indium deposited on a silicon wafer that has been previously etched to delineate the location of the indium bumps. The silicon pattern can be processed through standard lithography prior to adding the high-aspect-ratio structures. Typically, high-aspectratio structures require a thick resist layer so this layer can easily cover the silicon topography. For multiple levels of topography, the silicon can be easily conformally coated through standard processes. A blanket layer of indium is then deposited onto the full wafer; bump bonding only occurs at the high points of the topography.

  13. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2015-01-01

    Full Text Available We investigated amorphous indium gallium zinc oxide (a-IGZO thin film transistors (TFTs using different high-k gate dielectric materials such as silicon nitride (Si3N4 and aluminum oxide (Al2O3 at low temperature process (<300°C and compared them with low temperature silicon dioxide (SiO2. The IGZO device with high-k gate dielectric material will expect to get high gate capacitance density to induce large amount of channel carrier and generate the higher drive current. In addition, for the integrating process of integrating IGZO device, postannealing treatment is an essential process for completing the process. The chemical reaction of the high-k/IGZO interface due to heat formation in high-k/IGZO materials results in reliability issue. We also used the voltage stress for testing the reliability for the device with different high-k gate dielectric materials and explained the interface effect by charge band diagram.

  14. High indium content graded channel GainAs/AlinAs pseudomorphic MODFETs

    Science.gov (United States)

    Laskar, J.; Kolodzey, J.; Boor, S.; Hsieh, K. C.; Kalem, S.; Caracci, S.; Ketterson, A. A.; Brock, T.; Adesida, I.; Sivco, D.; Cho, A. Y.

    1990-03-01

    We report on the electrical and microstructural properties of InP/GaxIn 1 -xAs/Al0.48In0.52As modulation doped layers having compositionally graded active channels with different channel thicknesses. The layers were grown by solid source molecular beam epitaxy on Fe-doped InP substrates. The undoped GaInAs two dimensional electron gas channel layers were grown having indium compositions graded from x = 0.53 at the substrate buffer to x= 0.65 at the heterointerface by varying the Ga cell temperature during growth. Active channel thicknesses of 20 nm and 30 nm were compared with lattice matched layers. Transmission electron microscope image analysis indicates no misfit dislocations in these structures. Hall-effect measurements at 300 K show an increase in the mobility from 8,380 cm2/Vs for the lattice matched layer to 12,500 cm2/Vs for the 30 nm pseudomorphic layer. Small gate-length, 0.25 μn, MODFETs were fabricated to determine effective velocity values from transconductance ( g m ) and current gain ( h 21 ) measurements. The peak dc extrinsic g m increased from 367 mS/mm for the lattice matched layer to 668 mS/mm for the 30 nm pseudomorphic layer. The effective electron carrier velocity increased from 1.57 × 107 cm/s for the lattice matched layer to 1.88 × 107 cm/s for the 30 nm pseudomorphic layer. Our results show that compositional grading is a useful technique to obtain thick pseudomorphic layers with good transport properties.

  15. Low Thermal Conductivity and High Thermoelectric Performance in In4Se3- x with Phase-Separated Indium Inclusions

    Science.gov (United States)

    Rawat, Pankaj Kumar; Park, Hwanjoo; Hwang, Junphil; Kim, Woochul

    2017-03-01

    We report the thermoelectric properties of undoped hot-pressed In4Se3- x ( x = 0.05). Stoichiometric imbalance due to selenium deficiency in In4Se3 was found to create a secondary phase of elemental indium in the host material. Heat treatment drove grain growth and increased the indium solubility in In4Se3. Indium-rich domains at grain surfaces/boundaries in untreated samples were found to redistribute inside the grains and their junctions after heat treatment. Due to enhanced phonon scattering by secondary phase of indium, very low values of thermal conductivity were observed for all samples, leading to a maximum thermoelectric figure of merit ( zT) of 1.13 at 723 K along the hot-pressing direction for the heat-treated sample.

  16. Low Thermal Conductivity and High Thermoelectric Performance in In4Se3-x with Phase-Separated Indium Inclusions

    Science.gov (United States)

    Rawat, Pankaj Kumar; Park, Hwanjoo; Hwang, Junphil; Kim, Woochul

    2016-12-01

    We report the thermoelectric properties of undoped hot-pressed In4Se3-x (x = 0.05). Stoichiometric imbalance due to selenium deficiency in In4Se3 was found to create a secondary phase of elemental indium in the host material. Heat treatment drove grain growth and increased the indium solubility in In4Se3. Indium-rich domains at grain surfaces/boundaries in untreated samples were found to redistribute inside the grains and their junctions after heat treatment. Due to enhanced phonon scattering by secondary phase of indium, very low values of thermal conductivity were observed for all samples, leading to a maximum thermoelectric figure of merit (zT) of 1.13 at 723 K along the hot-pressing direction for the heat-treated sample.

  17. Highly transparent Nb-doped indium oxide electrodes for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Ho; Seong, Tae-Yeon [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Na, Seok-In [Professional Graduate School of Flexible and Printable Electronics, Chonbuk National University, 664-14, Deokjin-dong, Jeongju-si, Jellabuk-do 561-756 (Korea, Republic of); Chung, Kwun-Bum [Department of Physics, Dankook University, Mt. 29, Anseo-Dong, Chenan 330-714 (Korea, Republic of); Lee, Hye-Min; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr [Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1 Seocheon-dong, Yongin, Gyeonggi-do 446-701 (Korea, Republic of)

    2014-03-15

    The authors investigated the characteristics of Nb-doped In{sub 2}O{sub 3} (INbO) films prepared by co-sputtering of Nb{sub 2}O{sub 5} and In{sub 2}O{sub 3} for use in transparent anodes for organic solar cells (OSCs). To optimize the Nb dopant composition in the In{sub 2}O{sub 3} matrix, the effect of the Nb doping power on the resistivity and transparency of the INbO films were examined. The electronic structure and microstructure of the INbO films were also investigated using synchrotron x-ray absorption spectroscopy and x-ray diffraction examinations in detail. At the optimized Nb co-sputtering power of 30 W, the INbO film exhibited a sheet resistance of 15 Ω/sq, and an optical transmittance of 86.04% at 550 nm, which are highly acceptable for the use as transparent electrodes in the fabrication of OSCs. More importantly, the comparable power conversion efficiency (3.34%) of the OSC with an INbO anode with that (3.31%) of an OSC with a commercial ITO anode indicates that INbO films are promising as a transparent electrode for high performance OSCs.

  18. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

    Science.gov (United States)

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-11-01

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.

  19. High Efficiency Room Air Conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Pradeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  20. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    Science.gov (United States)

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.

  1. Low-Temperature Growth of Indium Oxide Thin Film by Plasma-Enhanced Atomic Layer Deposition Using Liquid Dimethyl(N-ethoxy-2,2-dimethylpropanamido)indium for High-Mobility Thin Film Transistor Application.

    Science.gov (United States)

    Kim, Hyo Yeon; Jung, Eun Ae; Mun, Geumbi; Agbenyeke, Raphael E; Park, Bo Keun; Park, Jin-Seong; Son, Seung Uk; Jeon, Dong Ju; Park, Sang-Hee Ko; Chung, Taek-Mo; Han, Jeong Hwan

    2016-10-12

    Low-temperature growth of In2O3 films was demonstrated at 70-250 °C by plasma-enhanced atomic layer deposition (PEALD) using a newly synthesized liquid indium precursor, dimethyl(N-ethoxy-2,2-dimethylcarboxylicpropanamide)indium (Me2In(EDPA)), and O2 plasma for application to high-mobility thin film transistors. Self-limiting In2O3 PEALD growth was observed with a saturated growth rate of approximately 0.053 nm/cycle in an ALD temperature window of 90-180 °C. As-deposited In2O3 films showed negligible residual impurity, film densities as high as 6.64-7.16 g/cm(3), smooth surface morphology with a root-mean-square (RMS) roughness of approximately 0.2 nm, and semiconducting level carrier concentrations of 10(17)-10(18) cm(-3). Ultrathin In2O3 channel-based thin film transistors (TFTs) were fabricated in a coplanar bottom gate structure, and their electrical performances were evaluated. Because of the excellent quality of In2O3 films, superior electronic switching performances were achieved with high field effect mobilities of 28-30 and 16-19 cm(2)/V·s in the linear and saturation regimes, respectively. Furthermore, the fabricated TFTs showed excellent gate control characteristics in terms of subthreshold swing, hysteresis, and on/off current ratio. The low-temperature PEALD process for high-quality In2O3 films using the developed novel In precursor can be widely used in a variety of applications such as microelectronics, displays, energy devices, and sensors, especially at temperatures compatible with organic substrates.

  2. Characterizations of chemical bath-deposited zinc oxysulfide films and the effects of their annealing on copper-indium-gallium-selenide solar cell efficiency

    Science.gov (United States)

    Hsieh, Tsung-Min; Lue, Shingjiang Jessie; Ao, Jianping; Sun, Yun; Feng, Wu-Shiung; Chang, Liann-Be

    2014-01-01

    Zinc oxysulfide (Zn(S,O)) thin films are fabricated using a chemical bath deposition method onto glass substrates and the surface of copper-indium-gallium-selenide (CIGS) adsorption layers for solar cell fabrication. The light and electric properties of the Zn(S,O) layers are improved after rapid thermal annealing (RTA). The Zn(S,O) properties of samples annealed under various atmospheres are compared. The resulting annealed Zn(S,O) films are 80-100 nm thick. The band gap decreases from 3.8 eV to 3.3 eV and the light transmittance is improved by more than 95% after annealing under oxygen atmosphere. The oxygen-annealed sample has a S/(S + O) ratio of 0.28 and a S/Zn ratio of 0.72. The CIGS solar cell that consists of the annealed Zn(S,O) buffer layer is more efficient (6.15%) than that of the non-annealed Zn(S,O) (4.56%). The solar cell performance is correlated with the deposited Zn(S,O) characteristics. The significantly higher carrier concentration, increases light transmittance, and improves crystalline structure of the oxygen-annealed Zn(S,O) film contributes to the improved cell performance.

  3. Geochemical Enirchment and Mineralization of Indium

    Institute of Scientific and Technical Information of China (English)

    张乾; 战新志; 等

    1998-01-01

    Indium occurs in a very dispersed manner in nature with enrichment of economic in terest rarely known.The highly dispersed nature of indium,among several other elements,has for a long time retarded our understanding of the regularities that control their mineralization,which in turn has hindered exploitation and application of these elements.Recent studies of ours show that no significant enrichment of indium can be recognized in various types of Pb-Zn sulphide deposits as well as in deposits of copper,iron and manganese,Indium Concentrations in ores of these deposits are generally below 10×10-6.In contrast,however,indium is found to be enriched to a significant extent in cassiterite-sulphide deposits and some tin-rich Pb-Zn polymetallic deposits.The average content of indium in these deposits can be over 100×10-6,and more than 90% of it is concentrated in sphalerite.Generally,these deposits may be considered as large paragenic deposits for indium and ,therefore,there must be some regularities that govern the geochemical enrichment of the so-called "dispersed element" indium.

  4. Fabrication and characterization of highly transparent and conductive indium tin oxide films made with different solution-based methods

    Science.gov (United States)

    Xia, N.; Gerhardt, R. A.

    2016-11-01

    Solution-based fabrication methods can greatly reduce the cost and broaden the applications of transparent conducting oxides films, such as indium tin oxide (ITO) films. In this paper, we report on ITO films fabricated by spin coating methods on glass substrates with two different ITO sources: (1) a commercial ITO nanopowder water dispersion and (2) a sol-gel ITO solution. A simple and fast air annealing process was used to treat as-coated ITO films on a controlled temperature hot plate. Thermogravimetric analysis and x-ray diffraction showed that highly crystalline ITO films were formed after the annealing steps. The final ITO films had a good combination of optical properties and electrical properties, especially for films made from five layers of sol-gel ITO (92.66% transmittance and 8.7 × 10-3 Ω cm resistivity). The surface morphology and conducting network on the ITO films were characterized by non-contact and current atomic force microscopy. It was found that conducting paths were only partially connected for the nanoparticle ITO dispersion films, whereas the sol-gel ITO films had a more uniformly distributed conducting network on the surface. We also used the sol-gel ITO films to fabricate a simple liquid crystal display (LCD) device to demonstrate the excellent properties of our films.

  5. A Highly Stable 3D Luminescent Indium-Polycarboxylic Framework for the Turn-off Detection of UO2(2+), Ru(3+), and Biomolecule Thiamines.

    Science.gov (United States)

    Du, Ning; Song, Jian; Li, Shuang; Chi, Yu-Xian; Bai, Feng-Ying; Xing, Yong-Heng

    2016-10-17

    Hydrothermal reaction of the multidentate organic ligand (H6TTHA) with indium chloride (InCl3) produced a highly stable 3D luminescent indium-organic framework [In2(OH)2(H2TTHA)(H2O)2]n (1). Complex 1 exhibits remarkable luminescent properties, especially the multifunction sensitivity and selectivity for detecting Ru(3+), UO2(2+); as well as small biomolecules thiamines (TPP, TMP, and TCl) based on a "turn-off" manner. In particular, the pyrophosphate groups of TPP and the phosphate groups of TMP could further affect the quenching rate, leading to different luminescent responds. In addition, we also discussed and proved the luminescence quenching mechanism in detail through comparative test and PXRD characterization. Therefore, complex 1 could be used as a kind of excellent luminescence sensor to detect Ru(3+), UO2(2+), and thiamines (TPP, TMP, and TCl).

  6. Silicon dioxide with a silicon interfacial layer as an insulating gate for highly stable indium phosphide metal-insulator-semiconductor field effect transistors

    Science.gov (United States)

    Kapoor, V. J.; Shokrani, M.

    1991-01-01

    A novel gate insulator consisting of silicon dioxide (SiO2) with a thin silicon (Si) interfacial layer has been investigated for high-power microwave indium phosphide (InP) metal-insulator-semiconductor field effect transistors (MISFETs). The role of the silicon interfacial layer on the chemical nature of the SiO2/Si/InP interface was studied by high-resolution X-ray photoelectron spectroscopy. The results indicated that the silicon interfacial layer reacted with the native oxide at the InP surface, thus producing silicon dioxide, while reducing the native oxide which has been shown to be responsible for the instabilities in InP MISFETs. While a 1.2-V hysteresis was present in the capacitance-voltage (C-V) curve of the MIS capacitors with silicon dioxide, less than 0.1 V hysteresis was observed in the C-V curve of the capacitors with the silicon interfacial layer incorporated in the insulator. InP MISFETs fabricated with the silicon dioxide in combination with the silicon interfacial layer exhibited excellent stability with drain current drift of less than 3 percent in 10,000 sec, as compared to 15-18 percent drift in 10,000 sec for devices without the silicon interfacial layer. High-power microwave InP MISFETs with Si/SiO2 gate insulators resulted in an output power density of 1.75 W/mm gate width at 9.7 GHz, with an associated power gain of 2.5 dB and 24 percent power added efficiency.

  7. Efficiency increase in flexible bulk heterojunction solar cells with a nano-patterned indium zinc oxide anode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong Hwan; Seifter, Jason; Heeger, Alan J. [Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, California 93106-5090 (United States); Park, Jong Hyeok [School of Chemical Engineering and SAINT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Dae-Geun [Nano-Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2012-11-15

    Efficient flexible bulk-heterojunction polymer solar cells based on PCDTBT/PC{sub 70}BM were successfully fabricated by a simple nano-imprint technique. The flexible nano-patterned IZO anode with ordered periodic dot structures led to improved light absorption and increased interfacial contact area between the anode and polymer as well as between the polymer and cathode. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Interstitial pulmonary disorders in indium-processing workers.

    Science.gov (United States)

    Chonan, T; Taguchi, O; Omae, K

    2007-02-01

    The production of indium-tin oxide has increased, owing to the increased manufacture of liquid-crystal panels. It has been reported that interstitial pneumonia occurred in two indium-processing workers; therefore, the present study aimed to evaluate whether interstitial pulmonary disorders were prevalent among indium workers. The study was carried out in 108 male workers in the indium plant where the two interstitial pneumonia patients mentioned above were employed, and included high-resolution computed tomography (HRCT) of the lungs, pulmonary function tests and analysis of serum sialylated carbohydrate antigen KL-6 and the serum indium concentration. Significant interstitial changes were observed in 23 indium workers on HRCT and serum KL-6 was abnormally high (>500 U x mL(-1)) in 40 workers. Workers with serum indium concentrations in the highest quartile had significantly longer exposure periods, greater HRCT changes, lower diffusing capacity of the lung for carbon monoxide and higher KL-6 levels compared with those in the lowest quartile. The serum indium concentration was positively correlated with the KL-6 level and with the degree of HRCT changes. In conclusion, the results of the present study indicated that serum KL-6 and high-resolution computed tomography abnormalities were prevalent among indium workers and that these abnormalities increased with the indium burden, suggesting that inhaled indium could be a potential cause of occupational lung disease.

  9. High Sensitivity Indium Phosphide Based Avalanche Photodiode Focal Plane Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight has demonstrated highly-uniform APD arrays based on the highly sensitive InGaAs/InP material system. These results provide great promise for achieving the...

  10. High efficiency shale oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  11. Optimization of Indium Bump Morphology for Improved Flip Chip Devices

    Science.gov (United States)

    Jones, Todd J.; Nikzad, Shouleh; Cunningham, Thomas J.; Blazejewski, Edward; Dickie, Matthew R.; Hoenk, Michael E.; Greer, Harold F.

    2011-01-01

    Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place.

  12. High power diode laser array development using completely indium free packaging technology with narrow spectrum

    Science.gov (United States)

    Hou, Dong; Wang, Jingwei; Gao, Lijun; Liang, Xuejie; Li, Xiaoning; Liu, Xingsheng

    2016-03-01

    The high power diode lasers have been widely used in many fields. In this work, a sophisticated high power and high performance horizontal array of diode laser stacks have been developed and fabricated with high duty cycle using hard solder bonding technology. CTE-matched submount and Gold Tin (AuSn) hard solder are used for bonding the diode laser bar to achieve the performances of anti-thermal fatigue, higher reliability and longer lifetime. This array consists of 30 bars with the expected optical output peak power of 6000W. By means of numerical simulation and analytical results, the diode laser bars are aligned on suitable positions along the water cooled cooler in order to achieve the uniform wavelength with narrow spectrum and accurate central wavelength. The performance of the horizontal array, such as output power, spectrum, thermal resistance, life time, etc., is characterized and analyzed.

  13. Developmental toxicity of indium: embryotoxicity and teratogenicity in experimental animals.

    Science.gov (United States)

    Nakajima, Mikio; Usami, Makoto; Nakazawa, Ken; Arishima, Kazuyoshi; Yamamoto, Masako

    2008-12-01

    Indium, a precious metal classified in group 13 (IIIB) in the periodic table, has been used increasingly in the semiconductor industry. Because indium is a rare metal, technology for indium recycling from transparent conducting films for liquid crystal displays is desired, and its safety evaluation is becoming increasingly necessary. The developmental toxicity of indium in experimental animals was summarized. The intravenous or oral administration of indium to pregnant animals causes growth inhibition and the death of embryos in hamsters, rats, and mice. The intravenous administration of indium to pregnant animals causes embryonic or fetal malformation, mainly involving digit and tail deformities, in hamsters and rats. The oral administration of indium also induces fetal malformation in rats and rabbits, but requires higher doses. No teratogenicity has been observed in mice. Caudal hypoplasia, probably due to excessive cell loss by increased apoptosis in the tailbud, in the early postimplantation stage was considered to account for indium-induced tail malformation as a possible pathogenetic mechanism. Findings from in vitro experiments indicated that the embryotoxicity of indium could have direct effects on the conceptuses. Toxicokinetic studies showed that the embryonic exposure concentration was more critical than the exposure time regarding the embryotoxicity of indium. It is considered from these findings that the risk of the developmental toxicity of indium in humans is low, unless an accidentally high level of exposure or unknown toxic interaction occurs because of possible human exposure routes and levels (i.e. oral, very low-level exposure).

  14. Copper indium disulfide nanocrystals supported on carbonized chicken eggshell membranes as efficient counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Wang, Lidan; He, Jianxin; Zhou, Mengjuan; Zhao, Shuyuan; Wang, Qian; Ding, Bin

    2016-05-01

    A domestic waste, chicken eggshell membrane (ESM), is used as a raw material to fabricate carbonized ESM loaded with chalcopyrite CuInS2 nanocrystals (denoted CESM-CuInS2) by a simple liquid impregnation and carbonization method. The CESM-CuInS2 composite possesses a natural three-dimensional macroporous network structure in which numerous CuInS2 nanocrystals with a size of about 25 nm are inlaid in carbon submicron fibers that form a microporous network. The CESM-CuInS2 composite is used as the counter electrode in a dye-sensitized solar cell (DSSC) and its photoelectric performance is tested. The DSSC with a CESM-CuInS2 counter electrode exhibits a short-circuit current density of 12.48 mA cm-2, open-circuit voltage of 0.78 V and power conversion efficiency of 5.8%; better than the corresponding values for a DSSC with a CESM counter electrode, and comparable to that of a reference DSSC with a platinum counter electrode. The favorable photoelectric performance of the CESM-CuInS2 counter electrode is attributed to its hierarchical structure, which provides a large specific surface area and numerous catalytically active sites to facilitate the oxidation of the electrolyte. This new composite material has many advantages, such as low cost and simple preparation, compared with Pt and pure CuInS2 counter electrodes.

  15. Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes.

    Science.gov (United States)

    Zhou, Nanjia; Buchholz, Donald B; Zhu, Guang; Yu, Xinge; Lin, Hui; Facchetti, Antonio; Marks, Tobin J; Chang, Robert P H

    2014-02-01

    Polymer solar cells are fabricated on highly conductive, transparent amorphous zinc indium tin oxide (a-ZITO) electrodes. For two representative active layer donor polymers, P3HT and PTB7, the power conversion efficiencies (PCEs) are comparable to reference devices using polycrystalline indium tin oxide (ITO) electrodes. Benefitting from the amorphous character of a-ZITO, the new devices are highly flexible and can be repeatedly bent to a radius of 5 mm without significant PCE reduction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  17. In vitro and in vivo studies on red blood cell labelling using /sup 111/indium oxine, /sup 111/indium oxine-sulphate and sup(99m)Tc oxine

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, S.; Kolbe, H.; Sinzinger, H. (Vienna Univ. (Austria). 2. Medizinische Klinik); Angelberger, P. (Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Chemie)

    1984-01-01

    The optimal conditions for red blood cell labelling using /sup 111/indium oxine, /sup 111/indium oxine sulphate and sup(99m)Tc oxine were established both in vitro as well as in vivo. The use of either acid citrate dextrose or sodium citrate as anticoagulant had no effect on labelling efficiency. Other variables such as the incubation time, temperature, duration, cell number and concentration of the complex exert a significant influence on labelling efficiency. Labelling efficiency of red blood cells is very high also under non-optimum conditions as compared with other cells (leucocytes, platelets).

  18. High performance solution-processed indium oxide thin-film transistors.

    Science.gov (United States)

    Kim, Hyun Sung; Byrne, Paul D; Facchetti, Antonio; Marks, Tobin J

    2008-09-24

    In2O3 thin-film transistors (TFTs) were fabricated on various dielectrics [SiO2, self-assembled nanodielectrics (SANDs)] by spin-coating In2O3 film precursor solutions consisting of ethanolamine (EAA) and InCl3 in methoxyethanol. Optimized film microstructures are characterized by the high-mobility In2O3 00 L orientation and are obtained only within a well-defined range of base: In3+ molar ratios. Electron mobilities as high as approximately 44 cm2 V(-1) s(-1) are measured for n+-Si/SAND/In2O3/Au devices using an EAA/In3+ molar ratio = 10. This result combined with Ion/Ioff ratios of approximately 10(6) and <5 V operating voltages is encouraging for high-speed applications.In2O3 thin-film transistors (TFTs) were fabricated on various dielectrics [SiO2, self-assembled nanodielectrics (SANDs)] by spin-coating In2O3 film precursor solutions consisting of ethanolamine (EAA) and InCl3 in methoxyethanol. Optimized film microstructures are characterized by the high-mobility In2O3 00 L orientation and are obtained only within a well-defined range of base: In3+ molar ratios. Electron mobilities as high as ~44 cm2 V(-1) s(-1) are measured for n+-Si/SAND/In2O3/Au devices using an EAA/In3+ molar ratio = 10. This result combined with Ion/Ioff ratios of approximately 10(6) and <5 V operating voltages is encouraging for high-speed applications.

  19. Towards highly efficient water photoelectrolysis

    Science.gov (United States)

    Elavambedu Prakasam, Haripriya

    ethylene glycol resulted in remarkable growth characteristics of titania nanotube arrays, hexagonal closed packed up to 1 mm in length, with tube aspect ratios of approximately 10,000. For the first time, complete anodization of the starting titanium foil has been demonstrated resulting in back to back nanotube array membranes ranging from 360 mum--1 mm in length. The nanotubes exhibited growth rates of up to 15 mum/hr. A detailed study on the factors affecting the growth rate and nanotube dimensions is presented. It is suggested that faster high field ionic conduction through a thinner barrier layer is responsible for the higher growth rates observed in electrolytes containing ethylene glycol. Methods to fabricate free standing, titania nanotube array membranes ranging in thickness from 50 microm--1000 mum has also been an outcome of this dissertation. In an effort to combine the charge transport properties of titania with the light absorption properties of iron (III) oxide, films comprised of vertically oriented Ti-Fe-O nanotube arrays on FTO coated glass substrates have been successfully synthesized in ethylene glycol electrolytes. Depending upon the Fe content the bandgap of the resulting films varied from about 3.26 to 2.17 eV. The Ti-Fe oxide nanotube array films demonstrated a photocurrent of 2 mA/cm2 under global AM 1.5 illumination with a 1.2% (two-electrode) photoconversion efficiency, demonstrating a sustained, time-energy normalized hydrogen evolution rate by water splitting of 7.1 mL/W·hr in a 1 M KOH solution with a platinum counter electrode under an applied bias of 0.7 V. The Ti-Fe-O material architecture demonstrates properties useful for hydrogen generation by water photoelectrolysis and, more importantly, this dissertation demonstrates that the general nanotube-array synthesis technique can be extended to other ternary oxide compositions of interest for water photoelectrolysis.

  20. Efficiency and reliability assessments of retrofitted high-efficiency motors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S.; Otaduy, P.J.; Dueck, J.D.

    1994-12-31

    The majority of electric-motor applications are pumps, fans, blowers, and certain compressors that follow the load torque pattern described in this paper. It has been known for many years that simply replacing the old motor with a high-efficiency motor might not produce the expected efficiency gain. This paper suggests the calculations for the effective efficiency and temperature rise of the high-efficiency motor. The reliability in terms of temperature rise, downsizing, power factor, harmonics, mechanical structure, etc., are discussed.

  1. Initial Australian experience with high dose indium-111 pentreotide therapy in progressive, symptomatic neuroendocrine tumours

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, R.J.; Keady, M.A.; Johnson, V. [The Peter McCallum Cancer Institute, Melbourne, VIC (Australia). Department of Nuclear Medicine and PET

    1998-06-01

    Full text: Neuroendocrine tumours variably express somatostatin receptors enabling imaging using somatostatin analogues, including In-111 pentreotide. Due to the emission of Auger electrons in the decay of In-1 11, there is the potential to use this agent for therapy. Based on favourable experience with high dose In-111 pentreotide therapy a the University of Rotterdam, a prospective trial of this treatment was performed in 6 patients with progressive, symptomatic neuroendocrine tumours (carcinoid in 4 patients and glucagonoma in 2 patients). Patients were selected based on the presence of uptake at multiple sites on In-1 11 pentreotide scanning with intensity equal to or greater than splenic activity. Follow-up of haematology, endocrine and renal function was performed and serial imaging correlation of index lesions was performed. Three treatments of approximately 6.5 GBq of In-111 pentreotide were administered to each patient over 3-5 months. One pt with bone metastases from carcinoid had an initial flare in symptoms 1 week following treatment but subsequent palliation which lasted 6 months before requiring local radiotherapy. The three remaining carcinoid patients had symptomatic improvement and reduced 5-HIAA levels when abnormal at baseline. Both patients with glucagonoma had symptomatic improvement and reduction in glucagon levels. No patients had evidence of disease progression up to 6 months post-treatment in index lesions with high In-1 11 pentreotide uptake. One lesion with low uptake progressed despite regression in other lesions with high uptake in the same patient Minor transient lymphopaenia was seen following treatment but no clinically significant toxicity was noted. These preliminary results complement European data suggesting good palliation from high dose In-111 pentreotide therapy in patients with high somatostatin receptor expression

  2. Surface preparation for ALD of High-k dielectrics on indium gallium arsenide

    Science.gov (United States)

    Melitz, Wilhelm

    The key for a successful gate-first process is when subsequent processing steps cannot degrade the semiconductor, the dielectric, or the oxide-semiconductor interfaces. For silicon, the only commercial ALD high-k fabrication process, which avoids processing induced damage, is a replacement gate process (a type of gate-last process). While preparing silicon for gate-last processing is straightforward, the key to a gate-last process for III-V semiconductors is the order and cleanliness of the III-V channel prior to dielectric deposition. Aggressive oxide thickness reduction (equivalent oxide thickness, or EOT, scaling) is needed to fabricate small gate length devices with small subthreshold swings. Furthermore, aggressive EOT scaling requires a very high uniform ALD nucleation density, with no pinholes due to surface contaminants. The key barrier to solving a very practical problem is a surface chemistry challenge: develop a chemical process which removes nearly all air induced defects and contaminants and leaves the III-V surface flat and electrically active for high nucleation density ALD gate oxide deposition, which unpins the Fermi level. The following study uses scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) to observe the removal of the oxide layer and restoration of the clean InGaAs surface reconstruction with atomic hydrogen cleaning, allowing for a gate-last or replacement-gate process. Along with surface cleaning STM and STS was used to characterize the initial passivation of InGaAs surfaces via ALD of trimethyl aluminum (TMA). The substrate temperature and initial surface reconstruction was critical to forming an unpinned passivation layer with a high nucleation density. A method was developed to use Kelvin probe force microscopy (KPFM) as a tool for insightful feedback on the electrostatics of scaled MOSFET devices. KPFM is a unique technique for providing two-dimensional potential profiles inside a working device. A

  3. HIGH-EFFICIENCY INFRARED RECEIVER

    Directory of Open Access Journals (Sweden)

    A. K. Esman

    2016-01-01

    Full Text Available Recent research and development show promising use of high-performance solid-state receivers of the electromagnetic radiation. These receivers are based on the low-barrier Schottky diodes. The approach to the design of the receivers on the basis of delta-doped low-barrier Schottky diodes with beam leads without bias is especially actively developing because for uncooled receivers of the microwave radiation these diodes have virtually no competition. The purpose of this work is to improve the main parameters and characteristics that determine the practical relevance of the receivers of mid-infrared electromagnetic radiation at the operating room temperature by modifying the electrodes configuration of the diode and optimizing the distance between them. Proposed original design solution of the integrated receiver of mid-infrared radiation on the basis of the low-barrier Schottky diodes with beam leads allows to effectively adjust its main parameters and characteristics. Simulation of the electromagnetic characteristics of the proposed receiver by using the software package HFSS with the basic algorithm of a finite element method which implemented to calculate the behavior of electromagnetic fields on an arbitrary geometry with a predetermined material properties have shown that when the inner parts of the electrodes of the low-barrier Schottky diode is performed in the concentric elliptical convex-concave shape, it can be reduce the reflection losses to -57.75 dB and the standing wave ratio to 1.003 while increasing the directivity up to 23 at a wavelength of 6.09 μm. At this time, the rounded radii of the inner parts of the anode and cathode electrodes are equal 212 nm and 318 nm respectively and the gap setting between them is 106 nm. These parameters will improve the efficiency of the developed infrared optical-promising and electronic equipment for various purposes intended for work in the mid-infrared wavelength range. 

  4. High Efficiency Refrigeration Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It has been proposed by NASA JSC studies, that the most mass efficient (non-nuclear) method of Lunar habitat cooling is via photovoltaic (PV) direct vapor...

  5. High efficiency turbine blade coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  6. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  7. High Energy Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  8. Low-temperature, high-performance, solution-processed indium oxide thin-film transistors.

    Science.gov (United States)

    Han, Seung-Yeol; Herman, Gregory S; Chang, Chih-hung

    2011-04-13

    Solution-processed In(2)O(3) thin-film transistors (TFTs) were fabricated by a spin-coating process using a metal halide precursor, InCl(3), dissolved in acetonitrile. A thin and uniform film can be controlled and formed by adding ethylene glycol. The synthesized In(2)O(3) thin films were annealed at various temperatures ranging from 200 to 600 °C in air or in an O(2)/O(3) atmospheric environment. The TFTs annealed at 500 °C under air exhibited a high field-effect mobility of 55.26 cm(2) V(-1) s(-1) and an I(on)/I(off) current ratio of 10(7). In(2)O(3) TFTs annealed under an O(2)/O(3) atmosphere at temperatures from 200 to 300 °C exhibited excellent n-type transistor behaviors with field-effect mobilities of 0.85-22.14 cm(2) V(-1) s(-1) and I(on)/I(off) ratios of 10(5)-10(6). The annealing atmosphere of O(2)/O(3) elevates solution-processed In(2)O(3) TFTs to higher performance at lower processing temperature.

  9. Environmental stability of high-mobility indium-oxide based transparent electrodes

    Directory of Open Access Journals (Sweden)

    Thanaporn Tohsophon

    2015-11-01

    Full Text Available Large-scale deployment of a wide range of optoelectronic devices, including solar cells, critically depends on the long-term stability of their front electrodes. Here, we investigate the performance of Sn-doped In2O3 (ITO, H-doped In2O3 (IO:H, and Zn-doped In2O3 (IZO electrodes under damp heat (DH conditions (85 °C, 85% relative humidity. ITO, IO:H capped with ITO, and IZO show high stability with only 3%, 9%, and 13% sheet resistance (Rs degradation after 1000 h of DH, respectively. For uncapped IO:H, we find a 75% Rs degradation, due to losses in electron Hall mobility (μHall. We propose that this degradation results from chemisorbed OH- or H2O-related species in the film, which is confirmed by thermal desorption spectroscopy and x-ray photoelectron spectroscopy. While μHall strongly degrades during DH, the optical mobility (μoptical remains unchanged, indicating that the degradation mainly occurs at grain boundaries.

  10. High-performance solution-processed amorphous zinc-indium-tin oxide thin-film transistors.

    Science.gov (United States)

    Kim, Myung-Gil; Kim, Hyun Sung; Ha, Young-Geun; He, Jiaqing; Kanatzidis, Mercouri G; Facchetti, Antonio; Marks, Tobin J

    2010-08-04

    Films of the high-performance solution-processed amorphous oxide semiconductor a-ZnIn(4)Sn(4)O(15), grown from 2-methoxyethanol/ethanolamine solutions, were used to fabricate thin-film transistors (TFTs) in combination with an organic self-assembled nanodielectric as the gate insulator. This structurally dense-packed semiconductor composition with minimal Zn(2+) incorporation strongly suppresses transistor off-currents without significant mobility degradation, and affords field-effect electron mobilities of approximately 90 cm(2) V(-1) s(-1) (104 cm(2) V(-1) s(-1) maximum obtained for patterned ZITO films), with I(on)/I(off) ratio approximately 10(5), a subthreshhold swing of approximately 0.2 V/dec, and operating voltage <2 V for patterned devices with W/L = 50. The microstructural and electronic properties of ZITO semiconductor film compositions in the range Zn(9-2x)In(x)Sn(x)O(9+1.5x) (x = 1-4) and ZnIn(8-x)Sn(x)O(13+0.5x) (x = 1-7) were systematically investigated to elucidate those factors which yield optimum mobility, I(on)/I(off), and threshold voltage parameters. It is shown that structural relaxation and densification by In(3+) and Sn(4+) mixing is effective in reducing carrier trap sites and in creating carrier-generating oxygen vacancies. In contrast to the above results for TFTs fabricated with the organic self-assembled nanodielectric, ZnIn(4)Sn(4)O(15) TFTs fabricated with SiO(2) gate insulators exhibit electron mobilities of only approximately 11 cm(2) V(-1) s(-1) with I(on)/I(off) ratios approximately 10(5), and a subthreshhold swing of approximately 9.5 V/dec.

