WorldWideScience

Sample records for high density fore-reef

  1. North Jamaican Deep Fore-Reef Sponges

    NARCIS (Netherlands)

    Lehnert, Helmut; Soest, van R.W.M.

    1996-01-01

    An unexpectedly high amount of new species, revealed within only one hour of summarized bottom time, leads to the conclusion that the sponge fauna of the steep slopes of the deep fore-reef is still largely unknown. Four mixed gas dives at depths between 70 and 90 m, performed in May and June, 1993,

  2. Patterns of sexual recruitment of acroporid coral populations on the west fore reef at Discovery Bay, Jamaica.

    Science.gov (United States)

    Quinn, Norman J; Kojis, Barbara L

    2005-05-01

    Coral recruitment was examined on terracotta tiles deployed for four six-month periods between March 2001 and April 2003 on the West Fore Reef at Discovery Bay, Jamaica. During each sampling period, four tiles were deployed on each of two arrays at six depths ranging from 3 m to 33 m. Only three Acropora spat recruited to the tiles over the sampling period. The Acropora spat recruited during only one of the four six-month sampling periods and at only one depth, 3m. That represents a density of 8 spat m(-2) at 3 m depth for one six-month sampling period. Acropora recruitment represented Acropora colony (an A. palmata) was recorded during Point-Quarter surveys of coral cover and density at depths of 3 m, 9 m, 14 m and 19 m. Considering the paucity of acroporid colonies and the infrequent settlement of acroporid spat on the West Fore Reef, it is unlikely that the historic abundance of A. palmata and A. cervicornis will return soon.

  3. A review of bottom-up vs. top-down control of sponges on Caribbean fore-reefs: what’s old, what’s new, and future directions

    Directory of Open Access Journals (Sweden)

    Joseph R. Pawlik

    2018-01-01

    Full Text Available Interest in the ecology of sponges on coral reefs has grown in recent years with mounting evidence that sponges are becoming dominant members of reef communities, particularly in the Caribbean. New estimates of water column processing by sponge pumping activities combined with discoveries related to carbon and nutrient cycling have led to novel hypotheses about the role of sponges in reef ecosystem function. Among these developments, a debate has emerged about the relative effects of bottom-up (food availability and top-down (predation control on the community of sponges on Caribbean fore-reefs. In this review, we evaluate the impact of the latest findings on the debate, as well as provide new insights based on older citations. Recent studies that employed different research methods have demonstrated that dissolved organic carbon (DOC and detritus are the principal sources of food for a growing list of sponge species, challenging the idea that the relative availability of living picoplankton is the sole proxy for sponge growth or abundance. New reports have confirmed earlier findings that reef macroalgae release labile DOC available for sponge nutrition. Evidence for top-down control of sponge community structure by fish predation is further supported by gut content studies and historical population estimates of hawksbill turtles, which likely had a much greater impact on relative sponge abundances on Caribbean reefs of the past. Implicit to investigations designed to address the bottom-up vs. top-down debate are appropriate studies of Caribbean fore-reef environments, where benthic communities are relatively homogeneous and terrestrial influences and abiotic effects are minimized. One recent study designed to test both aspects of the debate did so using experiments conducted entirely in shallow lagoonal habitats dominated by mangroves and seagrass beds. The top-down results from this study are reinterpreted as supporting past research

  4. Inter-habitat variation in density and size composition of reef fishes from the Cuban Northwestern shelf.

    Science.gov (United States)

    Aguilar, Consuelo; González-Sansón, Gaspar; Cabrera, Yureidy; Ruiz, Alexei; Curry, R Allen

    2014-06-01

    Movement and exchange of individuals among habitats is critical for the dynamics and success of reef fish populations. Size segregation among habitats could be taken as evidence for habitat connectivity, and this would be a first step to formulate hypotheses about ontogenetic inter-habitat migrations. The primary goal of our research was to find evidence of inter-habitat differences in size distributions and density of reef fish species that can be classified a priori as habitat-shifters in an extensive (-600km2) Caribbean shelf area in NW Cuba. We sampled the fish assemblage of selected species using visual census (stationary and transect methods) in 20 stations (sites) located in mangrove roots, patch reefs, inner zone of the crest and fore reef (12-16m depth). In each site, we performed ten censuses for every habitat type in June and September 2009. A total of 11 507 individuals of 34 species were counted in a total of 400 censuses. We found significant differences in densities and size compositions among reef and mangrove habitats, supporting the species-specific use of coastal habitats. Adults were found in all habitats. Reef habitats, mainly patch reefs, seem to be most important for juvenile fish of most species. Mangroves were especially important for two species of snappers (Lutjanus apodus and L. griseus), providing habitat for juveniles. These species also displayed well defined gradients in length composition across the shelf.

  5. Reef fishes of Saba Bank, Netherlands Antilles: assemblage structure across a gradient of habitat types.

    Directory of Open Access Journals (Sweden)

    Wes Toller

    Full Text Available Saba Bank is a 2,200 km(2 submerged carbonate platform in the northeastern Caribbean Sea off Saba Island, Netherlands Antilles. The presence of reef-like geomorphic features and significant shelf edge coral development on Saba Bank have led to the conclusion that it is an actively growing, though wholly submerged, coral reef atoll. However, little information exists on the composition of benthic communities or associated reef fish assemblages of Saba Bank. We selected a 40 km(2 area of the bank for an exploratory study. Habitat and reef fish assemblages were investigated in five shallow-water benthic habitat types that form a gradient from Saba Bank shelf edge to lagoon. Significant coral cover was restricted to fore reef habitat (average cover 11.5% and outer reef flat habitat (2.4% and declined to near zero in habitats of the central lagoon zone. Macroalgae dominated benthic cover in all habitats (average cover: 32.5--48.1% but dominant algal genera differed among habitats. A total of 97 fish species were recorded. The composition of Saba Bank fish assemblages differed among habitat types. Highest fish density and diversity occurred in the outer reef flat, fore reef and inner reef flat habitats. Biomass estimates for commercially valued species in the reef zone (fore reef and reef flat habitats ranged between 52 and 83 g/m(2. The composition of Saba Bank fish assemblages reflects the absence of important nursery habitats, as well as the effects of past fishing. The relatively high abundance of large predatory fish (i.e. groupers and sharks, which is generally considered an indicator of good ecosystem health for tropical reef systems, shows that an intact trophic network is still present on Saba Bank.

