WorldWideScience

Sample records for high eddy viscosity

  1. An eddy viscosity model for flow in a tube bundle

    International Nuclear Information System (INIS)

    Soussan, D.; Grandotto, M.

    1998-01-01

    The work described in this paper is part of the development of GENEPI a 3-dimensional finite element code, designed for the thermalhydraulic analysis of steam generators. It focuses on the implementation of two-phase flow turbulence-induced viscosity in a tube bundle. The GENEPI code, as other industrial codes, uses the eddy viscosity concept introduced by Boussinesq for single phase flow. The concept assumes that the turbulent momentum transfer is similar to the viscous shear stresses. Eddy viscosity formulation is reasonably well known for single phase flows, especially in simple geometries (i.e., in smooth tube, around a single body, or behind a row of bars/tubes), but there exists very little information on it for two-phase flows. An analogy between single and two-phases is used to set up a model for eddy viscosity. The eddy viscosity model examined in this paper is used for a tube bundle geometry and, therefore, is extended to include anisotropy to the classic model. Each of the main flow directions (cross flow inline, cross flow staggered, and parallel flows) gives rise to a specific eddy viscosity formula. The results from a parametric study indicate that the eddy viscosity in the staggered flow is roughly 1.5 times as large as that for the inline cross flow, 60 times as large as that for the parallel flow, and 105 as large as that for the molecular viscosity. Then, the different terms are combined with each other to result in a global eddy viscosity model for a steam generator tube bundle flow. (author)

  2. Time evolution of the eddy viscosity in two-dimensional navier-stokes flow

    Science.gov (United States)

    Chaves; Gama

    2000-02-01

    The time evolution of the eddy viscosity associated with an unforced two-dimensional incompressible Navier-Stokes flow is analyzed by direct numerical simulation. The initial condition is such that the eddy viscosity is isotropic and negative. It is shown by concrete examples that the Navier-Stokes dynamics stabilizes negative eddy viscosity effects. In other words, this dynamics moves monotonically the initial negative eddy viscosity to positive values before relaxation due to viscous term occurs.

  3. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  4. Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model

    Science.gov (United States)

    Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi

    2018-04-01

    A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.

  5. Dynamic modeling of the horizontal eddy viscosity coefficient for quasigeostrophic ocean circulation problems

    Directory of Open Access Journals (Sweden)

    Romit Maulik

    2016-12-01

    Full Text Available This paper puts forth a simplified dynamic modeling strategy for the eddy viscosity coefficient parameterized in space and time. The eddy viscosity coefficient is dynamically adjusted to the local structure of the flow using two different nonlinear eddy viscosity functional forms to capture anisotropic dissipation mechanism, namely, (i the Smagorinsky model using the local strain rate field, and (ii the Leith model using the gradient of the vorticity field. The proposed models are applied to the one-layer and two-layer wind-driven quasigeostrophic ocean circulation problems, which are standard prototypes of more realistic ocean dynamics. Results show that both models capture the quasi-stationary ocean dynamics and provide the physical level of eddy viscosity distribution without using any a priori estimation. However, it is found that slightly less dissipative results can be obtained by using the dynamic Leith model. Two-layer numerical experiments also reveal that the proposed dynamic models automatically parameterize the subgrid-scale stress terms in each active layer. Furthermore, the proposed scale-aware models dynamically provide higher values of the eddy viscosity for smaller resolutions taking into account the local resolved flow information, and addressing the intimate relationship between the eddy viscosity coefficients and the numerical resolution employed by the quasigeostrophic models.

  6. A DDES model with a Smagorinsky-type eddy viscosity formulation and log-layer mismatch correction

    International Nuclear Information System (INIS)

    Reddy, K.R.; Ryon, J.A.; Durbin, P.A.

    2014-01-01

    Highlights: • An alternate DDES formulation is proposed via the eddy viscosity definition. • Eddy viscosity is expressed as a Smagorinsky-type formula. • Log-layer mismatch is corrected by changing the length scale definition. • Model is validated for 2D as well as 3D flows. - Abstract: The current work develops a variant of delayed detached eddy simulation (DDES) that could be characterized as limiting the production term. Previous formulations have been based on limiting the dissipation rate (Spalart et al., 2006). A clipped length scale is applied directly to the eddy viscosity, yielding a Smagorinsky-like formulation when the model is on the eddy simulation branch. That clipped eddy viscosity limits the production rate. The length scale is modified in order to account for the log-layer mismatch (a well-known issue with DDES), without using additional blending functions. Another view of our approach is that the subgrid eddy-viscosity is represented by a mixing length formula l 2 ω; in the eddy field ω acts like a filtered rate of strain. Our model is validated for channel flow as well as separated flows (backward-facing step, 2D periodic hills) and illustrated via an air-blast atomizer

  7. Renormalization-group theory for the eddy viscosity in subgrid modeling

    Science.gov (United States)

    Zhou, YE; Vahala, George; Hossain, Murshed

    1988-01-01

    Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation now includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term. The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap exists between the large and small scales.

  8. A Coherent vorticity preserving eddy-viscosity correction for Large-Eddy Simulation

    Science.gov (United States)

    Chapelier, J.-B.; Wasistho, B.; Scalo, C.

    2018-04-01

    This paper introduces a new approach to Large-Eddy Simulation (LES) where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated or deactivated in regions dominated by large-scale and/or laminar vortical motion. The proposed coherent-vorticity preserving (CvP) LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy, σ. Values of σ close to 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of the SGS dissipation. The intensity of the SGS dissipation is progressively increased for σ activated in developed turbulence characterized by σ ≤σeq, where the value σeq is derived assuming a Kolmogorov spectrum. The proposed approach can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. LES of Taylor-Green vortex breakdown demonstrates that the CvP methodology improves the performance of traditional, non-dynamic dissipative SGS models, capturing the peak of total turbulent kinetic energy dissipation during transition. Similar accuracy is obtained by adopting Germano's dynamic procedure albeit at more than twice the computational overhead. A CvP-LES of a pair of unstable periodic helical vortices is shown to predict accurately the experimentally observed growth rate using coarse resolutions. The ability of the CvP methodology to dynamically sort the coherent, large-scale motion from the smaller, broadband scales during transition is demonstrated via flow visualizations. LES of compressible channel are carried out and show a good match with a reference DNS.

  9. Separation-induced boundary layer transition: Modeling with a non-linear eddy-viscosity model coupled with the laminar kinetic energy equation

    International Nuclear Information System (INIS)

    Vlahostergios, Z.; Yakinthos, K.; Goulas, A.

    2009-01-01

    We present an effort to model the separation-induced transition on a flat plate with a semi-circular leading edge, using a cubic non-linear eddy-viscosity model combined with the laminar kinetic energy. A non-linear model, compared to a linear one, has the advantage to resolve the anisotropic behavior of the Reynolds-stresses in the near-wall region and it provides a more accurate expression for the generation of turbulence in the transport equation of the turbulence kinetic energy. Although in its original formulation the model is not able to accurately predict the separation-induced transition, the inclusion of the laminar kinetic energy increases its accuracy. The adoption of the laminar kinetic energy by the non-linear model is presented in detail, together with some additional modifications required for the adaption of the laminar kinetic energy into the basic concepts of the non-linear eddy-viscosity model. The computational results using the proposed combined model are shown together with the ones obtained using an isotropic linear eddy-viscosity model, which adopts also the laminar kinetic energy concept and in comparison with the existing experimental data.

  10. Validation of the Eddy Viscosity and Lange Wake Models using Measured Wake Flow Characteristics Behind a Large Wind Turbine Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hyeon; Kim, Bum Suk; Huh, Jong Chul [Jeju National Univ., Jeju (Korea, Republic of); Go, Young Jun [Hanjin Ind, Co., Ltd., Yangsan (Korea, Republic of)

    2016-01-15

    The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.

  11. Performance assessment of a non-linear eddy-viscosity turbulence model applied to the anisotropic wake flow of a low-pressure turbine blade

    International Nuclear Information System (INIS)

    Vlahostergios, Z.; Sideridis, A.; Yakinthos, K.; Goulas, A.

    2012-01-01

    Highlights: ► We model the wake flow produced by a LPT blade using a non-linear turbulence model. ► We use two interpolation schemes for the convection terms with different accuracy. ► We investigate the effect of each term of the non-linear constitutive expression. ► The results are compared with available experimental measurements. ► The model predicts with a good accuracy the velocity and stress distributions. - Abstract: The wake flow produced by a low-pressure turbine blade is modeled using a non-linear eddy-viscosity turbulence model. The theoretical benefit of using a non-linear eddy-viscosity model is strongly related to the capability of resolving highly anisotropic flows in contrast to the linear turbulence models, which are unable to correctly predict anisotropy. The main aim of the present work is to practically assess the performance of the model, by examining its ability to capture the anisotropic behavior of the wake-flow, mainly focusing on the measured velocity and Reynolds-stress distributions and to provide accurate results for the turbulent kinetic energy balance terms. Additionally, the contribution of each term of its non-linear constitutive expression for the Reynolds stresses is also investigated, in order to examine their direct effect on the modeling of the wake flow. The assessment is based on the experimental measurements that have been carried-out by the same group in Thessaloniki, Sideridis et al. (2011). The computational results show that the non-linear eddy viscosity model is capable to predict, with a good accuracy, all the flow and turbulence parameters while it is easy to program it in a computer code thus meeting the expectations of its originators.

  12. Calculation of eddy viscosity in a compressible turbulent boundary layer with mass injection and chemical reaction, volume 1. [theoretical analysis

    Science.gov (United States)

    Omori, S.

    1973-01-01

    The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion; that is, combustion alters the velocity profile as if the mass injection rate is increased, reducing the skin-friction as a result of a smaller velocity gradient at the wall. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall, hydrogen reacts with the combustion products, liberating an extensive amount of heat. The resulting large increase in temperature reduces the eddy viscosity in this region.

  13. Modeling the flow in a 90 deg. rectangular duct using one Reynolds-stress and two eddy-viscosity models

    International Nuclear Information System (INIS)

    Yakinthos, K.; Vlahostergios, Z.; Goulas, A.

    2008-01-01

    A new effort to model the flow in a 90 deg. rectangular duct by adopting three low-Reynolds-number turbulence models, two eddy-viscosity models (a linear and a non-linear) and a Reynolds-stress model, is presented. The complex flow development is a challenge for the application of turbulence models in order to assess their capability to capture the secondary flow and the developing vortices due to curvature and strong pressure gradient effects. The numerical results show that both the non-linear eddy-viscosity and the Reynolds-stress models can provide good results, especially for the velocity distributions. The superiority of the Reynolds-stress model is shown primarily in the Reynolds-stress distributions, which have the best quality among the predictions from the other models. On the other hand, the main advantage of the non-linear model is its simplicity and the smaller needed CPU cost, compared to the Reynolds-stress model. Additionally, in some stations of the flow development, the non-linear model provides good velocity distributions. The linear model gives lower quality predictions for the Reynolds-stress distributions, although it is capable in providing quite satisfactory results for the velocity distributions

  14. Jet collimation by turbulent viscosity. I

    International Nuclear Information System (INIS)

    Henriksen, R.N.

    1987-01-01

    In this paper it is assumed that the subscale turbulent eddies induced in an ambient medium by the emergence of a (already collimated) jet from a galactic nucleus (VLBI jet) are the source of the viscosity which causes material to be entrained into the large-scale (VLA) jet. New analytic solutions are derived by a generalization of the self-similar Ansatz used in the Landau-Squires solution to include variable density and viscosity. It is shown that such a process of viscous collimation of the VLA jets can account for the observed collimation-luminosity correlation, the magnetic flux, and the inferred mass flux of these jets. Order of magnitude comparisons of velocity and density fields with recently observed emission-line flow regions near radio jets are made. All of the viscosity-dependent observational checks imply roughly the same plausible value for the eddy viscosity. It is emphasized that storing the initial VLBI jet energy in the intermediate scales occupied by the turbulent eddies allows this energy to be largely undetected. 35 references

  15. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  16. Resistor capacitor, primitive variable solution of buoyant fluid flow within an enclosure with highly temperature dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Burns, S.P. [Texas Univ., Austin, TX (United States); Gianoulakis, S.E. [Sandia National Labs., Albuquerque, NM (United States)

    1995-07-01

    A numerical solution for buoyant natural convection within a square enclosure containing a fluid with highly temperature dependent viscosity is presented. Although the fluid properties employed do not represent any real fluid, the large variation in the fluid viscosity with temperature is characteristic of turbulent flow modeling with eddy-viscosity concepts. Results are obtained using a primitive variable formulation and the resistor method. The results presented include velocity, temperature and pressure distributions within the enclosure as well as shear stress and heat flux distributions along the enclosure walls. Three mesh refinements were employed and uncertainty values are suggested for the final mesh refinement. These solutions are part of a contributed benchmark solution set for the subject problem.

  17. Improving a two-equation eddy-viscosity turbulence model to predict the aerodynamic performance of thick wind turbine airfoils

    Science.gov (United States)

    Bangga, Galih; Kusumadewi, Tri; Hutomo, Go; Sabila, Ahmad; Syawitri, Taurista; Setiadi, Herlambang; Faisal, Muhamad; Wiranegara, Raditya; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus

    2018-03-01

    Numerical simulations for relatively thick airfoils are carried out in the present studies. An attempt to improve the accuracy of the numerical predictions is done by adjusting the turbulent viscosity of the eddy-viscosity Menter Shear-Stress-Transport (SST) model. The modification involves the addition of a damping factor on the wall-bounded flows incorporating the ratio of the turbulent kinetic energy to its specific dissipation rate for separation detection. The results are compared with available experimental data and CFD simulations using the original Menter SST model. The present model improves the lift polar prediction even though the stall angle is still overestimated. The improvement is caused by the better prediction of separated flow under a strong adverse pressure gradient. The results show that the Reynolds stresses are damped near the wall causing variation of the logarithmic velocity profiles.

  18. Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model

    International Nuclear Information System (INIS)

    Bogey, Christophe; Bailly, Christophe

    2006-01-01

    Large eddy simulations (LES) of round free jets at Mach number M = 0.9 with Reynolds numbers over the range 2.5 x 10 3 ≤ Re D ≤ 4 x 10 5 are performed using explicit selective/high-order filtering with or without dynamic Smagorinsky model (DSM). Features of the flows and of the turbulent kinetic energy budgets in the turbulent jets are reported. The contributions of molecular viscosity, filtering and DSM to energy dissipation are also presented. Using filtering alone, the results are independent of the filtering strength, and the effects of the Reynolds number on jet development are successfully calculated. Using DSM, the effective jet Reynolds number is found to be artificially decreased by the eddy viscosity. The results are also not appreciably modified when subgrid-scale kinetic energy is used. Moreover, unlike filtering which does not significantly affect the larger computed scales, the eddy viscosity is shown to dissipate energy through all the turbulent scales, in the same way as molecular viscosity at lower Reynolds numbers

  19. A frequency domain linearized Navier-Stokes method including acoustic damping by eddy viscosity using RANS

    Science.gov (United States)

    Holmberg, Andreas; Kierkegaard, Axel; Weng, Chenyang

    2015-06-01

    In this paper, a method for including damping of acoustic energy in regions of strong turbulence is derived for a linearized Navier-Stokes method in the frequency domain. The proposed method is validated and analyzed in 2D only, although the formulation is fully presented in 3D. The result is applied in a study of the linear interaction between the acoustic and the hydrodynamic field in a 2D T-junction, subject to grazing flow at Mach 0.1. Part of the acoustic energy at the upstream edge of the junction is shed as harmonically oscillating disturbances, which are conveyed across the shear layer over the junction, where they interact with the acoustic field. As the acoustic waves travel in regions of strong shear, there is a need to include the interaction between the background turbulence and the acoustic field. For this purpose, the oscillation of the background turbulence Reynold's stress, due to the acoustic field, is modeled using an eddy Newtonian model assumption. The time averaged flow is first solved for using RANS along with a k-ε turbulence model. The spatially varying turbulent eddy viscosity is then added to the spatially invariant kinematic viscosity in the acoustic set of equations. The response of the 2D T-junction to an incident acoustic field is analyzed via a plane wave scattering matrix model, and the result is compared to experimental data for a T-junction of rectangular ducts. A strong improvement in the agreement between calculation and experimental data is found when the modification proposed in this paper is implemented. Discrepancies remaining are likely due to inaccuracies in the selected turbulence model, which is known to produce large errors e.g. for flows with significant rotation, which the grazing flow across the T-junction certainly is. A natural next step is therefore to test the proposed methodology together with more sophisticated turbulence models.

  20. Existence of k⁻¹ power-law scaling in the equilibrium regions of wall-bounded turbulence explained by Heisenberg's eddy viscosity.

    Science.gov (United States)

    Katul, Gabriel G; Porporato, Amilcare; Nikora, Vladimir

    2012-12-01

    The existence of a "-1" power-law scaling at low wavenumbers in the longitudinal velocity spectrum of wall-bounded turbulence was explained by multiple mechanisms; however, experimental support has not been uniform across laboratory studies. This letter shows that Heisenberg's eddy viscosity approach can provide a theoretical framework that bridges these multiple mechanisms and explains the elusiveness of the "-1" power law in some experiments. Novel theoretical outcomes are conjectured about the role of intermittency and very-large scale motions in modifying the k⁻¹ scaling.

  1. A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows

    International Nuclear Information System (INIS)

    Singh, Satbir; You, Donghyun

    2013-01-01

    Highlights: ► A new SGS model is developed for LES of turbulent flows in complex geometries. ► A dynamic global-coefficient SGS model is coupled with a scale-similarity model. ► Overcome some of difficulties associated with eddy-viscosity closures. ► Does not require averaging or clipping of the model coefficient for stabilization. ► The predictive capability is demonstrated in a number of turbulent flow simulations. -- Abstract: A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations

  2. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    Science.gov (United States)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit

  3. Large Eddy Simulation of turbulence

    International Nuclear Information System (INIS)

    Poullet, P.; Sancandi, M.

    1994-12-01

    Results of Large Eddy Simulation of 3D isotropic homogeneous turbulent flows are presented. A computer code developed on Connexion Machine (CM5) has allowed to compare two turbulent viscosity models (Smagorinsky and structure function). The numerical scheme influence on the energy density spectrum is also studied [fr

  4. Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth's core

    International Nuclear Information System (INIS)

    Mineev, Vladimir N; Funtikov, Aleksandr I

    2004-01-01

    A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)

  5. Universality of the high-temperature viscosity limit of silicate liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, John C.; Ellison, Adam J.

    2011-01-01

    We investigate the high-temperature limit of liquid viscosity by analyzing measured viscosity curves for 946 silicate liquids and 31 other liquids including metallic, molecular, and ionic systems. Our results show no systematic dependence of the high-temperature viscosity limit on chemical...... composition for the studied liquids. Based on theMauro-Yue-Ellison-Gupta-Allan (MYEGA) model of liquid viscosity, the high-temperature viscosity limit of silicate liquids is 10−2.93 Pa·s. Having established this value, there are only two independent parameters governing the viscosity-temperature relation...

  6. High resolution eddy current microscopy

    Science.gov (United States)

    Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.

    2001-01-01

    We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.

  7. High Ra, high Pr convection with viscosity gradients

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.

  8. A Nonlinear Dynamic Subscale Model for Partially Resolved Numerical Simulation (PRNS)/Very Large Eddy Simulation (VLES) of Internal Non-Reacting Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Liu, nan-Suey

    2010-01-01

    A brief introduction of the temporal filter based partially resolved numerical simulation/very large eddy simulation approach (PRNS/VLES) and its distinct features are presented. A nonlinear dynamic subscale model and its advantages over the linear subscale eddy viscosity model are described. In addition, a guideline for conducting a PRNS/VLES simulation is provided. Results are presented for three turbulent internal flows. The first one is the turbulent pipe flow at low and high Reynolds numbers to illustrate the basic features of PRNS/VLES; the second one is the swirling turbulent flow in a LM6000 single injector to further demonstrate the differences in the calculated flow fields resulting from the nonlinear model versus the pure eddy viscosity model; the third one is a more complex turbulent flow generated in a single-element lean direct injection (LDI) combustor, the calculated result has demonstrated that the current PRNS/VLES approach is capable of capturing the dynamically important, unsteady turbulent structures while using a relatively coarse grid.

  9. Measurement of viscosity of slush at high shear rates

    OpenAIRE

    小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru

    1988-01-01

    Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.

  10. A comparative study of high-viscosity cement percutaneous vertebroplasty vs. low-viscosity cement percutaneous kyphoplasty for treatment of osteoporotic vertebral compression fractures.

    Science.gov (United States)

    Sun, Kai; Liu, Yang; Peng, Hao; Tan, Jun-Feng; Zhang, Mi; Zheng, Xian-Nian; Chen, Fang-Zhou; Li, Ming-Hui

    2016-06-01

    The clinical effects of two different methods-high-viscosity cement percutaneous vertebroplasty (PVP) and low-viscosity cement percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCFs) were investigated. From June 2010 to August 2013, 98 cases of OVCFs were included in our study. Forty-six patients underwent high-viscosity PVP and 52 patients underwent low-viscosity PKP. The occurrence of cement leakage was observed. Pain relief and functional activity were evaluated using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), respectively. Restoration of the vertebral body height and angle of kyphosis were assessed by comparing preoperative and postoperative measurements of the anterior heights, middle heights and the kyphotic angle of the fractured vertebra. Nine out of the 54 vertebra bodies and 11 out of the 60 vertebra bodies were observed to have cement leakage in the high-viscosity PVP and low-viscosity PKP groups, respectively. The rate of cement leakage, correction of anterior vertebral height and kyphotic angles showed no significant differences between the two groups (P>0.05). Low-viscosity PKP had significant advantage in terms of the restoration of middle vertebral height as compared with the high-viscosity PVP (Pviscosity PVP and low-viscosity PKP have similar clinical effects in terms of the rate of cement leakage, restoration of the anterior vertebral body height, changes of kyphotic angles, functional activity, and pain relief. Low-viscosity PKP is better than high-viscosity PVP in restoring the height of the middle vertebra.

  11. A viscosity measurement during the high pressure phase transition in triolein

    International Nuclear Information System (INIS)

    Siegoczynski, R M; Rostocki, A J; Kielczynski, P; Szalewski, M

    2008-01-01

    The high-pressure properties of triolein, a subject of extensive research at the Faculty of Physics of Warsaw University of Technology (WUT) have been enhanced by the results of viscosity measurement within the pressure range up to 0.8 GPa. For the measurement the authors have adopted a new ultrasonic method based on Bleustein-Gulyaev waves, successfully developed earlier for the low pressures in the Section of Acoustoelectronics of the Institute of Fundamental Technological Research. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.5 GPa. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. Further exponential rise of viscosity with pressure of the high-pressure phase of triolein. 4. The pressure exponents of the viscosity of both phases were different (the high-pressure phase had much smaller exponent). 5. The decomposition of the high pressure phase due to the slow decompression have shown very large hysteresis of viscosity on pressure dependence

  12. Superrotation of Earth’s Inner Core, Extraterrestrial Impacts, and the Effective Viscosity of Outer Core

    OpenAIRE

    Pirooz Mohazzabi; John D. Skalbeck

    2015-01-01

    The recently verified superrotation of Earth’s inner core is examined and a new model is presented which is based on the tidal despinning of the mantle and the viscosity of the outer core. The model also takes into account other damping mechanisms arising from the inner core superrotation such as magnetic and gravitational coupling as well as contribution from eddy viscosity in the outer core. The effective viscosity obtained in this model confirms a previously well constrained value of about...

  13. Application of renormalization group theory to the large-eddy simulation of transitional boundary layers

    Science.gov (United States)

    Piomelli, Ugo; Zang, Thomas A.; Speziale, Charles G.; Lund, Thomas S.

    1990-01-01

    An eddy viscosity model based on the renormalization group theory of Yakhot and Orszag (1986) is applied to the large-eddy simulation of transition in a flat-plate boundary layer. The simulation predicts with satisfactory accuracy the mean velocity and Reynolds stress profiles, as well as the development of the important scales of motion. The evolution of the structures characteristic of the nonlinear stages of transition is also predicted reasonably well.

  14. Motion-induced eddy current thermography for high-speed inspection

    Directory of Open Access Journals (Sweden)

    Jianbo Wu

    2017-08-01

    Full Text Available This letter proposes a novel motion-induced eddy current based thermography (MIECT for high-speed inspection. In contrast to conventional eddy current thermography (ECT based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday’s law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  15. Eddy current testing with high penetration

    International Nuclear Information System (INIS)

    Becker, R.; Kroening, M.

    1999-01-01

    The low-frequency eddy current testing method is used when penetration into very deep layers is required. The achievable penetration depth is determined among other parameters by the lowest testing frequency that can be realised together with the eddy current sensor. When using inductive sensors, the measuring effect declines proportional to the lowering frequency (induction effect). Further reduction of testing frequency requires other types of sensors, as e.g. the GMR (Giant Magnetic Resistance), which achieves a constant measuring sensitivity down to the steady field. The multi-frequency eddy current testing method MFEC 3 of IZFP described here can be operated using three different scanning frequencies at a time. Two variants of eddy current probes are used in this case. Both have an inductive winding at their emitters, of the type of a measuring probe. The receiver end is either also an inductive winding, or a magnetic field-responsive resistance (GMR). (orig./CB) [de

  16. Viscosity of komatiite liquid at high pressure and temperature

    Science.gov (United States)

    O Dwyer, L.; Lesher, C. E.; Wang, Y.

    2006-12-01

    The viscosities of komatiite liquids at high pressures and temperatures are being investigated by the in-situ falling sphere technique, using the T-25 multianvil apparatus at the GSECARS 13 ID-D beamline at the Advanced Photon Source, ANL. The refractory and fluid nature of komatiite and other ultramafic liquids relevant to the Earth's deep interior, presents unique challenges for this approach. To reach superliquidus temperatures we use a double reservoir configuration, where marker spheres are placed at the top of both a main melt reservoir and an overlying reservoir containing a more refractory composition. Using this approach, we have successfully measured the viscosity of a komatiite from Gorgona Island (GOR-94-29; MgO - 17.8 wt.%; NBO/T = 1.6) up to 6 GPa and 1900 K. Under isothermal conditions, viscosity increases with pressure, consistent with the depolymerized nature of the komatiite. At 1900 K, viscosity increases from 1.5 (+- 0.3) Pa s at 3.5 GPa to 3.4 (+- 0.3) Pa s at 6 GPa, corresponding to an activation volume of 2.2 cm3/mol. At high pressures, the viscosities of Gorgona Island komatiite melt are an order of magnitude higher than those measured by Liebske et al. (2005, EPSL, v. 240) for peridotite melt (MgO 37.1 wt.%; NBO/T = 2.5), and similar in magnitude to molten diopside (NBO/T = 2) (Reid et al. 2003, PEPI, v. 139). The positive pressure dependence is consistent with the reduction in interatomic space diminishing the free volume of the liquid as it is compressed. Above 6 GPa the free volume reduction may become less important with the production of high-coordinated network formers, as attributed to the reversal of the pressure dependence of viscosity for peridotite melt at ~8.5 GPa and diopside melt at ~10 GPa. Experiments at higher pressures are underway to determine if a similar viscosity maximum occurs for komatiite melt and whether its pressure is greater than 10 GPa, as suggested by the data for peridotite and diopside melts.

  17. The micromechanics model analysis of the viscosity regulation of ultra-high strength concrete with low viscosity

    Science.gov (United States)

    Zhu, M.; Wang, F. G.; Wang, F. Z.; Liu, Y. P.

    2017-02-01

    The plastic viscosity of mortar and concrete with different binder content, sand ratio, water-binder ratio, microbead dosage and different class and dosage of fly ash were tested and calculated according tomicromechanics model proposed by A. Ghanbari and B.L. Karihaloo, The correlations between these parameters and fresh concrete workability were also investigated, which showed i. high consistence with the objective reality. When binder content, microbead dosage, fly ash dosage or the water-binder ratio was increased or sand ratio was reduced, the fresh concrete viscosity would decrease correspondingly. However their effects were not that same. The relationships between T50 a, V-funnel and inverted slump time with fresh concrete viscosity were established, respectively.

  18. Estimation of turbulence dissipation rate by Large eddy PIV method in an agitated vessel

    Directory of Open Access Journals (Sweden)

    Kysela Bohuš

    2015-01-01

    Full Text Available The distribution of turbulent kinetic energy dissipation rate is important for design of mixing apparatuses in chemical industry. Generally used experimental methods of velocity measurements for measurement in complex geometries of an agitated vessel disallow measurement in resolution of small scales close to turbulence dissipation ones. Therefore, Particle image velocity (PIV measurement method improved by large eddy Ply approach was used. Large eddy PIV method is based on modeling of smallest eddies by a sub grid scale (SGS model. This method is similar to numerical calculations using Large Eddy Simulation (LES and the same SGS models are used. In this work the basic Smagorinsky model was employed and compared with power law approximation. Time resolved PIV data were processed by Large Eddy PIV approach and the obtained results of turbulent kinetic dissipation rate were compared in selected points for several operating conditions (impeller speed, operating liquid viscosity.

  19. Large eddy simulations of compressible magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Grete, Philipp

    2016-01-01

    subsonic (sonic Mach number M s ∼0.2) to the highly supersonic (M s ∼20) regime, and against other SGS closures. The latter include established closures of eddy-viscosity and scale-similarity type. In all tests and over the entire parameter space, we find that the proposed closures are (significantly) closer to the reference data than the other closures. In the a posteriori tests, we perform large eddy simulations of decaying, supersonic MHD turbulence with initial M s ∼3. We implemented closures of all types, i.e. of eddy-viscosity, scale-similarity and nonlinear type, as an SGS model and evaluated their performance in comparison to simulations without a model (and at higher resolution). We find that the models need to be calculated on a scale larger than the grid scale, e.g. by an explicit filter, to have an influence on the dynamics at all. Furthermore, we show that only the proposed nonlinear closure improves higher-order statistics.

  20. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Grete, Philipp

    2017-02-01

    subsonic (sonic Mach number M s ≈ 0.2) to the highly supersonic (M s ≈ 20) regime, and against other SGS closures. The latter include established closures of eddy-viscosity and scale-similarity type. In all tests and over the entire parameter space, we find that the proposed closures are (significantly) closer to the reference data than the other closures. In the a posteriori tests, we perform large eddy simulations of decaying, supersonic MHD turbulence with initial M s ≈ 3. We implemented closures of all types, i.e. of eddy-viscosity, scale-similarity and nonlinear type, as an SGS model and evaluated their performance in comparison to simulations without a model (and at higher resolution). We find that the models need to be calculated on a scale larger than the grid scale, e.g. by an explicit filter, to have an influence on the dynamics at all. Furthermore, we show that only the proposed nonlinear closure improves higher-order statistics.

  1. Experimental density and viscosity measurements of di(2ethylhexyl)sebacate at high pressure

    International Nuclear Information System (INIS)

    Paredes, Xavier; Fandino, Olivia; Pensado, Alfonso S.; Comunas, Maria J.P.; Fernandez, Josefa

    2012-01-01

    Highlights: → We measure viscosities for di(2-ethylhexyl)sebacate from (298.15 to 398.15) K and up to 60 MPa. → We measure densities for DEHS from (298.15 to 373.15) K and from (0.1 to 60) MPa. → The reported and lit. data were used in a viscosity correlation from (273 to 491) K and up to 1.1 GPa. → This correlation could be used in industrial equipment that operate at high pressures. - Abstract: Experimental densities and dynamic viscosities of di(2-ethylhexyl)sebacate (DEHS) are the object of study in this work. DEHS could be a useful industrial reference fluid for moderately high viscosity at high pressures as it is often used as a pressure transmitting fluid. At atmospheric pressure the density and viscosity measurements have been performed in a rotational SVM 3000 Stabinger viscometer from (273.15 to 373.15) K, whereas from (0.1 to 60) MPa and from (298.15 to 398.15) K an automated Anton Paar DMA HPM vibrating-tube densimeter, and a high-pressure rolling-ball viscometer were used. Several Vogel-Fulcher-Tammann type equations were used to fit the experimental values of viscosity to the pressure and temperature. The measured viscosity data have been used together with previous data found in the literature to establish a correlation of the viscosity surface η(T, p) of DEHS, covering a temperature range from (273 to 491) K and pressure up to 1.1 GPa. This correlation could be used in industrial equipment like viscometers and other devices that operate at high pressures. Our viscosity data have also been fitted as a function of temperature and volume to the thermodynamic scaling model of Roland et al. [C.M. Roland, S. Bair, R. Casalini, J. Chem. Phys. 125 (2006) 124508].

  2. Eddy-current inspection of high flux isotope reactor nuclear control rods

    International Nuclear Information System (INIS)

    Smith, J.H.; Chitwood, L.D.

    1981-07-01

    Inner control rods for the High Flux Isotope Reactor were nondestructively inspected for defects by eddy-current techniques. During these examinations aluminum cladding thickness and oxide thickness on the cladding were also measured. Special application techniques were required because of the high-radiation levels (approx. 10 5 R/h at 30 cm) present and the relatively large temperature gradients that occurred on the surface of the control rods. The techniques used to perform the eddy-current inspections and the methods used to reduce the associated data are described

  3. Viscosity and attenuation of sound wave in high density deuterium

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Ariyasu, Tomio

    1985-01-01

    The penetration of low frequency sound wave into the fuel deuterium is discussed as for laser fusion. The sound velocity and the attenuation constant due to viscosity are calculated for high density (n = 10 24 -- 10 27 cm -3 , T = 10 -1 -- 10 4 eV) deuterium. The shear viscosity of free electron gas and the bulk viscosity due to ion-ion interaction mainly contribute to the attenuation of sound wave. The sound wave of the frequency below 10 10 Hz can easily penetrate through the compressed fuel deuterium of diameter 1 -- 10 3 μm. (author)

  4. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    Science.gov (United States)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic

  5. Large-Eddy Simulation of Internal Flow through Human Vocal Folds

    Science.gov (United States)

    Lasota, Martin; Šidlof, Petr

    2018-06-01

    The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on humanlike computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.

  6. Large-Eddy Simulation of Internal Flow through Human Vocal Folds

    Directory of Open Access Journals (Sweden)

    Lasota Martin

    2018-01-01

    Full Text Available The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on humanlike computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.

  7. Large eddy simulation of new subgrid scale model for three-dimensional bundle flows

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    2004-01-01

    Having led to increased inefficiencies and power plant shutdowns fluid flow induced vibrations within heat exchangers are of great concern due to tube fretting-wear or fatigue failures. Historically, scaling law and measurement accuracy problems were encountered for experimental analysis at considerable effort and expense. However, supercomputers and accurate numerical methods have provided reliable results and substantial decrease in cost. In this investigation Large Eddy Simulation has been successfully used to simulate turbulent flow by the numeric solution of the incompressible, isothermal, single phase Navier-Stokes equations. The eddy viscosity model and a new subgrid scale model have been utilized to model the smaller eddies in the flow domain. A triangular array flow field was considered and numerical simulations were performed in two- and three-dimensional fields, and were compared to experimental findings. Results show good agreement of the numerical findings to that of the experimental, and solutions obtained with the new subgrid scale model represent better energy dissipation for the smaller eddies. (author)

  8. A dynamic globalization model for large eddy simulation of complex turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hae Cheon; Park, No Ma; Kim, Jin Seok [Seoul National Univ., Seoul (Korea, Republic of)

    2005-07-01

    A dynamic subgrid-scale model is proposed for large eddy simulation of turbulent flows in complex geometry. The eddy viscosity model by Vreman [Phys. Fluids, 16, 3670 (2004)] is considered as a base model. A priori tests with the original Vreman model show that it predicts the correct profile of subgrid-scale dissipation in turbulent channel flow but the optimal model coefficient is far from universal. Dynamic procedures of determining the model coefficient are proposed based on the 'global equilibrium' between the subgrid-scale dissipation and viscous dissipation. An important feature of the proposed procedures is that the model coefficient determined is globally constant in space but varies only in time. Large eddy simulations with the present dynamic model are conducted for forced isotropic turbulence, turbulent channel flow and flow over a sphere, showing excellent agreements with previous results.

  9. Influence of dispersing additives and blend composition on stability of marine high-viscosity fuels

    Directory of Open Access Journals (Sweden)

    Т. Н. Митусова

    2017-12-01

    Full Text Available The article offers a definition of the stability of marine high-viscosity fuel from the point of view of the colloid-chemical concept of oil dispersed systems. The necessity and importance of the inclusion in the current regulatory requirements of this quality parameter of high-viscosity marine fuel is indicated. The objects of the research are high-viscosity marine fuels, the basic components of which are heavy oil residues: fuel oil that is the atmospheric residue of oil refining and viscosity breaking residue that is the product of light thermal cracking of fuel oil. As a thinning agent or distillate component, a light gas oil was taken from the catalytic cracking unit. The stability of the obtained samples was determined through the xylene equivalent index, which characterizes the stability of marine high-viscosity fuel to lamination during storage, transportation and operation processes. To improve performance, the resulting base compositions of high-viscosity marine fuels were modified by introducing small concentrations (0.05 % by weight of stabilizing additives based on oxyethylated amines of domestic origin and alkyl naphthalenes of foreign origin.

  10. Large-eddy simulation of stable atmospheric boundary layers to develop better turbulence closures for climate and weather models

    Science.gov (United States)

    Bou-Zeid, Elie; Huang, Jing; Golaz, Jean-Christophe

    2011-11-01

    A disconnect remains between our improved physical understanding of boundary layers stabilized by buoyancy and how we parameterize them in coarse atmospheric models. Most operational climate models require excessive turbulence mixing in such conditions to prevent decoupling of the atmospheric component from the land component, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. Using Large-eddy simulation, we revisit some of the basic challenges in parameterizing stable atmospheric boundary layers: eddy-viscosity closure is found to be more reliable due to an improved alignment of vertical Reynolds stresses and mean strains under stable conditions, but the dependence of the magnitude of the eddy viscosity on stability is not well represented by several models tested here. Thus, we propose a new closure that reproduces the different stability regimes better. Subsequently, tests of this model in the GFDL's single-column model (SCM) are found to yield good agreement with LES results in idealized steady-stability cases, as well as in cases with gradual and sharp changes of stability with time.

  11. High pressure changes of the castor oil viscosity by ultrasonic method

    International Nuclear Information System (INIS)

    Rostocki, A J; Siegoczynski, R M; Kielczynski, P; Szalewski, M

    2008-01-01

    The pressure change of viscosity of castor oil have been measured by ultrasonic method within the range of pressure up to 0.9 GPa. For the measurement, the authors have applied a new ultrasonic method based on Bleustein-Gulyaev (B-G) waves. For the lower pressures (up to 0.3 GPa) the results have been compared with earlier results obtained by falling body method, whereas for the higher pressure range results were compared with those obtained by the flow type viscometer. The measurements have shown: 1. Exponential rise of viscosity with pressure up to 0.4 GPa according to the Barus formula. 2. Extraordinary increment of viscosity at constant pressure during phase transition. 3. The decomposition of the high pressure phase during the decompression process have shown very large hysteresis of viscosity on pressure. 4. After the decompression process the viscosity lasts higher then a initial value for several hours

  12. Forward transformation for high resolution eddy current tomography using whitney elements

    International Nuclear Information System (INIS)

    Szewczyk, R.; Salach, J.; Nowicki, M.; Ruokolainen, J.; Raback, P.

    2014-01-01

    Tomographic methods are intensively developed field of non-destructive testing. The main advantage of this type of NDT method is 3D information concerning the shape of the discontinuities in investigated material. On the other hand, the most common tomography method utilizing X-rays creates the significant risks typical to X-ray technique. As a result, Xray tomography is difficult to use in industry. Introduced to the industry in 2007, the eddy current tomography is safe and cost effective. However, in opposite to X-ray tomography, eddy current tomography requires sophisticated and time consuming inverse transformation creating 2D or 3D view of discontinuities. For this reason solutions presented previously are focused on 2D inverse transformation and exhibit limited resolution. For eddy current tomography, the forward tomographic transformation is most important, which is the base of inverse transformation. This paper presents the novel, fast and cost-effective solution utilizing Whitney elements method for such forward transformation. As a result, new possibilities of development in the area of high resolution 3D eddy current tomography are created. (authors)

  13. Large eddy simulations of compressible magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Grete, Philipp

    2016-09-09

    subsonic (sonic Mach number M{sub s}∼0.2) to the highly supersonic (M{sub s}∼20) regime, and against other SGS closures. The latter include established closures of eddy-viscosity and scale-similarity type. In all tests and over the entire parameter space, we find that the proposed closures are (significantly) closer to the reference data than the other closures. In the a posteriori tests, we perform large eddy simulations of decaying, supersonic MHD turbulence with initial M{sub s}∼3. We implemented closures of all types, i.e. of eddy-viscosity, scale-similarity and nonlinear type, as an SGS model and evaluated their performance in comparison to simulations without a model (and at higher resolution). We find that the models need to be calculated on a scale larger than the grid scale, e.g. by an explicit filter, to have an influence on the dynamics at all. Furthermore, we show that only the proposed nonlinear closure improves higher-order statistics.

  14. Shear and bulk viscosity of high-temperature gluon plasma

    Science.gov (United States)

    Zhang, Le; Hou, De-Fu

    2018-05-01

    We calculate the shear viscosity (η) and bulk viscosity (ζ) to entropy density (s) ratios η/s and ζ/s of a gluon plasma system in kinetic theory, including both the elastic {gg}≤ftrightarrow {gg} forward scattering and the inelastic soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} processes. Due to the suppressed contribution to η and ζ in the {gg}≤ftrightarrow {gg} forward scattering and the effective g≤ftrightarrow {gg} gluon splitting, Arnold, Moore and Yaffe (AMY) and Arnold, Dogan and Moore (ADM) have got the leading order computations for η and ζ in high-temperature QCD matter. In this paper, we calculate the correction to η and ζ in the soft gluon bremsstrahlung {gg}≤ftrightarrow {ggg} process with an analytic method. We find that the contribution of the collision term from the {gg}≤ftrightarrow {ggg} soft gluon bremsstrahlung process is just a small perturbation to the {gg}≤ftrightarrow {gg} scattering process and that the correction is at ∼5% level. Then, we obtain the bulk viscosity of the gluon plasma for the number-changing process. Furthermore, our leading-order result for bulk viscosity is the formula \\zeta \\propto \\tfrac{{α }s2{T}3}{ln}{α }s-1} in high-temperature gluon plasma. Supported by Ministry of Science and Technology of China (MSTC) under the “973” Project (2015CB856904(4)) and National Natural Science Foundation of China (11735007, 11521064)

  15. Large eddy simulation of bundle turbulent flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1995-01-01

    Large eddy simulation may be defined as simulation of a turbulent flow in which the large scale motions are explicitly resolved while the small scale motions are modeled. This results into a system of equations that require closure models. The closure models relate the effects of the small scale motions onto the large scale motions. There have been several models developed, the most popular is the Smagorinsky eddy viscosity model. A new model has recently been introduced by Lee that modified the Smagorinsky model. Using both of the above mentioned closure models, two different geometric arrangements were used in the simulation of turbulent cross flow within rigid tube bundles. An inlined array simulations was performed for a deep bundle (10,816 nodes) as well as an inlet/outlet simulation (57,600 nodes). Comparisons were made to available experimental data. Flow visualization enabled the distinction of different characteristics within the flow such as jet switching effects in the wake of the bundle flow for the inlet/outlet simulation case, as well as within tube bundles. The results indicate that the large eddy simulation technique is capable of turbulence prediction and may be used as a viable engineering tool with the careful consideration of the subgrid scale model. (author)

  16. A viscosity and density meter with a magnetically suspended rotor

    International Nuclear Information System (INIS)

    Bano, Mikulas; Strharsky, Igor; Hrmo, Igor

    2003-01-01

    A device for measuring the viscosity and density of liquids is presented. It is a Couette-type viscometer that uses a submerged rotor to measure the viscosity without errors originating in the contact of the rotor with the sample/air boundary. The inner cylinder is a glass rotor suspended in the liquid, and the outer cylinder is also made of glass. The rotor is stabilized on the axis of the outer cylinder by an electromagnetic force controlled by feedback from the rotor's vertical position. In the lower part of the rotor is an aluminum cylinder located in a magnetic field generated by rotating permanent magnets. The interaction of this rotating magnetic field with eddy currents generated in the aluminum cylinder causes rotation of the rotor. This rotation is optically detected, and viscosity is calculated from the measured angular velocity of rotor. The density of the liquid is calculated from the applied vertical equilibrating force. A computer controls the whole measurement. The device works at constant temperature or while scanning temperature. The sample volume is 1.6 ml, and the accuracy of measurement of both viscosity and density is ∼0.1%. The range of measured densities is (0.7-1.4) g/ml, and viscosity can be measured in the range (3x10 -4 -0.3) Pa s. The shear rate of the viscosity measurement varies in the range (20-300) s-1. The accuracy of the temperature measurement is 0.02 K

  17. Turbulence modeling for mass transfer enhancement by separation and reattachment with two-equation eddy-viscosity models

    International Nuclear Information System (INIS)

    Xiong Jinbiao; Koshizuka, Seiichi; Sakai, Mikio

    2011-01-01

    Highlights: → We selected and evaluated five two-equation eddy-viscosity turbulence models for modeling the separated and reattaching flow. → The behavior of the models in the simple flow is not consistent with that in the separated and reattaching flow. → The Abe-Kondoh-Nagano model is the best one among the selected model. → Application of the stress limiter and the Kato-Launder modification in the Abe-Kondoh-Nagano model helps to improve prediction of the peak mass transfer coefficient in the orifice flow. → The value of turbulent Schmidt number is investigated. - Abstract: The prediction of mass transfer rate is one of the key elements for estimation of the flow accelerated corrosion (FAC) rate. Three low Reynolds number (LRN) k-ε models (Lam-Bremhorst (LB), Abe-Kondoh-Nagano (AKN) and Hwang-Lin (HL)), one LRN k-ω (Wilcox, WX) model and the k-ω SST model are tested for the computation of the high Schmidt number mass transfer, especially in the flow through an orifice. The models are tested in the computation of three types of flow: (1) the fully developed pipe flow, (2) the flow over a backward facing step, (3) the flow through an orifice. The HL model shows a good performance in predicting mass transfer in the fully developed pipe flow but fails to give reliable prediction in the flow through an orifice. The WX model and the k-ω SST model underpredict the mass transfer rate in the flow types 1 and 3. The LB model underestimates the mass transfer in the flow type 1, but shows abnormal behavior at the reattaching point in type 3. Synthetically evaluating all the models in all the computed case, the AKN model is the best one; however, the prediction is still not satisfactory. In the evaluation in the flow over a backward facing step shows k-ω SST model shows superior performance. This is interpreted as an implication that the combination of the k-ε model and the stress limiter can improve the model behavior in the recirculation bubble. Both the

  18. High viscosity fluid simulation using particle-based method

    KAUST Repository

    Chang, Yuanzhang

    2011-03-01

    We present a new particle-based method for high viscosity fluid simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the traditional Navier-Stokes equation to simulate the movements of the high viscosity fluids. Benefiting from the Lagrangian nature of Smoothed Particle Hydrodynamics method, large flow deformation can be well handled easily and naturally. In addition, in order to eliminate the particle deficiency problem near the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn\\'t need to store and compare to an initial rest state. The experimental results show that the proposed method is effective and efficient to handle the movements of highly viscous flows, and a large variety of different kinds of fluid behaviors can be well simulated by adjusting just one parameter. © 2011 IEEE.

  19. Determination of liquid viscosity at high pressure by DLS

    International Nuclear Information System (INIS)

    Fukui, K; Asakuma, Y; Maeda, K

    2010-01-01

    The movement of particles with a size smaller than few microns is governed by random Brownian motion. This motion causes the fluid to flow around the particles. The force acting upon Brownian particles as well as their velocities are measured by using the dynamic light scattering (DLS) technique. It provides the relationship between fluid shear stress and shear rate over the Brownian particle and determines the viscosity properties of the fluid. In this study, we propose a new rheometer which is widely applicable to fluid viscosity measurements at both normal and high pressure levels for Newtonian and non- Newtonian fluids.

  20. High resolution ensemble forecasting for the Gulf of Mexico eddies and fronts

    Science.gov (United States)

    Counillon, F.; Bertino, L.

    2007-05-01

    As oil production moves further into deeper waters, the costs related to strong current hazards are increasing accordingly, and accurate three-dimensional forecasts of currents are urgently needed. To be useful, models have to locate eddies and fronts to an accuracy of 30 km at a nowcast stage, which is almost impossible to accomplish with the use of satellite data of the same accuracy. The use of stochastic forecast allows us to give confidence of our prediction. We are using a nested configuration of the Hybrid coordinate ocean model (HYCOM), where the TOPAZ system, which covers the Atlantic and the Artic, gives lateral boundary condition to a high-resolution (5km) model of the Gulf of Mexico (GOM). TOPAZ is a real-time forecasting coupled ocean-ice model, which assimilates sea level anomaly (SLA), sea surface temperature, and sea ice concentration, with the ensemble Kalman filter. The high- resolution model assimilates SLA using the ensemble optimal interpolation, which updates accordingly the currents, salinity, temperature, and layer interface at all depths. Here, we evaluate the ensemble forecast capabilities of our high-resolution model, for eddy Extreme that has been observed from altimeters around the 15th of July. We run 6 successive ensemble runs composed of 10 members of equal likelihood. Members differ by perturbations of the initial state, of the lateral boundary conditions, and of the atmospheric boundary conditions. We have started the experiment 1 month prior to the shedding event, because it was the time necessary for perturbation of boundary conditions to spread uniformly and reach a significant level across the GOM. The ensemble reproduces well the dynamics of the eddy shedding and produces a significant spread at the boundary of the eddy, but underestimates the RMS error of the SLA. Prior to the shedding time, the error growth increase, induced by the highly non-linear growth of cyclonic eddies at the boundary of the Loop Current. Additionally

  1. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    Science.gov (United States)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  2. Large-eddy simulation of highly underexpanded transient gas jets

    NARCIS (Netherlands)

    Vuorinen, V.; Yu, J.; Tirunagari, S.; Kaario, O.; Larmi, M.; Duwig, C.; Boersma, B.J.

    2013-01-01

    Large-eddy simulations (LES) based on scale-selective implicit filtering are carried out in order to study the effect of nozzle pressure ratios on the characteristics of highly underexpanded jets. Pressure ratios ranging from 4.5 to 8.5 with Reynolds numbers of the order 75?000–140?000 are

  3. Viscosity of liquid sulfur under high pressure

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S

    2004-01-01

    The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry

  4. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty

    Science.gov (United States)

    Ling, J.; Templeton, J.

    2015-08-01

    Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flows, despite their acknowledged deficiencies. Not only do RANS models often produce inaccurate flow predictions, but there are very limited diagnostics available to assess RANS accuracy for a given flow configuration. If experimental or higher fidelity simulation results are not available for RANS validation, there is no reliable method to evaluate RANS accuracy. This paper explores the potential of utilizing machine learning algorithms to identify regions of high RANS uncertainty. Three different machine learning algorithms were evaluated: support vector machines, Adaboost decision trees, and random forests. The algorithms were trained on a database of canonical flow configurations for which validated direct numerical simulation or large eddy simulation results were available, and were used to classify RANS results on a point-by-point basis as having either high or low uncertainty, based on the breakdown of specific RANS modeling assumptions. Classifiers were developed for three different basic RANS eddy viscosity model assumptions: the isotropy of the eddy viscosity, the linearity of the Boussinesq hypothesis, and the non-negativity of the eddy viscosity. It is shown that these classifiers are able to generalize to flows substantially different from those on which they were trained. Feature selection techniques, model evaluation, and extrapolation detection are discussed in the context of turbulence modeling applications.

  5. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  6. Communication: Simple liquids' high-density viscosity.

    Science.gov (United States)

    Costigliola, Lorenzo; Pedersen, Ulf R; Heyes, David M; Schrøder, Thomas B; Dyre, Jeppe C

    2018-02-28

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  7. Communication: Simple liquids' high-density viscosity

    Science.gov (United States)

    Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-02-01

    This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.