  11. High efficiency stationary hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Hynek, S.; Fuller, W.; Truslow, S. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1995-09-01

    Stationary storage of hydrogen permits one to make hydrogen now and use it later. With stationary hydrogen storage, one can use excess electrical generation capacity to power an electrolyzer, and store the resultant hydrogen for later use or transshipment. One can also use stationary hydrogen as a buffer at fueling stations to accommodate non-steady fueling demand, thus permitting the hydrogen supply system (e.g., methane reformer or electrolyzer) to be sized to meet the average, rather than the peak, demand. We at ADL designed, built, and tested a stationary hydrogen storage device that thermally couples a high-temperature metal hydride to a phase change material (PCM). The PCM captures and stores the heat of the hydriding reaction as its own heat of fusion (that is, it melts), and subsequently returns that heat of fusion (by freezing) to facilitate the dehydriding reaction. A key component of this stationary hydrogen storage device is the metal hydride itself. We used nickel-coated magnesium powder (NCMP) - magnesium particles coated with a thin layer of nickel by means of chemical vapor deposition (CVD). Magnesium hydride can store a higher weight fraction of hydrogen than any other practical metal hydride, and it is less expensive than any other metal hydride. We designed and constructed an experimental NCM/PCM reactor out of 310 stainless steel in the form of a shell-and-tube heat exchanger, with the tube side packed with NCMP and the shell side filled with a eutectic mixture of NaCL, KCl, and MgCl{sub 2}. Our experimental results indicate that with proper attention to limiting thermal losses, our overall efficiency will exceed 90% (DOE goal: >75%) and our overall system cost will be only 33% (DOE goal: <50%) of the value of the delivered hydrogen. It appears that NCMP can be used to purify hydrogen streams and store hydrogen at the same time. These prospects make the NCMP/PCM reactor an attractive component in a reformer-based hydrogen fueling station.

  12. Overview of Ecological Agriculture with High Efficiency

    Institute of Scientific and Technical Information of China (English)

    HUANG Guo-qin; ZHAO Qi-guo; GONG Shao-lin; SHI Qing-hua

    2012-01-01

    From the presentation, connotation, characteristics, principles, pattern, and technologies of ecological agriculture with high efficiency, we conduct comprehensive and systematic analysis and discussion of the theoretical and practical progress of ecological agriculture with high efficiency. (i) Ecological agriculture with high efficiency was first advanced in China in 1991. (ii) Ecological agriculture with high efficiency highlights "high efficiency", "ecology", and "combination". (iii) Ecological agriculture with high efficiency is characterized by diverse organisms, good environment, good structure, powerful function, good quality, high benefit, low emission, sustainability. (iv) The yield increase and efficiency increase principle of ecological agriculture with high efficiency lies in full land use, three-dimensional light use, sufficient use of season, multi-layer water consumption, efficient fertilizer consumption, symbiosis and mutual supplement, ecological disaster reduction, recycling. (v) The typical pattern of ecological agriculture with high efficiency includes three-dimensional use pattern, biological symbiosis pattern, multi-industry combination pattern, industrial extension pattern, technology-driven pattern, environmental renovation pattern, resource recycling pattern, leisure and sight-seeing pattern. (vi) The key technologies of ecological agriculture with high efficiency include resource-saving technology, water and fertilizer regulation technology, biological technology for increasing soil fertility, disaster prevention and mitigation technology, comprehensive utilization technology, water conservation technology, structural adjustment technology, energy development technology, watershed control technology, and modern high-tech technology.

  13. High-efficiency silicon heterojunction solar cells: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    De Wolf, S.; Geissbuehler, J.; Loper, P.; Martin de Nicholas, S.; Seif, J.; Tomasi, A.; Ballif, C.

    2015-05-11

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical

  14. High-efficiency silicon heterojunction solar cells: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    De Wolf, S.

    2015-04-27

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The

  15. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

    OpenAIRE

    Dong-Ju Kim; Hyo-Joong Kim; Ki-Won Seo; Ki-Hyun Kim; Tae-Wong Kim; Han-Ki Kim

    2015-01-01

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1?Ohm/square and high optical transmittance of 89% as well as good...

  16. High Efficiency, High Performance Clothes Dryer

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pescatore; Phil Carbone

    2005-03-31

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a

  17. High Efficiency, High Performance Clothes Dryer

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pescatore; Phil Carbone

    2005-03-31

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a

  18. Highly Efficient Freestyle Magnetic Nanoswimmer.

    Science.gov (United States)

    Li, Tianlong; Li, Jinxing; Morozov, Konstantin I; Wu, Zhiguang; Xu, Tailin; Rozen, Isaac; Leshansky, Alexander M; Li, Longqiu; Wang, Joseph

    2017-08-09

    The unique swimming strategies of natural microorganisms have inspired recent development of magnetic micro/nanorobots powered by artificial helical or flexible flagella. However, as artificial nanoswimmers with unique geometries are being developed, it is critical to explore new potential modes for kinetic optimization. For example, the freestyle stroke is the most efficient of the competitive swimming strokes for humans. Here we report a new type of magnetic nanorobot, a symmetric multilinked two-arm nanoswimmer, capable of efficient "freestyle" swimming at low Reynolds numbers. Excellent agreement between the experimental observations and theoretical predictions indicates that the powerful "freestyle" propulsion of the two-arm nanorobot is attributed to synchronized oscillatory deformations of the nanorobot under the combined action of magnetic field and viscous forces. It is demonstrated for the first time that the nonplanar propulsion gait due to the cooperative "freestyle" stroke of the two magnetic arms can be powered by a plane oscillatory magnetic field. These two-arm nanorobots are capable of a powerful propulsion up to 12 body lengths per second, along with on-demand speed regulation and remote navigation. Furthermore, the nonplanar propulsion gait powered by the consecutive swinging of the achiral magnetic arms is more efficient than that of common chiral nanohelical swimmers. This new swimming mechanism and its attractive performance opens new possibilities in designing remotely actuated nanorobots for biomedical operation at the nanoscale.

  19. Design optimization of bowtie nanoantenna for high-efficiency thermophotovoltaics

    Science.gov (United States)

    Sarabandi, Kamal; Choi, Sangjo

    2013-12-01

    A novel matching technique and the field enhancement at the terminals of a bowtie nanoantenna are utilized to develop compact, highly efficient, and flexible thermophotovoltaic (TPV) cells. The bowtie antenna is designed for maximum power transfer to a near infrared band (1 μm to 2.2 μm) of a TPV cell using Indium Gallium Arsenide Antimonide (InGaAsSb). A nano-meter size block of InGaAsSb with a low bandgap energy of 0.52 eV is mounted at the terminals of the antenna. Such a load presents a frequency dependent impedance with a high resistance and capacitance at the desired frequency (180 THz). For maximum power transfer, a high impedance bowtie antenna operating at the anti-resonance mode in conjunction with an inductive stub is realized. The plasmonic behavior of the metal that tends to reduce the antenna size is partially compensated by the extra length needed to achieve the anti-resonance condition. At the desired band, the proposed nanoantenna loaded with InGaAsSb block shows an electric field intensity at the antenna terminals, which is approximately 23.5 times higher than the incident electric field intensity. This feature allows for development of efficient TPV cell and sensitive IR detectors. The infinite array of the bowtie antennas backed by a metallic reflector located at a quarter-wave behind the array is shown to absorb ˜95% of the incident power, which is more than 50% higher than the bulk InGaAsSb TPV cell. A novel configuration of the bowtie nanoantenna array is also presented that allows for collection of DC currents through an almost arbitrary parallel or series configuration of TPV cells without adversely affecting the IR performance of the individual antennas. In this scheme, elements can be arranged to be polarization dependent or independent.

  20. High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays.

    Science.gov (United States)

    Chen, Po-Chiang; Shen, Guozhen; Chen, Haitian; Ha, Young-geun; Wu, Chao; Sukcharoenchoke, Saowalak; Fu, Yue; Liu, Jun; Facchetti, Antonio; Marks, Tobin J; Thompson, Mark E; Zhou, Chongwu

    2009-11-24

    We report high-performance arsenic (As)-doped indium oxide (In(2)O(3)) nanowires for transparent electronics, including their implementation in transparent thin-film transistors (TTFTs) and transparent active-matrix organic light-emitting diode (AMOLED) displays. The As-doped In(2)O(3) nanowires were synthesized using a laser ablation process and then fabricated into TTFTs with indium-tin oxide (ITO) as the source, drain, and gate electrodes. The nanowire TTFTs on glass substrates exhibit very high device mobilities (approximately 1490 cm(2) V(-1) s(-1)), current on/off ratios (5.7 x 10(6)), steep subthreshold slopes (88 mV/dec), and a saturation current of 60 microA for a single nanowire. By using a self-assembled nanodielectric (SAND) as the gate dielectric, the device mobilities and saturation current can be further improved up to 2560 cm(2) V(-1) s(-1) and 160 microA, respectively. All devices exhibit good optical transparency (approximately 81% on average) in the visible spectral range. In addition, the nanowire TTFTs were utilized to control green OLEDs with varied intensities. Furthermore, a fully integrated seven-segment AMOLED display was fabricated with a good transparency of 40% and with each pixel controlled by two nanowire transistors. This work demonstrates that the performance enhancement possible by combining nanowire doping and self-assembled nanodielectrics enables silicon-free electronic circuitry for low power consumption, optically transparent, high-frequency devices assembled near room temperature.

  1. Electrodeposition of indium

    Energy Technology Data Exchange (ETDEWEB)

    Fouda, A.S.; Ahmed, A.I.; Madkour, L.H.

    Metallic indium was deposited from aqueous solutions of indium trichloride containing also, acetate, thiocyanate, chloride, iodide, sulphate, oxalate, ethanol, acetamide and citrate of sodium or potassium. The optimum conditions are: pH 2-5, current density 2-25 mA cm/sup -2/, temperature 30/sup O/C and metal ion concentration O.2 mol l/sup -1/. Deposits have been obtained on a platinum sheet cathode. Chemical analysis reveals that the purity of the indium is better than 99%. The rate of deposition is also determined. 15 refs.

  2. High-efficiency solar concentrator

    Science.gov (United States)

    Lansing, F. L.; Dorman, J.

    1980-01-01

    A new type of solar concentrator is presented using liquid lenses and simple translational tracking mechanism. The concentrator achieves a 100:1 nominal concentration ratio and is compared in performance with a flat-plate collector having two sheets of glazing and non-selective coating. The results of the thermal analysis show that higher temperatures can be obtained with the concentrator than is possible with the non-concentrator flat-plate type. Furthermore, the thermal efficiency far exceeds that of the comparative flat-plate type for all operating conditions.

  3. InP (Indium Phosphide): Into the future

    Science.gov (United States)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  4. A transparent diode with high rectifying ratio using amorphous indium-gallium-zinc oxide/SiN{sub x} coupled junction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myung-Jea; Kim, Myeong-Ho; Choi, Duck-Kyun, E-mail: duck@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-08-03

    We introduce a transparent diode that shows both high rectifying ratio and low leakage current at process temperature below 250 °C. This device is clearly distinguished from all previous transparent diodes in that the rectifying behavior results from the junction between a semiconductor (amorphous indium-gallium-zinc oxide (a-IGZO)) and insulator (SiN{sub x}). We systematically study the properties of each junction within the device structure and demonstrate that the a-IGZO/SiN{sub x} junction is the source of the outstanding rectification. The electrical characteristics of this transparent diode are: 2.8 A/cm{sup 2} on-current density measured at −7 V; lower than 7.3 × 10{sup −9} A/cm{sup 2} off-current density; 2.53 ideality factor; and high rectifying ratio of 10{sup 8}–10{sup 9}. Furthermore, the diode structure has a transmittance of over 80% across the visible light range. The operating principle of the indium-tin oxide (ITO)/a-IGZO/SiN{sub x}/ITO device was examined with an aid of the energy band diagram and we propose a preliminary model for the rectifying behavior. Finally, we suggest further directions for research on this transparent diode.

  5. High-Efficiency dc/dc Converter

    Science.gov (United States)

    Sturman, J.

    1982-01-01

    High-efficiency dc/dc converter has been developed that provides commonly used voltages of plus or minus 12 Volts from an unregulated dc source of from 14 to 40 Volts. Unique features of converter are its high efficiency at low power level and ability to provide output either larger or smaller than input voltage.

  6. Realization of ultrathin Copper Indium Gallium Di-selenide (CIGSe) solar cells

    OpenAIRE

    Jehl, Zacharie

    2012-01-01

    In this thesis, we investigate on the possibility to realize ultrathin absorber Copper Indium Gallium Di-Selenide (CIGSe) solar cells, by reducing the CIGSe thickness from 2500 nm down to 100 nm, while conserving a high conversion efficiency.Using numerical modeling, we first study the evolution of the photovoltaic parameters when reducing the absorber thickness. A strong decrease of the efficiency of the solar cell is observed, mainly related to a reduced light absorption and carrier collect...

  7. High Efficiency Microwave Power Amplifier (HEMPA) Design

    Science.gov (United States)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  8. Multicolor, High Efficiency, Nanotextured LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Jung Han; Arto Nurmikko

    2011-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  9. Synthesis of trapezohedral indium oxide nanoparticles with high-index {211} facets and high gas sensing activity.

    Science.gov (United States)

    Han, Xiguang; Han, Xiao; Sun, Linqiang; Gao, Shengguang; Li, Liang; Kuang, Qin; Xie, Zhaoxiong; Wang, Chao

    2015-06-14

    Nanocrystals with high-index facets usually exhibit higher catalytic activities than those with only low-index facets. Trapezohedron-shaped (TS) In2O3 particles with exposed high-index {211} facets were successfully synthesized in an oleic acid (OA) and trioctylamine (TOA) system. It has been demonstrated that the gas sensing activity of TS In2O3 particles with exposed high-index {211} facets is higher than that of octahedron-shaped In2O3 particles with exposed low-index {111} facets.

  10. Highly-efficient high-power pumps for fiber lasers

    Science.gov (United States)

    Gapontsev, V.; Moshegov, N.; Berezin, I.; Komissarov, A.; Trubenko, P.; Miftakhutdinov, D.; Berishev, I.; Chuyanov, V.; Raisky, O.; Ovtchinnikov, A.

    2017-02-01

    We report on high efficiency multimode pumps that enable ultra-high efficiency high power ECO Fiber Lasers. We discuss chip and packaged pump design and performance. Peak out-of-fiber power efficiency of ECO Fiber Laser pumps was reported to be as high as 68% and was achieved with passive cooling. For applications that do not require Fiber Lasers with ultimate power efficiency, we have developed passively cooled pumps with out-of-fiber power efficiency greater than 50%, maintained at operating current up to 22A. We report on approaches to diode chip and packaged pump design that possess such performance.

  11. Very High Efficiency Solar Cell Modules

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  12. Perovskite Solar Cells: High Efficiency Pb-In Binary Metal Perovskite Solar Cells (Adv. Mater. 31/2016).

    Science.gov (United States)

    Wang, Zhao-Kui; Li, Meng; Yang, Ying-Guo; Hu, Yun; Ma, Heng; Gao, Xing-Yu; Liao, Liang-Sheng

    2016-08-01

    On page 6695, X. Y. Gao, L.-S. Liao, and co-workers describe the fabrication of mixed Pb-In perovskite solar cells, using indium (III) chloride and lead (II) chloride with methylammonium iodide. A maximum power conversion efficiency as high as 17.55% is achieved owing to the high quality of the perovskites with multiple ordered crystal orientations. This work demonstrates the possibility of substituting the Pb (II) by using In (III), which opens a broad route to fabricating alloy perovskite solar cells with mitigated ecological impact. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High Efficiency Low Scatter Echelle Grating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high efficiency low scatter echelle grating will be developed using a novel technique of multiple diamond shaving cuts. The grating will have mirror surfaces on...

  14. Multi Band Gap High Efficiency Converter (RAINBOW)

    Science.gov (United States)

    Bekey, I.; Lewis, C.; Phillips, W.; Shields, V.; Stella, P.

    1997-01-01

    The RAINBOW multi band gap system represents a unique combination of solar cells, concentrators and beam splitters. RAINBOW is a flexible system which can readily expand as new high efficiency components are developed.

  15. High Efficiency Solar Furnace Core Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop a high efficiency solar furnace core that greatly lessens the heat losses from the furnace core, either greatly reducing the amount of...

  16. Chlorinated indium tin oxide electrode by InCl3 aqueous solution for high-performance organic light-emitting diodes

    Science.gov (United States)

    Hu, Yun; Zhou, Dong-Ying; Wang, Bo; Wang, Zhao-Kui; Liao, Liang-Sheng

    2016-04-01

    The authors develop a facile and effective method to produce the chlorinated indium tin oxide (Cl-ITO) treated by InCl3 aqueous solution and UV/ozone. The work function of the Cl-ITO achieved by this treatment is as high as 5.69 eV, which is increased by 1.09 eV compared with that of the regular ITO without any treatment. Further investigation proved that the enhancement of the work function is attributed to the formation of In-Cl bonds on the Cl-ITO surface. Green phosphorescent organic light-emitting devices based on the Cl-ITO electrodes exhibit excellent electroluminescence performance, elongating lifetime due to the improvement in hole injection.

  17. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Directory of Open Access Journals (Sweden)

    Jasmine Sears

    2017-05-01

    Full Text Available Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM Energy Dispersive Spectroscopy (EDS. Several sizes of islands are examined, with larger islands exhibiting high (>94% average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  18. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    Science.gov (United States)

    Sears, Jasmine; Gibson, Ricky; Gehl, Michael; Zandbergen, Sander; Keiffer, Patrick; Nader, Nima; Hendrickson, Joshua; Arnoult, Alexandre; Khitrova, Galina

    2017-05-01

    Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM) Energy Dispersive Spectroscopy (EDS). Several sizes of islands are examined, with larger islands exhibiting high (>94%) average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  19. Compact High Efficiency Adsorption Heat Pump

    OpenAIRE

    TeGrotenhuis, Ward E; Humble, Paul H; Sweeney, Josh B

    2012-01-01

    An innovative adsorption cycle heat pump technology is presented that is compact and capable of achieving high energy efficiency for integrated space heating, air conditioning, and water heating. High energy efficiency is accomplished by effectively recuperating heat within the system to minimize energy consumption. This substantially reduces the thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. Furthermore, equipment cost is reduc...

  20. High efficiency quantum cascade laser frequency comb

    Science.gov (United States)

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm‑1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  1. High efficiency quantum cascade laser frequency comb

    Science.gov (United States)

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-01-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834

  2. High Efficiency Polymer Solar Cells Technologies

    Institute of Scientific and Technical Information of China (English)

    Abdrhman M G; LI Hang-quan; ZHANG Li-ye; ZHOU Bing

    2006-01-01

    The conjugated polymer-based solar cell is one of the most promising devices in search of sustainable, renewable energy sources in last decade. It is the youngest field in organic solar cell research and also is certainly the fastest growing one at the moment. In addition, the key factor for polymer-based solar cells with high-efficiency is to invent new materials. Organic solar cell has attracted significant researches and commercial interest due to its low cost in fabrication and flexibility in applications. However, they suffer from relatively low conversion efficiency. The summarization of the significance and concept of high efficiency polymer solar cell technologies are presented.

  3. Preparation and characterization of mesoporous indium oxide

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi-zhe; CHENG Zhi-xuan; PAN Qing-yi; DONG Xiao-wen; ZHANG Jian-cheng; PAN Ling-li

    2009-01-01

    Indium oxide nanocrystals with mesoporous structure were successfully synthesized by using triblock copolymer as a template,and characterized by thermogravimetry-differential scanning calorimeter (TG-DSC),X-ray powder diffraction (XRD),high resolution transmission electron microscopy (HRTEM) and N2 adsorption.A high EO/PO ratio is thought to be the key point to prepare mesoporous In2O3.The results show that the average pore diameter of the products is 6 nm,the BET surface area is 54.78 m2/g,and the adsorbing pore volume is 0.345 cm3/g.After comparing with normal indium oxide nanoparticles by BET test,mesoporous indium oxide demonstrates a large difference in adsorbing pore volume and average pore diameters from normal ones.

  4. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  5. The oxidation and surface speciation of indium and indium oxides exposed to atmospheric oxidants

    Science.gov (United States)

    Detweiler, Zachary M.; Wulfsberg, Steven M.; Frith, Matthew G.; Bocarsly, Andrew B.; Bernasek, Steven L.

    2016-06-01

    Metallic indium and its oxides are useful in electronics applications, in transparent conducting electrodes, as well as in electrocatalytic applications. In order to understand more fully the speciation of the indium and oxygen composition of the indium surface exposed to atmospheric oxidants, XPS, HREELS, and TPD were used to study the indium surface exposed to water, oxygen, and carbon dioxide. Clean In and authentic samples of In2O3 and In(OH)3 were examined with XPS to provide standard spectra. Indium was exposed to O2 and H2O, and the ratio of O2 - to OH- in the O1s XPS region was used to monitor oxidation and speciation of the surface. HREELS and TPD indicate that water dissociates on the indium surface even at low temperature, and that In2O3 forms at higher temperatures. Initially, OH- is the major species at the surface. Pure In2O3 is also OH- terminated following water exposure. Ambient pressure XPS studies of water exposure to these surfaces suggest that high water pressures tend to passivate the surface, inhibiting extensive oxide formation.

  6. Selective separation of indium by iminodiacetic acid chelating resin

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, M.C.B.; Benedetto, J.S. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Martins, A.H. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Metalurgica e de Materiais]. E-mail: ahmartin@demet.ufmg.br

    2007-04-15

    - Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite{sup R} IRC748 (Rohm and Haas Co.-USA). High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite{sup R} IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5 mol/dm{sup 3} sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite{sup R} IRC748. (author)

  7. Selective separation of indium by iminodiacetic acid chelating resin

    Directory of Open Access Journals (Sweden)

    M. C. B. Fortes

    2007-06-01

    Full Text Available Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite®IRC748 (Rohm and Haas Co.-USA. High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite®IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5mol/dm³ sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite®IRC748.

  8. High Efficiency ELID Grinding of Garnet Ferrite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Hard and brittle materials such as ferrite, optical glass and ceramics have been widely used in many fields because of their good characteristics and still gain more attentions. However, it is difficult to machine and get good surface quality. Some parts made of these materials have large machining allowances and need to be produced with large batch, but the machining efficiency is very low with usual grinding method. So it is of great importance to research the high efficiency grinding technology of hard ...

  9. Technology Development for High Efficiency Optical Communications

    Science.gov (United States)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  10. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  11. Highly efficient heralding of entangled single photons.

    Science.gov (United States)

    Ramelow, Sven; Mech, Alexandra; Giustina, Marissa; Gröblacher, Simon; Wieczorek, Witlef; Beyer, Jörn; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Nam, Sae Woo; Zeilinger, Anton; Ursin, Rupert

    2013-03-25

    Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83%. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.

  12. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  13. PRCA:A highly efficient computing architecture

    Institute of Scientific and Technical Information of China (English)

    Luo Xingguo

    2014-01-01

    Applications can only reach 8 %~15 % of utilization on modern computer systems. There are many obstacles to improving system efficiency. The key root is the conflict between the fixed general computer architecture and the variable requirements of applications. Proactive reconfigurable computing architecture (PRCA) is proposed to improve computing efficiency. PRCA dynamically constructs an efficient computing ar chitecture for a specific application via reconfigurable technology by perceiving requirements,workload and utilization of computing resources. Proactive decision support system (PDSS),hybrid reconfigurable computing array (HRCA) and reconfigurable interconnect (RIC) are intensively researched as the key technologies. The principles of PRCA have been verified with four applications on a test bed. It is shown that PRCA is feasible and highly efficient.

  14. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    Science.gov (United States)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon

  15. Indium Sorption to Iron Oxides

    Science.gov (United States)

    White, S. J.; Sacco, S. A.; Hemond, H.; Hussain, F. A.; Runkel, R. L.; Walton-Day, K. E.; Kimball, B. A.; Shine, J. P.

    2014-12-01

    Indium is an increasingly important metal in semiconductors and electronics, and its use is growing rapidly as a semiconductive coating (as indium tin oxide) for liquid crystal displays (LCDs) and flat panel displays. It also has uses in important energy technologies such as light emitting diodes (LEDs) and photovoltaic cells. Despite its rapid increase in use, very little is known about the environmental behavior of indium, and concerns are being raised over the potential health effects of this emerging metal contaminant. One source of indium to the environment is acid mine drainage from the mining of lead, zinc, and copper sulfides. In our previous studies of a stream in Colorado influenced by acid mine drainage from lead and zinc mining activities, indium concentrations were found to be 10,000 times those found in uncontaminated rivers. However, the speciation and mobility of indium could not be reliably modeled because sorption constants to environmental sorbents have not been determined. In this study, we generate sorption constants for indium to ferrihydrite in the laboratory over a range of pHs, sorbent to sorbate ratios, and ionic strengths. Ferrihydrite is one of the most important sorbents in natural systems, and sorption to amorphous iron oxides such as ferrihydrite is thought to be one of the main removal mechanisms of metals from the dissolved phase in aqueous environments. Because of its relatively low solubility, we also find that indium hydroxide precipitation can dominate indium's partitioning at micromolar concentrations of indium. This precipitation may be important in describing indium's behavior in our study stream in Colorado, where modeling sorption to iron-oxides does not explain the complete removal of indium from the dissolved phase when the pH of the system is artificially raised to above 8. This study contributes much-needed data about indium's aqueous behavior, in order to better understand its fate, transport, and impacts in the

  16. Study of indium nitride and indium oxynitride band gaps

    Directory of Open Access Journals (Sweden)

    M. Sparvoli

    2013-01-01

    Full Text Available This work shows the study of the optical band gap of indium oxynitride (InNO and indium nitride (InN deposited by magnetron reactive sputtering. InNO shows multi-functionality in electrical and photonic applications, transparency in visible range, wide band gap, high resistivity and low leakage current. The deposition processes were performed in a magnetron sputtering system using a four-inches pure In (99.999% target and nitrogen and oxygen as plasma gases. The pressure was kept constant at 1.33 Pa and the RF power (13.56 MHz constant at 250 W. Three-inches diameter silicon wafer with 370 micrometer thickness and resistivity in the range of 10 ohm-centimeter was used as substrate. The thin films were analyzed by UV-Vis-NIR reflectance, photoluminescence (PL and Hall Effect. The band gap was obtained from Tauc analysis of the reflectance spectra and photoluminescence. The band gap was evaluated for both films: for InNO the value was 2.48 eV and for InN, 1.52 eV. The relative quantities obtained from RBS spectra analysis in InNO sample are 48% O, 12% N, 40% In and in InN sample are 8% O, 65% N, 27% In.

  17. Effect of Indium on the Superconducting Transition Temperature of Tin Telluride

    Science.gov (United States)

    Zhong, Ruidan; Schneeloch, John; Shi, Xiaoya; Li, Qiang; Tranquada, John; Gu, Genda

    2013-03-01

    Indium-doped tin telluride is one of the most appealing topological superconductors. We have grown a series of Sn1-xInxTe crystals with different indium concentrations (0.1 <=x <=1.0). The results show indium doping improves the superconducting transition temperature significantly and is highly related to the indium concentration. The maximum Tc of indium-doped tin telluride polycrystalline is 4.5K for x =0.4. Single crystals of Sn1-xInxTe were also grown by the floating zone method, and their magnetic properties were characterized.

  18. Highly efficient, gearless drive; Hocheffizienter, getriebeloser Antrieb

    Energy Technology Data Exchange (ETDEWEB)

    Niederer, R.

    2004-07-01

    Highly efficient, gearless variable-speed drive systems for low-speed applications have been developed. These systems consist of an inverter with active switches (IGBTs, MOSFETs, resp.) and a synchronous machine excited with permanent magnets. Therefore, these systems can be used for drive as well as for generator applications. They operate very efficiently since a gearbox is obsolete, furthermore weight, dimensions, noise and maintenance can be reduced. The inverter controllers do not require any speed sensors, thus reliability is increased and costs are decreased. Application for low-speed variable-speed drive systems can be found in industrial applications, cable railways or wind turbines. Both systems have been optimized in several iterative loops, in what regards overall efficiency and material expenditure. For both systems, prototypes have been developed and tested. Both prototypes performed reliably and fulfilled the expectations. The high power system (1200 kW, 20 rpm) operated at rated load with an overall efficiency of 93.1%, the lower power system (3 kW, 60 rpm) with an overall efficiency of 85%. Thus the losses of these new systems are at rated load about 4% lower compared to conventional drive systems equipped with a mechanical gearbox. (author)

  19. Highly efficient charged particle veto detector CUP

    Energy Technology Data Exchange (ETDEWEB)

    Palacz, M. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, PL 02-093 Warsaw (Poland)]. E-mail: palacz@slcj.uw.edu.pl; Nyberg, J. [Department of Radiation Sciences, Uppsala University, Uppsala (Sweden); Bednarczyk, P. [Institute de Recherches Subatomiques, Strasbourg (France); Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow (Poland); Dworski, J. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, PL 02-093 Warsaw (Poland); Gorska, M. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Iwanicki, J. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, PL 02-093 Warsaw (Poland); Kapusta, M. [Soltan Institute for Nuclear Studies, Swierk (Poland); Kownacki, J. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, PL 02-093 Warsaw (Poland); Kulczycka, E. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, PL 02-093 Warsaw (Poland); Lagergren, K. [Royal Institute of Technology, Stockholm (Sweden); Moszynski, M. [Soltan Institute for Nuclear Studies, Swierk (Poland); Pienkowski, L. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, PL 02-093 Warsaw (Poland); Stolarz, A. [Heavy Ion Laboratory, Warsaw University, ul. Pasteura 5A, PL 02-093 Warsaw (Poland); Wolski, D. [Soltan Institute for Nuclear Studies, Swierk (Poland); Zieblinski, M. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow (Poland)

    2005-09-11

    A novel, highly efficient, plastic scintillator detector has been constructed. The primary application of the detector is to act as a veto device in heavy-ion-induced fusion-evaporation reactions, in which the structure of proton-rich nuclides is investigated by {gamma}-ray spectroscopy methods. The detector rejects events in which light charged particles, like protons and {alpha} particles, are emitted in the evaporation process, facilitating selection of reaction channels associated with emission of only neutrons. The detector was used in a EUROBALL experiment, with achieved efficiencies of 80% and 63% for protons and {alpha} particles, respectively. The design of the detector, its performance and limitations are discussed.

  20. High Efficiency Solar Integrated Roof Membrane Product

    Energy Technology Data Exchange (ETDEWEB)

    Partyka, Eric; Shenoy, Anil

    2013-05-15

    This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

  1. High-efficiency electrical charger for nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, M., E-mail: malonso@cenim.csic.es [National Centre for Metallurgical Research (CENIM-CSIC) (Spain); Huang, C. H. [Yuanpei University, Department of Environmental Engineering and Health (China)

    2015-08-15

    An electrical charger, based on a point-to-plate DC corona discharge, for the high-efficiency charging of aerosol particles with diameter of a few nanometers, has been designed, constructed, and evaluated. The discharge takes place between a needle and a perforated plate, and the results presented here have shown that this specific design allows reduction of electrostatic losses of charged particles within the charger in comparison with other typical designs. Besides, the small effective volume of the charger leads to a relatively small diffusion loss of particles. As a consequence of the reduced electrostatic and diffusion losses, the extrinsic charging efficiency attainable is higher than in similar devices.

  2. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C.

    Science.gov (United States)

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-14

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm(2)/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  3. High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C

    Science.gov (United States)

    Kim, Won-Gi; Tak, Young Jun; Du Ahn, Byung; Jung, Tae Soo; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-03-01

    We investigated the use of high-pressure gases as an activation energy source for amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs). High-pressure annealing (HPA) in nitrogen (N2) and oxygen (O2) gases was applied to activate a-IGZO TFTs at 100 °C at pressures in the range from 0.5 to 4 MPa. Activation of the a-IGZO TFTs during HPA is attributed to the effect of the high-pressure environment, so that the activation energy is supplied from the kinetic energy of the gas molecules. We reduced the activation temperature from 300 °C to 100 °C via the use of HPA. The electrical characteristics of a-IGZO TFTs annealed in O2 at 2 MPa were superior to those annealed in N2 at 4 MPa, despite the lower pressure. For O2 HPA under 2 MPa at 100 °C, the field effect mobility and the threshold voltage shift under positive bias stress were improved by 9.00 to 10.58 cm2/V.s and 3.89 to 2.64 V, respectively. This is attributed to not only the effects of the pressurizing effect but also the metal-oxide construction effect which assists to facilitate the formation of channel layer and reduces oxygen vacancies, served as electron trap sites.

  4. High Efficiency c-Silicon Solar Cells Based on Micro-Nanoscale Structure

    Science.gov (United States)

    2011-06-01

    film materials: (1) amorphous Si (a-Si) (4), cadmium telluride ( CdTe ) (5), and copper indium diselenide (CIS) (6), which are the most mature thin ...microblock design and fabrication. Current thin - film and c-Si solar cells have a limited conversion efficiency of 10–20% and cost $3–$5/W-peak and state...more efficient solar cells has been underway for several decades, from the development of thin - film solar cells with efficiencies greater than 10

  5. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  6. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    The large scale integration of renewable energy sources requires suitable energy storage systems to balance energy production and demand in the electrical grid. Bidirectional fuel cells are an attractive technology for energy storage systems due to the high energy density of fuel. Compared...... entitled "High Efficiency Reversible Fuel Cell Power Converter" and it presents the design of a high efficiency dc-dc converter developed and optimized for bidirectional fuel cell applications. First, a brief overview of fuel cell and energy storage technologies is presented. Different system topologies...... to traditional unidirectional fuel cell, bidirectional fuel cells have increased operating voltage and current ranges. These characteristics increase the stresses on dc-dc and dc-ac converters in the electrical system, which require proper design and advanced optimization. This work is part of the PhD project...

  7. Methodologies for high efficiency perovskite solar cells.

    Science.gov (United States)

    Park, Nam-Gyu

    2016-01-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  8. Methodologies for high efficiency perovskite solar cells

    Science.gov (United States)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  9. High efficiency electrotransformation of Lactobacillus casei.

    Science.gov (United States)

    Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2015-01-01

    We investigated whether protocols allowing high efficiency electrotransformation of other lactic acid bacteria were applicable to five strains of Lactobacillus casei (12A, 32G, A2-362, ATCC 334 and BL23). Addition of 1% glycine or 0.9 M NaCl during cell growth, limitation of the growth of the cell cultures to OD600 0.6-0.8, pre-electroporation treatment of cells with water or with a lithium acetate (100 mM)/dithiothreitol (10 mM) solution and optimization of electroporation conditions all improved transformation efficiencies. However, the five strains varied in their responses to these treatments. Transformation efficiencies of 10(6) colony forming units μg(-1) pTRKH2 DNA and higher were obtained with three strains which is sufficient for construction of chromosomal gene knock-outs and gene replacements.

  10. Complexity-aware high efficiency video coding

    CERN Document Server

    Correa, Guilherme; Agostini, Luciano; Cruz, Luis A da Silva

    2016-01-01

    This book discusses computational complexity of High Efficiency Video Coding (HEVC) encoders with coverage extending from the analysis of HEVC compression efficiency and computational complexity to the reduction and scaling of its encoding complexity. After an introduction to the topic and a review of the state-of-the-art research in the field, the authors provide a detailed analysis of the HEVC encoding tools compression efficiency and computational complexity.  Readers will benefit from a set of algorithms for scaling the computational complexity of HEVC encoders, all of which take advantage from the flexibility of the frame partitioning structures allowed by the standard.  The authors also provide a set of early termination methods based on data mining and machine learning techniques, which are able to reduce the computational complexity required to find the best frame partitioning structures. The applicability of the proposed methods is finally exemplified with an encoding time control system that emplo...

  11. High Efficiency, Low Emission Refrigeration System

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  12. Linearly polarized light emission from InGaN/GaN quantum well structure with high indium composition.

    Science.gov (United States)

    Song, Hooyoung; Kim, Eun Kyu; Han, Il Ki; Lee, Sung-Ho; Hwang, Sung-Min

    2011-10-01

    We fabricated yellow (575 nm) emitting a-plane InGaN/GaN light emitting diode (LED). Microstructure and stress relaxation of the InGaN well layer were observed from the images of dark field transmission electron microscopy. The LED chip was operated at 3.7 V, 20 mA, and the polarization-free characteristic in nonpolar InGaN layer was confirmed from a small blue-shift of approximaely 1.7 nm with increase of current density. The high photoluminescence (PL) efficiency of 30.4% showed that this non-polar InGaN layer has a potential of application to green-red long wavelength light emitters. The PL polarization ratio at 290 K was 0.25 and the energy difference between two subbands was estimated to be 40.2 meV. The low values of polarization and energy difference were due to the stress relaxation of InGaN well layer.