  6. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition.

    Science.gov (United States)

    Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee

    2017-05-01

    Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.

  7. Parameters Controlling Sediment Composition of Modern and Pleistocene Jamaican Reefs

    OpenAIRE

    Boss, Stephen K.

    1985-01-01

    Recent carbonate sediments from Jamaican north coast fringing reefs display variation in constituent composition, texture, and mineralogy related to their location on the reef. Samples were collected along lines which traversed the back reef and fore reef (0.5m to 70m). The sediment is dominated by highly comminuted coral fragments, plates of the calcareous green alga, Halimeda, coralline algae, and the encrusting Foraminifera, Homotrema rubrum, with lesser amounts of other taxonomic group...

  8. The relative contribution of processes driving variability in flow, shear, and turbidity over a fringing coral reef: West Maui, Hawaii

    Science.gov (United States)

    Storlazzi, C.D.; Jaffe, B.E.

    2008-01-01

    High-frequency measurements of waves, currents and water column properties were made on a fringing coral reef off northwest Maui, Hawaii, for 15 months between 2001 and 2003 to aid in understanding the processes governing flow and turbidity over a range of time scales and their contributions to annual budgets. The summer months were characterized by consistent trade winds and small waves, and under these conditions high-frequency internal bores were commonly observed, there was little net flow or turbidity over the fore reef, and over the reef flat net flow was downwind and turbidity was high. When the trade winds waned or the wind direction deviated from the dominant trade wind orientation, strong alongshore flows occurred into the typically dominant wind direction and lower turbidity was observed across the reef. During the winter, when large storm waves impacted the study area, strong offshore flows and high turbidity occurred on the reef flat and over the fore reef. Over the course of a year, trade wind conditions resulted in the greatest net transport of turbid water due to relatively strong currents, moderate overall turbidity, and their frequent occurrence. Throughout the period of study, near-surface current directions over the fore reef varied on average by more than 41?? from those near the seafloor, and the orientation of the currents over the reef flat differed on average by more than 65?? from those observed over the fore reef. This shear occurred over relatively short vertical (order of meters) and horizontal (order of hundreds of meters) scales, causing material distributed throughout the water column, including the particles in suspension causing the turbidity (e.g. sediment or larvae) and/or dissolved nutrients and contaminants, to be transported in different directions under constant oceanographic and meteorologic forcing.

  9. Seaweed beds support more juvenile reef fish than seagrass beds in a south-western Atlantic tropical seascape

    Science.gov (United States)

    Eggertsen, L.; Ferreira, C. E. L.; Fontoura, L.; Kautsky, N.; Gullström, M.; Berkström, C.

    2017-09-01

    Seascape connectivity is regarded essential for healthy reef fish communities in tropical shallow systems. A number of reef fish species use separate adult and nursery habitats, and hence contribute to nutrient and energy transfer between habitats. Seagrass beds and mangroves often constitute important nursery habitats, with high structural complexity and protection from predation. Here, we investigated if reef fish assemblages in the tropical south-western Atlantic demonstrate ontogenetic habitat connectivity and identify possible nurseries on three reef systems along the eastern Brazilian coast. Fish were surveyed in fore reef, back reef, Halodule wrightii seagrass beds and seaweed beds. Seagrass beds contained lower abundances and species richness of fish than expected, while Sargassum-dominated seaweed beds contained significantly more juveniles than all other habitats (average juvenile fish densities: 32.6 per 40 m2 in Sargassum beds, 11.2 per 40 m2 in back reef, 10.1 per 40 m2 in fore reef, and 5.04 per 40 m2 in seagrass beds), including several species that are found in the reef habitats as adults. Species that in other regions worldwide (e.g. the Caribbean) utilise seagrass beds as nursery habitats were here instead observed in Sargassum beds or back reef habitats. Coral cover was not correlated to adult fish distribution patterns; instead, type of turf was an important variable. Connectivity, and thus pathways of nutrient transfer, seems to function differently in east Brazil compared to many tropical regions. Sargassum-dominated beds might be more important as nurseries for a larger number of fish species than seagrass beds. Due to the low abundance of structurally complex seagrass beds we suggest that seaweed beds might influence adult reef fish abundances, being essential for several keystone species of reef fish in the tropical south-western Atlantic.

  10. Holocene reef development where wave energy reduces accommodation

    Science.gov (United States)

    Grossman, Eric E.; Fletcher, Charles H.

    2004-01-01

    Analyses of 32 drill cores obtained from the windward reef of Kailua Bay, Oahu, Hawaii, indicate that high wave energy significantly reduced accommodation space for reef development in the Holocene and produced variable architecture because of the combined influence of sea-level history and wave exposure over a complex antecedent topography. A paleostream valley within the late Pleistocene insular limestone shelf provided accommodation space for more than 11 m of vertical accretion since sea level flooded the bay 8000 yr BP. Virtually no net accretion (pile-up of fore-reef-derived rubble (rudstone) and sparse bindstone, and (3) a final stage of catch-up bindstone accretion in depths > 6 m. Coral framestone accreted at rates of 2.5-6.0 mm/yr in water depths > 11 m during the early Holocene; it abruptly terminated at ~4500 yr BP because of wave scour as sea level stabilized. More than 4 m of rudstone derived from the upper fore reef accreted at depths of 6 to 13 m below sea level between 4000 and 1500 yr BP coincident with late Holocene relative sea-level fall. Variations in the thickness, composition, and age of these reef facies across spatial scales of 10-1000 m within Kailua Bay illustrate the importance of antecedent topography and wave-related stress in reducing accommodation space for reef development set by sea level. Although accommodation space of 6 to 17 m has existed through most of the Holocene, the Kailua reef has been unable to catch up to sea level because of persistent high wave stress.