  8. Effect of computational grid on accurate prediction of a wind turbine rotor using delayed detached-eddy simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bangga, Galih; Weihing, Pascal; Lutz, Thorsten; Krämer, Ewald [University of Stuttgart, Stuttgart (Germany)

    2017-05-15

    The present study focuses on the impact of grid for accurate prediction of the MEXICO rotor under stalled conditions. Two different blade mesh topologies, O and C-H meshes, and two different grid resolutions are tested for several time step sizes. The simulations are carried out using Delayed detached-eddy simulation (DDES) with two eddy viscosity RANS turbulence models, namely Spalart- Allmaras (SA) and Menter Shear stress transport (SST) k-ω. A high order spatial discretization, WENO (Weighted essentially non- oscillatory) scheme, is used in these computations. The results are validated against measurement data with regards to the sectional loads and the chordwise pressure distributions. The C-H mesh topology is observed to give the best results employing the SST k-ω turbulence model, but the computational cost is more expensive as the grid contains a wake block that increases the number of cells.

  9. A comparison of three approaches to compute the effective Reynolds number of the implicit large-eddy simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thornber, Ben [The Univ. of Sydney, Sydney, NSW (Australia)

    2016-04-12

    Here, the implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer–Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology and wind tunnel experiments.

  10. High-throughput microarray mapping of cell wall polymers in roots and tubers during the viscosity-reducing process

    DEFF Research Database (Denmark)

    Huang, Yuhong; Willats, William George Tycho; Lange, Lene

    2016-01-01

    the viscosity-reducing process are poorly characterized. Comprehensive microarray polymer profiling, which is a high-throughput microarray, was used for the first time to map changes in the cell wall polymers of sweet potato (Ipomoea batatas), cassava (Manihot esculenta), and Canna edulis Ker. over the entire...... viscosity-reducing process. The results indicated that the composition of cell wall polymers among these three roots and tubers was markedly different. The gel-like matrix and glycoprotein network in the C. edulis Ker. cell wall caused difficulty in viscosity reduction. The obvious viscosity reduction......Viscosity reduction has a great impact on the efficiency of ethanol production when using roots and tubers as feedstock. Plant cell wall-degrading enzymes have been successfully applied to overcome the challenges posed by high viscosity. However, the changes in cell wall polymers during...

  11. Analysis of eddy current loss in high-Tc superconducting power cables with respect to various structure of stabilizer

    International Nuclear Information System (INIS)

    Choi, S. J.; Song, M. K.; Lee, S. J.; Cho, J. W.; Sim, K. D.

    2005-01-01

    The High-Tc superconducting power cable consists of a multi-layer high-Tc superconducting cable core and a stabilizer which is used to bypass the current at fault time. Eddy current loss is generated in the stabilizer in normal operating condition and affects the whole system. In this paper, the eddy current losses are analyzed with respect to various structure of stabilizer by using opera-3d. Moreover, optimal conditions of the stabilizer are derived to minimize the eddy current losses from the analyzed results. The obtained results could be applied to the design and manufacture of the high-Tc superconducting power cable system.

  12. Automation of a high-speed imaging setup for differential viscosity measurements

    Science.gov (United States)

    Hurth, C.; Duane, B.; Whitfield, D.; Smith, S.; Nordquist, A.; Zenhausern, F.

    2013-12-01

    We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an "unknown" solution of hydroxyethyl cellulose.

  13. Automation of a high-speed imaging setup for differential viscosity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hurth, C.; Duane, B.; Whitfield, D.; Smith, S.; Nordquist, A.; Zenhausern, F. [Center for Applied Nanobioscience and Medicine, The University of Arizona College of Medicine, 425 N 5th Street, Phoenix, Arizona 85004 (United States)

    2013-12-28

    We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an “unknown” solution of hydroxyethyl cellulose.

  14. Large Eddy Simulation of the ventilated wave boundary layer

    DEFF Research Database (Denmark)

    Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu

    2006-01-01

    A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...

  15. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    Science.gov (United States)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  16. Dynamic subgrid scale model of large eddy simulation of cross bundle flows

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Barsamian, H.R.

    1996-01-01

    The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  17. Dynamic viscosity of polymer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peterlin, A

    1982-03-01

    The dynamic viscosity investigation of solutions of long chain polymers in very viscous solvents has definitely shown the existence of the low and high frequency plateau with the gradual transition between them. In both extreme cases the extrapolation of the measured Newtonian viscosities of the plateaus to the infinite dilution yields the limiting intrinsic viscosities. Such a behavior is expected from the dynamic intrinsic viscosity of the necklace model of the linear polymer with finite internal viscosity. The plateau at low frequency shows up in any model of polymer solution. This work shows the constant dynamic intrinsic viscosity in both extreme cases is well reproducible by the necklace model with the internal viscosity acting only between the beads on the same link. 20 references.

  18. Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder

    Science.gov (United States)

    Baurle, R. A.

    2016-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.

  19. High pressure study of viscosity and temperature effects on tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-12-01

    High pressure fluorescence studies from 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used: 2,2,4,4,6,8,8-heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14-tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 P was covered at two temperatures: 0 and 25 °C. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB yielded the two radiative rates (kEQ and kFC) as well as the rate of relaxation from FC to the EQ excited state (kRE). kRE was found to correlate well with viscosity and to be independent of temperature at constant viscosity, indicating that the relaxation process is diffusion controlled.

  20. A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies

    Science.gov (United States)

    Sutyrin, G.

    2016-02-01

    In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.

  1. Experimental viscosity measurements of biodiesels at high pressure

    Directory of Open Access Journals (Sweden)

    Schaschke C.J.

    2016-01-01

    Full Text Available The viscosity of biodiesels of soybean and rapeseed biodiesels blended with mineral diesel fuel were measured at pressures of up to 200 MPa. Using a falling sinker-type viscometer reproducible viscosity data were obtained based on the time taken for a sinker to descend a fixed distance down an enclosed tube under the influence of gravity. Measurements were taken using pressures which correspond to those of interest in automotive common rail diesel engines, and at temperatures of between 25ºC and 80ºC. In all cases, the viscosity of the biodiesel blends were found to increase exponentially for which the blends were noted as being more viscous than pure mineral fuels. A pressure-freezing effect was not observed for the blends.

  2. Viscosity modification of high-oleic sunflower oil with polymeric additives for the design of new biolubricant formulations.

    Science.gov (United States)

    Quinchia, L A; Delgado, M A; Valencia, C; Franco, J M; Gallegos, C

    2009-03-15

    Although most common lubricants contain mineral or synthetic oils as basestocks, new environmental regulations are demanding environmentally friendly lubricants. In this sense, vegetable oils represent promising alternatives to mineral-based lubricants because of their high biodegradability, good lubricity, and low volatility. However, their poor thermooxidative stability and the small range of viscosity represent a clear disadvantage to be used as suitable biolubricants. The main objective of this work was to develop new environmentally friendly lubricant formulations with improved kinematic viscosity values and viscosity thermal susceptibility. With this aim, a high-oleic sunflower oil (HOSO) was blended with polymeric additives, such as ethylene vinyl acetate (EVA) and styrene-butadiene-styrene (SBS) copolymers, at different concentrations (0.5-5% w/w). Dynamic viscosity and density measurements were performed in a rotational rheometer and capillary densimeter, respectively, in a temperature range between 25 and 120 degrees C. An Arrhenius-like equation fits the evolution of viscosity with temperature fairly well. Both EVA and SBS copolymers may be satisfactorily used as additives to increase the viscosity of HOSO, thus improving the low viscosity values of this oil. HOSO viscosity increases with polymer concentration. Specifically, EVA/HOSO blends exhibit higher viscosity values, which are needed for applications such as lubrication of bearings and four-stroke engines. On the other hand, viscositythermal susceptibility of HOSO samples increases with EVA or SBS concentration.

  3. Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes.

    Science.gov (United States)

    Liu, Yunyun; Xu, Jingliang; Zhang, Yu; Yuan, Zhenhong; Xie, Jun

    2015-10-10

    Viscosity trends in alkali-pretreated sugarcane bagasse (SCB) slurries undergoing high solids fed-batch enzymatic hydrolysis were measured for a range of solids loading from 15% to 36%. Solids liquefaction times were related to system viscosity changes. The viscosity decreased quickly for low solids loading, and increased with increasing solids content. Fed-batch hydrolysis was initiated with 15% solids loading, and an additional 8%, 7% and 6% were successively added after the system viscosity decreased to stable values to achieve a final solids content of 36%. Two enzyme-adding modes with 8.5FPU/g solid were investigated. The batch mode with all enzyme being added at the beginning of the reaction produced the highest yields, with approximately 231.7g/L total sugars and 134.9g/L glucose being obtained after 96h with nearly 60% of the final glucan conversion rate. This finding indicates that under the right conditions, the fed-batch strategy might be a plausible way to produce high sugars under high solids. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Pressure fluctuation prediction in pump mode using large eddy simulation and unsteady Reynolds-averaged Navier–Stokes in a pump–turbine

    Directory of Open Access Journals (Sweden)

    De-You Li

    2016-06-01

    Full Text Available For pump–turbines, most of the instabilities couple with high-level pressure fluctuations, which are harmful to pump–turbines, even the whole units. In order to understand the causes of pressure fluctuations and reduce their amplitudes, proper numerical methods should be chosen to obtain the accurate results. The method of large eddy simulation with wall-adapting local eddy-viscosity model was chosen to predict the pressure fluctuations in pump mode of a pump–turbine compared with the method of unsteady Reynolds-averaged Navier–Stokes with two-equation turbulence model shear stress transport k–ω. Partial load operating point (0.91QBEP under 15-mm guide vane opening was selected to make a comparison of performance and frequency characteristics between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes based on the experimental validation. Good agreement indicates that the method of large eddy simulation could be applied in the simulation of pump–turbines. Then, a detailed comparison of variation for peak-to-peak value in the whole passage was presented. Both the methods show that the highest level pressure fluctuations occur in the vaneless space. In addition, the propagation of amplitudes of blade pass frequency, 2 times of blade pass frequency, and 3 times of blade pass frequency in the circumferential and flow directions was investigated. Although the difference exists between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes, the trend of variation in different parts is almost the same. Based on the analysis, using the same mesh (8 million, large eddy simulation underestimates pressure characteristics and shows a better result compared with the experiments, while unsteady Reynolds-averaged Navier–Stokes overestimates them.

  5. Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid

    International Nuclear Information System (INIS)

    Liu Xiao-Bo; Zhang Jian-Run; Li Pu

    2012-01-01

    An acoustic pressure model of bubble bursting is proposed. An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported. It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first, then it transforms into a jet wave. The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases. The results of the investigation can be used to understand the acoustic characteristics of bubble bursting. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Large-eddy simulations for turbulent flows

    International Nuclear Information System (INIS)

    Husson, S.

    2007-07-01

    The aim of this work is to study the impact of thermal gradients on a turbulent channel flow with imposed wall temperatures and friction Reynolds numbers of 180 and 395. In this configuration, temperature variations can be strong and induce significant variations of the fluid properties. We consider the low Mach number equations and carry out large eddy simulations. We first validate our simulations thanks to comparisons of some of our LES results with DNS data. Then, we investigate the influence of the variations of the conductivity and the viscosity and show that we can assume these properties constant only for weak temperature gradients. We also study the thermal sub-grid-scale modelling and find no difference when the sub-grid-scale Prandtl number is taken constant or dynamically calculated. The analysis of the effects of strongly increasing the temperature ratio mainly shows a dissymmetry of the profiles. The physical mechanism responsible of these modifications is explained. Finally, we use semi-local scaling and the Van Driest transformation and we show that they lead to a better correspondence of the low and high temperature ratios profiles. (author)

  7. On the scale similarity in large eddy simulation. A proposal of a new model

    International Nuclear Information System (INIS)

    Pasero, E.; Cannata, G.; Gallerano, F.

    2004-01-01

    Among the most common LES models present in literature there are the Eddy Viscosity-type models. In these models the subgrid scale (SGS) stress tensor is related to the resolved strain rate tensor through a scalar eddy viscosity coefficient. These models are affected by three fundamental drawbacks: they are purely dissipative, i.e. they cannot account for back scatter; they assume that the principal axes of the resolved strain rate tensor and SGS stress tensor are aligned; and that a local balance exists between the SGS turbulent kinetic energy production and its dissipation. Scale similarity models (SSM) were created to overcome the drawbacks of eddy viscosity-type models. The SSM models, such as that of Bardina et al. and that of Liu et al., assume that scales adjacent in wave number space present similar hydrodynamic features. This similarity makes it possible to effectively relate the unresolved scales, represented by the modified Cross tensor and the modified Reynolds tensor, to the smallest resolved scales represented by the modified Leonard tensor] or by a term obtained through multiple filtering operations at different scales. The models of Bardina et al. and Liu et al. are affected, however, by a fundamental drawback: they are not dissipative enough, i.e they are not able to ensure a sufficient energy drain from the resolved scales of motion to the unresolved ones. In this paper it is shown that such a drawback is due to the fact that such models do not take into account the smallest unresolved scales where the most dissipation of turbulent SGS energy takes place. A new scale similarity LES model that is able to grant an adequate drain of energy from the resolved scales to the unresolved ones is presented. The SGS stress tensor is aligned with the modified Leonard tensor. The coefficient of proportionality is expressed in terms of the trace of the modified Leonard tensor and in terms of the SGS kinetic energy (computed by solving its balance equation). The

  8. Density and Viscosity Measurement of Diesel Fuels at Combined High Pressure and Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2013-07-01

    Full Text Available We report the measurement of the viscosity and density of various diesel fuels, obtained from British refineries, at elevated pressures up to 500 MPa and temperatures in the range 298 K to 373 K. The measurement and prediction procedures of fluid properties under high pressure conditions is of increasing interest in many processes and systems including enhanced oil recovery, automotive engine fuel injection, braking, and hydraulic systems. Accurate data and understanding of the fluid characteristic in terms of pressure, volume and temperature is required particularly where the fluid is composed of a complex mixture or blend of aliphatic or aromatic hydrocarbons. In this study, high pressure viscosity data was obtained using a thermostatically-controlled falling sinker-type high pressure viscometer to provide reproducible and reliable viscosity data based on terminal velocity sinker fall times. This was supported with density measurements using a micro-pVT device. Both high-pressure devices were additionally capable of illustrating the freezing points of the hydrocarbon mixtures. This work has, thus, provided data that can extend the application of mixtures of commercially available fuels and to test the validity of available predictive density and viscosity models. This included a Tait-style equation for fluid compressibility prediction. For complex diesel fuel compositions, which have many unidentified components, the approach illustrates the need to apply appropriate correlations, which require accurate knowledge or prediction of thermodynamic properties.

  9. Experiments with eddy currents: the eddy current brake

    International Nuclear Information System (INIS)

    Gonzalez, Manuel I

    2004-01-01

    A moderate-cost experimental setup is presented to help students to understand some qualitative and quantitative aspects of eddy currents. The setup operates like an eddy current brake, a device commonly used in heavy vehicles to dissipate kinetic energy by generating eddy currents. A set of simple experiments is proposed to measure eddy current losses and to relate them to various relevant parameters. Typical results for each of the experiments are presented, and comparisons with theoretical predictions are included. The experiments, which are devoted to first-year undergraduate students, deal also with other pedagogically relevant topics in electricity and magnetism, such as basic laws, electrical measurement techniques, the sources of the magnetic field and others

  10. High-pressure viscosity measurements for the ethanol plus toluene binary system

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Baylaucq, A.; Watson, G.

    2005-01-01

    measured with a classical capillary viscometer (Ubbelohde) with an uncertainty of 1%. A total of 209 experimental measurements have been obtained for this binary system, which reveals a non-monotonic behavior of the viscosity as a function of the composition, with a minimum. The viscosity behavior...... interacting system showing a negative deviation from ideality. The viscosity of this binary system is represented by the Grunberg-Nissan and the Katti-Chaudhri mixing laws with an overall uncertainty of 12% and 8%, respectively. The viscosity of methanol (23 point) has also been measured in order to verify...

  11. Large eddy simulation of the atmospheric boundary layer above a forest canopy

    Science.gov (United States)

    Alam, Jahrul

    2017-11-01

    A goal of this talk is to discuss large eddy simulation (LES) of atmospheric turbulence within and above a canopy/roughness sublayer, where coherent turbulence resembles a turbulent mixing layer. The proposed LES does not resolve the near wall region. Instead, a near surface canopy stress model has been combined with a wall adapting local eddy viscosity model. The canopy stress is represented as a three-dimensional time dependent momentum sink, where the total kinematic drag of the canopy is adjusted based on the measurements in a forest canopy. This LES has been employed to analyze turbulence structures in the canopy/roughness sublayer. Results indicate that turbulence is more efficient at transporting momentum and scalars in the roughness sublayer. The LES result has been compared with the turbulence profile measured over a forest canopy to predict the turbulence statistics in the inertial sublayer above the canopy. Turbulence statistics between the inertial sublayer, the canopy sublayer, and the rough-wall boundary layer have been compared to characterize whether turbulence in the canopy sublayer resembles a turbulent mixing layer or a boundary layer. The canopy turbulence is found dominated by energetic eddies much larger in scale than the individual roughness elements. Financial support from the National Science and Research Council (NSERC), Canada is acknowledged.

  12. Densities, viscosities, and isobaric heat capacities of the system (1-butanol + cyclohexane) at high pressures

    International Nuclear Information System (INIS)

    Torín-Ollarves, Geraldine A.; Martín, M. Carmen; Chamorro, César R.; Segovia, José J.

    2014-01-01

    Highlights: • The densities of cyclohexane and its mixtures with 1-butanol were measured. • The excess molar volumes were calculated and correlated. • The viscosities were measured at atmospheric pressure. • The isobaric heat capacities were measured at p = (0.1 to 25) MPa at T = (293.15 and 313.15) K. • A positive deviation from the ideal behavior is observed. - Abstract: The cyclohexane and the system of 1-butanol + cyclohexane have been characterized using densities, viscosities and isobaric heat capacities measurements. For that, the densities were measured in a high-pressure vibrating tube densimeter at five temperatures from (293.15 to 333.15) K and pressures up to 100 MPa. The measurements were correlated with the empirical Tamman–Tait equation. Moreover, the isobaric heat capacities of the binary system were measured in a high-pressure automated flow calorimeter at T = (293.15 and 313.15) K and pressures up to 25 MPa for pure cyclohexane and in admixture with 1-butanol. The excess molar heat capacities were assessed for the mixture and a positive deviation from the ideality was obtained, except for a small part in the region rich in alkanol. The viscosity measurements were carried out, at the calorimeter conditions, for correcting the experimental values of isobaric heat capacities due to friction along the tube. The viscosity was measured at atmospheric pressure in a Stabinger Anton Paar SVM 3000 viscometer in the temperature range of (293.15 to 333.15) K for cyclohexane and the mixtures. At high pressure, the viscosities were estimated using Lucas method

  13. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  14. Whole-blood viscosity and the insulin-resistance syndrome.

    Science.gov (United States)

    Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E

    1998-02-01

    In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.

  15. Ingredients of the Eddy Soup: A Geometric Decomposition of Eddy-Mean Flow Interactions

    Science.gov (United States)

    Waterman, S.; Lilly, J. M.

    2014-12-01

    Understanding eddy-mean flow interactions is a long-standing problem in geophysical fluid dynamics with modern relevance to the task of representing eddy effects in coarse resolution models while preserving their dependence on the underlying dynamics of the flow field. Exploiting the recognition that the velocity covariance matrix/eddy stress tensor that describes eddy fluxes, also encodes information about eddy size, shape and orientation through its geometric representation in the form of the so-called variance ellipse, suggests a potentially fruitful way forward. Here we present a new framework that describes eddy-mean flow interactions in terms of a geometric description of the eddy motion, and illustrate it with an application to an unstable jet. Specifically we show that the eddy vorticity flux divergence F, a key dynamical quantity describing the average effect of fluctuations on the time-mean flow, may be decomposed into two components with distinct geometric interpretations: 1. variations in variance ellipse orientation; and 2. variations in the anisotropic part of the eddy kinetic energy, a function of the variance ellipse size and shape. Application of the divergence theorem shows that F integrated over a region is explained entirely by variations in these two quantities around the region's periphery. This framework has the potential to offer new insights into eddy-mean flow interactions in a number of ways. It identifies the ingredients of the eddy motion that have a mean flow forcing effect, it links eddy effects to spatial patterns of variance ellipse geometry that can suggest the mechanisms underpinning these effects, and finally it illustrates the importance of resolving eddy shape and orientation, and not just eddy size/energy, to accurately represent eddy feedback effects. These concepts will be both discussed and illustrated.

  16. Eddy-induced cross-shelf export of high Chl-a coastal waters in the SE Bay of Biscay

    KAUST Repository

    Rubio, Anna

    2017-12-08

    Different remote sensing data were combined to characterise a winter anticyclonic eddy in the southeastern Bay of Biscay and to infer its effects on cross-shelf exchanges, in a period when typical along shelf-slope currents depict a cyclonic pattern. While the joint analysis of available satellite data (infrared, visible and altimetry) permitted the characterisation and tracking of the anticyclone properties and path, data from a coastal high-frequency radar system enabled a quantitative analysis of the surface cross-shelf transports associated with this anticyclone. The warm core anticyclone had a diameter of around 50km, maximum azimuthal velocities near 50cms−1 and a relative vorticity of up to −0.45f. The eddy generation occurred after the relaxation of a cyclonic wind-driven current regime over the shelf-slope; then, the eddy remained stationary for several weeks until it started to drift northwards along the shelf break. The surface signature of this eddy was observed by means of high-frequency radar data for 20 consecutive days, providing a unique opportunity to characterise and quantify, from a Lagrangian perspective, the associated transport and its effect on the Chl-a surface distribution. We observed the presence of mesoscale structures with similar characteristics in the area during different winters within the period 2011–2014. Our results suggest that the eddy-induced recurrent cross-shelf export is an effective mechanism for the expansion of coastal productive waters into the adjacent oligotrophic ocean basin.

  17. Mesoscale Eddies in the Solomon Sea

    Science.gov (United States)

    Hristova, H. G.; Kessler, W. S.; McWilliams, J. C.; Molemaker, M. J.

    2011-12-01

    Water mass transformation in the strong equatorward flows through the Solomon Sea influences the properties of the Equatorial Undercurrent and subsequent cold tongue upwelling. High eddy activity in the interior Solomon Sea seen in altimetric sea surface height (SSH) and in several models may provide a mechanism for these transformations. We investigate these effects using a mesoscale (4-km resolution) sigma-coordinate (ROMS) model of the Solomon Sea nested in a basin solution, forced by a repeating seasonal cycle, and evaluated against observational data. The model generates a vigorous upper layer eddy field; some of these are apparently shed as the New Guinea Coastal Undercurrent threads through the complex topography of the region, others are independent of the strong western boundary current. We diagnose the scales and vertical structure of the eddies in different parts of the Solomon Sea to illuminate their generation processes and propagation characteristics, and compare these to observed eddy statistics. Hypotheses tested are that the Solomon Sea mesoscale eddies are generated locally by baroclinic instability, that the eddies are shed as the South Equatorial Current passes around and through the Solomon Island chain, that eddies are generated by the New Guinea Coastal Undercurrent, or that eddies occurring outside of the Solomon Sea propagate into the Solomon Sea. These different mechanisms have different implications for the resulting mixing and property fluxes. They also provide different interpretations for SSH signals observed from satellites (e.g., that will be observed by the upcoming SWOT satellite).

  18. Absorption capacity and viscosity for CO_2 capture process using high concentrated PZ-DEAE aqueous solution

    International Nuclear Information System (INIS)

    Fu, Dong; Wang, LeMeng; Mi, ChenLu; Zhang, Pan

    2016-01-01

    Highlights: • Absorption of CO_2 in high concentrated DEAE-PZ aqueous solutions were measured. • Viscosities of CO_2-unloaded and CO_2-loaded DEAE-PZ aqueous solutions were measured. • Weiland equation was used to calculate the viscosities. • Effects of temperature, concentration and CO_2 loading on viscosity were demonstrated. - Abstract: The absorption capacity of CO_2 in piperazine (PZ) promoted 2-diethylaminoethanol (DEAE) aqueous solution was measured. The viscosities of both CO_2-unloaded and CO_2-loaded PZ-DEAE aqueous solutions were measured and then modelled. The temperatures ranged from 303.2 K to 323.2 K. The mass fraction of PZ and DEAE respectively ranged from 0 to 0.075 and 0.3 to 0.5. The temperature and concentration dependences of absorption capacity were determined. The effects of temperature, mass fraction and CO_2 loading on viscosities are demonstrated.

  19. An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea

    Science.gov (United States)

    Everett, J. D.; Baird, M. E.; Oke, P. R.; Suthers, I. M.

    2012-08-01

    The Tasman Sea is unique - characterised by a strong seasonal western boundary current that breaks down into a complicated field of mesoscale eddies almost immediately after separating from the coast. Through a 16-year analysis of Tasman Sea eddies, we identify a region along the southeast Australian coast which we name ‘Eddy Avenue’ where eddies have higher sea level anomalies, faster rotation and greater sea surface temperature and chlorophyll a anomalies. The density of cyclonic and anticyclonic eddies within Eddy Avenue is 23% and 16% higher respectively than the broader Tasman Sea. We find that Eddy Avenue cyclonic and anticyclonic eddies have more strongly differentiated biological properties than those of the broader Tasman Sea, as a result of larger anticyclonic eddies formed from Coral Sea water depressing chl. a concentrations, and for coastal cyclonic eddies due to the entrainment of nutrient-rich shelf waters. Cyclonic eddies within Eddy Avenue have almost double the chlorophyll a (0.35 mg m-3) of anticyclonic eddies (0.18 mg m-3). The average chlorophyll a concentration for cyclonic eddies is 16% higher in Eddy Avenue and 28% lower for anticyclonic eddies when compared to the Tasman Sea. With a strengthening East Australian Current, the propagation of these eddies will have significant implications for heat transport and the entrainment and connectivity of plankton and larval fish populations.

  20. Research of operational properties of compound based on high viscosity styrene-butadiene rubber SSBR-2560 TDAE HV

    Directory of Open Access Journals (Sweden)

    M. I. Falyakhov

    2016-01-01

    Full Text Available The article consider the influence of replacement of SSBR-2560 TDAE batch production on high viscosity SSBR-2560-TDAE HV in the tread recipe on the tire performance properties. Obtained samples were highly viscosity styrene butadiene rubber did not differ in the microstructure of the SSBR-2560 TDAE batch production. Increasing the molecular weight possible to increase the Mooney viscosity of the rubber, however, is known to one of adverse factors is the deterioration of processability of rubber compounds based on polymers. In this connection, investigated the behavior in the step mixing compound based on high viscosity SSBR rubber. We chose recipes tread of the tire with a high content of organic silicon filler. It is established that the equivalent replacement of the polymer in the tread recipe does not lead to significant changes in the basic parameters of rubber mixing. We observed a slight increase in the energy consumption for the preparation of the rubber compounds, as well as the discharge temperature at each stage. It was shown to improve the distribution of the filler in the polymer matrix for the compound based on SSBR-2560 TDAE HV. The results showed that compound based on high viscosity SSBR improves rolling resistance and traction characteristics, while maintaining abrasion in comparison with the SSBR-2560-M27 batch production. Recommended use this brand in the production of rubber car tires.

  1. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.

    Science.gov (United States)

    Chen, Tao; He, Yuting; Du, Jinqiang

    2018-06-01

    This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.

  2. Measurement of heat and momentum eddy diffusivities in recirculating LMFBR outlet plenum flows

    International Nuclear Information System (INIS)

    Manno, V.P.; Golay, M.W.

    1978-06-01

    An optical technique has been developed for the measurement of the eddy diffusivity of heat in a transparent flowing medium. The method uses a combination of two established measurement tools: a Mach-Zehnder interferometer for the monitoring of turbulently fluctuating temperature and a Laser Doppler Anemometer (LDA) for the measurement of turbulent velocity fluctuations. The technique is applied to the investigation of flow fields characteristic of the LMFBR outlet plenum. The study is accomplished using air as the working fluid in a small scale Plexiglas test section. Lows are introduced into both the 1 / 15 scale FFTF outlet plenum and the 3 / 80 scale CRBR geometry plenum at inlet Reynolds numbers of 22,000. Measurements of the eddy diffusivity of heat and the eddy diffusivity of momentum are performed at a total of 11 measurement stations. Significant differences of the turbulence parameters are found between the two geometries, and the higher chimney structure of the CRBR case is found to be the major cause of the distinction. Spectral intensity studies of the fluctuating electronic analog signals of velocity and temperature are also performed. Error analysis of the overall technique indicates an experimental error of 10% in the determination of the eddy diffusivity of heat and 6% in the evaluation of turbulent momentum viscosity. In general it is seen that the turbulence in the cases observed is not isotropic, and use of isotropic turbulent heat and momentum diffusivities in transport modelling would not be a valid procedure

  3. Wall modeled large eddy simulations of complex high Reynolds number flows with synthetic inlet turbulence

    International Nuclear Information System (INIS)

    Patil, Sunil; Tafti, Danesh

    2012-01-01

    Highlights: ► Large eddy simulation. ► Wall layer modeling. ► Synthetic inlet turbulence. ► Swirl flows. - Abstract: Large eddy simulations of complex high Reynolds number flows are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system is presented and applied in the near wall zonal treatment. This formulation reduces the computational time in the inner layer significantly compared to the conventional two layer formulations present in the literature and is most suitable for complex geometries involving body fitted structured and unstructured meshes. The cost effectiveness and accuracy of the proposed wall model, used with the synthetic eddy method (SEM) to generate inlet turbulence, is investigated in turbulent channel flow, flow over a backward facing step, and confined swirling flows at moderately high Reynolds numbers. Predictions are compared with available DNS, experimental LDV data, as well as wall resolved LES. In all cases, there is at least an order of magnitude reduction in computational cost with no significant loss in prediction accuracy.

  4. Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations

    Directory of Open Access Journals (Sweden)

    S. Nishizawa

    2015-10-01

    Full Text Available We examine the influence of the grid aspect ratio of horizontal to vertical grid spacing on turbulence in the planetary boundary layer (PBL in a large-eddy simulation (LES. In order to clarify and distinguish them from other artificial effects caused by numerical schemes, we used a fully compressible meteorological LES model with a fully explicit scheme of temporal integration. The influences are investigated with a series of sensitivity tests with parameter sweeps of spatial resolution and grid aspect ratio. We confirmed that the mixing length of the eddy viscosity and diffusion due to sub-grid-scale turbulence plays an essential role in reproducing the theoretical −5/3 slope of the energy spectrum. If we define the filter length in LES modeling based on consideration of the numerical scheme, and introduce a corrective factor for the grid aspect ratio into the mixing length, the theoretical slope of the energy spectrum can be obtained; otherwise, spurious energy piling appears at high wave numbers. We also found that the grid aspect ratio has influence on the turbulent statistics, especially the skewness of the vertical velocity near the top of the PBL, which becomes spuriously large with large aspect ratio, even if a reasonable spectrum is obtained.

  5. Comparing a Multivariate Global Ocean State Estimate With High-Resolution in Situ Data: An Anticyclonic Intrathermocline Eddy Near the Canary Islands

    Directory of Open Access Journals (Sweden)

    Bàrbara Barceló-Llull

    2018-03-01

    Full Text Available The provision of high-resolution in situ oceanographic data is key for the ongoing verification, validation and assessment of operational products, such as those provided by the Copernicus Marine Core Service (CMEMS. Here we analyze the ability of ARMOR3D—a multivariate global ocean state estimate that is available from CMEMS—to reconstruct a mesoscale anticyclonic intrathermocline eddy that was previously sampled with high-resolution independent in situ observations. ARMOR3D is constructed by merging remote sensing observations with in situ vertical profiles of temperature and salinity obtained primarily from the Argo network. In situ data from CTDs and an Acoustic Doppler Current Profiler were obtained during an oceanographic cruise near the Canary Islands (Atlantic ocean. The analysis of the ARMOR3D product using the in situ data is done over (i a high-resolution meridional transect crossing the eddy center and (ii a three-dimensional grid centered on the eddy center. An evaluation of the hydrographic eddy signature and derived dynamical variables, namely geostrophic velocity, vertical vorticity and quasi-geostrophic (QG vertical velocity, demonstrates that the ARMOR3D product is able to reproduce the vertical hydrographic structure of the independently sampled eddy below the seasonal pycnocline, with the caveat that the flow is surface intensified and the seasonal pycnocline remains flat. Maps of ARMOR3D density show the signature of the eddy, and agreement with the elliptical eddy shape seen in the in situ data. The major eddy axes are oriented NW-SE in both data sets. The estimated radius for the in situ eddy is ~46 km; the ARMOR3D radius is significantly larger at ~ 92 km and is considered an overestimation that is inherited from an across-track altimetry sampling issue. The ARMOR3D geostrophic flow is underestimated by a factor of 2, with maxima of 0.11 (−0.19 m s−1 at the surface, which implies an underestimation of the local

  6. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    KAUST Repository

    Vakarelski, Ivan Uriev

    2016-09-08

    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.

  7. Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids

    KAUST Repository

    Vakarelski, Ivan Uriev; Berry, Joseph D.; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2016-01-01

    The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.

  8. Viscosity of glasses containing simulated Savannah River Plant waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1978-08-01

    The viscosity of glass melts containing four simulated sludge types and two frit candidates (Frits 18 and 21) was measured over the temperature range 750 to 1200 0 C. The viscosity of melts made with either frit was reduced by the addition of high iron sludge, unchanged by average sludge, and increased by composite and high aluminum sludge. High aluminium sludge greatly increased the viscosity. Frit 21 (containing 4 wt % Li 2 O substituted for 4 wt % Na 2 O in Frit 18) was clearly better than Frit 18 in terms of its low viscosity. However, further reductions in viscosity are desirable, especially for glasses containing high aluminum sludge. Changing any frit component by 1 wt % did not significantly affect the viscosity of the glasses. Therefore, variability of 1 wt % in any frit component can be tolerated

  9. Investigation of the Capture of Magnetic Particles From High-Viscosity Fluids Using Permanent Magnets.

    Science.gov (United States)

    Garraud, Alexandra; Velez, Camilo; Shah, Yash; Garraud, Nicolas; Kozissnik, Bettina; Yarmola, Elena G; Allen, Kyle D; Dobson, Jon; Arnold, David P

    2016-02-01

    This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid. Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a "collection volume" with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time. The viscosity of the fluid strongly influences the velocity of the magnetic particles toward the magnet, hence, the collection volume after a given time. In regards to the design of the magnet, the overall size is shown to most strongly influence the collection volume in comparison to the magnet shape or aspect ratio. Numerical results showed good agreement with in vitro experimental magnetic collection results. In the long term, this paper aims to facilitate optimization of the collection of magnetic particle-biomarker conjugates from high-viscosity biological fluids without the need to remove the fluid from a patient.

  10. The viscosity of dimethyl ether

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Jakobsen, Jørgen

    2007-01-01

    and NOx traps are installed. The most significant problem encountered when engines are fuelled with DME is that the injection equipment breaks down prematurely due to extensive wear. This tribology issue can be explained by the very low lubricity and viscosity of DME. Recently, laboratory methods have...... appeared capable of measuring these properties of DME. The development of this is rendered difficult because DME has to be pressurised to remain in the liquid state and it dissolves most of the commercially available elastomers. This paper deals fundamentally with the measurement of the viscosity of DME...... and extends the discussion to the difficulty of viscosity establishing of very thin fluids. The main issue here is that it is not easy to calibrate the viscometers in the very low viscosity range corresponding to about one-fifth of that of water. The result is that the low viscosity is measured at high...

  11. Eddies off the Queen Charlotte Islands

    Science.gov (United States)

    2002-01-01

    The bright red, green, and turquoise patches to the west of British Columbia's Queen Charlotte Islands and Alaska's Alexander Archipelago highlight the presence of biological activity in the ocean. These colors indicate high concentrations of chlorophyll, the primary pigment found in phytoplankton. Notice that there are a number of eddies visible in the Pacific Ocean in this pseudo-color scene. The eddies are formed by strong outflow currents from rivers along North America's west coast that are rich in nutrients from the springtime snowmelt running off the mountains. This nutrient-rich water helps stimulate the phytoplankton blooms within the eddies. (For more details, read Tracking Eddies that Feed the Sea.) To the west of the eddies in the water, another type of eddy-this one in the atmosphere-forms the clouds into the counterclockwise spiral characteristic of a low pressure system in the Northern Hemisphere. (Click on the image above to see it at full resolution; or click to see the scene in true-color.) The snow-covered mountains of British Columbia are visible in the upper righthand corner of the image. This scene was constructed using SeaWiFS data collected on June 13, 2002. SeaWiFS image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  12. glutamic acid from high-viscosity fermentation broth

    African Journals Online (AJOL)

    Measurement of IR spectrum was performed using an IR spectrophotometer with ... Results: The results showed that the γ-PGA yield was 35 g/L. The viscosity of ... of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), ...

  13. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - Prediction of viscosity through protein-protein interaction measurements

    DEFF Research Database (Denmark)

    Neergaard, Martin S; Kalonia, Devendra S; Parshad, Henrik

    2013-01-01

    The purpose of this work was to explore the relation between protein-protein interactions (PPIs) and solution viscosity at high protein concentration using three monoclonal antibodies (mAbs), two of the IgG4 subclass and one of the IgG1 subclass. A range of methods was used to quantify the PPI...... low or high protein concentration determined using DLS. The PPI measurements were correlated with solution viscosity (measured by DLS using polystyrene nanospheres and ultrasonic shear rheology) as a function of pH (4-9) and ionic strength (10, 50 and 150mM). Our measurements showed that the highest...... solution viscosity was observed under conditions with the most negative kD, the highest apparent radius and the lowest net charge. An increase in ionic strength resulted in a change in the nature of the PPI at low pH from repulsive to attractive. In the neutral to alkaline pH region the mAbs behaved...

  14. Enhancement of Hydrodynamic Processes in Oil Pipelines Considering Rheologically Complex High-Viscosity Oils

    Science.gov (United States)

    Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.

    2016-06-01

    This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.

  15. Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current

    Science.gov (United States)

    Bull, Christopher Y. S.; Kiss, Andrew E.; Jourdain, Nicolas C.; England, Matthew H.; van Sebille, Erik

    2017-12-01

    The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy-permitting regional ocean model, we present a suite of simulations forced by the same time-mean fields, but with different atmospheric and remote ocean variability. These eddy-permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies.

  16. Eddy current seminar

    International Nuclear Information System (INIS)

    Emson, C.R.I.

    1988-11-01

    The paper presents the fifth symposium in the series of Eddy Current Seminars, held in Abingdon, 1988. The meeting included a discussion on three-dimensional eddy current formulations, as well as thirteen contributed papers on computational electromagnetics. Of the thirteen papers, two papers on eddy currents in tokamaks were selected for INIS and indexed separately. (U.K.)

  17. Tools and Methods for Visualization of Mesoscale Ocean Eddies

    Science.gov (United States)

    Bemis, K. G.; Liu, L.; Silver, D.; Kang, D.; Curchitser, E.

    2017-12-01

    Mesoscale ocean eddies form in the Gulf Stream and transport heat and nutrients across the ocean basin. The internal structure of these three-dimensional eddies and the kinematics with which they move are critical to a full understanding of their transport capacity. A series of visualization tools have been developed to extract, characterize, and track ocean eddies from 3D modeling results, to visually show the ocean eddy story by applying various illustrative visualization techniques, and to interactively view results stored on a server from a conventional browser. In this work, we apply a feature-based method to track instances of ocean eddies through the time steps of a high-resolution multidecadal regional ocean model and generate a series of eddy paths which reflect the life cycle of individual eddy instances. The basic method uses the Okubu-Weiss parameter to define eddy cores but could be adapted to alternative specifications of an eddy. Stored results include pixel-lists for each eddy instance, tracking metadata for eddy paths, and physical and geometric properties. In the simplest view, isosurfaces are used to display eddies along an eddy path. Individual eddies can then be selected and viewed independently or an eddy path can be viewed in the context of all eddy paths (longer than a specified duration) and the ocean basin. To tell the story of mesoscale ocean eddies, we combined illustrative visualization techniques, including visual effectiveness enhancement, focus+context, and smart visibility, with the extracted volume features to explore eddy characteristics at multiple scales from ocean basin to individual eddy. An evaluation by domain experts indicates that combining our feature-based techniques with illustrative visualization techniques provides an insight into the role eddies play in ocean circulation. A web-based GUI is under development to facilitate easy viewing of stored results. The GUI provides the user control to choose amongst available

  18. ARRHENIUS MODEL FOR HIGH-TEMPERATURE GLASS VISCOSITY WITH A CONSTANT PRE-EXPONENTIAL FACTOR

    International Nuclear Information System (INIS)

    Hrma, Pavel R.

    2008-01-01

    A simplified form of the Arrhenius equation, ln η = A + B(x)/T, where η is the viscosity, T the temperature, x the composition vector, and A and B the Arrhenius coefficients, was fitted to glass-viscosity data for the processing temperature range (the range at which the viscosity is within 1 to 103 Pa.s) while setting A = constant and treating B(x) as a linear function of mass fractions of major components. Fitting the Arrhenius equation to over 550 viscosity data of commercial glasses and approximately 1000 viscosity data of glasses for nuclear-waste glasses resulted in the A values of -11.35 and -11.48, respectively. The R2 value ranged from 0.92 to 0.99 for commercial glasses and was 0.98 for waste glasses. The Arrhenius models estimate viscosities for melts of commercial glasses containing 42 to 84 mass% SiO2 within the temperature range of 1100 to 1550 C and viscosity range of 5 to 400 Pa.s and for waste glasses containing 32 to 60 mass% SiO2 within the temperature range of 850 to 1450 C and viscosity range of 0.4 to 250 Pa.s

  19. Clinical diagnostic of pleural effusions using a high-speed viscosity measurement method

    Science.gov (United States)

    Hurth, Cedric; Klein, Katherine; van Nimwegen, Lena; Korn, Ronald; Vijayaraghavan, Krishnaswami; Zenhausern, Frederic

    2011-08-01

    We present a novel bio-analytical method to discriminate between transudative and exudative pleural effusions based on a high-speed video analysis of a solid glass sphere impacting a liquid. Since the result depends on the solution viscosity, it can ultimately replace the battery of biochemical assays currently used. We present results obtained on a series of 7 pleural effusions obtained from consenting patients by analyzing both the splash observed after the glass impactor hits the liquid surface, and in a configuration reminiscent of the drop ball viscometer with added sensitivity and throughput provided by the high-speed camera. The results demonstrate distinction between the pleural effusions and good correlation with the fluid chemistry analysis to accurately differentiate exudates and transudates for clinical purpose. The exudative effusions display a viscosity around 1.39 ± 0.08 cP whereas the transudative effusion was measured at 0.89 ± 0.09 cP, in good agreement with previous reports.

  20. High-Viscosity Oil Filtration in the Pool Under Thermal Action

    Science.gov (United States)

    Shagapov, V. Sh.; Yumagulova, Yu. A.; Gizzatullina, A. A.

    2018-05-01

    We have developed a mathematical model and constructed numerical solutions of the problem of heating a high-viscosity oil pool through one horizontal well or a system of wells and have shown the possibility of their further operation until the limiting profitable discharge of oil is attained. The expenditure of heat in heating the oil pool, the evolution of discharge of oil, and the mass of extracted oil over the considered period have been considered.

  1. Viscosity Control Experiment Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Heidi E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bradley, Paul Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modify viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.

  2. Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors.

    Science.gov (United States)

    Martin, Shawn; Pratt, Harry D; Anderson, Travis M

    2017-07-01

    We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18 th , 2014. The dataset consists of 4,329 measurements taken from 165 ILs made up of 72 cations and 34 anions. We benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Real-time monitoring of viscosity changes triggered by chemical reactions using a high-speed imaging method

    Directory of Open Access Journals (Sweden)

    Wooseok Jung

    2015-09-01

    Full Text Available We present a method to monitor in real time peptide self-assembly or polymerization events. The temperature controlled modification of a previously reported splash test setup using high speed imaging enables to observe and measure rheological changes in liquid samples and can, in turn, monitor a peptide self-assembly or polymerization reaction accompanied with specific changes in solution viscosity. A series of 2 mm glass beads were dropped into an Fmoc-L3-OMe (methylated Fluorenylmethyloxycarbonyl-trileucine solution mixed with Alcalase 2.4 L (EC 3.4.21.62 or first dipped in Tetramethylethylenediamine (TEMED, a catalyst for acrylamide polymerization, then dropped into acrylamide. The resulting splashes were observed using a high speed camera. The results demonstrate that the viscosity changes of the peptide sample during the peptide self-assembly or acrylamide polymerization affect the specific shape and evolution of the splashing event. Typically, the increase in viscosity while the reaction occurs decreased the size of the splash and the amount of time for the splash to reach maximum extension from the moment for the beads to impact the sample. The ability to observe rheological changes of sample state presents the opportunity to monitor the real time dynamics of peptide self-assembly or cross-polymerization. Keywords: High-speed imaging, Self-assembly, Viscosity sensor

  4. Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer.

    Science.gov (United States)

    Johansen, A; Schaefer, T

    2001-01-01

    A study was performed in order to elucidate the effects of the interactions between powder particle size and binder viscosity on the mechanisms involved in agglomerate formation and growth. Calcium carbonates having mean particle sizes in the range of 5-214 microm and polyethylene glycols having viscosities in the range of approximately 50-100000 mPas were melt agglomerated in a high shear mixer. Agglomerate growth by nucleation and coalescence was found to dominate when agglomerating small powder particles and binders with a low viscosity. Increasing the binder viscosity increased the formation of agglomerates by immersion of powder particles in the surface of the binder droplets. With a larger powder particle size, an increasing binder viscosity was necessary in order to obtain an agglomerate strength being sufficient to avoid breakage. Due to a low agglomerate strength, a satisfying agglomeration of very large particles (214 microm) could not be obtained, even with very viscous binders. The study demonstrated that the optimum agglomerate growth occurred when the agglomerates were of an intermediate strength causing an intermediate deformability of the agglomerates. In order to produce spherical agglomerates (pellets), a low viscosity binder has to be chosen when agglomerating a powder with a small particle size, and a high viscosity binder must be applied in agglomeration of powders with large particles.

  5. Improved High Resolution Models of Subduction Dynamics: Use of transversely isotropic viscosity with a free-surface

    Science.gov (United States)

    Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.

    2017-12-01

    Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing

  6. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number

    Science.gov (United States)

    Meng, Xuhui; Guo, Zhaoli

    2015-10-01

    A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator is proposed for incompressible miscible flow with a large viscosity ratio as well as a high Péclet number in this paper. The equilibria in the present model are motivated by the lattice kinetic scheme previously developed by Inamuro et al. [Philos. Trans. R. Soc. London, Ser. A 360, 477 (2002), 10.1098/rsta.2001.0942]. The fluid viscosity and diffusion coefficient depend on both the corresponding relaxation times and additional adjustable parameters in this model. As a result, the corresponding relaxation times can be adjusted in proper ranges to enhance the performance of the model. Numerical validations of the Poiseuille flow and a diffusion-reaction problem demonstrate that the proposed model has second-order accuracy in space. Thereafter, the model is used to simulate flow through a porous medium, and the results show that the proposed model has the advantage to obtain a viscosity-independent permeability, which makes it a robust method for simulating flow in porous media. Finally, a set of simulations are conducted on the viscous miscible displacement between two parallel plates. The results reveal that the present model can be used to simulate, to a high level of accuracy, flows with large viscosity ratios and/or high Péclet numbers. Moreover, the present model is shown to provide superior stability in the limit of high kinematic viscosity. In summary, the numerical results indicate that the present lattice Boltzmann model is an ideal numerical tool for simulating flow with a large viscosity ratio and/or a high Péclet number.

  7. High pressure study of viscosity effects on the luminescence of tetracyanobenzene EDA complexes

    Science.gov (United States)

    Thomas, Michele Moisio; Drickamer, H. G.

    1981-03-01

    High pressure fluorescence studies fron 0-10 kbar have been performed on electron donor-acceptor (EDA) complexes of s-tetracyanobenzene (TCNB) with a series of aromatic hydrocarbons. Four solvents were used, 2,2,4,4,6,8,8 heptamethylnonane (HMN), methylcyclohexane (MCH), 2,6,10,14 tetramethylpentadecane (TMPD), and a mixture of MCH and HMN. A viscosity range from 0.006 to 10 000 poise was covered at constant temperature. As pressure (viscosity) increased the fluorescence spectrum shifted from one dominated by emission from the equilibrium (EQ) excited singlet state to one dominated by Franck-Condon (FC) singlet emission. Lifetime measurements for the complexes of o-xylene and p-xylene with TCNB as well as one mesitylene complex yielded the two radiative rates (kEQ and kFC) as well as the rate of internal conversion from FC to the EQ excited state to (kIC). The results are discussed in terms of the rate of relaxation of the solvent compared with the rate kFC. It was found that kIC correlated very well with the solvent viscosity.

  8. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports

    Science.gov (United States)

    Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng

    2017-12-01

    The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.

  9. Turbulent fluxes by "Conditional Eddy Sampling"

    Science.gov (United States)

    Siebicke, Lukas

    2015-04-01

    Turbulent flux measurements are key to understanding ecosystem scale energy and matter exchange, including atmospheric trace gases. While the eddy covariance approach has evolved as an invaluable tool to quantify fluxes of e.g. CO2 and H2O continuously, it is limited to very few atmospheric constituents for which sufficiently fast analyzers exist. High instrument cost, lack of field-readiness or high power consumption (e.g. many recent laser-based systems requiring strong vacuum) further impair application to other tracers. Alternative micrometeorological approaches such as conditional sampling might overcome major limitations. Although the idea of eddy accumulation has already been proposed by Desjardin in 1972 (Desjardin, 1977), at the time it could not be realized for trace gases. Major simplifications by Businger and Oncley (1990) lead to it's widespread application as 'Relaxed Eddy Accumulation' (REA). However, those simplifications (flux gradient similarity with constant flow rate sampling irrespective of vertical wind velocity and introduction of a deadband around zero vertical wind velocity) have degraded eddy accumulation to an indirect method, introducing issues of scalar similarity and often lack of suitable scalar flux proxies. Here we present a real implementation of a true eddy accumulation system according to the original concept. Key to our approach, which we call 'Conditional Eddy Sampling' (CES), is the mathematical formulation of conditional sampling in it's true form of a direct eddy flux measurement paired with a performant real implementation. Dedicated hardware controlled by near-real-time software allows full signal recovery at 10 or 20 Hz, very fast valve switching, instant vertical wind velocity proportional flow rate control, virtually no deadband and adaptive power management. Demonstrated system performance often exceeds requirements for flux measurements by orders of magnitude. The system's exceptionally low power consumption is ideal

  10. On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Ingo, E-mail: ingo.hoffmann@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Farago, Bela; Schweins, Ralf; Falus, Peter; Sharp, Melissa [Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Prévost, Sylvain [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Gradzielski, Michael, E-mail: michael.gradzielski@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany)

    2015-08-21

    Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and

  11. Eddies in the Red Sea: A statistical and dynamical study

    KAUST Repository

    Zhan, Peng

    2014-06-01

    Sea level anomaly (SLA) data spanning 1992–2012 were analyzed to study the statistical properties of eddies in the Red Sea. An algorithm that identifies winding angles was employed to detect 4998 eddies propagating along 938 unique eddy tracks. Statistics suggest that eddies are generated across the entire Red Sea but that they are prevalent in certain regions. A high number of eddies is found in the central basin between 18°N and 24°N. More than 87% of the detected eddies have a radius ranging from 50 to 135 km. Both the intensity and relative vorticity scale of these eddies decrease as the eddy radii increase. The averaged eddy lifespan is approximately 6 weeks. AEs and cyclonic eddies (CEs) have different deformation features, and those with stronger intensities are less deformed and more circular. Analysis of long-lived eddies suggests that they are likely to appear in the central basin with AEs tending to move northward. In addition, their eddy kinetic energy (EKE) increases gradually throughout their lifespans. The annual cycles of CEs and AEs differ, although both exhibit significant seasonal cycles of intensity with the winter and summer peaks appearing in February and August, respectively. The seasonal cycle of EKE is negatively correlated with stratification but positively correlated with vertical shear of horizontal velocity and eddy growth rate, suggesting that the generation of baroclinic instability is responsible for the activities of eddies in the Red Sea.