  13. Investigation of new approaches for InGaN growth with high indium content for CPV application

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Muhammad; Salvestrini, Jean Paul, E-mail: salvestr@metz.supelec.fr [CNRS, UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Université de Lorraine & CentraleSupelec, LMOPS, EA4423, 57070 Metz (France); Sundaram, Suresh; Streque, Jérémy; Gmili, Youssef El [CNRS, UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Puybaret, Renaud; Voss, Paul L. [Georgia Institute of Technology, UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Belahsene, Sofiane; Ramdane, Abderahim; Martinez, Anthony; Patriarche, Gilles [CNRS, UPR LPN, Route de Nozay, 91460 Marcoussis (France); Fix, Thomas; Slaoui, Abdelillah [CNRS, ICUBE - Université de Strasbourg (France); Ougazzaden, Abdallah [CNRS, UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Georgia Institute of Technology, UMI 2958 Georgia Tech - CNRS, 57070 Metz (France)

    2015-09-28

    We propose to use two new approaches that may overcome the issues of phase separation and high dislocation density in InGaN-based PIN solar cells. The first approach consists in the growth of a thick multi-layered InGaN/GaN absorber. The periodical insertion of the thin GaN interlayers should absorb the In excess and relieve compressive strain. The InGaN layers need to be thin enough to remain fully strained and without phase separation. The second approach consists in the growth of InGaN nano-structures for the achievement of high In content thick InGaN layers. It allows the elimination of the preexisting dislocations in the underlying template. It also allows strain relaxation of InGaN layers without any dislocations, leading to higher In incorporation and reduced piezo-electric effect. The two approaches lead to structural, morphological, and luminescence properties that are significantly improved when compared to those of thick InGaN layers. Corresponding full PIN structures have been realized by growing a p-type GaN layer on the top the half PIN structures. External quantum efficiency, electro-luminescence, and photo-current characterizations have been carried out on the different structures and reveal an enhancement of the performances of the InGaN PIN PV cells when the thick InGaN layer is replaced by either InGaN/GaN multi-layered or InGaN nanorod layer.

  14. Investigation of new approaches for InGaN growth with high indium content for CPV application

    Science.gov (United States)

    Arif, Muhammad; Sundaram, Suresh; Streque, Jérémy; Gmili, Youssef El; Puybaret, Renaud; Belahsene, Sofiane; Ramdane, Abderahim; Martinez, Anthony; Patriarche, Gilles; Fix, Thomas; Slaoui, Abdelillah; Voss, Paul L.; Salvestrini, Jean Paul; Ougazzaden, Abdallah

    2015-09-01

    We propose to use two new approaches that may overcome the issues of phase separation and high dislocation density in InGaN-based PIN solar cells. The first approach consists in the growth of a thick multi-layered InGaN/GaN absorber. The periodical insertion of the thin GaN interlayers should absorb the In excess and relieve compressive strain. The InGaN layers need to be thin enough to remain fully strained and without phase separation. The second approach consists in the growth of InGaN nano-structures for the achievement of high In content thick InGaN layers. It allows the elimination of the preexisting dislocations in the underlying template. It also allows strain relaxation of InGaN layers without any dislocations, leading to higher In incorporation and reduced piezo-electric effect. The two approaches lead to structural, morphological, and luminescence properties that are significantly improved when compared to those of thick InGaN layers. Corresponding full PIN structures have been realized by growing a p-type GaN layer on the top the half PIN structures. External quantum efficiency, electro-luminescence, and photo-current characterizations have been carried out on the different structures and reveal an enhancement of the performances of the InGaN PIN PV cells when the thick InGaN layer is replaced by either InGaN/GaN multi-layered or InGaN nanorod layer.

  15. Bipolar and Unipolar Silylene-Diphenylene σ-π Conjugated Polymer Route for Highly Efficient Electrophosphorescence

    Science.gov (United States)

    Chang, Yao-Tang; Sharma, Sunil; Hung, Miao-Ken; Lee, Yu-Hsuan; Chen, Show-An

    2016-12-01

    σ-π conjugated polymer strategy is proposed for designing electroluminescent host polymers with silylene-diphenylene as the backbone repeat unit giving a high triplet energy (ET = 2.67 eV). By incorporation of high ET (3.0 eV) electron (oxadiazole, OXD) and hole (triphenyl amine, TPA) transport moieties, or TPA alone (in this case, the main chain acts as electron transport channel) as side arms on the silylene, the high ET bipolar and unipolar polymers are formed, allowing a use of iridium green phosphor (Ir(ppy)2(acac), Ir-G) (ET = 2.40 eV) as the dopant. The matching of energy levels of the dopant with the hosts, leading to charge trapping into it; and singlets and triplets of the exciplex and excimer can be harvested via energy transfer to the dopant. Using these host-guest systems as the emitting layer, chlorinated indium-tin-oxide (Cl-ITO) as the anode, and benzimidazole derivative (TPBI) as the electron transport layer, this two-layer device gives the high luminance efficiency 80.1 cd/A and external quantum efficiency 21.2%, which is the best among the report values for polymer light emitting diode (PLED) in the literatures. This example manifests that σ-π conjugated polymer strategy is a promising route for designing polymer host for efficient electrophosphorescence.

  16. Application of indium tin oxide (ITO) thin film as a low emissivity film on Ni-based alloy at high temperature

    Science.gov (United States)

    Sun, Kewei; Zhou, Wancheng; Tang, Xiufeng; Luo, Fa

    2016-09-01

    Indium tin oxide (ITO) films as the low emissivity coatings of Ni-based alloy at high temperature were studies. ITO films were deposited on the polished surface of alloy K424 by direct current magnetron sputtering. These ITO-coated samples were heat-treated in air at 600-900 °C for 150 h to explore the effect of high temperature environment on the emissivity. The samples were analyzed by X-ray diffraction (XRD), SEM and EDS. The results show that the surface of sample is integrity after heat processing at 700 °C and below it. A small amount of fine crack is observed on the surface of sample heated at 800 °C and Ti oxide appears. There are lots of fine cracks on the sample annealed at 900 °C and a large number of various oxides are detected. The average infrared emissivities at 3-5 μm and 8-14 μm wavebands were tested by an infrared emissivity measurement instrument. The results show the emissivity of the sample after annealed at 600 and 700 °C is still kept at a low value as the sample before annealed. The ITO film can be used as a low emissivity coating of super alloy K424 up to 700 °C.

  17. Spectroscopic Investigation of Indium Halides as Substitutes of Mercury in Low Pressure Discharges for Lighting Applications

    OpenAIRE

    Briefi, Stefan

    2012-01-01

    Low pressure discharges with indium halides as radiator are discussed as substitutes for hazardous mercury in conventional fluorescent lamps. In this work, the applicability of InBr and InCl in a low pressure discharge light source is investigated. The aim is to identify and understand the physical processes which determine the discharge characteristics and the efficiency of the generated near-UV emission of the indium halide molecule and of the indium atom which is created due to dissociatio...

  18. Development of III-Sb Quantum Dot Systems for High Efficiency Intermediate Band Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huffaker, Diana [Univ. of California, Los Angeles, CA (United States); Hubbard, Seth [Rochester Inst. of Technology, NY (United States); Norman, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-31

    This project aimed to develop solar cells that can help reduce cost per watt. This work focused on developing solar cells that utilize quantum dot (QD) nanomaterials to provide multijunction solar cell efficiency at the cost of single junction solar cell. We focused on a novel concept known as intermediate band solar cells (IBSC) where an additional energy band is inserted in a single solar cell to accommodate sub-bandgap photons absorption which otherwise are lost through transmission. The additional energy band can be achieved by growing QDs within a solar cell p-n junction. Though numerous studies have been conducted to develop such QD systems, very small improvements in solar energy conversion efficiency have been reported. This is mainly due to non-optimal material parameters such as band gap, band offset etc. In this work, we identified and developed a novel QD material system that meets the requirements of IBSC more closely than the current state-of-the-art technology. To achieve these goals, we focused on three important areas of solar cell design: band structure calculations of new materials, efficient device design for high efficiency, and development of new semiconductor materials. In this project, we focused on III-Sb materials as they possess a wide range of energy bandgaps from 0.2 eV to 2eV. Despite the difficulty involved in realizing these materials, we were successfully developed these materials through a systematic approach. Materials studied in this work are AlAsSb (Aluminum Arsenide Antimonide), InAlAs (Indium Aluminum Arsenide) and InAs (Indium Arsenide). InAs was used to develop QD layers within AlAsSb and InAlAs p-n junctions. As the QDs have very small volume, up to 30 QD layers been inserted into the p-n junction to enhance light absorption. These QD multi-stack devices helped in understanding the challenges associated with the development of quantum dot solar cells. The results from this work show that the quantum dot solar cells indeed

  19. Creation of High Efficient Firefly Luciferase

    Science.gov (United States)

    Nakatsu, Toru

    Firefly emits visible yellow-green light. The bioluminescence reaction is carried out by the enzyme luciferase. The bioluminescence of luciferase is widely used as an excellent tool for monitoring gene expression, the measurement of the amount of ATP and in vivo imaging. Recently a study of the cancer metastasis is carried out by in vivo luminescence imaging system, because luminescence imaging is less toxic and more useful for long-term assay than fluorescence imaging by GFP. However the luminescence is much dimmer than fluorescence. Then bioluminescence imaging in living organisms demands the high efficient luciferase which emits near infrared lights or enhances the emission intensity. Here I introduce an idea for creating the high efficient luciferase based on the crystal structure.

  20. High Efficiency Thermoelectric Materials and Devices

    Science.gov (United States)

    Kochergin, Vladimir (Inventor)

    2013-01-01

    Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..

  1. Clean and Highly Efficient Utilization of Coal

    Institute of Scientific and Technical Information of China (English)

    WANG Jianguo; YANG Li

    2011-01-01

    @@ Clean and highly efficient utilization of coal is an important scientific and technological issue.As the petroleum resource decreases but its consumption increases, all of the countries in the world have to face the big issue of sustainable development of energy and economy and protection of environment.Therefore, study on clean coal technology (CCT) has attracted much attention and become one of important themes of energy research.

  2. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    , and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often......The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...... determined by the performance at the system worst case operating point which is usually at minimum input voltage and maximum power. Except for the non-regulating V6 converters, all published solutions exhibit a very significant drop in conversion efficiency at minimum input voltage and maximum output power...

  3. Bioblendstocks that Enable High Efficiency Engine Designs

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.; Zigler, Bradley T.; Farrell, John

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol. These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel

  4. Highly improved photo-induced bias stability of sandwiched triple layer structure in sol-gel processed fluorine-doped indium zinc oxide thin film transistor

    Directory of Open Access Journals (Sweden)

    Dongha Kim

    2016-03-01

    Full Text Available In order to improve the reliability of TFT, an Al2O3 insulating layer is inserted between active fluorine doped indium zinc oxide (IZO:F thin films to form a sandwiched triple layer. All the thin films were fabricated via low-cost sol-gel process. Due to its large energy bandgap and high bonding energy with oxygen atoms, the Al2O3 layer acts as a photo-induced positive charge blocking layer that effectively blocks the migration of both holes and V o2+ toward the interface between the gate insulator and the semiconductor. The inserted Al2O3 triple layer exhibits a noticeably low turn on voltage shift of −0.7 V under NBIS as well as the good TFT performance with a mobility of 10.9 cm2/V ⋅ s. We anticipate that this approach can be used to solve the stability issues such as NBIS, which is caused by inescapable oxygen vacancies.

  5. Highly efficient fully transparent inverted OLEDs

    Science.gov (United States)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  6. High Efficiency Colloidal Quantum Dot Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  7. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    , and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. In chapter 2, a review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning...

  8. Indium Trichloride-Mediated Facile Synthesis of 3-(Substituted methylthio)-4-phenyl-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole in Water

    Institute of Scientific and Technical Information of China (English)

    YANG Song; LIU,Jie; SONG,Bao-An; JIN,Lin-Hong; HU,De-Yu

    2006-01-01

    An environmentally benign and efficient process for the preparation of 3-(substituted methylthio)-4-phenyl-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole was achieved by the reaction of 4-phenyl-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiol with different halides in aqueous media mediated by indium trichloride in high yields.

  9. Quantum wells for high-efficiency photovoltaics

    Science.gov (United States)

    Alonso-Álvarez, Diego; Ekins-Daukes, Nicholas

    2016-03-01

    Over the last couple of decades, there has been an intense research on strain balanced semiconductor quantum wells (QW) to increase the efficiency of multi-junction solar (MJ) solar cells grown monolithically on germanium. So far, the most successful application of QWs have required just to tailor a few tens of nanometers the absorption edge of a given subcell in order to reach the optimum spectral position. However, the demand for higher efficiency devices requiring 3, 4 or more junctions, represents a major difference in the challenges QWs must face: tailoring the absorption edge of a host material is not enough, but a complete new device, absorbing light in a different spectral region, must be designed. Among the most important issues to solve is the need for an optically thick structure to absorb enough light while keeping excellent carrier extraction using highly strained materials. Improvement of the growth techniques, smarter device designs - involving superlattices and shifted QWs, for example - or the use of quantum wires rather than QWs, have proven to be very effective steps towards high efficient MJ solar cells based on nanostructures in the last couple of years. But more is to be done to reach the target performances. This work discusses all these challenges, the limitations they represent and the different approaches that are being used to overcome them.

  10. HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS

    Energy Technology Data Exchange (ETDEWEB)

    Baranec, Christoph [Institute for Astronomy, University of Hawai' i at Mānoa, Hilo, HI, NZ 96720-2700 (United States); Riddle, Reed; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Dekany, Richard; Kulkarni, Shrinivas [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Ramaprakash, A. N.; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Punnadi, Sujit, E-mail: baranec@hawaii.edu [Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411007 (India)

    2014-07-20

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  11. High-efficiency Autonomous Laser Adaptive Optics

    CERN Document Server

    Baranec, Christoph; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh; Hogstrom, Kristina; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2014-01-01

    As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limits their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.

  12. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  13. High Quantum Efficiency OLED Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  14. Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor.

    Science.gov (United States)

    Park, Jee Ho; Yoo, Young Bum; Lee, Keun Ho; Jang, Woo Soon; Oh, Jin Young; Chae, Soo Sang; Lee, Hyun Woo; Han, Sun Woong; Baik, Hong Koo

    2013-08-28

    We developed a solution-processed indium oxide (In2O3) thin-film transistor (TFT) with a boron-doped peroxo-zirconium (ZrO2:B) dielectric on silicon as well as polyimide substrate at 200 °C, using water as the solvent for the In2O3 precursor. The formation of In2O3 and ZrO2:B films were intensively studied by thermogravimetric differential thermal analysis (TG-DTA), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT IR), high-resolution X-ray diffraction (HR-XRD), and X-ray photoelectron spectroscopy (XPS). Boron was selected as a dopant to make a denser ZrO2 film. The ZrO2:B film effectively blocked the leakage current at 200 °C with high breakdown strength. To evaluate the ZrO2:B film as a gate dielectric, we fabricated In2O3 TFTs on the ZrO2:B dielectrics with silicon substrates and annealed the resulting samples at 200 and 250 °C. The resulting mobilities were 1.25 and 39.3 cm(2)/(V s), respectively. Finally, we realized a flexible In2O3 TFT with the ZrO2:B dielectric on a polyimide substrate at 200 °C, and it successfully operated a switching device with a mobility of 4.01 cm(2)/(V s). Our results suggest that aqueous solution-processed In2O3 TFTs on ZrO2:B dielectrics could potentially be used for low-cost, low-temperature, and high-performance flexible devices.

  15. Nanooptics for high efficient photon managment

    Science.gov (United States)

    Wyrowski, Frank; Schimmel, Hagen

    2005-09-01

    Optical systems for photon management, that is the generation of tailored electromagnetic fields, constitute one of the keys for innovation through photonics. An important subfield of photon management deals with the transformation of an incident light field into a field of specified intensity distribution. In this paper we consider some basic aspects of the nature of systems for those light transformations. It turns out, that the transversal redistribution of energy (TRE) is of central concern to achieve systems with high transformation efficiency. Besides established techniques nanostructured optical elements (NOE) are demanded to implement transversal energy redistribution. That builds a bridge between the needs of photon management, optical engineering, and nanooptics.

  16. Highly conducting, transparent, and flexible indium oxide thin film prepared by atomic layer deposition using a new liquid precursor Et2InN(SiMe3)2.

    Science.gov (United States)

    Maeng, Wan Joo; Choi, Dong-Won; Chung, Kwun-Bum; Koh, Wonyong; Kim, Gi-Yeop; Choi, Si-Young; Park, Jin-Seong

    2014-10-22

    Highly conductive indium oxide films, electrically more conductive than commercial sputtered indium tin oxide films films, were deposited using a new liquid precursor Et2InN(SiMe3)2 and H2O by atomic layer deposition (ALD) at 225-250 °C. Film resistivity can be as low as 2.3 × 10(-4)-5.16 × 10(-5) Ω·cm (when deposited at 225-250 °C). Optical transparency of >80% at wavelengths of 400-700 nm was obtained for all the deposited films. A self-limiting ALD growth mode was found 0.7 Å/cycle at 175-250 °C. X-ray photoelectron spectroscopy depth profile analysis showed pure indium oxide thin film without carbon or any other impurity. The physical and chemical properties were systematically analyzed by transmission electron microscopy, electron energy loss spectroscopy, X-ray diffraction, optical spectrometer, and hall measurement; it was found that the enhanced electrical conductivity is attributed to the oxygen deficient InOx phases.

  17. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dazheng; Zhang, Chunfu, E-mail: cfzhang@xidian.edu.cn; Wang, Zhizhe; Zhang, Jincheng; Tang, Shi; Wei, Wei; Sun, Li; Hao, Yue, E-mail: yhao@xidian.edu.cn [State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, No. 2 South Taibai Road, Xi' an 710071 (China)

    2014-06-16

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C{sub 61} butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150 °C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100 °C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightly improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.

  18. Improving the efficiency of copper indium gallium (Di-selenide (CIGS solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Directory of Open Access Journals (Sweden)

    M. Burghoorn

    2014-12-01

    Full Text Available Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-selenide (CIGS solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%. No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  19. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Burghoorn, M.; Kniknie, B.; Deelen, J. van; Ee, R. van [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Xu, M. [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Delft University of Technology, Optics Group, Van der Waalsweg 8, 2628 CH, Delft (Netherlands); Vroon, Z. [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Zuyd Hogeschool, Nieuw Eyckholt 300, 6419 DJ, Heerlen (Netherlands); Belt, R. van de [Kriya Materials BV, Urmonderbaan 22, 6167 RD, Geleen (Netherlands); Buskens, P., E-mail: pascal.buskens@tno.nl, E-mail: buskens@dwi.rwth-aachen.de [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); DWI – Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen (Germany)

    2014-12-15

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (J{sub sc}) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the J{sub sc} and efficiency of CIGS solar cells with an absorber layer thickness (d{sub CIGS}) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (n{sub resist} = 1.792 vs. n{sub AZO} = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, J{sub sc} increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in J{sub sc} with decreasing d{sub CIGS} was observed. Ergo, the increase in J{sub sc} can be fully explained by the reduction in reflection, and we did not observe any increase in J{sub sc} based on an increased photon path length.

  20. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Science.gov (United States)

    Burghoorn, M.; Kniknie, B.; van Deelen, J.; Xu, M.; Vroon, Z.; van Ee, R.; van de Belt, R.; Buskens, P.

    2014-12-01

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  1. Anelasticity of polycrystalline indium

    Energy Technology Data Exchange (ETDEWEB)

    Sapozhnikov, K., E-mail: k.sapozhnikov@mail.ioffe.ru [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Golyandin, S. [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Kustov, S. [Dept. de Fisica, Universitat de les Illes Balears, Cra Valldemossa km 7.5, E 07122 Palma de Mallorca (Spain)

    2009-09-15

    Mechanisms of anelasticity of polycrystalline indium have been studied over wide ranges of temperature (7-320 K) and strain amplitude (2 x 10{sup -7}-3.5 x 10{sup -4}). Measurements of the internal friction and Young's modulus have been performed by means of the piezoelectric resonant composite oscillator technique using longitudinal oscillations at frequencies of about 100 kHz. The stages of the strain amplitude dependence of the internal friction and Young's modulus defect, which can be attributed to dislocation - point defect and dislocation - dislocation interactions, have been revealed. It has been shown that thermal cycling gives rise to microplastic straining of polycrystalline indium due to the anisotropy of thermal expansion and to appearance of a 'recrystallization' internal friction maximum in the temperature spectra of amplitude-dependent anelasticity. The temperature range characterized by formation of Cottrell's atmospheres of point defects around dislocations has been determined from the acoustic data.

  2. Vacuum MOCVD fabrication of high efficience cells

    Science.gov (United States)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  3. High efficiency dielectric metasurfaces at visible wavelengths

    CERN Document Server

    Devlin, Robert C; Chen, Wei-Ting; Oh, Jaewon; Capasso, Federico

    2016-01-01

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics1-3. Dielectric metasurfaces demonstrated thus far4-10 are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. It is critical that new materials and fabrication techniques be developed for dielectric metasurfaces at visible wavelengths to enable applications such as three-dimensional displays, wearable optics and planar optical systems11. Here, we demonstrate high performance titanium dioxide dielectric metasurfaces in the form of holograms for red, green and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide that exhibits low surface roughness of 0.738 nm and ideal optical properties. To fabricate the metasurfaces we use a lift-off-like process that allows us to produce highly anisotropic nanofins with shape birefringence. This ...

  4. Simple Motor Control Concept Results High Efficiency at High Velocities

    Science.gov (United States)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  5. Li-Assisted Low-Temperature Phase Transitions in Solution-Processed Indium Oxide Films for High-Performance Thin Film Transistor

    Science.gov (United States)

    Nguyen, Manh-Cuong; Jang, Mi; Lee, Dong-Hwi; Bang, Hyun-Jun; Lee, Minjung; Jeong, Jae Kyeong; Yang, Hoichang; Choi, Rino

    2016-04-01

    Lithium (Li)-assisted indium oxide (In2O3) thin films with ordered structures were prepared on solution-processed zirconium oxide (ZrO2) gate dielectrics by spin-casting and thermally annealing hydrated indium nitrate solutions with different Li nitrate loadings. It was found that the Li-assisted In precursor films on ZrO2 dielectrics could form crystalline structures even at processing temperatures (T) below 200 °C. Different In oxidation states were observed in the Li-doped films, and the development of such states was significantly affected by both temperature and the mol% of Li cations, [Li+]/([In3+] + [Li+]), in the precursor solutions. Upon annealing the Li-assisted precursor films below 200 °C, metastable indium hydroxide and/or indium oxyhydroxide phases were formed. These phases were subsequently transformed into crystalline In2O3 nanostructures after thermal dehydration and oxidation. Finally, an In2O3 film doped with 13.5 mol% Li+ and annealed at 250 °C for 1 h exhibited the highest electron mobility of 60 cm2 V-1 s-1 and an on/off current ratio above 108 when utilized in a thin film transistor.

  6. Indium contamination from the indium-tin-oxide electrode in polymer light-emitting diodes

    NARCIS (Netherlands)

    Schlatmann, A.R.; Floet, D.W.; Hilberer, A; Garten, F; Smulders, P.J M; Klapwijk, T.M; Hadziioannou, G

    1996-01-01

    We have found that polymer light-emitting diodes (LEDs) contain high concentrations of metal impurities prior to operation. Narrow peaks in the electroluminescence spectrum unambiguously demonstrate the presence of atomic indium and aluminum. Rutherford backscattering spectroscopy (RBS) and x-ray ph

  7. Multiscale approaches to high efficiency photovoltaics

    Directory of Open Access Journals (Sweden)

    Connolly James Patrick

    2016-01-01

    Full Text Available While renewable energies are achieving parity around the globe, efforts to reach higher solar cell efficiencies becomes ever more difficult as they approach the limiting efficiency. The so-called third generation concepts attempt to break this limit through a combination of novel physical processes and new materials and concepts in organic and inorganic systems. Some examples of semi-empirical modelling in the field are reviewed, in particular for multispectral solar cells on silicon (French ANR project MultiSolSi. Their achievements are outlined, and the limits of these approaches shown. This introduces the main topic of this contribution, which is the use of multiscale experimental and theoretical techniques to go beyond the semi-empirical understanding of these systems. This approach has already led to great advances at modelling which have led to modelling software, which is widely known. Yet, a survey of the topic reveals a fragmentation of efforts across disciplines, firstly, such as organic and inorganic fields, but also between the high efficiency concepts such as hot carrier cells and intermediate band concepts. We show how this obstacle to the resolution of practical research obstacles may be lifted by inter-disciplinary cooperation across length scales, and across experimental and theoretical fields, and finally across materials systems. We present a European COST Action “MultiscaleSolar” kicking off in early 2015, which brings together experimental and theoretical partners in order to develop multiscale research in organic and inorganic materials. The goal of this defragmentation and interdisciplinary collaboration is to develop understanding across length scales, which will enable the full potential of third generation concepts to be evaluated in practise, for societal and industrial applications.

  8. Unusually Flexible Indium(III) Metal-Organic Polyhedra Materials for Detecting Trace Amounts of Water in Organic Solvents and High Proton Conductivity.

    Science.gov (United States)

    Du, Xi; Fan, Ruiqing; Qiang, Liangsheng; Song, Yang; Xing, Kai; Chen, Wei; Wang, Ping; Yang, Yulin

    2017-03-20

    Humidity-induced single-crystal transformation was observed in the indium metal-organic polyhedra [In2(TCPB)2]·2H2O (In1), where H3TCPB is 1,3,5-tri(4-carboxyphenoxy)benzene. When the humidity is above 58% relative humidity (RH) at room temperature, the neutral compound In1 could be successfully converted into the positively charged compound In1-H along with the color change from yellow to deep red, which also undergoes a reversible transformation into In1 driven by thermal dehydration. Notably, the color of In1 takes only 5 min to change under 58% RH at room temperature, which is much quicker than common desiccant bluestone. As the water content is increased from 0.0% to 0.2% in acetonitrile solvent, compound In1 exhibits rapid detection of trace amounts of water through turn-off luminescence sensing mechanism with a low detection limit of 2.95 × 10(-4)%. Because of the formation of extensive hydrogen-bonding network between the metal-organic polyhedra (MOPs) and surrounding guest OH(-) ions, compound In1-H, along with isostructural Ga1-H, displays excellent proton conductivity up to 2.84 × 10(-4) and 2.26 × 10(-4) S cm(-1) at 298 K and 98% RH, respectively. Furthermore, the activation energies are found to be 0.28 eV for In1-H and 0.34 eV for Ga1-H. This method of incorporation of OH(-) ions to obtain high proton conductivity MOPs with low activation energy demonstrates the advantage of OH(-) ion conduction in the solid-state materials.

  9. Novel Nanophosphors for High Efficiency Fluorescent Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Alok Srivatava

    2007-03-31

    This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation

  10. EMMP :a highly efficient membership management protocol

    Institute of Scientific and Technical Information of China (English)

    LI Renfa; XIE Yunlong; WEN Jigang; YUE Guangxue

    2007-01-01

    Gossip (or epidemic) algorithms have recently become popular solutions to multicast message dissemination in peer-to-peer systems.Nevertheless,it is not straightforward to apply gossip to on-demand streaming because it often fails to achieve a timely delivery.To solve this problem and taking into account the characteristic of peers randomly joining and leaving in peer-to-peer systems,an Efficient Membership Management Protocol (EMMP) has been presented.Every node only needs to keep contact with O (log(N)) nodes,and EMMP can support the reliable dissemination of messages.Considering the "distance" between peers,it causes the major data to be transmitted in a local area and reduces the backbone's traffic,and speeds up the dissemination of messages between peers.This paper has adopted the"goodfriend" mechanism to reduce the influence on the system when a peer fails or leaves.Simulation results show that EMMP is highly efficient,and both the redundancy and the delay of the system are well solved.

  11. Recovery of indium from LCD screens of discarded cell phones.

    Science.gov (United States)

    Silveira, A V M; Fuchs, M S; Pinheiro, D K; Tanabe, E H; Bertuol, D A

    2015-11-01

    Advances in technological development have resulted in high consumption of electrical and electronic equipment (EEE), amongst which are cell phones, which have LCD (liquid crystal display) screens as one of their main components. These multilayer screens are composed of different materials, some with high added value, as in the case of the indium present in the form of indium tin oxide (ITO, or tin-doped indium oxide). Indium is a precious metal with relatively limited natural reserves (Dodbida et al., 2012), so it can be profitable to recover it from discarded LCD screens. The objective of this study was to develop a complete process for recovering indium from LCD screens. Firstly, the screens were manually removed from cell phones. In the next step, a pretreatment was developed for removal of the polarizing film from the glass of the LCD panels, because the adherence of this film to the glass complicated the comminution process. The choice of mill was based on tests using different equipment (knife mill, hammer mill, and ball mill) to disintegrate the LCD screens, either before or after removal of the polarizing film. In the leaching process, it was possible to extract 96.4 wt.% of the indium under the following conditions: 1.0M H2SO4, 1:50 solid/liquid ratio, 90°C, 1h, and stirring at 500 rpm. The results showed that the best experimental conditions enabled extraction of 613 mg of indium/kg of LCD powder. Finally, precipitation of the indium with NH4OH was tested at different pH values, and 99.8 wt.% precipitation was achieved at pH 7.4.

  12. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.

    2010-04-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  13. High Efficiency Ka-Band Spatial Combiner

    Directory of Open Access Journals (Sweden)

    D. Passi

    2014-12-01

    Full Text Available A Ka-Band, High Efficiency, Small Size Spatial Combiner (SPC is proposed in this paper, which uses an innovatively matched quadruple Fin Lines to microstrip (FLuS transitions. At the date of this paper and at the Author's best knowledge no such FLuS innovative transitions have been reported in literature before. These transitions are inserted into a WR28 waveguide T-junction, in order to allow the integration of 16 Monolithic Microwave Integrated Circuit (MMIC Solid State Power Amplifiers (SSPA's. A computational electromagnetic model using the finite elements method has been implemented. A mean insertion loss of 2 dB is achieved with a return loss better the 10 dB in the 31-37 GHz bandwidth.

  14. Design of High Efficient MPPT Solar Inverter

    Directory of Open Access Journals (Sweden)

    Sunitha K. A.

    2017-01-01

    Full Text Available This work aims to design a High Efficient Maximum Power Point Tracking (MPPT Solar Inverter. A boost converter is designed in the system to boost the power from the photovoltaic panel. By this experimental setup a room consisting of 500 Watts load (eight fluorescent tubes is completely controlled. It is aimed to decrease the maintenance cost. A microcontroller is introduced for tracking the P&O (Perturb and Observe algorithm used for tracking the maximum power point. The duty cycle for the operation of the boost convertor is optimally adjusted by using MPPT controller. There is a MPPT charge controller to charge the battery as well as fed to inverter which runs the load. Both the P&O scheme with the fixed variation for the reference current and the intelligent MPPT algorithm were able to identify the global Maximum power point, however the performance of the MPPT algorithm was better.

  15. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    Science.gov (United States)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  16. A high-efficiency superhydrophobic plasma separator.

    Science.gov (United States)

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M; Yang, Shu; Bau, Haim H

    2016-02-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device's superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a "blood in-plasma out" capability, consistently extracting 65 ± 21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of >84.5 ± 25.8%. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method.

  17. Theoretical Investigation of the Effect of Growth Orientation on Indium Incorporation Efficiency during InGaN Thin Film Growth by Metal-Organic Vapor Phase Epitaxy

    Science.gov (United States)

    Yayama, Tomoe; Kangawa, Yoshihiro; Kakimoto, Koichi

    2013-08-01

    The effect of growth orientation on In incorporation efficiency in InGaN films grown by metal-organic vapor phase epitaxy (MOVPE) is theoretically investigated. We propose a new theoretical model that explains the role of the surface N-H layer in In incorporation based on first-principles calculations. During III-nitride MOVPE, N-terminated reconstruction with N dangling bonds passivated by H is stable. A surface N-H layer that covers a group-III (In, Ga) atomic layer prevents In atoms from desorbing and being replaced by Ga atoms. In incorporation is therefore more efficient for higher N-H layer coverage and stability. To investigate this relationship, the enthalpy change for the decomposition of a N-H layer was calculated. This enthalpy change which depends on growth orientations is in good agreement with the experimental In content.

  18. White LED with High Package Extraction Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat

  19. Tailored Materials for High Efficiency CIDI Engines

    Energy Technology Data Exchange (ETDEWEB)

    Grant, G.J.; Jana, S.

    2012-03-30

    The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in

  20. High efficiency diffusion molecular retention tumor targeting.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Here we introduce diffusion molecular retention (DMR tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding and RAD (control probes were synthesized bearing DOTA (for (111 In(3+, a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111In] RGD and [(111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.. The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide, which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.

  1. High collection efficiency CVD diamond alpha detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bergonzo, P.; Foulon, F.; Marshall, R.D.; Jany, C.; Brambilla, A. [CEA/Saclay, Gif-sur-Yvette (France); McKeag, R.D.; Jackman, R.B. [University College London (United Kingdom). Electronic and Electrical Engineering Dept.

    1998-06-01

    Advances in Chemical Vapor Deposited (CVD) diamond have enabled the routine use of this material for sensor device fabrication, allowing exploitation of its unique combination of physical properties (low temperature susceptibility (> 500 C), high resistance to radiation damage (> 100 Mrad) and to corrosive media). A consequence of CVD diamond growth on silicon is the formation of polycrystalline films which has a profound influence on the physical and electronic properties with respect to those measured on monocrystalline diamond. The authors report the optimization of physical and geometrical device parameters for radiation detection in the counting mode. Sandwich and co-planar electrode geometries are tested and their performances evaluated with regard to the nature of the field profile and drift distances inherent in such devices. The carrier drift length before trapping was measured under alpha particles and values as high as 40% of the overall film thickness are reported. Further, by optimizing the device geometry, they show that a gain in collection efficiency, defined as the induced charge divided by the deposited charge within the material, can be achieved even though lower bias values are used.

  2. Sorption of indium (III) onto carbon nanotubes.

    Science.gov (United States)

    Alguacil, F J; Lopez, F A; Rodriguez, O; Martinez-Ramirez, S; Garcia-Diaz, I

    2016-08-01

    Indium has numerous applications in different industrial sectors and is not an abundant element. Therefore appropriate technology to recover this element from various process wastes is needed. This research reports high adsorption capacity of multiwalled carbon nanotubes (MWCNT) for In(III). The effects of pH, kinetics, isotherms and adsorption mechanism of MWCNT on In(III) adsorption were investigated and discussed in detail. The pH increases improves the adsorption capacity for In(III). The Langmuir adsorption model is the best fit with the experimental data. For the kinetic study, the adsorption onto MWCNT could be fitted to pseudo second-order. The adsorption of indium(III) can be described to a mechanism which consists of a film diffusion controlled process. Metal desorption can be achieved with acidic solutions.

  3. Straightforward high-pressure synthesis and characterization of indium-based thiospinels: photocatalytic potential for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Falcon, Horacio [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco (Spain); NANOTEC (Centro de Investigacion en Nanociencia y Nanotecnologia), Universidad Tecnologica Nacional-Facultad Regional Cordoba, Cordoba (Argentina); Tartaj, Pedro; Alonso, Jose Antonio [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco (Spain); Vaquero, Fernando; Navarro, Rufino M.; Fierro, Jose Luis G. [Instituto de Catalisis y Petroleoquimica, CSIC, Cantoblanco, Madrid (Spain); Bolletta, Juan P.; Paoli, Juan M. de; Carbonio, Raul E. [INFIQC - CONICET, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba (Argentina); Fernandez-Diaz, Maria Teresa [Institut Laue Langevin, Grenoble (France)

    2016-04-15

    Ternary chalcogenides (AB{sub 2}X{sub 4}) based on the spinel structure are gaining a great deal of attention because of the possibility of tuning their magnetic and optoelectronic properties not only by changing chemical composition but also by altering their degree of inversion. Here we report a rapid high-pressure synthetic method for the synthesis of MIn{sub 2}S{sub 4} powders starting from commercially available solid sulfides. We prove the versatility of our method by reporting the synthesis of six members of the MIn{sub 2}S{sub 4} family (M = Mn, Fe, Co, Ni, Zn, and Cd) under high-pressure conditions (3.5 GPa); these compounds show complete to moderate degrees of inversion. Furthermore, this family covers a spectral region that includes visible band gaps. Interestingly, the structural refinement carried out by X-ray and neutron diffraction allows one to establish positive correlations between the gap and different parameters, including the degree of inversion. Finally, as a proof-of-concept, these ternary chalcogenides show moderate photocatalytic hydrogen production from aqueous solutions. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. High bandgap III-V alloys for high efficiency optoelectronics

    Science.gov (United States)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  5. High bandgap III-V alloys for high efficiency optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  6. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  7. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes

    Science.gov (United States)

    Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C.