  11. Predator effects on reef fish settlement depend on predator origin and recruit density.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2017-04-01

    During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.

  12. Post-bleaching coral community change on southern Maldivian reefs: is there potential for rapid recovery?

    Science.gov (United States)

    Perry, C. T.; Morgan, K. M.

    2017-12-01

    Given the severity of the 2016 global bleaching event, there are major questions about how quickly reef communities will recover. Here, we explore the ecological and physical structural changes that occurred across five atoll interior reefs in the southern Maldives using data collected at 6 and 12 months post-bleaching. Following initial severe coral mortality, further minor coral mortality had occurred by 12 months post-bleaching, and coral cover is now low (transitions to rubble-dominated states will occur in the near future. Juvenile coral densities in shallow fore-reef habitats are also exceptionally low (<6 individuals m-2), well below those measured 9-12 months following the 1998 bleaching event, and below recovery thresholds identified on other Indian Ocean reefs. Our findings suggest that the physical structure of these reefs will need to decline further before effective recruitment and recovery can begin.

  13. Use of riverine through reef habitat systems by dog snapper ( Lutjanus jocu ) in eastern Brazil

    Science.gov (United States)

    Moura, Rodrigo L.; Francini-Filho, Ronaldo B.; Chaves, Eduardo M.; Minte-Vera, Carolina V.; Lindeman, Kenyon C.

    2011-11-01

    The early life history of Western Atlantic snappers from the Southern hemisphere is largely unknown. Habitat use of different life stages (i.e. size categories) of the dog snapper ( Lutjanus jocu) was examined across the largest South Atlantic reef-estuarine complex (Abrolhos Shelf, Brazil, 16-19° S). Visual surveys were conducted in different habitats across the shelf (estuary, inner-shelf reefs and mid-shelf reefs). Lutjanus jocu showed higher densities on inner-shelf habitats, with a clear increase in fish size across the shelf. Individuals mangrove and rocky habitats) and inner-shelf reefs (particularly shallow fore-reefs and tide pools). Individuals ranging 10-30 cm were broadly distributed, but consistently more abundant on inner-shelf reefs. Individuals between 30 and 40 cm were more common on mid-shelf reefs, while individuals >40 cm were recorded only on mid-shelf reefs. Literature data indicate that individuals ranging 70-80 cm are common on deep offshore reefs. This pattern suggests that the dog snapper performs ontogenetic cross-shelf migrations. Protecting portions of the different habitats used by the dog snapper during its post-settlement life cycle is highlighted as an important conservation and management measure.

  14. Coral Reef Resilience, Tipping Points and the Strength of Herbivory.

    Science.gov (United States)

    Holbrook, Sally J; Schmitt, Russell J; Adam, Thomas C; Brooks, Andrew J

    2016-11-02

    Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience.

  15. Patterns of sexual recruitment of acroporid coral populations on the West Fore Reef at Discovery Bay,Jamaica

    Directory of Open Access Journals (Sweden)

    Norman J Quinn

    2005-05-01

    Full Text Available Coral recruitment was examined on terracotta tiles deployed for four six-month periods between March 2001 and April 2003 on the West Fore Reef at Discovery Bay,Jamaica.During each sampling period, four tiles were deployed on each of two arrays at six depths ranging from 3 m to 33 m.Only three Acropora spat recruited to the tiles over the sampling period.The Acropora spat recruited during only one of the four six-month sampling periods and at only one depth,3m.That represents a density of 8 spat m-2 at 3 m depth for one six-month sampling period.Acropora recruitment represented El reclutamiento de corales fue estudiado utilizando placas de cerámica colocadas en cuatro períodos de seis meses,entre marzo de 2001 y abril de 2003,en el Arrecife Frontal Oeste en Discovery Bay,Jamaica.Durante cada período de muestreo se colocaron dos grupos de cuatro placas a seis profundidades,en un ámbito de 3-33 m.Se encontraron tres reclutas de Acropora durante todo el estudio, únicamente a 3 m de profundidad y durante uno de los cuatro períodos.Esto representa una densidad de 8 reclutas m-2 a 3 m,para un semestre de muestreo.Acropora representó <1%del total de reclutas de las placas colocadas a 3 m durante los cuatro períodos de muestreo.Se encontró una densidad baja de acropóridos en el Arrecife Frontal Oeste. Únicamente se encontró una colonia de Acropora palmata durante los censos de cobertura coralina y densidad realizados a profundidades de 3,9,14 y 19 m.Considerando la escasez de colonias de acropóridos y el asentamiento infrecuente de reclutas en el Arrecife Frontal Oeste,la recuperación de la abundancia histórica de A.palmata y A. cervicornis,es poco probable a corto plazo.

  16. Prey Density Threshold and Tidal Influence on Reef Manta Ray Foraging at an Aggregation Site on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Asia O Armstrong

    Full Text Available Large tropical and sub-tropical marine animals must meet their energetic requirements in a largely oligotrophic environment. Many planktivorous elasmobranchs, whose thermal ecologies prevent foraging in nutrient-rich polar waters, aggregate seasonally at predictable locations throughout tropical oceans where they are observed feeding. Here we investigate the foraging and oceanographic environment around Lady Elliot Island, a known aggregation site for reef manta rays Manta alfredi in the southern Great Barrier Reef. The foraging behaviour of reef manta rays was analysed in relation to zooplankton populations and local oceanography, and compared to long-term sighting records of reef manta rays from the dive operator on the island. Reef manta rays fed at Lady Elliot Island when zooplankton biomass and abundance were significantly higher than other times. The critical prey density threshold that triggered feeding was 11.2 mg m-3 while zooplankton size had no significant effect on feeding. The community composition and size structure of the zooplankton was similar when reef manta rays were feeding or not, with only the density of zooplankton changing. Higher zooplankton biomass was observed prior to low tide, and long-term (~5 years sighting data confirmed that more reef manta rays are also observed feeding during this tidal phase than other times. This is the first study to examine prey availability at an aggregation site for reef manta rays and it indicates that they feed in locations and at times of higher zooplankton biomass.