  12. High Resolution Viscosity Measurement by Thermal Noise Detection

    Directory of Open Access Journals (Sweden)

    Felipe Aguilar Sandoval

    2015-11-01

    Full Text Available An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.

  13. Visualization and analysis of eddies in a global ocean simulation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Sean J [Los Alamos National Laboratory; Hecht, Matthew W [Los Alamos National Laboratory; Petersen, Mark [Los Alamos National Laboratory; Strelitz, Richard [Los Alamos National Laboratory; Maltrud, Mathew E [Los Alamos National Laboratory; Ahrens, James P [Los Alamos National Laboratory; Hlawitschka, Mario [UC DAVIS; Hamann, Bernd [UC DAVIS

    2010-10-15

    Eddies at a scale of approximately one hundred kilometers have been shown to be surprisingly important to understanding large-scale transport of heat and nutrients in the ocean. Due to difficulties in observing the ocean directly, the behavior of eddies below the surface is not very well understood. To fill this gap, we employ a high-resolution simulation of the ocean developed at Los Alamos National Laboratory. Using large-scale parallel visualization and analysis tools, we produce three-dimensional images of ocean eddies, and also generate a census of eddy distribution and shape averaged over multiple simulation time steps, resulting in a world map of eddy characteristics. As expected from observational studies, our census reveals a higher concentration of eddies at the mid-latitudes than the equator. Our analysis further shows that mid-latitude eddies are thicker, within a range of 1000-2000m, while equatorial eddies are less than 100m thick.

  14. The experimental viscosity and calculated relative viscosity of liquid In-Sn allcoys

    International Nuclear Information System (INIS)

    Wu, A.Q.; Guo, L.J.; Liu, C.S.; Jia, E.G.; Zhu, Z.G.

    2007-01-01

    The experimental measured viscosity of liquid pure Sn, In 20 Sn 80 and In 80 Sn 20 alloys was studied, and to make a comparison, the calculated relative viscosity based on the pair distribution functions, g(r), has also been studied. There is one peak in each experimental viscosity and calculated relative-viscosity curve of liquid pure Sn about 1000 deg. C. One valley appears in each experimental viscosity and calculated viscosity curve of liquid In 20 Sn 80 alloy about 700 deg. C. There is no abnormal behavior on In 80 Sn 20 alloy. The behavior of experimental viscosity and calculated relative viscosity is coincident with each other. Those results conformed that the temperature-induced structure anomalies reported before did take place

  15. Eddie Rocket's Franchise

    OpenAIRE

    Vahter, Jenni

    2008-01-01

    Eddie Rocket's Franchise - Setting up a franchise restaurant in Helsinki. TIIVISTELMÄ: Eddie Rocket's on menestynyt amerikkalaistyylinen 1950-luvun ”diner” franchiseravintolaketju Irlannista. Ravintoloita on perustettu viimeisen 18 vuoden aikana 28 kappaletta Irlantiin ja Isoon Britanniaan sekä yksi Espanjaan. Tämän tutkimuksen tarkoitus on tutkia onko Eddie Rocket'silla potentiaalia menestyä Helsingissä, Suomessa. Tutkimuskysymystä on lähestytty toimiala-analyysin, markkinatutkimuksen j...

  16. Excessive Additive Effect On Engine Oil Viscosity

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2014-01-01

    Full Text Available The main goal of this paper is excessive additive (for oil filling effect on engine oil dynamic viscosity. Research is focused to commercially distribute automotive engine oil with viscosity class 15W–40 designed for vans. There were prepared blends of new and used engine oil without and with oil additive in specific ratio according manufacturer’s recommendations. Dynamic viscosity of blends with additive was compared with pure new and pure used engine oil. The temperature dependence dynamic viscosity of samples was evaluated by using rotary viscometer with standard spindle. Concern was that the oil additive can moves engine oil of several viscosity grades up. It is able to lead to failure in the engine. Mathematical models were used for fitting experimental values of dynamic viscosity. Exponential fit function was selected, which was very accurate because the coefficient of determination R2 achieved high values (0.98–0.99. These models are able to predict viscosity behaviour blends of engine oil and additive.

  17. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.F.; Fan, C.; Ruan, J.Z. [Midwest Superconductivity Inc., Lawrence, KS (United States)] [and others

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  18. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    International Nuclear Information System (INIS)

    Lu, D.F.; Fan, C.; Ruan, J.Z.

    1994-01-01

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology

  19. Entropy Viscosity Method for High-Order Approximations of Conservation Laws

    KAUST Repository

    Guermond, J. L.

    2010-09-17

    A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.

  20. Entropy Viscosity Method for High-Order Approximations of Conservation Laws

    KAUST Repository

    Guermond, J. L.; Pasquetti, R.

    2010-01-01

    A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.

  1. Viscosity measurement techniques in Dissipative Particle Dynamics

    Science.gov (United States)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  2. Detection of irradiated peppers by viscosity measurement at extremely high pH

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko

    1996-01-01

    The viscosities of aqueous suspensions of irradiated peppers determined after heat gelatinization were influenced by the pH of the suspension to a greater degree than those of unirradiated ones. Viscosity measurement under an extremely alkaline condition (pH 13.8) resulted in a significant different between irradiated peppers and unirradiated ones, irrespective of the planting locality and storage period. All of the pepper samples irradiated at 5 kGy showed viscosity values significantly lower than unirradiated ones. (Author)

  3. Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations

    Science.gov (United States)

    Li, Xiaoyi; Gao, Hui; Soteriou, Marios C.

    2017-08-01

    Atomization of extremely high viscosity liquid can be of interest for many applications in aerospace, automotive, pharmaceutical, and food industries. While detailed atomization measurements usually face grand challenges, high-fidelity numerical simulations offer the advantage to comprehensively explore the atomization details. In this work, a previously validated high-fidelity first-principle simulation code HiMIST is utilized to simulate high-viscosity liquid jet atomization in crossflow. The code is used to perform a parametric study of the atomization process in a wide range of Ohnesorge numbers (Oh = 0.004-2) and Weber numbers (We = 10-160). Direct comparisons between the present study and previously published low-viscosity jet in crossflow results are performed. The effects of viscous damping and slowing on jet penetration, liquid surface instabilities, ligament formation/breakup, and subsequent droplet formation are investigated. Complex variations in near-field and far-field jet penetrations with increasing Oh at different We are observed and linked with the underlying jet deformation and breakup physics. Transition in breakup regimes and increase in droplet size with increasing Oh are observed, mostly consistent with the literature reports. The detailed simulations elucidate a distinctive edge-ligament-breakup dominated process with long surviving ligaments for the higher Oh cases, as opposed to a two-stage edge-stripping/column-fracture process for the lower Oh counterparts. The trend of decreasing column deflection with increasing We is reversed as Oh increases. A predominantly unimodal droplet size distribution is predicted at higher Oh, in contrast to the bimodal distribution at lower Oh. It has been found that both Rayleigh-Taylor and Kelvin-Helmholtz linear stability theories cannot be easily applied to interpret the distinct edge breakup process and further study of the underlying physics is needed.

  4. The Friction Theory for Viscosity Modeling

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan

    2001-01-01

    , in the case when experimental information is available a more accurate modeling can be obtained by means of a simple tuning procedure. A tuned f-theory general model can deliver highly accurate viscosity modeling above the saturation pressure and good prediction of the liquid-phase viscosity at pressures......In this work the one-parameter friction theory (f-theory) general models have been extended to the viscosity prediction and modeling of characterized oils. It is demonstrated that these simple models, which take advantage of the repulsive and attractive pressure terms of cubic equations of state...... such as the SRK, PR and PRSV, can provide accurate viscosity prediction and modeling of characterized oils. In the case of light reservoir oils, whose properties are close to those of normal alkanes, the one-parameter f-theory general models can predict the viscosity of these fluids with good accuracy. Yet...

  5. Determination of Viscosity-Average Molecular Weight of Chitosan using Intrinsic Viscosity Measurement

    International Nuclear Information System (INIS)

    Norzita Yacob; Norhashidah Talip; Maznah Mahmud

    2011-01-01

    Molecular weight of chitosan can be determined by different techniques such as Gel Permeation Chromatography (GPC), Static Light Scattering (SLS) and intrinsic viscosity measurement. Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (author)

  6. The eddy kinetic energy budget in the Red Sea

    KAUST Repository

    Zhan, Peng; Subramanian, Aneesh C.; Yao, Fengchao; Kartadikaria, Aditya R.; Guo, Daquan; Hoteit, Ibrahim

    2016-01-01

    The budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions and sink, is examined using a high-resolution eddy-resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum

  7. Lateral resolution of eddy current imaging

    International Nuclear Information System (INIS)

    Hassan, W.; Blodgett, M.; Nagy, P.B.

    2002-01-01

    Analytical, finite element simulation, and experimental methods were used to investigate the lateral resolution of eddy current microscopy. It was found that the lateral resolution of eddy current imaging is ultimately limited by the probe-coil geometry and dimensions, but both the inspection frequency and the phase angle can be used to optimize the resolution, to some degree, at the expense of sensitivity. Electric anisotropy exhibited by noncubic crystallographic classes of materials such as titanium alloys can play a very similar role in electromagnetic materials characterization of polycrystalline metals to that of elastic anisotropy in ultrasonic materials characterization. Our results demonstrate that eddy current microscopy can be enhanced via a high-resolution, small diameter probe-coil which delivers a unique materials characterization tool well suited for the evaluation of Ti alloys

  8. Recent Ship, Satellite and Autonomous Observations of Southern Ocean Eddies

    Science.gov (United States)

    Strutton, P. G.; Moreau, S.; Llort, J.; Phillips, H. E.; Patel, R.; Della Penna, A.; Langlais, C.; Lenton, A.; Matear, R.; Dawson, H.; Boyd, P. W.

    2016-12-01

    The Southern Ocean is the area of greatest uncertainty regarding the exchange of CO2 between the ocean and atmosphere. It is also a region of abundant energetic eddies that significantly impact circulation and biogeochemistry. In the Indian sector of the Southern Ocean, cyclonic eddies are unusual in that they are upwelling favorable, as for cyclonic eddies elsewhere, but during summer they are low in silicate and phytoplankton biomass. The reverse is true for anticyclonic eddies in that they have counter-intuitive positive chlorophyll anomalies in summer. Similar but less obvious patterns occur in the Pacific and Atlantic sectors. Using ship, satellite and autonomous observations in the region south of Australia, the physical and biogeochemical signatures of both types of eddies were documented in 2016. A cyclonic eddy that lived for seven weeks exhibited doming isopycnals indicative of upwelling. However, low surface silicate and chlorophyll concentrations appeared to be characteristic of surface waters to the south where the eddy formed. Higher chlorophyll was confined to filaments at the eddy edge. Surface nitrate and phosphate concentrations were more than sufficient for a bloom of non-siliceous phytoplankton to occur. Acoustic observations from a high resolution TRIAXUS transect through the eddy documented high zooplankton biomass in the upper 150m. It is hypothesized that a non-diatom bloom was prevented by grazing pressure, but light may have also been an important limiting resource in late summer (April). Two SOCCOM floats that were deployed in the eddy field continued to monitor the physics, nitrate and bio-optics through the transition to winter. These observations across complementary platforms have identified and then explained the reason for these unexpected biological anomalies in an energetic and globally important region of the global ocean. Understanding the role of eddies in this region will be critical to the representation of mesoscale

  9. Eddy energy sources and flux in the Red Sea

    KAUST Repository

    Zhan, Peng

    2015-04-01

    In the Red Sea, eddies are reported to be one of the key features of hydrodynamics in the basin. They play a significant role in converting the energy among the large-scale circulation, the available potential energy (APE) and the eddy kinetic energy (EKE). Not only do eddies affect the horizontal circulation, deep-water formation and overturning circulation in the basin, but they also have a strong impact on the marine ecosystem by efficiently transporting heat, nutrients and carbon across the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied based on a high-resolution MITgcm. We have also investigated the possible mechanisms of eddy generation in the Red Sea. Eddies with high EKE are found more likely to appear in the central and northern Red Sea, with a significant seasonal variability. They are more inclined to occur during winter when they acquire their energy mainly from the conversion of APE. In winter, the central and especially the northern Red Sea are subject to important heat loss and extensive evaporation. The resultant densified upper-layer water tends to sink and release the APE through baroclinic instability, which is about one order larger than the barotropic instability contribution and is the largest source term for the EKE in the Red Sea. As a consequence, the eddy energy is confined to the upper layer but with a slope deepening from south to north. In summer, the positive surface heat flux helps maintain the stratification and impedes the gain of APE. The EKE is, therefore, much lower than that in winter despite a higher wind power input. Unlike many other seas, the wind energy is not the main source of energy to the eddies in the Red Sea.

  10. Determination of viscosity-average molecular weight of chitosan using intrinsic viscosity measurement

    International Nuclear Information System (INIS)

    Norzita Yacob; Norhashidah Talip; Maznah Mahmud; Nurul Aizam Idayu Mat Sani; Nor Akma Samsuddin; Norafifah Ahmad Fabillah

    2013-01-01

    Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. To study the effect of radiation on molecular weight, chitosan was first irradiated using electron beam at different doses prior to measurement. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (Author)

  11. Determination of Viscosity Versus Pressure by Means of a Clearance Seal

    DEFF Research Database (Denmark)

    Christiansen, Peter; Schmidt Hansen, Niels; Lund, Martin Thomas Overdahl

    2018-01-01

    This paper describes the construction and testing of a simple, experimental tool setup that enables determination of the pressure–viscosity relationship for high viscosity oils. Comparing the determined pressure–viscosity relationship with a reference rheometer measuring the viscosity at ambient ...

  12. Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence

    Science.gov (United States)

    Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine

    2017-04-01

    Horizontal and vertical motions associated with coherent mesoscale structures, including eddies and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary current region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil Currents over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous eddy field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale eddies with high spatial and temporal resolutions using an automated eddy tracker. We characterize the eddies across fourteen 5° × 5° subregions. Eddy-centric composites of tracers and geostrophic currents diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous eddy instance. The QG-ω eddy composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum eddy values are found near fronts and sharp topographic gradients. In comparison with regional eddy composites, subregional composites provide refined information about mesoscale eddy heterogeneity.

  13. The role of eddy transports in climate change

    International Nuclear Information System (INIS)

    Stone, P.H.

    1994-01-01

    Large-scale atmospheric eddies are the dominant transport mechanisms in mid and high latitudes. Thus, climate models must simulate these eddies, their effects, and their feedbacks accurately. Getting the feedbacks right is particularly important since it is the feedbacks which affect climate sensitivity. Observational studies of these feedbacks are hindered by the lack of actual climate changes for which good data is available, and by the lack of data on vertical heat fluxes. General circulation model (GCM) studies are hindered by errors in GCM simulations of transports in the current climate; the dependence of GCM results on uncertain subgrid scale parameterizations; and large computational requirements. A more promising approach for learning about eddy feedbacks and how they can be modelled is process model studies. So far these studies have only looked at the feedback between eddy sensible heat fluxes arising from baroclinic instability and the temperature structure. The results indicate that there is a very strong negative feedback between eddy fluxes and temperature structure, both meridional and vertical, with the fluxes themselves being sensitive to small changes in temperature structure. These studies need to be extended to higher vertical resolution, and to include the effects of moisture, stationary eddies, and coupling to the oceans

  14. Detached Eddy Simulation of a Flow over a Backward-Facing Step

    International Nuclear Information System (INIS)

    Kim, Seong Hoon; Kim, Young In; Park, Chun Tae; Seo, Jae Kwang

    2007-01-01

    Turbulence models are essential ingredients for a successful flow field simulation. The turbulence models that have been generally adopted for the industry are based on the eddy viscosity assumption such as the standard k-ω model. The Boussinesq approximation, which is the linear relationship between the strain rate and the Reynolds stress, has been known to have a limitation when additional effects such as curvature, buoyancy and rotation are added to the flow field. To overcome these shortcomings, more sophisticated turbulence models such as the Reynolds Stress Model and the Algebraic Stress Model has been developed by many researchers. Even though the complexity of models is increased, it is difficult to overcome an inherent defect coming from an averaging process. The averaging process in the model development is required to determine the averaged effect of turbulence to the mean flow field. The defect comes from the fact that the averaging is conducted over a full range of turbulence length scales and removes the direct effect of unsteady large eddy motions. Direct Numerical Simulation (DNS) takes an opposite approach, in which it solves all turbulence scales down to the smallest scale using very fine grids. But, this method has a serious problem for an industrial usage. The simulation cost is enormous and because of that, the possible range of the Reynolds number is limited to be very low. Large Eddy Simulation (LES) that models only small scales of turbulence has been a candidate for filling the gap between DNS and RANS. Unfortunately, LES also has a limitation of the possible Reynolds number. The detached eddy simulation (DES) is a hybrid method between RANS and LES. The grid requirement near boundary is a main obstacle for an LES usage. DES uses RANS near the wall and LES outside of it. The backward-facing step flow is simulated to show the DES capability. The near wall models of DES are the SST-kω model and the Spalart-Allmaras model. DES results are

  15. Electron treatment of wood pulp for the viscose process

    Science.gov (United States)

    Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.

    2000-03-01

    Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.

  16. Viscosity calculations of simulated ion-exchange resin waste glasses

    International Nuclear Information System (INIS)

    Kim, Cheon Woo; Park, Jong Kil; Lee, Kyung Ho; Lee, Myung Chan; Song, Myung Jae; BRUNELOT, Pierre

    2000-01-01

    An induction cold crucible melter (CCM) located in the NETEC-KEPCO has been used to vitrify simulated ion-exchange resin. During vitrification, the CCM operations were tightly constrained by glass viscosity as an important process parameter. Understanding the role of viscosity and quantifying viscosity is highly required in the determination of optimized feed formulations and in the selection of the processing temperature. Therefore, existing process models of glass viscosity based on a relationship between the glass composition, its structure polymerization, and the temperature were searched and adapted to our borosilicate glass systems. Calculated data using a viscosity model based on calculation of non-bridging oxygen (NBO) were in good agreement with the measured viscosity data of benchmark glasses

  17. Sea Surface Height Variability and Eddy Statistical Properties in the Red Sea

    KAUST Repository

    Zhan, Peng

    2013-05-01

    Satellite sea surface height (SSH) data over 1992-2012 are analyzed to study the spatial and temporal variability of sea level in the Red Sea. Empirical orthogonal functions (EOF) analysis suggests the remarkable seasonality of SSH in the Red Sea, and a significant correlation is found between SSH variation and seasonal wind cycle. A winding-angle based eddy identification algorithm is employed to derive the mesoscale eddy information from SSH data. Totally more than 5500 eddies are detected, belonging to 2583 eddy tracks. Statistics suggest that eddies generate over the entire Red Sea, with two regions in the central basin of high eddy frequency. 76% of the detected eddies have a radius ranging from 40km to 100km, of which both intensity and absolute vorticity decrease with eddy radius. The average eddy lifespan is about 5 weeks, and eddies with longer lifespan tend to have larger radius but less intensity. Different deformation rate exists between anticyclonic eddies (AEs) and cyclonic eddies (CEs), those eddies with higher intensity appear to be less deformed and more circular. Inspection of the 84 long-lived eddies suggests the AEs tend to move a little more northward than CEs. AE generation during summer is obviously lower than that during other seasons, while CE generation is higher during spring and summer. Other features of AEs and CEs are similar with both vorticity and intensity reaching the summer peaks in August and winter peaks in January. Inter-annual variability reveals that the eddies in the Red Sea are isolated from the global event. The eddy property tendencies are different from the south and north basin, both of which exhibit a two-year cycle. Showing a correlation coefficient of -0.91, Brunt–Väisälä frequency is negatively correlated with eddy kinetic energy (EKE), which results from AE activities in the high eddy frequency region. Climatological vertical velocity shear variation is identical with EKE except in the autumn, suggesting the

  18. Large eddy simulation of transitional flow in an idealized stenotic blood vessel: evaluation of subgrid scale models.

    Science.gov (United States)

    Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A; Frankel, Steven H

    2014-07-01

    In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.

  19. GEM: a dynamic tracking model for mesoscale eddies in the ocean

    Science.gov (United States)

    Li, Qiu-Yang; Sun, Liang; Lin, Sheng-Fu

    2016-12-01

    The Genealogical Evolution Model (GEM) presented here is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish between different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, the GEM first uses a two-dimensional (2-D) similarity vector (i.e., a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the "missing eddy" problem (temporarily lost eddy in tracking). Second, for tracking when an eddy splits, the GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as the birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O(LM(N + 1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distributions in the North Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". The GEM is useful not only for satellite-based observational data, but also for numerical simulation outputs. It is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.

  20. Large Eddy Simulation of Fluid flow and Heat Transfer in the Upper Plenum of Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seokki; Lee, Taeho; Kim, Dongeun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, Sungho [Chungnam National Univ., Daejeon (Korea, Republic of)

    2014-05-15

    The important parameters in the thermal striping are the frequency and the amplitude of the temperature fluctuation. Since the sodium used as coolant in the PGSFR has a high thermal conductivity, the temperature fluctuation can be easily transferred to the solid walls of the components in the upper plenum. To remedy these problems, numerical studies are performed in the present study to analyze the thermal striping for possible improvement of the design and safety of the reactor. For the numerical works, Chacko et al. performed LES for the experiment by Nam and Kim, and found that the LES can produce the oscillation of temperature fluctuation properly, while the realizable k - ε model predicts the amplitude and frequency of the temperature fluctuation very poorly indicating that the LES method is an appropriate calculation method for the thermal striping. In this paper, the simulation of thermal striping in the upper plenum of PGSFR is performed using the LES method. The WALE eddy viscosity model by Nicoud and Ducros built in CFX-13 commercial code is employed for the LES eddy viscosity model. The numerical investigation of the thermal striping is performed with the LES method using the CFX-13 commercial code, where the solution domain is the upper plenum of the PGSFR. As the first step, dozens of monitoring points are set to locations that are anticipated to cause thermal striping. Then, the temperature fluctuations were calculated along with the time-averaged variables such as the velocity and temperature. From these results we have obtained the following conclusions. At the side wall of IHX, a slight fluctuation is observed, but it seems that there is no risk of thermal striping. The flows from the reactor core are not mixed when reaching the UIS. So both the first and second plates need to be considered. Among the first grid plate regions, the shape region is the weakest region for thermal striping. The second weakest region for thermal striping is the shape

  1. Hybrid RANS/LES of flow and heat transfer in round impinging jets

    International Nuclear Information System (INIS)

    Kubacki, Slawomir; Dick, Erik

    2011-01-01

    Fluid flow and convective heat transfer predictions are presented of round impinging jets for several combinations of nozzle-plate distances H/D = 2, 6 and 13.5 (where D is the nozzle diameter) and Reynolds numbers Re = 5000, 23,000 and 70,000 with the newest version of the k-ω model of and three hybrid RANS/LES models. In the RANS mode of the hybrid RANS/LES models, the k-ω model is recovered. Three formulations are considered to activate the LES mode. The first model is similar to the hybrid models of and . The turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the definition of the RANS eddy viscosity. As grid size, a maximum measure of the hexahedral grid cell is used. The second model has the same k-equation, but the eddy viscosity is the minimum of the k-ω eddy viscosity and the Smagorinsky eddy viscosity, following a proposal by . The Smagorinsky eddy viscosity is formed with the cube root of the cell volume. The third model has, again, the same k-equation, but has an eddy viscosity which is an intermediate between the eddy viscosities of the first and second models. This is reached by using the cube root of the cell volume in the eddy viscosity formula of the first model. The simulation results are compared with experimental data for the high Reynolds number cases Re = 23,000 and Re = 70,000 and LES data for the low-Reynolds number case Re = 5000. The Reynolds numbers are defined with the nozzle diameter and the bulk velocity at nozzle outlet. At low nozzle-plate distance (the impingement plate is in the core of the jet), turbulent kinetic energy is overpredicted by RANS in the stagnation flow region. This leads to overprediction of the heat transfer rate along the impingement plate in the impact zone. At high nozzle-plate distance (the impingement plate is in the mixed-out region of the jet), the turbulence mixing is underpredicted by RANS in the shear layer of the jet which gives a too high length of

  2. Eddy current testing with high penetration; WS-Pruefungen mit grosser Eindringtiefe

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R.; Kroening, M. [Fraunhofer Inst. fuer Zerstoerungsfreie Pruefverfahren, Saarbruecken (Germany)

    1999-08-01

    The low-frequency eddy current testing method is used when penetration into very deep layers is required. The achievable penetration depth is determined among other parameters by the lowest testing frequency that can be realised together with the eddy current sensor. When using inductive sensors, the measuring effect declines proportional to the lowering frequency (induction effect). Further reduction of testing frequency requires other types of sensors, as e.g. the GMR (Giant Magnetic Resistance), which achieves a constant measuring sensitivity down to the steady field. The multi-frequency eddy current testing method MFEC 3 of IZFP described here can be operated using three different scanning frequencies at a time. Two variants of eddy current probes are used in this case. Both have an inductive winding at their emitters, of the type of a measuring probe. The receiver end is either also an inductive winding, or a magnetic field-responsive resistance (GMR). (orig./CB) [Deutsch] Das Niederfrequenz(NF)-Wirbelstrom(WS)-Verfahren wird eingesetzt, um eine grosse Eindringtiefe zu erzielen. Die erreichbare Tiefenreichweite wird u.a. durch die niedrigste Prueffrequenz bestimmt, die zusammen mit dem Wirbelstrom-Sensor realisiert werden kann. Bei Einsatz von induktiven Sensoren geht mit abnehmender Prueffrequenz der Messeffekt proportional zurueck (Induktionswirkung). Eine weitere Absenkung der Prueffrequenzen macht den Einsatz von andersartigen Sensoren notwendig, z.B. den GMR (Giant Magnetic Resistance), der eine gleichmaessige Messempfindlichkeit bis zum Gleichfeld besitzt. Das eingesetzte Mehrfrequenz-Wirbelstrom-Pruefverfahren MFEC 3 des IZFP arbeitet mit drei gleichzeitig eingespeisten Prueffrequenzen. Dabei werden zwei Varianten von WS-Sensoren eingesetzt. Beide besitzen auf der Senderseite eine induktive Wicklung in der Art einer Tastsonde. Die Empfaengerseite ist entweder ebenfalls eine induktive Wicklung oder ein magnetfeldempfindlicher Widerstand (GMR). (orig./DGE)

  3. Flexible eddy current coil arrays

    International Nuclear Information System (INIS)

    Krampfner, Y.; Johnson, D.P.

    1987-01-01

    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  4. Equations of viscous flow of silicate liquids with different approaches for universality of high temperature viscosity limit

    Directory of Open Access Journals (Sweden)

    Ana F. Kozmidis-Petrović

    2014-06-01

    Full Text Available The Vogel-Fulcher-Tammann (VFT, Avramov and Milchev (AM as well as Mauro, Yue, Ellison, Gupta and Allan (MYEGA functions of viscous flow are analysed when the compositionally independent high temperature viscosity limit is introduced instead of the compositionally dependent parameter η∞ . Two different approaches are adopted. In the first approach, it is assumed that each model should have its own (average high-temperature viscosity parameter η∞ . In that case, η∞ is different for each of these three models. In the second approach, it is assumed that the high-temperature viscosity is a truly universal value, independent of the model. In this case, the parameter η∞ would be the same and would have the same value: log η∞ = −1.93 dPa·s for all three models. 3D diagrams can successfully predict the difference in behaviour of viscous functions when average or universal high temperature limit is applied in calculations. The values of the AM functions depend, to a greater extent, on whether the average or the universal value for η∞ is used which is not the case with the VFT model. Our tests and values of standard error of estimate (SEE show that there are no general rules whether the average or universal high temperature viscosity limit should be applied to get the best agreement with the experimental functions.

  5. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    Science.gov (United States)

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Eddy Effects in the General Circulation, Spanning Mean Currents, Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests

    Science.gov (United States)

    2014-09-30

    alongshore winds favoring upwelling circulation. As for the other EBUS (e.g., Humboldt, Benguela, and Canary Currents ), equatorward winds drive...Eddy Effects in the General Circulation, Spanning Mean Currents , Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests...environments OBJECTIVES The central scientific questions are how the eddies control the persistent currents by their eddy-induced momentum and buoyancy fluxes

  7. The role of viscosity in TATB hot spot ignition

    Science.gov (United States)

    Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.

    2012-03-01

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

  8. Sizing Performance of the Newly Developed Eddy Current System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chan Hee; Lee, Hee Jong; Yoo, Hyun Ju; Moon, Gyoon Young; Lee, Tae Hoon [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of)

    2013-10-15

    This paper describes the comparison results of sizing performance for two systems. The KHNP developed a new eddy current testing system for the inspection of steam generator tubing in domestic nuclear power plants. The equivalency assessment of the newly developed system with the EPRI-qualified system was already carried out. In this paper, the comparisons of depth-sizing performance for the artificial flaws between two systems were performed. The results show that the newly developed system is in good agreement with the qualified system. Therefore, it is expected that the newly developed eddy current system can be used for the inspection of steam generator tubing in nuclear power plants. There are some non-destructive examination (NDE) methods for the inspection of components in nuclear power plants, such as ultrasonic, radiographic, eddy current testing, etc. The eddy current testing is widely used for the inspection of steam generator (SG) tubing because it offers a relatively low cost approach for high speed, large scale testing of metallic materials in high pressure and temperature engineering systems. The Korea Hydro and Nuclear Power Co., Ltd. (KHNP) developed an eddy current testing system for the inspection of steam generator tubing in nuclear power plants. This system includes not only hardware but software such as the frequency generator and data acquisition-analysis program. The foreign eddy current system developed by ZETEC is currently used for the inspection of steam generator tubing in domestic nuclear power plants. The equivalency assessment between two systems was already carried out in accordance with the EPRI steam generator examination guidelines.

  9. Cyclonic eddies identified in the Cape Basin of the South Atlantic Ocean

    Science.gov (United States)

    Hall, C.; Lutjeharms, J. R. E.

    2011-03-01

    Inter-ocean exchange south of Africa takes place largely through the movement of Agulhas Rings into the Cape Basin. Recent observations have shown that the highly energetic flow field in this basin consists of anti-cyclonic rings as well as cyclonic eddies. Very little is known of the characteristics of the cyclonic eddies. Using altimetric data, this study determines the location, frequency and seasonality of these cyclonic eddies their size, trajectories, life spans and their association with Agulhas Rings. Cyclonic eddies were seen to split, merge and link with other cyclonic eddies, where splitting events created child cyclonic eddies. The 105 parent and 157 child cyclonic eddies identified over a decade show that on average 11 parent and 17 child cyclonic eddies appear annually in AVISO merged absolute dynamic topography data along the continental slope. Thirty-two percent follow an overall west south-westward direction, with 27% going west north-westward. Average translocation speeds are 2.2 ± 0.1 km/day for parent and 3.0 ± 0.2 km/day for child cyclonic eddies. Parent cyclonic eddy lifespan averaged 250 ± 18 days; whereas child cyclonic eddies survived for only 118 ± 11 days. A significant difference in lifespan for parent and child cyclonic eddies identified in the north and south region of the study area was detected. Seventy-seven percent of the northern and 93% of the southern cyclonic eddies were first detected directly adjacent to passing Agulhas Rings, suggesting a vital interaction between these mesoscale eddies within the region. Topographical features appeared to affect the behaviour and lifespan of these deep cyclonic eddies.

  10. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Directory of Open Access Journals (Sweden)

    Ekkalak Ploydee

    2014-01-01

    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  11. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Yong Du

    2013-01-01

    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  12. The k-ε-fP model applied to double wind turbine wakes using different actuator disk force methods

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2015-01-01

    The newly developed k-ε-fP  eddy viscosity model is applied to double wind turbine wake configurations in a neutral atmospheric boundary layer, using a Reynolds-Averaged Navier–Stokes solver. The wind turbines are represented by actuator disks. A proposed variable actuator disk force method...... two methods overpredict it. The results of the k-ε-fP  eddy viscosity model are also compared with the original k-ε eddy viscosity model and large-eddy simulations. Compared to the large-eddy simulations-predicted velocity and power deficits, the k-ε-fP  is superior to the original k-ε model...

  13. Viscosity-dependent drain current noise of AlGaN/GaN high electron mobility transistor in polar liquids

    International Nuclear Information System (INIS)

    Fang, J. Y.; Hsu, C. P.; Kang, Y. W.; Fang, K. C.; Kao, W. L.; Yao, D. J.; Chen, C. C.; Li, S. S.; Yeh, J. A.; Wang, Y. L.; Lee, G. Y.; Chyi, J. I.; Hsu, C. H.; Huang, Y. F.; Ren, F.

    2013-01-01

    The drain current fluctuation of ungated AlGaN/GaN high electron mobility transistors (HEMTs) measured in different fluids at a drain-source voltage of 0.5 V was investigated. The HEMTs with metal on the gate region showed good current stability in deionized water, while a large fluctuation in drain current was observed for HEMTs without gate metal. The fluctuation in drain current for the HEMTs without gate metal was observed and calculated as standard deviation from a real-time measurement in air, deionized water, ethanol, dimethyl sulfoxide, ethylene glycol, 1,2-butanediol, and glycerol. At room temperature, the fluctuation in drain current for the HEMTs without gate metal was found to be relevant to the dipole moment and the viscosity of the liquids. A liquid with a larger viscosity showed a smaller fluctuation in drain current. The viscosity-dependent fluctuation of the drain current was ascribed to the Brownian motions of the liquid molecules, which induced a variation in the surface dipole of the gate region. This study uncovers the causes of the fluctuation in drain current of HEMTs in fluids. The results show that the AlGaN/GaN HEMTs may be used as sensors to measure the viscosity of liquids within a certain range of viscosity

  14. Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures

    Science.gov (United States)

    Svehla, Roger A.

    1962-01-01

    Viscosities and thermal conductivities, suitable for heat-transfer calculations, were estimated for about 200 gases in the ground state from 100 to 5000 K and 1-atmosphere pressure. Free radicals were included, but excited states and ions were not. Calculations for the transport coefficients were based upon the Lennard-Jones (12-6) potential for all gases. This potential was selected because: (1) It is one of the most realistic models available and (2) intermolecular force constants can be estimated from physical properties or by other techniques when experimental data are not available; such methods for estimating force constants are not as readily available for other potentials. When experimental viscosity data were available, they were used to obtain the force constants; otherwise the constants were estimated. These constants were then used to calculate both the viscosities and thermal conductivities tabulated in this report. For thermal conductivities of polyatomic gases an Eucken-type correction was made to correct for exchange between internal and translational energies. Though this correction may be rather poor at low temperatures, it becomes more satisfactory with increasing temperature. It was not possible to obtain force constants from experimental thermal conductivity data except for the inert atoms, because most conductivity data are available at low temperatures only (200 to 400 K), the temperature range where the Eucken correction is probably most in error. However, if the same set of force constants is used for both viscosity and thermal conductivity, there is a large degree of cancellation of error when these properties are used in heat-transfer equations such as the Dittus-Boelter equation. It is therefore concluded that the properties tabulated in this report are suitable for heat-transfer calculations of gaseous systems.

  15. Viscosity of high-pressure ice VI and evolution and dynamics of Ganymede

    International Nuclear Information System (INIS)

    Poirier, J.P.; Sotin, C.; Peyronneau, J.

    1981-01-01

    The viscosity of high pressure ice VI has been measured at room temperature and pressures of 1.1 to 1.2 GPa giving a value of approximately equal to 10 14 P which suggests that solid state convection might have taken place during the early evolution of Ganymede, thus preventing melting and differentiation. Measurements were carried out in a sapphire anvil cell using fine particles to visualize the flow of ice down the radial pressure gradient. (U.K.)

  16. Internal and forced eddy variability in the Labrador Sea

    Science.gov (United States)

    Bracco, A.; Luo, H.; Zhong, Y.; Lilly, J.

    2009-04-01

    Water mass transformation in the Labrador Sea, widely believed to be one of the key regions in the Atlantic Meridional Overturning Circulation (AMOC), now appears to be strongly impacted by vortex dynamics of the unstable boundary current. Large interannual variations in both eddy shedding and buoyancy transport from the boundary current have been observed but not explained, and are apparently sensitive to the state of the inflowing current. Heat and salinity fluxes associated with the eddies drive ventilation changes not accounted for by changes in local surface forcing, particularly during occasional years of extreme eddy activity, and constitute a predominant source of "internal" oceanic variability. The nature of this variable eddy-driven restratification is one of the outstanding questions along the northern transformation pathway. Here we investigate the eddy generation mechanism and the associated buoyancy fluxes by combining realistic and idealized numerical modeling, data analysis, and theory. Theory, supported by idealized experiments, provides criteria to test hypotheses as to the vortex formation process (by baroclinic instability linked to the bottom topography). Ensembles of numerical experiments with a high-resolution regional model (ROMS) allow for quantifying the sensitivity of eddy generation and property transport to variations in local and external forcing parameters. For the first time, we reproduce with a numerical simulation the observed interannual variability in the eddy kinetic energy in the convective region of the Labrador Basin and along the West Greenland Current.

  17. A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells

    Directory of Open Access Journals (Sweden)

    Dongdong Su

    2016-08-01

    Full Text Available Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM.

  18. Viscosity properties of sodium borophosphate glasses

    International Nuclear Information System (INIS)

    Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K.

    2009-01-01

    The viscosity behavior of (1 - x)NaPO 3 -xNa 2 B 4 O 7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na 2 B 4 O 7 . The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO 4 units) to mixed BO 4 /BO 3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network

  19. Direct observations of the viscosity of Earth's outer core and extrapolation of measurements of the viscosity of liquid iron

    International Nuclear Information System (INIS)

    Smylie, D E; Brazhkin, Vadim V; Palmer, Andrew

    2009-01-01

    Estimates vary widely as to the viscosity of Earth's outer fluid core. Directly observed viscosity is usually orders of magnitude higher than the values extrapolated from high-pressure high-temperature laboratory experiments, which are close to those for liquid iron at atmospheric pressure. It turned out that this discrepancy can be removed by extrapolating via the widely known Arrhenius activation model modified by lifting the commonly used assumption of pressure-independent activation volume (which is possible due to the discovery that at high pressures the activation volume increases strongly with pressure, resulting in 10 2 Pa s at the top of the fluid core, and in 10 11 Pa s at its bottom). There are of course many uncertainties affecting this extrapolation process. This paper reviews two viscosity determination methods, one for the top and the other for the bottom of the outer core, the former of which relies on the decay of free core nutations and yields 2371 ± 1530 Pa s, while the other relies on the reduction in the rotational splitting of the two equatorial translational modes of the solid inner core oscillations and yields an average of 1.247 ± 0.035 Pa s. Encouraged by the good performance of the Arrhenius extrapolation, a differential form of the Arrhenius activation model is used to interpolate along the melting temperature curve and to find the viscosity profile across the entire outer core. The viscosity variation is found to be nearly log-linear between the measured boundary values. (methodological notes)

  20. On the bulk viscosity of relativistic matter

    International Nuclear Information System (INIS)

    Canuto, V.; Hsieh, S.-H.

    1978-01-01

    An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted resuls of Iso, Mori and Namiki. (author)

  1. Eddy current testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan Univ., Gunsan (Korea, Republic of)

    2004-02-15

    Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants.

  2. Eddy current testing

    International Nuclear Information System (INIS)

    Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan; Shin, Young Kil

    2004-02-01

    Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants

  3. Climatic feedbacks between stationary and transient eddies

    International Nuclear Information System (INIS)

    Branscome, L.E.

    1994-01-01

    Stationary eddies make a significant contribution to poleward heat transport during Northern Hemisphere winter, equaling the transport by transient eddies. On the other hand, stationary eddy transport during the summer is negligible. The effect of topography on time-mean stationary waves and low-frequency variability has been widely studied. In contrast, little attention has been given to the climatic feedbacks associated with stationary eddies. Furthermore, the relationship between stationary and transient eddies in the context of global and regional climate is not well understood. The response of the climate system to anthropogenic forcing is likely to have some dependence on stationary wave transport and its interaction with transient eddies. Some early GCM simulations and observational analyses indicate a strong feedback between the meridional heat fluxes of stationary and transient eddies

  4. Phytoplankton communities and acclimation in a cyclonic eddy in the southwest Indian Ocean

    Science.gov (United States)

    Barlow, R.; Lamont, T.; Gibberd, M.-J.; Airs, R.; Jacobs, L.; Britz, K.

    2017-06-01

    A study of phytoplankton in a cyclonic eddy was undertaken in the Mozambique Basin between Madagascar and southern Africa during austral winter. CHEMTAX analysis of pigment data indicated that the community comprised mainly haptophytes and diatoms, with Prochlorococcus, prasinophytes and pelagophytes also being prominent to the east and west of the eddy. There was little difference in community structure, chlorophyll-specific absorption [a*ph(440)] and pigment:TChla ratios between the surface and the sub-surface chlorophyll maximum (SCM), reflecting acclimation to fluctuating light conditions in a well mixed upper layer. Values for a*ph(440) were low for diatom dominance, high where prokaryote proportion was high, and intermediate for flagellate dominated communities. Chlorophyll c and fucoxanthin:TChla ratios were elevated over most of the eddy, while 19‧-hexanoyloxyfucoxanthin ratios increased in the eastern and western sectors. In a community comprising mainly flagellates and Prochlorococcus to the west of the eddy, there was high a*ph(440) at the surface and elevated ratios for divinyl chlorophyll a, chlorophyll b and 19‧-hexanoyloxyfucoxanthin at the SCM. An increase in diadinoxanthin:TChla ratios and a decline in the quantum efficiency of photochemistry in PSII under high light conditions, indicated some photoprotection and photoinhibition at the surface even in a well mixed environment. Diadinoxanthin was the main photoprotective carotenoid within the eddy, while zeaxanthin was the dominant photoprotective pigment outside the eddy. The results of this study will be useful inputs into appropriate remote sensing models for estimating primary production and the size class distribution of phytoplankton in eddies in the southwest Indian Ocean.

  5. Non-Destructive Techniques Based on Eddy Current Testing

    Science.gov (United States)

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  6. Eddy current analysis in fusion devices

    International Nuclear Information System (INIS)

    Turner, L.R.

    1988-06-01

    In magnetic fusion devices, particularly tokamaks and reversed field pinch (RFP) experiments, time-varying magnetic fields are in intimate contact with electrically conducting components of the device. Induced currents, fields, forces, and torques result. This note reviews the analysis of eddy current effects in the following systems: Interaction of a tokamak plasma with the eddy currents in the first wall, blanket, and shield (FWBS) systems; Eddy currents in a complex but two-dimensional vacuum vessel, as in TFTR, JET, and JT-60; Eddy currents in the FWBS system of a tokamak reactor, such as NET, FER, or ITER; and Eddy currents in a RFP shell. The cited studies are chosen to be illustrative, rather than exhaustive. 42 refs

  7. Improvements in gastric diagnosis by using high density contrast media with low viscosity

    International Nuclear Information System (INIS)

    Toischer, H.P.

    1983-01-01

    In a retrospective clinical study, 150 unselected double contrast examinations of the stomach using conventional contrast media (100 g/100 ml barium sulphate) were compared with a similar number of examinations using a high density contrast medium of flow viscosity (250 g/100 ml barium sulphate). The high density contrast medium was distinctly better for demonstrating detail of the gastric mucosa. The uneveness of coating and instability of the older high density contrast media was observed in 15.5% of cases and, in no instance, did this make it impossible to reach a diagnosis. (orig.) [de

  8. Bulk and shear viscosities of hot and dense hadron gas

    International Nuclear Information System (INIS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-01-01

    We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons

  9. Utilizing the non-bridge oxygen model to predict the glass viscosity

    International Nuclear Information System (INIS)

    Choi, Kwansik; Sheng, Jiawei; Maeng, Sung Jun; Song, Myung Jae

    1998-01-01

    Viscosity is the most important process property of waste glass. Viscosity measurement is difficult and costs much. Non-bridging Oxygen (NBO) model which relates glass composition to viscosity had been developed for high level waste at the Savannah River Site (SRS). This research utilized this NBO model to predict the viscosity of KEPRI's 55 glasses. It was found that there was a linear relationship between the measured viscosity and the predicted viscosity. The NBO model could be used to predict glass viscosity in glass formulation development. However the precision of predicted viscosity is out of satisfaction because the composition ranges are very different between the SRS and KEPRI glasses. The modification of NBO calculation, which included modification of alkaline earth elements and TiO 2 , could not strikingly improve the precision of predicted values

  10. Crystallization, Microstructure, and Viscosity Evolutions in Lithium Aluminosilicate Glass-Ceramics

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-11-01

    Full Text Available Lithium aluminosilicate glass-ceramics have found widespread commercial success in areas such as consumer products, telescope mirrors, fireplace windows, etc. However, there is still much to learn regarding the fundamental mechanisms of crystallization, especially related to the evolution of viscosity as a function of the crystallization (ceramming process. In this study, the impact of phase assemblage and microstructure on the viscosity was investigated using high temperature X-ray diffraction (HTXRD, beam bending viscometry (BBV, and transmission electron microscopy (TEM. Results from this study provide a first direct observation of viscosity evolution as a function of ceramming time and temperature. Sharp viscosity increases due to phase separation, nucleation and phase transformation are noticed through BBV measurement. A near-net shape ceramming can be achieved in TiO2-containing compositions by keeping the glass at a high viscosity (> 109 Pa.s throughout the whole thermal treatment.

  11. System for evaluating weld quality using eddy currents

    Science.gov (United States)

    Todorov, Evgueni I.; Hay, Jacob

    2017-12-12

    Electromagnetic and eddy current techniques for fast automated real-time and near real-time inspection and monitoring systems for high production rate joining processes. An eddy current system, array and method for the fast examination of welds to detect anomalies such as missed seam (MS) and lack of penetration (LOP) the system, array and methods capable of detecting and sizing surface and slightly subsurface flaws at various orientations in connection with at least the first and second weld pass.

  12. Phenomenological and statistical analyses of turbulence in forced convection with temperature-dependent viscosity under non-Boussinesq condition.

    Science.gov (United States)

    Yahya, S M; Anwer, S F; Sanghi, S

    2013-10-01

    In this work, Thermal Large Eddy Simulation (TLES) is performed to study the behavior of weakly compressible Newtonian fluids with anisotropic temperature-dependent viscosity in forced convection turbulent flow. A systematic analysis of variable-viscosity effects, isolated from gravity, with relevance to industrial cooling/heating applications is being carried out. A LES of a planar channel flow with significant heat transfer at a low Mach number was performed to study effects of fluid property variation on the near-wall turbulence structure. In this flow configuration the top wall is maintained at a higher temperature (T hot ) than the bottom wall (T cold ). The temperature ratio (R θ = T hot /T cold ) is fixed at 1.01, 2 and 3 to study the effects of property variations at low Mach number. Results indicate that average and turbulent fields undergo significant changes. Compared with isothermal flow with constant viscosity, we observe that turbulence is enhanced in the cold side of the channel, characterized by locally lower viscosity whereas a decrease of turbulent kinetic energy is found at the hot wall. The turbulent structures near the cold wall are very short and densely populated vortices but near the hot wall there seems to be a long streaky structure or large elongated vortices. Spectral study reveals that turbulence is completely suppressed at the hot side of the channel at a large temperature ratio because no inertial zone is obtained (i.e. index of Kolmogorov scaling law is zero) from the spectra in these region.

  13. The eddy kinetic energy budget in the Red Sea

    KAUST Repository

    Zhan, Peng

    2016-06-09

    The budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions and sink, is examined using a high-resolution eddy-resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum intensity occurring in winter, and the strongest EKE is captured mainly in the central and northern basins within the upper 200 m. Eddies acquire kinetic energy from conversion of eddy available potential energy (EPE), from transfer of mean kinetic energy (MKE), and from direct generation due to time-varying (turbulent) wind stress, the first of which contributes predominantly to the majority of the EKE. The EPE-to-EKE conversion occurs almost in the entire basin, while the MKE-to-EKE transfer appears mainly along the shelf boundary of the basin (200 miso-bath) where high horizontal shear interacts with topography. The EKE generated by the turbulent wind stress is relatively small and limited to the southern basin. All these processes are intensified during winter, when the rate of energy conversion is about four to five times larger than that in summer. The EKE is redistributed by the vertical and horizontal divergence of energy flux and the advection of the mean flow. As a main sink of EKE, dissipation processes is ubiquitously found in the basin. The seasonal variability of these energy conversion terms can explain the significant seasonality of eddy activities in the Red Sea. This article is protected by copyright. All rights reserved.

  14. Bulk viscosity of molecular fluids

    Science.gov (United States)

    Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.

    2018-05-01

    The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

  15. Neste Oy starts the production of extra high viscosity index lubricating oil in Porvoo

    International Nuclear Information System (INIS)

    Kilander, H.

    1997-01-01

    Neste Oy is starting the manufacture of basic oil, used in advanced motor lubricants, in Finland. The plant will start the manufacture of the EHVI (Extra High Viscosity) by the end of 1997. The EHVI basic oil is a synthetic-like oil product, suitable for manufacture of high-quality lubricants. In the beginning the production of the basic oil will be about 50 000 tons/a. The investment costs of the plants are 180 million FIM

  16. A different interpretation of Einstein's viscosity equation provides accurate representations of the behavior of hydrophilic solutes to high concentrations.

    Science.gov (United States)

    Zavitsas, Andreas A

    2012-08-23

    Viscosities of aqueous solutions of many highly soluble hydrophilic solutes with hydroxyl and amino groups are examined with a focus on improving the concentration range over which Einstein's relationship between solution viscosity and solute volume, V, is applicable accurately. V is the hydrodynamic effective volume of the solute, including any water strongly bound to it and acting as a single entity with it. The widespread practice is to relate the relative viscosity of solute to solvent, η/η(0), to V/V(tot), where V(tot) is the total volume of the solution. For solutions that are not infinitely dilute, it is shown that the volume ratio must be expressed as V/V(0), where V(0) = V(tot) - V. V(0) is the volume of water not bound to the solute, the "free" water solvent. At infinite dilution, V/V(0) = V/V(tot). For the solutions examined, the proportionality constant between the relative viscosity and volume ratio is shown to be 2.9, rather than the 2.5 commonly used. To understand the phenomena relating to viscosity, the hydrodynamic effective volume of water is important. It is estimated to be between 54 and 85 cm(3). With the above interpretations of Einstein's equation, which are consistent with his stated reasoning, the relation between the viscosity and volume ratio remains accurate to much higher concentrations than those attainable with any of the other relations examined that express the volume ratio as V/V(tot).

  17. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tongan [Pacific Northwest National Laboratory, Richland Washington; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington; Dixon, Derek R. [Pacific Northwest National Laboratory, Richland Washington; Kim, Dongsang [Pacific Northwest National Laboratory, Richland Washington; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington; Bonham, Charles C. [Pacific Northwest National Laboratory, Richland Washington; VanderVeer, Bradley J. [Pacific Northwest National Laboratory, Richland Washington; Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington; Weese, Brigitte L. [Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington

    2017-12-07

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.