    2016-05-01

    The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability.The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability

  8. Multi-petascale highly efficient parallel supercomputer

    Energy Technology Data Exchange (ETDEWEB)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.; Blumrich, Matthias A.; Boyle, Peter; Brunheroto, Jose R.; Chen, Dong; Cher, Chen -Yong; Chiu, George L.; Christ, Norman; Coteus, Paul W.; Davis, Kristan D.; Dozsa, Gabor J.; Eichenberger, Alexandre E.; Eisley, Noel A.; Ellavsky, Matthew R.; Evans, Kahn C.; Fleischer, Bruce M.; Fox, Thomas W.; Gara, Alan; Giampapa, Mark E.; Gooding, Thomas M.; Gschwind, Michael K.; Gunnels, John A.; Hall, Shawn A.; Haring, Rudolf A.; Heidelberger, Philip; Inglett, Todd A.; Knudson, Brant L.; Kopcsay, Gerard V.; Kumar, Sameer; Mamidala, Amith R.; Marcella, James A.; Megerian, Mark G.; Miller, Douglas R.; Miller, Samuel J.; Muff, Adam J.; Mundy, Michael B.; O' Brien, John K.; O' Brien, Kathryn M.; Ohmacht, Martin; Parker, Jeffrey J.; Poole, Ruth J.; Ratterman, Joseph D.; Salapura, Valentina; Satterfield, David L.; Senger, Robert M.; Smith, Brian; Steinmacher-Burow, Burkhard; Stockdell, William M.; Stunkel, Craig B.; Sugavanam, Krishnan; Sugawara, Yutaka; Takken, Todd E.; Trager, Barry M.; Van Oosten, James L.; Wait, Charles D.; Walkup, Robert E.; Watson, Alfred T.; Wisniewski, Robert W.; Wu, Peng

    2015-07-14

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaOPS-scale computing, at decreased cost, power and footprint, and that allows for a maximum packaging density of processing nodes from an interconnect point of view. The Supercomputer exploits technological advances in VLSI that enables a computing model where many processors can be integrated into a single Application Specific Integrated Circuit (ASIC). Each ASIC computing node comprises a system-on-chip ASIC utilizing four or more processors integrated into one die, with each having full access to all system resources and enabling adaptive partitioning of the processors to functions such as compute or messaging I/O on an application by application basis, and preferably, enable adaptive partitioning of functions in accordance with various algorithmic phases within an application, or if I/O or other processors are underutilized, then can participate in computation or communication nodes are interconnected by a five dimensional torus network with DMA that optimally maximize the throughput of packet communications between nodes and minimize latency.

  9. High efficient wind-hydrogen facility

    Energy Technology Data Exchange (ETDEWEB)

    Bolcich, J.C. [Centro Atomico Bariloche, San Carlos de Bariloche, Rio Negro (Argentina); Bolcich, A.; Bolcich, D.; Wandyk, N. [ZVALT S.R.L., San Carlos de Bariloche, Rio Negro (Argentina)

    2001-06-01

    Considered a high efficiency and economical option for the conversion of wind energy, a new concept was developed in Patagonia, Argentina. It is called the Ducted Multirotor-Wind Energy Converter (DM-WEC) and was designed to be used in remote areas. Under study is the first prototype (10-30 Kilowatts), while the second prototype (3-5 Kilowatt) is being installed and is undergoing testing. This second prototype is of the multirotor type with the duct for air canalization as an added alternative. In this presentation, the authors described the technical attributes of the two prototypes and provided an evaluation of the potential for hydrogen production using small electrolysis units. They also included a comparison between the ducted and non-ducted prototypes with regard to maximum power attainable. The results obtained so far indicated that it represents an affordable energy source for remote areas with a higher power per unit cross section swept area. The rotating parts are encapsulated, reducing the noise level and vibrations. figs.

  10. A high-efficiency aerothermoelastic analysis method

    Science.gov (United States)

    Wan, ZhiQiang; Wang, YaoKun; Liu, YunZhen; Yang, Chao

    2014-06-01

    In this paper, a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established. The method adopts a two-way coupling form that couples the structure, aerodynamic force, and aerodynamic thermo and heat conduction. The aerodynamic force is first calculated based on unified hypersonic lifting surface theory, and then the Eckert reference temperature method is used to solve the temperature field, where the transient heat conduction is solved using Fourier's law, and the modal method is used for the aeroelastic correction. Finally, flutter is analyzed based on the p-k method. The aerothermoelastic behavior of a typical hypersonic low-aspect ratio wing is then analyzed, and the results indicate the following: (1) the combined effects of the aerodynamic load and thermal load both deform the wing, which would increase if the flexibility, size, and flight time of the hypersonic aircraft increase; (2) the effect of heat accumulation should be noted, and therefore, the trajectory parameters should be considered in the design of hypersonic flight vehicles to avoid hazardous conditions, such as flutter.

  11. Highly Efficient Contactless Electrical Energy Transmission System

    Science.gov (United States)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  12. High-Efficiency BODIPY-Based Organic Photovoltaics

    KAUST Repository

    Chen, John J.

    2015-01-14

    © 2014 American Chemical Society. A benzannulated boron dipyrromethene (BODIPY, bDIP) molecule exhibiting strong absorption at 640 nm was synthesized. The organic dye was used in an organic solar cell as the electron donor with C60 as the acceptor. The BODIPY dye demonstrated the best performance in lamellar architecture (indium tin oxide (ITO)/bDIP/C60/bathocuproine/Al), giving power conversion efficiency up to 4.5% with short-circuit current (JSC) of 8.7 mA/cm2 and an open-circuit voltage (VOC) of 0.81 V. Neutron reflectivity experiments were performed on the bilayer film to investigate the thickness dependence of JSC. A 13 nm mixed layer was found to be present at the donor/acceptor interface in the bilayer device, formed when the C60 was deposited onto a room temperature bDIP film. Planar-mixed heterojunction devices were fabricated to understand the extent of spontaneous mixing between the donor and acceptor materials. The native mixed region in the bilayer device was shown to most resemble 1:3 bDIP:C60 layer in the structure: (ITO/bDIP/bDIP:C60 blend/C60/bathocuproine/Al).

  13. Towards high efficiency segmented thermoelectric unicouples

    DEFF Research Database (Denmark)

    Pham, Hoang Ngan; Christensen, Dennis Valbjørn; Snyder, Gerald Jeffrey

    2014-01-01

    Segmentation of thermoelectric (TE) materials is a widely used solution to improve the efficiency of thermoelectric generators over a wide working temperature range. However, the improvement can only be obtained with appropriate material selections. In this work, we provide an overview...... of the theoretical efficiency of the best performing unicouples designed from segmenting the state-of-the-art TE materials. The efficiencies are evaluated using a 1D numerical model which includes all thermoelectric effects, heat conduction, Joule effects and temperature dependent material properties, but neglects...

  14. High efficiency quasi-monochromatic infrared emitter

    Science.gov (United States)

    Brucoli, Giovanni; Bouchon, Patrick; Haïdar, Riad; Besbes, Mondher; Benisty, Henri; Greffet, Jean-Jacques

    2014-02-01

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  15. High-efficiency Transformerless PV Inverter Circuits

    OpenAIRE

    Chen, Baifeng

    2015-01-01

    With worldwide growing demand for electric energy, there has been a great interest in exploring photovoltaic (PV) sources. For the PV generation system, the power converter is the most essential part for the efficiency and function performance. In recent years, there have been quite a few new transformerless PV inverters topologies, which eliminate the traditional line frequency transformers to achieve lower cost and higher efficiency, and maintain lower leakage current as well. With an ov...

  16. High efficiency silicon solar cell review

    Science.gov (United States)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  17. Highly efficient and bendable organic solar cells using a three-dimensional transparent conducting electrode

    Science.gov (United States)

    Wang, Wei; Bae, Tae-Sung; Park, Yeon Hyun; Kim, Dong Ho; Lee, Sunghun; Min, Guanghui; Lee, Gun-Hwan; Song, Myungkwan; Yun, Jungheum

    2014-05-01

    A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area and low effective series resistance for hole transport, OSCs based on this 3D electrode exhibit a power conversion efficiency that is 11-22% higher than that achievable in OSCs by means of conventional planar ITO film-type electrodes. A record high efficiency of 6.74% can be achieved in a bendable OSC fabricated on a poly(ethylene terephthalate) substrate.A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area

  18. Spin Injection in Indium Arsenide

    Directory of Open Access Journals (Sweden)

    Mark eJohnson

    2015-08-01

    Full Text Available In a two dimensional electron system (2DES, coherent spin precession of a ballistic spin polarized current, controlled by the Rashba spin orbit interaction, is a remarkable phenomenon that’s been observed only recently. Datta and Das predicted this precession would manifest as an oscillation in the source-drain conductance of the channel in a spin-injected field effect transistor (Spin FET. The indium arsenide single quantum well materials system has proven to be ideal for experimental confirmation. The 2DES carriers have high mobility, low sheet resistance, and high spin orbit interaction. Techniques for electrical injection and detection of spin polarized carriers were developed over the last two decades. Adapting the proposed Spin FET to the Johnson-Silsbee nonlocal geometry was a key to the first experimental demonstration of gate voltage controlled coherent spin precession. More recently, a new technique measured the oscillation as a function of channel length. This article gives an overview of the experimental phenomenology of the spin injection technique. We then review details of the application of the technique to InAs single quantum well (SQW devices. The effective magnetic field associated with Rashba spin-orbit coupling is described, and a heuristic model of coherent spin precession is presented. The two successful empirical demonstrations of the Datta Das conductance oscillation are then described and discussed.

  19. Enhancing Optical Out-Coupling of Organic Light-Emitting Devices with Nanostructured Composite Electrodes Consisting of Indium Tin Oxide Nanomesh and Conducting Polymer.

    Science.gov (United States)

    Chen, Chien-Yu; Lee, Wei-Kai; Chen, Yi-Jiun; Lu, Chun-Yang; Lin, Hoang Yan; Wu, Chung-Chih

    2015-09-02

    A nanostructured composite electrode consisting of a high-index indium-tin-oxide nanomesh and low-index high-conductivity conducting polymer effectively enhances coupling of internal radiation of organic light-emitting devices into their substrates. When combining this internal extraction structure and the external extraction scheme, a very high external quantum efficiency of nearly 62% is achieved with a green phosphorescent device.

  20. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes;

    2016-01-01

    Some major challenges in the development of L2L products is the lack of efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the successful development of the products. We report the development of 2 Three-Port-Converters respec......Some major challenges in the development of L2L products is the lack of efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the successful development of the products. We report the development of 2 Three......-Port-Converters respectively for 1-10Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power for the 10 Wp version. Furthermore, a modelling tool for L2L products has been developed and a laboratory for feeding in component data not available in the datasheets to the model is described....

  1. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes

    2016-01-01

    Some major challenges in the development of L2L products is the lack of efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the successful development of the products. We report the development of 2 Three-Port-Converters respec...

  2. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes;

    2016-01-01

    Some major challenges in the development of L2L products is the lack of efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the successful development of the products. We report the development of 2 Three-Port-Converters respec...

  3. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes;

    Some major challenges in the development of L2L products is the lack of efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the successful development of the products. We report the development of 2 Three-Port-Converters respec...

  4. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  5. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  6. Modeling of high efficiency solar cells under laser pulse for power beaming applications

    Science.gov (United States)

    Jain, Raj K.; Landis, Geoffrey A.

    1994-09-01

    Solar cells have been used to convert sunlight to electrical energy for many years and also offer great potential for non-solar energy conversion applications. Their greatly improved performance under monochromatic light compared to sunlight, makes them suitable as photovoltaic (PV) receivers in laser power beaming applications. Laser beamed power to a PV array receiver could provide power to satellites, an orbital transfer vehicle, or a lunar base. Gallium arsenide (GaAs) and indium phosphide (InP) solar cells have calculated efficiencies of more than 50 percent under continuous illumination at the optimum wavelength. Currently high power free-electron lasers are being developed which operate in pulsed conditions. Understanding cell behavior under a laser pulse is important in the selection of the solar cell material and the laser. An experiment by NAsA lewis and JPL at the AVLIS laser facility in Livermore, CA presented experimental data on cell performance under pulsed laser illumination. Reference 5 contains an overview of technical issues concerning the use of solar cells for laser power conversion, written before the experiments were performed. As the experimental results showed, the actual effects of pulsed operation are more complicated. Reference 6 discusses simulations of the output of GaAs concentrator solar cells under pulsed laser illumination. The present paper continues this work, and compares the output of Si and GaAs solar cells.

  7. Highly efficient non-doped blue organic light emitting devices based on anthracene–pyridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Haykir, Gulcin; Tekin, Emine; Atalar, Taner; Türksoy, Figen

    2013-12-02

    Four different 2-(10-aryl)anthracen-9-yl)pyridine derivatives 5a–d were synthesized via the Suzuki cross-coupling reaction. Photo-physical characteristics of these materials having strong electron donating or electron withdrawing groups were explored. Multilayer small molecule organic light emitting diodes without any dopant were fabricated in the following sequence: Indium tin oxide/4,4′-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (50 nm)/5a–d (30 nm)/4,7-diphenyl-1,10-phenanthroline (30 nm)/LiF/Al. The electroluminescent property of the device fabricated with 5d as an emitter exhibited a high external quantum efficiency of 3.80% (at around 1 mA/cm{sup 2}) with Commission Internationale De L'Eclairage coordinates of (0.14, 0.25). - Highlights: • Synthesis and characterization of 2-(10-aryl)anthracen-9-yl)pyridine derivatives • Thermal, photophysical and electrochemical properties of anthracene derivatives • Emitters from blue to greenish blue for organic light emitting device applications • Organic light emitting device fabrication and characterization of 2-(10-aryl)anthracen-9-yl)pyridine derivatives.

  8. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  9. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  10. High Thrust Efficiency MPD Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to support human and robotic exploration missions to the...

  11. PMMA lens with high efficiency and reliability

    Science.gov (United States)

    Matsuzaki, Ichiro; Abe, Koji; Fujita, Katsuhiro

    2013-09-01

    Polymethyl Methacrylate (PMMA) Fresnel lenses are increasingly being used in concentrated photovoltaic (CPV) systems installed outdoors and, accordingly, emphasis is being placed on the durability of such lenses with regard to light transmittance when subject to ultraviolet (UV) light and dust exposure. Accelerated testing methods for evaluating durability under UV exposure were established, allowing development of a lens material with improved UV resistance. Simultaneously, through a proprietary molding method, a Fresnel lens that boasts favorable light concentration efficiency with little deformation even after prolonged outdoor use was developed. Moreover, the lens incorporates a new hard-coat finish that possesses sand durability and UV resistance comparable to that of tempered glass.

  12. Optical Properties of Indium Doeped ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    Tsung-Shine Ko

    2015-01-01

    Full Text Available We report the synthesis of the ZnO nanowires (NWs with different indium concentrations by using the thermal evaporation method. The gold nanoparticles were used as the catalyst and were dispersed on the silicon wafer to facilitate the growth of the ZnO NWs. High resolution transmission electron microscopy confirms that the ZnO NWs growth relied on vapor-liquid-solid mechanism and energy dispersion spectrum detects the atomic percentages of indium in ZnO NWs. Scanning electron microscopy shows that the diameters of pure ZnO NWs range from 20 to 30 nm and the diameters of ZnO:In were increased to 50–80 nm with increasing indium doping level. X-ray diffraction results point out that the crystal quality of the ZnO NWs was worse with doping higher indium concentration. Photoluminescence (PL study of the ZnO NWs exhibited main photoemission at 380 nm due to the recombination of excitons in near-band-edge (NBE. In addition, PL results also indicate the slightly blue shift and PL intensity decreasing of NBE emission from the ZnO NWs with higher indium concentrations could be attributed to more donor-induced trap center generations.

  13. Quantum Confined Semiconductors for High Efficiency Photovoltaics

    Science.gov (United States)

    Beard, Matthew

    2014-03-01

    Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photon-to-free energy conversion step. In this discussion, I will present the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (NCs confined in three dimensions) in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion. The solar cells are constructed using a low temperature solution based deposition of PbS or PbSe QDs as the absorber layer. Different chemical treatments of the QD layer are employed in order to obtain good electrical communication while maintaining the quantum-confined properties of the QDs. We have characterized the transport and carrier dynamics using a transient absorption, time-resolved THz, and temperature-dependent photoluminescence. I will discuss the interplay between carrier generation, recombination, and mobility within the QD layers. A unique aspect of our devices is that the QDs exhibit multiple exciton generation with an efficiency that is ~ 2 to 3 times greater than the parental bulk semiconductor.

  14. Indium incorporation into InGaN: The role of the adlayer

    Science.gov (United States)

    Rossow, U.; Horenburg, P.; Ketzer, F.; Bremers, H.; Hangleiter, A.

    2017-04-01

    We study the incorporation processes of indium into group-III nitride layers under pulsed and continuous growth conditions by in-situ reflection measurements. We want to clarify which processes limit the incorporation of indium and lead to a degrading layer structure. The data are discussed in the context of the adlayer model proposed by theory [1], which is a liquid-like layer of group-III atoms on the surface. The adlayer is built-up by the incoming flux but the high vapor pressure of indium leads to a high desorption rate and therefore it is apparent in the data only for low growth temperatures. The data suggests that segregated indium on the surface and the environment also contribute to the indium incorporation process likely also via the adlayer.

  15. Rapid, high-efficiency labeling of leukocytes with In-111 after hemolytic removal of erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Karesh, S.M.; Henkin, R.E.

    1985-05-01

    During the labeling of leukocytes with Indium-111, conventional methodology involves separation and washing to remove red cells. This technique results in the loss of a significant number of leukocytes. Citrated whole blood of ten normal volunteers was studied for an alternate labeling method following sedimentation for 30 to 45 minutes and low speed centrifugation of the leukocyte-rich plasma. The average labeling for these ten volunteers by Indium-111 was 90% versus 60% by the older technique. Viability as measured by the trypan blue exclusion test was greater than 95%, WBC losses were essentially zero, and no WBC clumping was observed. Eighteen patients referred for leukocyte imaging were studied by this method. In this patient population, there was 91% labeling with viability greater than 95% and no evidence of clumping. Less than 5% RBC's were noted in any lot. Indium-111 WBC activity 20 minutes post injection averaged 79% of whole blood activity. This modification results in decreased losses of white cells, reduces preparation time to less than 2 hours, and significantly improves the labeling efficiency of the final product. Liver/spleen ratios and image quality were unchanged from the original method.

  16. High-Efficient Circuits for Ternary Addition

    Directory of Open Access Journals (Sweden)

    Reza Faghih Mirzaee

    2014-01-01

    Full Text Available New ternary adders, which are fundamental components of ternary addition, are presented in this paper. They are on the basis of a logic style which mostly generates binary signals. Therefore, static power dissipation reaches its minimum extent. Extensive different analyses are carried out to examine how efficient the new designs are. For instance, the ternary ripple adder constructed by the proposed ternary half and full adders consumes 2.33 μW less power than the one implemented by the previous adder cells. It is almost twice faster as well. Due to their unique superior characteristics for ternary circuitry, carbon nanotube field-effect transistors are used to form the novel circuits, which are entirely suitable for practical applications.

  17. Novel Polymers for High Efficiency Renewable and Portable Power Applications

    Science.gov (United States)

    2015-07-30

    systems with frontier orbital levels (HOMOs and LUMOs) and morphologies systematically investigated and optimized for high efficiency photoelectric and...of polymer-dye covalently linked systems that could efficiently convert light/heat into electrical power. Therefore, frontier orbital matching...force between the polymer and dye would result in weaker PL quenching and optoelectronic device power conversion efficiency , this experimentally

  18. A review of high-efficiency silicon solar cells

    Science.gov (United States)

    Rohatgi, A.

    1986-01-01

    Various parameters that affect solar cell efficiency were discussed. It is not understood why solar cells produced from less expensive Czochralski (Cz) silicon are less efficient than cells fabricated from more expensive float-zone (Fz) silicon. Performance characteristics were presented for recently produced, high-efficient solar cells fabricated by Westinghouse Electric Corp., Spire Corp., University of New South Wales, and Stanford University.

  19. Optical and micro-structural characterizations of MBE grown indium gallium nitride polar quantum dots

    KAUST Repository

    Elafandy, Rami T.

    2011-12-01

    Comparison between indium rich (27%) InGaN/GaN quantum dots (QDs) and their underlying wetting layer (WL) is performed by means of optical and structural characterizations. With increasing temperature, micro-photoluminescence (μPL) study reveals the superior ability of QDs to prevent carrier thermalization to nearby traps compared to the two dimensional WL. Thus, explaining the higher internal quantum efficiency of the QD nanostructure compared to the higher dimensional WL. Structural characterization (X-ray diffraction (XRD)) and transmission electron microscopy (TEM)) reveal an increase in the QD indium content over the WL indium content which is due to strain induced drifts. © 2011 IEEE.

  20. High Efficiency Regenerative Helium Compressor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  1. Advanced High Efficiency Durable DACS Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Systima is developing a high performance 25 lbf DACS thruster that operates with a novel non-toxic monopropellant. The monopropellant has a 30% higher...

  2. Preparation of highly efficient manganese catalase mimics.

    Science.gov (United States)

    Triller, Michael U; Hsieh, Wen-Yuan; Pecoraro, Vincent L; Rompel, Annette; Krebs, Bernt

    2002-10-21

    The series of compounds [Mn(bpia)(mu-OAc)](2)(ClO(4))(2) (1), [Mn(2)(bpia)(2)(muO)(mu-OAc)](ClO(4))(3).CH(3)CN (2), [Mn(bpia)(mu-O)](2)(ClO(4))(2)(PF(6)).2CH(3)CN (3), [Mn(bpia)(Cl)(2)](ClO)(4) (4), and [(Mn(bpia)(Cl))(2)(mu-O)](ClO(4))(2).2CH(3)CN (5) (bpia = bis(picolyl)(N-methylimidazol-2-yl)amine) represents a structural, spectroscopic, and functional model system for manganese catalases. Compounds 3 and 5 have been synthesized from 2 via bulk electrolysis and ligand exchange, respectively. All complexes have been structurally characterized by X-ray crystallography and by UV-vis and EPR spectroscopies. The different bridging ligands including the rare mono-mu-oxo and mono-mu-oxo-mono-mu-carboxylato motifs lead to a variation of the Mn-Mn separation across the four binuclear compounds of 1.50 A (Mn(2)(II,II) = 4.128 A, Mn(2)(III,III) = 3.5326 and 3.2533 A, Mn(2)(III,IV) = 2.624 A). Complexes 1, 2, and 3 are mimics for the Mn(2)(II,II), the Mn(2)(III,III), and the Mn(2)(III,IV) oxidation states of the native enzyme. UV-vis spectra of these compounds show similarities to those of the corresponding oxidation states of manganese catalase from Thermus thermophilus and Lactobacillus plantarum. Compound 2 exhibits a rare example of a Jahn-Teller compression. While complexes 1 and 3 are efficient catalysts for the disproportionation of hydrogen peroxide and contain an N(4)O(2) donor set, 4 and 5 show no catalase activity. These complexes have an N(4)Cl(2) and N(4)OCl donor set, respectively, and serve as mimics for halide inhibited manganese catalases. Cyclovoltammetric data show that the substitution of oxygen donor atoms with chloride causes a shift of redox potentials to more positive values. To our knowledge, complex 1 is the most efficient binuclear functional manganese catalase mimic exhibiting saturation kinetics to date.

  3. Photosynthetic Diurnal Variation of Soybean Cultivars with High Photosynthetic Efficiency

    Institute of Scientific and Technical Information of China (English)

    MAN Wei-qun; DU Wei-guang; ZHANG Gui-ru; LUAN Xiao-yan; GE Qiao-ying; HAO Nai-bin; CHEN Yi

    2002-01-01

    The photosynthetic characters were investigated among soybean cultivars with high photosynthetic efficiency and high yield. The results indicated that: 1) There were significant differences in photosynthetic rate (Ph) and dark respiration rate (DR) under saturation light intensity and appropriate temperature.2) There were a little difference in light compensation point among them. Photo flux density (PFD) were mong the cultivars. Diurnal variation of Pn was shown a curve with two peaks. 4) The cultivars with high photosynthetic efficiency were subjected less to photoinhibition than that with high yield. Critical temperatures of photoinhibition in high photosynthetic efficiency cultivars were higher than that of high yield.

  4. Pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody in murine experimental viral myocarditis

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T.; Matsumori, A.; Watanabe, Y.; Tamaki, N.; Yonekura, Y.; Endo, K.; Konishi, J.; Kawai, C. (Kyoto Univ. (Japan))

    1990-11-01

    The pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody Fab were investigated with use of murine experimental viral myocarditis as a model. The biodistribution of indium-111-labeled antimyosin antibody Fab on days 3, 5, 7, 14, 21 and 28 after encephalomyocarditis virus inoculation demonstrated that myocardial uptake increased significantly on days 5, 7 and 14 (maximum on day 7) in infected versus uninfected mice (p less than 0.001). In vivo kinetics in infected mice on day 7 demonstrated that the heart to blood ratio reached a maximum 48 h after the intravenous administration of indium-111-labeled antimyosin Fab, which was considered to be the optimal time for scintigraphy. The scintigraphic images obtained with indium-111-labeled antimyosin Fab demonstrated positive uptake in the cardiac lesion in infected mice. The pathologic study demonstrated that myocardial uptake correlated well with pathologic grades of myocardial necrosis. High performance liquid chromatography revealed the presence of an antigen-antibody complex in the circulation of infected mice after the injection of indium-111-labeled antimyosin Fab. This antigen bound to indium-111-labeled antimyosin Fab in the circulation might be whole myosin and this complex may decrease myocardial uptake and increase liver uptake. It is concluded that indium-111-labeled antimyosin monoclonal antibody Fab accumulates selectively in damaged heart tissue in mice with acute myocarditis and that indium-111-labeled antimyosin Fab scintigraphy may be a useful method for the visualization of acute myocarditis.

  5. Tuning growth direction of catalyst-free InAs(Sb) nanowires with indium droplets

    Science.gov (United States)

    Potts, Heidi; Morgan, Nicholas P.; Tütüncüoglu, Gözde; Friedl, Martin; Morral, Anna Fontcuberta i.

    2017-02-01

    The need for indium droplets to initiate self-catalyzed growth of InAs nanowires has been highly debated in the last few years. Here, we report on the use of indium droplets to tune the growth direction of self-catalyzed InAs nanowires. The indium droplets are formed in situ on InAs(Sb) stems. Their position is modified to promote growth in the or equivalent directions. We also show that indium droplets can be used for the fabrication of InSb insertions in InAsSb nanowires. Our results demonstrate that indium droplets can initiate growth of InAs nanostructures as well as provide added flexibility to nanowire growth, enabling the formation of kinks and heterostructures, and offer a new approach in the growth of defect-free crystals.

  6. Limitations of indium leukocyte imaging for the diagnosis of spine infections

    Energy Technology Data Exchange (ETDEWEB)

    Whalen, J.L.; Brown, M.L.; McLeod, R.; Fitzgerald, R.H. Jr. (Mayo Clinic and Mayo Foundation, Rochester, MN (USA))

    1991-02-01

    The usefulness of indium-111 white blood cell (WBC) scintigraphy in the detection of spine sepsis was studied in 22 patients who had open or percutaneous biopsies for microbiologic diagnosis. The indium images in 18 patients with vertebral infection were falsely negative in 15 (83%) and truly positive in 3 (17%). All four patients with negative cultures and histology had true-negative scans. The indium-111 WBC imaging results yielded a sensitivity of 17%, a specificity of 100%, and an accuracy rate of 31%. Prior antibiotic therapy was correlated with a high incidence of false-negative scans and photon-deficient indium-111 WBC uptake. The usefulness of indium-111 WBC scintigraphy for the diagnosis of vertebral infection may be limited to those patients who have not been treated with antibiotics previously.

  7. Arsenic (III, V), indium (III), and gallium (III) toxicity to zebrafish embryos using a high-throughput multi-endpoint in vivo developmental and behavioral assay.

    Science.gov (United States)

    Olivares, Christopher I; Field, Jim A; Simonich, Michael; Tanguay, Robert L; Sierra-Alvarez, Reyes

    2016-04-01

    Gallium arsenide (GaAs), indium gallium arsenide (InGaAs) and other III/V materials are finding increasing application in microelectronic components. The rising demand for III/V-based products is leading to increasing generation of effluents containing ionic species of gallium, indium, and arsenic. The ecotoxicological hazard potential of these streams is unknown. While the toxicology of arsenic is comprehensive, much less is known about the effects of In(III) and Ga(III). The embryonic zebrafish was evaluated for mortality, developmental abnormalities, and photomotor response (PMR) behavior changes associated with exposure to As(III), As(V), Ga(III), and In(III). The As(III) lowest observable effect level (LOEL) for mortality was 500 μM at 24 and 120 h post fertilization (hpf). As(V) exposure was associated with significant mortality at 63 μM. The Ga(III)-citrate LOEL was 113 μM at 24 and 120 hpf. There was no association of significant mortality over the tested range of In(III)-citrate (56-900 μM) or sodium citrate (213-3400 μM) exposures. Only As(V) resulted in significant developmental abnormalities with LOEL of 500 μM. Removal of the chorion prior to As(III) and As(V) exposure was associated with increased incidence of mortality and developmental abnormality suggesting that the chorion may normally attenuate mass uptake of these metals by the embryo. Finally, As(III), As(V), and In(III) caused PMR hypoactivity (49-69% of control PMR) at 900-1000 μM. Overall, our results represent the first characterization of multidimensional toxicity effects of III/V ions in zebrafish embryos helping to fill a significant knowledge gap, particularly in Ga(III) and In(III) toxicology.

  8. High Efficiency Micromachining System Applied in Nanolithography

    Science.gov (United States)

    Chen, Xing; Lee, Dong Weon; Choi, Young Soo

    Scanning probe lithography such as direct-writing lithographic processes and nanoscratching techniques based on scanning probe microscopy have presented new micromachining methods for microelectromechanical system (MEMS). In this paper, a micromachining system for thermal scanning probe lithography is introduced, which consists of the cantilever arrays and a big stroke micro XY-stage. A large machining area and high machining speed can be realized by combining arrays of cantilevers possessing sharp tips at their top with the novel micro XY-stage which can obtain big displacements under relatively low driving voltage and in a small size. According to the above configuration, this micromachining system is provided with high throughputs and suitable for industrialization due to its MEMS-based simple fabrication process. The novel micro XY-stage applied in this system is presented in detail including the unique structure and principles, which shows an obvious improvement and distinct advantages in comparison with traditional structures. It is analyzed by mathematical model and then simulated using finite element method (FEM), it is proved to be able to practically serve the micromachining system with high capability.

  9. [Health effects of solar cell component material. Toxicity of indium compounds to laboratory animals determined by intratracheal instillations].

    Science.gov (United States)

    Tanaka, Akiyo; Hirata, Miyuki

    2013-01-01

    Owing to the increasing interest being paid to the issue of the global environment, the production of solar cells has increased rapidly in recent years. Copper indium gallium diselenide (CIGS) is a new efficient thin film used in some types of solar cell. Indium is a constitutive element of CIGS thin-film solar cells. It was thought that indium compounds were not harmful until the beginning of the 1990s because there was little information regarding the adverse health effects on humans or animals arising from exposure to indium compounds. After the mid-1990s, data became available indicating that indium compounds can be toxic to animals. In animal studies, it has been clearly demonstrated that indium compounds cause pulmonary toxicity and that the dissolution of indium compounds in the lungs is considerably slow, as shown by repeated intratracheal instillations in experimental animals. Thus, it is necessary to pay much greater attention to human exposure to indium compounds, and precautions against possible exposure to indium compounds are paramount with regard to health management.

  10. Biologically inspired highly efficient buoyancy engine

    Science.gov (United States)

    Akle, Barbar; Habchi, Wassim; Abdelnour, Rita; Blottman, John, III; Leo, Donald

    2012-04-01

    Undersea distributed networked sensor systems require a miniaturization of platforms and a means of both spatial and temporal persistence. One aspect of this system is the necessity to modulate sensor depth for optimal positioning and station-keeping. Current approaches involve pneumatic bladders or electrolysis; both require mechanical subsystems and consume significant power. These are not suitable for the miniaturization of sensor platforms. Presented in this study is a novel biologically inspired method that relies on ionic motion and osmotic pressures to displace a volume of water from the ocean into and out of the proposed buoyancy engine. At a constant device volume, the displaced water will alter buoyancy leading to either sinking or floating. The engine is composed of an enclosure sided on the ocean's end by a Nafion ionomer and by a flexible membrane separating the water from a gas enclosure. Two electrodes are placed one inside the enclosure and the other attached to the engine on the outside. The semi-permeable membrane Nafion allows water motion in and out of the enclosure while blocking anions from being transferred. The two electrodes generate local concentration changes of ions upon the application of an electrical field; these changes lead to osmotic pressures and hence the transfer of water through the semi-permeable membrane. Some aquatic organisms such as pelagic crustacean perform this buoyancy control using an exchange of ions through their tissue to modulate its density relative to the ambient sea water. In this paper, the authors provide an experimental proof of concept of this buoyancy engine. The efficiency of changing the engine's buoyancy is calculated and optimized as a function of electrode surface area. For example electrodes made of a 3mm diameter Ag/AgCl proved to transfer approximately 4mm3 of water consuming 4 Joules of electrical energy. The speed of displacement is optimized as a function of the surface area of the Nafion

  11. 40 CFR 761.71 - High efficiency boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  12. High efficiency low cost GaAs/Ge cell technology

    Science.gov (United States)

    Ho, Frank

    1990-01-01

    Viewgraphs on high efficiency low cost GaAs/Ge cell technology are presented. Topics covered include: high efficiency, low cost GaAs/Ge solar cells; advantages of Ge; comparison of typical production cells for space applications; panel level comparisons; and solar cell technology trends.

  13. Energy Efficient and Compact RF High-Power Amplifiers

    NARCIS (Netherlands)

    Calvillo Cortés, D.A.

    2014-01-01

    The main objectives of this thesis are to improve the energy efficiency and physical form-factor of high-power amplifiers in base station applications. As such, the focus of this dissertation is placed on the outphasing amplifier concept, which can offer high-efficiency, good linearity and excellent

  14. Highly efficient carrier multiplication in PbS nanosheets

    NARCIS (Netherlands)

    Aerts, M.; Bielewicz, T.; Klinke, C.; Grozema, F.C.; Houtepen, A.J.; Schins, J.M.; Siebbeles, L.D.A.

    2014-01-01

    Semiconductor nanocrystals are promising for use in cheap and highly efficient solar cells. A high efficiency can be achieved by carrier multiplication (CM), which yields multiple electron-hole pairs for a single absorbed photon. Lead chalcogenide nanocrystals are of specific interest, since their b

  15. Highly efficient sources of single indistinguishable photons

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2013-01-01

    Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable and the source should...... be electrically driven. Several design strategies addressing these requirements have been proposed. In the cavity-based source, light emission is controlled using resonant cavity quantum electrodynamics effects, whereas in the waveguide-based source, broadband electric field screening effects are employed...... to direct the light emission into the optical mode of interest. For all the strategies, accurate modeling and careful optical engineering is required to achieve high performance....

  16. Role of TBATB in nano indium oxide catalyzed C-S bond formation

    Science.gov (United States)

    Gogoi, Prasanta; Hazarika, Sukanya; Barman, Pranjit

    2015-09-01

    Nano sized indium oxide is found to be an efficient catalyst for the conversion of thiols to sulfides using Na2CO3 as base and TBATB as reagent in DMSO at 110 °C. Here in situ generation of bromo intermediate by TBATB takes place through indium surface. A variety of aryl sulfides can be synthesized in excellent yields from less reactive chlorides, boronic acids and thiols.