  17. Coral reef degradation is not correlated with local human population density

    Science.gov (United States)

    Bruno, John F.; Valdivia, Abel

    2016-07-01

    The global decline of reef-building corals is understood to be due to a combination of local and global stressors. However, many reef scientists assume that local factors predominate and that isolated reefs, far from human activities, are generally healthier and more resilient. Here we show that coral reef degradation is not correlated with human population density. This suggests that local factors such as fishing and pollution are having minimal effects or that their impacts are masked by global drivers such as ocean warming. Our results also suggest that the effects of local and global stressors are antagonistic, rather than synergistic as widely assumed. These findings indicate that local management alone cannot restore coral populations or increase the resilience of reefs to large-scale impacts. They also highlight the truly global reach of anthropogenic warming and the immediate need for drastic and sustained cuts in carbon emissions.

  18. Physical properties of fore-arc basalt and boninite in Izu-Bonin-Mariana forearc recovered by IODP Expedition 352

    Science.gov (United States)

    Honda, M.; Michibayashi, K.; Almeev, R. R.; Christeson, G. L.; Sakuyama, T.; Yamamoto, Y.; Watanabe, T.

    2016-12-01

    The Izu-Bonin-Mariana (IBM) arc is a typical intraoceanic arc system and is the type locality for subduction initiation. IODP-IBM project is aimed to understand subduction initiation, arc evolution, and continental crust formation. Expedition 352 is one of the IBM projects and that has drilled four sites at the IBM fore-arc. Expedition 352 has successfully recovered fore-arc basalts and boninites related to seafloor spreading during the subduction initiation as well as the earliest arc development. The fore-arc basalts were recovered from two sites (U1440 and U1441) at the deeper trench slope to the east, whereas the boninites were recovered from two sites (U1439 and U1442) at the shallower slope to the west. In this study, we studied textures and physical properties of both the fore-arc basalt and the boninite samples recovered by IODP Expedition 352. The fore-arc basalt samples showed aphyric texture, whereas the boninites showed hyaloclastic, aphyric and porphyritic textures. For the physical properties, we measured density, porosity, P-wave velocity and anisotropy of magnetic susceptibility. P-wave velocities were measured under ordinary and confining pressure. As a result, the densities are in a range between 2 g/cm3 and 3 g/cm3. The porosities are in a range between 5 % and 40 %. The P-wave velocities are in a wide range from 3 km/s to 5.5 km/s and have a positive correlation to the densities. The magnetic susceptibilities showed bimodal distributions so that the physical properties were classified into two groups: a high magnetic susceptibility group (>5×10-3) and a low magnetic susceptibility group (<5×10-3). The high magnetic susceptibility group is almost identical with the fore-arc basalt and boninite samples with the higher correlation trend between the P-wave velocities and the densities, whereas the low magnetic susceptibility group is only the boninite samples with the lower correlation trend between the P-wave velocities and the densities. It

  19. Density-dependent habitat selection and performance by a large mobile reef fish.

    Science.gov (United States)

    Lindberg, William J; Frazer, Thomas K; Portier, Kenneth M; Vose, Frederic; Loftin, James; Murie, Debra J; Mason, Doran M; Nagy, Brian; Hart, Mary K

    2006-04-01

    Many exploited reef fish are vulnerable to overfishing because they concentrate over hard-bottom patchy habitats. How mobile reef fish use patchy habitat, and the potential consequences on demographic parameters, must be known for spatially explicit population dynamics modeling, for discriminating essential fish habitat (EFH), and for effectively planning conservation measures (e.g., marine protected areas, stock enhancement, and artificial reefs). Gag, Mycteroperca microlepis, is an ecologically and economically important warm-temperate grouper in the southeastern United States, with behavioral and life history traits conducive to large-scale field experiments. The Suwannee Regional Reef System (SRRS) was built of standard habitat units (SHUs) in 1991-1993 to manipulate and control habitat patchiness and intrinsic habitat quality, and thereby test predictions from habitat selection theory. Colonization of the SRRS by gag over the first six years showed significant interactions of SHU size, spacing, and reef age; with trajectories modeled using a quadratic function for closely spaced SHUs (25 m) and a linear model for widely spaced SHUs (225 m), with larger SHUs (16 standardized cubes) accumulating significantly more gag faster than smaller 4-cube SHUs (mean = 72.5 gag/16-cube SHU at 225-m spacing by year 6, compared to 24.2 gag/4-cube SHU for same spacing and reef age). Residency times (mean = 9.8 mo), indicative of choice and measured by ultrasonic telemetry (1995-1998), showed significant interaction of SHU size and spacing consistent with colonization trajectories. Average relative weight (W(r)) and incremental growth were greater on smaller than larger SHUs (mean W(r) = 104.2 vs. 97.7; incremental growth differed by 15%), contrary to patterns of abundance and residency. Experimental manipulation of shelter on a subset of SRRS sites (2000-2001) confirmed our hypothesis that shelter limits local densities of gag, which, in turn, regulates their growth and

  20. Taxonomic richness and abundance of cryptic peracarid crustaceans in the Puerto Morelos Reef National Park, Mexico

    Directory of Open Access Journals (Sweden)

    Luz Veronica Monroy-Velázquez

    2017-06-01

    Full Text Available Background and Aims Cryptic peracarids are an important component of the coral reef fauna in terms of diversity and abundance, yet they have been poorly studied. The aim of this study was to evaluate the taxonomic richness and abundance of cryptic peracarids in coral rubble in the Puerto Morelos Reef National Park, Mexico (PMRNP, and their relationship with depth. Methods Three reef sites were selected: (1 Bonanza, (2 Bocana, and (3 Jardines. At each site six kilograms of coral rubble were collected over four sampling periods at three depths: 3 m (back-reef, 6–8 m (fore-reef, and 10–12 m (fore-reef. Results A total of 8,887 peracarid crustaceans belonging to 200 taxa distributed over five orders and 63 families was obtained; 70% of the taxa were identified to species and 25% to genus level. Fifty species of those collected represent new records for the Mexican Caribbean Sea. Isopoda was the most speciose order while Tanaidacea was the most abundant. Discussion Cryptic peracarid taxonomic richness and abundance were related to depth with higher values of both parameters being found in the shallow (3 m back-reef, possibly due to a higher reef development and a greater accumulation of coral rubble produced during hurricanes. Peracarid data obtained in the present study can be used as a baseline for future monitoring programs in the PMRNP.