  18. Development of Multichannel Eddy Current Testing Instrument

    International Nuclear Information System (INIS)

    Lee, Hee Jong; Cho, Chan Hee; Nam, Min Woo; Yoon, Byung Sik; Yoo, Hyun Joo

    2010-01-01

    Four main techniques of electromagnetic testing are used for commercial applications: eddy current testing, alternating current field testing, magnetic flux leakage testing and remote field testing. Eddy current testing is a nondestructive evaluation method, which makes eddy current flow on a specimen by applying driving pulse to eddy current probe coil, by using eddy current testing device, and makes the change of eddy current which is dependently caused by flaws, material characteristics, testing condition, receiving through eddy current, and analyzes material properties, flaws, status on the specimen. Application of EC instrumentation varies widely in industry from the identification of metal heat treatment to the inspection of steam generator tubing in nuclear power plants. In this study, we have designed multichannel EC instrument which can be applicable to the NDE of the tube in heat exchanger for electric power facility, chemistry, and military industry, and finally confirmed the proper function of EC instrumentation

  19. Thermal mixing in T-junction piping system concerned with high-cycle thermal fatigue in structure

    International Nuclear Information System (INIS)

    Tanaka, Masaaki; Ohshima, Hiroyuki; Monji, Hideaki

    2008-01-01

    In Japan Atomic Energy Agency (JAEA), a numerical simulation code 'MUGTHES' has been developed to investigate thermal striping phenomena caused by turbulence mixing of fluids in different temperature and to provide transient data for an evaluation method of high-cycle thermal fatigue. MUGTHES adopts Large Eddy Simulation (LES) approach to predict unsteady phenomena in thermal mixing and employs boundary fitted coordinate system to be applied to complex geometry in a power reactor. Numerical simulation of thermal striping phenomena in a T-junction piping system (T-pipe) is conducted. Boundary condition for the simulation is chosen from an existing water experiment in JAEA, named as WATLON experiment. In the numerical simulation, standard Smagorinsky model is employed as eddy viscosity model with the model coefficient of 0.14 (=Cs). Numerical results of MUGTHES are verified by the comparisons with experimental results of velocity and temperature. Through the numerical simulation in the T-pipe, applicability of MUGTHES to the thermal striping phenomena is confirmed and the characteristic large-scale eddy structure which dominates thermal mixing and may cause high-cycle thermal fatigue is revealed. (author)

  20. Glider and satellite high resolution monitoring of a mesoscale eddy in the Algerian basin: effects on the mixed layer depth and biochemistry

    Science.gov (United States)

    Cotroneo, Yuri; Aulicino, Giuseppe; Ruiz, Simón; Pascual, Ananda; Budillon, Giorgio; Fusco, Giannetta; Tintoré, Joaquin

    2016-04-01

    Despite of the extensive bibliography about the circulation of the Mediterranean Sea and its sub-basins, the debate on mesoscale dynamics and its impacts on biochemical processes is still open because of their intrinsic time scales and of the difficulties in sampling. In order to clarify some of these processes, the "Algerian BAsin Circulation Unmanned Survey - ABACUS" project was proposed and realized through access to JERICO Trans National Access (TNA) infrastructures between September and December 2014. In this framework, a deep glider cruise was carried out in the area between Balearic Islands and Algerian coasts to establish an endurance line for monitoring the basin circulation. During the mission, a mesoscale eddy, identified on satellite altimetry maps, was sampled at high-spatial horizontal resolution (4 km) along its main axes and from surface to 1000 m depth. Data were collected by a Slocum glider equipped with a pumped CTD and biochemical sensors that collected about 100 complete casts inside the eddy. In order to describe the structure of the eddy, in situ data were merged with new generation remotely sensed data as daily synoptic sea surface temperature (SST) and chlorophyll concentration (Chl-a) images from MODIS satellites as well as sea surface height and geostrophic velocities from AVISO. From its origin along the Algerian coast in the eastern part of the basin, the eddy propagated to north-west at a mean speed of about 4 km/day with a mean diameter of 112/130 km, a mean elevation of 15.7 cm and clearly distinguished by the surrounding waters thanks to its higher SST and Chl-a values. Temperature and salinity values along the water column confirm the origin of the eddy from the AC showing the presence of recent Atlantic water in the surface layer and Levantine Intermediate Water (LIW) in the deeper layer. Eddy footprint is clearly evident in the multiparametric vertical sections conducted along its main axes. Deepening of temperature, salinity and

  1. Eddy properties in the Southern California Current System

    Science.gov (United States)

    Chenillat, Fanny; Franks, Peter J. S.; Capet, Xavier; Rivière, Pascal; Grima, Nicolas; Blanke, Bruno; Combes, Vincent

    2018-05-01

    The California Current System (CCS) is an eastern boundary upwelling system characterized by strong eddies that are often generated at the coast. These eddies contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal eddies, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among eddies and their surrounding waters, and how long and how far these eddies remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic eddies, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for 190 days at 2 km day-1. We then study one particular, representative cyclonic eddy using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this eddy trapped a core made up of 67% California Current waters and 33% California Undercurrent waters. This core was surrounded by other waters while the eddy detached from the coast, leaving the oldest waters at the eddy's core and the younger waters toward the edge. The eddy traveled several months as a coherent structure, with only limited lateral exchange within the eddy.

  2. North Atlantic Coast Comprehensive Study (NACCS) Coastal Storm Model Simulations: Waves and Water Levels

    Science.gov (United States)

    2015-08-01

    published in the NGA’s DNCs, with distinct values assigned to areas of sand, gravel, clay , etc. ERDC/CHL TR-15-14 94 6.5.2 Lateral eddy viscosity As with...6.5.1 Manning’s n bottom friction coefficient ................................................................... 93 6.5.2 Lateral eddy viscosity ...this study include (1) Manning’s n bottom friction coefficient, (2) lateral eddy viscosity , (3) land cover effects on winds (also referred to as

  3. DeepEddy : a simple deep architecture for mesoscale oceanic eddy detection in SAR images

    NARCIS (Netherlands)

    Huang, Dongmei; Du, Yanling; He, Qi; Song, Wei; Liotta, Antonio

    2017-01-01

    Automatic detection of mesoscale oceanic eddies is in great demand to monitor their dynamics which play a significant role in ocean current circulation and marine climate change. Traditional methods of eddies detection using remotely sensed data are usually based on physical parameters, geometrics,

  4. Large eddy simulation of premixed and non-premixed combustion

    OpenAIRE

    Malalasekera, W; Ibrahim, SS; Masri, AR; Sadasivuni, SK; Gubba, SR

    2010-01-01

    This paper summarises the authors experience in using the Large Eddy Simulation (LES) technique for the modelling of premixed and non-premixed combustion. The paper describes the application of LES based combustion modelling technique to two well defined experimental configurations where high quality data is available for validation. The large eddy simulation technique for the modelling flow and turbulence is based on the solution of governing equations for continuity and momentum in a struct...

  5. Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer

    International Nuclear Information System (INIS)

    Wang, Y.; Tanahashi, M.; Miyauchi, T.

    2007-01-01

    To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar-turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Re ω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (u k ), and decreases to 1.2u k , which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and α:β:γ = -5:1:4 in the transition process. In addition to Kelvin-Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow

  6. EddyOne automated analysis of PWR/WWER steam generator tubes eddy current data

    International Nuclear Information System (INIS)

    Nadinic, B.; Vanjak, Z.

    2004-01-01

    INETEC Institute for Nuclear Technology developed software package called Eddy One which has option of automated analysis of bobbin coil eddy current data. During its development and on site use, many valuable lessons were learned which are described in this article. In accordance with previous, the following topics are covered: General requirements for automated analysis of bobbin coil eddy current data; Main approaches to automated analysis; Multi rule algorithms for data screening; Landmark detection algorithms as prerequisite for automated analysis (threshold algorithms and algorithms based on neural network principles); Field experience with Eddy One software; Development directions (use of artificial intelligence with self learning abilities for indication detection and sizing); Automated analysis software qualification; Conclusions. Special emphasis is given on results obtained on different types of steam generators, condensers and heat exchangers. Such results are then compared with results obtained by other automated software vendors giving clear advantage to INETEC approach. It has to be pointed out that INETEC field experience was collected also on WWER steam generators what is for now unique experience.(author)

  7. Automatic tracking of dynamical evolutions of oceanic mesoscale eddies with satellite observation data

    Science.gov (United States)

    Sun, Liang; Li, Qiu-Yang

    2017-04-01

    The oceanic mesoscale eddies play a major role in ocean climate system. To analyse spatiotemporal dynamics of oceanic mesoscale eddies, the Genealogical Evolution Model (GEM) based on satellite data is developed, which is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern, which is difficult to accomplish using other tracking methods. To this end, a mononuclear eddy detection method was firstly developed with simple segmentation strategies, e.g. watershed algorithm. The algorithm is very fast by searching the steepest descent path. Second, the GEM uses a two-dimensional similarity vector (i.e. a pair of ratios of overlap area between two eddies to the area of each eddy) rather than a scalar to measure the similarity between eddies, which effectively solves the ''missing eddy" problem (temporarily lost eddy in tracking). Third, for tracking when an eddy splits, GEM uses both "parent" (the original eddy) and "child" (eddy split from parent) and the dynamic processes are described as birth and death of different generations. Additionally, a new look-ahead approach with selection rules effectively simplifies computation and recording. All of the computational steps are linear and do not include iteration. Given the pixel number of the target region L, the maximum number of eddies M, the number N of look-ahead time steps, and the total number of time steps T, the total computer time is O (LM(N+1)T). The tracking of each eddy is very smooth because we require that the snapshots of each eddy on adjacent days overlap one another. Although eddy splitting or merging is ubiquitous in the ocean, they have different geographic distribution in the Northern Pacific Ocean. Both the merging and splitting rates of the eddies are high, especially at the western boundary, in currents and in "eddy deserts". GEM is useful not only for

  8. Inference of viscosity jump at 670 km depth and lower mantle viscosity structure from GIA observations

    Science.gov (United States)

    Nakada, Masao; Okuno, Jun'ichi; Irie, Yoshiya

    2018-03-01

    A viscosity model with an exponential profile described by temperature (T) and pressure (P) distributions and constant activation energy (E_{{{um}}}^{{*}} for the upper mantle and E_{{{lm}}}^* for the lower mantle) and volume (V_{{{um}}}^{{*}} and V_{{{lm}}}^*) is employed in inferring the viscosity structure of the Earth's mantle from observations of glacial isostatic adjustment (GIA). We first construct standard viscosity models with an average upper-mantle viscosity ({\\bar{η }_{{{um}}}}) of 2 × 1020 Pa s, a typical value for the oceanic upper-mantle viscosity, satisfying the observationally derived three GIA-related observables, GIA-induced rate of change of the degree-two zonal harmonic of the geopotential, {\\dot{J}_2}, and differential relative sea level (RSL) changes for the Last Glacial Maximum sea levels at Barbados and Bonaparte Gulf in Australia and for RSL changes at 6 kyr BP for Karumba and Halifax Bay in Australia. Standard viscosity models inferred from three GIA-related observables are characterized by a viscosity of ˜1023 Pa s in the deep mantle for an assumed viscosity at 670 km depth, ηlm(670), of (1 - 50) × 1021 Pa s. Postglacial RSL changes at Southport, Bermuda and Everglades in the intermediate region of the North American ice sheet, largely dependent on its gross melting history, have a crucial potential for inference of a viscosity jump at 670 km depth. The analyses of these RSL changes based on the viscosity models with {\\bar{η }_{{{um}}}} ≥ 2 × 1020 Pa s and lower-mantle viscosity structures for the standard models yield permissible {\\bar{η }_{{{um}}}} and ηlm (670) values, although there is a trade-off between the viscosity and ice history models. Our preferred {\\bar{η }_{{{um}}}} and ηlm (670) values are ˜(7 - 9) × 1020 and ˜1022 Pa s, respectively, and the {\\bar{η }_{{{um}}}} is higher than that for the typical value of oceanic upper mantle, which may reflect a moderate laterally heterogeneous upper

  9. Eddy Covariance Measurements of the Sea-Spray Aerosol Flu

    Science.gov (United States)

    Brooks, I. M.; Norris, S. J.; Yelland, M. J.; Pascal, R. W.; Prytherch, J.

    2015-12-01

    Historically, almost all estimates of the sea-spray aerosol source flux have been inferred through various indirect methods. Direct estimates via eddy covariance have been attempted by only a handful of studies, most of which measured only the total number flux, or achieved rather coarse size segregation. Applying eddy covariance to the measurement of sea-spray fluxes is challenging: most instrumentation must be located in a laboratory space requiring long sample lines to an inlet collocated with a sonic anemometer; however, larger particles are easily lost to the walls of the sample line. Marine particle concentrations are generally low, requiring a high sample volume to achieve adequate statistics. The highly hygroscopic nature of sea salt means particles change size rapidly with fluctuations in relative humidity; this introduces an apparent bias in flux measurements if particles are sized at ambient humidity. The Compact Lightweight Aerosol Spectrometer Probe (CLASP) was developed specifically to make high rate measurements of aerosol size distributions for use in eddy covariance measurements, and the instrument and data processing and analysis techniques have been refined over the course of several projects. Here we will review some of the issues and limitations related to making eddy covariance measurements of the sea spray source flux over the open ocean, summarise some key results from the last decade, and present new results from a 3-year long ship-based measurement campaign as part of the WAGES project. Finally we will consider requirements for future progress.

  10. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    Science.gov (United States)

    Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-12-04

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.

  11. Simulation of turbulent separated flows using a novel, evolution-based, eddy-viscosity formulation

    Science.gov (United States)

    Castellucci, Paul

    Currently, there exists a lack of confidence in the computational simulation of turbulent separated flows at large Reynolds numbers. The most accurate methods available are too computationally costly to use in engineering applications. Thus, inexpensive models, developed using the Reynolds-averaged Navier-Stokes (RANS) equations, are often extended beyond their applicability. Although these methods will often reproduce integrated quantities within engineering tolerances, such metrics are often insensitive to details within a separated wake, and therefore, poor indicators of simulation fidelity. Using concepts borrowed from large-eddy simulation (LES), a two-equation RANS model is modified to simulate the turbulent wake behind a circular cylinder. This modification involves the computation of one additional scalar field, adding very little to the overall computational cost. When properly inserted into the baseline RANS model, this modification mimics LES in the separated wake, yet reverts to the unmodified form at the cylinder surface. In this manner, superior predictive capability may be achieved without the additional cost of fine spatial resolution associated with LES near solid boundaries. Simulations using modified and baseline RANS models are benchmarked against both LES and experimental data for a circular cylinder wake at Reynolds number 3900. In addition, the computational tool used in this investigation is subject to verification via the Method of Manufactured Solutions. Post-processing of the resultant flow fields includes both mean value and triple-decomposition analysis. These results reveal substantial improvements using the modified system and appear to drive the baseline wake solution toward that of LES, as intended.

  12. Eddy current testing device using unbalance bridge

    International Nuclear Information System (INIS)

    Hoshikawa, H.; Koido, J.; Ishibashi, Y.

    1976-01-01

    An easily readjustable unbalance bridge has been invented and in utilizing the same, an eddy current testing equipment excellent in suppression of the lift-off effect and high in the detection sensitivity has been developed

  13. A comparison of the structure, properties, and water mass composition of quasi-isotropic eddies in western boundary currents in an eddy-resolving ocean model

    Science.gov (United States)

    Rykova, Tatiana; Oke, Peter R.; Griffin, David A.

    2017-06-01

    Using output from a near-global eddy-resolving ocean model, we analyse the properties and characteristics of quasi-isotropic eddies in five Western Boundary Current (WBC) regions, including the extensions of the Agulhas, East Australian Current (EAC), Brazil-Malvinas Confluence (BMC), Kuroshio and Gulf Stream regions. We assess the model eddies by comparing to satellite and in situ observations, and show that most aspects of the model's representation of eddies are realistic. We find that the mean eddies differ dramatically between these WBC regions - all with some unique and noteworthy characteristics. We find that the vertical displacement of isopycnals of Agulhas eddies is the greatest, averaging 350-450 m at depths of over 800-900 m. EAC (BMC) eddies are the least (most) barotropic, with only 50% (85-90%) of the velocity associated with the barotropic mode. Kuroshio eddies are the most stratified, resulting in small isopycnal displacement, even for strong eddies; and Gulf Stream eddies carry the most heat. Despite their differences, we explicitly show that the source waters for anticyclonic eddies are a mix of the WBC water (from the boundary current itself) and water that originates equatorward of the WBC eddy-field; and cyclonic eddies are a mix of WBC water and water that originates poleward of the WBC eddy-field.

  14. Parameterization of mixing by secondary circulation in estuaries

    Science.gov (United States)

    Basdurak, N. B.; Huguenard, K. D.; Valle-Levinson, A.; Li, M.; Chant, R. J.

    2017-07-01

    Eddy viscosity parameterizations that depend on a gradient Richardson number Ri have been most pertinent to the open ocean. Parameterizations applicable to stratified coastal regions typically require implementation of a numerical model. Two novel parameterizations of the vertical eddy viscosity, based on Ri, are proposed here for coastal waters. One turbulence closure considers temporal changes in stratification and bottom stress and is coined the "regular fit." The alternative approach, named the "lateral fit," incorporates variability of lateral flows that are prevalent in estuaries. The two turbulence parameterization schemes are tested using data from a Self-Contained Autonomous Microstructure Profiler (SCAMP) and an Acoustic Doppler Current Profiler (ADCP) collected in the James River Estuary. The "regular fit" compares favorably to SCAMP-derived vertical eddy viscosity values but only at relatively small values of gradient Ri. On the other hand, the "lateral fit" succeeds at describing the lateral variability of eddy viscosity over a wide range of Ri. The modifications proposed to Ri-dependent eddy viscosity parameterizations allow applicability to stratified coastal regions, particularly in wide estuaries, without requiring implementation of a numerical model.

  15. Parameterized and resolved Southern Ocean eddy compensation

    Science.gov (United States)

    Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman

    2018-04-01

    The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.

  16. Effect of Qingnao tablet on blood viscosity of rat model of blood stasis induced by epinephrine

    Science.gov (United States)

    Xie, Guoqi; Hao, Shaojun; Ma, Zhenzhen; Liu, Xiaobin; Li, Jun; Li, Wenjun; Zhang, Zhengchen

    2018-04-01

    To establish a rat model of blood stasis with adrenaline (Adr) subcutaneous injection and ice bath stimulation. The effects of different doses on the blood viscosity of blood stasis model rats were observed. The rats were randomly divided into 6 groups: blank control group (no model), model group, positive control group, high, middle and low dose group. The whole blood viscosity and plasma viscosity were detected by blood viscosity instrument. Compared with the blank group, model group, high shear, low shear whole blood viscosity and plasma viscosity were significantly increased, TT PT significantly shortened, APTT was significantly prolonged, FIB increased significantly, indicating that the model was successful. Compared with the model group, can significantly reduce the Naoluotong group (cut, low cut). Qingnaopian high dose group (low cut), middle dose group (cut, low shear blood viscosity) (Pgroup, high dose group (Pgroup (Pblood rheology of blood stasis mice abnormal index, decrease the blood viscosity, blood stasis has certain hemostatic effect.

  17. Conditional Eddies in Plasma Turbulence

    DEFF Research Database (Denmark)

    Johnsen, Helene; Pécseli, Hans; Trulsen, J.

    1986-01-01

    Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...

  18. Technological characteristics of meat - viscosity

    OpenAIRE

    DIBĎÁK, Tomáš

    2012-01-01

    This bachelor thesis is focused on the technological characteristics of meat, mainly viscosity of meat. At the beginning I dealt with construction of meat and various types of meat: beef, veal, pork, mutton, rabbit, poultry and venison. Then I described basic chemical composition of meat and it?s characteristic. In detail I dealt with viscosity of meat. Viscosity is the ability of meat to bind water both own and added. I mentioned influences, which effects viscosity and I presented the possib...

  19. Cycloidal meandering of a mesoscale anticyclonic eddy

    Science.gov (United States)

    Kizner, Ziv; Shteinbuch-Fridman, Biana; Makarov, Viacheslav; Rabinovich, Michael

    2017-08-01

    By applying a theoretical approach, we propose a hypothetical scenario that might explain some features of the movement of a long-lived mesoscale anticyclone observed during 1990 in the Bay of Biscay [R. D. Pingree and B. Le Cann, "Three anticyclonic slope water oceanic eddies (SWODDIES) in the southern Bay of Biscay in 1990," Deep-Sea Res., Part A 39, 1147 (1992)]. In the remote-sensing infrared images, at the initial stage of observations, the anticyclone was accompanied by two cyclonic eddies, so the entire structure appeared as a tripole. However, at later stages, only the anticyclone was seen in the images, traveling generally west. Unusual for an individual eddy were the high speed of its motion (relative to the expected planetary beta-drift) and the presence of almost cycloidal meanders in its trajectory. Although surface satellites seem to have quickly disappeared, we hypothesize that subsurface satellites continued to exist, and the coherence of the three vortices persisted for a long time. A significant perturbation of the central symmetry in the mutual arrangement of three eddies constituting a tripole can make reasonably fast cycloidal drift possible. This hypothesis is tested with two-layer contour-dynamics f-plane simulations and with finite-difference beta-plane simulations. In the latter case, the interplay of the planetary beta-effect and that due to the sloping bottom is considered.

  20. Large-eddy simulation in a mixing tee junction: High-order turbulent statistics analysis

    International Nuclear Information System (INIS)

    Howard, Richard J.A.; Serre, Eric

    2015-01-01

    Highlights: • Mixing and thermal fluctuations in a junction are studied using large eddy simulation. • Adiabatic and conducting steel wall boundaries are tested. • Wall thermal fluctuations are not the same between the flow and the solid. • Solid thermal fluctuations cannot be predicted from the fluid thermal fluctuations. • High-order turbulent statistics show that the turbulent transport term is important. - Abstract: This study analyses the mixing and thermal fluctuations induced in a mixing tee junction with circular cross-sections when cold water flowing in a pipe is joined by hot water from a branch pipe. This configuration is representative of industrial piping systems in which temperature fluctuations in the fluid may cause thermal fatigue damage on the walls. Implicit large-eddy simulations (LES) are performed for equal inflow rates corresponding to a bulk Reynolds number Re = 39,080. Two different thermal boundary conditions are studied for the pipe walls; an insulating adiabatic boundary and a conducting steel wall boundary. The predicted flow structures show a satisfactory agreement with the literature. The velocity and thermal fields (including high-order statistics) are not affected by the heat transfer with the steel walls. However, predicted thermal fluctuations at the boundary are not the same between the flow and the solid, showing that solid thermal fluctuations cannot be predicted by the knowledge of the fluid thermal fluctuations alone. The analysis of high-order turbulent statistics provides a better understanding of the turbulence features. In particular, the budgets of the turbulent kinetic energy and temperature variance allows a comparative analysis of dissipation, production and transport terms. It is found that the turbulent transport term is an important term that acts to balance the production. We therefore use a priori tests to evaluate three different models for the triple correlation

  1. Transmit-receive eddy current probes

    International Nuclear Information System (INIS)

    Obrutsky, L.S.; Sullivan, S.P.; Cecco, V.S.

    1997-01-01

    In the last two decades, due to increased inspection demands, eddy current instrumentation has advanced from single-frequency, single-output instruments to multifrequency, computer-aided systems. This has significantly increased the scope of eddy current testing, but, unfortunately, it has also increased the cost and complexity of inspections. In addition, this approach has not always improved defect detectability or signal-to-noise. Most eddy current testing applications are still performed with impedance probes, which have well known limitations. However, recent research at AECL has led to improved eddy current inspections through the design and development of transmit-receive (T/R) probes. T/R eddy current probes, with laterally displaced transmit and receive coils, present a number of advantages over impedance probes. They have improved signal-to-noise ratio in the presence of variable lift-off compared to impedance probes. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection, and possess good phase discrimination to surface defects. They can significantly increase the scope of eddy current testing permitting reliable detection and sizing of cracks in heat exchanger tubing as well as in welded areas of both ferritic and non-ferromagnetic components. This presentation will describe the operating principles of T/R probes with the help of computer-derived normalized voltage diagrams. We will discuss their directional properties and analyze the advantages of using single and multiple T/R probes over impedance probes for specific inspection cases. Current applications to surface and tube testing and some typical inspection results will be described. (author)

  2. Recognizing limitations in eddy current testing

    International Nuclear Information System (INIS)

    Van Drunen, G.; Cecco, V.S.

    1981-11-01

    This paper addresses known limitations and constraints in eddy current nondestructive testing. Incomplete appreciation for eddy current limitations is believed to have contributed to both under-utilization and misapplication of the technique. Neither situation need arise if known limitations are recognized. Some, such as the skin depth effect, are inherent to electromagnetic test methods and define the role of eddy current testing. Others can be overcome with available technology such as surface probes to find circumferential cracks in tubes and magnetic saturation of ferromagnetic alloys to eliminate permeability effects. The variables responsible for limitations in eddy current testing are discussed and where alternative approaches exist, these are presented. Areas with potential for further research and development are also identified

  3. Electron-processing technology: A promising application for the viscose industry

    Science.gov (United States)

    Stepanik, T. M.; Rajagopal, S.; Ewing, D.; Whitehouse, R.

    1998-06-01

    In marketing its IMPELA ® line of high power, high-throughput industrial accelerators, Atomic Energy of Canada Limited (AECL) is working with viscose (rayon) companies world-wide to integrate electron-processing technology as part of the viscose manufacturing process. The viscose industry converts cellulose wood pulp into products such as staple fiber, filament, cord, film, packaging, and non-edible sausage casings. This multibillion dollar industry is currently suffering from high production costs, and is facing increasingly stringent environmental regulations. The use of electron-treated pulp can significantly lower production costs and can provide equally significant environmental benefits. This paper describes our current understanding of the benefits of using electron-treated pulp in this process, and AECL's efforts in developing this technology.

  4. Obituary: John Allen Eddy (1931-2009)

    Science.gov (United States)

    Gingerich, Owen

    2011-12-01

    Jack Eddy, who was born 25 March 1931 in Pawnee City in southeastern Nebraska, died after a long battle with cancer in Tucson, Arizona, on 10 June 2009. Best known for his work on the long-term instability of the sun, described in a landmark paper in Science titled "The Maunder Minimum," he also deserves recognition as one of the triumvirate who founded the Historical Astronomy Division of the AAS. His father ran a cooperative farm store where Jack worked as a teenager; his parents were of modest means and there were concerns whether he could afford college, but one of the state senators, also from Pawnee City, nominated him for the U.S. Naval Academy. A course in celestial navigation gave him a love of the sky. After graduation in 1953, he served four years on aircraft carriers in the Pacific during the Korean War and then as a navigator and operations officer on a destroyer in the Persian Gulf. In 1957, he left the Navy and entered graduate school at the University of Colorado in Boulder, where in 1962 he received a Ph.D. in astro-geophysics. His thesis, supervised by Gordon Newkirk, dealt with light scattering in the upper atmosphere, based on data from stratospheric balloon flights. He then worked as teacher and researcher at the High Altitude Observatory in Boulder. Always adventuresome and willing to explore new frontiers, on his own time Eddy examined an Amerindian stone circle in the Big Horn mountains of Wyoming, a so-called medicine wheel, concluding that there were alignments with both the solstitial sun and Aldebaran. His conjectures became a cover story on Science magazine in June of 1974. In 1971 Jack privately reproduced for his friends a small collection of his own hilarious cartoons titled "Job Opportunities for Out-of-work Astronomers," with an abstract beginning, "Contrary to popular belief, a PhD in Astronomy/Astrophysics need not be a drawback in locating work in this decade." For example, under merchandising, a used car salesman advertises

  5. Large-eddy simulation of stratified atmospheric flows with the CFD code Code-Saturne

    International Nuclear Information System (INIS)

    Dall'Ozzo, Cedric

    2013-01-01

    Large-eddy simulation (LES) of the physical processes in the atmospheric boundary layer (ABL) remains a complex subject. LES models have difficulties to capture the evolution of the turbulence in different conditions of stratification. Consequently, LES of the whole diurnal cycle of the ABL including convective situations in daytime and stable situations in the nighttime is seldom documented. The simulation of the stable atmospheric boundary layer which is characterized by small eddies and by weak and sporadic turbulence is especially difficult. Therefore The LES ability to well reproduce real meteorological conditions, particularly in stable situations, is studied with the CFD code developed by EDF R and D, Code-Saturne. The first study consist in validate LES on a quasi-steady state convective case with homogeneous terrain. The influence of the sub-grid-scale models (Smagorinsky model, Germano-Lilly model, Wong-Lilly model and Wall-Adapting Local Eddy-viscosity model) and the sensitivity to the parametrization method on the mean fields, flux and variances are discussed. In a second study, the diurnal cycle of the ABL during Wangara experiment is simulated. The deviation from the measurement is weak during the day, so this work is focused on the difficulties met during the night to simulate the stable atmospheric boundary layer. The impact of the different sub-grid-scale models and the sensitivity to the Smagorinsky constant are been analysed. By coupling radiative forcing with LES, the consequences of infra-red and solar radiation on the nocturnal low level jet and on thermal gradient, close to the surface, are exposed. More, enhancement of the domain resolution to the turbulence intensity and the strong atmospheric stability during the Wangara experiment are analysed. Finally, a study of the numerical oscillations inherent to Code-Saturne is realized in order to decrease their effects. (author) [fr

  6. Design and Application of Hybrid Magnetic Field-Eddy Current Probe

    Science.gov (United States)

    Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John

    2013-01-01

    The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.

  7. The South China Sea Mesoscale Eddy Experiment (S-MEE) and Its Primary Findings

    Science.gov (United States)

    Zhang, Z.; Tian, J.; Zhao, W.; Qiu, B.

    2016-02-01

    South China Sea (SCS), the largest marginal sea in the northwestern Pacific, have strong eddy activities as revealed by both satellite and in situ observations. The 3D structures of the SCS mesoscale eddies and their lifecycles, including the generation and dissipation processes, are, however, still not well understood at present because of the lack of well-designed field observations. In order to address the above two scientific issues (3D structure and lifecycle of SCS mesoscale eddies), the SCS Mesoscale Eddy Experiment (S-MEE for short) was designed and conducted in the period from October 2013 to June 2014. As part of S-MEE, two bottom-anchored subsurface mooring arrays with one consisting of 10 moorings and the other 7 moorings, were deployed along the historical pathway of the mesoscale eddies in the northern SCS. All the moorings were equipped with ADCPs, RCMs, CTDs and temperature chains to make continues measurements of horizontal current velocity and temperature/salinity in the whole water column. During the S-MEE, a total of 5 distinct mesoscale eddies were observed to cross the mooring arrays, among which one anticyclonic and cyclonic eddy pair was fully captured by the mooring arrays. In addition to moored observations, we also conducted two transects across the center of the anticyclonic eddy and made high-resolution hydrographic and turbulent mixing measurements. Based on the data collected by the S-MEE and concurrent satellite-derived observations, we constructed the full-depth 3D structure of the eddy pair and analyzed its generation and dissipation mechanisms. We found that the eddies extend from the surface to the sea bottom and display prominent tilted structures in the vertical. By conducting an eddy energy budget analysis, we further identified that generation of submesoscale motions constitutes the dominant mechanism for the oceanic eddy dissipation.

  8. Capillary waves with surface viscosity

    Science.gov (United States)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  9. Theory of the high-frequency limiting viscosity of a dilute polymer solution. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Doi, M; Nakajima, H; Wada, Y

    1976-06-01

    High-frequency limiting viscosities of dilute polymer solutions are calculated on the basis of the author's previous theory for (1) necklace model of a chain with constant bond length and bond angle under a hindering rotational potential, and (2) broken rod model consisting of N rods with equal length connected by universal joints. Exact treatment is possible for a once-broken rod model, but the Monte Carlo method is used in the other calculations.

  10. Drop splashing: the role of surface wettability and liquid viscosity

    Science.gov (United States)

    Almohammadi, Hamed; Amirfazli, Alidad; -Team

    2017-11-01

    There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.

  11. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  12. Study, design and manufacture eddy current probes for industry applications

    International Nuclear Information System (INIS)

    Nguyen Phuc; Nguyen Van Thuy; Vuong Binh Duong; Do Minh Duc; Trinh Dinh Truong; Tran Trong Duc; Do Tung Khanh; Dang Quang Trung

    2016-01-01

    This study is based on the studying, designing and manufacturing of eddy current probes for industry applications. The main tasks of this study include: i) Describes the overview and classification of eddy current probes (which can be classified into three categories based on the mode of operation: absolute eddy current probe, differential eddy current probe and reflect eddy current probe); ii) Describes the three methods of probe designing and manufacturing (including experimental, analytical and numerical designs); iii) Describes the designing and manufacturing of eddy current probes for industry applications, which based on experimental and analytical methods. Based on this study, we have successfully manufactured some current probes (including absolute eddy current probe, differential eddy current probe and reflect eddy current probe) for surface and tube inspections. (author)

  13. 3-D analysis of eddy current in permanent magnet of interior permanent magnet motors

    International Nuclear Information System (INIS)

    Kawase, Yoshihiro; Yamaguchi, Tadashi; Fukanaga, Hiromu; Ito, Shokichi

    2002-01-01

    Interior permanent magnet motors are widely used in various fields. However, in high-speed operations, it is important to decrease the eddy current loss in the permanent magnet. In order to decrease the eddy current loss, we propose to divide the permanent magnet. In this paper, we clarified the effect of division of permanent magnet on the eddy current loss using the 3-D finite element method. (Author)

  14. Temperature-dependent viscosities of eutectic Al-Si alloys modified with Sr and P

    Energy Technology Data Exchange (ETDEWEB)

    Song Xigui [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)], E-mail: sxglm@126.com; Bian Xiufang; Zhang Jingxiang; Zhang Jie [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan, 250061 (China)

    2009-06-24

    The viscosities of eutectic Al-12 wt.%Si alloy and those modified with Sr and P were investigated using high-temperature torsional oscillation viscometer. Strontium decreased melt's viscosity, while phosphorus increased viscosity. Both additional level and means of addition affected the variation of viscosity. The activation energy of viscous flow was strengthened after modification, but the influence of modification on the molar volume was perplexing.

  15. Gravimetric capillary method for kinematic viscosity measurements

    Science.gov (United States)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  16. Transient extensional viscosity of polymer melts in the filament stretching rheometer

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Bach, Anders; Bastian, Heike

    2002-01-01

    In many polymer processing operations, the polymer molecules becomes highly elongated and the extensional viscosity becomes an inportant parameter in estimating properties during and after the process.......In many polymer processing operations, the polymer molecules becomes highly elongated and the extensional viscosity becomes an inportant parameter in estimating properties during and after the process....

  17. A nontoxic, photostable and high signal-to-noise ratio mitochondrial probe with mitochondrial membrane potential and viscosity detectivity

    Science.gov (United States)

    Chen, Yanan; Qi, Jianguo; Huang, Jing; Zhou, Xiaomin; Niu, Linqiang; Yan, Zhijie; Wang, Jianhong

    2018-01-01

    Herein, we reported a yellow emission probe 1-methyl-4-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) pyridin-1-ium iodide which could specifically stain mitochondria in living immortalized and normal cells. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this probe was nontoxic, photostable and ultrahigh signal-to-noise ratio, which could real-time monitor mitochondria for a long time. Moreover, this probe also showed high sensitivity towards mitochondrial membrane potential and intramitochondrial viscosity change. Consequently, this probe was used for imaging mitochondria, detecting changes in mitochondrial membrane potential and intramitochondrial viscosity in physiological and pathological processes.

  18. Eddy-Kuroshio Interactions: Local and Remote Effects

    Science.gov (United States)

    Jan, Sen; Mensah, Vigan; Andres, Magdalena; Chang, Ming-Huei; Yang, Yiing Jang

    2017-12-01

    Quasi-geostrophic mesoscale eddies regularly impinge on the Kuroshio in the western North Pacific, but the processes underlying the evolution of these eddy-Kuroshio interactions have not yet been thoroughly investigated in the literature. Here this interaction is examined with results from a semi-idealized three-dimensional numerical model and observations from four pressure-sensor equipped inverted echo sounders (PIESs) in a zonal section east of Taiwan and satellite altimeters. Both the observations and numerical simulations suggest that, during the interaction of a cyclonic eddy with the Kuroshio, the circular eddy is deformed into an elliptic shape with the major axis in the northwest-southeast direction, before being dissipated; the poleward velocity and associated Kuroshio transport decrease and the sea level and pycnocline slopes across the Kuroshio weaken. In contrast, for an anticyclonic eddy during the eddy-Kuroshio interaction, variations in the velocity, sea level, and isopycnal depth are reversed; the circular eddy is also deformed to an ellipse but with the major axis parallel to the Kuroshio. The model results also demonstrate that the velocity field is modified first and consequently the SSH and isopycnal depth evolve during the interaction. Furthermore, due to the combined effect of impingement latitude and realistic topography, some eddy-Kuroshio interactions east of Taiwan are found to have remote effects, both in the Luzon Strait and on the East China Sea shelf northeast of Taiwan.Plain Language SummaryMesoscale eddies are everywhere in the ocean. These ocean swirls of either clockwise or counterclockwise spinning with diameter of about 100-300 km and rounding current speed of about 0.5 m/s, carrying energy and certain type of water mass, move westward and eventually reach the western boundary of each ocean. The evolution of these eddies and the interaction which occurs when they encounter the western boundary current, e.g. the Kuroshio in the

  19. Eddy turbulence parameters inferred from radar observations at Jicamarca

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2007-03-01

    Full Text Available Significant electron density striations, neutral temperatures 27 K above nominal, and intense wind shear were observed in the E-region ionosphere over the Jicamarca Radio Observatory during an unusual event on 26 July 2005 (Hysell et al., 2007. In this paper, these results are used to estimate eddy turbulence parameters and their effects. Models for the thermal balance in the mesosphere/lower thermosphere and the charged particle density in the E region are developed here. The thermal balance model includes eddy conduction and viscous dissipation of turbulent energy as well as cooling by infrared radiation. The production and recombination of ions and electrons in the E region, together with the production and transport of nitric oxide, are included in the plasma density model. Good agreement between the model results and the experimental data is obtained for an eddy diffusion coefficient of about 1×103 m2/s at its peak, which occurs at an altitude of 107 km. This eddy turbulence results in a local maximum of the temperature in the upper mesosphere/lower thermosphere and could correspond either to an unusually high mesopause or to a double mesosphere. Although complicated by plasma dynamic effects and ongoing controversy, our interpretation of Farley-Buneman wave phase velocity (Hysell et al., 2007 is consistent with a low Brunt-Väisälä frequency in the region of interest. Nitric oxide transport due to eddy diffusion from the lower thermosphere to the mesosphere causes electron density changes in the E region whereas NO density modulation due to irregularities in the eddy diffusion coefficient creates variability in the electron density.

  20. Eddy turbulence parameters inferred from radar observations at Jicamarca

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2007-03-01

    Full Text Available Significant electron density striations, neutral temperatures 27 K above nominal, and intense wind shear were observed in the E-region ionosphere over the Jicamarca Radio Observatory during an unusual event on 26 July 2005 (Hysell et al., 2007. In this paper, these results are used to estimate eddy turbulence parameters and their effects. Models for the thermal balance in the mesosphere/lower thermosphere and the charged particle density in the E region are developed here. The thermal balance model includes eddy conduction and viscous dissipation of turbulent energy as well as cooling by infrared radiation. The production and recombination of ions and electrons in the E region, together with the production and transport of nitric oxide, are included in the plasma density model. Good agreement between the model results and the experimental data is obtained for an eddy diffusion coefficient of about 1×103 m2/s at its peak, which occurs at an altitude of 107 km. This eddy turbulence results in a local maximum of the temperature in the upper mesosphere/lower thermosphere and could correspond either to an unusually high mesopause or to a double mesosphere. Although complicated by plasma dynamic effects and ongoing controversy, our interpretation of Farley-Buneman wave phase velocity (Hysell et al., 2007 is consistent with a low Brunt-Väisälä frequency in the region of interest. Nitric oxide transport due to eddy diffusion from the lower thermosphere to the mesosphere causes electron density changes in the E region whereas NO density modulation due to irregularities in the eddy diffusion coefficient creates variability in the electron density.

  1. Eddy current manual, volume 2

    International Nuclear Information System (INIS)

    Cecco, V.S.; Van Drunen, G.; Sharp, F.L.

    1984-09-01

    This report on eddy current testing is divided into three sections: (a) Demonstration of Basic Principles, (b) Practical (Laboratory) Tests and, (c) Typical Certification Questions. It is intended to be used as a supplement to ΣEddy Current Manual, Volume 1Σ (AECL-7523) during CSNDT Foundation Level II and III courses

  2. Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient.

    Science.gov (United States)

    Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy

    2017-03-01

    The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.

  3. Eddy Current Flaw Characterization Using Neural Networks

    International Nuclear Information System (INIS)

    Song, S. J.; Park, H. J.; Shin, Y. K.

    1998-01-01

    Determination of location, shape and size of a flaw from its eddy current testing signal is one of the fundamental issues in eddy current nondestructive evaluation of steam generator tubes. Here, we propose an approach to this problem; an inversion of eddy current flaw signal using neural networks trained by finite element model-based synthetic signatures. Total 216 eddy current signals from four different types of axisymmetric flaws in tubes are generated by finite element models of which the accuracy is experimentally validated. From each simulated signature, total 24 eddy current features are extracted and among them 13 features are finally selected for flaw characterization. Based on these features, probabilistic neural networks discriminate flaws into four different types according to the location and the shape, and successively back propagation neural networks determine the size parameters of the discriminated flaw

  4. MEASUREMENTS AND MODELING OF EDDY CURRENT EFFECTS IN BNL'S AGS BOOSTER

    International Nuclear Information System (INIS)

    BROWN, K.A.; AHRENS, L.; GARDNER, C.; GLENN, J.W.; HARVEY, M.; MENG, W.; ZENO, K.

    2006-01-01

    Recent beam experiments at BNL's AGS Booster have enabled us to study in more detail the effects of eddy currents on the lattice structure and our control over the betatron tune. The Booster is capable of operating at ramp rates as high as 9 T/sec. At these ramp rates eddy currents in the vacuum chambers significantly alter the fields and gradients seen by the beam as it is accelerated. The Booster was designed with these effects in mind and to help control the field uniformity and linearity in the Booster Dipoles special vacuum chambers were designed with current windings to negate the affect of the induced eddy currents. In this report results from betatron tune measurements and eddy current simulations will be presented. We will then present results from modeling the accelerator using the results of the magnetic field simulations and compare these to the measurements

  5. Human telomere sequence DNA in water-free and high-viscosity solvents: G-quadruplex folding governed by Kramers rate theory.

    Science.gov (United States)

    Lannan, Ford M; Mamajanov, Irena; Hud, Nicholas V

    2012-09-19

    Structures formed by human telomere sequence (HTS) DNA are of interest due to the implication of telomeres in the aging process and cancer. We present studies of HTS DNA folding in an anhydrous, high viscosity deep eutectic solvent (DES) comprised of choline choride and urea. In this solvent, the HTS DNA forms a G-quadruplex with the parallel-stranded ("propeller") fold, consistent with observations that reduced water activity favors the parallel fold, whereas alternative folds are favored at high water activity. Surprisingly, adoption of the parallel structure by HTS DNA in the DES, after thermal denaturation and quick cooling to room temperature, requires several months, as opposed to less than 2 min in an aqueous solution. This extended folding time in the DES is, in part, due to HTS DNA becoming kinetically trapped in a folded state that is apparently not accessed in lower viscosity solvents. A comparison of times required for the G-quadruplex to convert from its aqueous-preferred folded state to its parallel fold also reveals a dependence on solvent viscosity that is consistent with Kramers rate theory, which predicts that diffusion-controlled transitions will slow proportionally with solvent friction. These results provide an enhanced view of a G-quadruplex folding funnel and highlight the necessity to consider solvent viscosity in studies of G-quadruplex formation in vitro and in vivo. Additionally, the solvents and analyses presented here should prove valuable for understanding the folding of many other nucleic acids and potentially have applications in DNA-based nanotechnology where time-dependent structures are desired.

  6. Eddy-induced salinity pattern in the North Pacific

    Science.gov (United States)

    Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.

    2017-12-01

    This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.

  7. 76 FR 59394 - Big Eddy-Knight Transmission Project

    Science.gov (United States)

    2011-09-26

    ... DEPARTMENT OF ENERGY Bonneville Power Administration Big Eddy-Knight Transmission Project AGENCY... Eddy-Knight Transmission Project in Wasco County, Oregon and Klickitat County, Washington. Construction of the Big Eddy-Knight Transmission Project will accommodate long-term firm transmission requests...

  8. Density, thermal expansion coefficient and viscosity of sodium tetraborate (borax)-UO2 and of sodium metaborate-UO2 solutions at high temperatures

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Roth, A.

    1983-01-01

    Measurements have been performed of the density, of the volumetric thermal expansion coefficient and of the viscosity of liquid sodium tetraborate (borax) and of sodium metaborate both pure and with two different amounts of UO 2 dissolved in each. The viscosity measurements have been performed for the solution of sodium tetraborate with UO 2 and CeO 2 , and with CeO 2 only as well. These data are required for the design of core-catchers based on sodium borates. The density measurements have been performed with the buoyancy method in the temperature range from 825 0 C to 1300 0 C, the viscosity measurements in the temperature range 700-1250 0 C with a modified Haake viscosity balance. The balance was previously calibrated at ambient temperature with a standard calibration liquid and at high temperatures, with data for pure borax available from the literature. (orig.)

  9. Effect of ionic and non-ionic contrast media on whole blood viscosity, plasma viscosity and hematocrit in vitro

    International Nuclear Information System (INIS)

    Aspelin, P.

    1978-01-01

    The effect of the ionic contrast media diatrizoate, iocarmate and metrizoate and the non-ionic metrizamide on whole blood viscosity, plasma viscosity and hematocrit was investigated. All the contrast media increased whole blood and plasma viscosity and reduced the hematocrit. The whole blood viscosity increased with increasing osmolality of the contrast medium solutions, whereas the plasma viscosity increased with increasing viscosity of the contrast medium solutions. The higher the osmolality of the contrast media, the lower the hematocrit became. The normal shear-thinning (decreasing viscosity with increasing shear rate) property of blood was reduced when contrast medium was added to the blood. At 50 per cent volume ratio (contrast medium to blood), the ionic contrast media converted the blood into a shear-thickening (increasing viscosity with increasing shear rate) suspension, indicating a marked rigidification of the single red cell, while the non-ionic contrast medium still produced shear-thinning, indicating less rigidification of the red cell (p<0.01). (Auth.)

  10. Problems and limitations of eddy current tube inspection

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Khairul Anuar Mohd Salleh; Mohamed Hairul Hasmoni

    2003-01-01

    Incomplete appreciation of eddy current limitations has contributed to both under-utilization and misapplication of the technique. A brief review on the physical principle of eddy current is presented. Eddy current technique in identifying inhomogeneity in tested tubes is discussed, highlighting its limitation in distinguishing between real pit type defects and other mundane anomalies. The variables responsible for limitation in eddy current tube inspection are discussed and alternative approaches, where they exist, are suggested. (Author)

  11. Large-eddy simulation of unidirectional turbulent flow over dunes

    Science.gov (United States)

    Omidyeganeh, Mohammad

    We performed large eddy simulation of the flow over a series of two- and three-dimensional dune geometries at laboratory scale using the Lagrangian dynamic eddy-viscosity subgrid-scale model. First, we studied the flow over a standard 2D transverse dune geometry, then bedform three-dimensionality was imposed. Finally, we investigated the turbulent flow over barchan dunes. The results are validated by comparison with simulations and experiments for the 2D dune case, while the results of the 3D dunes are validated qualitatively against experiments. The flow over transverse dunes separates at the dune crest, generating a shear layer that plays a crucial role in the transport of momentum and energy, as well as the generation of coherent structures. Spanwise vortices are generated in the separated shear; as they are advected, they undergo lateral instabilities and develop into horseshoe-like structures and finally reach the surface. The ejection that occurs between the legs of the vortex creates the upwelling and downdrafting events on the free surface known as "boils". The three-dimensional separation of flow at the crestline alters the distribution of wall pressure, which may cause secondary flow across the stream. The mean flow is characterized by a pair of counter-rotating streamwise vortices, with core radii of the order of the flow depth. Staggering the crestlines alters the secondary motion; two pairs of streamwise vortices appear (a strong one, centred about the lobe, and a weaker one, coming from the previous dune, centred around the saddle). The flow over barchan dunes presents significant differences to that over transverse dunes. The flow near the bed, upstream of the dune, diverges from the centerline plane; the flow close to the centerline plane separates at the crest and reattaches on the bed. Away from the centerline plane and along the horns, flow separation occurs intermittently. The flow in the separation bubble is routed towards the horns and leaves

  12. Observations of near-inertial kinetic energy inside mesoscale eddies.

    Science.gov (United States)

    Garcia Gomez, B. I.; Pallas Sanz, E.; Candela, J.

    2016-02-01

    The near-nertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoescale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 30 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical cross-sections of the KEi-composites show that the KEi is mainly located near the surface and at the edge of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center and near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. A relative maximum in the upper anticyclonic eddy is also observed. The cyclonic eddies present a maximum of KEi near to the surface at 70 m, while the maximum of KEi in the anticyclonic eddies occurs between 800 and 1000 m. It is also shown the dependence between the distribution and magnitude of the KEi and the eddy's characteristics such as radius, vorticity, and amplitude.

  13. Reduction of eddy current losses around bushing holes on the top-plate of a high efficient transformer

    Directory of Open Access Journals (Sweden)

    Mehmet Aytaç ÇINAR

    2017-08-01

    Full Text Available Low voltage winding leads cause local eddy current losses in top-plate of the transformer tank. In this paper, this loss component which also causes local hot spots is investigated. Top-plate design is modified using stainless steel non-magnetic material, around the low voltage bushing holes. Manufacturing issues and cost as well as power losses are considered as main criteria during modification study. Magnetic flux distributions and eddy current losses are analysed and compared for different designs. Comparisons are based on 3D finite element simulations and experimental studies. Obtained results show that, insertion of single I-shaped stainless steel plate reduces eddy current losses around low voltage bushing holes to nearly zero.

  14. Experiment in foam-drive process for exploiting high-viscosity crude in conglomeratic reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Jinkui, L.; Shiyuan, Y.; Wukui, H.

    1985-01-01

    Due to high heterogeneity of pay zones and high viscosity of oil in place in the conglomeratic reservoirs of the Karamayi oil field, water fingering is serious and waterflooding inefficient. To remedy the situation, a foam-drive process was proposed to enhance oil recovery during period of medium water cut. Foaming agents have been selected, optimized and tested, and analog studies on tube/plane models and in the fields have been conducted for the last 16 years until finally a better agent Alkyl Benzene Sodium Sulfonate is tried out which proves to be efficient in reducing the water cut and raising the ultimate rate of recovery by 7-8% (from 26-28%). 10 figures, 7 tables.

  15. Eddy current testing, volume 1

    International Nuclear Information System (INIS)

    Cecco, V.S.; Van Drunen, G.; Sharp, F.L.

    1981-11-01

    This training and reference manual was assembled to provide those involved in eddy current testing with both the fundamental principles of the technique as well as the knowledge to deal with often complicated test results. A non-rigorous approach is used to simplify complex physical phenomena. Emphasis is placed on proper choice of test frequency and interpretation. Defect detection and diagnosis receive particular attention. Design and construction of probes are covered extensively since probes play a key role in eddy current testing. The advantages and limitations of various probe types are discussed. Electromagnetic theory, instrumentation, test methods and signal analysis are covered. Simplified derivations of probe response to test parameters are presented to develop a basic understanding of eddy current behaviour. Eddy current signals are presented on impedance plane diagrams throughout the manual since this is the most common display on modern, general purpose instruments. The use of 'phase leg' in signal analysis is covered in detail. To supplement theory, practical examples are presented to develop proficiency in performing inspections, and to illustrate how basic principles are applied to diagnose real signals

  16. Local eddy current measurements in pulsed fields

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J.H. [SEPI-Electronica, ESIME-IPN, UPALM Edif. ' Z' . Zacatenco, Mexico DF 07738 (Mexico)], E-mail: jhespina@gmail.com; Groessinger, R. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2008-07-15

    This work presents new eddy current measurements in pulsed fields. A commercial point pick-up coil is used to detect the induction signal along the radius of Cu and Al samples with cylindrical shape and diameters between 5 and 35 mm. Local eddy current measurements were performed on the surface of conducting materials due to the small dimensions of the coil. A simple electrical circuit, used as a model, is proposed to describe the local eddy current effect in pulsed fields. The proposed model allows to calculate the phase shift angle between the signal proportional to eddy currents and the applied external field in a pulsed field magnetometer.