  17. Compact and highly efficient laser pump cavity

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jim J. (Dublin, CA); Bass, Isaac L. (Castro Valley, CA); Zapata, Luis E. (Livermore, CA)

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  18. 2250-MHz High Efficiency Microwave Power Amplifier (HEMPA)

    Science.gov (United States)

    Sims, W. Herbert; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Tnis paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  19. Indium recovery from acidic aqueous solutions by solvent extraction with D2EHPA: a statistical approach to the experimental design

    Directory of Open Access Journals (Sweden)

    Fortes M.C.B.

    2003-01-01

    Full Text Available This experimental work presents the optimization results of obtaining a high indium concentration solution and minimum iron poisoning by solvent extraction with D2EHPA solubilized in isoparaffin and exxsol. The variables studied in the extraction step were D2EHPA concentration, acidity of the aqueous phase and time of contact between phases. Different hydrochloric and sulfuric acid concentrations were studied for the stripping step. The optimum experimental conditions resulted in a solution with 99% indium extraction and less than 4% iron. The construction of a McCabe-Thiele diagram indicated two theoretical countercurrent stages for indium extraction and at least six stages for indium stripping. Finally, the influence of associated metals found in typical sulfate leach liquors from zinc plants was studied. Under the experimental conditions for maximum indium extraction, 96% indium extraction was obtained, iron extraction was about 4% and no Ga, Cu and Zn were co-extracted.

  20. Energy efficient engine high-pressure turbine detailed design report

    Science.gov (United States)

    Thulin, R. D.; Howe, D. C.; Singer, I. D.

    1982-01-01

    The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.

  1. Polymer assisted solution processing of Ti-doped indium oxide transparent conducting thin films for organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanath, Sujaya Kumar [Division of Advanced Materials Engineering, Kongju National University, Cheonan, Chungchungnam-do 331-717 (Korea, Republic of); Jin, Won-Yong [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kang, Jae-Wook, E-mail: jwkang@jbnu.ac.kr [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Jihoon, E-mail: jihoon.kim@kongju.ac.kr [Division of Advanced Materials Engineering, Kongju National University, Cheonan, Chungchungnam-do 331-717 (Korea, Republic of)

    2015-05-15

    Highlights: • Polymer assisted solution process. • Ti-doped indium oxide (TIO) transparent conducting films. • Replacement of sputtered ITO with polymer-assisted-solution-coated TIO films. • High mobility transparent conducting films. • Application of polymer-assisted-solution-coated TIO films to organic solar cells. - Abstract: We report the preparation and evaluation of Ti-doped indium oxide (TIO) transparent conducting films by a polymer-assisted solution (PAS) process, as well as the evaluation of this type of film as a transparent cathode in an inverted organic solar cell (IOCS). Both Ti- and In-PASs have been synthesized by coordinating Ti- and In-anionic complexes with polyethyleneimine. The final TIO–PAS was formed by mixing Ti-PAS into In-PAS with a Ti concentration between 1 at.% and 7 at.%. The TIO–PAS was spin-coated onto glass substrates to form uniform thin films of Ti-doped indium oxide, which were then annealed at high temperature. The optimum Ti concentration to achieve the best electrical and optical properties of PAS–TIO films was found to be 3 at.%. With the film thickness of 650 nm, PAS–TIO films had a sheet resistance of 65 Ω/sq and an optical transmittance greater than 85%. The feasibility of PAS-coated TIO thin film as a transparent electrode was evaluated by applying it to the fabrication of IOSCs, which showed the energy conversion efficiency of 4.60%.

  2. Highly efficient organic multi-junction solar cells with a thiophene based donor material

    Energy Technology Data Exchange (ETDEWEB)

    Meerheim, Rico, E-mail: rico.meerheim@iapp.de; Körner, Christian; Leo, Karl, E-mail: karl.leo@iapp.de [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany)

    2014-08-11

    The efficiency of organic solar cells can be increased by serial stacked subcells even upon using the same absorber material. For the multi-junction devices presented here, we use the small molecule donor material DCV5T-Me. The subcell currents were matched by optical transfer matrix simulation, allowing an efficiency increase from 8.3% for a single junction up to 9.7% for a triple junction cell. The external quantum efficiency of the subcells, measured under appropriate light bias illumination, is spectrally shifted due to the microcavity of the complete stack, resulting in a broadband response and an increased cell current. The increase of the power conversion efficiency upon device stacking is even stronger for large area cells due to higher influence of the resistance of the indium tin oxide anode, emphasizing the advantage of multi-junction devices for large-area applications.

  3. High efficiency in human muscle: an anomaly and an opportunity?

    Science.gov (United States)

    Nelson, Frank E; Ortega, Justus D; Jubrias, Sharon A; Conley, Kevin E; Kushmerick, Martin J

    2011-08-15

    Can human muscle be highly efficient in vivo? Animal muscles typically show contraction-coupling efficiencies FDI) muscle of the hand has an efficiency value in vivo of 68%. We examine two key factors that could account for this apparently high efficiency value: (1) transfer of cross-bridge work into mechanical work and (2) the use of elastic energy to do external work. Our analysis supports a high contractile efficiency reflective of nearly complete transfer of muscular to mechanical work with no contribution by recycling of elastic energy to mechanical work. Our survey of reported contraction-coupling efficiency values puts the FDI value higher than typical values found in small animals in vitro but within the range of values for human muscle in vivo. These high efficiency values support recent studies that suggest lower Ca(2+) cycling costs in working contractions and a decline in cost during repeated contractions. In the end, our analysis indicates that the FDI muscle may be exceptional in having an efficiency value on the higher end of that reported for human muscle. Thus, the FDI muscle may be an exception both in contraction-coupling efficiency and in Ca(2+) cycling costs, which makes it an ideal muscle model system offering prime conditions for studying the energetics of muscle contraction in vivo.

  4. Self-assembled monolayer as an interfacial modification material for highly efficient and air-stable inverted organic solar cells

    Science.gov (United States)

    Song, Myungkwan; Kang, Jae-Wook; Kim, Dong-Ho; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Sanggil; Jo, Sungjin; Yoon Ryu, Seung; Su Kim, Chang

    2013-04-01

    Organic solar cells with inverted structures can greatly improve photovoltaic stability. This paper reports a method to lower the work function of indium tin oxide (ITO) in inverted organic solar cells by modification with ultrathin 3-aminopropyltriethoxysilane (APTES) monolayers. The device studies showed that the resulting photovoltaic efficiencies were significantly increased from 0.64% to 4.83% with the use of the APTES monolayer, which could be attributed to the dramatic enhancement in the open-circuit voltage and fill factor. The effective electron selectivity in the case of the APTES-modified ITO could be attributed to the reduction of the work function of ITO as a result of the electron-donating nature of the amine groups in the APTES monolayer. The power conversion efficiency of the unencapsulated inverted organic solar cells with APTES-modified ITO remained above 80% of their original values even after storage in air for thirty days. Our results provide a promising approach to improve the performance of highly efficient and air-stable inverted organic solar cells.

  5. High brilliance and high efficiency: optimized high power diode laser bars

    Science.gov (United States)

    Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Hennig, P.

    2008-02-01

    The strong increasing laser market has ongoing demands to reduce the costs of diode laser pumped systems. For that reason JENOPTIK Diode Lab GmbH (JDL) optimized the bar brilliance (small vertical far field divergence) and bar efficiency (higher optical power operation) with respect to the pump applications. High efficiency reduces the costs for mounting and cooling and high brilliance increases the coupling efficiency. Both are carefully adjusted in the 9xx nm - high power diode laser bars for pump applications in disc- and fiber lasers. Based on low loss waveguide structures high brilliance bars with 19° fast axis beam divergence (FWHM) with 58 % maximum efficiency and 27° fast axis beam divergence (FWHM) with 62 % maximum efficiency are developed. Mounted on conductive cooled heat sinks high power operation with lifetime > 20.000 hours at 120 W output power level (50 % filling factor bars) and 80W (20 % filling factor bars) is demonstrated. 808nm bars used as pump sources for Nd:YAG solid state lasers are still dominating in the market. With respect to the demands on high reliability at high power operation current results of a 100 W high power life time test are showing more than 9000 hour operation time for passively cooled packaged high efficiency 50 % filling factor bars. Measurement of the COMD-level after this hard pulse life time test demonstrates very high power levels with no significant droop in COMD-power level. This confirms the high facet stability of JDL's facet technology. New high power diode laser bars with wavelength of 825 nm and 885 nm are still under development and first results are presented.

  6. Highly-Efficient and Modular Medium-Voltage Converters

    Science.gov (United States)

    2015-09-28

    4. TITLE AND SUBTITLE Highly-Efficient and Modula Medium -Voltage Converters 6. AUTHOR(S) Maryam Saeedifard 7. PERFORMING ORGANIZATIC i NAME(S...realization of highly efficient, modular medium - voltage dc-ac and dc-dc energy conversion systems by development of new control strategies that improve the...Z39.18 a 01^ 100(0^5 Final Report for Grant N00014-14-1-0615 Highly-Efficient and Modular Medium -Voltage Converters Lead Organization: Georgia Tech

  7. [Three cases of indium lung].

    Science.gov (United States)

    Taguchi, Osamu; Chonan, Tatsuya

    2006-07-01

    The production of indium tin oxide (ITO) has been increasing during the past decade because of its use in liquid crystal and plasma display panels. Following the first report on lethal lung injury in a ITO worker in 2001, we began pulmonary check-ups for 115 workers in the plant in our capacity of industrial physicians of the plant. Hence, we report interstitial pulmonary disease in 3 workers who had engaged in wet-surface grinding of ITO for 8 to 12 years and had significant lung injuries. The serum indium level and serum concentration of KL-6 were significantly elevated in all 3 cases. One non-smoker case among them showed severe obstructive changes on spirometry and had an episode of repeated bilateral pneumothorax before and during the follow-up period. All 3 cases showed both interstitial and/or emphysematous changes on HRCT. It is suggested that inhaled indium compounds can cause a new and unique interstitial pulmonary disease.

  8. How metallic is the binding state of indium hosted by excess-metal chalcogenides in ore deposits?

    Science.gov (United States)

    Ondina Figueiredo, Maria; Pena Silva, Teresa; Oliveira, Daniel; Rosa, Diogo

    2010-05-01

    Discovered in 1863, indium is nowadays a strategic scarce metal used both in classical technologic fields (like low melting-temperature alloys and solders) and in innovative nano-technologies to produce "high-tech devices" by means of new materials, namely liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and the recently introduced transparent flexible thin-films manufactured with ionic amorphous oxide semiconductors (IAOS). Indium is a typical chalcophile element, seldom forming specific minerals and occurring mainly dispersed within polymetallic sulphides, particularly with excess metal ions [1]. The average content of indium in the Earth's crust is very low but a further increase in its demand is still expected in the next years, thus focusing a special interest in uncovering new exploitation sites through promising polymetallic sulphide ores - e.g., the Iberian Pyrite Belt (IPB) [2] - and in improving recycling technologies. Indium recovery stands mostly on zinc extraction from sphalerite, the natural cubic sulphide which is the prototype of so-called "tetrahedral sulphides" where metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions where the double of unfilled interstices are available for further in-filling. It is worth remarking that such packing array is particularly suitable for accommodating polymetallic cations by filling closely located interstitial sites [3] as happens in excess-metal tetrahedral sulphides - e.g. bornite, ideally Cu5FeS4, recognized as an In-carrying mineral [4]. Studying the tendency towards In-In interactions able of leading to the formation of polycations would efficiently contribute to understand indium crystal chemistry and the metal binding state in natural chalcogenides. Accordingly, an X-ray absorption near-edge spectroscopy (XANES) study at In L3-edge was undertaken using the instrumental set-up of ID21 beamline at the ESRF (European Synchrotron

  9. Wrinkled substrate and Indium Tin Oxide-free transparent electrode making organic solar cells thinner in active layer

    Science.gov (United States)

    Liu, Kong; Lu, Shudi; Yue, Shizhong; Ren, Kuankuan; Azam, Muhammad; Tan, Furui; Wang, Zhijie; Qu, Shengchun; Wang, Zhanguo

    2016-11-01

    To enable organic solar cells with a competent charge transport efficiency, reducing the thickness of active layer without sacrificing light absorption efficiency turns out to be of high feasibility. Herein, organic solar cells on wrinkled metal surface are designed. The purposely wrinkled Al/Au film with a smooth surface provides a unique scaffold for constructing thin organic photovoltaic devices by avoiding pinholes and defects around sharp edges in conventional nanostructures. The corresponding surface light trapping effect enables the thin active layer (PTB7-Th:PC71BM) with a high absorption efficiency. With the innovative MoO3/Ag/ZnS film as the top transparent electrode, the resulting Indium Tin Oxide-free wrinkled devices show a power conversion efficiency as 7.57% (50 nm active layer), higher than the planner counterparts. Thus, this paper provides a new methodology to improve the performance of organic solar cells by balancing the mutual restraint factors to a high level.

  10. High efficiency interdigitated back contact silicon solar cells

    Science.gov (United States)

    Verlinden, P.; van de Wiele, F.; Stehelin, G.; Floret, F.; David, J. P.

    Interdigitated back contact (IBC) silicon solar cells with 25.6 percent efficiency at 10 W/sq cm and 24.4 percent at 30 W/ sq cm were fabricated. The authors report on the technological process, which produces a high effective carrier lifetime in the bulk (780 microsec), and on the characterization of the cells. The front side of these cells is textured and has an efficient polka-dot floating tandem junction. IBC and point-contact (PC) cells are fabricated on the same substrate and their efficiencies are compared. The possiblity of reaching 29 percent efficiency at 300X is shown.

  11. Dissolution Behavior of Indium in CaO-SiO2-Al2O3 Slag

    Science.gov (United States)

    Ko, Kyu Yeol; Park, Joo Hyun

    2011-12-01

    The solubility of indium in a molten CaO-SiO2-Al2O3 system was measured at 1773 K (1500 °C) to establish the dissolution mechanism of indium under a highly reducing atmosphere. The solubility of indium increases with increasing oxygen potential, whereas it decreases with increased activity of basic oxide. Therefore, a dissolution mechanism of indium can be constructed according to the following equation: {{In}}({{s}}) + 1/4{{O}}2 ({{g}}) = ({{In}}^{ + } ) + 1/2({{O}}^{2 - } ) The relationship between indium capacity and sulfide capacity shows a good correlation that is consistent with theoretical expectations. The enthalpy change of the indium dissolution reaction is negative, which indicates that the dissolution is an exothermic reaction. The heat of dissolution into high-silica melts is greater than that into low-silica melts. The solubility of indium is strongly dependent on the silica content. The activity coefficient, and thus the excess free energy of In2O, decreases linearly with increasing silica content, indicating that the In2O is believed to behave as a weak basic oxide in the current CaO-SiO2-Al2O3 ternary system under reducing conditions.

  12. Highly Efficient Solid Oxide Electrolyzer & Sabatier System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Paragon Space Development Corporation (Paragon) and ENrG Incorporated (ENrG) are teaming to provide a highly efficient reactor for carbon monoxide/carbon dioxide...

  13. Highly Efficient Solid Oxide Electrolyzer & Sabatier System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Paragon Space Development Corporation® (Paragon) and ENrG Incorporated (ENrG) are teaming to provide a highly efficient reactor for carbon monoxide/carbon...

  14. High Efficiency Lighting with Integrated Adaptive Control (HELIAC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the continued development of the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system. Solar radiation is not a viable...

  15. Compact Tunable High-Efficiency Entangled Photon Source Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MagiQ proposes to develop a compact tunable high-efficiency low-power-consumption entangled photon source. The source, based on inter-Fabry-Perot-cavity Spontaneous...

  16. High Efficiency Lighting with Integrated Adaptive Control (HELIAC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed project is the development of High Efficiency Lighting with Integrated Adaptive Control (HELIAC) systems to drive plant growth. Solar...

  17. High Efficiency Direct Methane Solid Oxide Fuel Cell System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a defined need for energy dense and highly efficient energy storage and power delivery systems for future space missions. Compared to other fuel cell...

  18. An Improved, Highly Efficient Method for the Synthesis of Bisphenols

    Directory of Open Access Journals (Sweden)

    L. S. Patil

    2011-01-01

    Full Text Available An efficient synthesis of bisphenols is described by condensation of substituted phenols with corresponding cyclic ketones in presence of cetyltrimethylammonium chloride and 3-mercaptopropionic acid as a catalyst in extremely high purity and yields.

  19. Global climate change: Mitigation opportunities high efficiency large chiller technology

    Energy Technology Data Exchange (ETDEWEB)

    Stanga, M.V.

    1997-12-31

    This paper, comprised of presentation viewgraphs, examines the impact of high efficiency large chiller technology on world electricity consumption and carbon dioxide emissions. Background data are summarized, and sample calculations are presented. Calculations show that presently available high energy efficiency chiller technology has the ability to substantially reduce energy consumption from large chillers. If this technology is widely implemented on a global basis, it could reduce carbon dioxide emissions by 65 million tons by 2010.

  20. Highly efficient procedure for the transesterification of vegetable oil

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xuezheng; Gao, Shan; He, Mingyuan [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Yang, Jianguo [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Energy Institute, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2009-10-15

    The highly efficient procedure has been developed for the synthesis of biodiesel from vegetable oil and methanol. The KF/MgO has been selected as the most efficient catalyst for the reactions with the yield of 99.3%. Operational simplicity, without need of the purification of raw vegetable oil, low cost of the catalyst used, high activities, no saponification and reusability are the key features of this methodology. (author)

  1. The photonic nanowire: A highly efficient single-photon source

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2014-01-01

    The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency.......The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency....

  2. Microresonator Kerr frequency combs with high conversion efficiency

    CERN Document Server

    Xue, Xiaoxiao; Xuan, Yi; Qi, Minghao; Weiner, Andrew M

    2016-01-01

    Microresonator-based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase-locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve ~30% conversion efficiency (~200 mW on-chip comb power excluding the pump) in the fiber telecommunication band with broadband mode-locked dark-pulse combs. We present a general analysis on the efficiency which is applicable to any phase-locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time-domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.

  3. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  4. Prospects of novel front and back contacts for high efficiency cadmium telluride thin film solar cells from numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Matin, M.A. [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Electrical and Electronics Engineering, Chittagong University of Engineering and Technology (CUET), Chittagong (Bangladesh); Mannir Aliyu, M.; Quadery, Abrar H. [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Amin, Nowshad [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia)

    2010-09-15

    Cadmium telluride (CdTe) thin film solar cell has long been recognized as a leading photovoltaic candidate for its high efficiency and low cost. A numerical simulation has been performed using AMPS-1D simulator to explore the possibility of higher efficiency and stable CdS/CdTe cell among several cell structures with indium tin oxide (ITO) and cadmium stannate (Cd{sub 2}SnO{sub 4}) as front contact material, tin oxide (SnO{sub 2}), zinc oxide (ZnO) and zinc stannate (Zn{sub 2}SnO{sub 4}) as buffer layer, and silver (Ag) or antimony telluride (Sb{sub 2}Te{sub 3}) with molybdenum (Mo) or zinc telluride (ZnTe) with aluminium (Al) as back contact material. The cell structure ITO/i-ZnO/CdS/CdS{sub x}Te{sub 1-x}/CdTe/Ag has shown the best conversion efficiency of 16.9% (Voc=0.9 V, Jsc=26.35 mA/cm{sup 2}, FF=0.783). This analysis has shown that ITO as front contact material, ZnO as buffer layer and ZnTe or Sb{sub 2}Te{sub 3} back surface reflector (BSR) are suitable material system for high efficiency (>15%) and stable CdS/CdTe cells. The cell normalized efficiency linearly decreased at a temperature gradient of -0.25%/ C for ZnTe based cells, and at -0.40%/ C for other cells. (author)

  5. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J. [Elsam/Elkraft/TU Denmark (Denmark)

    1998-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  6. Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene.

    Science.gov (United States)

    Tsai, Hung-Sheng; Tsai, Teh-Hua

    2012-01-04

    The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR₃ in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.

  7. Indium(III)-catalyzed synthesis of N-substituted pyrroles under solvent-free conditions

    OpenAIRE

    Chen,Jiu-Xi; Liu,Miao-Chang; Yang,Xiao-Liang; Ding,Jin-Chang; Wu,Hua-Yue

    2008-01-01

    A variety of N-substituted pyrroles have been synthesized by reacting γ-diketones (R¹C(O)CH2CH2C(O)R²: R¹, R² = Me, Ph) with amines (RNH2: R=Alkyl, Aryl, TsNH) or diamines (1,6-diaminohexane and 1,2-diaminoethane) in the presence of indium tribromide, indium trichloride or indium trifluoromethanesulfonate at room temperature under solvent-free conditions. The experiment protocol features simple operations, and the products are isolated in high to excellent yields (81-98%).

  8. Indium(III)-catalyzed synthesis of N-substituted pyrroles under solvent-free conditions

    OpenAIRE

    Chen,Jiu-Xi; Liu,Miao-Chang; Yang, Xiao-Liang; Ding,Jin-Chang; Wu,Hua-Yue

    2008-01-01

    A variety of N-substituted pyrroles have been synthesized by reacting γ-diketones (R¹C(O)CH2CH2C(O)R²: R¹, R² = Me, Ph) with amines (RNH2: R=Alkyl, Aryl, TsNH) or diamines (1,6-diaminohexane and 1,2-diaminoethane) in the presence of indium tribromide, indium trichloride or indium trifluoromethanesulfonate at room temperature under solvent-free conditions. The experiment protocol features simple operations, and the products are isolated in high to excellent yields (81-98%).

  9. Separation and Concentration of Indium from Leaching Solution Containing Indium, Antimony and Iron Ions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated by extracting with HDEHP-kerosine solution, washing antimony and iron ions with oxalic acid solution and stripping indium with a dilute solution of hydrochloric acid. InCl3 solution with purity above 90% is obtained. Indium can be enriched through a circulation of stripping with a dilute HCl solution. The concentration of InCl3 solution is about 25~30 g/L.

  10. Fundamental thermodynamics and experiments in fabricating high efficiency CuInSe[sub 2] solar cells by selenization without the use of H[sub 2]Se

    Energy Technology Data Exchange (ETDEWEB)

    Albin, D.; Carapella, J.; Gabor, A.; Tennant, A.; Tuttle, J.; Duda, A.; Matson, R.; Mason, A.; Contreras, M.; Noufi, R. (National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States))

    1992-12-01

    Selenization is the current process by which state-of-the-art CuInSe[sub 2] polycrystalline thin-film photovoltaic modules are industrially fabricated. The distinguishing characteristic of this approach is that material deposition is separate from compound formation. In conventional selenization, In-Cu layers, often referred to as precursors, are deposited on molybdenum-coated glass substrates and subsequently transformed into CuInSe[sub 2] following exposure to a selenium-containing environment. Although the highly toxic gas, H[sub 2]Se, has been considered a necessary component of selenization, recent safety concerns have accelerated the development of Se vapor as a possible substitute for H[sub 2]Se. In more recent variations of the process, solid selenium is incorporated during the precursor fabrication step, and subsequent thermal annealing is used to form compounds among the three elements. In this paper, we discuss the thermodynamic fundamentals of selenization using elemental Se as an alternative to H[sub 2]Se. This discussion is augmented by empirical observations drawn from our own efforts in fabricating efficient ([gt]10%) CdS/CuInSe[sub 2] devices by selenization in thermally-evaporated Se vapors. Indium transport, presumably via the formation of In[sub 2]Se or InSe gaseous species, dominates the kinetics of selenization using sequentially evaporated (indium on copper) precursors, while lateral phase separation was observed in the case of co-deposited In+Cu precursors.

  11. High Efficiency of Two Efficient QSDC with Authentication Is at the Cost of 1Their Security

    Institute of Scientific and Technical Information of China (English)

    QIN Su-Juan; WEN Qiao-Yan; MENG Luo-Ming; ZHU Fu-Chen

    2009-01-01

    Two efficient protocols of quantum secure direct communication with authentication [Chin. Phys. Lett. 25 (2008)2354] were recently proposed by Liu et al. to improve the efficiency of two protocols presented in [Phys. Rev. A 75 (2007) 026301] by four Pauli operations. We show that the high efficiency of the two protocols is at the expense of their security. The authenticator Trent can reach half the secret by a particular attack strategy in the first protocol. In the second protocol, not only Trent but also an eavesdropper outside can elicit half-information about the secret from the public declaration.

  12. Highly efficient Nd: YAG ceramic CW laser with 59.8% slope-efficiency

    Institute of Scientific and Technical Information of China (English)

    Yunfeng Qi; Qihong Lou; Haixia Ma; Jingxing Dong

    2005-01-01

    @@ In this paper, a highly efficient Ti:sapphire end-pumped 1 at.-% Nd:YAG ceramic laser that is comparable in efficiency with Nd:YAG single crystal lasers has been developed. Optical absorption and emission spectra for Nd:YAG ceramics have been measured. With 673-mW pumping, 295-mW laser output at 1064 nm has been obtained. The laser threshold is only 13 mW. Deducted the transmitted light, the corresponding optical-to-optical conversion efficiency is 58.4%. The lasing characteristics of Nd:YAG ceramic are nearly equal to those of Nd:YAG single crystal.

  13. Very-High Efficiency, High Power Laser Diodes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — AdTech Photonics, in collaboration with the Center for Advanced Studies in Photonics Research (CASPR) at UMBC, is pleased to submit this proposal entitled ?Very-High...

  14. Research on stable, high-efficiency, amorphous silicon multijunction modules

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, A.; Bennett, M.; Chen, L.; D' Aiello, R.; Fieselmann, B.; Li, Y.; Newton, J.; Podlesny, R.; Yang, L. (Solarex Corp., Newtown, PA (United States). Thin Film Div.)

    1992-08-01

    This report describes work to demonstrate a multijunction module with a stabilized'' efficiency (600 h, 50{degrees}C, AM1.5) of 10.5%. Triple-junction devices and modules using a-Si:H alloys with carbon and germanium were developed to meet program goals. ZnO was used to provide a high optical transmission front contact. Proof of concept was obtained for several important advances deemed to be important for obtaining high (12.5%) stabilized efficiency. They were (1) stable, high-quality a-SiC:H devices and (2) high-transmission, textured ZnO. Although these developments were not scaled up and included in modules, triple-junction module efficiencies as high as 10.85% were demonstrated. NREL measured 9.62% and 9.00% indoors and outdoors, respectively. The modules are expected to lose no more than 20% of their initial performance. 28 refs.

  15. Time-Resolved Photoluminescence Studies of Indium-Rich InGaN Alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-De; ZHU You-Zhang; YAN Guo-Jun; YUAN Jin-She; K.H.Kim; J.Y.Lin; H.X.Jiang

    2005-01-01

    @@ Time-resolved photoluminescence (PL) spectroscopy has be used to investigate indium-rich InGaN alloys grown on sapphire substrates by metal organic chemical vapor deposition. Photoluminescence measurement indicates two dominant emission lines originating from phase-separated high- and low-indium-content regions. Temperature and excitation intensity dependence of the two main emission lines in these InGaN alloys have been measured.Temperature and energy dependence of PL decay lifetime show clearly different decay behaviour for the two main lines. Our results show that photo-excited carriers are deeply localized in the high indium regions while photo-excited carriers can be transferred within the low-indium-content regions as well as to high-content regions.

  16. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.

    Science.gov (United States)

    Crisp, Ryan W; Panthani, Matthew G; Rance, William L; Duenow, Joel N; Parilla, Philip A; Callahan, Rebecca; Dabney, Matthew S; Berry, Joseph J; Talapin, Dmitri V; Luther, Joseph M

    2014-09-23

    We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.

  17. 6-Alkoxymethyl-3-hydroxy-4H-pyranones: potential ligands for cell-labelling with indium

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, B.L. [Royal Infirmary, Manchester (United Kingdom). Dept. of Nuclear Medicine; Sampson, C.B. [Addenbrooke' s Hospital, Cambridge (United Kingdom). Dept. of Nuclear Medicine and Rheumatology; Abeysinghe, R.D.; Porter, J.B. [Univ. Medical School, London (United Kingdom). Dept. of Clinical Haematology,; Hider, R.C. [King' s College London, London (United Kingdom). Dept. of Pharmacy

    1999-11-01

    We have identified ligands for cell labelling with indium-111: 3-hydroxy-6-propoxymethyl-4H-pyran-4-one and 6-butoxymethyl-3-hydroxy-4H-pyran-4-one. The leucocyte labelling efficiencies of {sup 111}In complexes of these ligands were higher and label stabilities were found to be similar compared with those obtained using {sup 111}In-tropolonate. High labelling efficiencies of neutrophils and lymphocytes were achieved with {sup 111}In complexes of pyranones. Tropolone was found to have a greater inhibitory effect on metalloenzymes and to cause greater impairment of platelet function than 3-hydroxy-6-propoxymethyl-4H-pyran-4-one. Thus 6-alkoxymethyl-3-hydroxy-4H-pyran-4-ones may have advantages over current ligands used in cell labelling with {sup 111}In. (orig.)

  18. Systematic Approach for Design of Broadband, High Efficiency, High Power RF Amplifiers

    National Research Council Canada - National Science Library

    Mohadeskasaei, Seyed Alireza; An, Jianwei; Chen, Yueyun; Li, Zhi; Abdullahi, Sani Umar; Sun, Tie

    2017-01-01

    ...‐AB RF amplifiers with high gain flatness. It is usually difficult to simultaneously achieve a high gain flatness and high efficiency in a broadband RF power amplifier, especially in a high power design...

  19. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency

    Science.gov (United States)

    Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.

    2017-08-01

    Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system solar cell at >660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.

  20. Efficient Unsteady Flow Visualization with High-Order Access Dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    2016-04-19

    We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiency of pathline computation.

  1. Mid-infrared interband cascade photodetectors with high quantum efficiency

    Science.gov (United States)

    Tian, Zhao-Bing; Singh, Anjali; Rigg, Kevin; Krishna, Sanjay

    2016-02-01

    Antimony-based Interband Cascade (IC) photodetectors are emerging as viable candidates for highperformance infrared applications, especially at high operating temperatures. In our previous IC detector designs using InAs/GaSb Type-II superlattices, the quantum efficiency was relatively low as the designs were optimized for high signal to noise ratio. Here we report our recent development of low-noise mid-IR IC photodetectors with high external quantum efficiency. By adopting IC detectors with thicker absorber designs, the quantum efficiency of these mid-IR IC detectors has been increased up to 35%. These IC devices continue to have low-dark current and high temperature operations. Some further analysis on the device characteristics is also presented.

  2. Efficient estimation for ergodic diffusions sampled at high frequency

    DEFF Research Database (Denmark)

    Sørensen, Michael

    A general theory of efficient estimation for ergodic diffusions sampled at high fre- quency is presented. High frequency sampling is now possible in many applications, in particular in finance. The theory is formulated in term of approximate martingale estimating functions and covers a large class...

  3. High-Efficiency Klystron Design for the CLIC Project

    CERN Document Server

    Mollard, Antoine; Peauger, Franck; Plouin, Juliette; Beunas, Armel; Marchesin, Rodolphe

    2017-01-01

    The CLIC project requests new type of RF sources for the high power conditioning of the accelerating cavities. We are working on the development of a new kind of high-efficiency klystron to fulfill this need. This work is performed under the EuCARD-2 European program and involves theoretical and experimental study of a brand new klystron concept.

  4. Highly-efficient electrotransformation of the yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Faber, Klaas Nico; Haima, Peter; Harder, Wim; Veenhuis, Marten; AB, Geert

    1994-01-01

    A highly-efficient method for transformation of the methylotrophic yeast Hansenula polymorpha has been developed. Routinely, transformation frequencies of up to 1.7 × 10^6/µg plasmid DNA were obtained by applying an electric pulse of the exponential decay type of 7.5 kV/cm to a highly-concentrated c

  5. High-Efficiency Solar Cells on Low-Cost Substrates

    Science.gov (United States)

    Daiello, R. V.; Robinson, P. H.

    1982-01-01

    High-efficiency solar cells made in thin epitaxial films grown on low-cost commercial silicon substrates. Cost of cells is much less than if high-quality single-crystal silicon were used for substrates and performance of cells is almost as good.

  6. HIGHLY-EFFICIENT ELECTROTRANSFORMATION OF THE YEAST HANSENULA-PALYMORPHA

    NARCIS (Netherlands)

    Faber, Klaas Nico; HAIMA, P.; Harder, W; Veenhuis, M.; AB, G.

    1994-01-01

    A highly-efficient method for transformation of the methylotrophic yeast Hansenula polymorpha has been developed. Routinely, transformation frequencies of up to 1.7 x 10(6)/mu g plasmid DNA were obtained by applying an electric pulse of the exponential decay type of 7.5 kV/cm to a highly-concentrate

  7. Highly Efficient L-Band Fibre -DFB Lasers

    Institute of Scientific and Technical Information of China (English)

    Libin Fu; Morten Ibsen; David J. Richardson; David N. Payne

    2003-01-01

    A more than 12 mW highly efficient fibre-DFB laser operating at 1618.3 nm is fabricated and characterised. Its high-power, low-noise and single-polarisation characteristics make it very suitable WDM-source for L-band transmission.

  8. Efficient estimation for high similarities using odd sketches

    DEFF Research Database (Denmark)

    Mitzenmacher, Michael; Pagh, Rasmus; Pham, Ninh Dang

    2014-01-01

    . This means that Odd Sketches provide a highly space-efficient estimator for sets of high similarity, which is relevant in applications such as web duplicate detection, collaborative filtering, and association rule learning. The method extends to weighted Jaccard similarity, relevant e.g. for TF-IDF vector...

  9. Intermittency-friendly and high-efficiency cogeneration

    DEFF Research Database (Denmark)

    Blarke, Morten; Dotzauer, Erik

    2011-01-01

    -efficiency and widely applicable option in distributed cogeneration better supporting the co-existence between cogenerators and intermittent renewables in the energy system. The concept involves integrating an efficient high-temperature compression heat pump that uses only waste heat recovered from flue gases as low....... It is found that CHP-HP-FG-CS offers significant reductions in fuel consumption (−8.9%) and operational production costs (−11.4%). The plant’s fuel-to-energy efficiency increases from 88.9 to 95.5%, which is state-of-the-art. The plant’s intermittency-friendliness coefficient Rc improves only marginally due...

  10. Quantifying the Efficiency Advantages of High Viscosity Index Hydraulic Fluids

    Institute of Scientific and Technical Information of China (English)

    Christian D. Neveu; Michael D. Zink; Alex Tsay

    2006-01-01

    By providing higher in- use viscosity at elevated operating temperatures, hydraulic fluids with high viscosity index improve the efficiency of the hydraulic system. For mobile hydraulic equipment this efficiency can be quantified as an increase in fuel economy. This paper reviews the research that demonstrates these efficiency advantages in gear, vane and piston pumps and presents a method for predicting the overall fuel economy for a fleet of hydraulic equipment in opquipment operator to easily improve the performance of the system and reduce fuel consumption.

  11. Nanoporous Carbon Nitride: A High Efficient Filter for Seawater Desalination

    OpenAIRE

    Weifeng LI; Yang, Yanmei; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2015-01-01

    The low efficiency of commercially-used reverse osmosis (RO) membranes has been the main obstacle in seawater desalination application. Here, we report the auspicious performance, through molecular dynamics simulations, of a seawater desalination filter based on the recently-synthesized graphene-like carbon nitride (g-C2N) [Nat. Commun., 2015, 6, 6486]. Taking advantage of the inherent nanopores and excellent mechanical properties of g-C2N filter, highly efficient seawater desalination can be...

  12. Report of high quantum efficiency photocathode at Milano

    Energy Technology Data Exchange (ETDEWEB)

    Michelato, P. (INFN and University of Milano, Lab. LASA, Via F.lli Cervi 201, 2009, Segrate (Georgia))

    1992-07-01

    R D activity on high quantum efficiency alkali antimonide photocathode is in progress at Milano, in the context of the ARES program. Inside a preliminary preparation chamber, Cs[sub 3]Sb layers with qunatum efficiency up to 9% (at [lambda]=543.5 nm) and lifetime of some days has been recently produced on copper, stainless steel and niobium, using a reproducible deposition procedure adapted to the material of the different substrata.

  13. High-Efficient Low-Cost Photovoltaics Recent Developments

    CERN Document Server

    Petrova-Koch, Vesselinka; Goetzberger, Adolf

    2009-01-01

    A bird's-eye view of the development and problems of recent photovoltaic cells and systems and prospects for Si feedstock is presented. High-efficient low-cost PV modules, making use of novel efficient solar cells (based on c-Si or III-V materials), and low cost solar concentrators are in the focus of this book. Recent developments of organic photovoltaics, which is expected to overcome its difficulties and to enter the market soon, are also included.