  1. Effects of human population density and proximity to markets on coral reef fishes vulnerable to extinction by fishing.

    Science.gov (United States)

    Brewer, T D; Cinner, J E; Green, A; Pressey, R L

    2013-06-01

    Coral reef fisheries are crucial to the livelihoods of tens of millions of people; yet, widespread habitat degradation and unsustainable fishing are causing severe depletion of stocks of reef fish. Understanding how social and economic factors, such as human population density, access to external markets, and modernization interact with fishing and habitat degradation to affect fish stocks is vital to sustainable management of coral reef fisheries. We used fish survey data, national social and economic data, and path analyses to assess whether these factors explain variation in biomass of coral reef fishes among 25 sites in Solomon Islands. We categorized fishes into 3 groups on the basis of life-history characteristics associated with vulnerability to extinction by fishing (high, medium, and low vulnerability). The biomass of fish with low vulnerability was positively related to habitat condition. The biomass of fishes with high vulnerability was negatively related to fishing conducted with efficient gear. Use of efficient gear, in turn, was strongly and positively related to both population density and market proximity. This result suggests local population pressure and external markets have additive negative effects on vulnerable reef fish. Biomass of the fish of medium vulnerability was not explained by fishing intensity or habitat condition, which suggests these species may be relatively resilient to both habitat degradation and fishing. © 2012 Society for Conservation Biology.

  2. The effects of natural disturbances, reef state, and herbivorous fish densities on ciguatera poisoning in Rarotonga, southern Cook Islands.

    Science.gov (United States)

    Rongo, Teina; van Woesik, Robert

    2013-03-15

    Ciguatera poisoning is a critical public-health issue among Pacific island nations. Accurately predicting ciguatera outbreaks has become a priority, particularly in Rarotonga in the southern Cook Islands, which has reported the highest incidence of ciguatera poisoning globally. Since 2006, however, cases of ciguatera poisoning have declined, and in 2011 ciguatera cases were the lowest in nearly 20 years. Here we examined the relationships between cases of ciguatera poisoning, from 1994 to 2011, and: (i) coral cover, used as a proxy of reef state, (ii) the densities of herbivorous fishes, and (iii) reef disturbances. We found that coral cover was not a good predictor of cases of ciguatera poisoning, but high densities of the herbivorous fish Ctenochaetus striatus and reef disturbances were both strong predictors of ciguatera poisoning. Yet these two predictors were correlated, because the densities of C. striatus increased only after major cyclones had disturbed the reefs. Since 2006, the number of cyclones has decreased considerably in Rarotonga, because of the climatic shift toward the negative phase of the Pacific Decadal Oscillation. We suggest that fewer cyclones have led to decreases in both the densities of C. striatus and of the number of reported cases of ciguatera poisoning in Rarotonga. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The role of the reef-dune system in coastal protection in Puerto Morelos (Mexico)

    Science.gov (United States)

    Franklin, Gemma L.; Torres-Freyermuth, Alec; Medellin, Gabriela; Allende-Arandia, María Eugenia; Appendini, Christian M.

    2018-04-01

    Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef-dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH). Wave hindcast information, tidal level, and a measured beach profile of the reef-dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore reef slope) is warranted.

  4. Joint estimation of crown of thorns (Acanthaster planci densities on the Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    M. Aaron MacNeil

    2016-08-01

    Full Text Available Crown-of-thorns starfish (CoTS; Acanthaster spp. are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1 estimating the detectability of adult CoTS on typical underwater visual count (UVC surveys using covariates and (2 inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR. We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD and [95% uncertainty intervals], with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014.

  5. Flinders Reef Extension, Density, and Calcification Data for 1718 to 1991

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  6. Yankee Reef Extension, Density, and Calcification Data for 1888 to 1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  7. Agincourt Reef Extension, Density, and Calcification Data for 1779 to 1988

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  8. Stanley Reef Extension, Density, and Calcification Data for 1912 to 1985

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  9. Otter Reef Extension, Density, and Calcification Data for 1792 to 1987

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  10. Pandora Reef Extension, Density, and Calcification Data for 1875 to 1982

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  11. Rib Reef Extension, Density, and Calcification Data for 1853 to 1983

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  12. Britomart Reef Extension, Density, and Calcification Data for 1574 to 1986

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  13. Abraham Reef Extension, Density, and Calcification Data for 1479 to 1985

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  14. Wheeler Reef Extension, Density, and Calcification Data for 1744 to 1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  15. Sanctuary Reef Extension, Density, and Calcification Data for 1501 to 1984

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Extension, Density, and Calcification data from 35 Porites coral cores covering the entire length of the Great Barrier Reef, Australia. Data set contains 35...

  16. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages

    KAUST Repository

    Hoey, Andrew; Pratchett, Morgan S.; Cvitanovic, Christopher

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32?S, 159°04?E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m -2), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha -1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. © 2011 Hoey et al.

  17. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages

    KAUST Repository

    Hoey, Andrew

    2011-10-03

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32?S, 159°04?E), the worlds\\' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m -2), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha -1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands\\' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. © 2011 Hoey et al.

  18. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages.