  17. Design of Oil Viscosity Sensor Based on Plastic Optical Fiber

    Science.gov (United States)

    Yunus, Muhammad; Arifin, A.

    2018-03-01

    A research of plastic optical fiber based sensors have been studied for measurement of oil viscosity. This sensor was made with straight configuration, U configuration, and gamma configuration have two types, there are optical fiber sensor with cladding and without cladding. Viscosity sensor was made, dipped into an oil sample with a concentration of viscosity percentage about 270 mPa.s - 350 mPa.s. The light from the LED propagated into the optical fiber, then it was received by the photodetector converted to output power. When plastic optical fiber dipped into an oil sample, viscosity of oil affect increase of refractive index on optical fiber resulting in a bigger loss of power so the light intensity will be smaller, consequences the measured output power will be smaller. Sensitivity and resolution viscosity sensor without cladding peel showed the best result rather than viscosity sensor with cladding peel. The best result in the measurement showed in gamma configuration with 3 cm length of cladding peel and the diameter of bending 0,25 cm is the range 103,090 nWatt, sensitivity 1,289 nWatt/mPa.s, and resolution 0,776 mPa.s. This method is effectively and efficiently used as an oil viscosity sensor with high sensitivity and resolution.

  18. Eddy current seminar, 24-26 Mar 1986

    International Nuclear Information System (INIS)

    Emson, C.R.I.

    1986-06-01

    The paper concerns the Eddy Current Seminars, held at the Rutherford Appleton Laboratory, United Kingdom, March 1986. Twenty two papers were presented on eddy current phenomena, and two of the papers are indexed separately. The first deals with a finite difference scheme for time dependent eddy currents in Tokamaks, the second is an analysis of the FELIX experiments with cantilevered beams and hollow cylinders. (UK)

  19. Giant Viscosity Enhancement in a Spin-Polarized Fermi Liquid

    International Nuclear Information System (INIS)

    Akimoto, H.; Xia, J. S.; Adams, E. D.; Sullivan, N. S.; Candela, D.; Mullin, W. J.

    2007-01-01

    The viscosity is measured for a Fermi liquid, a dilute 3 He- 4 He mixture, under extremely high magnetic field/temperature conditions (B≤14.8 T, T≥1.5 mK). The spin-splitting energy μB is substantially greater than the Fermi energy k B T F ; as a consequence the polarization tends to unity and s-wave quasiparticle scattering is suppressed for T F . Using a novel composite vibrating-wire viscometer an enhancement of the viscosity is observed by a factor of more than 500 over its low-field value. Good agreement is found between the measured viscosity and theoretical predictions based upon a t-matrix formalism

  20. Dynamic Viscosity and Compensation Effect in Hydrocarbon Media with a High Content of Resins and Paraffins

    Science.gov (United States)

    Boitsova, A. A.; Kondrasheva, N. K.; Dolomatov, M. Yu.

    2017-11-01

    Linear dependences have been obtained for multicomponent hydrocarbon media (oils and high-boiling fractions), which relate the preexponent and the activation energy of viscous flow in the Arrhenius equation. A distinctive feature of the established kinetic compensation effect is it existing before and after the phase-transition temperature. The obtained results have been confirmed by statistical data and make it possible to predict the dynamic viscosity of multicomponent hydrocarbon systems, such as oil and high-boiling fractions.

  1. Viscosity in Modified Gravity 

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2012-11-01

    Full Text Available A bulk viscosity is introduced in the formalism of modified gravity. It is shownthat, based on a natural scaling law for the viscosity, a simple solution can be found forquantities such as the Hubble parameter and the energy density. These solutions mayincorporate a viscosity-induced Big Rip singularity. By introducing a phase transition inthe cosmic fluid, the future singularity can nevertheless in principle be avoided. 

  2. Magnetisation processes and magnetic viscosity of mechanically alloyed SmCo5

    International Nuclear Information System (INIS)

    Ding, J.; Smith, P.A.I.; McCormick, P.G.; Street, R.

    1996-01-01

    Mechanically alloyed SmCo 5 materials with coercivities in the range of 50-75 kOe were studied in this work. Irreversible magnetisation processes were investigated by measuring remanences after initial magnetisation and after demagnetisation. A large deviation of the demagnetisation remanence from the Wohlfarth relationship indicated that interactions between grains play an important role in the irreversible magnetisation process. Viscosity tests showed nearly linear relationship between the magnetic field and the viscosity parameter for the initial magnetisation, while the viscosity was not strongly dependent on the field for the demagnetisation. High values of the viscosity parameter, Λ, between 120 to 220 Oe were measured at fields near coercivity. (orig.)

  3. Anomalous intrinsic viscosity of octadecylamine-functionalised carbon nanotubes in suspension.

    Science.gov (United States)

    Donovan, K J; Scott, K

    2013-06-28

    Single walled carbon nanotubes, SWCNTs, are used as a model cylinder of nanoscopic dimensions for testing rheological theories of how addition of cylindrical particles affects the viscosity of a suspension of such particles. Using the rate of growth of the accompanying induced linear dichroism following application of an applied electric field, the dynamics of carbon nanotube alignment is studied in suspensions of octadecylamine functionalised single walled carbon nanotubes, ODA-SWCNTs, in 1,2 dichloroethane. From such measurements the viscosity of the suspension is measured as the concentration of the suspension is varied. While working within the dilute limit the viscosity is found to increase linearly with concentration and the intrinsic viscosity of the suspension is found to be 8000. This anomalously high intrinsic viscosity is compared with the predictions of various models for a rigid cylinder and found to be incompatible with any of the current models. Some suggestions are made as to the way this ODA-SWCNT result may be eventually accommodated within other models.

  4. Magnetic resonance imaging inside cylindrical metal containers with an eddy current self-compensated method

    International Nuclear Information System (INIS)

    Han, Hui; Balcom, Bruce J

    2011-01-01

    Magnetic resonance imaging (MRI) measurements inside cylindrical metal structures have recently been proposed and form the basis for new high-pressure MRI studies. The critical problem for MRI inside cylindrical metal structures is significant eddy currents induced by the switched magnetic field gradients, which usually corrupt spatial and motion encoding without appropriate correction. In this work a so-called standard SPRITE (single point ramped imaging with T 1 enhancement) technique is applied for imaging inside cylindrical metal structures. We show that the standard SPRITE technique is fundamentally immune to large-scale eddy current effects and yields artifact-free high-quality images with no eddy current correction required. Standard SPRITE image acquisition avoids the complications involved in the measurement and compensation of eddy current effects for MRI with cylindrical metal structures. This work is a substantial advance toward the extension of MRI to new challenging systems, which are of practical importance

  5. Imaging by the SSFSE single slice method at different viscosities of bile

    International Nuclear Information System (INIS)

    Kubo, Hiroya; Usui, Motoki; Fukunaga, Kenichi; Yamamoto, Naruto; Ikegami, Toshimi

    2001-01-01

    The single shot fast spin echo single thick slice method (single slice method) is a technique that visualizes the water component alone using a heavy T 2 . However, this method is considered to be markedly affected by changes in the viscosity of the material because a very long TE is used, and changes in the T 2 value, which are related to viscosity, directly affect imaging. In this study, we evaluated the relationship between the effects of TE and the T 2 value of bile in the single slice method and also examined the relationship between the signal intensity of bile on T 1 - and T 2 -weighted images and imaging by MR cholangiography (MRC). It was difficult to image bile with high viscosities at a usual effective TE level of 700-1,500 ms. With regard to the relationship between the signal intensity of bile and MRC imaging, all T 2 values of the bile samples showing relatively high signal intensities on the T 1 -weighted images suggested high viscosities, and MRC imaging of these bile samples was poor. In conclusion, MRC imaging of bile with high viscosities was poor with the single slice method. Imaging by the single slice method alone of bile showing a relatively high signal intensity on T 1 -weighted images should be avoided, and combination with other MRC sequences should be used. (author)

  6. Multifrequency eddy-current inspection of seam weld in steel sheath

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.; Dodd, C.V.; Chitwood, L.D.

    1985-04-01

    Multifrequency eddy-current techniques were used to perform a continuous on-line inspection of the seam weld in the steel jacket for a superconducting cable. The inspection was required to detect both surface and internal weld flaws in the presence of a large, highly conductive central conductor. Raw eddy-current data were recorded on magnetic tape, and test properties such as discontinuity size and weld penetration were determined by mathematically fitting these data to coefficients developed with representative standards. A sophisticated computer-controlled scanning technique was applied, and a unique scanning device was developed to provide full coverage of the weld and heat-affected zone. The techniques used to develop this multifrequency eddy-current examination are described in this report along with the test equipment, test procedures, and computer programs.

  7. Multifrequency eddy-current inspection of seam weld in steel sheath

    International Nuclear Information System (INIS)

    Smith, J.H.; Dodd, C.V.; Chitwood, L.D.

    1985-04-01

    Multifrequency eddy-current techniques were used to perform a continuous on-line inspection of the seam weld in the steel jacket for a superconducting cable. The inspection was required to detect both surface and internal weld flaws in the presence of a large, highly conductive central conductor. Raw eddy-current data were recorded on magnetic tape, and test properties such as discontinuity size and weld penetration were determined by mathematically fitting these data to coefficients developed with representative standards. A sophisticated computer-controlled scanning technique was applied, and a unique scanning device was developed to provide full coverage of the weld and heat-affected zone. The techniques used to develop this multifrequency eddy-current examination are described in this report along with the test equipment, test procedures, and computer programs

  8. Local-scale high-resolution atmospheric dispersion model using large-eddy simulation. LOHDIM-LES

    International Nuclear Information System (INIS)

    Nakayama, Hiromasa; Nagai, Haruyasu

    2016-03-01

    We developed LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES). This dispersion model is designed based on LES which is effective to reproduce unsteady behaviors of turbulent flows and plume dispersion. The basic equations are the continuity equation, the Navier-Stokes equation, and the scalar conservation equation. Buildings and local terrain variability are resolved by high-resolution grids with a few meters and these turbulent effects are represented by immersed boundary method. In simulating atmospheric turbulence, boundary layer flows are generated by a recycling turbulent inflow technique in a driver region set up at the upstream of the main analysis region. This turbulent inflow data are imposed at the inlet of the main analysis region. By this approach, the LOHDIM-LES can provide detailed information on wind velocities and plume concentration in the investigated area. (author)

  9. Application of mesh free lattice Boltzmann method to the analysis of very high temperature reactor lower plenum

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon [Dongguk Univ., Gyeongju (Korea, Republic of). Dept. of Energy and Environment

    2011-11-15

    Inside a helium-cooled very high temperature reactor (VHTR) lower plenum, hot gas jets from upper fuel channels with very high velocities and temperatures and is mixed before flowing out. One of the major concerns is local hot spots in the plenum due to inefficient mixing of the helium exiting from differentially heated fuel channels and it involves complex fluid flow physics. For this situation, mesh-free technique, especially Lattice Boltzmann Method (LBM), is thus of particular interest owing to its merit of no mesh generation. As an attempt to find efficiency of the method in such a problem, 3 dimensional flow field inside a scaled test model of the VHTR lower plenum is computed with commercial XFLOW code. Large eddy simulation (LES) and classical Smagorinsky eddy viscosity (EV) turbulence models are employed to investigate the capability of the LBM in capturing large scale vortex shedding. (orig.)

  10. Effect of viscosity on learned satiation

    NARCIS (Netherlands)

    Mars, M.; Hogenkamp, P.S.; Gosses, A.M.; Stafleu, A.; Graaf, C.de

    2009-01-01

    A higher viscosity of a food leads to a longer orosensory stimulation. This may facilitate the learned association between sensory signals and metabolic consequences. In the current study we investigated the effect of viscosity on learned satiation. In two intervention groups a low viscosity (LV)

  11. Study on viscosity measurement using fiber Bragg grating micro-vibration

    International Nuclear Information System (INIS)

    Song, Le; Fang, Fengzhou; Zhao, Jibo

    2013-01-01

    It is now ascertained that traditional electric sensors are vulnerable to electromagnetic interference when measuring viscosity. Here, we propose a new viscosity-sensitive structure based on the fiber Bragg grating (FBG) sensing principle and a micro-vibration measurement method. The symmetric micro-vibration motivation method is also described, and a mathematical model for compensational voltage and fluid viscosity is established. The probe amplitude, which is produced by reciprocating stimulation, is accessible by means of an FBG sensor mounted on an equal-strength beam. Viscosity can be therefore calculated using a demodulation technique based on linear edge filtering with long period grating. After performing a group of verifying tests, the sensor has been subsequently calibrated with a series of standard fluids to determine uncertain parameters in the mathematical model. The results of the experiment show that the relative measurement error was less than 2% when the viscosity ranged from 200 to 500 mPa s. The proposed architecture utilizes the characteristics of anti-interference, fast response speed, high resolution and compact structure of FBG, thereby offering a novel modality to achieve an online viscosity measurement. (paper)

  12. Anticyclonic eddy energy and pathways in the Algerian basin (1993-2007)

    Science.gov (United States)

    Pessini, Federica; Perilli, Angelo; Olita, Antonio

    2016-04-01

    The Algero-Provençal basin plays a key role in the circulation of the entire Mediterranean Sea. Consequently, in the past its hydrodynamics has been intensively studied with infrared and colour satellite imagery, moorings, surface drifters and altimetry observations. The basin is divided into two sub-basins by the North Balearic front, a thermal front characterized by a high seasonal variability: the Provençal sub-basin in the north and the Algerian sub-basin in the south. The Algerian basin is dominated by mesoscale phenomena, especially anti-cyclonic eddies. The Algerian current becomes unstable and meanders; often giving rise to mesoscale eddies of both signs. The anti-cyclonic eddies (hereafter Algerian Eddies or AEs) can grow rapidly in horizontal and vertical extension. They can also detach from the Algerian slope and circulate for several months within the sub-basin, while the cyclonic ones quickly disappear. In spite of its limited dimensions, the Algerian sub-basin can contain as many as three long-life AEs, which can interact with each other and with sub-basin dynamics. In spite of the current body of research, a study on the tracking, energy and interaction of these long-life eddies in time and space is still lacking. In order to fill this gap, we applied the automated eddy detection and tracking method created by Penven (2005), which reveals the complex movements and dynamics of eddies in the Algerian sub-basin. The Penven algorithm combines the detection of the largest closed contours in SSH (Sea Surface Height) with a positive value of the relevant Okubo-Weiss parameter. The latter has already been successfully used in the Algerian Basin by Isern-Fontanet et al. (2003). The eddy-tracking algorithm is based on the minimization of a general distance that takes into account the difference in coordinates, radius, vorticity, mean height and amplitude between eddies of consecutive temporal steps. The code was modified and adapted in order to optimize its

  13. Viscosity and density models for copper electrorefining electrolytes

    OpenAIRE

    Kalliomäki Taina; Aji Arif T.; Aromaa Jari; Lundström Mari

    2016-01-01

    Viscosity and density are highly important physicochemical properties of copper electrolyte since they affect the purity of cathode copper and energy consumption [1, 2] affecting the mass and heat transfer conditions in the cell [3]. Increasing viscosity and density decreases the rate in which the anode slime falls to the bottom of the cell [4, 5] and lowers the diffusion coefficient of cupric ion (DCu2+) [6]. Decreasing the falling rate of anode slime increases movement of the slime to other...

  14. Searching for perfect fluids: quantum viscosity in a universal Fermi gas

    International Nuclear Information System (INIS)

    Cao, C; Elliott, E; Wu, H; Thomas, J E

    2011-01-01

    We measure the shear viscosity in a two-component Fermi gas of atoms, tuned to a broad s-wave collisional (Feshbach) resonance. At resonance, the atoms strongly interact and exhibit universal behavior, where the equilibrium thermodynamic properties and transport coefficients are universal functions of density n and temperature T. We present a new calibration of the temperature as a function of global energy, which is directly measured from the cloud profiles. Using the calibration, the trap-averaged shear viscosity in units of ℎn is determined as a function of the reduced temperature at the trap center, from nearly the ground state to the unitary two-body regime. Low-temperature data are obtained from the damping rate of the radial breathing mode, whereas high-temperature data are obtained from hydrodynamic expansion measurements. We also show that the best fit to the high-temperature expansion data is obtained for a vanishing bulk viscosity. The measured trap-averaged entropy per particle and shear viscosity are used to estimate the ratio of shear viscosity to entropy density, which is compared with that conjectured for a perfect fluid.

  15. The Solomon Sea eddy activity from a 1/36° regional model

    Science.gov (United States)

    Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques

    2013-04-01

    In the South West Pacific, the Solomon Sea exhibits the highest levels of eddy kinetic energy but relatively little is known about the eddy activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the warm pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale eddies are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this eddy activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows eddies to be automatically detected and tracked, thus providing some basic eddy properties. The preliminary results show that two main and distinct types of eddies are detected. Eddies in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as eddies and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is

  16. Eddy current manual: v.1

    International Nuclear Information System (INIS)

    Cecco, V.S.; Van Drunen, G.; Sharp, F.L.

    1983-09-01

    This training and reference manual was assembled to provide those involved in eddy current testing with both the fundamental principles of the technique as well as the knowledge to deal with often complicated test results. A non-rigorous approach is used to simplify complex physical phenomena. Emphasis is placed on proper choice of test frequency and signal interpretation. Defect detection and diagnosis receive particular attention. Design and construction of probes are covered extensively since probes play a key role in eddy current testing. The advantages and limitations of various probe types are discussed. Electromagnetic theory, instrumentation, test methods and signal analysis are covered. Simplified derivations of probe response to test parameters are presented to develop a basic understanding of eddy current behaviour. Eddy current signals are presented on impedance plane diagrams throughout the manual since this is the most common display on modern, general purpose instruments. The use of Σphase lagΣ in signal analysis is covered in detail. To supplement theory, practical examples are presented to develop proficiency in performing inspections, and to illustrate how basic principles are applied to diagnose real signals

  17. NVP melt/magma viscosity: insight on Mercury lava flows

    Science.gov (United States)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina

    2016-04-01

    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  18. Mesoscale eddies are oases for higher trophic marine life

    KAUST Repository

    Godø , Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjø llo, Solfrid Sæ tre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  19. Mesoscale eddies are oases for higher trophic marine life

    KAUST Repository

    Godø, Olav R.

    2012-01-17

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  20. Mesoscale eddies are oases for higher trophic marine life.

    Directory of Open Access Journals (Sweden)

    Olav R Godø

    Full Text Available Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life.

  1. Viscosity-Induced Crossing of the Phantom Barrier

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2015-09-01

    Full Text Available We show explicitly, by using astrophysical data plus reasonable assumptions for the bulk viscosity in the cosmic fluid, how the magnitude of this viscosity may be high enough to drive the fluid from its position in the quintessence region at present time t = 0 across the barrier w = −1 into the phantom region in the late universe. The phantom barrier is accordingly not a sharp mathematical divide, but rather a fuzzy concept. We also calculate the limiting forms of various thermodynamical quantities, including the rate of entropy production, for a dark energy fluid near the future Big Rip singularity.

  2. Entropy viscosity method for nonlinear conservation laws

    KAUST Repository

    Guermond, Jean-Luc

    2011-05-01

    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  3. Entropy viscosity method for nonlinear conservation laws

    KAUST Repository

    Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan

    2011-01-01

    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  4. Improved Eddy-current Field Loss Model and Scaling Index for Magnets of Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Zhang Lei

    2015-01-01

    Full Text Available The paper gives detailed systematic researches on the mechanism and key factors of eddy-current losses in rotor magnets of high power-density permanent magnet synchronous motors(PMSMs. Firstly, this paper establishes quantitative mathematic model of eddy-current losses for surface-mounted PMSM based on eddy current field model and Maxwell equations. Then, a scaling index is put forward to weigh the key factors relevant to the eddy-current losses in magnets. At the same time, the principles of eddy-current losses in prototype PMSM are analyzed by the finite element analysis (FEA software. The contents researched in the paper have practical reference values for design and reliability analysis of PMSMs.

  5. Comparative study between the radiopacity levels of high viscosity and of flowable composite resins, using digital imaging.

    Science.gov (United States)

    Arita, Emiko S; Silveira, Gilson P; Cortes, Arthur R; Brucoli, Henrique C

    2012-01-01

    The development of countless types and trends of high viscosite and flowable composite resins, with different physical and chemical properties applicable to their broad use in dental clinics calls for further studies regarding their radiopacity level. The aim of this study was to evaluate the radiopacity levels of high viscosity and the flowable composite resins, using digital imaging. 96 composite resin discs 5 mm in diameter and 3 mm thick were radiographed and analyzed. The image acquisition system used was the Digora® Phosphor Storage System and the images were analyzed with the Digora software for Windows. The exposure conditions were: 70 kVp, 8 mA, and 0.2 s. The focal distance was 40 cm. The image densities were obtained with the pixel values of the materials in the digital image. Most of the high viscosity composite resins presented higher radiopacity levels than the flowable composite resins, with statistically significant differences between the trends and groups analyzed (P composite resins, Tetric®Ceram presented the highest radiopacity levels and Glacier® presented the lowest. Among the flowable composite resins, Tetric®Flow presented the highest radiopacity levels and Wave® presented the lowest.

  6. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation

    OpenAIRE

    Salinas, Branden A; Sathish, Hasige A; Bishop, Steven M; Harn, Nick; Carpenter, John F; Randolph, Theodore W

    2010-01-01

    Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody that exhibits high viscosity in solutions at low ionic strength (~20 centipoise (cP) at 90 mg/mL and 23°C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and...

  7. Comparison of parallel viscosity with neoclassical theory

    International Nuclear Information System (INIS)

    Ida, K.; Nakajima, N.

    1996-04-01

    Toroidal rotation profiles are measured with charge exchange spectroscopy for the plasma heated with tangential NBI in CHS heliotron/torsatron device to estimate parallel viscosity. The parallel viscosity derived from the toroidal rotation velocity shows good agreement with the neoclassical parallel viscosity plus the perpendicular viscosity. (μ perpendicular = 2 m 2 /s). (author)

  8. Transient eddies and low frequency variability in the Northern Hemisphere winter climates of two GCMs

    International Nuclear Information System (INIS)

    Hansen, T.; Sutera, A.

    1994-01-01

    An aspect of the climate change problem that is also important to our understanding of the general circulation is the relative roles and interactions between baroclinic-scale transient eddies and the larger scale, lower frequency variability of the flow in midlatitudes. A question may be raised as to how a reduced (or enhanced) level of high-frequency transient eddy activity may influence the character of the large-scale flow. If the transient eddies play an important role in determining the large-scale flow patterns in the atmosphere, then we might expect a profound impact from a changed level of high frequency transient eddy activity on the large-scale flow. An opportunity to address this question is presented by the intercomparison of two general circulation models, the differences in whose formulations lie primarily in their physical parameterizations

  9. Kinematic viscosity of liquid Al-Cu alloys

    International Nuclear Information System (INIS)

    Konstantinova, N Yu; Popel, P S

    2008-01-01

    Temperature dependences of kinematic viscosity n of liquid Al 100-x -Cu x alloys (x = 0.0, 10.0, 17.1, 25.0, 32.2, 40.0 and 50.0 at.%) were measured. A technique based on registration of the period and the decrement of damping of rotating oscillations of a cylindrical crucible with a melt was used. Viscosity was calculated in low viscous liquids approximation. Measurements were carried out in vacuum in crucibles of BeO with a temperature step of 30 deg. C and isothermal expositions of 10 to 15 minutes during both heating up to 1100-1250 deg. C and subsequent cooling. We have discovered branching of heating and cooling curves v(T) (hysteresis of viscosity) below temperatures depending on the copper content: 950 deg. C at 10 and 17.1 at.% Cu, 1050 deg. C at 25 and 40 at.% Cu, 850 deg. C at 32.2 at.% Cu. For samples with 10 and 17.1 at.% Cu the cooling curve 'returns' to the heating one near 700 deg. C. An abnormally high spreading of results at repeated decrement measurements was fixed at heating of the alloy containing 50 at.% Cu above 1000 deg. C. During subsequent cooling the effect disappeared. Isotherms of kinematic viscosity have been fitted for several temperatures

  10. Effect of Viscosity on Liquid Curtain Stability

    Science.gov (United States)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Francis, Lorraine; Carvalho, Marcio; Dow Chemical Company Collaboration; PUC Rio Collaboration; University of Minnesota, Twin Cities Collaboration

    2016-11-01

    The effect of viscosity on the stability of Newtonian liquid curtains was explored by high-speed visualization. Glycerol/water solutions with viscosity ranging from 19.1 to 210 mPa.s were used as coating liquids. The experimental set-up used a slide die delivery and steel tube edge guides. The velocity along curtain at different positions was measured by tracking small particles at different flow conditions. The measurements revealed that away from edge guides, velocity is well described by free fall effect. However, close to edge guides, liquid moves slower, revealing formation of a viscous boundary layer. The size of boundary layer and velocity near edge guides are strong function of viscosity. The critical condition was determined by examining flow rate below which curtain broke. Curtain failure was initiated by growth of a hole within liquid curtain, close to edge guides. Visualization results showed that the hole forms in a circular shape then becomes elliptical as it grows faster in vertical direction compared to horizontal direction. As viscosity rises, minimum flow rate for destabilization of curtain increased, indicating connection between interaction with edge guides and curtain stability. We would like to acknowledge the financial support from the Dow Chemical Company.

  11. Sensor for Viscosity and Shear Strength Measurement

    International Nuclear Information System (INIS)

    Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.

    1998-01-01

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation

  12. Forest Ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles

    Science.gov (United States)

    Speckman, Heather N.; Frank, John M.; Bradford, John B.; Miles, Brianna L.; Massman, William J.; Parton, William J.; Ryan, Michael G.

    2015-01-01

    Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence (summer night mean friction velocity (u*) = 0.7 m s−1), during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ±0.22 μmol m−2 s−1 in 2005 to 4.6 ±0.16 μmol m−2 s−1 in 2011). Soil efflux remained at ~3.3 μmol m−2 s−1 throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m−2 s−1 for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r2 from 0.18-0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of > 0.7 m s−1. The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r2=0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.

  13. Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles.

    Science.gov (United States)

    Speckman, Heather N; Frank, John M; Bradford, John B; Miles, Brianna L; Massman, William J; Parton, William J; Ryan, Michael G

    2015-02-01

    Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence [summer night mean friction velocity (u*) = 0.7 m s(-1)], during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood, and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ± 0.22 μmol m(-2) s(-1) in 2005 to 4.6 ± 0.16 μmol m(-2) s(-1) in 2011). Soil efflux remained at ~3.3 μmol m(-2) s(-1) throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m(-2) s(-1) for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r(2) from 0.18 to 0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of >0.7 m s(-1). The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r(2) = 0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates. © 2014 John Wiley & Sons Ltd.

  14. Behavior of pressure and viscosity at high densities for two-dimensional hard and soft granular materials

    NARCIS (Netherlands)

    Otsuki, Michio; Hayakawa, Hisao; Luding, Stefan

    2010-01-01

    The pressure and the viscosity in two-dimensional sheared granular assemblies are investigated numerically. The behavior of both pressure and viscosity is smoothly changing qualitatively when starting from a mono-disperse hard-disk system without dissipation and moving towards a system of (i)

  15. Effect of lipid viscosity and high-pressure homogenization on the physical stability of "Vitamin E" enriched emulsion.

    Science.gov (United States)

    Alayoubi, Alaadin; Abu-Fayyad, Ahmed; Rawas-Qalaji, Mutasem M; Sylvester, Paul W; Nazzal, Sami

    2015-01-01

    Recently there has been a growing interest in vitamin E for its potential use in cancer therapy. The objective of this work was therefore to formulate a physically stable parenteral lipid emulsion to deliver higher doses of vitamin E than commonly used in commercial products. Specifically, the objectives were to study the effects of homogenization pressure, number of homogenizing cycles, viscosity of the oil phase, and oil content on the physical stability of emulsions fortified with high doses of vitamin E (up to 20% by weight). This was done by the use of a 27-run, 4-factor, 3-level Box-Behnken statistical design. Viscosity, homogenization pressure, and number of cycles were found to have a significant effect on particle size, which ranged from 213 to 633 nm, and on the percentage of vitamin E remaining emulsified after storage, which ranged from 17 to 100%. Increasing oil content from 10 to 20% had insignificant effect on the responses. Based on the results it was concluded that stable vitamin E rich emulsions could be prepared by repeated homogenization at higher pressures and by lowering the viscosity of the oil phase, which could be adjusted by blending the viscous vitamin E with medium-chain triglycerides (MCT).

  16. Chebyshev super spectral viscosity method for water hammer analysis

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2013-09-01

    Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.

  17. EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSION. II. STRUCTURE AND EMISSIONS FROM STAR-FORMING GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Yan Changshuo; Wang Jianmin

    2010-01-01

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the Hα, Hβ, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to ∼1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of ∼10 8 yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as ∼100 km s -1 in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of Hα, Hβ, [O III], and [N II], and Hα brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive

  18. Eddy current effect in soft magnetic backlayer for PMR media

    International Nuclear Information System (INIS)

    Tanaka, T.; Yamamoto, S.; Kurisu, H.; Matsuura, M.

    2005-01-01

    Flux density distributions in the recording layer and soft magnetic backlayer of a perpendicular magnetic recording medium were calculated up to 5 GHz using a three-dimensional finite element method electromagnetic field analysis simulator, where eddy current effects in the high-frequency recording process were considered. It is presented that the flux density distribution in a recording layer hardly depends on the eddy current effect, although flux density distribution in a soft magnetic backlayer changes depending on the recording frequency and resistivity of the soft magnetic backlayer

  19. Thin film eddy current impulse deicer

    Science.gov (United States)

    Smith, Samuel O.; Zieve, Peter B.

    1990-01-01

    Two new styles of electrical impulse deicers has been developed and tested in NASA's Icing Research Tunnel. With the Eddy Current Repulsion Deicing Boot (EDB), a thin and flexible spiral coil is encapsulated between two thicknesses of elastomer. The coil, made by an industrial printed circuit board manufacturer, is bonded to the aluminum aircraft leading edge. A capacitor bank is discharged through the coil. Induced eddy currents repel the coil from the aluminum aircraft structure and shed accumulated ice. A second configuration, the Eddy Current Repulsion Deicing-Strip (EDS) uses an outer metal erosion strip fastened over the coil. Opposite flowing eddy currents repel the strip and create the impulse deicing force. The outer strip serves as a surface for the collection and shedding of ice and does not require any structural properties. The EDS is suitable for composite aircraft structures. Both systems successfully dispelled over 95 percent of the accumulated ice from airfoils over the range of the FAA icing envelope.

  20. Study of a Particle Based Films Cure Process by High-Frequency Eddy Current Spectroscopy

    Directory of Open Access Journals (Sweden)

    Iryna Patsora

    2016-12-01

    Full Text Available Particle-based films are today an important part of various designs and they are implemented in structures as conductive parts, i.e., conductive paste printing in the manufacture of Li-ion batteries, solar cells or resistive paste printing in IC. Recently, particle based films were also implemented in the 3D printing technique, and are particularly important for use in aircraft, wind power, and the automotive industry when incorporated onto the surface of composite structures for protection against damages caused by a lightning strike. A crucial issue for the lightning protection area is to realize films with high homogeneity of electrical resistance where an in-situ noninvasive method has to be elaborated for quality monitoring to avoid undesirable financial and time costs. In this work the drying process of particle based films was investigated by high-frequency eddy current (HFEC spectroscopy in order to work out an automated in-situ quality monitoring method with a focus on the electrical resistance of the films. Different types of particle based films deposited on dielectric and carbon fiber reinforced plastic substrates were investigated in the present study and results show that the HFEC method offers a good opportunity to monitor the overall drying process of particle based films. Based on that, an algorithm was developed, allowing prediction of the final electrical resistance of the particle based films throughout the drying process, and was successfully implemented in a prototype system based on the EddyCus® HFEC device platform presented in this work. This prototype is the first solution for a portable system allowing HFEC measurement on huge and uneven surfaces.

  1. Remote field eddy current testing

    International Nuclear Information System (INIS)

    Cheong, Y. M.; Jung, H. K.; Huh, H.; Lee, Y. S.; Shim, C. M.

    2001-03-01

    The state-of-art technology of the remote field eddy current, which is actively developed as an electromagnetic non-destructive testing tool for ferromagnetic tubes, is described. The historical background and recent R and D activities of remote-field eddy current technology are explained including the theoretical development of remote field eddy current, such as analytical and numerical approach, and the results of finite element analysis. The influencing factors for actual applications, such as the effect of frequency, magnetic permeability, receiving sensitivity, and difficulties of detection and classification of defects are also described. Finally, two examples of actual application, 1) the gap measurement between pressure tubes and calandria tube in CANDU reactor and, 2) the detection of defects in the ferromagnetic heat exchanger tubes, are described. The future research efforts are also included

  2. Electro-optical properties of low viscosity driven holographic polymer dispersed liquid crystals

    Science.gov (United States)

    Moon, K. R.; Bae, S. Y.; Kim, B. K.

    2015-04-01

    Relative diffraction efficiency (RDE), operating voltage, and response times are most important performance characteristics of holographic polymer dispersed liquid crystals (HPDLC). Two types of triallyl isocyanurate (TI) having different structures were incorporated into the conventional transmission grating of HPDLC. Premix viscosity decreased by 13-18% with up to 3% TI, beyond which it increased. TI eliminated induction period and augmented initial grating formation rate at all contents. Saturation RDE increased over 200% while threshold voltage and rise time decreased to about half and 2/3, respectively up to 3% TI, beyond which the tendencies were reversed. Among the two TIs, low viscosity monomer (TA) showed high RDE, while high miscibility monomer (TE) low characteristic voltages and short response times. It is concluded that grating formation is largely favored by low viscosity, while interface tensions and electro-optical performances by miscibility at similar viscosities.

  3. Imaging by the SSFSE single slice method at different viscosities of bile

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Hiroya; Usui, Motoki; Fukunaga, Kenichi; Yamamoto, Naruto; Ikegami, Toshimi [Kawasaki Hospital, Kobe (Japan)

    2001-11-01

    The single shot fast spin echo single thick slice method (single slice method) is a technique that visualizes the water component alone using a heavy T{sub 2}. However, this method is considered to be markedly affected by changes in the viscosity of the material because a very long TE is used, and changes in the T{sub 2} value, which are related to viscosity, directly affect imaging. In this study, we evaluated the relationship between the effects of TE and the T{sub 2} value of bile in the single slice method and also examined the relationship between the signal intensity of bile on T{sub 1}- and T{sub 2}-weighted images and imaging by MR cholangiography (MRC). It was difficult to image bile with high viscosities at a usual effective TE level of 700-1,500 ms. With regard to the relationship between the signal intensity of bile and MRC imaging, all T{sub 2} values of the bile samples showing relatively high signal intensities on the T{sub 1}-weighted images suggested high viscosities, and MRC imaging of these bile samples was poor. In conclusion, MRC imaging of bile with high viscosities was poor with the single slice method. Imaging by the single slice method alone of bile showing a relatively high signal intensity on T{sub 1}-weighted images should be avoided, and combination with other MRC sequences should be used. (author)

  4. Eddy Current Assessment of Engineered Components Containing Nanofibers

    Science.gov (United States)

    Ko, Ray T.; Hoppe, Wally; Pierce, Jenny

    2009-03-01

    The eddy current approach has been used to assess engineered components containing nanofibers. Five specimens with different programmed defects were fabricated. A 4-point collinear probe was used to verify the electrical resistivity of each specimen. The liftoff component of the eddy current signal was used to test two extreme cases with different nano contents. Additional eddy current measurements were also used in detecting a missing nano layer simulating a manufacturing process error. The results of this assessment suggest that eddy current liftoff measurement can be a useful tool in evaluating the electrical properties of materials containing nanofibers.

  5. Eddy current spectroscopy for near-surface residual stress profiling in surface treated nonmagnetic engine alloys

    Science.gov (United States)

    Abu-Nabah, Bassam A.

    Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on

  6. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation.

    Science.gov (United States)

    Salinas, Branden A; Sathish, Hasige A; Bishop, Steven M; Harn, Nick; Carpenter, John F; Randolph, Theodore W

    2010-01-01

    Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody (mAb) that exhibits high viscosity in solutions at low ionic strength ( approximately 20 cP at 90 mg/mL and 23 degrees C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and 23 degrees C). The intermolecular interactions responsible for these effects were characterized using membrane osmometry, static light scattering, and zeta potential measurements. The net protein-protein interactions were repulsive at low ionic strength ( approximately 4 mM) and attractive at isotonic ionic strengths. The high viscosities are attributed to electroviscous forces at low ionic strength and the significant opalescence at isotonic ionic strength is correlated with attractive antibody interactions. Furthermore, there appears to be a connection to critical phenomena and it is suggested that the extent of opalescence is dependent on the proximity to the critical point. We demonstrate that by balancing the repulsive and attractive forces via intermediate ionic strengths and by increasing the mAb concentration above the apparent critical concentration both opalescence and viscosity can be simultaneously minimized.

  7. Oxygen exchange and ice melt measured at the ice-water interface by eddy correlation

    DEFF Research Database (Denmark)

    Long, M.H.; Koopmans, D.; Berg, P.

    2012-01-01

    heterotrophic with a daily gross primary production of 0.69 mmol O2 mĝ̂'2 dĝ̂'1 and a respiration rate of ĝ̂'2.13 mmol O2 mĝ̂'2 dĝ̂'1 leading to a net ecosystem metabolism of ĝ̂'1.45 mmol O2 mĝ̂'2 dĝ̂'1. This application of the eddy correlation technique produced high temporal resolution O2 fluxes and ice melt......This study examined fluxes across the ice-water interface utilizing the eddy correlation technique. Temperature eddy correlation systems were used to determine rates of ice melting and freezing, and O2 eddy correlation systems were used to examine O2 exchange rates driven by biological and physical...

  8. Eddy Powell 1939 - 2003

    CERN Multimedia

    2003-01-01

    We were saddened to learn that Eddy Powell had passed away on Saturday 26 July after a long illness. Eddy had so many friends at CERN and made such a contribution to the Organisation that it is impossible that his passing goes without comment. Eddy was born in England on 4 August 1939 and, after serving his apprenticeship with the U.K. Ministry of Defence, he joined CERN in September 1965. As an electrical design draftsman with the Synchro-cyclotron Division he played an important role in the upgrades of that machine in the early 1970's, particularly on the RF systems and later on the development of the ISOLDE facility. This brought him into close contact with many of the technical support services in CERN and, unlike many of his compatriots, he acquired a remarkably good fluency in French. Always inquisitive on the physics carried out at CERN, he spent a great deal of time learning from physicists and engineers at all levels. When he felt sufficiently confident he became a CERN Guide for general public visit...

  9. Dynamic Kalman filtering to separate low-frequency instabilities from turbulent fluctuations: Application to the Large-Eddy Simulation of unsteady turbulent flows

    International Nuclear Information System (INIS)

    Cahuzac, A; Boudet, J; Borgnat, P; Lévêque, E

    2011-01-01

    A dynamic method based on Kalman filtering is presented to isolate low-frequency unsteadiness from turbulent fluctuations in the large-eddy simulation (LES) of unsteady turbulent flows. The method can be viewed as an adaptive exponential smoothing, in which the smoothing factor adapts itself dynamically to the local behavior of the flow. Interestingly, the proposed method does not require any empirical tuning. In practice, it is used to estimate a shear-improved Smagorinsky viscosity, in which the low-frequency component of the velocity field is used to estimate a correction term to the Smagorinsky viscosity. The LES of the flow past a circular cylinder at Reynolds number Re D = 4.7 × 10 4 is examined as a challenging test case. Good comparisons are obtained with the experimental results, indicating the relevance of the shear-improved Smagorinsky model and the efficiency of the Kalman filtering. Finally, the adaptive cut-off of the Kalman filter is investigated, and shown to adapt locally and instantaneously to the complex flow around the cylinder.

  10. Conditions of viscosity measurement for detecting irradiated peppers

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru

    1995-01-01

    Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as type of viscometer, shear rate and temperature. (author)

  11. Eddy current imaging for electrical characterization of silicon solar cells and TCO layers

    Science.gov (United States)

    Hwang, Byungguk; Hillmann, Susanne; Schulze, Martin; Klein, Marcus; Heuer, Henning

    2015-03-01

    Eddy Current Testing has been mainly used to determine defects of conductive materials and wall thicknesses in heavy industries such as construction or aerospace. Recently, high frequency Eddy Current imaging technology was developed. This enables the acquirement of information of different depth level in conductive thin-film structures by realizing proper standard penetration depth. In this paper, we summarize the state of the art applications focusing on PV industry and extend the analysis implementing achievements by applying spatially resolved Eddy Current Testing. The specific state of frequency and complex phase angle rotation demonstrates diverse defects from front to back side of silicon solar cells and characterizes homogeneity of sheet resistance in Transparent Conductive Oxide (TCO) layers. In order to verify technical feasibility, measurement results from the Multi Parameter Eddy Current Scanner, MPECS are compared to the results from Electroluminescence.

  12. Longitudinal and bulk viscosities of expanded rubidium

    International Nuclear Information System (INIS)

    Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K

    2003-01-01

    First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here

  13. EDDY - a FORTRAN program to extract significant features from eddy-current test data - the basis of the CANSCAN system

    International Nuclear Information System (INIS)

    Jarvis, R.G.; Cranston, R.J.

    1982-09-01

    The FORTRAN program EDDY is designed to analyse data: from eddy-current scans of steam generator tubes. It is written in modular form, for future development, and it uses signal-recognition techniques that the authors developed in the profilometry of irradiated fuel elements. During a scan, significant signals are detected and extracted for immediate attention or more detailed analysis later. A version of the program was used in the CANSCAN system 'for automated eddy-current in-service inspection of nuclear steam generator tubing'

  14. Comparative evaluation of aqueous humor viscosity.

    Science.gov (United States)

    Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric

    2015-01-01

    To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.

  15. Eddy Mediated Nutrient Pattern in the North Eastern Arabian Sea

    Science.gov (United States)

    Thachaparambil, M.; Moolakkal Antony, R.; B R, S.; V N, S.; N, C.; M, S.

    2016-02-01

    A Cold Core Eddy (CCE) mediated nutrient pattern in the North Eastern Arabian Sea (NEAS) is explained based on in situ measurments during March 2013 onboard FORV Sagar Sampada which was not reported earlier in the area. Samples for physical, chemical and biological parameters were collected in 5 stations along the diameter of the eddy and following standard protocols. The core of the CCE is identified at 21°20.38'N; 66°30.68'E with a diameter of 120Km. Earlier studies explaining the process and the forcing mechanism of the particular eddy records that, the eddy is short term (1-3 months) and is regular during the season. Surface waters were well oxygenated (>4.8 ml L-1) in the core. Surface value of nutrients viz., Nitrate, Nitrite, Silicate and phosphate in the core regions was 0.9µM, 0.01 µM, 0.5 µM and 0.7 µM respectively indicating upwelling in the core. Spring intermonsoon (SIM) is generally termed as a transition period between the active winter and summer seasons and as per earlier studies, high biological production and the regularly occurring Noctilica bloom is supported by the nutrient loading due to convective mixing during winter as well as regenerated production. However, present observations shows that, nutrient pumping due to the upwelling associated with the CCE also contributes for sustaining high biological production and are evident in the Chl a and mesozooplankton biovolume which records values of 4.35mg/m3 and 1.09ml/m3 respectively in the core. An intense Noctiluca blooms observed in the western flank of the eddy (Chl a 13.25 mg/m3; cell density 5.8×106 cells/litre), where Nitrate concentration records 1.04µM explains the role of such mesoscale processes in the sustenance of the HAB events. While eastern flank of the CCE showed typical open ocean condition of the season showing Nitrate 0.08µM; Chl a 0.23mg/m3; and phytoplankton cell density as 421 cells/litre. Keywords: Cold core eddy, nutrients, NEAS, SIM, biological production

  16. Characterization of high viscosity materials by total reflection x-ray fluorescence

    International Nuclear Information System (INIS)

    Custo, G.; Boeykens, S.; Vazquez, C.

    2000-01-01

    Gel are soft, solid or solid-like materials of two or more components, one of which is a liquid present in substantial amount. It consists of three-dimensional polymer network and solvent and is an important state of matter. Polymer is a long-chain molecule that is composed of a large number of repeating units of identical structure. These macromolecules assemblies recently developed have interesting properties, which depends of their structure. Their impurities change these physical properties. The great inconvenient of these systems is their high viscosity that difficult sample preparation and analysis by most common chemical techniques. The purpose of this work is to explore the applicability of the TRXRF for the multi-elemental and structural analysis of synthetic and natural aqueous gels (mean polymer molecular weight greater than 10 3 ). The polymers investigated are scleroglucan, polyacrilamide, polyoxyethylene and xhantan. (author)

  17. Eddy Current Testing for Detecting Small Defects in Thin Films

    Science.gov (United States)

    Obeid, Simon; Tranjan, Farid M.; Dogaru, Teodor

    2007-03-01

    Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.

  18. Pulsed eddy currents: principle and applications

    International Nuclear Information System (INIS)

    Bernard, A.; Coutanceau, N.

    1993-04-01

    Eddy currents are widely used as a non destructive testing technique specially for heat exchanger testing. The specificities of pulsed eddy current testing are analyzed in terms of probe design and signal processing. The specific applications are detailed. They are divided in two parts. First part, deals with the two main applications of the high peak energy supplied to the probe. One concerns the design of focused probes used for the detection of small defects in irradiated fuel rods. The other concerns the saturation of ferromagnetic materials in order to test the full thickness of the exchanger tubes. Second part, deals with applications of the wide and low frequency spectrum generated by the pulse source. It enables the testing of thick materials, and the detection of sub-surface defects. It has been tested on austenitic steel (nuclear pressure vessel nozzle), multilayered structures of aluminium alloys (aeronautics) and sleeved structures (nuclear pressure vessel head penetrations through thermal sleeves)

  19. [Computational fluid dynamics simulation of different impeller combinations in high viscosity fermentation and its application].

    Science.gov (United States)

    Dong, Shuhao; Zhu, Ping; Xu, Xiaoying; Li, Sha; Jiang, Yongxiang; Xu, Hong

    2015-07-01

    Agitator is one of the essential factors to realize high efficient fermentation for high aerobic and viscous microorganisms, and the influence of different impeller combination on the fermentation process is very important. Welan gum is a microbial exopolysaccharide produced by Alcaligenes sp. under high aerobic and high viscos conditions. Computational fluid dynamics (CFD) numerical simulation was used for analyzing the distribution of velocity, shear rate and gas holdup in the welan fermentation reactor under six different impeller combinations. The best three combinations of impellers were applied to the fermentation of welan. By analyzing the fermentation performance, the MB-4-6 combination had better effect on dissolved oxygen and velocity. The content of welan was increased by 13%. Furthermore, the viscosity of production were also increased.

  20. Cyclonic entrainment of preconditioned shelf waters into a frontal eddy

    Science.gov (United States)

    Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.

    2015-02-01

    The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.

  1. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    Science.gov (United States)

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Influence of fluid viscosity on vortex cavitation at a suction pipe inlet

    International Nuclear Information System (INIS)

    Ezure, Toshiki; Ito, Kei; Kamide, Hideki; Kameyama, Yuri; Kunugi, Tomoaki

    2016-01-01

    Cavitation is a highly important issue in various fluid machineries. In the design of an advanced loop-type sodium-cooled fast reactor in Japan, vortex cavitation is also a significant issue for the integrity of the reactor structure. Thus, an evaluation method for vortex cavitation is required. In this study, vortex cavitation at a single suction pipe inlet was studied under several different viscosity conditions including its transient behavior. The intermittent occurrence behaviors of vortex cavitation were grasped by visualization measurements. The experimental results showed that the influence of the kinematic viscosity was obvious under a high kinematic viscosity. However, the influence became smaller with decreasing kinematic viscosity. From these results, the non-dimensional circulation, which was defined as the ratio of the local circulation to the kinematic viscosity, was deduced as an evaluation parameter to estimate the influence of the kinematic viscosity. Cavitation factors at transition points from continuous occurrence to intermittent occurrences were also evaluated as representative points where vortex cavitation occurs. Then, the occurrences of vortex cavitation were expressed as a relation between the cavitation factor at transition points and the non-dimensional circulation. As a result, it was clarified that the cavitation factor at transition points increased linearly in relatively small non-dimensional circulation, while it was nearly constant in relatively large non-dimensional circulation. (author)

  3. Separation of gold nanorods by viscosity gradient centrifugation

    International Nuclear Information System (INIS)

    Dong, Suli; Wang, Yawei; Li, Xiaogang; Zhang, Qingquan; Liu, Xiaojun; Tu, Yang; Liang, Aiye

    2016-01-01

    Size-uniform gold nanorods (Au-NRs) are used in biosensing, bioimaging, photothermal therapy, drug and gene delivery, and controlled release. Monodisperse Au-NRs are usually obtained by separation steps following their synthesis, and centrifugation is widely used because of the ease of operation, high recovery, and the good availability of equipment. So far, the effect of viscosity on the separation of Au-NRs has not been investigated. We have developed a method for separation of monodisperse Au-NRs that is based on centrifugation in a viscosity gradient. Monodisperse Au-NRs obtained from gold nanoparticles were obtained by centrifugation in viscosity gradient adjusted with poly(2-ethyl-2-oxazoline). Au-NRs in sizes ranging from 25.6 to 26.1 nm in effective radius can be separated 5500 g within 5 min, which appears to be the fastest method for separation of Au-NRs. (author)

  4. Application of Technology of Hydrodynamic Cavitation Processing High-Viscosity Oils for the Purpose of Improving the Rheological Characteristics of Oils

    Science.gov (United States)

    Zemenkov, Y. D.; Zemenkova, M. Y.; Vengerov, A. A.; Brand, A. E.

    2016-10-01

    There is investigated the technology of hydrodynamic cavitational processing viscous and high-viscosity oils and the possibility of its application in the pipeline transport system for the purpose of increasing of rheological properties of the transported oils, including dynamic viscosity shear stress in the article. It is considered the possibility of application of the combined hydrodynamic cavitational processing with addition of depressor additive for identification of effect of a synergism. It is developed the laboratory bench and they are presented results of modeling and laboratory researches. It is developed the hardware and technological scheme of application of the developed equipment at industrial objects of pipeline transport.

  5. Viscosity and electrical conductivity of glass melts as a function of waste composition

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Wiley, J.R.

    1979-01-01

    Radioactive waste at the Savannah River Plant contains high concentrations of nonradioactive compounds of iron and aluminum. Simulated waste compositions containing varying ratios of iron to aluminum were added to glass melts to determine the effect on the melt properties. Waste containing high-aluminum increased the melt viscosity, but waste containing high-iron reduced the melt viscosity. Aluminum and iron both reduced the melt conductivity

  6. Large Eddy Simulation of Entropy Generation in a Turbulent Mixing Layer

    Science.gov (United States)

    Sheikhi, Reza H.; Safari, Mehdi; Hadi, Fatemeh

    2013-11-01

    Entropy transport equation is considered in large eddy simulation (LES) of turbulent flows. The irreversible entropy generation in this equation provides a more general description of subgrid scale (SGS) dissipation due to heat conduction, mass diffusion and viscosity effects. A new methodology is developed, termed the entropy filtered density function (En-FDF), to account for all individual entropy generation effects in turbulent flows. The En-FDF represents the joint probability density function of entropy, frequency, velocity and scalar fields within the SGS. An exact transport equation is developed for the En-FDF, which is modeled by a system of stochastic differential equations, incorporating the second law of thermodynamics. The modeled En-FDF transport equation is solved by a Lagrangian Monte Carlo method. The methodology is employed to simulate a turbulent mixing layer involving transport of passive scalars and entropy. Various modes of entropy generation are obtained from the En-FDF and analyzed. Predictions are assessed against data generated by direct numerical simulation (DNS). The En-FDF predictions are in good agreements with the DNS data.