  14. High-efficiency "green" quantum dot solar cells.

    Science.gov (United States)

    Pan, Zhenxiao; Mora-Seró, Iván; Shen, Qing; Zhang, Hua; Li, Yan; Zhao, Ke; Wang, Jin; Zhong, Xinhua; Bisquert, Juan

    2014-06-25

    Semiconductor quantum dots (QDs) are extremely interesting materials for the development of photovoltaic devices, but currently the present the drawback is that the most efficient devices have been prepared with toxic heavy metals of Cd or Pb. Solar cells based on "green" QDs--totally free of Cd or Pb--present a modest efficiency of 2.52%. Herein we achieve effective surface passivation of the ternary CuInS2 (CIS) QDs that provides high photovoltaic quality core/shell CIS/ZnS (CIS-Z) QDs, leading to the development of high-efficiency green QD solar cells that surpass the performance of those based on the toxic cadmium and lead chalcogenides QDs. Using wide absorption range QDs, CIS-Z-based quantum dot sensitized solar cell (QDSC) configuration with high QD loading and with the benefit of the recombination reduction with type-I core/shell structure, we boost the power conversion efficiency of Cd- and Pb-free QDSC to a record of 7.04% (with certified efficiency of 6.66%) under AM 1.5G one sun irradiation. This efficiency is the best performance to date for QDSCs and also demonstrates that it is possible to obtain comparable or even better photovoltaic performance from green CIS QDs to the toxic cadmium and lead chalcogenides QDs.

  15. Effect of indium addition in U-Zr metallic fuel on lanthanide migration

    Science.gov (United States)

    Kim, Yeon Soo; Wiencek, T.; O'Hare, E.; Fortner, J.; Wright, A.; Cheon, J. S.; Lee, B. O.

    2017-02-01

    Advanced fast reactor concepts to achieve ultra-high burnup (∼50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys was performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.

  16. Nonlinear electronic transport behavior in Indium Nitride

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Cloves G., E-mail: cloves@pucgoias.edu.br [Departamento de Fisica, Pontificia Universidade Catolica de Goias, CP 86, 74605-010 Goiania, Goias (Brazil)

    2012-11-15

    A theoretical study on the nonlinear transport of electrons and of the nonequilibrium temperature in n-doped Indium Nitride under influence of moderate to high electric fields (in this nonlinear domain) is presented. It is based on a nonlinear quantum kinetic theory which provides a description of the dissipative phenomena developing in the system. The electric current and the mobility in the steady state are obtained, and their dependence on the electric field strength and on the concentration (that is, a mobility dependent nonlinearly on field and concentration) is obtained and analyzed. -- Highlights: Black-Right-Pointing-Pointer We have reported on the topic of nonlinear transport (electron mobility) in n-doped InN. Black-Right-Pointing-Pointer The results evidence the presence of two distinctive regimes. Black-Right-Pointing-Pointer The dependence of the mobility on the electric field is manifested through of the relaxation times.

  17. Indium-carbon pairs in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Tessema, G; Vianden, R [Helmholtz Institut fuer Strahlen-und Kernphysik, Universitaet Bonn, Nussallee 14-16, 53115 Bonn (Germany)

    2003-08-06

    The interactions of carbon with the probe nucleus {sup 111}In have been studied in germanium using the perturbed angular correlation method, which has the ability to detect the microscopic environments of the probe atom by means of the interaction of the nuclear moments of the probe with the surrounding electromagnetic fields. At high dose carbon implantation in germanium two complexes have been identified by their unique quadrupole interaction frequencies. An interaction frequency of {nu}{sub Q1} = 207(1) MHz ({eta} = 0.16(3)) appeared at annealing temperatures below 650 deg. C. Above 650 deg. C, it was replaced by a second interaction frequency of {nu}{sub Q2} 500(1) MHz ({eta} = 0). The frequencies are attributed to two different carbon-indium pairs. The orientation of the corresponding electric field gradients and the thermal stability of the defect complexes are studied.

  18. High-frequency millimeter wave absorption of indium-substituted ε-Fe{sub 2}O{sub 3} spherical nanoparticles (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikiyo, Marie; Namai, Asuka [Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakajima, Makoto [Department of Physics, Chiba University 1-33 Yayoicho, Inage Ward, Chiba-shi, Chiba 263-8522 (Japan); Yamaguchi, Keita; Suemoto, Tohru [Institute for Solid State Physics, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Ohkoshi, Shin-ichi, E-mail: ohkoshi@chem.s.u-tokyo.ac.jp [Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); CREST, JST, K' s Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2014-05-07

    In this work, we prepared indium-substituted ε-iron oxide (ε-In{sub x}Fe{sub 2−x}O{sub 3}) spherical nanoparticles by a combination method of reverse-micelle and sol-gel techniques. The powder X-ray diffraction pattern with Rietveld analysis shows that ε-In{sub x}Fe{sub 2−x}O{sub 3} has an orthorhombic crystal structure (space group: Pna2{sub 1}), and the In{sup 3+} ions mainly replace the Fe{sup 3+} ions at B site among the four nonequivalent Fe{sup 3+} sites (A–D sites). The magnetic measurements show that the coercive field (H{sub c}) at 300 K decreases with increasing x, i.e., H{sub c} = 21.9 kOe (x = 0), 12.2 kOe (x = 0.04), 11.6 kOe (x = 0.09), 7.8 kOe (x = 0.13), and 5.9 kOe (x = 0.18). Millimeter wave absorption was measured by terahertz time-domain spectroscopy, and the decrease of resonance frequency (f{sub r}) is observed, i.e., f{sub r} = 182 GHz (x = 0), 160 GHz (x = 0.04), 143 GHz (x = 0.09), 123 GHz (x = 0.13), and 110 GHz (x = 0.18). This decrease in the f{sub r} value is understood by the decrease of magnetic anisotropy, which is caused by the replacement of Fe{sup 3+} (S = 5/2) with nonmagnetic In{sup 3+} (S = 0) at B site contributing to the magnetic anisotropy.

  19. High-performance low-cost back-channel-etch amorphous gallium-indium-zinc oxide thin-film transistors by curing and passivation of the damaged back channel.

    Science.gov (United States)

    Park, Jae Chul; Ahn, Seung-Eon; Lee, Ho-Nyeon

    2013-12-11

    High-performance, low-cost amorphous gallium-indium-zinc oxide (a-GIZO) thin-film-transistor (TFT) technology is required for the next generation of active-matrix organic light-emitting diodes. A back-channel-etch structure is the most appropriate device structure for high-performance, low-cost a-GIZO TFT technology. However, channel damage due to source/drain etching and passivation-layer deposition has been a critical issue. To solve this problem, the present work focuses on overall back-channel processes, such as back-channel N2O plasma treatment, SiOx passivation deposition, and final thermal annealing. This work has revealed the dependence of a-GIZO TFT characteristics on the N2O plasma radio-frequency (RF) power and frequency, the SiH4 flow rate in the SiOx deposition process, and the final annealing temperature. On the basis of these results, a high-performance a-GIZO TFT with a field-effect mobility of 35.7 cm(2) V(-1) s(-1), a subthreshold swing of 185 mV dec(-1), a switching ratio exceeding 10(7), and a satisfactory reliability was successfully fabricated. The technology developed in this work can be realized using the existing facilities of active-matrix liquid-crystal display industries.

  20. Indium Helps Strengthen Al/Cu/Li Alloy

    Science.gov (United States)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  1. A high efficient photoluminescence Zn–Cu–In–S/ZnS quantum dots with long lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [Department of Chemical & Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Liang, Zhurong [CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Xueqing, E-mail: xuxq@ms.giec.ac.cn [CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Nan [Department of Chemical & Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Fang, Jun, E-mail: jfang@xmu.edu.cn [Department of Chemical & Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Wang, Junxia; Xu, Gang [CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-08-15

    Highlights: • CuInS{sub 2} and ZnCuInS{sub 2}/ZnS QDs have been prepared with a simple and nontoxic method. • The obtained CIS was compositional Cu-rich with long lifetime of ∼446 ns. • ZnCuInS{sub 2}/ZnS QDs have a high PL QY of ∼73% with long lifetime of ∼359 ns. - Abstract: Highly Cu-rich copper indium sulfide (CuInS{sub 2}, CIS) quantum dots were synthesized utilizing copper chloride (CuCl) and indium acetate (In(Ac){sub 3}) as metal cation precursors, combined with n-dodecanethiol (DDT) as a coordinating sulfur source and solvent. With excess of In(Ac){sub 3}, i.e. with Cu/In ratios of 1/4, together with Zn{sup 2+} ions post-treatment, a relatively high photoluminescence quantum yield (QY) of ∼73% with long average lifetime of ∼359 ns has been obtained, which is proposed to be attributed to the Cu-rich defect states in the CIS nanocrystals (NCs) nuclei. Meanwhile, the formation of In-rich CIS–ZnS alloy, i.e. Zn–Cu–In–S (ZCIS) with high density of Cu vacancies, combined with the surface passivation of ZnS overlay resulted in a high QY. Finally, the formation mechanism of the ZCIS/ZnS with Cu-rich nuclei has been proposed.

  2. Heat transparent high intensity high efficiency solar cell

    Science.gov (United States)

    Evans, J. C., Jr. (Inventor)

    1982-01-01

    An improved solar cell design is described. A surface of each solar cell has a plurality of grooves. Each groove has a vertical face and a slanted face that is covered by a reflecting metal. Light rays are reflected from the slanted face through the vertical face where they traverse a photovoltaic junction. As the light rays travel to the slanted face of an adjacent groove, they again traverse the junction. The underside of the reflecting coating directs the light rays toward the opposite surface of solar cell as they traverse the junction again. When the light rays travel through the solar cell and reach the saw toothed grooves on the under side, the process of reflection and repeatedly traversing the junction again takes place. The light rays ultimately emerge from the solar cell. These solar cells are particularly useful at very high levels of insolation because the infrared or heat radiation passes through the cells without being appreciably absorbed to heat the cell.

  3. High efficiency III-nitride light-emitting diodes

    Science.gov (United States)

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  4. Investigation of beat-waves generation with high efficiency

    Science.gov (United States)

    Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G.

    2013-10-01

    A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.

  5. Investigation of beat-waves generation with high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Song, W.; Shi, Y. C.; Deng, Y. Q.; Zhu, X. X.; Zhang, Z. Q.; Hu, X. G. [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an, Shanxi 710024 (China)

    2013-10-21

    A method for generating high power beating radio-frequency wave with high conversion efficiency is proposed. Based on Cherenkov radiation, two longitudinal resonant modes are excited simultaneously and interacted with intense electron beam synchronously. An experiment was carried out and beat-waves with an average power of about 2.3 GW, frequencies of 9.29 GHz and 10.31 GHz, and efficiency of about 40% were obtained. Through controlling the electron energy, the amplitude proportions of the two resonant modes are altered, and different beat-wave patterns are formed.

  6. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...... the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  7. Design and simulations of highly efficient single-photon sources

    DEFF Research Database (Denmark)

    Gregersen, Niels; de Lasson, Jakob Rosenkrantz; Mørk, Jesper

    The realization of the highly-efficient single-photon source represents not only an experimental, but also a numerical challenge. We will present the theory of the waveguide QED approach, the design challenges and the current limitations. Additionally, the important numerical challenges in the si......The realization of the highly-efficient single-photon source represents not only an experimental, but also a numerical challenge. We will present the theory of the waveguide QED approach, the design challenges and the current limitations. Additionally, the important numerical challenges...

  8. Ruthenium(III)-catalysed phenylselenylation of allyl acetates by diphenyl diselenide and indium(I) bromide in neat: isolation and identification of intermediate.

    Science.gov (United States)

    Saha, Amit; Ranu, Brindaban C

    2011-03-21

    A fast and efficient phenylselenylation of allyl acetates by diphenyl diselenide and indium(I) bromide has been achieved in neat under the catalysis of Ru(acac)(3). The intermediate complex of diphenyl diselenide and indium has been isolated and identified as a polymeric pentacoordinated In(III) selenolate complex, [In(SePh)(3)](n).

  9. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  10. High-efficiency design of a mixed-flow pump

    Institute of Scientific and Technical Information of China (English)

    KIM; Jin-Hyuk; AHN; Hyung-Jin; KIM; Kwang-Yong

    2010-01-01

    High-efficiency design of a mixed-flow pump has been carried out based on numerical analysis of a three-dimensional viscous flow.For analysis,the Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized by finite-volume approximations.Structured grid system was constructed in the computational domain,which has O-type grids near the blade surfaces and H/J-type grids in other regions.The numerical results were validated with experimental data for the heads and hydraulic efficiencies at different flow coefficients.The hydraulic efficiency at the design flow coefficient was evaluated with variation of the geometric variables,i.e.,the area of the discharge and length of the vane in the diffuser.The result has shown that the hydraulic efficiency of a mixed-flow pump at the design condition is improved by the modification of the geometry.

  11. High extraction efficiency ultraviolet light-emitting diode

    Science.gov (United States)

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (efficiently inject carriers in all the QWs, are preferred.

  12. Electrochemical removal of indium ions from aqueous solution using iron electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Huang, Yen-Hsiang [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2009-12-15

    The removal of indium ions from aqueous solution was carried out by electrocoagulation in batch mode using an iron electrode. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA/cm{sup 2}, 0.003N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The indium ion removal efficiency decreased with an increase in the initial concentration. Results for the indium ion removal kinetics at various current densities show that the kinetic rates conformed to the pseudo-second-order kinetic model with good correlation. The experimental data were also tested against different adsorption isotherm models for describing the electrocoagulation process. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules.

  13. Nonlinear radiation response of n-doped indium antimonide and indium arsenide in intense terahertz field

    Science.gov (United States)

    Gong, Jiao-Li; Liu, Jin-Song; Chu, Zheng; Yang, Zhen-Gang; Wang, Ke-Jia; Yao, Jian-Quan

    2016-10-01

    The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide (InSb) and indium arsenide (InAs) in an intense terahertz (THz) field are studied by using the method of ensemble Monte Carlo (EMC) at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 kV/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in InSb, and only 5 THz in InAs, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in InSb, while impact ionization and intervalley scattering work together in InAs. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105 and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2012FFA074 and 2013BAA002), the Wuhan Municipal Applied Basic Research Project, China (Grant No. 20140101010009), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013KXYQ004 and 2014ZZGH021).

  14. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  15. High efficient solar tracker based on a simple shutter structure

    Science.gov (United States)

    Chen, Jin-Jia; Liu, Te-Shu; Huang, Kuang-Lung; Lin, Po-Chih

    2013-09-01

    In many photovoltaic (PV) or sunlight-illumination systems, solar trackers are always essential to obtain high energy/flux concentration efficiency, and that would lead to increase cost and extra power consumption due to the complex structure and heavy weight of the trackers. To decrease the cost while without sacrificing efficiency, a Fresnellens concentrator incorporated with a simple and cheap shutter, which consists of high reflective mirrors instead of conventional trackers, is proposed in this paper to provide solar tracking during the daytime. Thus, the time-variant and slant-incident sunlight rays can be redirected to vertically incident upon the surface of the Fresnel lens by appropriately arranging mirrors and swinging them to the proper slant angles with respect to the orientation of sunlight. The computer simulation results show that power concentration efficiency over 90%, as compared with the efficiency of directly normal incident sunlight, can be achieved with the mirror reflectance of 0.97 and for any solar incident angle within +/-75 degrees to the normal of the Fresnel lens. To verify the feasibility and performance of the concentrator with the proposed shutter, a sunlight illumination system based on this novel structure is demonstrated. Both computer simulation and practical measurement results for the prototype of the sunlight illumination system are also given to compare with. The results prove the simple and high efficient shutter applicable to general PV or sunlight-illumination systems for solar tracking.

  16. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    Energy Technology Data Exchange (ETDEWEB)

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  17. Indium bump array fabrication on small CMOS circuit for flip-chip bonding

    Institute of Scientific and Technical Information of China (English)

    Huang Yuyang; Zhang Yuxiang; Yin Zhizhen; Cui Guoxin; Liu H C; Bian Lifeng; Yang Hui; Zhang Yaohui

    2011-01-01

    We demonstrate a novel method for indium bump fabrication on a small CMOS circuit chip that is to be flip-chip bonded with a GaAs/AlGaAs multiple quantum well spatial light modulator.A chip holder with a via hole is used to coat the photoresist for indium bump lift-off.The 1000 μm-wide photoresist edge bead around the circuit chip can be reduced to less than 500μm,which ensures the integrity of the indium bump array.64 × 64 indium arrays with 20 μm-high,30 μm-diameter bumps are successfully formed on a 5 × 6.5 mm2 CMOS chip.

  18. High power, high efficiency millimeter wavelength traveling wave tubes for high rate communications from deep space

    Science.gov (United States)

    Dayton, James A., Jr.

    1991-01-01

    The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.

  19. Highly efficient light management for perovskite solar cells

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  20. Highly efficient light management for perovskite solar cells

    CERN Document Server

    Wang, Dong-Lin; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2015-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  1. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  2. High efficiency micro solar cells integrated with lens array

    Science.gov (United States)

    Fidaner, Onur; Suarez, Ferran A.; Wiemer, Michael; Sabnis, Vijit A.; Asano, Tetsuya; Itou, Akihiro; Inoue, Daijiro; Hayashi, Nobuhiko; Arase, Hidekazu; Matsushita, Akio; Nakagawa, Tohru

    2014-03-01

    We demonstrate high efficiency triple junction solar cells with submillimeter dimensions in an all-back-contact architecture. 550 × 550 μm2 cells flash at 41.3% efficiency under the air mass 1.5 direct normal spectrum at 50 W/cm2 at 25 °C. Compared to standard size production cells, the micro cells have reduced performance at 1-sun due to perimeter recombination, but the performance gap closes at higher concentrations. Micro cells integrated with lens arrays were tested on-sun with an efficiency of 34.7%. All-back-contact architecture and submillimeter dimensions are advantageous for module integration and heat dissipation, allowing for high-performance, compact, lightweight, and cost-effective concentrated photovoltaic modules.

  3. Highly efficient light management for perovskite solar cells.

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  4. Highly efficient solar cells based on poly(3-butylthiophene) nanowires.

    Science.gov (United States)

    Xin, Hao; Kim, Felix Sunjoo; Jenekhe, Samson A

    2008-04-23

    Poly(3-butylthiophene) (P3BT) nanowires, prepared by solution-phase self-assembly, have been used to construct highly efficient P3BT/fullerene nanocomposite solar cells. The fullerene/P3BT nanocomposite films showed an electrically bicontinuous nanoscale morphology with average field-effect hole mobilities as high as 8.0 x 10(-3) cm2/Vs due to the interconnected P3BT nanowire network revealed by TEM and AFM imaging. The power conversion efficiency of fullerene/P3BT nanowire devices was 3.0% (at 100 mW/cm2, AM1.5) in air and found to be identical with our similarly tested fullerene/poly(3-hexylthiophene) photovoltaic cells. This discovery expands the scope of promising materials and architectures for efficient bulk heterojunction solar cells.

  5. Cascaded Parametric Amplification for Highly Efficient Terahertz Generation

    CERN Document Server

    Ravi, Koustuban; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Muecke, Oliver D; Kaertner, Franz X

    2016-01-01

    A highly efficient, practical approach to high-energy terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. The THz wave initially generated by difference frequency generation between a strong narrowband optical pump and optical seed (0.1-10% of pump energy) kick-starts a repeated or cascaded energy down-conversion of pump photons. This helps to greatly surpass the quantum-defect efficiency and results in exponential growth of THz energy over crystal length. In cryogenically cooled periodically poled lithium niobate, energy conversion efficiencies >8% for 100 ps pulses are predicted. The calculations account for cascading effects, absorption, dispersion and laser-induced damage. Due to the coupled nonlinear interaction of multiple triplets of waves, THz-COPA exhibits physics distinct from conventional three-wave mixing parametric amplifiers. This in turn governs optimal phase-matching conditions, evolution of optical spectra as well as limitations o...

  6. Basic studies of 3-5 high efficiency cell components

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. (Purdue Univ., Lafayette, IN (United States))

    1993-01-01

    This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p[sup +] and n[sup +] GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

  7. Innovation development for highly energy-efficient housing

    NARCIS (Netherlands)

    Mlecnik, E.

    2014-01-01

    Buildings account for 40% of EU final energy demand and policy developments like the Energy Performance of Buildings Directive are stimulating the innovation development for nearly zero-energy housing. However, businesses switching to innovative products for highly energy-efficient houses is a proce

  8. Flexible, highly efficient all-polymer solar cells

    National Research Council Canada - National Science Library

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J

    2015-01-01

    .... These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM...

  9. Study on separation and induction of high efficient denitrifier

    Institute of Scientific and Technical Information of China (English)

    HUO Ai-qun; YU Tao; TAN Xin; ZHAO Lin

    2005-01-01

    A kind of denitrifier HY - 1 initially obtained from activated sludge was domesticated and inducted with UV and illumination to a new species bacterium HY -2 that has high bioactivity at low temperature. HY 2 was most active at 13 ℃. Nitrate and CODer removal efficiency was investigated under different temperature and C/N ratio.

  10. Field testing of high-efficiency supermarket refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D. (Foster-Miller, Inc., Waltham, MA (United States))

    1992-12-01

    The Electric Power Research Institute (EPRI) has undertaken a field test to quantify the performance of high-efficiency supermarket refrigeration. The initial work on this project was presented in EPRI report CU-6268 Supermarket Refrigeration Modeling and Field Demonstration.'' The information given here was generated through continued testing at the field test site. The field test was conducted at a supermarket owned by Safeway Stores, Inc., that was located in Menlo Park, CA. Testing was performed with the existing conventional refrigeration system and a high-efficiency multiplex refrigeration system that was installed for these tests. The results of the testing showed that the high-efficiency multiplex system reduced refrigeration energy consumption by 23.9% and peak electric demand for refrigeration by 30.0%. Analyses of these savings showed that the largest portion was due to the use of high-efficiency compressors (29.5% of total saving). Floating head pressure control, ambient and mechanical subcooling, compressor multiplexing and hot gas defrost accounted for 50% of total savings. The remainder of the savings (20.5%) were attributed to the use of an evaporative condenser. Tests were also conducted with several retrofit technologies. The most promising results were obtained with external liquid-suction heat exchangers installed at the outlets of the display cases. Favorable paybacks were calculated for these exchangers when they were used with very low and low temperature refrigeration.

  11. Innovation development for highly energy-efficient housing

    NARCIS (Netherlands)

    Mlecnik, E.

    2014-01-01

    Buildings account for 40% of EU final energy demand and policy developments like the Energy Performance of Buildings Directive are stimulating the innovation development for nearly zero-energy housing. However, businesses switching to innovative products for highly energy-efficient houses is a proce

  12. Platelet labelling with indium-hydroxypyridinone and indium-hydroxypyranone complexes

    Energy Technology Data Exchange (ETDEWEB)

    Abeysinghe, R.D. (Dept. of Clinical Haematology, University Coll. Medical School, London (United Kingdom)); Ellis, B.L. (Dept. of Pharmacy, Kings Coll., London (United Kingdom)); Hider, R.C. (Dept. of Pharmacy, Kings Coll., London (United Kingdom)); Porter, J.B. (Dept. of Clinical Haematology, University Coll. Medical School, London (United Kingdom))

    1994-10-01

    In order to identify new compounds which label platelets without affecting their function, three classes of metal chelating agents have been compared with oxine for their efficiency of indium-113m platelet labelling and for their short- and long-term effects on platelet function. The 3-hydroxypyridinones (both 2-ones and 4-ones) and 3-hydroxypyranones are bidentate chelators of trivalent metal ions that are neutrally charged in the metal-complexed form and hence gain access to cells readily. The hydroxypyranone ethylmaltol has been compared with the 3-hydroxypyridin-4-one CP94 and to its structurally related lipophilic analogue CP25 as well as with the 3-hydroxypyridin-2-one, CP02. The platelet labelling efficiencies with these ligands were between 75% and 95% of that obtained with oxine, following a 12-min incubation in saline. The optimal concentration for the hydroxypyridin-2-ones and hydroxypyridin-4-ones was approximately 10 [mu]M compared with 100 [mu]M for the hydroxypyranone ethylmaltol and 60 [mu]M for oxine. Oxine and tropolone were found to produce significant inhibition of platelet aggregation to collagen in short-term experiments (10 min) or in longer term (18 and 42 h) ex vivo platelet cultures respectively. By contrast, ethylmaltol had no such inhibitory effects at either time interval. The relatively hydrophilic hydroxypyridin-4-one CP94 showed no inhibitory effects on collagen-induced aggregation in short-term studies, unlike the more lipid-soluble derivative CP25. These results suggest that ethylmaltol and related pyranones may have advantages over oxine and tropolone as indium platelet labelling agents where it is important not to damage platelets by the labelling process itself. (orig.)

  13. Highly efficient light-emitting diodes based on intramolecular rotation

    CERN Document Server

    Di, Dawei; Yang, Le; Jones, Saul; Friend, Richard H; Linnolahti, Mikko; Bochmann, Manfred; Credgington, Dan

    2016-01-01

    The efficiency of an organic light-emitting diode (OLED) is fundamentally governed by the spin of recombining electron-hole pairs (singlet and triplet excitons), since triplets cannot usually emit light. The singlet-triplet energy gap, a key factor for efficient utilization of triplets, is normally positive. Here we show that in a family of materials with amide donor and carbene acceptor moieties linked by a metal, this energy gap for singlet and triplet excitons with charge-transfer character can be tuned from positive to negative values via the rotation of donor and acceptor about the metal-amide bond. When the gap is close to zero, facile intersystem crossing is possible, enabling efficient emission from singlet excitons. We demonstrate solution-processed LEDs with exceptionally high quantum efficiencies (near-100% internal and >27% external quantum efficiencies), and current and power efficiencies (87 cd/A and 75 lm/W) comparable to, or exceeding, those of state-of-the-art vacuum-processed OLEDs and quant...

  14. Indium gallium nitride multijunction solar cell simulation using silvaco atlas

    OpenAIRE

    Garcia, Baldomero

    2007-01-01

    This thesis investigates the potential use of wurtzite Indium Gallium Nitride as photovoltaic material. Silvaco Atlas was used to simulate a quad-junction solar cell. Each of the junctions was made up of Indium Gallium Nitride. The band gap of each junction was dependent on the composition percentage of Indium Nitride and Gallium Nitride within Indium Gallium Nitride. The findings of this research show that Indium Gallium Nitride is a promising semiconductor for solar cell use. United...

  15. Introduction to the High-Efficiency Video Coding Standard

    Institute of Scientific and Technical Information of China (English)

    Ping Wu; Mina Li

    2012-01-01

    The high-efficiency video coding (HEVC) standard is the newest video coding standard currently under joint development by ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Moving Picture Experts Group (MPEG). HEVC is the next-generation video coding standard after H.264/AVC. The goals of the HEVC standardization effort are to double the video coding efficiency of existing H.264/AVC while supporting all the recognized potential applications, such as, video telephony, storage, broadcast, streaming, especially for large picture size video (4k x 2k). The HEVC standard will be completed as an ISO/iEC and ITU-T standard in January 2013. in February 2012, the HEVC standardization process reached its committee draft (CD) stage. The ever-improving HEVC standard has demonstrated a significant gain in coding efficiency in rate-distortion efficiency relative to the existing H.264/AVC. This paper provides an overview of the technical features of HEVC close to HEVC CD stage, covering high-level structure, coding units, prediction units, transform units, spatial signal transformation and PCM representation, intra-picture prediction, inter-picture prediction, entropy coding and in-loop filtering. The HEVC coding efficiency performances comparing with H.264/AVC are also provided.

  16. A Cooperative Interface for Highly Efficient Lithium-Sulfur Batteries.

    Science.gov (United States)

    Peng, Hong-Jie; Zhang, Ze-Wen; Huang, Jia-Qi; Zhang, Ge; Xie, Jin; Xu, Wen-Tao; Shi, Jia-Le; Chen, Xiang; Cheng, Xin-Bing; Zhang, Qiang

    2016-11-01

    A cooperative interface constructed by "lithiophilic" nitrogen-doped graphene frameworks and "sulfiphilic" nickel-iron layered double hydroxides (LDH@NG) is proposed to synergistically afford bifunctional Li and S binding to polysulfides, suppression of polysulfide shuttles, and electrocatalytic activity toward formation of lithium sulfides for high-performance lithium-sulfur batteries. LDH@NG enables high rate capability, long lifespan, and efficient stabilization of both sulfur and lithium electrodes.

  17. Highly efficient heterogeneous procedure for the synthesis of fructone fragrancy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel heterogeneous strong acid catalyst was synthesized through the copolymerization of p-toluenesulfonic acid and paraformaldehyde and utilized for the synthesis of fructone. The results showed that the catalyst was very efficient for the reaction with the yield over 95%. The advantages of extremely high density of acidity, high thermal and chemical stability, low cost for the simple synthetic procedure, and reusability made the catalyst one of the best choices for the reaction.

  18. Nanoporous Carbon Nitride: A High Efficient Filter for Seawater Desalination

    CERN Document Server

    Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2015-01-01

    The low efficiency of commercially-used reverse osmosis (RO) membranes has been the main obstacle in seawater desalination application. Here, we report the auspicious performance, through molecular dynamics simulations, of a seawater desalination filter based on the recently-synthesized graphene-like carbon nitride (g-C2N) [Nat. Commun., 2015, 6, 6486]. Taking advantage of the inherent nanopores and excellent mechanical properties of g-C2N filter, highly efficient seawater desalination can be achieved by modulating the nanopores under tensile strain. The water permeability can be improved by two orders of magnitude compared to RO membranes, which offers a promising approach to the global water shortage solution.

  19. High-efficiency organic solar concentrators for photovoltaics.

    Science.gov (United States)

    Currie, Michael J; Mapel, Jonathan K; Heidel, Timothy D; Goffri, Shalom; Baldo, Marc A

    2008-07-11

    The cost of photovoltaic power can be reduced with organic solar concentrators. These are planar waveguides with a thin-film organic coating on the face and inorganic solar cells attached to the edges. Light is absorbed by the coating and reemitted into waveguide modes for collection by the solar cells. We report single- and tandem-waveguide organic solar concentrators with quantum efficiencies exceeding 50% and projected power conversion efficiencies as high as 6.8%. The exploitation of near-field energy transfer, solid-state solvation, and phosphorescence enables 10-fold increases in the power obtained from photovoltaic cells, without the need for solar tracking.

  20. Heat pumps; Synergy of high efficiency and low carbon electricity

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Akio

    2010-09-15

    Heat pump is attracting wide attention for its high efficiency to utilize inexhaustible and renewable ambient heat in the environment. With its rapid innovation and efficiency improvement, this technology has a huge potential to reduce CO2 emissions by replacing currently widespread fossil fuel combustion systems to meet various heat demands from the residential, commercial and industrial sectors. Barriers to deployment such as low public awareness and a relatively long pay-back period do exist, so it is strongly recommended that each country implement policies to promote heat pumps as a renewable energy option and an effective method to combat global warming.

  1. RESEARCH OF A HIGH EFFICIENCY SLIDING SCREW DRIVER

    Institute of Scientific and Technical Information of China (English)

    Hu Xiaowei; Lu Huailiang; Huang Shuhuai

    2004-01-01

    A high efficiency sliding screw driver is introduced. It can improve driving efficiency obviously. As the material strength of the nut in this structure is low and the nut is the most dangerous part, so it is important to master the structure's characters of deformation and stress. The deformation and stress of this structure are researched by finite element method(FEM), and the changing law of stress concentration coefficient of the structure is gained. So the exact stress of nut teeth with highest load can be calculated directly based on this result.

  2. Investigation on high transmission efficiency 7 × 1 pump combiner

    Science.gov (United States)

    Cao, Yang; Shi, Wei; Sheng, Quan; Fu, Shijie; Zhang, Haiwei; Bai, Xiaolei; Qi, Liang; Yao, Jianquan

    2016-12-01

    The 7×1 end-pumped combiner employing 105/125 μm multimode fibers as pump fibers is investigated. The theoretical analysis reveals that sufficient taper length and low refractive index of the capillary should be adopted to fabricate high transmission efficiency combiners. Based on the simulation results, we fabricate a 7×1 end-pumped pump combiner with an average transmission efficiency of 98.9% and a total return loss of 1.1‰. The measured internal operating temperature of this combiner indicates it can endure pump power of the order of kilowatts.

  3. Consequences of high-frequency operation on EUV source efficiency

    Science.gov (United States)

    Sizyuk, Tatyana

    2017-08-01

    A potential problem of future extreme ultraviolet (EUV) sources, required for high volume manufacture regimes, can be related to the contamination of the chamber environment by products of preceding laser pulse/droplet interactions. Implementation of high, 100 kHz and higher, repetition rate of EUV sources using Sn droplets ignited with laser pulses can cause high accumulation of tin in the chamber in the form of vapor, fine mist, or fragmented clusters. In this work, the effects of the residual tin accumulation in the EUV chamber in dependence on laser parameters and mitigation system efficiency were studied. The effect of various pressures of tin vapor on the CO2 and Nd:YAG laser beam propagation and on the size, the intensity, and the resulting efficiency of the EUV sources was analyzed. The HEIGHTS 3D package was used for this analysis to study the effect of residual background pressure and spatial distribution on EUV photon emission and collection. It was found that background pressure in the range of 1-5 Pa does not significantly influence the EUV source produced by CO2 lasers. A larger volume with this pressure condition, however, can reduce the efficiency of the source. However, an optimized volume of mix with proper density could increase the efficiency of the sources produced by CO2 lasers.

  4. High Efficiency LED Lamp for Solid-State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  5. High Efficiency Microwave Power Amplifier: From the Lab to Industry

    Science.gov (United States)

    Sims, William Herbert, III; Bell, Joseph L. (Technical Monitor)

    2001-01-01

    Since the beginnings of space travel, various microwave power amplifier designs have been employed. These included Class-A, -B, and -C bias arrangements. However, shared limitation of these topologies is the inherent high total consumption of input power associated with the generation of radio frequency (RF)/microwave power. The power amplifier has always been the largest drain for the limited available power on the spacecraft. Typically, the conversion efficiency of a microwave power amplifier is 10 to 20%. For a typical microwave power amplifier of 20 watts, input DC power of at least 100 watts is required. Such a large demand for input power suggests that a better method of RF/microwave power generation is required. The price paid for using a linear amplifier where high linearity is unnecessary includes higher initial and operating costs, lower DC-to-RF conversion efficiency, high power consumption, higher power dissipation and the accompanying need for higher capacity heat removal means, and an amplifier that is more prone to parasitic oscillation. The first use of a higher efficiency mode of power generation was described by Baxandall in 1959. This higher efficiency mode, Class-D, is achieved through distinct switching techniques to reduce the power losses associated with switching, conduction, and gate drive losses of a given transistor.

  6. Solution processed Al-doped ZnO nanoparticles/TiOx composite for highly efficient inverted organic solar cells.

    Science.gov (United States)

    Gadisa, Abay; Hairfield, Travis; Alibabaei, Leila; Donley, Carrie L; Samulski, Edward T; Lopez, Rene

    2013-09-11

    We investigated the electrical properties of solution processed Al-doped ZnO (AZO) nanoparticles, stabilized by mixing with a TiOx complex. Thin solid films cast from the solution of AZO-TiOx (AZOTi) (Ti/Zn ∼0.4 in the bulk and ∼0.8 on its surface) is processable in inert environment, without a need for either ambient air exposure for hydrolysis or high temperature thermal annealing commonly applied to buffer layers of most metal-oxides. It was found that the electronic structure of AZOTi matches the electronic structure of several electron acceptor and donor materials used in organic electronic devices, such as solar cells. Inverted solar cells employing a bulk heterojunction film of poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester, cast on an indium-tin-oxide/AZOTi electrode, and capped with a tungsten oxide/aluminum back electrode, give rise to a nearly 70% fill factor and an optimized open-circuit voltage as a result of efficient hole blocking behavior of AZOTi. The resulting electron collecting/blocking capability of this material solves crucial interfacial recombination issues commonly observed at the organic/metal-oxide interface in most inverted organic bulk heterojunction solar cells.