    Directory of Open Access Journals (Sweden)

    Andrew S Hoey

    Full Text Available Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E, the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment, and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4% and fleshy macroalgae (20.9%. Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2, however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1, and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1% with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.

  19. Caribbean Reef Response to Plio-Pleistocene Climate Change: Results of the Dominican Republic Drilling Project (DRDP)

    Science.gov (United States)

    Klaus, J.; McNeill, D. F.; Diaz, V.; Swart, P. K.; Pourmand, A.

    2014-12-01

    Caribbean reefs changed profoundly in taxonomic composition, diversity, and dominance structure during late Pliocene and Pleistocene climatic change. These changes coincide with protracted climatic deterioration and cooling between 2.0 to 0.8 Ma, and the onset of high amplitude sea-level fluctuations ~400 ka. The Dominican Republic Drilling Project (DRDP) was initiated to determine how climate change and global high-amplitude sea level changes influenced depositional patterns in Pliocene to Recent reef systems of the Caribbean. A transect of 7 core borings (~700 m total depth) were collected along the southern coast of the DR. New age constraints based on U/Th geochronometry and radiogenic Sr isotopes, combined with depositional lithofacies, faunal indicators, and stable isotope profiles have allowed us to correlate between wells and define the internal anatomy and stratal geometry of the individual reef sigmoids and sigmoid sets. Faunal records suggest most extinction occurred prior to ~1 Ma. Following this extinction, fringing reef margins of the Caribbean display a characteristic zonation in which Acropora palmata dominates shallow high-energy reef crests and Acropora cervicornis calmer fore-reef slopes and backreef lagoons. The dominance of acroporids across this zonation has been attributed to growth rates 5-100 times faster than other corals.

  20. Proterozoic microbial reef complexes and associated hydrothermal mineralizations in the Banfora Cliffs, Burkina Faso

    Science.gov (United States)

    Álvaro, J. Javier; Vizcaïno, Daniel

    2012-07-01

    The Proterozoic Guena-Souroukoundinga Formation of the Mopti arm (Gourma Aulacogen, southerm Taoudeni Basin) consists of a shale-dominated succession, up to 200 m thick, with scattered microbial reef complexes. Quarry exposures of the Tiara reef complex allow reconstruction of a transect across back-reef peritidal laminites, reef margin and peri-reef ooidal shoals, and fore-reef slope strata. Microbial carbonate productivity nucleated on isolated palaeohighs during transgression, whereas its end was controlled by two tectonically induced drowning pulses that led to the successive record of onlapping kerogenous limestones and pelagic shales. Reef carbonates are crosscut by fractures and fissures occluded by hydrothermal mineralizations, which are related to the rifting activity of the Gourma Aulacogen. The Tiara reef complex is similar to other Proterozoic reefs in being composed nearly entirely of stromatolites, although calcimicrobial (filamentous) and thromboid textures are locally abundant, which contrast with their scarcity or absence in coeval stable-platform microbial reefs of the northern Taoudeni Basin.

  1. The Changing Face of Plio-Pleistocene Reef Margins: Results of the Dominican Republic Drilling Project (DRDP)

    Science.gov (United States)

    Klaus, J.; McNeill, D. F.; Díaz, V.; Swart, P. K.; Pourmand, A.; Grasmueck, M.; Eberli, G. P.

    2013-12-01

    Fringing reef margins of the Caribbean display a characteristic zonation in which Acropora palmata dominates shallow high-energy reef crests and Acropora cervicornis calmer fore-reef slopes and backreef lagoons. The dominance of acroporids across this zonation has been attributed to growth rates 5-100 times faster than other corals. However, the dominance and high accretion potential of acroporid reefs has a relatively recent geologic origin. Caribbean reefs changed profoundly in taxonomic composition, diversity, and dominance structure during late Pliocene and Pleistocene climatic change. These changes coincide with protracted climatic deterioration and cooling between 2.0 to 0.8 Ma, and the onset of high amplitude sea-level fluctuations ~400 ka. The Dominican Republic Drilling Project (DRDP) was initiated to determine how climate change and global high-amplitude sea level changes influenced depositional patterns in Pliocene to Recent reef systems of the Caribbean. A transect of 7 core borings (~700 m total depth) were collected along a transect of the southern coast of the DR in conjunction with over 20 km of ground penetrating radar (GPR) lines. New age constraints based on U/Th geochronometry and radiogenic Sr isotopes, combined with depositional lithofacies, faunal indicators, stable isotope profiles and GPR data have allowed us to correlate between wells and define the internal anatomy and stratal geometry of the individual reef sigmoids and sigmoid sets. The stacking of these sigmoid-shaped reefs produce lateral progradation of approximately 15 km with geometries that generally follow the highstand systems tract model of Pomar and Ward (1994). Based on existing age models eccentricity (high amplitude 100 kyr) sigmoids display increased aggradation and progradation potential compared to reef cycles driven by obliquity (41 kyr).

  2. Re-creating missing population baselines for Pacific reef sharks.

    Science.gov (United States)

    Nadon, Marc O; Baum, Julia K; Williams, Ivor D; McPherson, Jana M; Zgliczynski, Brian J; Richards, Benjamin L; Schroeder, Robert E; Brainard, Russell E

    2012-06-01

    Sharks and other large predators are scarce on most coral reefs, but studies of their historical ecology provide qualitative evidence that predators were once numerous in these ecosystems. Quantifying density of sharks in the absence of humans (baseline) is, however, hindered by a paucity of pertinent time-series data. Recently researchers have used underwater visual surveys, primarily of limited spatial extent or nonstandard design, to infer negative associations between reef shark abundance and human populations. We analyzed data from 1607 towed-diver surveys (>1 ha transects surveyed by observers towed behind a boat) conducted at 46 reefs in the central-western Pacific Ocean, reefs that included some of the world's most pristine coral reefs. Estimates of shark density from towed-diver surveys were substantially lower (sharks observed in towed-diver surveys and human population in models that accounted for the influence of oceanic primary productivity, sea surface temperature, reef area, and reef physical complexity. We used these models to estimate the density of sharks in the absence of humans. Densities of gray reef sharks (Carcharhinus amblyrhynchos), whitetip reef sharks (Triaenodon obesus), and the group "all reef sharks" increased substantially as human population decreased and as primary productivity and minimum sea surface temperature (or reef area, which was highly correlated with temperature) increased. Simulated baseline densities of reef sharks under the absence of humans were 1.1-2.4/ha for the main Hawaiian Islands, 1.2-2.4/ha for inhabited islands of American Samoa, and 0.9-2.1/ha for inhabited islands in the Mariana Archipelago, which suggests that density of reef sharks has declined to 3-10% of baseline levels in these areas. ©2012 Society for Conservation Biology No claim to original US government works.