  7. Complementary Use of Glider Data, Altimetry, and Model for Exploring Mesoscale Eddies in the Tropical Pacific Solomon Sea

    Science.gov (United States)

    Gourdeau, L.; Verron, J.; Chaigneau, A.; Cravatte, S.; Kessler, W.

    2017-11-01

    Mesoscale activity is an important component of the Solomon Sea circulation that interacts with the energetic low-latitude western boundary currents of the South Tropical Pacific Ocean carrying waters of subtropical origin before joining the equatorial Pacific. Mixing associated with mesoscale activity could explain water mass transformation observed in the Solomon Sea that likely impacts El Niño Southern Oscillation dynamics. This study makes synergetic use of glider data, altimetry, and high-resolution model for exploring mesoscale eddies, especially their vertical structures, and their role on the Solomon Sea circulation. The description of individual eddies observed by altimetry and gliders provides the first elements to characterize the 3-D structure of these tropical eddies, and confirms the usefulness of the model to access a more universal view of such eddies. Mesoscale eddies appear to have a vertical extension limited to the Surface Waters (SW) and the Upper Thermocline Water (UTW), i.e., the first 140-150 m depth. Most of the eddies are nonlinear, meaning that eddies can trap and transport water properties. But they weakly interact with the deep New Guinea Coastal Undercurrent that is a key piece of the equatorial circulation. Anticyclonic eddies are particularly efficient to advect salty and warm SW coming from the intrusion of equatorial Pacific waters at Solomon Strait, and to impact the characteristics of the New Guinea Coastal Current. Cyclonic eddies are particularly efficient to transport South Pacific Tropical Water (SPTW) anomalies from the North Vanuatu Jet and to erode by diapycnal mixing the high SPTW salinity.

  8. Eddy currents in pulsed field measurements

    International Nuclear Information System (INIS)

    Kuepferling, M.; Groessinger, R.; Wimmer, A.; Taraba, M.; Scholz, W.

    2002-01-01

    Full text: One problem of pulsed field magnetometry is an error in magnetization, which appears in measurements of conducting samples. This error is due to eddy currents induced by a time varying field. To allow predictions how eddy currents exert influence on the hysteresis loop, systematic experimental and theoretical studies of pulsed field measurements of metallic samples were performed. The theoretical studies include analytical calculations as well as numerical ones using a 2D finite element software. In the measurements three physical parameters have been varied: i) the conductivity of the sample by using two different materials, in this case technical Cu and Al ii) size and shape of the sample by using cylinders, spheres and cuboids iii) the pulse duration of the external field by changing the capacitor battery from 8mF ( =9.1ms) to 24mF ( =15.7ms). The time dependence of the external field corresponds with a pulsed damped harmonic oscillation with a maximum value of 5.2T. The samples were studied in the as cast state (after machining) as well as after heat treatment. Theoretical calculations showed not only good agreement with the absolute values of the measured eddy current m agnetization , they also gave an explanation of the shape of the eddy current hysteresis and the dependence of the eddy current 'magnetization' on parameters as pulse duration of the external field and conductivity of the sample. (author)

  9. Mesoscale eddies in the Gulf of Aden and their impact on the spreading of Red Sea Outflow Water

    Science.gov (United States)

    Bower, Amy S.; Furey, Heather H.

    2012-04-01

    The Gulf of Aden (GOA) in the northwestern Indian Ocean is the receiving basin for Red Sea Outflow Water (RSOW), one of the World’s few high-salinity dense overflows, but relatively little is known about spreading pathways and transformation of RSOW through the gulf. Here we combine historical data, satellite altimetry, new synoptic hydrographic surveys and the first in situ direct observations of subsurface currents in the GOA to identify the most important processes in the spreading of RSOW. The new in situ data sets were collected in 2001-2003 as part of the Red Sea Outflow Experiment (REDSOX) and consist of two CTD/LADCP Surveys and 49 one-year trajectories from acoustically tracked floats released at the depth of RSOW. The results indicate that the prominent positive and negative sea level anomalies frequently observed in the GOA with satellite altimetry are associated with anticyclonic and cyclonic eddies that often reach to at least 1000 m depth, i.e., through the depth range of equilibrated RSOW. The eddies dominate RSOW spreading pathways and help to rapidly mix the outflow water with the background. Eddies in the central and eastern gulf are basin-scale (∼250-km diameter) and have maximum azimuthal speeds of about 30 cm/s at the RSOW level. In the western gulf, smaller eddies not detectable with satellite altimetry appear to form as the larger westward-propagating eddies impale themselves on the high ridges flanking the Tadjura Rift. Both the hydrographic and Lagrangian observations show that eddies originating outside the gulf often transport a core of much cooler, fresher water from the Arabian Sea all the way to the western end of the GOA, where the highest-salinity outflow water is found. This generates large vertical and horizontal gradients of temperature and salinity, setting up favorable conditions for salt fingering and diffusive convection. Both of these mixing processes were observed to be active in the gulf. Two new annually appearing

  10. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  11. Outcome of long-axis percutaneous sacroplasty for the treatment of sacral insufficiency fractures with a radiofrequency-induced, high-viscosity bone cement

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, Katrin [University of Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); J. W. Goethe University of Frankfurt, Institute for Diagnostic and Interventional Radiology, Frankfurt (Germany); Zangos, Stephan; Vogl, Thomas J. [University of Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Mack, Martin G. [Radiology Munich, Munich (Germany); Marzi, Ingo [University of Frankfurt, Department of Trauma, Hand and Reconstructive Surgery, Frankfurt (Germany)

    2014-04-15

    Our goal was to assess the technical results in patients who underwent long-axis sacroplasty for the treatment of sacral insufficiency fractures (SIF) by radiofrequency-induced high-viscosity bone cement augmentation. Twelve patients with bilateral sacral fractures were treated by augmentation with radiofrequency-activated, high-viscosity polymethylmethacrylate (PMMA) bone cement under local anesthesia. CT-guided sacroplasty was performed by using a long-axis approach through a single entry point. Thirty-six vertebrae were treated in 12 sessions under a combination of CT and fluoroscopic guidance using a bilateral access and a cavity-creating osteotome prior to remote-controlled, hydraulically driven cement injection. The visual analogue scale (VAS) score before sacroplasty and at 1 and 3 months after the treatment was obtained. PMMA leaks were evaluated retrospectively using the post-interventional CT. The mean amount of high-viscosity PMMA injected per patient was 7.8 ml. No major adverse events were observed. In the first 4 days after the procedure, the mean VAS score decreased from 8.1 ± 1.9 to mean 3.1 ± 1.2 and was followed by a gradual but continuous decrease throughout the rest of the follow-up period at 24 weeks (mean 2.2 ± 1.1) and 48 weeks (mean 2.1 ± 1.4). CT fluoroscopy-guided sacral augmentation was safe and effective in all 12 patients with osteoporotic SIF. (orig.)

  12. IEDA [Intelligent Eddy Current Data Analysis] helps make sense of eddy current data [steam generators

    International Nuclear Information System (INIS)

    Clark, R.

    1989-01-01

    The increasing sophistication of eddy current signal interpretation in steam generator tubing has improved capabilities, but has also made the process of analysis more complex and time consuming. Westinghouse has developed an intelligent computerised tool - the IEDA (Intelligent Eddy Current Data Analysis) system, to lighten the load on analysts. Since 1985, 44 plants have been inspected with IEDA, representing over 400,000 tubes. The system has provided a repeatability and a consistency not achieved by human operators. (U.K.)

  13. Bulk viscosity of spin-one color superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sa' d, Basil A.

    2009-08-27

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  14. Bulk viscosity of spin-one color superconductors

    International Nuclear Information System (INIS)

    Sa'd, Basil A.

    2009-01-01

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  15. Altruism Can Proliferate through Population Viscosity despite High Random Gene Flow

    Science.gov (United States)

    Schonmann, Roberto H.; Vicente, Renato; Caticha, Nestor

    2013-01-01

    The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis has led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism through population viscosity in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism that benefits equally all group members, regardless of kinship and without greenbeard effects, can spread when rare under realistic group sizes and levels of migration, due to the assortment of genes resulting only from population viscosity. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton’s rule for the spread of altruistic alleles, applicable under broad conditions. PMID:23991035

  16. Altruism can proliferate through population viscosity despite high random gene flow.

    Directory of Open Access Journals (Sweden)

    Roberto H Schonmann

    Full Text Available The ways in which natural selection can allow the proliferation of cooperative behavior have long been seen as a central problem in evolutionary biology. Most of the literature has focused on interactions between pairs of individuals and on linear public goods games. This emphasis has led to the conclusion that even modest levels of migration would pose a serious problem to the spread of altruism through population viscosity in group structured populations. Here we challenge this conclusion, by analyzing evolution in a framework which allows for complex group interactions and random migration among groups. We conclude that contingent forms of strong altruism that benefits equally all group members, regardless of kinship and without greenbeard effects, can spread when rare under realistic group sizes and levels of migration, due to the assortment of genes resulting only from population viscosity. Our analysis combines group-centric and gene-centric perspectives, allows for arbitrary strength of selection, and leads to extensions of Hamilton's rule for the spread of altruistic alleles, applicable under broad conditions.

  17. Properties, Mechanisms and Predictability of Eddies in the Red Sea

    KAUST Repository

    Zhan, Peng

    2018-04-01

    Eddies are one of the key features of the Red Sea circulation. They are not only crucial for energy conversion among dynamics at different scales, but also for materials transport across the basin. This thesis focuses on studying the characteristics of Red Sea eddies, including their temporal and spatial properties, their energy budget, the mechanisms of their evolution, and their predictability. Remote sensing data, in-situ observations, the oceanic general circulation model, and data assimilation techniques were employed in this thesis. The eddies in the Red Sea were first identified using altimeter data by applying an improved winding-angle method, based on which the statistical properties of those eddies were derived. The results suggested that eddies occur more frequently in the central basin of the Red Sea and exhibit a significant seasonal variation. The mechanisms of the eddies’ evolution, particularly the eddy kinetic energy budget, were then investigated based on the outputs of a long-term eddy resolving numerical model configured for the Red Sea with realistic forcing. Examination of the energy budget revealed that the eddies acquire the vast majority of kinetic energy through conversion of eddy available potential energy via baroclinic instability, which is intensified during winter. The possible factors modulating the behavior of the several observed eddies in the Red Sea were then revealed by conducting a sensitivity analysis using the adjoint model. These eddies were found to exhibit different sensitivities to external forcings, suggesting different mechanisms for their evolution. This is the first known adjoint sensitivity study on specific eddy events in the Red Sea and was hitherto not previously appreciated. The last chapter examines the predictability of Red Sea eddies using an ensemble-based forecasting and assimilation system. The forecast sea surface height was used to evaluate the overall performance of the short-term eddy

  18. Viscosity of particle laden films

    Directory of Open Access Journals (Sweden)

    Timounay Yousra

    2017-01-01

    Full Text Available We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  19. Viscosity of particle laden films

    Science.gov (United States)

    Timounay, Yousra; Rouyer, Florence

    2017-06-01

    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  20. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Yamamoto, Mayumi

    2018-01-01

    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  1. Experimental study on the viscosity and adhesive performance of exogenous liquid fibrin glue.

    Science.gov (United States)

    Hayashi, Takuro; Hasegawa, Mitsuhiro; Inamasu, Joji; Adachi, Kazuhide; Nagahisa, Shinya; Hirose, Yuichi

    2014-01-01

    Exogenous fibrin glue (FG) is highly suitable for neurosurgical procedures, because of its viscosity and adhesive properties. Several FGs are commercially available, but only few reports detail their differences. In the present study, we investigated the viscosity and adhesive performance of two types of FG: one is derived from blood donated in Europe and the United States (CSL Behring's Beriplast(®), BP) and the other is derived from blood donated in Japan (the Chemo-Sero-Therapeutic Research Institute's Bolheal(®), BH). The viscosity test that measured fibrinogen viscosity revealed that BP had significantly higher viscosity than BH. Similarly, the dripping test showed that BP traveled a significantly shorter drip distance in the vertical direction than BH, although the transverse diameter of the coagulated FG did not differ statistically significantly. In the tensile strength test, BP showed superior adhesion performance over BH. The histological study of the hematoxylin-eosin-stained specimens in both groups showed favorable adhesion. Although further studies are required on its manufacturing and usage methods, FG shows differences in viscosity and adhesive performance according to the blood from which it is derived. We conclude that it is desirable to select the type and usage method of FG according to the characteristics of the surgical operation in question. Our findings suggest that FG produced from the blood donated in Europe and the United States might be more suitable for use in surgical procedures that demand an especially high degree of viscosity and rapid adhesive performance.

  2. Wind changes above warm Agulhas Current eddies

    CSIR Research Space (South Africa)

    Rouault, M

    2016-01-01

    Full Text Available speeds above the eddies at the instantaneous scale; 20 % of cases had incomplete data due to partial global coverage by the scatterometer for one path. For cases where the wind is stronger above warm eddies, there is no relationship between the increase...

  3. The R and D of half-sine pulser for eddy-current septum magnet

    International Nuclear Information System (INIS)

    Fu Luxin; Han Qian; Kang Wen

    2002-01-01

    The SSRF requires high-amplitude half-sine pulse current (10kA) and relatively narrow pulse width (∼60μs) for its eddy-current septum magnets. Moreover the machine will need a very high level of performance from the pulsers, particularly in terms of pulse amplitude stability and regulating range. For the convenience of maintenance the pulsers will be installed in the power supply hall and cabled to their eddy-current septum magnets by RG220/U. The author presents the pulser design and R and D results

  4. The R and D of half-sine pulser for eddy-current septum magnet

    CERN Document Server

    Fu Lu Xin; Kang Wen

    2002-01-01

    The SSRF requires high-amplitude half-sine pulse current (10kA) and relatively narrow pulse width (approx 60 mu s) for its eddy-current septum magnets. Moreover the machine will need a very high level of performance from the pulsers, particularly in terms of pulse amplitude stability and regulating range. For the convenience of maintenance the pulsers will be installed in the power supply hall and cabled to their eddy-current septum magnets by RG220/U. The author presents the pulser design and R and D results

  5. Observational evidence of seasonality in the timing of loop current eddy separation

    Science.gov (United States)

    Hall, Cody A.; Leben, Robert R.

    2016-12-01

    Observational datasets, reports and analyses over the time period from 1978 through 1992 are reviewed to derive pre-altimetry Loop Current (LC) eddy separation dates. The reanalysis identified 20 separation events in the 15-year record. Separation dates are estimated to be accurate to approximately ± 1.5 months and sufficient to detect statistically significant LC eddy separation seasonality, which was not the case for previously published records because of the misidentification of separation events and their timing. The reanalysis indicates that previously reported LC eddy separation dates, determined for the time period before the advent of continuous altimetric monitoring in the early 1990s, are inaccurate because of extensive reliance on satellite sea surface temperature (SST) imagery. Automated LC tracking techniques are used to derive LC eddy separation dates in three different altimetry-based sea surface height (SSH) datasets over the time period from 1993 through 2012. A total of 28-30 LC eddy separation events were identified in the 20-year record. Variations in the number and dates of eddy separation events are attributed to the different mean sea surfaces and objective-analysis smoothing procedures used to produce the SSH datasets. Significance tests on various altimetry and pre-altimetry/altimetry combined date lists consistently show that the seasonal distribution of separation events is not uniform at the 95% confidence level. Randomization tests further show that the seasonal peak in LC eddy separation events in August and September is highly unlikely to have occurred by chance. The other seasonal peak in February and March is less significant, but possibly indicates two seasons of enhanced probability of eddy separation centered near the spring and fall equinoxes. This is further quantified by objectively dividing the seasonal distribution into two seasons using circular statistical techniques and a k-means clustering algorithm. The estimated

  6. Glass viscosity calculation based on a global statistical modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  7. A subsurface cyclonic eddy in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; PrasannaKumar, S.; Rao, D.P.

    and to a larger extent from the action of wind stress curl while in the southern part the northward current is purely wind-driven. High stratification causEd. by fresh water influx prevented the eddy from being detected at the surface....

  8. Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region

    Science.gov (United States)

    Zhang, Shuwen; Curchitser, Enrique N.; Kang, Dujuan; Stock, Charles A.; Dussin, Raphael

    2018-01-01

    The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.

  9. A Comparison of the Viscosities of Thickened Liquids for Pediatric Dysphagia.

    Science.gov (United States)

    Wijesinghe, Ranjith; Clifton, Mekale; Tarlton, Morgan; Heinsohn, Erica; Ewing, Mary

    It has been reported that Speech Language Pathologists in different facilities across the nation use a variety of thickening agents and recipes as therapeutic measures for infants and children diagnosed with dysphagia. Limited research has been completed in this area. Viscosity was tested to determine the thickness of each thickening agent mixed with infant formula. The values were then compared to the National Dysphagia Diet liquid levels to determine which thickening agent resulted in the desired viscosity levels. The thickeners were mixed with common infant formulas and soy formulas to determine if the type of formula impacted the viscosity. The main goal was to determine if the assumed thickness level (viscosity) of prescribed thickened liquids was actually being met. This topic is of high concern because of its impact on the safety and well-being of clients with dysphagia. A viscometer was used to collect the viscosity levels. Commercially available formulas selected for this study. The final results of our investigation will be presented during the APS meeting. This work is supported by a Ball State University Immersive Learning Grant.

  10. Eddy Current Sensing of Torque in Rotating Shafts

    Science.gov (United States)

    Varonis, Orestes J.; Ida, Nathan

    2013-12-01

    The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.

  11. Mesoscale eddies in the Subantarctic Front-Southwest Atlantic

    Directory of Open Access Journals (Sweden)

    Pablo D. Glorioso

    2005-12-01

    Full Text Available Satellite and ship observations in the southern southwest Atlantic (SSWA reveal an intense eddy field and highlight the potential for using continuous real-time satellite altimetry to detect and monitor mesoscale phenomena with a view to understanding the regional circulation. The examples presented suggest that mesoscale eddies are a dominant feature of the circulation and play a fundamental role in the transport of properties along and across the Antarctic Circumpolar Current (ACC. The main ocean current in the SSWA, the Falkland-Malvinas Current (FMC, exhibits numerous embedded eddies south of 50°S which may contribute to the patchiness, transport and mixing of passive scalars by this strong, turbulent current. Large eddies associated with meanders are observed in the ACC fronts, some of them remaining stationary for long periods. Two particular cases are examined using a satellite altimeter in combination with in situ observations, suggesting that cross-frontal eddy transport and strong meandering occur where the ACC flow intensifies along the sub-Antarctic Front (SAF and the Southern ACC Front (SACCF.

  12. Large Eddy Simulation of High-Speed, Premixed Ethylene Combustion

    Science.gov (United States)

    Ramesh, Kiran; Edwards, Jack R.; Chelliah, Harsha; Goyne, Christopher; McDaniel, James; Rockwell, Robert; Kirik, Justin; Cutler, Andrew; Danehy, Paul

    2015-01-01

    A large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) methodology is used to simulate premixed ethylene-air combustion in a model scramjet designed for dual mode operation and equipped with a cavity for flameholding. A 22-species reduced mechanism for ethylene-air combustion is employed, and the calculations are performed on a mesh containing 93 million cells. Fuel plumes injected at the isolator entrance are processed by the isolator shock train, yielding a premixed fuel-air mixture at an equivalence ratio of 0.42 at the cavity entrance plane. A premixed flame is anchored within the cavity and propagates toward the opposite wall. Near complete combustion of ethylene is obtained. The combustor is highly dynamic, exhibiting a large-scale oscillation in global heat release and mass flow rate with a period of about 2.8 ms. Maximum heat release occurs when the flame front reaches its most downstream extent, as the flame surface area is larger. Minimum heat release is associated with flame propagation toward the cavity and occurs through a reduction in core flow velocity that is correlated with an upstream movement of the shock train. Reasonable agreement between simulation results and available wall pressure, particle image velocimetry, and OH-PLIF data is obtained, but it is not yet clear whether the system-level oscillations seen in the calculations are actually present in the experiment.

  13. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity

    Science.gov (United States)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-04-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  14. Observed 3D Structure, Generation, and Dissipation of Mesoscale Eddies in the South China Sea

    Science.gov (United States)

    Zhang, Z.; Tian, J.; Qiu, B.; Zhao, W.

    2016-12-01

    South China Sea (SCS), the largest marginal sea in the western Pacific, is abundant with strong mesoscale eddies as revealed by both satellite and in situ observations. The 3D structure, generation and dissipation mechanisms of the SCS mesoscale eddies, however, are still not well understood at present due to the lack of well-designed and comprehensive field observations. In order to address the above scientific issues, the SCS Mesoscale Eddy Experiment (S-MEE for short) was designed and conducted in the period from October 2013 to June 2014. As part of S-MEE, two bottom-anchored subsurface mooring arrays with one consisting of 10 moorings and the other 7 moorings, were deployed along the historical pathway of the mesoscale eddies in the northern SCS. All the moorings were equipped with ADCPs, RCMs, CTDs and temperature chains to make continues measurements of horizontal current velocity and temperature/salinity in the whole water column. In addition to moored observations, we also conducted two transects across the center of one anticyclonic eddy (AE) and made high-resolution hydrographic and turbulent mixing measurements. Based on the data collected by the S-MEE, we obtained the full-depth 3D structures of one AE and one cyclonic eddy (CE) and revealed their generation and dissipation mechanisms. For the first time we found that the eddies in the northern SCS extend from the surface to the sea bottom and display prominent tilted structures in the vertical. The AE was suggested to be shed from the Kuroshio current, which intruded into the SCS through Luzon Strait in winter. For the CE, its generation was associated with the barotropic instability of the Kuroshio current. By conducting an eddy energy budget analysis, we further identified that generation of submesoscale motions constitutes the dominant mechanism for the eddy dissipation. The findings in this study, not only provides new insights into the 3D structure of oceanic eddies, but also contributes to

  15. Solitonlike solutions in loop current eddies

    Science.gov (United States)

    Nakamoto, Shoichiro

    1989-01-01

    The application of the nonlinear quasi-geostrophic equations to an isolated eddy in the western continental slope region in the Gulf of Mexico is examined for a two-layer ocean model with bottom topography. In the linear limit, solutions are topographic nondispersive waves. Form-preserving solutions, or solitons, have been found. The solution is shown to be a limiting form for a nonlinear dispersive system propagating northward along the topographic waveguide in the western continental slope region in the Gulf of Mexico. Using satellite-tracked drifter data, a linear relationship is found between the amplitude of the deduced stream function of the eddy and its observed translational velocity over the continental slope, which supports the hypothesis that some mesoscale eddies interacting with the continental slope behave as solitons.

  16. A new model for the accurate calculation of natural gas viscosity

    Directory of Open Access Journals (Sweden)

    Xiaohong Yang

    2017-03-01

    Full Text Available Viscosity of natural gas is a basic and important parameter, of theoretical and practical significance in the domain of natural gas recovery, transmission and processing. In order to obtain the accurate viscosity data efficiently at a low cost, a new model and its corresponding functional relation are derived on the basis of the relationship among viscosity, temperature and density derived from the kinetic theory of gases. After the model parameters were optimized using a lot of experimental data, the diagram showing the variation of viscosity along with temperature and density is prepared, showing that: ① the gas viscosity increases with the increase of density as well as the increase of temperature in the low density region; ② the gas viscosity increases with the decrease of temperature in high density region. With this new model, the viscosity of 9 natural gas samples was calculated precisely. The average relative deviation between these calculated values and 1539 experimental data measured at 250–450 K and 0.10–140.0 MPa is less than 1.9%. Compared with the 793 experimental data with a measurement error less than 0.5%, the maximum relative deviation is less than 0.98%. It is concluded that this new model is more advantageous than the previous 8 models in terms of simplicity, accuracy, fast calculation, and direct applicability to the CO2 bearing gas samples.

  17. Effects of plasma viscosity modulation on cardiac function during moderate hemodilution

    Directory of Open Access Journals (Sweden)

    Chatpun Surapong

    2010-01-01

    Full Text Available Background : Previous studies have found that increasing plasma viscosity as whole blood viscosity decrease has beneficial effects in microvascular hemodynamics. As the heart couples with systemic vascular network, changes in plasma and blood viscosity during hemodilution determine vascular pressure drop and flow rate, which influence cardiac function. This study aimed to investigate how changes in plasma viscosity affect on cardiac function during acute isovolemic hemodilution. Materials and Methods: Plasma viscosity was modulated by hemodilution of 40% of blood volume with three different plasma expanders (PEs. Dextran 2000 kDa (Dx2M, 6.3 cP and dextran 70 kDa (Dx70, 3.0 cP were used as high and moderate viscogenic PEs, respectively. Polyethylene glycol conjugated with human serum albumin (PEG-HSA, 2.2 cP was used as low viscogenic PE. The cardiac function was assessed using a miniaturized pressure-volume conductance catheter. Results: After hemodilution, pressure dropped to 84%, 79%, and 78% of baseline for Dx2M, Dx70 and PEG-HSA, respectively. Cardiac output markedly increased for Dx2M and PEG-HSA. Dx2M significantly produced higher stroke work relative to baseline and compared to Dx70. Conclusion: Acute hemodilution with PEG-HSA without increasing plasma viscosity provided beneficial effects on cardiac function compared to Dx70, and similar to those measured with Dx2M. Potentially negative effects of increasing peripheral vascular resistance due to the increase in plasma viscosity were prevented.

  18. Viscose kink and drift-kink modes in a tokamak

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Mikhajlovskij, A.B.

    1988-01-01

    Intristic kink modes in a tokamak are theoretically investigated taking account of longitudinal viscosity of ions and electrons and drift effect. It is marked that dispersion equation of investigated modes coinsides in form with that for ballooning modes. It is shown that five types of intrinsic kink instability may be distinguished in disregard of viscosity and drift effects. Effect of stabilizing quasiideal viscose kink and viscose resistive kink modes by finite Larmuir ion radius is investigated. A branch of viscose reclosure mode which instability is due to electron viscosity is pointed out. A series of other viscose and drift-kink tokamak modes is considered. Both general disperse equations of the above-mentioned kink instability varieties, taking account of viscose and drift ones, and disperse equations of separate branches are presented

  19. Do light cured ART conventional high-viscosity glass-ionomer sealants perform better than resin-composite sealants: a 4-year randomized clinical trial

    NARCIS (Netherlands)

    Zhang, W.; Chen, X.; Fan, M.W.; Mulder, J.; Huysmans, M.C.D.N.J.M.; Frencken, J.E.F.M.

    2014-01-01

    OBJECTIVE: The hypotheses tested were: the cumulative survival rates of dentin caries lesion-free pits and fissures of ART conventional high-viscosity glass-ionomer sealants with light-curing (high-intensity LED) and glass-carbomer sealants are higher than those of conventional ART sealants and

  20. VISCOSITY TEST OF VEHICLE ENGINE OILS

    OpenAIRE

    Rita Prasetyowati

    2016-01-01

    This study aims to determine the value of the kinematic viscosity lubricants motorcycle that has been used at various temperatures and the use of distance. This study also aims to remedy mengtahui how the value of the kinematic viscosity of the lubricant car that has been used in a wide range of temperature variation and distance usage. Viscosity liquid, in this case is the lubricants, can be determined using the Redwood viscometer By using Redwood viscometer, can be measured flow time requir...

  1. Dynamic subgrid scale model used in a deep bundle turbulence prediction using the large eddy simulation method

    International Nuclear Information System (INIS)

    Barsamian, H.R.; Hassan, Y.A.

    1996-01-01

    Turbulence is one of the most commonly occurring phenomena of engineering interest in the field of fluid mechanics. Since most flows are turbulent, there is a significant payoff for improved predictive models of turbulence. One area of concern is the turbulent buffeting forces experienced by the tubes in steam generators of nuclear power plants. Although the Navier-Stokes equations are able to describe turbulent flow fields, the large number of scales of turbulence limit practical flow field calculations with current computing power. The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (Smagorinsky, 1963) (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization

  2. Development of eddy current sensor for detecting defect on ferromagnetic material

    International Nuclear Information System (INIS)

    Choi, Duck Su; Lee, Hyang Beom

    2002-01-01

    In this paper, the eddy current sensor is developed for observing the ability of detecting defect on ferromagnetic material with variation of frequency and velocity. In order to research the characteristics on eddy current sensor. The circuit which is designed for processing detected voltage is developed and differential frequency is used for eddy current sensor to detect defect with variation of frequency. The ability of eddy current sensor to detect defects is studied with variation of velocity adjusted by rotating the circular plate. This study shows that the ability of eddy current sensor for detecting defect is increased and decreased by frequency. This fact means that the sensor has its best ability at a certain frequency. And the ability of eddy current sensor by velocity is decreased by increased velocity. Therefore, the eddy current sensor has to be developed with consideration of its operation velocity and frequency.

  3. Designing a highly sensitive Eddy current sensor for evaluating damage on thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Min; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Seong; Lee, Yeong Ze [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Seul Gi [LG Electronics, Seoul (Korea, Republic of)

    2016-06-15

    A thermal barrier coating (TBC) has been widely applied to machine components working under high temperature as a thermal insulator owing to its critical financial and safety benefits to the industry. However, the nondestructive evaluation of TBC damage is not easy since sensing of the microscopic change that occurs on the TBC is required during an evaluation. We designed an eddy current probe for evaluating damage on a TBC based on the finite element method (FEM) and validated its performance through an experiment. An FEM analysis predicted the sensitivity of the probe, showing that impedance change increases as the TBC thermally degrades. In addition, the effect of the magnetic shield concentrating magnetic flux density was also observed. Finally, experimental validation showed good agreement with the simulation result.

  4. Distribution of the near-inertial kinetic energy inside mesoscale eddies: Observations in the Gulf of Mexico

    Science.gov (United States)

    Ixetl Garcia Gomez, Beatriz; Pallas Sanz, Enric; Candela Perez, Julio

    2017-04-01

    The near-inertial oscillations (NIOs), generated by the wind stress on the surface mixed layer, are the inertia gravity waves with the lowest frequency and the highest kinetic energy. NIOs are important because they drive vertical mixing in the interior ocean during wave breaking events. Although the interaction between NIOs and mesoscale eddies has been reported by several authors, these studies are mostly analytical and numerical, and only few observational studies have attempted to show the differences in near-inertial kinetic energy (KEi) between anticyclonic and cyclonic eddies. In this work the spatial structure of the KEi inside the mesoscale eddies is computed using daily satellite altimetry and observations of horizontal velocity from 23 moorings equipped with acoustic Doppler current profilers in the western Gulf of Mexico. Consistent to theory, the obtained four-year KEi-composites show two times more KEi inside the anticyclonic eddies than inside the cyclonic ones. The vertical and horizontal cross-sections of the KEi-composites show that the KEi is mainly located near to the surface of the cyclonic eddies (positive vorticity), whereas the KEi in anticyclonic eddies (negative vorticity) is maximum in the eddy's center near to the base of the eddy where the NIOs become more inertial, are trapped, and amplified. The mean vertical profiles show that the cyclonic eddies present a maximum of KEi near to the surface at 50, while the maximum of KEi in the anticyclonic eddies occurs between 900 and 1100 m. Inside anticyclonic eddies another two relative maximums are observed, one in the mixed layer and the second at 300 m. In contrast, the mean profile of KEi outside the mesoscale eddies has the maximum value at the surface ( 50 m), with high values of KEi in the first 200 m and negligible energy beneath that depth. A different mean distribution of the KEi is observed depending on the type of wind generator: tropical storms or unidirectional wind.

  5. Effect of Fluid Dynamic Viscosity on the Strength of Chalk

    DEFF Research Database (Denmark)

    Hedegaard, K.; Fabricius, Ida Lykke

    The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...... of the chalk decreases with increasing dynamic viscosity. The proposed qualitative explanation is that pressure difference supports and enhances the generation of microscopic shear and tensile failures....

  6. Variation of velocity profile according to blood viscosity in a microfluidic channel

    Science.gov (United States)

    Yeom, Eunseop; Kang, Yang Jun; Lee, Sang-Joon

    2014-11-01

    The shear-thinning effect of blood flows is known to change blood viscosity. Since blood viscosity and motion of red blood cells (RBCs) are closely related, hemorheological variations have a strong influence on hemodynamic characteristics. Therefore, understanding on the relationship between the hemorheological and hemodynamic properties is importance for getting more detailed information on blood circulation in microvessels. In this study, the blood viscosity and velocity profiles in a microfluidic channel were systematically investigated. Rat blood was delivered in the microfluidic device which can measure blood viscosity by monitoring the flow-switching phenomenon. Velocity profiles of blood flows in the microchannel were measured by using a micro-particle image velocimetry (PIV) technique. Shape of velocity profiles measured at different flow rates was quantified by using a curve-fitting equation. It was observed that the shape of velocity profiles is highly correlated with blood viscosity. The study on the relation between blood viscosity and velocity profile would be helpful to understand the roles of hemorheological and hemodynamic properties in cardiovascular diseases. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2008-0061991).

  7. Viscosity of iodinated contrast agents during renal excretion

    International Nuclear Information System (INIS)

    Jost, Gregor; Lengsfeld, Philipp; Lenhard, Diana C.; Pietsch, Hubertus; Huetter, Joachim; Sieber, Martin A.

    2011-01-01

    Objective: Modern iodinated non-ionic contrast agents (CAs) can be classified based on their molecular structure into monomeric and dimeric CAs and have at comparable iodine concentrations a different viscosity and osmolality. During their renal excretion, CAs are concentrated in the renal tubuli which might enhance the viscosity difference between monomeric and dimeric CAs. The viscosity of a CA might have an underestimated importance for renal safety, as suggested by recent publications. In this study, we investigated the viscosities of CAs at the concentrations expected to be present in renal tubules. This concentration process was simulated in vitro using dialysis. Furthermore, we investigated urine viscosity and urine flow in rodents after administration of several non-ionic monomeric and dimeric CAs. Materials and methods: To estimate the viscosity of the CAs in vivo, we performed an in vitro dialysis of monomeric and dimeric CAs at various physiological osmolalities of the renal tubulus (290, 400, 500, 700 and 1000 mOsm/kg H 2 O). Following the dialysis, the iodine concentrations and the viscosities of the CAs were determined. Furthermore, to investigate the concentration process in vivo, we measured the urine viscosity and the urine flow in Han Wister rats after the administration of Iopromide, Iohexol, Ioversol, Iomeprol, Iodixanol, and Iosimenol at comparable iodine concentrations. As a control, saline was injected at the same volume. Results: In vitro dialysis of the dimeric CA increased the iodine concentration and strongly increased the viscosity at all tested osmolalities. In contrast, for the monomeric agents an increase in concentration and viscosity was observed only at 700 as well 1000 mOsm/kg H 2 O but to a lesser extent. In summary, dialysis strongly enhanced the viscosity differences between the non-ionic monomeric and dimeric CAs. The administration of dimeric CAs leads to a strong increase in urine viscosity; this was not observed for the

  8. Viscosity of iodinated contrast agents during renal excretion

    Energy Technology Data Exchange (ETDEWEB)

    Jost, Gregor, E-mail: Gregor.Jost@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lengsfeld, Philipp, E-mail: Philipp.Lengsfeld@bayer.com [Global Medical Affairs Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lenhard, Diana C., E-mail: Diana.Lenhard@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Pietsch, Hubertus, E-mail: Hubertus.Pietsch@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Huetter, Joachim, E-mail: Joachim.Huetter@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Sieber, Martin A., E-mail: Martin.Sieber@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany)

    2011-11-15

    Objective: Modern iodinated non-ionic contrast agents (CAs) can be classified based on their molecular structure into monomeric and dimeric CAs and have at comparable iodine concentrations a different viscosity and osmolality. During their renal excretion, CAs are concentrated in the renal tubuli which might enhance the viscosity difference between monomeric and dimeric CAs. The viscosity of a CA might have an underestimated importance for renal safety, as suggested by recent publications. In this study, we investigated the viscosities of CAs at the concentrations expected to be present in renal tubules. This concentration process was simulated in vitro using dialysis. Furthermore, we investigated urine viscosity and urine flow in rodents after administration of several non-ionic monomeric and dimeric CAs. Materials and methods: To estimate the viscosity of the CAs in vivo, we performed an in vitro dialysis of monomeric and dimeric CAs at various physiological osmolalities of the renal tubulus (290, 400, 500, 700 and 1000 mOsm/kg H{sub 2}O). Following the dialysis, the iodine concentrations and the viscosities of the CAs were determined. Furthermore, to investigate the concentration process in vivo, we measured the urine viscosity and the urine flow in Han Wister rats after the administration of Iopromide, Iohexol, Ioversol, Iomeprol, Iodixanol, and Iosimenol at comparable iodine concentrations. As a control, saline was injected at the same volume. Results: In vitro dialysis of the dimeric CA increased the iodine concentration and strongly increased the viscosity at all tested osmolalities. In contrast, for the monomeric agents an increase in concentration and viscosity was observed only at 700 as well 1000 mOsm/kg H{sub 2}O but to a lesser extent. In summary, dialysis strongly enhanced the viscosity differences between the non-ionic monomeric and dimeric CAs. The administration of dimeric CAs leads to a strong increase in urine viscosity; this was not observed for

  9. Pressure Effect on Extensional Viscosity

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Kjær, Erik Michael

    1999-01-01

    The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves....... The experiments show a significant increase in extensional viscosity with increasing pressure....

  10. On the phase lag of turbulent dissipation in rotating tidal flows

    Science.gov (United States)

    Zhang, Qianjiang; Wu, Jiaxue

    2018-03-01

    Field observations of rotating tidal flows in a shallow tidally swept sea reveal that a notable phase lag of both shear production and turbulent dissipation increases with height above the seafloor. These vertical delays of turbulent quantities are approximately equivalent in magnitude to that of squared mean shear. The shear production approximately equals turbulent dissipation over the phase-lag column, and thus a main mechanism of phase lag of dissipation is mean shear, rather than vertical diffusion of turbulent kinetic energy. By relating the phase lag of dissipation to that of the mean shear, a simple formulation with constant eddy viscosity is developed to describe the phase lag in rotating tidal flows. An analytical solution indicates that the phase lag increases linearly with height subjected to a combined effect of tidal frequency, Coriolis parameter and eddy viscosity. The vertical diffusion of momentum associated with eddy viscosity produces the phase lag of squared mean shear, and resultant delay of turbulent quantities. Its magnitude is inhibited by Earth's rotation. Furthermore, a theoretical formulation of the phase lag with a parabolic eddy viscosity profile can be constructed. A first-order approximation of this formulation is still a linear function of height, and its magnitude is approximately 0.8 times that with constant viscosity. Finally, the theoretical solutions of phase lag with realistic viscosity can be satisfactorily justified by realistic phase lags of dissipation.

  11. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  12. Large-eddy simulations of surface-induced turbulence and its implications to the interpretation of eddy-covariance measurements in heterogeneous landscapes

    Science.gov (United States)

    Bohrer, G.; Kenny, W.; Morin, T. H.

    2015-12-01

    We used the RAMS-based Forest Large Eddy Simulations (RAFLES) to evaluate the sensitivity of eddy covariance measurements to land-surface discontinuity. While the sensitivity of eddy covariance measurements to surface heterogeneity is well known, it is, in most cases, no feasible to restrict measurements only to sites where the surface include undisturbed and homogeneous land cover over vast distances around the observation tower. The common approach to handle surface heterogeneity is to use a footprint model and reject observations obtained while the source of observed signal is from a mixture of land-use types, and maintain only measurements where the signal originates mostly from the land-use type of interest. We simulated two scenarios - measurements of fluxes from a small forest-surrounded lake, and measurements near a forest edge. These are two very common scenarios where measurements are bound to be affected by heterogeneity - measurements in small lakes, will, by definition, be in some non-negligible proximity or the lake edge; forest edges are common in any forest, near the forest patch edge but also around disturbed patches and forest gaps. We identify regions where the surface heterogeneity is creating persistent updraft or downdraft. A non-zero mean vertical wind is typically neglected in eddy-covariance measurements. We find that these circulations lead to both vertical and horizontal advection that cannot be easily measured by a single eddy-covariance tower. We identify downwind effects, which are well known, but also quantify the upwind effects. We find that surface-induced circulations may affect the flux measured from a tower up to several canopy heights ahead of the discontinuity. We used the High-resolution Volatile Organic Compound Atmospheric Chemistry in Canopies (Hi-VACC) model to determine the actual measurement footprints throughout the RAFLES domain. We estimated the land-cover type distribution of the source signal at different virtual

  13. Eddy-induced Sea Surface Salinity changes in the tropical Pacific

    Science.gov (United States)

    Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.

    2017-12-01

    We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.

  14. Viscosity characteristics of selected volcanic rock melts

    Science.gov (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  15. Clinical and SEM assessment of ART high-viscosity glass-ionomer sealants after 8-13 years in 4 teeth.

    NARCIS (Netherlands)

    Frencken, J.E.F.M.; Wolke, J.G.C.

    2010-01-01

    OBJECTIVES: Resin composite sealants are retained longer than low-viscosity glass-ionomer sealants. Nevertheless, a systematic review showed that there is no evidence that resin composite sealants are superior to low-viscosity glass-ionomers in preventing dentine carious lesion development. This

  16. Dynamic viscosity versus probe-reported microviscosity of aqueous mixtures of poly(ethylene glycol)

    International Nuclear Information System (INIS)

    Bhanot, Chhavi; Trivedi, Shruti; Gupta, Arti; Pandey, Shubha; Pandey, Siddharth

    2012-01-01

    Highlights: ► Aqueous polymer mixtures, non-toxic media of huge industrial importance, are investigated. ► Bulk viscosity of aqueous. PEG mixtures is shown to vary widely with composition and temperature. ► T-dependent viscosity follows Arrhenius behavior suggesting aqueous PEGs to be Newtonian fluids. ► Microviscosity sensed by a fluorescence ratiometric probe is estimated and correlated with viscosity. ► Microviscosity correlates well with bulk viscosity at higher PEG concentrations. - Abstract: Correlation between the dynamic viscosity (η) and the microviscosity of a hybrid green medium constituted of water and poly(ethylene glycol) (PEG) of average molar mass (200, 400, and 600) g · mol −1 , respectively, is explored over the temperatures range (10 to 90) °C across the complete composition regime. The microviscosity is obtained using a fluorescence probe 1,3-bis-(1-pyrenyl)propane (BPP), which is manifested through the ratio of the monomer-to-intramolecular excimer intensities (I M /I E ). Aqueous PEG mixtures are observed to behave similar to Newtonian fluids as the temperature dependence of dynamic viscosity follows Arrhenius-type behavior. Surprisingly, a simple and convenient linear dependence of ln η with wt% PEG of the mixture is established. The BPP I M /I E is observed, in general, to increase with the bulk dynamic viscosity of the mixture having >10 wt% PEG suggesting a good correlation between the bulk dynamic viscosity and BPP-reported microviscosity when the viscosity of the aqueous PEG mixture is relatively high.

  17. Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method.

    Science.gov (United States)

    Zhang, Yong; Otani, Akihito; Maginn, Edward J

    2015-08-11

    Equilibrium molecular dynamics is often used in conjunction with a Green-Kubo integral of the pressure tensor autocorrelation function to compute the shear viscosity of fluids. This approach is computationally expensive and is subject to a large amount of variability because the plateau region of the Green-Kubo integral is difficult to identify unambiguously. Here, we propose a time decomposition approach for computing the shear viscosity using the Green-Kubo formalism. Instead of one long trajectory, multiple independent trajectories are run and the Green-Kubo relation is applied to each trajectory. The averaged running integral as a function of time is fit to a double-exponential function with a weighting function derived from the standard deviation of the running integrals. Such a weighting function minimizes the uncertainty of the estimated shear viscosity and provides an objective means of estimating the viscosity. While the formal Green-Kubo integral requires an integration to infinite time, we suggest an integration cutoff time tcut, which can be determined by the relative values of the running integral and the corresponding standard deviation. This approach for computing the shear viscosity can be easily automated and used in computational screening studies where human judgment and intervention in the data analysis are impractical. The method has been applied to the calculation of the shear viscosity of a relatively low-viscosity liquid, ethanol, and relatively high-viscosity ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([BMIM][Tf2N]), over a range of temperatures. These test cases show that the method is robust and yields reproducible and reliable shear viscosity values.

  18. Vessel eddy current characteristics in SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Subrata; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Dhongde, Jasraj; Masand, Harish

    2016-11-15

    Highlights: • Eddy current distribution in the SST-1 vacuum vessel. • Circuit model analysis of eddy current. • A comparison of the field lines with and without the plasma column in identical conditions. • The influence of eddy current in magnetic NULL dynamics. - Abstract: Eddy current distribution in the vacuum vessel of the Steady state superconducting (SST-1) tokamak has been determined from the experimental data obtained using an array of internal voltage loops (flux loop) installed inside the vacuum vessel. A simple circuit model has been employed. The model takes into account the geometric and constructional features of SST-1 vacuum vessel. SST-1 vacuum vessel is a modified ‘D’ shaped vessel having major axis of 1.285 m and minor axis of 0.81 m and has been manufactured from non-magnetic stainless steel. The Plasma facing components installed inside the vacuum vessel are graphite blocks mounted on Copper Chromium Zirconium (CuCrZr) heat sink plates on inconel supports. During discharge of the central solenoid, eddy currents get generated in the vacuum vessel and passive supports on it. These eddy currents influence the early magnetic NULL dynamics and plasma break-down and start-up characteristics. The computed results obtained from the model have been benchmarked against experimental data obtained in large number of SST-1 plasma shots. The results are in good agreement. Once bench marked, the calculated eddy current based on flux loop signal and circuit equation model has been extended to the reconstruction of the overall B- field contours of SST-1 tokamak in the vessel region. A comparison of the field lines with and without the plasma column in identical conditions of the central solenoid and equilibrium field profiles has also been done with an aim to quantify the diagnostics responses in vacuum shots.

  19. Quality and Reliability of Large-Eddy Simulations

    CERN Document Server

    Meyers, Johan; Sagaut, Pierre

    2008-01-01

    Computational resources have developed to the level that, for the first time, it is becoming possible to apply large-eddy simulation (LES) to turbulent flow problems of realistic complexity. Many examples can be found in technology and in a variety of natural flows. This puts issues related to assessing, assuring, and predicting the quality of LES into the spotlight. Several LES studies have been published in the past, demonstrating a high level of accuracy with which turbulent flow predictions can be attained, without having to resort to the excessive requirements on computational resources imposed by direct numerical simulations. However, the setup and use of turbulent flow simulations requires a profound knowledge of fluid mechanics, numerical techniques, and the application under consideration. The susceptibility of large-eddy simulations to errors in modelling, in numerics, and in the treatment of boundary conditions, can be quite large due to nonlinear accumulation of different contributions over time, ...

  20. An eddy-stimulated hotspot for fixed nitrogen-loss from the Peru oxygen minimum zone

    Science.gov (United States)

    Altabet, M. A.; Ryabenko, E.; Stramma, L.; Wallace, D. W. R.; Frank, M.; Grasse, P.; Lavik, G.

    2012-12-01

    Fixed nitrogen (N) loss to biogenic N2 in intense oceanic O2 minimum zones (OMZ) accounts for a large fraction of the global N sink and is an essential control on the ocean's N-budget. However, major uncertainties exist regarding microbial pathways as well as net impact on the magnitude of N-loss and the ocean's overall N-budget. Here we report the discovery of a N-loss hotspot in the Peru OMZ associated with a coastally trapped mesoscale eddy that is marked by an extreme N-deficit matched by biogenic N2 production, high NO2- levels, and the highest isotope enrichments observed so far in OMZ's for the residual NO3-. High sea surface chlorophyll in seaward flowing streamers provides evidence for offshore eddy transport of highly productive, inshore water. Resulting pulses in the downward flux of particles likely stimulated heterotrophic dissimilatory NO3- reduction and subsequent production of biogenic N2 within the OMZ. A shallower biogenic N2 maximum within the oxycline is likely a feature advected by the eddy streamer from the shelf. Eddy-associated temporal-spatial heterogeneity of N-loss, mediated by a local succession of microbial processes, may explain inconsistencies observed among prior studies. Similar transient enhancements of N-loss likely occur within all other major OMZ's exerting a major influence on global ocean N and N isotope budgets.

  1. Effect of viscosity on seismic response of waste storage tanks

    International Nuclear Information System (INIS)

    Tang, Yu; Uras, R.A.; Chang, Yao-Wen.

    1992-06-01

    The dynamic response of liquid-storage tanks subjected to harmonic excitations and earthquake ground motions has been studied. A rigid tank of negligible mass, rigidly supported at the base having a diameter of 50 ft. and fluid height of 20.4 ft. was used in the computer analysis. The liquid is assumed to have a density of 1.5 g/ml. Viscosity values, μ = 60, 200, 100, and 10,000 cP, were used in the numerical analyses to study the effects of viscosity on sloshing wave height, impulsive and convective pressure on the tank wall, base shear and base moments. Harmonic excitations as well as earthquake ground motions were used as input motions. The harmonic excitations used in the analyses covers a wide range of frequencies, including both the resonant and non-resonant frequencies. Two earthquake motions were used. One matches the Newmark-Hall median response spectrum and is anchored at 0.24 g for a rock site with a damping of 2% and a time duration of 10 s. The other is the 1978 Tabas earthquake which had a peak ZPA of 0.81 g and a time duration of 29 s. A small tank, about 1/15 the size of the typical waste storage tank, was used in the harmonic excitation study to investigate the effect of viscosity on the response of liquid-storage tanks and how the viscosity effect is affected by the size of the storage tank. The results of this study show that for the typical waste storage tank subjected to earthquake motions, the effect of viscosity on sloshing wave height and impulsive and convective pressures is very small and can be neglected. For viscosity effect to become noticeable in the response of the typical waste storage tank, the waste viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP for some tanks

  2. High Temperature, high pressure equation of state density correlations and viscosity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  3. Turbulence modification due to bubbles and particles in dispersed two-phase upflows in a vertical pipe

    International Nuclear Information System (INIS)

    Hosokawa, Shigeo; Tomiyama, Akio

    1999-01-01

    One of the key issues in two-phase turbulence modeling is the turbulence modification due to the momentum exchange between the dispersed and continuous phases. As for the gas-liquid two-phase flows in vertical pipes, Serizawa and Kataoka carried out detailed measurement of turbulence intensity and detected the turbulence modification. Gore and Crowe pointed out that the modification is well correlated with the ratio of a particle diameter to a turbulence length scale (d/l t ). However the modification may depend on not only the length scales but also the eddy viscosities of shear-induced and particle-induced turbulence. Hosokawa et al. proposed the ratio φ of the eddy viscosity induced by a dispersed phase to the shear-induced eddy viscosity and confirmed that measured turbulence modification was well correlated with φ for a gas-solid two-phase flow. In this study, we examine whether or not φ is also applicable to gas-liquid and solid-liquid two-phase dispersed upflows in vertical pipes. Using the eddy viscosity ratio instead of d/l t , we could obtain much better correlation. The critical point at which no modification occurred was close to φ = 1, irrespective of a type of a two-phase dispersed flow. Consequently, we could confirm that the eddy viscosity ratio is a more appropriate parameter for correlating the turbulent modification than the conventional critical parameter d/l t . (author)

  4. Suprathermal viscosity of dense matter

    International Nuclear Information System (INIS)

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai

    2010-01-01

    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  5. Construction of a high-temperature viscosimeter and measurement of the viscosity of melts of the system aluminium-nickel; Aufbau eines Hochtemperaturviskosimeters und Messung der Viskositaet von Schmelzen des Systems Aluminium-Nickel

    Energy Technology Data Exchange (ETDEWEB)

    Kehr, Mirko

    2009-10-29

    The system aluminium-nickel is of importance as a model-system in materials science as well as a basic system for superalloys in technical applications. The knowledge of the thermophysical properties of the system aluminium-nickel has been limited to the areas close to the pure elements mainly related to the high melting temperatures of up to 1638 C. The viscosity, which is one of these thermophysical properties, depends on alloy composition as well as on temperature. The viscosity is of importance as an input parameter in computer simulations and for improving casting processes of metallic alloys. The viscosity of aluminium-nickel melts has been measured only once so far. However, not the whole concentration range of the aluminium-nickel system was covered by these data. In particular the viscosity values of the high melting alloys, which are of technological interest, were unknown. The measurement of the missing values was not possible due to the high melting temperatures using existing viscometers. A new oscillating cup viscometer has been constructed within this work. The viscometer has been tested measuring the viscosity values of pure metals, which are well known in literature. The test measurements have been done at temperatures up to 1800 C. A temperature of 2300 C is achievable with slight modifications. A new software for controlling the device and evaluation of the measured data has been developed. Several working equations for calculating the viscosity have been implemented. Furthermore a new approach has been used for detecting the damping of the oscillation of the pendulum containing the liquid sample. The viscosity of aluminium-nickel melts have been measured successfully. The measured values are in good agreement with the little number of known values. A good agreement with values calculated from diffusion experiments and computer simulations was observed as well. Several models for calculating the viscosity of liquid alloys have been tested and

  6. An adaptive DES smodel that allows wall-resolved eddy simulation

    International Nuclear Information System (INIS)

    Yin, Zifei; Durbin, Paul A.