  7. Optically Thin Metallic Films for High-radiative-efficiency Plasmonics

    CERN Document Server

    Yang, Yi; Hsu, Chia Wei; Miller, Owen D; Joannopoulos, John D; Soljačić, Marin

    2016-01-01

    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and ...

  8. Broadband circularly polarizing dichroism with high efficient plasmonic helical surface.

    Science.gov (United States)

    Hu, Jingpei; Zhao, Xiaonan; Li, Ruibin; Zhu, Aijiao; Chen, Linghua; Lin, Yu; Cao, Bing; Zhu, Xiaojun; Wang, Chinhua

    2016-05-16

    We propose and experimentally demonstrate a broadband and high efficient circularly polarizing dichroism using a simple single-cycle and single-helical plasmonic surface array arranged in square lattice. Two types of helical surface structures (partially or completely covered with a gold film) are investigated. It is shown that the circular polarization dichroism in the mid-IR range (3µm - 5µm) can reach 80% (when the surface is partially covered with gold) or 65% (when the surface is completely covered with gold) with a single-cycle and single-helical surface. Experimental fabrications of the proposed helical plasmonic surface are implemented with direct 3D laser writing followed by electron beam evaporation deposition of gold. The experimental evaluations of the circular polarization dichroism are in excellent agreement with the simulation. The proposed helical surface structure is of advantages of easy-fabrication, high-dichroism and scalable to other frequencies as a high efficient broadband circular polarizer.

  9. Groove shape characteristics of echelle gratings with high diffraction efficiency

    Science.gov (United States)

    Zhang, Shanwen; Mi, Xiaotao; Zhang, Qian; Jirigalantu; Feng, Shulong; Yu, Haili; Qi, Xiangdong

    2017-03-01

    The groove shape characteristics of echelle gratings with high diffraction efficiency are investigated. Using the coordinate transformation method (C method), an r-2 aluminum echelle with 79 grooves/mm is optimized through rigorous numerical simulations and shows high diffraction efficiency of 76-81% in the high Littrow orders. A grating is found to be essentially an echelle if it contains a series of reflective facets with a specific tilt angle that are located far from the nonworking facet of the grating and have a deep groove depth; any groove shape that meets these conditions can be called an echelle grating. The underlying mechanism is analyzed phenomenologically using electromagnetic theory. The universal model proposed here, which represents a new cognitive understanding of the concept of the echelle, is ready for use in manufacturing applications and offers a new perspective for the fabrication of these gratings.

  10. Chelant-induced reclamation of indium from the spent liquid crystal display panels with the aid of microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Hiroshi, E-mail: hhiroshi@t.kanazawa-u.ac.jp [Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Rahman, Ismail M.M., E-mail: I.M.M.Rahman@gmail.com [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Department of Applied and Environmental Chemistry, University of Chittagong, Chittagong 4331 (Bangladesh); Egawa, Yuji; Sawai, Hikaru; Begum, Zinnat A. [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Maki, Teruya [Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Mizutani, Satoshi [Graduate School of Engineering, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-Ku, Osaka 558-8585 (Japan)

    2013-06-15

    Highlights: • A new process for indium recovery from end-of-life LCD panels. • Chelants are used for the dissolution of indium from the waste LCD panels. • Indium extraction with chelant is enhanced with the aid of microwave irradiation. • Extraction rate is quantitative in the hyperbaric high-temperature environment. -- Abstract: Indium is a rare metal that is mostly consumed as indium tin oxide (ITO) in the fabrication process of liquid crystal display (LCD) panels. The spent LCD panels, termed as LCD-waste hereafter, is an increasing contributor of electronic waste burden worldwide and can be an impending secondary source of indium. The present work reports a new technique for the reclamation of indium from the unground LCD-waste using aminopolycarboxylate chelants (APCs) as the solvent in a hyperbaric environment and at a high-temperature. Microwave irradiation was used to create the desired system conditions, and a substantial abstraction of indium (≥80%) from the LCD-waste with the APCs (EDTA or NTA) was attained in the acidic pH region (up to pH 5) at the temperature of ≥120 °C and the pressure of ∼50 bar. The unique point of the reported process is the almost quantitative recovery of indium from the LCD-waste that ensured via the combination of the reaction facilitatory effect of microwave exposure and the metal extraction capability of APCs. A method for the selective isolation of indium from the extractant solution and recycle of the chelant in solution is also described.

  11. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    Science.gov (United States)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  12. Broadband highly-efficient dielectric metadevices for polarization control

    CERN Document Server

    Kruk, Sergey; Kravchenko, Ivan; Miroshnichenko, Andrey; Neshev, Dragomir N; Kivshar, Yuri S

    2016-01-01

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms to achieve destructive interference in reflection over a large spectral bandwidth. By employing this novel concept, we demonstrate reflectionless (~90% transmission) half-wave plates, quarter-wave plates, and vector beam q-plates that can operate across multiple telecom bands with ~99% polarization conversion efficiency.

  13. High efficient light-emittingdiodes using polystyrene as matrix

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    High efficient polymer light-emitting diodes(PLEDs) were obtained by using a blend of conjugatedpolymer G-PF, a copolymer of fluorene and thiophene, andpolystyrene (PS). The maximum electroluminescent (EL)efficiency of the device is 12 cd/A when G-PF/PS weight ratiois at 80/20, while that of pure G-PF device is 6.5 cd/A. Studieson photoluminescence and electroluminescence of the blendsindicate that inter-chain interactions were tremendouslysuppressed due to the dilution effect. However, after PS con-centration exceeds 20% the EL efficiency of the devices de-creases with further increase of PS concentration. This maybe due to the decrease of the recombination probability ofelectrons and holes with the excessive addition of PS insulator.

  14. Highly efficient singular surface plasmon generation by achiral apertures

    CERN Document Server

    Jiang, Quanbo; Bellessa, Joel; Huant, Serge; Genet, Cyriaque; Drezet, Aurélien

    2016-01-01

    We report a highly efficient generation of singular surface plasmon (SP) field by an achiral plasmonic structure consisting of $\\Lambda$-shaped apertures. Our quantitative analysis based on leakage radiation microscopy (LRM) demonstrates that the induced spin-orbit coupling can be tuned by adjusting the apex angle of the $\\Lambda$-shaped aperture. Specifically, the array of $\\Lambda$-shaped apertures with the apex angle $60^\\circ$ is shown to give rise to the directional coupling efficiency. The ring of $\\Lambda$-shaped apertures with the apex angle $60^\\circ$ realized to generate the maximum extinction ratio (ER=11) for the SP singularities between two different polarization states. This result provides a more efficient way for developing SP focusing and SP vortex in the field of nanophotonics such as optical tweezers.

  15. A high-efficiency Brillouin fiber ring laser

    Institute of Scientific and Technical Information of China (English)

    Pingping Zhang; Shuling Hu; Shuying Chen; Yuanhong Yang; Chunxi Zhang

    2009-01-01

    A high-efficiency Brillouin fiber ring laser is demonstrated using the standard single-mode fiber.The laser exhibits a 3.6-mW threshold.The output power is 22 mW with 40-nlW pump power,and the maximum optical-to-optical efficiency is 55%. The output is single wavelength with a 3-dB linewidth of 5 MHz,and the interval of center frequency between the laser and the pump light is 11 GHz (0.088 nm).It is shown that the stimulated Brillouin scattering threshold of ring resonator is lower and the energy transfer efficiency is higher than those in fiber.

  16. High-Efficiency Harmonically Terminated Diode and Transistor Rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    Roberg, M; Reveyrand, T; Ramos, I; Falkenstein, EA; Popovic, Z

    2012-12-01

    This paper presents a theoretical analysis of harmonically terminated high-efficiency power rectifiers and experimental validation on a class-C single Schottky-diode rectifier and a class-F-1 GaN transistor rectifier. The theory is based on a Fourier analysis of current and voltage waveforms, which arise across the rectifying element when different harmonic terminations are presented at its terminals. An analogy to harmonically terminated power amplifier (PA) theory is discussed. From the analysis, one can obtain an optimal value for the dc load given the RF circuit design. An upper limit on rectifier efficiency is derived for each case as a function of the device on-resistance. Measured results from fundamental frequency source-pull measurement of a Schottky diode rectifier with short-circuit terminations at the second and third harmonics are presented. A maximal device rectification efficiency of 72.8% at 2.45 GHz matches the theoretical prediction. A 2.14-GHz GaN HEMT rectifier is designed based on a class-F-1 PA. The gate of the transistor is terminated in an optimal impedance for self-synchronous rectification. Measurements of conversion efficiency and output dc voltage for varying gate RF impedance, dc load, and gate bias are shown with varying input RF power at the drain. The rectifier demonstrates an efficiency of 85% for a 10-W input RF power at the transistor drain with a dc voltage of 30 V across a 98-Omega resistor.

  17. Enhanced optical properties due to indium incorporation in zinc oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Farid, S.; Mukherjee, S.; Sarkar, K.; Mazouchi, M. [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Stroscio, M. A. [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Dutta, M., E-mail: dutta@uic.edu [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2016-01-11

    Indium-doped zinc oxide nanowires grown by vapor-liquid-solid technique with 1.6 at. % indium content show intense room temperature photoluminescence (PL) that is red shifted to 20 meV from band edge. We report on a combination of nanowires and nanobelts-like structures with enhanced optical properties after indium doping. The near band edge emission shift gives an estimate for the carrier density as high as 5.5 × 10{sup 19 }cm{sup −3} for doped nanowires according to Mott's critical density theory. Quenching of the visible green peak is seen for doped nanostructures indicating lesser oxygen vacancies and improved quality. PL and transmission electron microscopy measurements confirm indium doping into the ZnO lattice, whereas temperature dependent PL data give an estimation of the donor and acceptor binding energies that agrees well with indium doped nanowires. This provides a non-destructive technique to estimate doping for 1D structures as compared to the traditional FET approach. Furthermore, these indium doped nanowires can be a potential candidate for transparent conducting oxides applications and spintronic devices with controlled growth mechanism.

  18. Lightweight High Efficiency Electric Motors for Space Applications

    Science.gov (United States)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  19. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  20. Highly Efficient Enzymatic Preparation of Daidzein in Deep Eutectic Solvents

    Directory of Open Access Journals (Sweden)

    Qi-Bin Cheng

    2017-01-01

    Full Text Available Daidzein, which is scarce in nature, has gained significant attention due to its superior biological activity and bioavailability compared with daidzin. So far, it has been widely used in the medicine and health care products industries. The enzymatic approach for the preparation of daidzein has prevailed, benefitted by its high efficiency and eco-friendly nature. Our present research aimed at providing a preparation method of daidzein by enzymatic hydrolysis of daidzin in a new “green” reaction medium-deep eutectic solvents (DESs. Herein, the DESs were screened via evaluating enzyme activity, enzyme stability and the substrate solubility, and the DES (ChCl/EG 2:1, 30 vol % was believed to be the most appropriate co-solvent to improve the bioconversion efficiency. Based on the yield of daidzein, response surface methodology (RSM was employed to model and optimize the reaction parameters. Under these optimum process conditions, the maximum yield of 97.53% was achieved and the purity of daidzein crude product reached more than 70%, which is more efficient than conversions in DESs-free buffer. Importantly, it has been shown that DESs medium could be reused for six batches of the process with a final conversion of above 50%. The results indicated that this procedure could be considered a mild, environmentally friendly, highly efficient approach to the economical production of daidzein, with a simple operation process and without any harmful reagents being involved.

  1. Wide-Band, High-Quantum-Efficiency Photodetector

    Science.gov (United States)

    Jackson, Deborah; Wilson, Daniel; Stern, Jeffrey

    2007-01-01

    A design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of optiA design has been proposed for a photodetector that would exhibit a high quantum efficiency (as much as 90 percent) over a wide wavelength band, which would typically be centered at a wavelength of 1.55 m. This and similar photodetectors would afford a capability for detecting single photons - a capability that is needed for research in quantum optics as well as for the practical development of secure optical communication systems for distribution of quantum cryptographic keys. The proposed photodetector would be of the hot-electron, phonon-cooled, thin-film superconductor type. The superconducting film in this device would be a meandering strip of niobium nitride. In the proposed photodetector, the quantum efficiency would be increased through incorporation of opti-

  2. High-Power, High-Efficiency 1.907nm Diode Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight developed high-power, high-efficiency laser diodes emitting at 1907nm for the pumping of solid-state lasers during the Phase I. The innovation brought to bear...

  3. High Efficiency, High Output Plastic Melt Waste Compactor (HEHO-PMWC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative High Efficiency, High Output Plastic Melt Waste Compactor (HEHO-PMWC) is a trash dewatering and volume reduction system that uses heat melt compaction...

  4. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency...

  5. High-Power, High-Efficiency 1.907nm Diode Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight proposes to develop high-power, high-efficiency laser diodes emitting at 1907nm. Performance is expected to improve from the current state-of-the-art...

  6. Advanced Klystrons for High Efficiency Accelerator Systems - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael; Ives, Robert Lawrence

    2014-03-26

    This program explored tailoring of RF pulses used to drive accelerator cavities. Simulations indicated that properly shaping the pulse risetime to match accelerator cavity characteristics reduced reflected power and increased total efficiency. Tailoring the pulse requires a high power, gridded, klystron to shape the risetime while also controlling the beam current. The Phase I program generated a preliminary design of a gridded electron gun for a klystron producing 5-10 MW of RF power. This required design of a segmented cathode using Controlled Porosity Reservoir cathodes to limit power deposition on the grid. The program was successful in computationally designing a gun producing a high quality electron beam with grid control. Additional analysis of pulse tailoring indicated that technique would only be useful for cavity drive pulses that were less than approximately 2-3 times the risetime. Otherwise, the efficiency gained during the risetime of the pulse became insignificant when considering the efficiency over the entire pulse. Consequently, it was determined that a Phase II program would not provide sufficient return to justify the cost. Never the less, other applications for a high power gridded gun are currently being pursued. This klystron, for example, would facilitate development inverse Comptom x-ray sources by providing a high repetition rate (10 -100 kHz) RF source.

  7. High-efficiency nanostructured window GaAs solar cells.

    Science.gov (United States)

    Liang, Dong; Kang, Yangsen; Huo, Yijie; Chen, Yusi; Cui, Yi; Harris, James S

    2013-10-09

    Nanostructures have been widely used in solar cells due to their extraordinary optical properties. In most nanostructured cells, high short circuit current has been obtained due to enhanced light absorption. However, most of them suffer from lowered open circuit voltage and fill factor. One of the main challenges is formation of good junction and electrical contact. In particular, nanostructures in GaAs only have shown unsatisfactory performances (below 5% in energy conversion efficiency) which cannot match their ideal material properties and the record photovoltaic performances in industry. Here we demonstrate a completely new design for nanostructured solar cells that combines nanostructured window layer, metal mesa bar contact with small area, high quality planar junction. In this way, we not only keep the advanced optical properties of nanostructures such as broadband and wide angle antireflection, but also minimize its negative impact on electrical properties. High light absorption, efficient carrier collection, leakage elimination, and good lateral conductance can be simultaneously obtained. A nanostructured window cell using GaAs junction and AlGaAs nanocone window demonstrates 17% energy conversion efficiency and 0.982 V high open circuit voltage.

  8. Quantification of indium in steel using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J.C.

    1989-04-01

    The quantitative analysis of steel endodontics tools was carried out using low-energy protons (/le/ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important. (orig.).

  9. High-efficiency reconciliation for continuous variable quantum key distribution

    Science.gov (United States)

    Bai, Zengliang; Yang, Shenshen; Li, Yongmin

    2017-04-01

    Quantum key distribution (QKD) is the most mature application of quantum information technology. Information reconciliation is a crucial step in QKD and significantly affects the final secret key rates shared between two legitimate parties. We analyze and compare various construction methods of low-density parity-check (LDPC) codes and design high-performance irregular LDPC codes with a block length of 106. Starting from these good codes and exploiting the slice reconciliation technique based on multilevel coding and multistage decoding, we realize high-efficiency Gaussian key reconciliation with efficiency higher than 95% for signal-to-noise ratios above 1. Our demonstrated method can be readily applied in continuous variable QKD.

  10. A critical study of high efficiency deep grinding

    CERN Document Server

    Johnstone, I

    2002-01-01

    The recent years, the aerospace industry in particular has embraced and actively pursued the development of stronger high performance materials, namely nickel based superalloys and hardwearing steels. This has resulted in a need for a more efficient method of machining, and this need was answered with the advent of High Efficiency Deep Grinding (HEDG). This relatively new process using Cubic Boron Nitride (CBN) electroplated grinding wheels has been investigated through experimental and theoretical means applied to two widely used materials, M50 bearing steel and IN718 nickel based superalloy. It has been shown that this grinding method using a stiff grinding centre such as the Edgetek 5-axis machine is a viable process. Using a number of experimental designs, produced results which were analysed using a variety of methods including visual assessment, sub-surface microscopy and surface analysis using a Scanning Electron Microscope (SEM), residual stress measurement using X-Ray Diffraction (XRD) techniques, Ba...

  11. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells.

    Science.gov (United States)

    Xiao, Jia-Wen; Fan, Shi-Xuan; Wang, Feng; Sun, Ling-Dong; Zheng, Xiao-Yu; Yan, Chun-Hua

    2014-04-21

    Nanoparticle (NP) mediated photothermal effect shows great potential as a noninvasive method for cancer therapy treatment, but the development of photothermal agents with high photothermal conversion efficiency, small size and good biocompatibility is still a big challenge. Herein, we report Pd NPs with a porous structure exhibiting enhanced near infrared (NIR) absorption as compared to Pd nanocubes with a similar size (almost two-fold enhancement with a molar extinction coefficient of 6.3 × 10(7) M(-1) cm(-1)), and the porous Pd NPs display monotonically rising absorbance from NIR to UV-Vis region. When dispersed in water and illuminated with an 808 nm laser, the porous Pd NPs give a photothermal conversion efficiency as high as 93.4%, which is comparable to the efficiency of Au nanorods we synthesized (98.6%). As the porous Pd NPs show broadband NIR absorption (650-1200 nm), this allows us to choose multiple laser wavelengths for photothermal therapy. In vitro photothermal heating of HeLa cells in the presence of porous Pd NPs leads to 100% cell death under 808 nm laser irradiation (8 W cm(-2), 4 min). For photothermal heating using 730 nm laser, 70% of HeLa cells were killed after 4 min irradiation at a relative low power density of 6 W cm(-2). These results demonstrated that the porous Pd nanostructure is an attractive photothermal agent for cancer therapy.

  12. High quantum efficiency S-20 photocathodes for photon counting applications

    CERN Document Server

    Orlov, Dmitry A; Pinto, Serge Duarte; Glazenborg, Rene; Kernen, Emilie

    2016-01-01

    Based on conventional S-20 processes, a new series of high quantum efficiency (QE) photocathodes has been developed that can be specifically tuned for use in the ultraviolet, blue or green regions of the spectrum. The QE values exceed 30% at maximum response, and the dark count rate is found to be as low as 30 Hz/cm2 at room temperature. This combination of properties along with a fast temporal response makes these photocathodes ideal for application in photon counting detectors.

  13. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  14. Fast and Highly Efficient Solid State Oxidation of Thiols

    Directory of Open Access Journals (Sweden)

    Nasrin Haghighat

    2007-03-01

    Full Text Available A fast and efficient solid state method for the chemoselective room temperature oxidative coupling of thiols to afford their corresponding disulfides using inexpensive and readily available moist sodiumperiodate as the reagent is described. The reaction was applicable to a variety of thiols giving high yields after short reaction times. Comparison of yield/time ratios of this method with some of those reported in the literature shows the superiority of this reagent over others under these conditions.

  15. Novel bipolar bathophenanthroline containing hosts for highly efficient phosphorescent OLEDs.

    Science.gov (United States)

    Ge, Ziyi; Hayakawa, Teruaki; Ando, Shinji; Ueda, Mitsuru; Akiike, Toshiyuki; Miyamoto, Hidetoshi; Kajita, Toru; Kakimoto, Masa-aki

    2008-02-07

    The electronic structures of eight bathophenanthroline derivatives were elucidated by DFT calculations, and four representatives of which CZBP, m-CZBP, m-TPAP, and BPABP were synthesized and employed as the hosts to afford highly efficient phosphorescent OLEDs. The calculated molecular orbital energies agree well with the experimental results, which further demonstrates that the localization of HOMO and LUMO at the respective hole- and electron-transporting moieties is desirable in bipolar molecular designs.

  16. High-efficient search and analysis of road signs

    Directory of Open Access Journals (Sweden)

    Дмитрий Александрович Морозов

    2015-12-01

    Full Text Available It is developed high-efficient algorithm for search and analysis of road signs. The work is based on the results of reviewing existing sources which describe given problem. There are described the most common steps in algorithm logic. There is designed, implemented and tested special program, which works on given algorithm. The results of testing show good recognition quality. Such program can be used as a part of driver assistance systems

  17. Wavy channel transistor for area efficient high performance operation

    KAUST Repository

    Fahad, Hossain M.

    2013-04-05

    We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device architecture is capable of high performance operation compared to conventional FinFETs with comparatively higher area efficiency and lower chip latency as well as lower power consumption.

  18. Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics.

    Science.gov (United States)

    Yeo, Jun-Seok; Yun, Jin-Mun; Kim, Dong-Yu; Park, Sungjun; Kim, Seok-Soon; Yoon, Myung-Han; Kim, Tae-Wook; Na, Seok-In

    2012-05-01

    In the present study, a novel polar-solvent vapor annealing (PSVA) was used to induce a significant structural rearrangement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films in order to improve their electrical conductivity and work function. The effects of polar-solvent vapor annealing on PEDOT:PSS were systematically compared with those of a conventional solvent additive method (SAM) and investigated in detail by analyzing the changes in conductivity, morphology, top and bottom surface composition, conformational PEDOT chains, and work function. The results confirmed that PSVA induces significant phase separation between excess PSS and PEDOT chains and a spontaneous formation of a highly enriched PSS layer on the top surface of the PEDOT:PSS polymer blend, which in turn leads to better 3-dimensional connections between the conducting PEDOT chains and higher work function. The resultant PSVA-treated PEDOT:PSS anode films exhibited a significantly enhanced conductivity of up to 1057 S cm(-1) and a tunable high work function of up to 5.35 eV. The PSVA-treated PEDOT:PSS films were employed as transparent anodes in polymer light-emitting diodes (PLEDs) and polymer solar cells (PSCs). The cell performances of organic optoelectronic devices with the PSVA-treated PEDOT:PSS anodes were further improved due to the significant vertical phase separation and the self-organized PSS top surface in PSVA-treated PEDOT:PSS films, which can increase the anode conductivity and work function and allow the direct formation of a functional buffer layer between the active layer and the polymeric electrode. The results of the present study will allow better use and understanding of polymeric-blend materials and will further advance the realization of high-performance indium tin oxide (ITO)-free organic electronics.

  19. High voltage generator circuit with low power and high efficiency applied in EEPROM

    Institute of Scientific and Technical Information of China (English)

    Liu Yan; Zhang Shilin; Zhao Yiqiang

    2012-01-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM).The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique.The high efficiency is dependent on the zero threshold voltage (Vth) MOSFET and the charge transfer switch (CTS) charge pump.The proposed high voltage generator circuit has been implemented in a 0.35μm EEPROM CMOS process.Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits.This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.

  20. Surface nanodroplets for highly efficient liquid-liquid microextraction

    Science.gov (United States)

    Li, Miaosi; Lu, Ziyang; Yu, Haitao; Zhang, Xuehua

    2016-11-01

    Nanoscale droplets on a substrate are an essential element for a wide range of applications, such as laboratory-on-chip devices, simple and highly efficient miniaturized reactors for concentrating products, high-throughput single-bacteria or single-biomolecular analysis, encapsulation, and high-resolution imaging techniques. The solvent exchange process is a simple bottom-up approach for producing droplets at solid-liquid interfaces that are only several tens to hundreds of nanometers in height, or a few femtoliters in volume Oil nanodroplets can be produced on a substrate by solvent exchange in which a good solvent of oil is displaced by a poor solvent. Our previous work has significantly advanced understanding of the principle of solvent exchange, and the droplet size can be well-controlled by several parameters, including flow rates, flow geometry, gravitational effect and composition of solutions. In this work, we studied the microextraction effect of surface nanodroplets. Oil nanodroplets have been demonstrated to provide highly-efficient liquid-liquid microextraction of hydrophobic solute in a highly diluted solution. This effect proved the feasibility of nanodroplets as a platform for preconcentrating compounds for in situ highly sensitive microanalysis without further separation. Also the long lifetime and temporal stability of surface nanodroplets allow for some long-term extraction process and extraction without addition of stabilisers.

  1. Flexible, highly efficient all-polymer solar cells.

    Science.gov (United States)

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J

    2015-10-09

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

  2. High efficiency of collisional Penrose process requires heavy particle production

    CERN Document Server

    Ogasawara, Kota; Miyamoto, Umpei

    2015-01-01

    The center-of-mass energy of two particles can become arbitrarily large if they collide near the event horizon of an extremal Kerr black hole, which is called the Ba$\\rm \\tilde n$ados-Silk-West (BSW) effect. We consider such a high-energy collision of two particles which started from infinity and follow geodesics in the equatorial plane and investigate the energy extraction from such a high-energy particle collision and the production of particles in the equatorial plane. We analytically show that, on the one hand, if the produced particles are as massive as the colliding particles, the energy-extraction efficiency is bounded by $2.19$ approximately. On the other hand, if a very massive particle is to be produced as a result of the high-energy collision, which has negative energy and necessarily falls into the black hole, the upper limit of the energy-extraction efficiency is increased to $(2+\\sqrt{3})^2 \\simeq 13.9$. Thus, higher efficiency of the energy extraction, which is typically as large as 10, provide...

  3. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    Science.gov (United States)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  4. Testing the efficiency of high-frequency foreign exchange market

    Directory of Open Access Journals (Sweden)

    Václav Mastný

    2004-01-01

    Full Text Available This paper deals with the efficiency of the high-frequency foreign exchange market. The objective of this paper is to investigate whether standard statistical tests give the same results for time series resampled at intervals of 15.30 and 60 min. The data used for the purpose of this paper contain major currency pairs such as EUR/USD, GBP/USD and JPY/USD. The results of statistical tests indicate that the high frequency intervals (15-minute are not random and should not be considered independent. On the other hand, tests with lower frequency rates (30 and 60 min indicate rising randomness of the market.

  5. Efficiency of nonstandard and high contact ratio involute spur gears

    Science.gov (United States)

    Anderson, N. E.; Loewenthal, S. H.

    1986-01-01

    A power loss prediction was extended to include involute spur gears of nonstandard proportions. The method is used to analyze the effects of modified addendum, tooth thickness, and gear center distance in addition to the parameters previously considered which included gear diameter, pitch, pressure angle, face width, oil viscosity, speed, and torque. Particular emphasis was placed on high contact ratio gearing (contact ratios greater than two). Despite their higher sliding velocities, high contact ratio gears are designed to levels of efficiency comparable to those of conventional gears while retaining their advantages through proper selection of gear geometry.

  6. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  7. HIGH EFFICIENCY RETROVIRUS-MEDIATED GENE TRANSFER TO LEUKEMIA CELLS

    Institute of Scientific and Technical Information of China (English)

    FU Jian-xin; CHEN Zi-xing; CEN Jian-nong; WANG Wei; RUAN Chang-geng

    1999-01-01

    Objective: To establish an efficient and safe gene transfer system mediated by retrovirus for gene marking and gene therapy of human leukemia. Method: The retroviral vector LXSN, containing the neomycin resistance (NeoR) gene, was transferred into amphotropic packaging cells GP+envAm12 by liposome transfection or by ecotropic retrovirus transduction. Amphotropic retrovirus in supernatants with higher titer was used to infect human leukemic cell lines NB4, U937, and THP-1.The efficiency of gene transfer was assayed on colonies formed by transduced K562 cells. Results: The titer of DOSPER directly transfected GP+envAm12 cells determined on NIH3T3 cells was 8.0×105 CFU/ml, while that of producer infected with retrovirus was 1.6×107CFU/ml. Integration of NeoR gene into all leukemia cells was confirmed by polymerase chain reaction (PCR).Absence of replication-competent virus was proved by both nested PCR for env gene and marker gene rescue assay. Gene transfer with the efficiency as high as 93.3 to 100% in K562 cells was verified by seminested PCR for integrated NeoR gene on colonies after 7 days' culture.Conclusion: The efficiency and safety of retrovirus mediated gene transfer system might provide an optimal system in gene therapy for leukemia or genetic diseases.

  8. Analysis of high efficiency back point contact silicon solar cells

    Science.gov (United States)

    Luque, Antonio

    1988-01-01

    A model has been developed for the analysis of Back Point-Contact (BPC) cells under variable injection level. The analysis has been applied to an experimental cell from Stanford University to allow the extraction of the recombination parameters of this cell. While the bulk SRH recombination and the recombination in the surface and in the emitters are those expected, the Auger constant takes a higher value (2.1 × 10 -30 cm 6/s), than the one usually accepted, and in agreement with the measurements by the Stanford group, for the carrier density involved here. The analysis indicates that best efficiency results are obtained with cells with finely designed emitter dots and well passivated surfaces, made on high resistivity substrates, leading to an upper limit of efficiency obtained at 20 W/cm 2 of about 30.4%. If our technology prevents us from a fine dot delineation (below 5-10 μm) then the highest efficiency is to be expected from the more conventional Interdigitated Back Contact cells with a limit (with our fitted Auger constant) of about 30%. Finally, if the commonly accepted value of the Auger constant (3.8 × 10 -31 cm 6/s) is used this limit is obtained at 50 W/cm 2 and is of 33.1% with a strongly idealized cell. All the efficiencies are at 25°C.

  9. In-Plant Testing of High-Efficiency Hydraulic Separators

    Energy Technology Data Exchange (ETDEWEB)

    G. H. Luttrell; R. Q. Honaker; R. C. Bratton; T. C. Westerfield; J. N. Kohmuench

    2006-06-30

    Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

  10. IN-PLANT TESTING OF HIGH-EFFICIENCY HYDRAULIC SEPARATORS

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Luttrell; R.Q. Honaker; R.C. Bratton; T.C. Westerfield; J.N. Kohmuench

    2006-05-22

    Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

  11. Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

    KAUST Repository

    El Afandy, Rami

    2011-07-07

    Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes and blue laser diodes. Despite the current development, there are still technological problems that still impede the performance of such devices. Three-dimensional nanostructures are proposed to improve the electrical and thermal properties of III-nitride optical devices. This thesis consolidates the characterization results and unveils the unique physical properties of polar indium gallium nitride quantum dots grown by molecular beam epitaxy technique. In this thesis, a theoretical overview of the physical, structural and optical properties of polar III-nitrides quantum dots will be presented. Particular emphasis will be given to properties that distinguish truncated-pyramidal III-nitride quantum dots from other III-V semiconductor based quantum dots. The optical properties of indium gallium nitride quantum dots are mainly dominated by large polarization fields, as well as quantum confinement effects. Hence, the experimental investigations for such quantum dots require performing bandgap calculations taking into account the internal strain fields, polarization fields and confinement effects. The experiments conducted in this investigation involved the transmission electron microscopy and x-ray diffraction as well as photoluminescence spectroscopy. The analysis of the temperature dependence and excitation power dependence of the PL spectra sheds light on the carrier dynamics within the quantum dots, and its underlying wetting layer. A further analysis shows that indium gallium nitride quantum dots through three-dimensional confinements are able to prevent the electronic carriers from getting thermalized into defects which grants III-nitrides quantum dot based light emitting diodes superior thermally induced optical

  12. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    Science.gov (United States)

    Yassine, Omar; Zaher, Amir; Li, Er Qiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T.; Khashab, Niveen M.; Kosel, Jurgen

    2016-06-01

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  13. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    KAUST Repository

    Yassine, Omar

    2016-06-23

    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.

  14. A New Very-High-Efficiency R4 Converter for High-Power Fuel Cell Applications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael Andreas E.

    2009-01-01

    W prototype converter is presented. Input voltage range is 30-60 V and output voltage is 800 V. Test results, including voltage- and current waveforms and efficiency measurements, are presented. A record high converter efficiency of 98.2 % is achieved. The proposed R4 boost converter thus constitutes a low......A new very high efficiency 10 kW isolated R4 boost converter for low-voltage high-power fuel cell applications is presented. Using a new concept for partially paralleling of isolated boost converters, only the critical high ac-current parts are paralleled. Four 2.5 kW power stages, consisting...... cost solution to achieve very high conversion efficiency in high input current applications....

  15. High Quantum Efficiency Phototubes for Atmospheric Fluorescence Telescopes

    CERN Document Server

    Kruppke-Hansen, Daniel

    2009-01-01

    The detection of atmospheric fluorescence light from extensive air showers has become a powerful tool for accurate measurements of the energy and mass of ultra-high energy cosmic ray particles. Employing large area imaging telescopes with mirror areas of 10m2 or more, showers out to distances of 30km and more can be observed. Matrices of low-noise photomultipliers are used to detect the faint light of the air showers against the ambient night-sky background noise. The signal-to-noise ratio of such a system is found to be proportional to the square root of the mirror area times the quantum efficiency of the phototube. Thus, higher quantum efficiencies could potentially improve the quality of the measurement and/or lead to the construction of more compact telescopes. In this paper, we shall discuss such improvements to be expected from high quantum efficiency phototubes that became available on the market only very recently. A series of simulations has been performed with data of different types of commercially...

  16. Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells.

    Science.gov (United States)

    Zhao, Yixin; Zhu, Kai

    2014-12-04

    Organic and inorganic hybrid perovskites (e.g., CH3NH3PbI3) have emerged as a revolutionary class of light-absorbing semiconductors that has demonstrated a rapid increase in efficiency within a few years of active research. Controlling perovskite morphology and composition has been found critical to developing high-performance perovskite solar cells. The recent development of solution chemistry engineering has led to fabrication of greater than 15-17%-efficiency solar cells by multiple groups, with the highest certified 17.9% efficiency that has significantly surpassed the best-reported perovskite solar cell by vapor-phase growth. In this Perspective, we review recent progress on solution chemistry engineering processes and various control parameters that are critical to the success of solution growth of high-quality perovskite films. We discuss the importance of understanding the impact of solution-processing parameters and perovskite film architectures on the fundamental charge carrier dynamics in perovskite solar cells. The cost and stability issues of perovskite solar cells will also be discussed.

  17. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    Science.gov (United States)

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-01-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors. PMID:27456691

  18. Highly efficient vacuum processed BHJ solar cell based on merocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Kronenberg, Nils M.; Lenze, Martin R.; Hertel, Dirk; Meerholz, Klaus [Department fuer Chemie, Universitaet Koeln (Germany); Buerckstuemmer, Hannah; Wuerthner, Frank [Institut fuer Organische Chemie, Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg (Germany)

    2011-07-01

    Bulk heterojunction (BHJ) organic solar cells have attracted considerable interest due to their potential for large-scale, cost-effective and environmentally friendly power generation. Small molecules have been successfully introduced in solution- (SOL) as well as vacuum- (VAC) processed devices, reporting efficiencies (PCE) up to 4.4% and 5.7% respectively. For simple layer stack devices (2-3 layers) based on CuPc as electron donor and C{sub 60} as electron acceptor PCEs up to 5.0% have been achieved. Recently, we presented a direct comparison of highly efficient SOL and VAC BHJ cells based on merocyanine dyes (MC) with a similarly simple layer stack as reported in the literature. Our most efficient devices exhibited PCEs up to 4.9%. Further optimizations on the VAC processed cells led to high PCEs exceeding 6% while keeping the same simple layer stack. In addition, these cells have demonstrated exceptional performance even at lower light intensities. Due to the simple chemical variability of MC dyes, they are ideally suited for tandem solar cells. We present first attempts in this direction.

  19. High efficiency diffraction grating for EUV lithography beamline monochromator

    Science.gov (United States)

    Voronov, D. L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Naulleau, P.; Artemiev, N. A.; Lum, P.; Padmore, H. A.

    2016-09-01

    A blazed diffraction grating for the EUV lithography Beamline 12.0.1 of the Advanced Light Source has been fabricated using optical direct write lithography and anisotropic wet etching technology. A variable line spacing pattern was recorded on a photoresist layer and transferred to a hard mask layer of the grating substrate by a plasma etch. Then anisotropic wet etching was applied to shape triangular grating grooves with precise control of the ultralow blaze angle. Variation of the groove density along the grating length was measured with a Long Trace Profiler (LTP). Fourier analysis of the LTP data confirmed high groove placement accuracy of the grating. The grating coated with a Ru coating demonstrated diffraction efficiency of 69.6% in the negative first diffraction order which is close to theoretical efficiency at the wavelength of 13.5 nm. This work demonstrates an alternative approach to fabrication of highly efficient and precise x-ray diffraction gratings with ultra-low blaze angles.