  3. Fore-aft asymmetric flocking

    Science.gov (United States)

    Chen, Qiu-shi; Patelli, Aurelio; Chaté, Hugues; Ma, Yu-qiang; Shi, Xia-qing

    2017-08-01

    We show that fore-aft asymmetry, a generic feature of living organisms and some active matter systems, can have a strong influence on the collective properties of even the simplest flocking models. Specifically, an arbitrarily weak asymmetry favoring front neighbors changes qualitatively the phase diagram of the Vicsek model. A region where many sharp traveling band solutions coexist is present at low noise strength, below the Toner-Tu liquid, at odds with the phase-separation scenario well describing the usual isotropic model. Inside this region, a "banded-liquid" phase with algebraic density distribution coexists with band solutions. Linear stability analysis at the hydrodynamic level suggests that these results are generic and not specific to the Vicsek model.

  4. Spatial variations in density and size of the echinoid Diadema antillarum Philippi on some Venezuelan coral reefs

    NARCIS (Netherlands)

    Weil, Ernesto; Losada, Freddy; Bone, David

    1984-01-01

    The distribution, population density and size structure of Diadema antillarum Philippi was found to vary with reef locality, food availability and the structural complexity of the reef. Structural complexity was classified according to the growth morphology and abundance of the coral species found

  5. High Latitude Reefs: A Potential Refuge for Reef Builders

    Science.gov (United States)

    Amat, A.; Bates, N.

    2003-04-01

    Coral reefs globally show variable signs of deterioration or community structure changes due to a host of anthropogenic and natural factors. In these global scenarios, rates of calcification by reef builders such as Scleractinian corals are predicted to significantly decline in the future due to the increase in atmospheric CO_2. When considering the response of reefs to the present climate change, temperature effects should also be taken into account. Here, we investigate the simultaneous impact of temperature and CO_2 on the high-latitude Bermuda coral reef system (32^oN, 64^oE)through a series of in vitro experiments at different CO_2 levels and seasonally different summer (27^oC) and winter (20^oC) temperature conditions. Four species of Scleractinian corals (Porites astreoides, Diploria labyrinthiformis, Madracis mirabilis and decactis) were acclimated for three months at: 20^oC and 27^oC (both with CO_2 levels at 400 ppm (control) and 700 ppm). Growth was assessed by buoyant weight techniques during the acclimation period. Photosynthesis, respiration and calcification were measured at the end of this period using respirometric chambers. A reproduction experiment was also undertaken under 27^oC. Photosynthesis mainly remains constant or increases under high CO_2 conditions. The results of the integrated calcification measurements confirm the hypothesis that an increase in CO_2 induces a decrease in calcification. However an increase in photosynthesis can be observed when CO_2 is unfavorable for calcification suggesting that a biological control of calcification through photosynthesis could prevent a drop in the calcification potential. Buoyant weight results indicate that the CO_2 impact could be less detrimental under lower temperature. This result will be compared with the instantaneous calcification measurements in the chambers and some in situ coral growth assessments in winter and summer conditions. The consequences for the response of marginal reefs

  6. Swell-generated Set-up and Infragravity Wave Propagation Over a Fringing Coral Reef: Implications for Wave-driven Inundation of Atoll Islands

    Science.gov (United States)

    Cheriton, O. M.; Storlazzi, C. D.; Rosenberger, K. J.; Quataert, E.; van Dongeren, A.

    2014-12-01

    The Republic of the Marshall Islands is comprised of 1156 islands on 29 low-lying atolls with a mean elevation of 2 m that are susceptible to sea-level rise and often subjected to overwash during large wave events. A 6-month deployment of wave and tide gauges across two shore-normal sections of north-facing coral reef on the Roi-Namur Island on Kwajalein Atoll was conducted during 2013-2014 to quantify wave dynamics and wave-driven water levels on the fringing coral reef. Wave heights and periods on the reef flat were strongly correlated to the water levels. On the fore reef, the majority of wave energy was concentrated in the incident band (5-25 s); due to breaking at the reef crest, however, the wave energy over the reef flat was dominated by infragravity-band (25-250 s) motions. Two large wave events with heights of 6-8 m at 15 s over the fore reef were observed. During these events, infragravity-band wave heights exceeded the incident band wave heights and approximately 1.0 m of set-up was established over the innermost reef flat. This set-up enabled the propagation of large waves across the reef flat, reaching maximum heights of nearly 2 m on the innermost reef flat adjacent to the toe of the beach. XBEACH models of the instrument transects were able to replicate the incident waves, infragravity waves, and wave-driven set-up across the reef when the hydrodynamic roughness of the reef was correctly parameterized. These events led to more than 3 m of wave-driven run-up and inundation of the island that drove substantial morphological change to the beach face.