    2016-01-01

    Highlights: • A Detached Eddy Simulation model that mimics dynamic Smagorinsky formulation. • Adaptivity of model allows wall resolved eddy simulation on sufficient grids. • Ability to simulate natural and bypass transition is tested. - Abstract: A modification to the Adaptive-DES method of Yin et al. (2015) is proposed to improve its near-wall behavior. The modification is to the function (C_l_i_m) that imposes a lower limit on the dynamically evaluated coefficient (C_D_E_S). The modification allows Adaptive-DES to converge to wall-resolved eddy simulation, when grid resolution supports it. On coarse grids, or at high Reynolds number, it reverts to shielded DES — that is to DDES. The new formulation predicts results closer to wall-resolved LES than the previous formulation. It provides an ability to simulate transition: it is tested in both orderly and bypass transition. In fully turbulent, attached flow, the modification has little effect. Any improvement in predictions stem from better near-wall behavior of the adaptive method.

  7. The tribological behaviour of different clearance MOM hip joints with lubricants of physiological viscosities.

    Science.gov (United States)

    Hu, X Q; Wood, R J K; Taylor, A; Tuke, M A

    2011-11-01

    Clearance is one of the most influential parameters on the tribological performance of metal-on-metal (MOM) hip joints and its selection is a subject of considerable debate. The objective of this paper is to study the lubrication behaviour of different clearances for MOM hip joints within the range of human physiological and pathological fluid viscosities. The frictional torques developed by MOM hip joints with a 50 mm diameter were measured for both virgin surfaces and during a wear simulator test. Joints were manufactured with three different diametral clearances: 20, 100, and 200 microm. The fluid used for the friction measurements which contained different ratios of 25 percent newborn calf serum and carboxymethyl cellulose (CMC) with the obtained viscosities values ranging from 0.001 to 0.71 Pa s. The obtained results indicate that the frictional torque for the 20 microm clearance joint remains high over the whole range of the viscosity values. The frictional torque of the 100 microm clearance joint was low for the very low viscosity (0.001 Pa s) lubricant, but increased with increasing viscosity value. The frictional torque of the 200 microm clearance joint was high at very low viscosity levels, however, it reduced with increasing viscosity. It is concluded that a smaller clearance level can enhance the formation of an elastohydrodynamic lubrication (EHL) film, but this is at the cost of preventing fluid recovery between the bearing surfaces during the unloaded phase of walking. Larger clearance bearings allow a better recovery of lubricant during the unloaded phase, which is necessary for higher viscosity lubricants. The selection of the clearance value should therefore consider both the formation of the EHL film and the fluid recovery as a function of the physiological viscosity in order to get an optimal tribological performance for MOM hip joints. The application of either 25 per cent bovine serum or water in existing in vitro tribological study should

  8. Computational analysis of locally forced flow over a wall-mounted hump at high-Re number

    International Nuclear Information System (INIS)

    Saric, S.; Jakirlic, S.; Djugum, A.; Tropea, C.

    2006-01-01

    An incompressible, high-Reynolds number flow (slightly less then 1 Mio. per chord) over a smoothly contoured, asymmetric, wall-mounted hump was computationally studied using the LES (large eddy simulation) and DES (detached eddy simulation) methods. In addition, several second-moment and eddy-viscosity closures within the RANS (Reynolds-averaged Navier-Stokes) framework were tested. The focus of the investigation was on the effects of local perturbation of the hump boundary layer introduced by spatially uniform (in the spanwise direction) steady suction and oscillatory suction/blowing through a narrow opening (1.7 mm) situated at the hump crest immediately upstream of the natural separation point. Reference experiments have shown that both flow control mechanisms cause a shortening of the recirculation bubble relative to the baseline configuration with no flow control. All statistical turbulence models used in the RANS framework resulted in a substantially larger recirculation zone independent of the modelling level, being a consequence of a too low turbulence level in the separated shear layer. Accordingly, the effect of the steady suction, namely the reduction of the reattachment length, was underpredicted. The LES method, despite a relatively coarse mesh (with a total of 4 Mio. cells) for such a high-Reynolds number, wall-bounded flow, was capable of capturing important effects of the flow control qualitatively and quantitatively. DES failed to do so in the suction case, despite good results in the baseline and oscillatory blowing/suction cases, indicating that a shallow separation from curved surfaces poses a challenge to this hybrid RANS/LES strategy. A sensitivity study of the RANS/LES interface position within the DES approach shows that a RANS region chosen too thin (with the interface situated at the very beginning of the logarithmic layer) can lead to a strong reduction of the turbulent viscosity causing a low turbulence level within the shear layer

  9. Oceanic eddies in synthetic aperture radar images

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    determining mechanism of eddy formation in this case is the vorticity (shear) of the currents or devi- ation of one current by another. Figure 10 shows the ERS-1 SAR image with a couple of cyclonic eddies that is supposedly located in the area of confluence of oppositely directed currents in the central part of the Japan Sea.

  10. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  11. Eddy currents in accelerator magnets

    CERN Document Server

    Moritz, G

    2010-01-01

    This paper covers the main eddy current effects in accelerator magnets - field modification (time delay and field quality) and resistive power losses. In the first part, starting from the Maxwell equations, a basic understanding of the processes is given and explained with examples of simple geometry and time behaviour. Useful formulas are derived for an analytic estimate of the size of the effects. In the second part the effects in real magnets are analysed and described in comparison with numerical and measured results. Finally, based on the previous parts, design recommendations are given regarding how to minimize eddy current effects.

  12. Considerations on heat deposition by eddy currents in the cold structure of INTOR/NET

    International Nuclear Information System (INIS)

    Bloemer, B.; Farfaletti-Casali, F.

    1983-01-01

    In a tokamak like INTOR/NET large eddy currents can be induced in all conductive parts of the reactor mainly by the time-varying poloidal fields. In order to minimize the refrigeration power the heat load generated by eddy currents has to be kept as small as possibly especially in the large toroidal- and poloidal-field coil support structures, which are conductive and at temperatures of less than 4.2 K. A method is described identifying the parts of the structure wherein most of the heat generated by eddy currents is dissipated. By dividing a given configuration into reasonable segments of appointed geometry eddy current losses can easily be calculated. Compared to sophisticated computer programs this procedure is simple but of sufficient accuracy for a lot of applications and it delivers prompt results. The method is applied to the TF coil support structure of a specific design of INTOR/NET. As the results show that the heat load is intolerably high a modified design is proposed. (author)

  13. The effect of low molecular weight multifunctional additives on heavy oil viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, T.B.P.; Yarranton, H.W.; Larter, S.R. [Calgary Univ., AB (Canada)

    2010-07-01

    Crude oils contain many small multifunctional low molecular weight components that act as linking molecules between larger functionalized species. The linkage molecules have a significant impact on the flow properties of hydrocarbon systems. This study investigated the use of a low molecular weight multiheteroatom species (LMWMH) as a molecular Velcro linking high molecular weight components together. LMWMH species were added to Albertan bitumens and heavy oil, and their impact on viscosity was investigated. Results of the experimental studies were then compared with the effects of hydrocarbon solvents on similar samples. The LMWMH species included bifunctional species and analogous alkyl and aryl monoamines that acted as blocking molecules to hinder the association of larger petroleum species. Density and viscosity measurements were conducted. A correlation method was used to predict the viscosity of the solvent-diluted heavy oil and bitumen samples. The study showed that of the tested additives, only aniline demonstrated an additional viscosity-reducing effect. The aniline inhibited asphaltene association and is a promising candidate for enhanced in-situ bitumen viscosity reduction. 23 refs., 4 tabs.

  14. Eddy diffusion coefficients and their upper limits based on application of the similarity theory

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2015-07-01

    Full Text Available The equation for the diffusion velocity in the mesosphere and the lower thermosphere (MLT includes the terms for molecular and eddy diffusion. These terms are very similar. For the first time, we show that, by using the similarity theory, the same formula can be obtained for the eddy diffusion coefficient as the commonly used formula derived by Weinstock (1981. The latter was obtained by taking, as a basis, the integral function for diffusion derived by Taylor (1921 and the three-dimensional Kolmogorov kinetic energy spectrum. The exact identity of both formulas means that the eddy diffusion and heat transport coefficients used in the equations, both for diffusion and thermal conductivity, must meet a criterion that restricts the outer eddy scale to being much less than the scale height of the atmosphere. This requirement is the same as the requirement that the free path of molecules must be much smaller than the scale height of the atmosphere. A further result of this criterion is that the eddy diffusion coefficients Ked, inferred from measurements of energy dissipation rates, cannot exceed the maximum value of 3.2 × 106 cm2 s−1 for the maximum value of the energy dissipation rate of 2 W kg−1 measured in the mesosphere and the lower thermosphere (MLT. This means that eddy diffusion coefficients larger than the maximum value correspond to eddies with outer scales so large that it is impossible to use these coefficients in eddy diffusion and eddy heat transport equations. The application of this criterion to the different experimental data shows that some reported eddy diffusion coefficients do not meet this criterion. For example, the large values of these coefficients (1 × 107 cm2 s−1 estimated in the Turbulent Oxygen Mixing Experiment (TOMEX do not correspond to this criterion. The Ked values inferred at high latitudes by Lübken (1997 meet this criterion for summer and winter polar data, but the Ked values for summer at low latitudes

  15. Benchmarking the mesoscale variability in global ocean eddy-permitting numerical systems

    Science.gov (United States)

    Cipollone, Andrea; Masina, Simona; Storto, Andrea; Iovino, Doroteaciro

    2017-10-01

    The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This "eddy-permitting" resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.

  16. Observation of baroclinic eddies southeast of Okinawa Island

    Institute of Scientific and Technical Information of China (English)

    PARK; Jae-Hun

    2008-01-01

    In the region southeast of Okinawa, during May to July 2001, a cyclonic and an anticyclonic eddy were observed from combined measurements of hydrocasts, an upward-looking moored acoustic Doppler current profiler (MADCP), pressure-recording inverted echo sounders (PIESs), satellite altimetry, and a coastal tide gauge. The hydrographic data showed that the lowest/highest temperature (T) and salinity (S) anomalies from a 13-year mean for the same season were respectively -3.0/+2.5℃ and -0.20/+0.15 psu at 380/500 dbar for the cyclonic/anticyclonic eddies. From the PIES data, using a gravest empirical mode method, we estimated time-varying surface dynamic height (D) anomaly referred to 2000 dbar changing from -20 to 30 cm, and time-varying T and S anomalies at 500 dbar ranging through about ±2 ℃ and ±0.2 psu, respectively. The passage of the eddies caused variations of both satellite-measured sea surface height anomaly (SSHA) and tide-gauge-measured sea level anomaly to change from about –20 to 30 cm, consistent with the D anomaly from the PIESs. Bottom pressure sensors measured no variation related to these eddy activities, which indicated that the two eddies were dominated by baro-clinicity. Time series of SSHA map confirmed that the two eddies, originating from the North Pacific Subtropical Countercurrent region near 20°―30°N and 150°―160°E, traveled about 3000 km for about 18 months with mean westward propagation speed of about 6 cm/s, before arriving at the region southeast of Okinawa Island.

  17. Large eddy simulations of an airfoil in turbulent inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse; Sørensen, Niels N.

    2008-01-01

    Wind turbines operate in the turbulent boundary layer of the atmosphere and due to the rotational sampling effect the blades experience a high level of turbulence [1]. In this project the effect of turbulence is investigated by large eddy simulations of the turbulent flow past a NACA 0015 airfoil...

  18. Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions

    Directory of Open Access Journals (Sweden)

    Shehzad Ahmed

    2018-03-01

    Full Text Available High-quality supercritical CO2 (sCO2 foam as a fracturing fluid is considered ideal for fracturing shale gas reservoirs. The apparent viscosity of the fracturing fluid holds an important role and governs the efficiency of the fracturing process. In this study, the viscosity of sCO2 foam and its empirical correlations are presented as a function of temperature, pressure, and shear rate. A series of experiments were performed to investigate the effect of temperature, pressure, and shear rate on the apparent viscosity of sCO2 foam generated by a widely used mixed surfactant system. An advanced high pressure, high temperature (HPHT foam rheometer was used to measure the apparent viscosity of the foam over a wide range of reservoir temperatures (40–120 °C, pressures (1000–2500 psi, and shear rates (10–500 s−1. A well-known power law model was modified to accommodate the individual and combined effect of temperature, pressure, and shear rate on the apparent viscosity of the foam. Flow indices of the power law were found to be a function of temperature, pressure, and shear rate. Nonlinear regression was also performed on the foam apparent viscosity data to develop these correlations. The newly developed correlations provide an accurate prediction of the foam’s apparent viscosity under different fracturing conditions. These correlations can be helpful for evaluating foam-fracturing efficiency by incorporating them into a fracturing simulator.

  19. Elongational viscosity of narrow molar mass distribution polystyrene

    DEFF Research Database (Denmark)

    Bach, Anders; Almdal, Kristoffer; Rasmussen, Henrik Koblitz

    2003-01-01

    Transient and steady elongational viscosity has been measured for two narrow molar mass distribution polystyrene melts of molar masses 200 000 and 390 000 by means of a filament stretching rheometer. Total Hencky strains of about five have been obtained. The transient elongational viscosity rises...... above the linear viscoelastic prediction at intermediate strains, indicating strain hardening. The steady elongational viscosities are monotone decreasing functions of elongation rate. At elongation rates larger than the inverse reptation time, the steady elongational viscosity scales linearly...

  20. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation. Part 3: turbulent flow and plume dispersion in building arrays

    Czech Academy of Sciences Publication Activity Database

    Nakayama, H.; Jurčáková, Klára; Nagai, H.

    2013-01-01

    Roč. 50, č. 5 (2013), s. 503-519 ISSN 0022-3131 Institutional support: RVO:61388998 Keywords : local-scale high-resolution dispersion model * nuclear emergency response system * large-eddy simulation * spatially developing turbulent boundary layer flow Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.452, year: 2013

  1. Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers †

    KAUST Repository

    Hong, Bingbing

    2010-10-14

    Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients with high accuracy for all of the molar masses studied, but the statistical uncertainties in the viscosity calculations were significantly larger for longer chains. There is good agreement of the calculated viscosities and densities with available experimental data, and thus, the simulations can be used to bridge gaps in the data and for extrapolations with respect to chain length, temperature, and pressure. We explored the convergence characteristics of the Green-Kubo formulas for different chain lengths and propose minimal production times required for convergence of the transport properties. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. © 2010 American Chemical Society.

  2. The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis

    International Nuclear Information System (INIS)

    Genzel, Ch.; Denks, I.A.; Gibmeier, J.; Klaus, M.; Wagener, G.

    2007-01-01

    In April 2005 the materials science beamline EDDI (Energy Dispersive DIffraction) at the Berlin synchrotron storage ring BESSY started operation. The beamline is operated in the energy-dispersive mode of diffraction using the high energy white photon beam provided by a superconducting 7 T multipole wiggler. Starting from basic information on the beamline set-up, its measuring facilities and data processing concept, the wide range of applications for energy-dispersive diffraction is demonstrated by a series of examples coming from different fields in materials sciences. It will be shown, that the EDDI beamline is especially suitable for the investigation of structural properties and gradients in the near surface region of polycrystalline materials. In particular, this concerns the analysis of multiaxial residual stress fields in the highly stressed surface zone of technical parts. The high photon flux further facilitates fast in situ experiments at room as well as high temperature to monitor for example the growth kinetics and reaction in thin film growth

  3. Correction for Eddy Current-Induced Echo-Shifting Effect in Partial-Fourier Diffusion Tensor Imaging.

    Science.gov (United States)

    Truong, Trong-Kha; Song, Allen W; Chen, Nan-Kuei

    2015-01-01

    In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.

  4. Dispersion of tracers by the oceanic eddy field modelling programme

    International Nuclear Information System (INIS)

    Richards, K.J.

    1986-01-01

    A numerical model has been developed to study the dispersion of tracers by the oceanic eddy field. The study is designed to investigate the horizontal and vertical structure of the eddies and how this structure is influenced by the bottom topography. It is found that hills and valleys have a strong effect on the eddies above them. The flow close to the bottom has a tendency to be steered by the height contours. The surface and bottom flows become decorrelated and the vertical variation of the kinetic energy of the eddies is increased with higher topographic features. (author)

  5. Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific

    Directory of Open Access Journals (Sweden)

    T. S. Bibby

    2011-03-01

    Full Text Available Mesoscale eddies in sub-tropical gyres physically perturb the water column and can introduce macronutrients to the euphotic zone, stimulating a biological response in which phytoplankton communities can become dominated by large phytoplankton. Mesoscale eddies may therefore be important in driving export in oligotrophic regions of the modern ocean. However, the character and magnitude of the biological response sustained by eddies is variable. Here we present data from mesoscale eddies in the Sargasso Sea (Atlantic and the waters off Hawai'i (Pacific, alongside mesoscale events that affected the Bermuda Atlantic Time-Series Study (BATS over the past decade. From this analysis, we suggest that the phytoplankton community structure sustained by mesoscale eddies is predetermined by the relative abundance of silicate over nitrate (Si* in the upwelled waters. We present data that demonstrate that mode-water eddies (MWE in the Sargasso Sea upwell locally formed waters with relatively high Si* to the euphotic zone, and that cyclonic eddies in the Sargasso Sea introduce waters with relatively low Si*, a signature that originated in the iron-limited Southern Ocean. We propose that this phenomenon can explain the observed dominance of the phytoplankton community by large-diatom species in MWE and by small prokaryotic phytoplankton in cyclonic features. In contrast to the Atlantic, North Pacific Intermediate Water (NPIW with high Si* may influence the cyclonic eddies in waters off Hawai'i, which also appear capable of sustaining diatom populations. These observations suggest that the structure of phytoplankton communities sustained by eddies may be related to the chemical composition of the upwelled waters in addition to the physical nature of the eddy.

  6. A Combined Experimental and Finite Element Analysis Method for the Estimation of Eddy-Current Loss in NdFeB Magnets

    Directory of Open Access Journals (Sweden)

    Radu Fratila

    2014-05-01

    Full Text Available NdFeB permanent magnets (PMs are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model.

  7. A combined experimental and finite element analysis method for the estimation of eddy-current loss in NdFeB magnets.

    Science.gov (United States)

    Fratila, Radu; Benabou, Abdelkader; Tounzi, Abdelmounaïm; Mipo, Jean-Claude

    2014-05-14

    NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model.

  8. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.

    Science.gov (United States)

    Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J

    2015-01-01

    High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.

  9. Study on classical and excess eddy currents losses of Terfenol-D

    Energy Technology Data Exchange (ETDEWEB)

    Talebian, Soheil; Hojjat, Yousef [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ghodsi, Mojtaba [Department of Mechanical and Industrial Engineering, Sultan Qaboos University, Muscat (Oman); Karafi, Mohammad Reza [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2015-08-15

    In the present paper, classical and excess eddy currents losses of Terfenol-D are studied and effects of magnetic field frequency, peak of magnetic flux density and diameter of Terfenol-D on the eddy currents losses are investigated. To provide reliable data for the purpose of the paper, an experimental laboratory is fabricated and used to obtain major and minor hysteresis loops of Terfenol-D at different frequencies. In theoretical study, initially an analytical model based on uniform distribution of magnetic flux is developed which yields to calculation of classical eddy currents losses. Then, another eddy currents model based on non-uniform distribution of magnetic flux and nonlinear diffusion of electromagnetic fields is presented. The difference between output values of the two models is identified as excess eddy currents losses. Obtained results show that the values of excess losses are generally larger than classical losses and applying just classical model leads to wrong calculation of actual value of eddy currents losses. For the results obtained from two above models, empirical models with respect to the magnetic field frequency and the peak value of magnetic flux density are achieved which can predict the eddy currents losses precisely. To validate the empirical relations, experiments are repeated at a new frequency and values of power losses calculated from analytical equations are compared with the predicted values of the empirical models. The results point towards possibility to use the obtained empirical relations in order to calculate the classical and excess eddy currents losses of Terfenol-D at the frequencies below 200 Hz and different values of magnetic flux density. - Highlights: • Classical eddy currents loss of Terfenol-D is studied using Maxwell's laws. • Excess eddy currents loss of Terfenol-D is studied using Mayergoyz nonlinear model. • Effects of Terfenol-D geometry on the eddy currents losses are investigated. • Power

  10. Viscosity and Analytical Differences between Raw Milk and UHT Milk of Czech Cows

    Directory of Open Access Journals (Sweden)

    Kumbár V.

    2015-06-01

    Full Text Available Viscosity and analytical differences in four milk samples from Czech cows were described. Three samples of UHT milk (0.5%, 1.5%, and 3.5% fat and one sample of raw milk from a Czech bio-farm were analyzed. The following analytical properties were observed: titratable acidity, fat content, dry matter content, and protein content. Titratable acidity and dry matter content decreased in dependence upon the increasing milk fat content. The protein content ranged 3.51-3.57 g per 100 g milk. The milk flow behaviour represented by density, dynamic and kinematic viscosity, as well as the dependence of the milk flow behaviour on temperature were investigated. These properties were measured using a digital densitometer and a rotary viscometer. Milk density was studied at temperatures ranging 0-60 °C and dynamic viscosity at 0-100 °C. With increasing temperature, the density and dynamic viscosity of the studied milk samples decreased. The temperature dependence of dynamic viscosity was manifested in all samples. Kinematic viscosity was calculated from experimental data. Furthermore, mathematical models using Power law and Gaussian fitting were constructed. Determination coefficients achieved high values (0.843-0.997.

  11. Ventilation of multi-entranced rodent burrows by boundary layer eddies.

    Science.gov (United States)

    Brickner-Braun, Inbal; Zucker-Milwerger, Daniel; Braun, Avi; Turner, J Scott; Pinshow, Berry; Berliner, Pedro

    2014-12-01

    Rodent burrows are often assumed to be environments wherein the air has a high concentration of CO₂. Although high burrow [CO₂] has been recorded, many studies report burrow [CO₂] that differs only slightly from atmospheric concentrations. Here, we advocate that one of the reasons for these differences is the penetration into burrows of air gusts (eddies), which originate in the turbulent boundary layer and prevent build-up of CO₂. We have characterized the means by which burrows of Sundevall's jird, which are representative of the burrows of many rodent species with more than one entrance, are ventilated. Our results demonstrate that, even at low wind speeds, the random penetration of eddies into a burrow through its openings is sufficient to keep the burrow [CO₂] low enough to be physiologically inconsequential, even in its deep and remote parts. © 2014. Published by The Company of Biologists Ltd.

  12. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  13. Eddy current inspection of tubing

    International Nuclear Information System (INIS)

    Bauza, J. L. R.; Herrero, J.; Diaz, J.

    1966-01-01

    The Experimental research work carried out to develop a Eddy current testing equipment is described. Search coils with ferrite or air cores were used and the obtained results are discussed. Valuable information was gained from a improved channel in which a direct measure of the defect and the reference signal phase difference is obtained. Artificial defect used to evaluate resolution and sensitivity were produced by electro-machining and mechanical means. Finned SAP tubing was tested in a routine basis with the described equipment and the results plotted. Basic and theoretical considerations on the Eddy current testing technique are given in the last section of this report. (Author)

  14. Viscosity Meaurement Technique for Metal Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Heng [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering; Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  15. Viscosity Meaurement Technique for Metal Fuels

    International Nuclear Information System (INIS)

    Ban, Heng

    2015-01-01

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  16. Viscosity measurement - probably a means for detecting radiation treatment of spices?

    International Nuclear Information System (INIS)

    Heide, L.; Albrich, S.; Boegl, K.W.

    1987-12-01

    The viscosity of 13 different spices and dried vegetables in total was measured. Optimal conditions were first determined for each product, i.e. concentration, pH-value, temperature, particle size and soaking time. For method evaluation, examinations were primarily performed to study the effect of storage, the reproducibility and the influence of the different varieties of the same spice. In supplement, for pepper, the viscosity was measured as a function of radiation dose. In summation, significant changes in the gel forming capability after irradiation could be observed after preliminary experiments in 8 dried spices (ginger, carrots, leek, cloves, pepper, celery, cinnamon and onions). With 3 spices (ginger, pepper and cinnamon) could the results from examining all different varieties of the same spice be substantiated. An additional influence of storage time on viscosity could not be proved during the investigative period of 8 months. Generally seen, there is no possibility of being able to identify an irradiated spice on the basis of viscosity measurements alone, since the difference between the varieties of one and the same spice is considerably great. However, radiation treatment can be reliably excluded with ginger, pepper and cinnamon, if the viscosities are high (10-20 Pa x s). (orig./MG) [de

  17. Effect of Polyvinyl Siloxane Viscosity on Accuracy of Dental Implant Impressions

    Directory of Open Access Journals (Sweden)

    Ahmad Ghahremanloo

    2017-02-01

    Full Text Available Objectives: The aim of this study was to compare the accuracy of dental implant impressions obtained by a combination of different impression techniques and viscosities of polyvinyl siloxane (PVS.Materials and Methods: Four parallel fixtures were placed between mental foramina in a master model of lower dental arch. Three different viscosities (putty/light body, medium body/light body, and monophase: heavy body and direct and indirect techniques (six groups were used, and seven impressions were obtained from each group (n=42. To measure the accuracy of impressions, drift, horizontal, and vertical angles of the implants, as well as the hex rotation of the implants in casts were evaluated using a digitizer device (1μm accuracy, in comparison with master arch. Data were analyzed using five-factor two-way ANOVA and Tukey’s post-hoc test.Results: The accuracy of impressions was assessed and the results showed that direct technique was not significantly different from indirect technique (P>0.05. Also, there were no significant differences between the mentioned viscosities except for the horizontal angle (P=0.006.Conclusions: Viscosity of impression materials is of high significance for the accuracy of dental impressions.Keywords: Dental Materials; Dental Implants; Dental Impression Technique; Viscosity; Vinyl Polysiloxane; Dimensional Measurement Accuracy

  18. Signal processing of eddy current three-dimensional maps

    International Nuclear Information System (INIS)

    Birac, C.; David, D.; Lamant, D.

    1987-01-01

    Digital processing of eddy current three-dimensional maps improves accuracy of detection: flattening, filtering, computing deconvolution, mapping new variables,.., give new possibilities for difficult test problems. With simulation of defects, probes, probe travels, it is now possible to compute new eddy current processes, without machining defects or building probes

  19. Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity.

    Science.gov (United States)

    Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan

    2014-11-14

    Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.

  20. High viscosity and anisotropy characterize the cytoplasm of fungal dormant stress resistant spores

    NARCIS (Netherlands)

    Dijksterhuis, J.; Nijsse, J.; Hoekstra, F.A.; Golovina, E.A.

    2007-01-01

    Ascospores of the fungus Talaromyces macrosporus are dormant and extremely stress resistant, whereas fungal conidia¿the main airborne vehicles of distribution¿are not. Here, physical parameters of the cytoplasm of these types of spores were compared. Cytoplasmic viscosity and level of anisotropy as

  1. Large eddy simulation of turbulent and stably-stratified flows

    International Nuclear Information System (INIS)

    Fallon, Benoit

    1994-01-01

    The unsteady turbulent flow over a backward-facing step is studied by mean of Large Eddy Simulations with structure function sub grid model, both in isothermal and stably-stratified configurations. Without stratification, the flow develops highly-distorted Kelvin-Helmholtz billows, undergoing to helical pairing, with A-shaped vortices shed downstream. We show that forcing injected by recirculation fluctuations governs this oblique mode instabilities development. The statistical results show good agreements with the experimental measurements. For stably-stratified configurations, the flow remains more bi-dimensional. We show with increasing stratification, how the shear layer growth is frozen by inhibition of pairing process then of Kelvin-Helmholtz instabilities, and the development of gravity waves or stable density interfaces. Eddy structures of the flow present striking analogies with the stratified mixing layer. Additional computations show the development of secondary Kelvin-Helmholtz instabilities on the vorticity layers between two primary structures. This important mechanism based on baroclinic effects (horizontal density gradients) constitutes an additional part of the turbulent mixing process. Finally, the feasibility of Large Eddy Simulation is demonstrated for industrial flows, by studying a complex stratified cavity. Temperature fluctuations are compared to experimental measurements. We also develop three-dimensional un-stationary animations, in order to understand and visualize turbulent interactions. (author) [fr

  2. Entropy viscosity method applied to Euler equations

    International Nuclear Information System (INIS)

    Delchini, M. O.; Ragusa, J. C.; Berry, R. A.

    2013-01-01

    The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)

  3. Adjoint sensitivity studies of loop current and eddy shedding in the Gulf of Mexico

    KAUST Repository

    Gopalakrishnan, Ganesh; Cornuelle, Bruce D.; Hoteit, Ibrahim

    2013-01-01

    Adjoint model sensitivity analyses were applied for the loop current (LC) and its eddy shedding in the Gulf of Mexico (GoM) using the MIT general circulation model (MITgcm). The circulation in the GoM is mainly driven by the energetic LC and subsequent LC eddy separation. In order to understand which ocean regions and features control the evolution of the LC, including anticyclonic warm-core eddy shedding in the GoM, forward and adjoint sensitivities with respect to previous model state and atmospheric forcing were computed using the MITgcm and its adjoint. Since the validity of the adjoint model sensitivities depends on the capability of the forward model to simulate the real LC system and the eddy shedding processes, a 5 year (2004–2008) forward model simulation was performed for the GoM using realistic atmospheric forcing, initial, and boundary conditions. This forward model simulation was compared to satellite measurements of sea-surface height (SSH) and sea-surface temperature (SST), and observed transport variability. Despite realistic mean state, standard deviations, and LC eddy shedding period, the simulated LC extension shows less variability and more regularity than the observations. However, the model is suitable for studying the LC system and can be utilized for examining the ocean influences leading to a simple, and hopefully generic LC eddy separation in the GoM. The adjoint sensitivities of the LC show influences from the Yucatan Channel (YC) flow and Loop Current Frontal Eddy (LCFE) on both LC extension and eddy separation, as suggested by earlier work. Some of the processes that control LC extension after eddy separation differ from those controlling eddy shedding, but include YC through-flow. The sensitivity remains stable for more than 30 days and moves generally upstream, entering the Caribbean Sea. The sensitivities of the LC for SST generally remain closer to the surface and move at speeds consistent with advection by the high-speed core of

  4. Adjoint sensitivity studies of loop current and eddy shedding in the Gulf of Mexico

    KAUST Repository

    Gopalakrishnan, Ganesh

    2013-07-01

    Adjoint model sensitivity analyses were applied for the loop current (LC) and its eddy shedding in the Gulf of Mexico (GoM) using the MIT general circulation model (MITgcm). The circulation in the GoM is mainly driven by the energetic LC and subsequent LC eddy separation. In order to understand which ocean regions and features control the evolution of the LC, including anticyclonic warm-core eddy shedding in the GoM, forward and adjoint sensitivities with respect to previous model state and atmospheric forcing were computed using the MITgcm and its adjoint. Since the validity of the adjoint model sensitivities depends on the capability of the forward model to simulate the real LC system and the eddy shedding processes, a 5 year (2004–2008) forward model simulation was performed for the GoM using realistic atmospheric forcing, initial, and boundary conditions. This forward model simulation was compared to satellite measurements of sea-surface height (SSH) and sea-surface temperature (SST), and observed transport variability. Despite realistic mean state, standard deviations, and LC eddy shedding period, the simulated LC extension shows less variability and more regularity than the observations. However, the model is suitable for studying the LC system and can be utilized for examining the ocean influences leading to a simple, and hopefully generic LC eddy separation in the GoM. The adjoint sensitivities of the LC show influences from the Yucatan Channel (YC) flow and Loop Current Frontal Eddy (LCFE) on both LC extension and eddy separation, as suggested by earlier work. Some of the processes that control LC extension after eddy separation differ from those controlling eddy shedding, but include YC through-flow. The sensitivity remains stable for more than 30 days and moves generally upstream, entering the Caribbean Sea. The sensitivities of the LC for SST generally remain closer to the surface and move at speeds consistent with advection by the high-speed core of

  5. Magma viscosity estimation based on analysis of erupted products. Potential assessment for large-scale pyroclastic eruptions

    International Nuclear Information System (INIS)

    Takeuchi, Shingo

    2010-01-01

    After the formulation of guidelines for volcanic hazards in site evaluation for nuclear installations (e.g. JEAG4625-2009), it is required to establish appropriate methods to assess potential of large-scale pyroclastic eruptions at long-dormant volcanoes, which is one of the most hazardous volcanic phenomena on the safety of the installations. In considering the volcanic dormancy, magma eruptability is an important concept. The magma eruptability is dominantly controlled by magma viscosity, which can be estimated from petrological analysis of erupted materials. Therefore, viscosity estimation of magmas erupted in past eruptions should provide important information to assess future activities at hazardous volcanoes. In order to show the importance of magma viscosity in the concept of magma eruptability, this report overviews dike propagation processes from a magma chamber and nature of magma viscosity. Magma viscosity at pre-eruptive conditions of magma chambers were compiled based on previous petrological studies on past eruptions in Japan. There are only 16 examples of eruptions at 9 volcanoes satisfying data requirement for magma viscosity estimation. Estimated magma viscosities range from 10 2 to 10 7 Pa·s for basaltic to rhyolitic magmas. Most of examples fall below dike propagation limit of magma viscosity (ca. 10 6 Pa·s) estimated based on a dike propagation model. Highly viscous magmas (ca. 10 7 Pa·s) than the dike propagation limit are considered to lose eruptability which is the ability to form dikes and initiate eruptions. However, in some cases, small precursory eruptions of less viscous magmas commonly occurred just before climactic eruptions of the highly viscous magmas, suggesting that the precursory dike propagation by the less viscous magmas induced the following eruptions of highly viscous magmas (ca. 10 7 Pa·s). (author)

  6. Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field

    Science.gov (United States)

    Feng, Yan; Lin, Wei; Murillo, M. S.

    2017-11-01

    Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.

  7. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  8. Calibration and Measurement of the Viscosity of DWPF Start-Up Glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    2001-01-01

    The Harrop, High-Temperature Viscometer has been in operation at the Savannah River Technology Center (SRTC) for several years and has proven itself to be reasonably accurate and repeatable. This is particularly notable when taking into consideration the small amount of glass required to make the viscosity determination. The volume of glass required is only 2.60 cc or about 6 to 7 grams of glass depending on the glass density. This may be compared to the more traditional viscosity determinations, which generally require between 100 to 1000 grams of glass. Before starting the present investigation, the unit was re-aligned and the furnace thermal gradients measured. The viscometer was again calibrated with available NIST Standard Reference Material glasses (717a and 710a) and a spindle constant equation was determined. Standard DWPF Waste Compliance Glasses (Purex, HM, and Batch 1) were used to provide additional verification for the determinations at low temperature. The Harrop, High-Temperature Viscometer was then used to determine the viscosity of three random samples of ground and blended DWPF, Black, Start -Up Frit, which were obtained from Pacific Northwest National Laboratory (PNNL). The glasses were in powder form and required melting prior to the viscosity determination. The results from this evaluation will be compared to ''Round Robin'' measurements from other DOE laboratories and a number of commercial laboratories

  9. Should you trust your heavy oil viscosity measurement?

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.; Miller, K.; Almond, R. [Petrovera Resources Ltd., Edmonton, AB (Canada)

    2003-07-01

    For the last 60 years, the heavy oil and bitumen reservoirs from western Canada have been exploited with varying degrees of success. There are many factors that may effect heavy oil and bitumen production rates. Primary production rates, which vary greatly from field to field, were found to improve with the addition of steam. Viscosity is the single most valued criteria in predicting cold production response from a new field. It is also the criteria used to determine whether thermal process are needed to reduce oil viscosity, or whether horizontal or vertical wells should be used. This study examined why production forecasts based on oil viscosity alone have been poor. It is based on an extensive data collection project in the Elk Point area reservoir which has lower than expected and erratic cold production rates. Viscosity values from the same wells were found to vary by a factor of four or more. One of the objectives of this study was to encourage commercial labs to develop an industry-wide standard method of heavy oil sample cleaning and viscosity measurement. It is generally understood that viscosity increases with an increase in the concentration of asphaltenes, but there is little information to quantify the relationship. Some studies suggest that viscosity increases logarithmically with increasing asphaltenes. It was concluded that the prediction of the viscosity of heavy oils and bitumens is very empirical, but there are ways to improve data comparisons and evaluation by applying available information from other scientific fields. 23 refs., 5 tabs., 6 figs.

  10. FY06 NRL DoD High Performance Computing Modernization Program Annual Reports

    Science.gov (United States)

    2007-10-31

    nonequilibrium MD with isokinetic thermostatting. We have explored both the Green - Kubo and the mean-square displacement approaches to transport...codes. The flow solver was combined with adaptive re-meshing techniques for these transient problems with moving grids and was also integrated with the...simple one-dimensional eddy viscosity to a fully three-dimensional direct numerical simulation. Coupling between fluid and sediment phases varies from

  11. Shear viscosity enhancement in water–nanoparticle suspensions

    International Nuclear Information System (INIS)

    Balasubramanian, Ganesh; Sen, Swarnendu; Puri, Ishwar K.

    2012-01-01

    Equilibrium molecular dynamics simulations characterize the increase in the shear viscosity of water around a suspended silicon dioxide nanoparticle. Water layering on the solid surface decreases the fraction of adjacent fluid molecules that are more mobile and hence less viscous, thereby increasing the shear viscosity. The contribution of the nanoparticle surface area to this rheological behavior is identified and an empirical model that accounts for it is provided. The model successfully reproduces the shear viscosity predictions from previous experimental measurements as well as our simulations. -- Highlights: ► Layering of water on the solid surfaces increases the fraction of less mobile molecules adjacent to them. ► A nondimensional parameter predicts of viscosity enhancement due to particle shape, volume fraction. ► Model predictions agree with the results of atomistic simulations and experimental measurements.

  12. Towards an entropy-based detached-eddy simulation

    Science.gov (United States)

    Zhao, Rui; Yan, Chao; Li, XinLiang; Kong, WeiXuan

    2013-10-01

    A concept of entropy increment ratio ( s¯) is introduced for compressible turbulence simulation through a series of direct numerical simulations (DNS). s¯ represents the dissipation rate per unit mechanical energy with the benefit of independence of freestream Mach numbers. Based on this feature, we construct the shielding function f s to describe the boundary layer region and propose an entropy-based detached-eddy simulation method (SDES). This approach follows the spirit of delayed detached-eddy simulation (DDES) proposed by Spalart et al. in 2005, but it exhibits much better behavior after their performances are compared in the following flows, namely, pure attached flow with thick boundary layer (a supersonic flat-plate flow with high Reynolds number), fully separated flow (the supersonic base flow), and separated-reattached flow (the supersonic cavity-ramp flow). The Reynolds-averaged Navier-Stokes (RANS) resolved region is reliably preserved and the modeled stress depletion (MSD) phenomenon which is inherent in DES and DDES is partly alleviated. Moreover, this new hybrid strategy is simple and general, making it applicable to other models related to the boundary layer predictions.

  13. Validation of a Residual Stress Measurement Method by Swept High-Frequency Eddy Currents

    International Nuclear Information System (INIS)

    Lee, C.; Shen, Y.; Lo, C. C. H.; Nakagawa, N.

    2007-01-01

    This paper reports on a swept high-frequency eddy current (SHFEC) measurement method developed for electromagnetic nondestructive characterization of residual stresses in shot peened aerospace materials. In this approach, we regard shot-peened surfaces as modified surface layers of varying conductivity, and determine the conductivity deviation profile by inversion of the SHFEC data. The SHFEC measurement system consists of a pair of closely matched printed-circuit-board coils driven by laboratory instrument under software control. This provides improved sensitivity and high frequency performance compared to conventional coils, so that swept frequency EC measurements up to 50 MHz can be made to achieve the smallest skin depth of 80 μm for nickel-based superalloys. We devised a conductivity profile inversion procedure based on the laterally uniform multi-layer theory of Cheng, Dodd and Deeds. The main contribution of this paper is the methodology validation. Namely, the forward and inverse models were validated against measurements on artificial layer specimens consisting of metal films with different conductivities placed on a metallic substrate. The inversion determined the film conductivities which were found to agree with those measured using the direct current potential drop (DCPD) method

  14. Validation of a Residual Stress Measurement Method by Swept High-Frequency Eddy Currents

    Science.gov (United States)

    Lee, C.; Shen, Y.; Lo, C. C. H.; Nakagawa, N.

    2007-03-01

    This paper reports on a swept high-frequency eddy current (SHFEC) measurement method developed for electromagnetic nondestructive characterization of residual stresses in shot peened aerospace materials. In this approach, we regard shot-peened surfaces as modified surface layers of varying conductivity, and determine the conductivity deviation profile by inversion of the SHFEC data. The SHFEC measurement system consists of a pair of closely matched printed-circuit-board coils driven by laboratory instrument under software control. This provides improved sensitivity and high frequency performance compared to conventional coils, so that swept frequency EC measurements up to 50 MHz can be made to achieve the smallest skin depth of 80 μm for nickel-based superalloys. We devised a conductivity profile inversion procedure based on the laterally uniform multi-layer theory of Cheng, Dodd and Deeds. The main contribution of this paper is the methodology validation. Namely, the forward and inverse models were validated against measurements on artificial layer specimens consisting of metal films with different conductivities placed on a metallic substrate. The inversion determined the film conductivities which were found to agree with those measured using the direct current potential drop (DCPD) method.

  15. Statistical Characteristics of Mesoscale Eddies in the North Pacific Derived from Satellite Altimetry

    Directory of Open Access Journals (Sweden)

    Yu-Hsin Cheng

    2014-06-01

    Full Text Available The sea level anomaly data derived from satellite altimetry are analyzed to investigate statistical characteristics of mesoscale eddies in the North Pacific. Eddies are detected by a free-threshold eddy identification algorithm. The results show that the distributions of size, amplitude, propagation speed, and eddy kinetic energy of eddy follow the Rayleigh distribution. The most active regions of eddies are the Kuroshio Extension region, the Subtropical Counter Current zone, and the Northeastern Tropical Pacific region. By contrast, eddies are seldom observed around the center of the eastern part of the North Pacific Subarctic Gyre. The propagation speed and kinetic energy of cyclonic and anticyclonic eddies are almost the same, but anticyclonic eddies possess greater lifespans, sizes, and amplitudes than those of cyclonic eddies. Most eddies in the North Pacific propagate westward except in the Oyashio region. Around the northeastern tropical Pacific and the California currents, cyclonic and anticyclonic eddies propagate westward with slightly equatorward (197° average azimuth relative to east and poleward (165° deflection, respectively. This implies that the background current may play an important role in formation of the eddy pathway patterns.

  16. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    Yu Along

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  17. Viscosity of melts in the sodium borosilicate system

    International Nuclear Information System (INIS)

    Tait, J.C.; Mandolesi, D.L.; Rummens, H.E.C.

    1984-01-01

    The viscosities of a series of glasses in the sodium borosilicate system (5-35Na 2 O, 5-35B 2 O 3 , 45-80SiO 2 mol%) have been determined between 950 and 1500 deg C, using a rotating bob viscometer. A simplex lattice experimental design was used to define a series of compositions suitable for numerical analysis of the data. The viscosity data were fitted using the Fulcher equation for each composition. Nonlinear regression analysis of the viscosities at constant temperatures gave expressions for the variation in viscosity as a function of composition. The results are displayed as isoviscosity contours on the Na 2 O-B 2 O 3 -SiO 2 composition diagram. The viscosity behaviour as a function of composition is discussed in terms of structural bonding in the melt. (author)

  18. Eddy current standards - Cracks versus notches

    Science.gov (United States)

    Hagemaier, D. J.; Collingwood, M. R.; Nguyen, K. H.

    1992-10-01

    Eddy current tests aimed at evaluating cracks and electron-discharge machined (EDM) notches in 7075-T6 aluminum specimens are described. A comparison of the shape and amplitude of recordings made from both transverse and longitudinal scans of small EDM notches and fatigue cracks showd almost identical results. The signal amplitude and phase angle increased with an increase of EDM notch and crak size. It is concluded that equivalent eddy current results obtained from similar-size surface cracks and notches in aluminum can be used to establish a desired sensitivity level for inspection.

  19. Eddy correlation measurements of oxygen uptake in deep ocean sediments

    DEFF Research Database (Denmark)

    Berg, P.; Glud, Ronnie Nøhr; Hume, A.

    2010-01-01

    .62 +/- 0.23 (SE, n = 7), 1.65 +/- 0.33 (n = 2), and 1.43 +/- 0.15 (n = 25) mmol m(-2) d(-1). The very good agreement between the eddy correlation flux and the chamber flux serves as a new, important validation of the eddy correlation technique. It demonstrates that the eddy correlation instrumentation......Abstract: We present and compare small sediment-water fluxes of O-2 determined with the eddy correlation technique, with in situ chambers, and from vertical sediment microprofiles at a 1450 m deep-ocean site in Sagami Bay, Japan. The average O-2 uptake for the three approaches, respectively, was 1...... available today is precise and can resolve accurately even very small benthic O-2 fluxes. The correlated fluctuations in vertical velocity and O-2 concentration that give the eddy flux had average values of 0.074 cm s(-1) and 0.049 mu M. The latter represents only 0.08% of the 59 mu M mean O-2 concentration...

  20. Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Nielsen, Jens Kromann; Bach, Anders

    2005-01-01

    The transient uniaxial elongational viscosity of BASF Lupolen 1840D and 3020D melts has been measured on a filament stretch rheometer up to Hencky strains of 6-7. The elongational viscosity of both melts was measured at 130 degrees C within a broad range of elongational rates. At high elongation ...

  1. Eddy current testing probe with dual half-cylindrical coils

    Science.gov (United States)

    Bae, Byung-Hoon; Choi, Jung-Mi; Kim, Soo-Yong

    2000-02-01

    We have developed a new eddy current probe composed of a dual half-cylindrical (2HC) coil as an exciting coil and a sensing coil that is placed in the small gap of the 2HC coil. The 2HC coil induces a linear eddy current on the narrow region within the target medium. The magnitude of eddy current has a maximum peak with the narrow width, underneath the center of the exciting 2HC coil. Because of the linear eddy current, the probe can be used to detect not only the existence of a crack but also its direction in conducting materials. Using specimen with a machined crack, and varying the exciting frequency from 0.5 to 100 kHz, we investigated the relationships between the direction of crack and the output voltage of the sensing coil.

  2. Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity

    Science.gov (United States)

    Thomas, Leif N.

    2008-08-01

    A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by "down-front" winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE's velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE's PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.

  3. Crustal Viscosity Structure Estimated from Multi-Phase Mixing Theory

    Science.gov (United States)

    Shinevar, W. J.; Behn, M. D.; Hirth, G.

    2014-12-01

    Estimates of lower crustal viscosity are typically constrained by analyses of isostatic rebound, post seismic creep, and laboratory-derived flow laws for crustal rocks and minerals. Here we follow a new approach for calculating the viscosity structure of the lower continental crust. We use Perple_X to calculate mineral assemblages for different crustal compositions. Effective viscosity is then calculated using the rheologic mixing model of Huet et al. (2014) incorporating flow laws for each mineral phase. Calculations are performed along geotherms appropriate for the Basin and Range, Tibetan Plateau, Colorado Plateau, and the San Andreas Fault. To assess the role of crustal composition on viscosity, we examined two compositional gradients extending from an upper crust with ~67 wt% SiO2 to a lower crust that is either: (i) basaltic with ~53 wt% SiO2 (Rudnick and Gao, 2003), or (ii) andesitic with ~64% SiO2 (Hacker et al., 2011). In all cases, the middle continental crust has a viscosity that is 2-3 orders of magnitude greater than that inferred for wet quartz, a common proxy for mid-crustal viscosities. An andesitic lower crust results in viscosities of 1020-1021 Pa-s and 1021-1022 Pa-s for hotter and colder crustal geotherms, respectively. A mafic lower crust predicts viscosities that are an order of magnitude higher for the same geotherm. In all cases, the viscosity calculated from the mixing model decreases less with depth compared to single-phase estimates. Lastly, for anhydrous conditions in which alpha quartz is stable, we find that there is a strong correlation between Vp/Vs and bulk viscosity; in contrast, little to no correlation exists for hydrous conditions.

  4. Eddy current analysis by the finite element circuit method

    International Nuclear Information System (INIS)

    Kameari, A.; Suzuki, Y.

    1977-01-01

    The analysis of the transient eddy current in the conductors by ''Finite Element Circuit Method'' is developed. This method can be easily applied to various geometrical shapes of thin conductors. The eddy currents on the vacuum vessel and the upper and lower support plates of JT-60 machine (which is now being constructed by Japan Atomic Energy Research Institute) are calculated by this method. The magnetic field induced by the eddy current is estimated in the domain occupied by the plasma. And the force exerted to the vacuum vessel is also estimated

  5. Lack of age-related increase in carotid artery wall viscosity in cardiorespiratory fit men

    Science.gov (United States)

    Kawano, Hiroshi; Yamamoto, Kenta; Gando, Yuko; Tanimoto, Michiya; Murakami, Haruka; Ohmori, Yumi; Sanada, Kiyoshi; Tabata, Izumi; Higuchi, Mitsuru; Miyachi, Motohiko

    2013-01-01

    Objectives: Age-related arterial stiffening and reduction of arterial elasticity are attenuated in individuals with high levels of cardiorespiratory fitness. Viscosity is another mechanical characteristic of the arterial wall; however, the effects of age and cardiorespiratory fitness have not been determined. We examined the associations among age, cardiorespiratory fitness and carotid arterial wall viscosity. Methods: A total of 111 healthy men, aged 25–39 years (young) and 40–64 years (middle-aged), were divided into either cardiorespiratory fit or unfit groups on the basis of peak oxygen uptake. The common carotid artery was measured noninvasively by tonometry and automatic tracking of B-mode images to obtain instantaneous pressure and diameter hysteresis loops, and we calculated the effective compliance, isobaric compliance and viscosity index. Results: In the middle-aged men, the viscosity index was larger in the unfit group than in the fit group (2533 vs. 2018 mmHg·s/mm, respectively: P viscosity index was increased with advancing age, but these parameters were unaffected by cardiorespiratory fitness level. Conclusion: These results suggest that the wall viscosity in the central artery is increased with advancing age and that the age-associated increase in wall viscosity may be attenuated in cardiorespiratory fit men. PMID:24029868

  6. Viscosity of Ga-Li liquid alloys

    Science.gov (United States)

    Vidyaev, Dmitriy; Boretsky, Evgeny; Verkhorubov, Dmitriy

    2018-03-01

    The measurement of dynamic viscosity of Ga-Li liquid alloys has been performed using low-frequency vibrational viscometer at five temperatures in the range 313-353 K and four gallium-based dilute alloy compositions containing 0-1.15 at.% Li. It was found that the viscosity of the considered alloys increases with decreasing temperature and increasing lithium concentration in the above ranges. It was shown that dependence of the viscosity of Ga-Li alloys in the investigated temperature range has been described by Arrhenius equation. For this equation the activation energy of viscous flow and pre-exponential factor were calculated. This study helped to determine the conditions of the alkali metals separating process in gallam-exchange systems.