  20. High-efficiency Commercial Cold Climate Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Ahmad M. [United Technologies Research Center, East Hartford, CT (United States); Cogswell, F. [United Technologies Research Center, East Hartford, CT (United States); Verma, P. [United Technologies Research Center, East Hartford, CT (United States)

    2015-08-28

    United Technologies Research Center (UTRC) proposed in 2012 to design, develop and demonstrate an air-source 10TR high-efficiency commercial cold climate heat pump (CCCHP). The proposed heat pump would be scalable beyond 40TR, cost effective with a simple payback of < 3 years upon commercialization and would reduce annual electricity use for building space heating in cold climates by at least 20%. This would represent an annual savings of $2.3 billion and a 20% displacement of total greenhouse gases generated upon full commercialization. The primary objective was to develop a highly integrated system that shall meet or exceed DOE capacity and efficiency targets at key conditions and is scalable, cost-effective and simple relative to the state-of-the-art. Specifically, the goal of the project was to design, develop and demonstrate a CCCHP that exceeds DOE capacity degradation requirements at +17F and -13F conditions (0 and <15% degradation vs. 10 and 25% DOE requirements, respectively) while meeting or exceeding DOE capacity and system efficiency requirements at all other conditions.

  1. High-efficiency generation in a short random fiber laser

    Science.gov (United States)

    Vatnik, I. D.; Churkin, D. V.; Podivilov, E. V.; Babin, S. A.

    2014-07-01

    We demonstrate a high-efficiency random lasing in a 850 m span of a phosphosilicate fiber. Random distributed feedback owing to the Rayleigh backscattering in the fiber enables narrowband generation with output power of up to 7.3 W at the Stokes wavelength λS = 1308 nm from 11 W of the pump power at λP = 1115 nm. The laser demonstrates unique generation efficiency. Near the generation threshold, more than 2 W of output power is generated from only 0.5 W of pump power excess over the generation threshold. At high pump power, the quantum conversion efficiency defined as a ratio of generated and pump photons at the laser output exceeds 100%. It is explained by the fact that every pump photon is converted into the Stokes photon far from the output fiber end, while the Stokes photons have lower attenuation than the pump photons.

  2. A robust TALENs system for highly efficient mammalian genome editing.

    Science.gov (United States)

    Feng, Yuanxi; Zhang, Siliang; Huang, Xin

    2014-01-10

    Recently, transcription activator-like effector nucleases (TALENs) have emerged as a highly effective tool for genomic editing. A pair of TALENs binds to two DNA recognition sites separated by a spacer sequence, and the dimerized FokI nucleases at the C terminal then cleave DNA in the spacer. Because of its modular design and capacity to precisely target almost any desired genomic locus, TALEN is a technology that can revolutionize the entire biomedical research field. Currently, for genomic editing in cultured cells, two plasmids encoding a pair of TALENs are co-transfected, followed by limited dilution to isolate cell colonies with the intended genomic manipulation. However, uncertain transfection efficiency becomes a bottleneck, especially in hard-to-transfect cells, reducing the overall efficiency of genome editing. We have developed a robust TALENs system in which each TALEN plasmid also encodes a fluorescence protein. Thus, cells transfected with both TALEN plasmids, a prerequisite for genomic editing, can be isolated by fluorescence-activated cell sorting. Our improved TALENs system can be applied to all cultured cells to achieve highly efficient genomic editing. Furthermore, an optimized procedure for genomic editing using TALENs is also presented. We expect our system to be widely adopted by the scientific community.

  3. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    Science.gov (United States)

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-07-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors.

  4. High-Efficiency Hall Thruster Discharge Power Converter

    Science.gov (United States)

    Jaquish, Thomas

    2015-01-01

    Busek Company, Inc., is designing, building, and testing a new printed circuit board converter. The new converter consists of two series or parallel boards (slices) intended to power a high-voltage Hall accelerator (HiVHAC) thruster or other similarly sized electric propulsion devices. The converter accepts 80- to 160-V input and generates 200- to 700-V isolated output while delivering continually adjustable 300-W to 3.5-kW power. Busek built and demonstrated one board that achieved nearly 94 percent efficiency the first time it was turned on, with projected efficiency exceeding 97 percent following timing software optimization. The board has a projected specific mass of 1.2 kg/kW, achieved through high-frequency switching. In Phase II, Busek optimized to exceed 97 percent efficiency and built a second prototype in a form factor more appropriate for flight. This converter then was integrated with a set of upgraded existing boards for powering magnets and the cathode. The program culminated with integrating the entire power processing unit and testing it on a Busek thruster and on NASA's HiVHAC thruster.

  5. Highly efficient baculovirus-mediated multigene delivery in primary cells

    Science.gov (United States)

    Mansouri, Maysam; Bellon-Echeverria, Itxaso; Rizk, Aurélien; Ehsaei, Zahra; Cianciolo Cosentino, Chiara; Silva, Catarina S.; Xie, Ye; Boyce, Frederick M.; Davis, M. Wayne; Neuhauss, Stephan C. F.; Taylor, Verdon; Ballmer-Hofer, Kurt; Berger, Imre; Berger, Philipp

    2016-01-01

    Multigene delivery and subsequent cellular expression is emerging as a key technology required in diverse research fields including, synthetic and structural biology, cellular reprogramming and functional pharmaceutical screening. Current viral delivery systems such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic, non-integrating, baculovirus-based vector system expediting highly efficient transient multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a wide range of cell types, including non-dividing primary neurons and induced-pluripotent stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific cassettes enabling multiprotein expression in insect and mammalian cells using a single reagent. Our experiments establish MultiPrime as a powerful and highly efficient tool, to deliver multiple genes for a wide range of applications in primary and established mammalian cells. PMID:27143231

  6. A high efficiency hybrid stirling-pulse tube cryocooler

    Science.gov (United States)

    Wang, Xiaotao; Zhang, Yibing; Li, Haibing; Dai, Wei; Chen, Shuai; Lei, Gang; Luo, Ercang

    2015-03-01

    This article presented a hybrid cryocooler which combines the room temperature displacers and the pulse tube in one system. Compared with a traditional pulse tube cryocooler, the system uses the rod-less ambient displacer to recover the expansion work from the pulse tube cold end to improve the efficiency while still keeps the advantage of the pulse tube cryocooler with no moving parts at the cold region. In the meantime, dual-opposed configurations for both the compression pistons and displacers reduce the cooler vibration to a very low level. In the experiments, a lowest no-load temperature of 38.5 K has been obtained and the cooling power at 80K was 26.4 W with an input electric power of 290 W. This leads to an efficiency of 24.2% of Carnot, marginally higher than that of an ordinary pulse tube cryocooler. The hybrid configuration herein provides a very competitive option when a high efficiency, high-reliability and robust cryocooler is desired.

  7. A high efficiency hybrid stirling-pulse tube cryocooler

    Directory of Open Access Journals (Sweden)

    Xiaotao Wang

    2015-03-01

    Full Text Available This article presented a hybrid cryocooler which combines the room temperature displacers and the pulse tube in one system. Compared with a traditional pulse tube cryocooler, the system uses the rod-less ambient displacer to recover the expansion work from the pulse tube cold end to improve the efficiency while still keeps the advantage of the pulse tube cryocooler with no moving parts at the cold region. In the meantime, dual-opposed configurations for both the compression pistons and displacers reduce the cooler vibration to a very low level. In the experiments, a lowest no-load temperature of 38.5 K has been obtained and the cooling power at 80K was 26.4 W with an input electric power of 290 W. This leads to an efficiency of 24.2% of Carnot, marginally higher than that of an ordinary pulse tube cryocooler. The hybrid configuration herein provides a very competitive option when a high efficiency, high-reliability and robust cryocooler is desired.

  8. Design Strategies for Ultra-high Efficiency Photovoltaics

    Science.gov (United States)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired

  9. Efficient temporal and interlayer parameter prediction for weighted prediction in scalable high efficiency video coding

    Science.gov (United States)

    Tsang, Sik-Ho; Chan, Yui-Lam; Siu, Wan-Chi

    2017-01-01

    Weighted prediction (WP) is an efficient video coding tool that was introduced since the establishment of the H.264/AVC video coding standard, for compensating the temporal illumination change in motion estimation and compensation. WP parameters, including a multiplicative weight and an additive offset for each reference frame, are required to be estimated and transmitted to the decoder by slice header. These parameters cause extra bits in the coded video bitstream. High efficiency video coding (HEVC) provides WP parameter prediction to reduce the overhead. Therefore, WP parameter prediction is crucial to research works or applications, which are related to WP. Prior art has been suggested to further improve the WP parameter prediction by implicit prediction of image characteristics and derivation of parameters. By exploiting both temporal and interlayer redundancies, we propose three WP parameter prediction algorithms, enhanced implicit WP parameter, enhanced direct WP parameter derivation, and interlayer WP parameter, to further improve the coding efficiency of HEVC. Results show that our proposed algorithms can achieve up to 5.83% and 5.23% bitrate reduction compared to the conventional scalable HEVC in the base layer for SNR scalability and 2× spatial scalability, respectively.

  10. Pyrolytically grown indium sulfide sensitized zinc oxide nanowires for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Komurcu, Pelin; Can, Emre Kaan; Aydin, Erkan; Semiz, Levent [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Gurol, Alp Eren; Alkan, Fatma Merve [Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Sankir, Mehmet; Sankir, Nurdan Demirci [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey)

    2015-11-15

    Zinc oxide (ZnO) nanowires, sensitized with spray pyrolyzed indium sulfide, were obtained by chemical bath deposition. The XRD analysis indicated dominant evolution of hexagonal ZnO phase. Significant gain in photoelectrochemical current using ZnO nanowires is largely accountable to enhancement of the visible light absorption and the formation of heterostructure. The maximum photoconversion efficiency of 2.77% was calculated for the indium sulfide sensitized ZnO nanowire photoelectrodes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Highly efficient electrophosphorescence devices based on iridium complexes with high efficiency over a wide range of current densities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Liying; Li Bin; Hong Ziruo [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun 130033 (China); Chen Ping; Liu Shiyong [State Key Lab of Integrated Optoelectronics, Jilin University, Changchun 130023 (China)], E-mail: lib020@ciomp.ac.cn, E-mail: syliu@mail.jlu.edu.cn

    2008-12-21

    Three new luminescent cyclometalated iridium (II I) complexes are successfully synthesized. The cyclometalated ligand used here is 2-(2-fluorophenyl)-benzothiazole (F-BT). The auxiliary ligands are acetylacetone (acac), 1,1,1-trifluoroacetylaceton (3F-acac), 1,1,1,5,5,5-hexafluoroacetylacetone (6F-acac), respectively. All complexes exhibit bright photoluminescence at room temperature. Organic light-emitting diodes are fabricated by doping the iridium (III) complexes in 4, 4' -N, N'-dicarbazole-biphenyl (CBP), and the device characteristics are investigated. Among these devices, the performances of the optimized devices based on 1 at high current density are among the best reported for devices with iridium (III) complexes as emitters. EL efficiencies show weak dependence on doping concentration and current density. The optimized device exhibits a peak current efficiency of 28.5 cd A{sup -1} and a power efficiency of 11.2 lm W{sup -1}, respectively, at 20 mA cm{sup -2}, an efficiency of 22.7 cd A{sup -1} at 100 mA cm{sup -2}, 80% of the maximum, can be achieved. Short triplet decay time of 1 measured in solid films is supposed to be responsible for the minor loss in EL efficiency, which suggests depressed triplet-triplet annihilation and site saturation of the phosphor. Efficient exciton formation on the molecules of 1 by direct charge trapping and confinement within the emissive layer also make for outstanding electrophosphorescent performances.

  12. CuInS2 nanotube array on indium tin oxide: synthesis and photoelectrochemical properties.

    Science.gov (United States)

    Wu, Jih-Jen; Jiang, Wan-Ting; Liao, Wen-Pin

    2010-08-28

    CuInS(2) nanotube (NT) arrays were synthesized on indium tin oxide (ITO) substrates for the first time using a successive ionic layer absorption and reaction (SILAR) process with self-dissolved ZnO nanowire (NW) templates. The p-type CuInS(2) NT array shows promising conversion efficiency in a photoelectrochemical cell with polysulfide electrolyte.

  13. High Efficient Universal Buck Boost Solar Array Regulator SAR Module

    Science.gov (United States)

    Kimmelmann, Stefan; Knorr, Wolfgang

    2014-08-01

    The high efficient universal Buck Boost Solar Array Regulator (SAR) module concept is applicable for a wide range of input and output voltages. The single point failure tolerant SAR module contains 3 power converters for the transfer of the SAR power to the battery dominated power bus. The converters are operating parallel in a 2 out of 3 redundancy and are driven by two different controllers. The output power of one module can be adjusted up to 1KW depending on the requirements. The maximum power point tracker (MPPT) is placed on a separate small printed circuit board and can be used if no external tracker signal is delivered. Depending on the mode and load conditions an efficiency of more than 97% is achievable. The stable control performance is achieved by implementing the magnetic current sense detection. The sensed power coil current is used in Buck and Boost control mode.

  14. High efficiency spreading spectrum modulation using double orthogonal complex sequences

    Institute of Scientific and Technical Information of China (English)

    Shi Xiaohong

    2012-01-01

    This paper presents a novel scheme of high efficiency spreading spectrum modulation using double orthogonal complex sequences (DoCS). In this scheme, input data bit-stream is split into many groups with length M. Each group is then mapped into a word of width M and then utihzed to select one sequence from 2u-2 DoCS sequences each with length L. After that, the selected sequence is modulated on carrier in quadrature phase shift keying (QPSK) mode. In addition, a new method named forward phase correction (FPC) is put forward for carrier recovery. Theoretical analysis and bit-error-ratio(BER) experiment results indicate that the proposed scheme has better performance than the conventional direct sequence spread spectrum(DSSS) scheme both in bandwidth efficiency and processing gain of the receiver.

  15. Highly efficient electroosmotic flow through functionalized carbon nanotube membranes

    Science.gov (United States)

    Wu, Ji; Gerstandt, Karen; Majumder, Mainak; Zhan, Xin; Hinds, Bruce J.

    2011-08-01

    Carbon nanotube membranes with inner diameter ranging from 1.5-7 nm were examined for enhanced electroosmotic flow. After functionalization via electrochemical diazonium grafting and carbodiimide coupling reaction, it was found that neutral caffeine molecules can be efficiently pumped via electroosmosis. An electroosmotic velocity as high as 0.16 cm s-1 V-1 has been observed. Power efficiencies were 25-110 fold improved compared to related nanoporous materials, which has important applications in chemical separations and compact medical devices. Nearly ideal electroosmotic flow was seen in the case where the mobile cation diameter nearly matched the inner diameter of the single-walled carbon nanotube resulting in a condition of using one ion is to pump one neutral molecule at equivalent concentrations.

  16. Photovoltaics. Interface engineering of highly efficient perovskite solar cells.

    Science.gov (United States)

    Zhou, Huanping; Chen, Qi; Li, Gang; Luo, Song; Song, Tze-bing; Duan, Hsin-Sheng; Hong, Ziruo; You, Jingbi; Liu, Yongsheng; Yang, Yang

    2014-08-01

    Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

  17. Study on a Novel High-Efficiency Bridgeless PFC Converter

    Directory of Open Access Journals (Sweden)

    Cao Taiqiang

    2014-01-01

    Full Text Available In order to implement a high-efficiency bridgeless power factor correction converter, a new topology and operation principles of continuous conduction mode (CCM and DC steady-state character of the converter are analyzed, which show that the converter not only has bipolar-gain characteristic but also has the same characteristic as the traditional Boost converter, while the voltage transfer ratio is not related with the resonant branch parameters and switching frequency. Based on the above topology, a novel bridgeless Bipolar-Gain Pseudo-Boost PFC converter is proposed. With this converter, the diode rectifier bridge of traditional AC-DC converter is eliminated, and zero-current switching of fast recovery diode is achieved. Thus, the efficiency is improved. Next, we also propose the one-cycle control policy of this converter. Finally, experiments are provided to verify the accuracy and feasibility of the proposed converter.

  18. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  19. High Efficiency of Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Liyuan Han

    2005-01-01

    @@ 1Introduction Much attention has been paid to the development of dye-sensitized solar cells (DSCs) during the past decade. In general, a DSC comprises a nanocrystalline titanium dioxide (TiO2) electrode modified with a dye fabricated on a transparent conducting oxide (TCO), a platinum (Pt) counter electrode, and an electrolyte solution with a dissolved iodide ion/tri-iodide ion redox couple between the electrodes. Although a DSC using black dye with high efficiency of 10.4%, which was measured by NREL(U. S. A. ), was reported by Graetzel et al. [1], the efficiency of DSCs should be further improved for practical use in comparison with silicon solar cells.

  20. Novel Efficient De-blocking Method for Highly Compressed Images

    Institute of Scientific and Technical Information of China (English)

    SHI Min; YI Qing-ming; YANG Liang

    2007-01-01

    Due to coarse quantization,block-based discrete cosine transform(BDCT) compression methods usually suffer from visible blocking artifacts at the block boundaries.A novel efficient de-blocking method in DCT domain is proposed.A specific criterion for edge detection is given,one-dimensional DCT is applied on each row of the adjacent blocks and the shifted block in smooth region,and the transform coefficients of the shifted block are modified by weighting the average of three coefficients of the block.Mean square difference of slope criterion is used to judge the efficiency of the proposed algorithm.Simulation results show that the new method not only obtains satisfactory image quality,but also maintains high frequency information.

  1. Tunable C2N Membrane for High Efficient Water Desalination

    Science.gov (United States)

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-07-01

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the “open” and “closed” states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures.

  2. Tunable C2N Membrane for High Efficient Water Desalination.

    Science.gov (United States)

    Yang, Yanmei; Li, Weifeng; Zhou, Hongcai; Zhang, Xiaoming; Zhao, Mingwen

    2016-07-07

    Water scarcity represents one of the most serious global problems of our time and challenges the advancements in desalination techniques. Although water-filtering architectures based on graphene have greatly advanced the approach to high performance desalination membranes, the controlled-generation of nanopores with particular diameter is tricky and has stunted its wide applications. Here, through molecular dynamic simulations and first-principles calculations, we propose that the recently reported graphene-like carbon nitride (g-C2N) monolayer can serve as high efficient filters for water desalination. Taking the advantages of the intrisic nanoporous structure and excellent mechanical properties of g-C2N, high water transparency and strong salt filtering capability have been demonstrated in our simulations. More importantly, the "open" and "closed" states of the g-C2N filter can be precisely regulated by tensile strain. It is found that the water permeability of g-C2N is significantly higher than that reported for graphene filters by almost one order of magnitude. In the light of the abundant family of graphene-like carbon nitride monolayered materials, our results thus offer a promising approach to the design of high efficient filteration architectures.

  3. Mesosilica-coated ultrafine fibers for highly efficient laccase encapsulation

    Science.gov (United States)

    Wang, Shiwen; Chen, Wei; He, Sha; Zhao, Qilong; Li, Xiaohong; Sun, Jiashu; Jiang, Xingyu

    2014-05-01

    In this paper, we present a simple but efficient biomimetic method to encapsulate laccase on mesoporous silica-modified electrospun (ES) ultrafine fibers. Because of the mild immobilization conditions (room temperature, aqueous condition), the encapsulated laccase retained a high activity of 94%. Because of the protection from the silica layer, the laccase worked efficiently at 60 °C and retained a long-term activity in the presence of proteinase K. After recycling for 10 times the laccase still preserved 96% of its original reactivity. More remarkably, the immobilized laccase on fibers could completely recover its activity after thermal denature, while the free laccase permanently lost the activity. We also demonstrated that the laccase on silica-coated fibers exhibited an enhanced decolorization capability of Brilliant Blue KN-R (BBKN-R) as compared to the free laccase, showing its great potential for industrial applications.In this paper, we present a simple but efficient biomimetic method to encapsulate laccase on mesoporous silica-modified electrospun (ES) ultrafine fibers. Because of the mild immobilization conditions (room temperature, aqueous condition), the encapsulated laccase retained a high activity of 94%. Because of the protection from the silica layer, the laccase worked efficiently at 60 °C and retained a long-term activity in the presence of proteinase K. After recycling for 10 times the laccase still preserved 96% of its original reactivity. More remarkably, the immobilized laccase on fibers could completely recover its activity after thermal denature, while the free laccase permanently lost the activity. We also demonstrated that the laccase on silica-coated fibers exhibited an enhanced decolorization capability of Brilliant Blue KN-R (BBKN-R) as compared to the free laccase, showing its great potential for industrial applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01166j

  4. High-efficiency multilayer-dielectric diffraction gratings

    Energy Technology Data Exchange (ETDEWEB)

    Perry, M.D.; Boyd, R.D.; Britten, J.A.

    1996-06-01

    The ability to produce short laser pulses of extremely high power and high irradiance, as is needed for fast ignitor research in inertial confinement fusion, places increasing demands on optical components such as amplifiers, lenses, and mirrors that must remain undamaged by the radiation. The higher refractive index in the center of an intense laser beam acts as a focusing lens. The resulting wavefront distortion, left uncorrected, eventually leads to catastrophic filamentation. Major advances in energy extraction and resulting increases in focused irradiance have been made possible by the use of chirped-pulse amplification (CPA), long used in radar applications and newly applied to optical frequencies. Optical-frequency CPA systems begin with a mode-locked oscillator that produces low-energy seed pulses with durations of ten to a few hundred femtoseconds. As a result of the classical uncertainty relation between time and frequency, these short pulses have a very broad frequency distribution. A pair of diffraction gratings (or other dispersive elements) lengthens the laser pulse and induces a time-varying frequency (or chirp). Following amplification, diffraction gratings compress the pulse back to nearly the original duration. Typically a nanojoule, femtosecond pulse is stretched by a factor of several thousand and is amplified by as much as 12 orders of magnitude before recompression. By producing the short pulse only after amplification, this technique makes possible efficient extraction of energy from a variety of broadband solid state materials. Achieving high focused irradiance from a pulse ultimately requires both high peak power and excellent beam quality. There is therefore a demand for diffraction gratings that produce a high-quality diffracted wavefront, have high diffraction efficiency, and exhibit a high threshold for laser damage.

  5. Indium tin oxide thin films elaborated by sol-gel routes: The effect of oxalic acid addition on optoelectronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kesim, Mehmet Tumerkan; Durucan, Caner, E-mail: cdurucan@metu.edu.tr

    2013-10-31

    Single layer indium tin oxide (ITO) thin films were deposited on glass using modified sol-gel formulations. The coating sols were prepared using indium (InCl{sub 3}∙ 4H{sub 2}O) and tin salts (SnCl{sub 4}∙ 5H{sub 2}O). The stable sols were obtained using ethanol (C{sub 2}H{sub 5}OH) and acetylacetone (C{sub 5}H{sub 8}O{sub 2}) as solvents and by the addition of oxalic acid dihydrate (C{sub 2}H{sub 2}O{sub 4}∙ 2H{sub 2}O) in different amounts. The effect of oxalic acid content in the sol formulation and post-coating calcination treatment (in air at 300–600 °C) on electrical/optical properties of ITO films have been reported. It was shown that film formation efficiency, surface coverage and homogeneity were all enhanced with oxalic acid addition. Oxalic acid modification also leads to a significant improvement in electrical conductivity without affecting the film thickness (45 ± 3 nm). ITO films exhibiting high transparency (≈ 93%, visible region) with a sheet resistance as low as 3.8 ± 0.4 kΩ/sqr have been formed by employing coating sols with optimized oxalic acid amount. The mechanisms and factors affecting the functional performance of oxalic acid-modified films have been thoroughly discussed and related to the microstructural and chemical characteristic of the films achieved by oxalic acid addition. - Highlights: • A solution-based method for processing indium tin oxide (ITO) thin film is reported. • Oxalic acid (OAD) modification leads to a highly compacted film microstructure. • Bulk resistivity of a single layer OAD-modified ITO film was determined as 0.02 Ωcm. • Thin films with transparency values higher than 90% were produced.

  6. Indium sulfide buffer/CIGSSe interface engineering: Improved cell performance by the addition of zinc sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Allsop, N.A. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany)]. E-mail: allsop@hmi.de; Camus, C. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Haensel, A. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Gledhill, S.E. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Lauermann, I. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Lux-Steiner, M.C. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany); Fischer, Ch.-H. [Hahn-Meitner-Institut Berlin, Department SE2, Glienicker Str. 100, D-14109 Berlin (Germany)

    2007-05-31

    Indium sulfide buffer layers deposited by the spray-ion layer gas reaction (Spray-ILGAR) technique are a viable alternative to the traditional cadmium sulfide buffer layer in thin film solar cells. In the present work we report on the results of manipulating the absorber/buffer interface between the chalcopyrite Cu(In,Ga)(S,Se){sub 2} absorber (CIGSSe) and the indium sulfide buffer. It is shown that the deposition of a small amount of zinc sulfide at the absorber/buffer interface can be used to increase the open circuit voltage. A small but significant increase of 20 mV (up to 580 mV), as compared to the pure indium sulfide buffered cells is possible leading to an increase in the overall efficiency.

  7. Approaches to achieve high grain yield and high resource use efficiency in rice

    Directory of Open Access Journals (Sweden)

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  8. Highly diastereoselective synthesis of quaternary α-trifluoromethyl α-amino acids from chiral imines of trifluoropyruvate.

    Science.gov (United States)

    Min, Qiao-Qiao; He, Chun-Yang; Zhou, Haibing; Zhang, Xingang

    2010-11-14

    An efficient method for highly diastereoselective synthesis of quaternary α-trifluoromethyl α-amino acids was developed via indium mediated allylation of (R)-phenylglycinol methyl ether based imines of trifluoropyruvate in good yields with high diastereoselectivities at room temperature; to illustrate the application of this method in organic synthesis, 2-allyl-2-(trifluoromethyl) aziridine was prepared in an efficient manner.

  9. Photoconductive Cathode Interlayer for Highly Efficient Inverted Polymer Solar Cells.

    Science.gov (United States)

    Nian, Li; Zhang, Wenqiang; Zhu, Na; Liu, Linlin; Xie, Zengqi; Wu, Hongbin; Würthner, Frank; Ma, Yuguang

    2015-06-10

    A highly photoconductive cathode interlayer was achieved by doping a 1 wt % light absorber, such as perylene bisimide, into a ZnO thin film, which absorbs a very small amount of light but shows highly increased conductivity of 4.50 × 10(-3) S/m under sunlight. Photovoltaic devices based on this kind of photoactive cathode interlayer exhibit significantly improved device performance, which is rather insensitive to the thickness of the cathode interlayer over a broad range. Moreover, a power conversion efficiency as high as 10.5% was obtained by incorporation of our photoconductive cathode interlayer with the PTB7-Th:PC71BM active layer, which is one of the best results for single-junction polymer solar cells.

  10. A watermarking scheme for High Efficiency Video Coding (HEVC).

    Science.gov (United States)

    Swati, Salahuddin; Hayat, Khizar; Shahid, Zafar

    2014-01-01

    This paper presents a high payload watermarking scheme for High Efficiency Video Coding (HEVC). HEVC is an emerging video compression standard that provides better compression performance as compared to its predecessor, i.e. H.264/AVC. Considering that HEVC may will be used in a variety of applications in the future, the proposed algorithm has a high potential of utilization in applications involving broadcast and hiding of metadata. The watermark is embedded into the Quantized Transform Coefficients (QTCs) during the encoding process. Later, during the decoding process, the embedded message can be detected and extracted completely. The experimental results show that the proposed algorithm does not significantly affect the video quality, nor does it escalate the bitrate.

  11. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption.

    Science.gov (United States)

    Chou, Wei-Lung; Wang, Chih-Ta; Huang, Kai-Yu

    2009-08-15

    The aim of this study is to investigate the effects of operating parameters on the specific energy consumption and removal efficiency of synthetic wastewater containing indium (III) ions by electrocoagulation in batch mode using an iron electrode. Several parameters, including different electrode pairs, supporting electrolytes, initial concentration, pH variation, and applied voltage, were investigated. In addition, the effects of applied voltage, supporting electrolyte, and initial concentration on indium (III) ion removal efficiency and specific energy consumption were investigated under the optimum balance of reasonable removal efficiency and relative low energy consumption. Experiment results indicate that a Fe/Al electrode pair is the most efficient choice of the four electrode pairs in terms of energy consumption. The optimum supporting electrolyte concentration, initial concentration, and applied voltage were found to be 100 mg/l NaCl, 20 mg/l, and 20V, respectively. A higher pH at higher applied voltage (20 or 30V) enhanced the precipitation of indium (III) ion as insoluble indium hydroxide, which improved the removal efficiency. Results from the indium (III) ion removal kinetics show that the kinetics data fit the pseudo second-order kinetic model well. Finally, the composition of the sludge produced was characterized with energy dispersion spectra (EDS).

  12. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou0388@hotmail.com [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Huang, Kai-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China)

    2009-08-15

    The aim of this study is to investigate the effects of operating parameters on the specific energy consumption and removal efficiency of synthetic wastewater containing indium (III) ions by electrocoagulation in batch mode using an iron electrode. Several parameters, including different electrode pairs, supporting electrolytes, initial concentration, pH variation, and applied voltage, were investigated. In addition, the effects of applied voltage, supporting electrolyte, and initial concentration on indium (III) ion removal efficiency and specific energy consumption were investigated under the optimum balance of reasonable removal efficiency and relative low energy consumption. Experiment results indicate that a Fe/Al electrode pair is the most efficient choice of the four electrode pairs in terms of energy consumption. The optimum supporting electrolyte concentration, initial concentration, and applied voltage were found to be 100 mg/l NaCl, 20 mg/l, and 20 V, respectively. A higher pH at higher applied voltage (20 or 30 V) enhanced the precipitation of indium (III) ion as insoluble indium hydroxide, which improved the removal efficiency. Results from the indium (III) ion removal kinetics show that the kinetics data fit the pseudo second-order kinetic model well. Finally, the composition of the sludge produced was characterized with energy dispersion spectra (EDS).

  13. Basic studies of 3-V high efficiency cell components

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Morgan, J.M.; Stellwag, T.B. (Purdue Univ., Lafayette, IN (USA). School of Electrical Engineering)

    1990-07-01

    This project's objective is to improve our fundamental understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. We expect that the insight into III-V device physics occurring during the course of this work will help to identify paths toward higher efficiency III-V cells. This report describes our progress during the fourth year of the project. The past year's efforts centered on completing studies of heavy doping effects in p{sup +}-GaAs and assessing the importance of similar effects in n{sup +}-GaAs, and at continuing research on characterizing, controlling, and passivating perimeter recombination currents. We also initiated work to identify the dominant loss mechanism in Al{sub 0.2}Ga{sub 0.8} As solar cells and brought on-line a new MBE growth facility and demonstrated the high-quality of the films by fabricating, with assistance from Spire Corporation, 23.8% 1-sun solar cells.

  14. The design of space optical communications terminal with high efficient

    Science.gov (United States)

    Deng, Xiaoguo; Li, Gang; Jiang, Bo; Yang, Xiaoxu; Yan, Peipei

    2015-02-01

    In order to improve high-speed laser space optical communications terminal receive energy and emission energy, meet the demand of mini-type and light-type for space-based bear platform, based on multiple-reflect coaxial optical receiving antenna structure, while considering the installation difficulty, a high-efficient optical system had been designed, which aperture is off-axial, both signal-receiving sub-optical system and emission sub-optical system share a same primary optical path. By the separating light lens behind the primary optical path, the received light with little energy will be filtered and shaped and then transmitted to each detector, at the same time, by the coupling element, the high-power laser will be coupling into optical antenna, and then emitted to outside. Applied the power-detected optical system evaluate principle, the optimized off-axial optical system's efficiency had been compared with the coaxial optical system. While, analyzed the Gauss beam energy distribution by numerical theory, discussed that whether off-axis optical system can be an emission terminal, verify the feasibility of the theory of the design of the system.

  15. A High Efficiency Fully Integrated OOK Transmitter for WBAN

    Institute of Scientific and Technical Information of China (English)

    Mousa Yousefi; Ziaddin Daie Koozehkanani; Jafar Sobhi; Hamid Jangi

    2014-01-01

    ⎯A 2.4 GHz high efficiency radio frequency (RF) transmitter for wireless body area network (WBAN) in medical applications is presented in this paper. The transmitter architecture with high energy efficiency is proposed to achieve a high data rate with low power consumption. In conventional transmitters, the oscillator and power amplifier are turned off when the transmitter sends 0. The required time for turning oscillator ON/OFF is longer than the other blocks of the transmitter. In the proposed transmitter, the low power oscillator is on all the time while the power amplifier and modulator are turned off when“0”data is sent. The transmitter consumes 3.2 mW at 0.5 dBm output by 285 Mbps data rate and the energy consumption per transmitted bit with 0.5 dBm output power is 10 pJ/(bit⋅mW). The proposed transmitter was designed in 0.18 µm CMOS technology.

  16. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  17. Boxberg - a new benchmark for high efficiency steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hoffstadt, U.; Klauke, U.; Hinz, H. [Siemens Power Generation (Germany)

    2001-07-01

    One of the primary tasks associated with the development of modern power plant facilities is to improve the economy of operation, while at the same time reducing environmental pollution. In addition to investigations focused on supercritical steam conditions, Siemens Power generation has made enormous efforts to improve the overall efficiency by decreasing the steam flow energy losses of each steam turbine component: optimization of the admission and exhaust geometries; fully three-dimensional blading profiles; reduction of the seal-steam losses; high reliability, availability and safety of operation; optimization of the efficiency/cost-relations. As a result of these efforts the 907 MW power plant Boxberg was handed over to the customer Vereinigte Energiewerke AG recently. With a thermal gross-efficiency of 48,65% the steam turbine represents a milestone for lignite-fired cogeneration units in the history of modern turbine technology. In conjunction with the presentation of the special turbine features and its optimised fluid dynamic components, the results of assembly, commissioning and acceptance testing will be a key issue in the proposed paper. 14 overheads/slides.

  18. Highly efficient entanglement swapping and teleportation at telecom wavelength

    Science.gov (United States)

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-03-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 +/- 1.0% (85.1 +/- 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links.

  19. An Efficient Role Specification Management Model for Highly Distributed Environments

    Directory of Open Access Journals (Sweden)

    Soomi Yang

    2006-07-01

    Full Text Available Highly distributed environments such as pervasive computing environments not having global or broad control, need another attribute certificate management technique. For an efficient role based access control using attribute certificate, we use a technique of structuring role specification certificates. It can provide more flexible and secure collaborating environments. The roles are grouped and made them into the relation tree. It can reduce management cost and overhead incurred when changing the specification of the role. Further we use caching of frequently used role specification certificate for better performance in case applying the role. Tree structured role specification results secure and efficient role renewing and distribution. Caching of role specification helps an application of role. In order to be scalable distribution of the role specification certificate, we use multicasting packets. Also, performance enhancement of structuring role specification certificates is quantified in the sense of taking into account of the packet loss. In the experimental section, it is shown that role updating and distribution are secured and efficient.

  20. A microfluidic chip for highly efficient cell capturing and pairing.

    Science.gov (United States)

    Cui, Shaoyan; Liu, Yaoping; Wang, Wei; Sun, Yan; Fan, Yubo

    2011-09-01

    This paper examined the feasibility of a microfluidics chip for cell capturing and pairing with a high efficiency. The chip was fabricated by the polydimethylsiloxane-based soft-lithography technique and contained two suction duct arrays set in parallel on both sides of a main microchannel. Cells were captured and paired by activating two sets of suction ducts one by one with the help of syringe pumps along with switching the cell suspensions inside the main microchannel correspondingly. The effects of suction flow rate and the dimensions of suction channels on the cell capturing and pairing efficiency were characterized. The present chip was capable of creating 1024 pairs of two different cell populations in parallel. The preliminary experimental results showed that the cell capturing efficiency was 100% and the pairing one was 88% with an optimal suction rate of 5 μl/min in the chip in the 2 μm-sized suction duct chip. The cell viability after capture inside the microfluidic device was 90.0 ± 5.3%. With this cell capturing and pairing chip, interaction between cells in a single pair mode can be studied. The ability to create cell pairs has a number of biological applications for cell fusion, cell-cell interaction studies, and cell toxicity screening.