  7. Bulk-viscosity-driven asymmetric inflationary universe

    International Nuclear Information System (INIS)

    Waga, I.; Lima, J.A.S.; Portugal, R.

    1987-01-01

    A primordial net bosinic charge is introduced in the context of the bulk-viscosity-driven inflationary models. The analysis is carried through a macroscopic point of view in the framework of the causal thermodynamic theory. The conditions for having exponetial and generalized inflation are obtained. A phenomenological expression for the bulk viscosity coefficient is also derived. (author) [pt

  8. The interaction effect of mixing starter cultures on homemade natural yogurt’s pH and viscosity

    Directory of Open Access Journals (Sweden)

    Hadi A. Dahlan

    2017-10-01

    Full Text Available Dairy yogurts are common food products consumed by people all over the world. Due to the simple process, many people have made their own natural yogurt at home. The fermentation due to the starter culture causes the textural properties of dairy yogurt. However, the literature is surprisingly scarce on the topic of starter culture interactions in the development of textural properties of dairy yogurt. This study investigated the interaction effect of three common starter cultures, Lactobacillus acidophilus, Lactobacillus bulgaricus and Streptococcus thermophiles, on the viscosity of homemade yogurt. Using Design Expert software, a 10-run mixture model experiment was designed to examine the textural properties developed by single or multiple inoculation of these starter cultures. All yogurt formulations reached the isoelectric point of milk and had pHs in the range 3.97 to 4.32. Yogurt formulations with L. acidophilus and S. thermophilus resulted in viscosities which were similar to commercial yogurt viscosity (1.77 Pa.s, while L. bulgaricus resulted in yogurt with a lower viscosity. Based on the mixture model, L. acidophilus had most influence on the yogurt viscosity, followed by S. thermophilus and L. bulgaricus. In conclusion, L. acidophilus can be used as a single starter culture or combined with other starter cultures to develop high viscosity homemade yogurt. A Combination of S. thermophilus and L. acidphilus can also be used to develop high viscosity yogurts. However, L. bulgaricus should not be inoculated alone or become a dominant ratio in multiple starter culture inoculation as it will decrease the overall homemade yogurt viscosity.

  9. Evaluation and field validation of Eddy-Current array probes for steam generator tube inspection

    International Nuclear Information System (INIS)

    Dodd, C.V.; Pate, J.R.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generator Tubing program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification, and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC's mobile NDE laboratory and staff. This report describes the design of specialized high-speed 16-coil eddy-current array probes. Both pancake and reflection coils are considered. Test results from inspections using the probes in working steam generators are given. Computer programs developed for probe calculations are also supplied

  10. Pressure Dependence of Komatiite Liquid Viscosity and Implications for Magma Ocean Rheology

    Science.gov (United States)

    O'Dwyer Brown, L.; Lesher, C. E.; Terasaki, H. G.; Yamada, A.; Sakamaki, T.; Shibazaki, Y.; Ohtani, E.

    2009-12-01

    The viscosities of komatiite liquids at high pressures and temperatures were investigated using the in-situ falling sphere technique at BL04B1, SPring-8. Komatiites are naturally occurring magmas, rich in network modifying cations. Despite the refractory and fluid nature of komatiite, we successfully measured the viscosity of molten komatiites from Gorgona Island, Colombia (MgO = 17.8 wt.%; NBO/T = 1.5) between 11 and 13 GPa at 2000 C, and from Belingwe, Zimbabwe (MgO = 28.14 wt.%; NBO/T = 2.1) from 12 to 14 GPa at 2000 C. Under isothermal conditions, the viscosity of Gorgona Island komatiite melt increased with pressure, consistent with our previous measurements at lower pressures for this composition. We interpreted this positive pressure dependence as the result of reductions in interatomic space diminishing the free volume of the liquid when compressed. The viscosity of molten komatiite from Belingwe also increased up to 12 GPa, however between 12 and 14 GPa the viscosity is nearly constant. In previous studies of depolymerized silicate liquids, the pressure dependence of viscosity has been shown to reverse from positive to negative between 8 and 10 GPa with corresponding changes in activation volume [1] [2]. In contrast, the activation volume for Belingwe liquid decreases to near zero, but does not become negative above 11 GPa. Similarly, the activation volume for Gorgona Island komatiite remains positive throughout the pressure range investigated. Molecular dynamics simulations of simple MgO-SiO2 liquids with NBO/T > 2 also show a positive pressure dependence, reflecting the dominant control of free-volume reduction on the viscosity of depolymerized melts. However, the more rapid reduction in activation volume with pressure in komatiite liquids may be related to the presence of Al, Ti and other cations that interact and undergo coordination changes unavailable in simple silicate liquids. Along Hadean and post-Hadean mantle adiabats the net effect of

  11. Certain laws governing the influence of high molecular polymer additives on specific electrical conductivity and viscosity of zincate alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrenko, V.Ye.; Toropetsera, T.N.; Zubov, M.S.

    1983-01-01

    A study was made of the influence of polymer additives of different nature: polyelectrolyte, copolymer of ethylene with maleic anhydride, polymethacrylic acid and nonpolyectrolyte copolymer of vinyl alcohol with vinyleneglycol and polyvinyleneglycol on specific electrical conductance and viscosity of the zincate alkaline solution. It is indicated that with an increase in the content of additives, the specific conductance of the solution diminishes according to a linear law, while the viscosity rises. The additives of polyelectrolyte nature reduce more strongly the specific conductance and increase the viscosity than the nonpolyelectrolyte additives. From a comparison of the data on specific conductance and viscosity the following conclusion is drawn: the more the polymer ''structures'' the zincate alkaline solution, the more strongly it reduces its specific electrical conductance.

  12. Relaxation-based viscosity mapping for magnetic particle imaging

    Science.gov (United States)

    Utkur, M.; Muslu, Y.; Saritas, E. U.

    2017-05-01

    Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where ‘color MPI’ techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.

  13. Lyapunov exponent as a metric for assessing the dynamic content and predictability of large-eddy simulations

    Science.gov (United States)

    Nastac, Gabriel; Labahn, Jeffrey W.; Magri, Luca; Ihme, Matthias

    2017-09-01

    Metrics used to assess the quality of large-eddy simulations commonly rely on a statistical assessment of the solution. While these metrics are valuable, a dynamic measure is desirable to further characterize the ability of a numerical simulation for capturing dynamic processes inherent in turbulent flows. To address this issue, a dynamic metric based on the Lyapunov exponent is proposed which assesses the growth rate of the solution separation. This metric is applied to two turbulent flow configurations: forced homogeneous isotropic turbulence and a turbulent jet diffusion flame. First, it is shown that, despite the direct numerical simulation (DNS) and large-eddy simulation (LES) being high-dimensional dynamical systems with O (107) degrees of freedom, the separation growth rate qualitatively behaves like a lower-dimensional dynamical system, in which the dimension of the Lyapunov system is substantially smaller than the discretized dynamical system. Second, a grid refinement analysis of each configuration demonstrates that as the LES filter width approaches the smallest scales of the system the Lyapunov exponent asymptotically approaches a plateau. Third, a small perturbation is superimposed onto the initial conditions of each configuration, and the Lyapunov exponent is used to estimate the time required for divergence, thereby providing a direct assessment of the predictability time of simulations. By comparing inert and reacting flows, it is shown that combustion increases the predictability of the turbulent simulation as a result of the dilatation and increased viscosity by heat release. The predictability time is found to scale with the integral time scale in both the reacting and inert jet flows. Fourth, an analysis of the local Lyapunov exponent is performed to demonstrate that this metric can also determine flow-dependent properties, such as regions that are sensitive to small perturbations or conditions of large turbulence within the flow field. Finally

  14. Eddy current inspection on heat exchanger tubes - problems and limitations

    International Nuclear Information System (INIS)

    Ilham Mukriz; Zainal Abidin Mohamed; Hairul Hasmoni Khairul Anuar; Mohd Salleh; Mahmood Dollah

    2005-01-01

    This paper focus on problems associated to eddy current inspection of heat exchanger tubes. A brief review on heat exchanger design and operation is presented. Eddy current technique in identifying inhomogeneity in tested tubes is discussed, highlighting its limitation in distinguishing between real pit type defects and other mundane anomalies. The limitation of the eddy current probe and equipment pertinent to the inspection are identified and areas of improvement are discussed. (Author)

  15. Automatic analysis of signals during Eddy currents controls

    International Nuclear Information System (INIS)

    Chiron, D.

    1983-06-01

    A method and the corresponding instrument have been developed for automatic analysis of Eddy currents testing signals. This apparatus enables at the same time the analysis, every 2 milliseconds, of two signals at two different frequencies. It can be used either on line with an Eddy Current testing instrument or with a magnetic tape recorder [fr

  16. Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships

    International Nuclear Information System (INIS)

    Ojovan, Michael I; Travis, Karl P; Hand, Russell J

    2007-01-01

    Doremus's model of viscosity assumes that viscous flow in amorphous materials is mediated by broken bonds (configurons). The resulting equation contains four coefficients, which are directly related to the entropies and enthalpies of formation and motion of the configurons. Thus by fitting this viscosity equation to experimental viscosity data these enthalpy and entropy terms can be obtained. The non-linear nature of the equation obtained means that the fitting process is non-trivial. A genetic algorithm based approach has been developed to fit the equation to experimental viscosity data for a number of glassy materials, including SiO 2 , GeO 2 , B 2 O 3 , anorthite, diopside, xNa 2 O-(1-x)SiO 2 , xPbO-(1-x)SiO 2 , soda-lime-silica glasses, salol, and α-phenyl-o-cresol. Excellent fits of the equation to the viscosity data were obtained over the entire temperature range. The fitting parameters were used to quantitatively determine the enthalpies and entropies of formation and motion of configurons in the analysed systems and the activation energies for flow at high and low temperatures as well as fragility ratios using the Doremus criterion for fragility. A direct anti-correlation between fragility ratio and configuron percolation threshold, which determines the glass transition temperature in the analysed materials, was found

  17. The break-up of a viscous liquid drop in a high Reynolds number shear flow

    Science.gov (United States)

    Ng, Chin Hei; Aliseda, Alberto

    2015-11-01

    The break-up of a viscous liquid droplet in a sheared turbulent flow evolves in several steps, the most visually dominant of which is the formation of high aspect ratio ligaments. This feature takes them apart from the various break-up models based on the Hinze-Kolmogorov paradigm of eddy-spherical particle collisions. We investigate the development of ligaments in a high Reynolds number (up to 250,000) submerged round jet, within the high viscosity, near-unity density ratio regime. Unlike in H-K theory, applicable to the break-up of inviscid fluid particles, break-up of inertial-scale viscous droplets occurs through a sequence of eddy collisions and long-term deformation, as evidenced by measurements of the aspect ratio that fluctuates and increases progressively during the deformation stage, and results in non-binary break-up. Additionally, the ligament formation stretches a droplet to multiple times its original size, bringing the influence of integral-scale structures. High speed imaging has been statistically analyzed to inform and validate theoretical models for the break-up time and the break-up probability. In addition, a particle size scaling model has been developed and compared with the experimental measurements of the frozen-state particle size.

  18. Intrinsic viscosity of a suspension of cubes

    KAUST Repository

    Mallavajula, Rajesh K.

    2013-11-06

    We report on the viscosity of a dilute suspension of cube-shaped particles. Irrespective of the particle size, size distribution, and surface chemistry, we find empirically that cubes manifest an intrinsic viscosity [η]=3.1±0.2, which is substantially higher than the well-known value for spheres, [η]=2.5. The orientation-dependent intrinsic viscosity of cubic particles is determined theoretically using a finite-element solution of the Stokes equations. For isotropically oriented cubes, these calculations show [η]=3.1, in excellent agreement with our experimental observations. © 2013 American Physical Society.

  19. An eddy-stimulated hotspot for fixed nitrogen-loss from the Peru oxygen minimum zone

    Directory of Open Access Journals (Sweden)

    M. A. Altabet

    2012-12-01

    Full Text Available Fixed nitrogen (N loss to biogenic N2 in intense oceanic O2 minimum zones (OMZ accounts for a large fraction of the global N sink and is an essential control on the ocean's N-budget. However, major uncertainties exist regarding microbial pathways as well as net impact on the magnitude of N-loss and the ocean's overall N-budget. Here we report the discovery of a N-loss hotspot in the Peru OMZ associated with a coastally trapped mesoscale eddy that is marked by an extreme N-deficit matched by biogenic N2 production, high NO2 levels, and the highest isotope enrichments observed so far in OMZ's for the residual NO3. High sea surface chlorophyll in seaward flowing streamers provides evidence for offshore eddy transport of highly productive, inshore water. Resulting pulses in the downward flux of particles likely stimulated heterotrophic dissimilatory NO3 reduction and subsequent production of biogenic N2 within the OMZ. A shallower biogenic N2 maximum within the oxycline is likely a feature advected by the eddy streamer from the shelf. Eddy-associated temporal-spatial heterogeneity of N-loss, mediated by a local succession of microbial processes, may explain inconsistencies observed among prior studies. Similar transient enhancements of N-loss likely occur within all other major OMZ's exerting a major influence on global ocean N and N isotope budgets.

  20. Eddy energy sources and flux in the Red Sea

    KAUST Repository

    Zhan, Peng; Subramanian, Aneesh C.; Kartadikaria, Aditya R.; Hoteit, Ibrahim

    2015-01-01

    the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied

  1. Theoretical and practical program in the non-destructive testing by eddy currents - the first level

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Addarwish, J.M.A.

    2014-11-01

    The testing using eddy currents is one of the non-destructive tests that use electromagnetic property as a basis for testing procedures, and there are many other ways to use this principle, including Remote Field Testing and the Magnetic Flux Leakage test. Eddy currents are electrical currents moving in a circular path, and took the name eddy of eddies that form when a liquid or gas is moving in a circular path because of objection obstacles to its track. They are generated in the material using a variable magnetic field. Non-destructive testing by eddy currents is a technique used for the detection of defects and interruptions in a material and it is a process that relies on the generation of small eddy currents in the material of the part to be examined, provided that this part is of an electrically conducting material. This technique and its scientific basis are explained in this book. Also the devices used in this technique and how to use these devices in details are explained. The book contains Twelve chapters: Introduction to non destructive testing - Engineering materials and its mechanical characteristics - Electrical and magnetic characteristics of engineering materials - Introduction to testing by eddy currents - Factors affecting eddy currents - Basis of electrical circuits used in eddy currents testing devices - Probes of eddy currents testing - Eddy currents testing devices (Theoretical) - Analysis of the examination results of testing by eddy currents: techniques and applications - Applications of testing by eddy currents - Eddy currents testing devices (Application) - Practical lessons for the first level in testing by eddy currents.

  2. Continuous mixer, process and use in a pumping plant for a high viscosity fluid

    Energy Technology Data Exchange (ETDEWEB)

    Cholet, H.

    1993-03-12

    The invention concerns a novel continuous mixer comprising a rotary shaft carrying two or more vanes for mixing two or more fluids of different viscosities supplied at the inlet of the mixer body and for providing, at the mixer body outlet, a mixture of viscosity lower than that of the more or most viscous fluid. Preferentially, the vane profile is such that, without fluid circulation, rotation of the vanes produces a reaction force parallel to the rotational axis and in the same direction as the resulting flow or does not produce a reaction force of significant magnitude parallel to the rotational axis. The mixer shaft is connected to a pump shaft which is rotated by hydraulic motor driven by pressurized fluid injection. The mixer is used especially for facilitating viscous crude oil pumping from directional wells including horizontal or inclined portions.

  3. Determining Confounding Sensitivities In Eddy Current Thin Film Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn

    2016-07-01

    Determining Confounding Sensitivities In Eddy Current Thin Film Measurements Ethan Gros, Lalita Udpa, Electrical Engineering, Michigan State University, East Lansing MI 48824 James A. Smith, Experiment Analysis, Idaho National Laboratory, Idaho Falls ID 83415 Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It is the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy current testing is performed using a commercially available, hand held eddy current probe (ETA3.3H spring loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe is sent to a hand held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring

  4. An efficient 3-D eddy-current solver using an independent impedance method for transcranial magnetic stimulation.

    Science.gov (United States)

    De Geeter, Nele; Crevecoeur, Guillaume; Dupre, Luc

    2011-02-01

    In many important bioelectromagnetic problem settings, eddy-current simulations are required. Examples are the reduction of eddy-current artifacts in magnetic resonance imaging and techniques, whereby the eddy currents interact with the biological system, like the alteration of the neurophysiology due to transcranial magnetic stimulation (TMS). TMS has become an important tool for the diagnosis and treatment of neurological diseases and psychiatric disorders. A widely applied method for simulating the eddy currents is the impedance method (IM). However, this method has to contend with an ill conditioned problem and consequently a long convergence time. When dealing with optimal design problems and sensitivity control, the convergence rate becomes even more crucial since the eddy-current solver needs to be evaluated in an iterative loop. Therefore, we introduce an independent IM (IIM), which improves the conditionality and speeds up the numerical convergence. This paper shows how IIM is based on IM and what are the advantages. Moreover, the method is applied to the efficient simulation of TMS. The proposed IIM achieves superior convergence properties with high time efficiency, compared to the traditional IM and is therefore a useful tool for accurate and fast TMS simulations.

  5. Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean.

    Science.gov (United States)

    Beron-Vera, Francisco J; Olascoaga, María J; Haller, George; Farazmand, Mohammad; Triñanes, Joaquín; Wang, Yan

    2015-08-01

    Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here, we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived Sargassum distributions.

  6. Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities

    Directory of Open Access Journals (Sweden)

    Qingsong Bai

    2016-01-01

    Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.

  7. The Viscosity of Organic Liquid Mixtures

    Science.gov (United States)

    Len, C. W.; Trusler, J. P. M.; Vesovic, V.; Wakeham, W. A.

    2006-01-01

    The paper reports measurements of the viscosity and density of two heavy hydrocarbon mixtures, Dutrex and Arab Light Flashed Distillate (ALFD), and of their mixtures with hydrogen. The measurements have been carried out with a vibrating-wire device over a range of temperatures from 399 to 547 K and at pressures up to 20 MPa. Measurements have also been carried out on systems in which hydrogen at different concentrations has been dissolved in the liquids. The measurements have an estimated uncertainty of ±5% for viscosity and ±2% for density and represent the first results on these prototypical heavy hydrocarbons. The results reveal that the addition of hydrogen reduces both the density and viscosity of the original hydrocarbon mixture at a particular temperature and pressure.

  8. Inference and Biogeochemical Response of Vertical Velocities inside a Mode Water Eddy

    Science.gov (United States)

    Barceló-Llull, B.; Pallas Sanz, E.; Sangrà, P.

    2016-02-01

    With the aim to study the modulation of the biogeochemical fluxes by the ageostrophic secondary circulation in anticyclonic mesoscale eddies, a typical eddy of the Canary Eddy Corridor was interdisciplinary surveyed on September 2014 in the framework of the PUMP project. The eddy was elliptical shaped, 4 month old, 110 km diameter and 400 m depth. It was an intrathermocline type often also referred as mode water eddy type. We inferred the mesoscale vertical velocity field resolving a generalized omega equation from the 3D density and ADCP velocity fields of a five-day sampled CTD-SeaSoar regular grid centred on the eddy. The grid transects where 10 nautical miles apart. Although complex, in average, the inferred omega velocity field (hereafter w) shows a dipolar structure with downwelling velocities upstream of the propagation path (west) and upwelling velocities downstream. The w at the eddy center was zero and maximum values were located at the periphery attaining ca. 6 m day-1. Coinciding with the occurrence of the vertical velocities cells a noticeable enhancement of phytoplankton biomass was observed at the eddy periphery respect to the far field. A corresponding upward diapycnal flux of nutrients was also observed at the periphery. As minimum velocities where reached at the eddy center, lineal Ekman pumping mechanism was discarded. Minimum values of phytoplankton biomass where also observed at the eddy center. The possible mechanisms for such dipolar w cell are still being investigated, but an analysis of the generalized omega equation forcing terms suggest that it may be a combination of horizontal deformation and advection of vorticity by the ageostrophic current (related to nonlinear Ekman pumping). As expected for Trades, the wind was rather constant and uniform with a speed of ca. 5 m s-1. Diagnosed nonlinear Ekman pumping leaded also to a dipolar cell that mirrors the omega w dipolar cell.

  9. A Viscosity-Based Model for Bubble-Propelled Catalytic Micromotors

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2017-06-01

    Full Text Available Micromotors have shown significant potential for diverse future applications. However, a poor understanding of the propelling mechanism hampers its further applications. In this study, an accurate mechanical model of the micromotor has been proposed by considering the geometric asymmetry and fluid viscosity based on hydrodynamic principles. The results obtained from the proposed model are in a good agreement with the experimental results. The effects of the semi-cone angle on the micromotor are re-analyzed. Furthermore, other geometric parameters, like the length-radius aspect ratio, exert great impact on the velocity. It is also observed that micromotors travel much slower in highly viscous solutions and, hence, viscosity plays an important role.

  10. Viscosity of HI-I2-H2O solution at atmospheric pressure

    International Nuclear Information System (INIS)

    Chen, Songzhe; Zhang, Ping; Wang, Laijun; Xu, Jingming; Gao, Mengxue

    2014-01-01

    Iodine-Sulfur thermochemical cycle (IS-cycle) is one of the most promising massive hydrogen production methods. Basic properties data of the HI-I 2 -H 2 O solution involved in the HI decomposition section of IS-cycle are found to be very important. HI, I 2 , and H 2 O make up a highly non-ideal solution system. Viscosity and its variation with the composition/temperature are very essential for the flowsheet work and HI-H 2 O-I 2 solution’s fluid simulation, especially in the distillation and electro-electrodialysis processes. In this paper, viscosity values of HI-H 2 O-I 2 solutions were measured at atmospheric pressure and varying temperatures (from 20 to 125 ºC). As for the composition, the HI/H2O molar ratio of the samples ranged from 1:5.36 to 1:12.00, while the HI/I 2 molar ratio from 1.0 to 1.4.0. Both temperature and composition have dramatic influence on the viscosity. Increasing temperature or H 2 O/HI molar ratio will lead to the reduction of viscosity; while increasing of I 2 /HI molar ratio results in the increase of viscosity. It was also found that I 2 content has a larger and more complex influence on the viscosity of the HI-H 2 O-I 2 solution than H 2 O content does, especially at low temperature (<50 °C). (author)

  11. Eddy current detection of corrosion damage in heat exchanger tubes

    International Nuclear Information System (INIS)

    Van Drunen, G.; Cecco, V.S.; Carter, J.R.

    1980-05-01

    Eddy current is often the most effective nondestructive test method available for in-service inspection of small bore tubing in heat exchangers. The basic principles, advantages and shortcomings of the technique are outlined. Typical eddy current indications from corrosion-related defects such as stress corrosion cracks, pitting and tube denting under support plates are presented. Eddy current signals from features such as magnetite deposits and ferromagnetic inclusions which might be mistaken for defects are also discussed. (auth)

  12. Investigating the computer analysis of eddy current NDT data

    International Nuclear Information System (INIS)

    Brown, R.L.

    1979-01-01

    The objective of this activity was to investigate and develop techniques for computer analysis of eddy current nondestructive testing (NDT) data. A single frequency commercial eddy current tester and a precision mechanical scanner were interfaced with a PDP-11/34 computer to obtain and analyze eddy current data from samples of 316 stainless steel tubing containing known discontinuities. Among the data analysis techniques investigated were: correlation, Fast Fourier Transforms (FFT), clustering, and Adaptive Learning Networks (ALN). The results were considered encouraging. ALN, for example, correctly identified 88% of the defects and non-defects from a group of 153 signal indications

  13. Eddy formation and surface flow field in the Luzon Strait area during the summer of 2009

    Science.gov (United States)

    Liu, Ze; Hou, Yijun; Xie, Qiang

    2015-09-01

    The formation of mesoscale eddies and the structure of the surface flow field in the Luzon Strait area were examined using in-situ CTD data, Argo float data, and multi-satellite remote sensing data collected from May to August 2009. The results show that vigorous water exchange between Kuroshio water and South China Sea (SCS) water began to emerge over the 200 m water column throughout the strait. Based on an objective definition of surface currents, float A69 tracked an anti-cyclonic eddy southwest of Taiwan Island under a Lagrangian current measurement. The salinity inside the anti-cyclonic eddy was higher than in typical SCS water but lower than in Kuroshio mainstream water, indicating that this eddy was induced by Kuroshio frontal intrusion through the Luzon Strait and into the SCS. From hydrographic data, we propose that continuous horizontal diffusion with high-salinity characteristics in the subsurface layer could extend to 119°E or even further west. The high-temperature filament, large positive sea level anomaly and clockwise geostrophic current all confirmed the existence of this warm eddy in May and June. A strongly negative wind stress curl maintained the eddy until it died. The surface flow field during July and August was rather complicated. Float A83 described an east-west orientated shuttle run in the 20°N section that was not reported by previous studies. At the same time, float A80 indicated a Kuroshio bend into the north-central region of Luzon Strait but it did not cross 120.5°E. The water mass rejoining the Kuroshio mainstream from the southern tip of Taiwan Island was less saline, indicating an entrainment of water from SCS by the Kuroshio bend.

  14. Energy Cascade Analysis: from Subscale Eddies to Mean Flow

    Science.gov (United States)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James

    2017-11-01

    Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.

  15. Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions.

    Science.gov (United States)

    Zhang, Ling; Lu, Qingye; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2012-07-15

    The interactions between kaolinite clay particles and a comb-type polymer (polycarboxylate ether or PCE), so-called PCE super-plasticizer, were investigated through viscosity and surface forces measurements by a rheometer and a Surface Forces Apparatus (SFA). The addition of PCE shows a strong impact on the viscosity of concentrated kaolinite suspensions in alkaline solutions (pH=8.3) but a weak effect under acidic conditions (pH=3.4). In acidic solutions, the high viscosity measured is attributed to the strong electrostatic interaction between negatively charged basal planes and positively charged edge surfaces of clay particles. Under the alkaline condition, the suspension viscosity was found to first increase significantly and then decrease with increasing PCE dosages. The results from surface forces measurement show that PCE molecules at low dosages can bridge the kaolinite particles in the concentrated suspensions via hydrogen bonding, leading to the formation of a kaolinite-PCE "network" and hence an increased suspension viscosity. At high PCE dosages, clay particles are fully covered by PCE molecules, leading to a more dispersed kaolinite suspensions and hence lower suspension viscosity due to steric repulsion between the adsorbed PCE molecules. The insights derived from measuring viscosity and interfacial properties of kaolinite suspensions containing varying amount of comb-type super-plasticizer PCE at different pH provide the foundation for many engineering applications and optimizing industrial processes. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Bulk viscosity and cosmological evolution

    International Nuclear Information System (INIS)

    Beesham, A.

    1996-01-01

    In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated

  17. Vertical eddy diffusion as a key mechanism for removing perfluorooctanoic acid (PFOA) from the global surface oceans

    International Nuclear Information System (INIS)

    Lohmann, Rainer; Jurado, Elena; Dijkstra, Henk A.; Dachs, Jordi

    2013-01-01

    Here we estimate the importance of vertical eddy diffusion in removing perfluorooctanoic acid (PFOA) from the surface Ocean and assess its importance as a global sink. Measured water column profiles of PFOA were reproduced by assuming that vertical eddy diffusion in a 3-layer ocean model is the sole cause for the transport of PFOA to depth. The global oceanic sink due to eddy diffusion for PFOA is high, with accumulated removal fluxes over the last 40 years of 660 t, with the Atlantic Ocean accounting for 70% of the global oceanic sink. The global oceans have removed 13% of all PFOA produced to a depth greater than 100 m via vertical eddy diffusion; an additional 4% has been removed via deep water formation. The top 100 m of the surface oceans store another 21% of all PFOA produced (∼1100 t). Highlights: •Eddy diffusion has removed ∼660 t of PFOA from surface oceans over the last 40 years. •Atlantic Ocean accounts for 70% of the global oceanic sink of PFOA. •Vertical eddy diffusion has moved ∼13% of PFOA to oceans deeper than 100 m. •Around 4% of PFOA has been removed via deep water formation. •The top 100 m of global oceans contain ∼21% of historical PFOA production. -- Vertical eddy diffusion is an important removal process for hydrophilic organic pollutants such as PFOA from the surface ocean

  18. In situ viscosity of oil sands using low field NMR

    International Nuclear Information System (INIS)

    Bryan, J.; Moon, D.; Kantzas, A.

    2005-01-01

    In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)

  19. Effect of the roughness of crucible on viscosity of liquid Pb38.1Sn61.9 alloy

    International Nuclear Information System (INIS)

    Wu Yuqin; Bian Xiufang; Mao Tan; Li Xuelian; Li Taibao; Wang Caidong

    2007-01-01

    The viscosity of the eutectic Pb 38.1 Sn 61.9 alloy has been measured by a torsional oscillation viscometer using three different crucibles which are made of the materials of highly sintered alumina (Al 2 O 3 ), quartz (SiO 2 ), and graphite (C) respectively. The roughness of crucibles has effect on the viscosity. The viscosity data obtained for SiO 2 and C crucibles were concentrated in the narrow range of about 0.5% and showed almost the same activation energy. However, the viscosity obtained using Al 2 O 3 crucible with the maximal roughness is higher than that using the other two crucibles. The discrepancy of viscosity obtained using those crucibles increases with the viscosity. In addition, the viscosity obtained using three kinds of crucibles in our work has a breakpoint at 488 K, which is approximate with the results of electrical conductivity and thermopower measurements reported by Plevachuk et al., which indicates the microstructure in melt changes before solidification

  20. Investigation of Numerical Dissipation in Classical and Implicit Large Eddy Simulations

    Directory of Open Access Journals (Sweden)

    Moutassem El Rafei

    2017-12-01

    Full Text Available The quantitative measure of dissipative properties of different numerical schemes is crucial to computational methods in the field of aerospace applications. Therefore, the objective of the present study is to examine the resolving power of Monotonic Upwind Scheme for Conservation Laws (MUSCL scheme with three different slope limiters: one second-order and two third-order used within the framework of Implicit Large Eddy Simulations (ILES. The performance of the dynamic Smagorinsky subgrid-scale model used in the classical Large Eddy Simulation (LES approach is examined. The assessment of these schemes is of significant importance to understand the numerical dissipation that could affect the accuracy of the numerical solution. A modified equation analysis has been employed to the convective term of the fully-compressible Navier–Stokes equations to formulate an analytical expression of truncation error for the second-order upwind scheme. The contribution of second-order partial derivatives in the expression of truncation error showed that the effect of this numerical error could not be neglected compared to the total kinetic energy dissipation rate. Transitions from laminar to turbulent flow are visualized considering the inviscid Taylor–Green Vortex (TGV test-case. The evolution in time of volumetrically-averaged kinetic energy and kinetic energy dissipation rate have been monitored for all numerical schemes and all grid levels. The dissipation mechanism has been compared to Direct Numerical Simulation (DNS data found in the literature at different Reynolds numbers. We found that the resolving power and the symmetry breaking property are enhanced with finer grid resolutions. The production of vorticity has been observed in terms of enstrophy and effective viscosity. The instantaneous kinetic energy spectrum has been computed using a three-dimensional Fast Fourier Transform (FFT. All combinations of numerical methods produce a k − 4 spectrum

  1. Vortex stability in a multi-layer quasi-geostrophic model: application to Mediterranean Water eddies

    Energy Technology Data Exchange (ETDEWEB)

    Carton, Xavier; Ménesguen, Claire; Meunier, Thomas [Laboratoire de Physique des Oceans, UBO/IFREMER/CNRS/IRD, Brest (France); Sokolovskiy, Mikhail [Institute of Water Problems of the RAS, Moscow (Russian Federation); Aguiar, Ana, E-mail: xcarton@univ-brest.fr [Instituto Dom Luiz, Universidade de Lisboa, Lisbon (Portugal)

    2014-12-01

    The stability of circular vortices to normal mode perturbations is studied in a multi-layer quasi-geostrophic model. The stratification is fitted on the Gulf of Cadiz where many Mediterranean Water (MW) eddies are generated. Observations of MW eddies are used to determine the parameters of the reference experiment; sensitivity tests are conducted around this basic case. The objective of the study is two-fold: (a) determine the growth rates and nonlinear evolutions of unstable perturbations for different three-dimensional (3D) velocity structures of the vortices, (b) check if the different structure of our idealized vortices, mimicking MW cyclones and anticyclones, can induce different stability properties in a model that conserves parity symmetry, and apply these results to observed MW eddies. The linear stability analysis reveals that, among many 3D distributions of velocity, the observed eddies are close to maximal stability, with instability time scales longer than 100 days (these time scales would be less than 10 days for vertically more sheared eddies). The elliptical deformation is most unstable for realistic eddies (the antisymmetric one dominates for small eddies and the triangular one for large eddies); the antisymmetric mode is stronger for cyclones than for anticyclones. Nonlinear evolutions of eddies with radii of about 30 km, and elliptically perturbed, lead to their re-organization into 3D tripoles; smaller eddies are stable and larger eddies break into 3D dipoles. Horizontally more sheared eddies are more unstable and sustain more asymmetric instabilities. In summary, few differences were found between cyclone and anticyclone stability, except for strong horizontal velocity shears. (paper)

  2. Vortex stability in a multi-layer quasi-geostrophic model: application to Mediterranean Water eddies

    International Nuclear Information System (INIS)

    Carton, Xavier; Ménesguen, Claire; Meunier, Thomas; Sokolovskiy, Mikhail; Aguiar, Ana

    2014-01-01

    The stability of circular vortices to normal mode perturbations is studied in a multi-layer quasi-geostrophic model. The stratification is fitted on the Gulf of Cadiz where many Mediterranean Water (MW) eddies are generated. Observations of MW eddies are used to determine the parameters of the reference experiment; sensitivity tests are conducted around this basic case. The objective of the study is two-fold: (a) determine the growth rates and nonlinear evolutions of unstable perturbations for different three-dimensional (3D) velocity structures of the vortices, (b) check if the different structure of our idealized vortices, mimicking MW cyclones and anticyclones, can induce different stability properties in a model that conserves parity symmetry, and apply these results to observed MW eddies. The linear stability analysis reveals that, among many 3D distributions of velocity, the observed eddies are close to maximal stability, with instability time scales longer than 100 days (these time scales would be less than 10 days for vertically more sheared eddies). The elliptical deformation is most unstable for realistic eddies (the antisymmetric one dominates for small eddies and the triangular one for large eddies); the antisymmetric mode is stronger for cyclones than for anticyclones. Nonlinear evolutions of eddies with radii of about 30 km, and elliptically perturbed, lead to their re-organization into 3D tripoles; smaller eddies are stable and larger eddies break into 3D dipoles. Horizontally more sheared eddies are more unstable and sustain more asymmetric instabilities. In summary, few differences were found between cyclone and anticyclone stability, except for strong horizontal velocity shears. (paper)

  3. On the measurement of magnetic viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, C. [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece); Efthimiadis, K.G., E-mail: kge@auth.gr [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece)

    2012-08-15

    This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved. - Highlights: Black-Right-Pointing-Pointer Magnetic viscosity is affected by initial measurement conditions. Black-Right-Pointing-Pointer Minor field deviations prior to its stabilization cause large changes in viscosity. Black-Right-Pointing-Pointer Viscosity is strongly dependent on the field change rate from saturation to the measurement field. Black-Right-Pointing-Pointer Small changes in field and temperature during the experiment can lead to false measurements. Black-Right-Pointing-Pointer Errors in measurements can be eliminated through the use of a proper fitting function.

  4. Quantitative pulsed eddy current analysis

    International Nuclear Information System (INIS)

    Morris, R.A.

    1975-01-01

    The potential of pulsed eddy current testing for furnishing more information than conventional single-frequency eddy current methods has been known for some time. However, a fundamental problem has been analyzing the pulse shape with sufficient precision to produce accurate quantitative results. Accordingly, the primary goal of this investigation was to: demonstrate ways of digitizing the short pulses encountered in PEC testing, and to develop empirical analysis techniques that would predict some of the parameters (e.g., depth) of simple types of defect. This report describes a digitizing technique using a computer and either a conventional nuclear ADC or a fast transient analyzer; the computer software used to collect and analyze pulses; and some of the results obtained. (U.S.)

  5. Large-Eddy Simulation of Subsonic Jets

    International Nuclear Information System (INIS)

    Vuorinen, Ville; Wehrfritz, Armin; Yu Jingzhou; Kaario, Ossi; Larmi, Martti; Boersma, Bendiks Jan

    2011-01-01

    The present study deals with development and validation of a fully explicit, compressible Runge-Kutta-4 (RK4) Navier-Stokes solver in the opensource CFD programming environment OpenFOAM. The background motivation is to shift towards explicit density based solution strategy and thereby avoid using the pressure based algorithms which are currently proposed in the standard OpenFOAM release for Large-Eddy Simulation (LES). This shift is considered necessary in strongly compressible flows when Ma > 0.5. Our application of interest is related to the pre-mixing stage in direct injection gas engines where high injection pressures are typically utilized. First, the developed flow solver is discussed and validated. Then, the implementation of subsonic inflow conditions using a forcing region in combination with a simplified nozzle geometry is discussed and validated. After this, LES of mixing in compressible, round jets at Ma = 0.3, 0.5 and 0.65 are carried out. Respectively, the Reynolds numbers of the jets correspond to Re = 6000, 10000 and 13000. Results for two meshes are presented. The results imply that the present solver produces turbulent structures, resolves a range of turbulent eddy frequencies and gives also mesh independent results within satisfactory limits for mean flow and turbulence statistics.

  6. Applying Magneto-rheology to Reduce Blood Viscosity and Suppress Turbulence to Prevent Heart Attacks

    Science.gov (United States)

    Tao, R.

    Heart attacks are the leading causes of death in USA. Research indicates one common thread, high blood viscosity, linking all cardiovascular diseases. Turbulence in blood circulation makes different regions of the vasculature vulnerable to development of atherosclerotic plaque. Turbulence is also responsible for systolic ejection murmurs and places heavier workload on heart, a possible trigger of heart attacks. Presently, neither medicine nor method is available to suppress turbulence. The only method to reduce the blood viscosity is to take medicine, such as aspirin. However, using medicine to reduce the blood viscosity does not help suppressing turbulence. In fact, the turbulence gets worse as the Reynolds number goes up with the viscosity reduction by the medicine. Here we report our new discovery: application of a strong magnetic field to blood along its flow direction, red blood cells are polarized in the magnetic field and aggregated into short chains along the flow direction. The blood viscosity becomes anisotropic: Along the flow direction the viscosity is significantly reduced, but in the directions perpendicular to the flow the viscosity is considerably increased. In this way, the blood flow becomes laminar, turbulence is suppressed, the blood circulation is greatly improved, and the risk for heart attacks is reduced. While these effects are not permanent, they last for about 24 hours after one magnetic therapy treatment.

  7. Negative viscosity can enhance learning of inertial dynamics.

    Science.gov (United States)

    Huang, Felix C; Patton, James L; Mussa-Ivaldi, Ferdinando A

    2009-06-01

    We investigated how learning of inertial load manipulation is influenced by movement amplification with negative viscosity. Using a force-feedback device, subjects trained on anisotropic loads (5 orientations) with free movements in one of three conditions (inertia only, negative viscosity only, or combined), prior to common evaluation conditions (prescribed circular pattern with inertia only). Training with Combined-Load resulted in lower error (6.89±3.25%) compared to Inertia-Only (8.40±4.32%) and Viscosity-Only (8.17±4.13%) according to radial deviation analysis (% of trial mean radius). Combined-Load and Inertia-Only groups exhibited similar unexpected no-load trials (8.38±4.31% versus 8.91±4.70% of trial mean radius), which suggests comparable low-impedance strategies. These findings are remarkable since negative viscosity, only available during training, evidently enhanced learning when combined with inertia. Modeling analysis suggests that a feedforward after-effect of negative viscosity cannot predict such performance gains. Instead, results from Combined-Load training are consistent with greater feedforward inertia compensation along with a small increase in impedance control. The capability of the nervous system to generalize learning from negative viscosity suggests an intriguing new method for enhancing sensorimotor adaptation.

  8. Laboratory Tests for Dispersive Soil Viscosity Determining

    Science.gov (United States)

    Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Sobolev, E. S.

    2017-11-01

    There are several widespread methods for soil viscosity determining now. The standard shear test device and torsion test apparatus are the most commonly used installations to do that. However, the application of them has a number of disadvantages. Therefore, the specialists of Moscow State University of Civil Engineering proposed a new device to determine the disperse soil viscosity on the basis of a stabilometer with the B-type camera (viscosimeter). The paper considers the construction of a viscosimeter and the technique for determining soil viscosity inside this tool as well as some experimental verification results of its work.

  9. Gamma radiation effect on agar viscosity for use in food industry

    International Nuclear Information System (INIS)

    Aliste, Antonio J.; Del Mastro, Nelida L.

    1999-01-01

    The application of food radiation processing is increasing worldwide mainly because of its efficiency in the industrial decontamination of packaged food products. Indeed, the process neither introduces any undesirable elements nor increases the temperature, thus allowing the preparation of ready-to-use products which remain stable for long periods at room temperature. The aim of this work was to study the effect of Co-60 gamma radiation on the viscosity of agar. This hydrocolloid derived from seaweed is a galactose polymer with a high hysteresis capacity (great difference among melting and gelification temperature) which is extremely important when used as additive for the food industry. Commercial agar was irradiated with doses of 0, 1, 5 and 10 kGy. Proper dilutions were prepared and the viscosity was measured in a Brookfield model LVDVIII viscosimeters. The relationships viscosity/dose for the temperatures of 45 deg C and 60 deg C were established. The decrease of the viscosity was 71.4% and 49.6% respectively when the applied dose was 10 kGy. The implications of the use of this additive in food irradiation are discussed. (author)

  10. Effect of Polyvinyl Siloxane Viscosity on Accuracy of Dental Implant Impressions.

    Science.gov (United States)

    Ghahremanloo, Ahmad; Seifi, Mahdieh; Ghanbarzade, Jalil; Abrisham, Seyyed Mohammad; Javan, Rashid Abdolah

    2017-01-01

    The aim of this study was to compare the accuracy of dental implant impressions obtained by a combination of different impression techniques and viscosities of polyvinyl siloxane (PVS). Four parallel fixtures were placed between mental foramina in a master model of lower dental arch. Three different viscosities (putty/light body, medium body/light body, and monophase: heavy body) and direct and indirect techniques (six groups) were used, and seven impressions were obtained from each group (n=42). To measure the accuracy of impressions, drift, horizontal, and vertical angles of the implants, as well as the hex rotation of the implants in casts were evaluated using a digitizer device (1μm accuracy), in comparison with master arch. Data were analyzed using five-factor two-way ANOVA and Tukey's post-hoc test. The accuracy of impressions was assessed and the results showed that direct technique was not significantly different from indirect technique (P>0.05). Also, there were no significant differences between the mentioned viscosities except for the horizontal angle (P=0.006). Viscosity of impression materials is of high significance for the accuracy of dental impressions.

  11. Viscosity effect in Landau's hydrodynamical model

    International Nuclear Information System (INIS)

    Hoang, T.F.; Phua, K.K.; Nanyang Univ., Singapore

    1979-01-01

    The Bose-Einstein distribution is used to investigate Landau's hydrodynamical model with viscosity. In case the viscosity dependence on the temperature is T 3 , the correction to the multiplicity behaves like I/E and is found to be negligible for the pp data. A discussion is presented on a possibility of reconciling E 1 / 2 and logE dependence of the multiplicity law. (orig.)

  12. Large eddy simulation of turbulent mixing in a T-junction

    International Nuclear Information System (INIS)

    Kim, Jung Woo

    2010-12-01

    In this report, large eddy simulation was performed in order to further improve our understanding the physics of turbulent mixing in a T-junction, which is recently regarded as one of the most important problems in nuclear thermal-hydraulics safety. Large eddy simulation technique and the other numerical methods used in this study were presented in Sec. 2, and the numerical results obtained from large eddy simulation were described in Sec. 3. Finally, the summary was written in Sec. 4

  13. Eddies in the Red Sea: A statistical and dynamical study

    KAUST Repository

    Zhan, Peng; Subramanian, Aneesh C.; Yao, Fengchao; Hoteit, Ibrahim

    2014-01-01

    correlated with stratification but positively correlated with vertical shear of horizontal velocity and eddy growth rate, suggesting that the generation of baroclinic instability is responsible for the activities of eddies in the Red Sea.

  14. How does the Red Sea outflow water interact with Gulf of Aden Eddies?

    Science.gov (United States)

    Ilıcak, Mehmet; Özgökmen, Tamay M.; Johns, William E.

    As the Red Sea overflow water (RSOW) enters the Gulf of Aden (GOA), it interacts with a sequence of nearly barotropic, mesoscale eddies originating in the Indian Ocean. To investigate how these eddies impact the dispersal and eastward transport of the RSOW toward the Indian Ocean, a high resolution 3D regional model is employed to explore systematically the interaction between the RSOW and mesoscale eddies. Two types of experiments are conducted. In the first set, we simulate the behavior of RSOW in the presence of an idealized cyclone and an idealized anticyclone. The second type of simulation involves nesting of the regional model (ROMS) within a data-assimilating global model (HYCOM), in which a sequence of mesoscale eddies entering the Gulf of Aden is realistically captured. This simulation is integrated for one year, and includes a simple representation of the seasonality of the RSOW. Bower et al. (2002) suggest that the Red Sea overflow might be a western boundary undercurrent. Consistent with these expectations, the idealized simulations show that the preferred pathway of the RSOW in the absence of eddies is along the coast of Somalia (southern continental shelf) as a western boundary undercurrent. Simultaneously, a cyclonic circulation is generated in the far western GOA due to vortex stretching by the descending outflow. The presence of a cyclone in the western GOA increases the peak RSOW transport, but the cyclone itself rapidly loses its coherence after interacting with the rough topography in the western GOA. The presence of an anticyclone tends to block the preferred boundary pathway and inhibits the eastward transport of the RSOW. The eddies also result in substantially increased mixing of the RSOW in the western GOA. On the basis of the more realistic ROMS experiment, it is found that the modeled RSOW leaves the western part of the Gulf of Aden in short episodic bursts with transports that are an order of magnitude greater than that associated with

  15. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    Science.gov (United States)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  16. Barotropic response in a lake to wind-forcing

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2001-03-01

    Full Text Available We report results gained with a three-dimensional, semi-implicit, semi-spectral model of the shallow water equations on the rotating Earth that allowed one to compute the wind-induced motion in lakes. The barotropic response to unidirectional, uniform winds, Heaviside in time, is determined in a rectangular basin with constant depth, and in Lake Constance, for different values and vertical distributions of the vertical eddy viscosities. It is computationally demonstrated that both the transitory oscillating, as well as the steady state current distribution, depends strongly upon the absolute value and vertical shape of the vertical eddy viscosity. In particular, the excitation and attenuation in time of the inertial waves, the structure of the Ekman spiral, the thickness of the Ekman layer, and the exact distribution and magnitude of the upwelling and downwelling zones are all significantly affected by the eddy viscosities. Observations indicate that the eddy viscosities must be sufficiently small so that the oscillatory behaviour can be adequately modelled. Comparison of the measured current-time series at depth in one position of Lake Constance with those computed on the basis of the measured wind demonstrates fair agreement, including the rotation-induced inertial oscillation.Key words. Oceanography: general (limnology – Oceanography: physical (Coriolis effects; general circulation

  17. Barotropic response in a lake to wind-forcing

    Directory of Open Access Journals (Sweden)

    Y. Wang

    Full Text Available We report results gained with a three-dimensional, semi-implicit, semi-spectral model of the shallow water equations on the rotating Earth that allowed one to compute the wind-induced motion in lakes. The barotropic response to unidirectional, uniform winds, Heaviside in time, is determined in a rectangular basin with constant depth, and in Lake Constance, for different values and vertical distributions of the vertical eddy viscosities. It is computationally demonstrated that both the transitory oscillating, as well as the steady state current distribution, depends strongly upon the absolute value and vertical shape of the vertical eddy viscosity. In particular, the excitation and attenuation in time of the inertial waves, the structure of the Ekman spiral, the thickness of the Ekman layer, and the exact distribution and magnitude of the upwelling and downwelling zones are all significantly affected by the eddy viscosities. Observations indicate that the eddy viscosities must be sufficiently small so that the oscillatory behaviour can be adequately modelled. Comparison of the measured current-time series at depth in one position of Lake Constance with those computed on the basis of the measured wind demonstrates fair agreement, including the rotation-induced inertial oscillation.

    Key words. Oceanography: general (limnology – Oceanography: physical (Coriolis effects; general circulation

  18. Viscosity of aluminum under shock-loading conditions

    International Nuclear Information System (INIS)

    Ma Xiao-Juan; Liu Fu-Sheng; Zhang Ming-Jian; Sun Yan-Yun

    2011-01-01

    A reliable data treatment method is critical for viscosity measurements using the disturbance amplitude damping method of shock waves. In this paper the finite difference method is used to obtain the numerical solutions for the disturbance amplitude damping behaviour of the sinusoidal shock front in a flyer-impact experiment. The disturbance amplitude damping curves are used to depict the numerical solutions of viscous flow. By fitting the experimental data to the numerical solutions of different viscosities, we find that the effective shear viscosity coefficients of shocked aluminum at pressures of 42, 78 and 101 GPa are (1500±100) Pa·s, (2800±100) Pa·s and (3500±100) Pa·s respectively. It is clear that the shear viscosity of aluminum increases with an increase in shock pressure, so aluminum does not melt below a shock pressure of 101 GPa. This conclusion is consistent with the sound velocity measurement. (interdisciplinary physics and related areas of science and technology)

  19. Near-surface eddy dynamics in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Marilisa Trani

    2011-12-01

    Full Text Available The Antarctic Circumpolar Current (ACC is a crucial component of the global ocean conveyor belt, acting as a zonal link among the major ocean basins but, to some extent, limiting meridional exchange and tending to isolate the ocean south of it from momentum and heat income. In this work we investigate one of the most important mechanisms contributing to the poleward transfer of properties in the Southern Ocean, that is the eddy component of the dynamics. For this particular purpose, observations obtained from near-surface drifters have been used: they represent a very useful data set to analyse the eddy field because of their ability to catch a large number of scales of motion while providing a quasi-synoptic coverage of the investigated area. Estimates of the eddy heat and momentum fluxes are carried out using data taken from the Global Drifter Program databank; they refer to Surface Velocity Program drifter trajectories collected in the area south of 35°S between 1995 and 2006. Eddy kinetic energies, variance ellipses, momentum and heat fluxes have been calculated using the pseudo-Eulerian method, showing patterns in good agreement with those present in the literature based on observational and model data, although there are some quantitative differences. The eddy fluxes have been separated into their rotational and divergent portions, the latter being responsible for the meridional transports. The associated zonal and depth-exponentially integrated meridional heat transport exhibits values spanning over a range between -0.4 PW and –1.1 PW in the ACC region, consistent with previous estimates.

  20. Separation of density and viscosity influence on liquid-loaded surface acoustic wave devices

    Science.gov (United States)

    Herrmann, F.; Hahn, D.; Büttgenbach, S.

    1999-05-01

    Love-mode sensors are reported for separate measurement of liquid density and viscosity. They combine the general merits of Love-mode devices, e.g., ease of sensitivity adjustment and robustness, with a highly effective procedure of separate determination of liquid density and viscosity. A model is proposed to describe the frequency response of the devices to liquid loading. Moreover, design rules are given for further optimization and sensitivity enhancement.