  7. High refuge availability on coral reefs increases the vulnerability of reef-associated predators to overexploitation.

    Science.gov (United States)

    Rogers, Alice; Blanchard, Julia L; Newman, Steven P; Dryden, Charlie S; Mumby, Peter J

    2018-02-01

    Refuge availability and fishing alter predator-prey interactions on coral reefs, but our understanding of how they interact to drive food web dynamics, community structure and vulnerability of different trophic groups is unclear. Here, we apply a size-based ecosystem model of coral reefs, parameterized with empirical measures of structural complexity, to predict fish biomass, productivity and community structure in reef ecosystems under a broad range of refuge availability and fishing regimes. In unfished ecosystems, the expected positive correlation between reef structural complexity and biomass emerges, but a non-linear effect of predation refuges is observed for the productivity of predatory fish. Reefs with intermediate complexity have the highest predator productivity, but when refuge availability is high and prey are less available, predator growth rates decrease, with significant implications for fisheries. Specifically, as fishing intensity increases, predators in habitats with high refuge availability exhibit vulnerability to over-exploitation, resulting in communities dominated by herbivores. Our study reveals mechanisms for threshold dynamics in predators living in complex habitats and elucidates how predators can be food-limited when most of their prey are able to hide. We also highlight the importance of nutrient recycling via the detrital pathway, to support high predator biomasses on coral reefs. © 2018 by the Ecological Society of America.

  8. Excess seawater nutrients, enlarged algal symbiont densities and bleaching sensitive reef locations: 1. Identifying thresholds of concern for the Great Barrier Reef, Australia.

    Science.gov (United States)

    Wooldridge, Scott A

    2016-05-23

    Here, I contribute new insight into why excess seawater nutrients are an increasingly identified feature at reef locations that have low resistance to thermal stress. Specifically, I link this unfavourable synergism to the development of enlarged (suboptimal) zooxanthellae densities that paradoxically limit the capacity of the host coral to build tissue energy reserves needed to combat periods of stress. I explain how both theoretical predictions and field observations support the existence of species-specific 'optimal' zooxanthellae densities ~1.0-3.0×10 6 cellscm- 2 . For the central Great Barrier Reef (GBR), excess seawater nutrients that permit enlarged zooxanthellae densities beyond this optimum range are linked with seawater chlorophyll a>0.45μg·L -1 ; a eutrophication threshold previously shown to correlate with a significant loss in species for hard corals and phototrophic octocorals on the central GBR, and herein shown to correlate with enhanced bleaching sensitivity during the 1998 and 2002 mass bleaching events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The abundance of herbivorous fish on an inshore Red Sea reef following a mass coral bleaching event

    KAUST Repository

    Khalil, Maha T.

    2013-01-08

    A healthy herbivore community is critical for the ability of a reef to resist and recover from severe disturbances and to regain lost coral cover (i.e., resilience). The densities of the two major herbivorous fish groups (the family Acanthuridae and scarine labrids) were comparatively studied for an inshore reef that was severely impacted by a mass coral bleaching event in 2010 and an unaffected reef within the same region. Densities were found to be significantly higher on the affected reef, most likely due to the high algal densities on that reef. However, densities of herbivores on both reefs were found to be on average about 1-2 orders of magnitude lower than previously published reports from some Pacific reefs and from Red Sea reefs in the Gulf of Aqaba and only slightly higher than Caribbean reefs. Thus, it is predicted that recovery for this reef and similarly affected reefs may be very slow. The protection of herbivores from overfishing and the introduction of other management strategies that maximize reef resilience in Saudi Arabian waters are highly recommended. © 2013 Springer Science+Business Media Dordrecht.

  10. Density dependence drives habitat production and survivorship of Acropora cervicornis used for restoration on a Caribbean coral reef

    Directory of Open Access Journals (Sweden)

    Mark C Ladd

    2016-12-01

    Full Text Available AbstractCoral restoration is gaining traction as a viable strategy to help restore degraded reefs. While the nascent field of coral restoration has rapidly progressed in the past decade, significant knowledge gaps remain regarding the drivers of restoration success that may impede our ability to effectively restore coral reef communities. Here, we conducted a field experiment to investigate the influence of coral density on the growth, habitat production, and survival of corals outplanted for restoration. We used nursery-raised colonies of Acropora cervicornis to experimentally establish populations of corals with either 3, 6, 12, or 24 corals within 4m2 plots, generating a gradient of coral densities ranging from 0.75 corals m-2 to 12 corals m-2. After 13 months we found that density had a significant effect on the growth, habitat production, and survivorship of restored corals. We found that coral survivorship increased as colony density decreased. Importantly, the signal of density dependent effects was context dependent. Our data suggest that positive density dependent effects influenced habitat production at densities of 3 corals m-2, but further increases in density resulted in negative density dependent effects with decreasing growth and survivorship of corals. These findings highlight the importance of density dependence for coral restoration planning and demonstrate the need to evaluate the influence of density for other coral species used for restoration. Further work focused on the mechanisms causing density dependence such as increased herbivory, rapid disease transmission, or altered predation rates are important next steps to advance our ability to effectively restore coral reefs.

  11. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines

    Science.gov (United States)

    Quataert, Ellen; Storlazzi, Curt; van Rooijen, Arnold; van Dongeren, Ap; Cheriton, Olivia

    2015-01-01

    A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.

  12. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines

    Science.gov (United States)

    Quataert, Ellen; Storlazzi, Curt; Rooijen, Arnold; Cheriton, Olivia; Dongeren, Ap

    2015-08-01

    A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.

  13. Coral zonation and diagenesis of an emergent Pleistocene patch reef, Belize, Central America

    Energy Technology Data Exchange (ETDEWEB)

    Lighty, R.G.; Russell, K.L.

    1985-01-01

    Transect mapping and petrologic studies reveal a new depositional model and limited diagenesis of a well-exposed Pleistocene reef outcrop at Ambergris Cay, northern Belize. This emergent shelf-edge reef forms a rocky wave-washed headland at the northern terminus of the present-day 250 km long flourishing Belize Barrier Reef. Previously, the Belize reef outcrop was thought to extend southward in the subsurface beneath the modern barrier reef as a Pleistocene equivalent. The authors study indicate that this outcrop is a large, coral patch reef and not part of a barrier reef trend. Sixteen transects 12.5 m apart described in continuous cm increments from fore reef to back reef identified: extensive deposits of broken Acropora cervicornis; small thickets of A. palmata with small, oriented branches; and muddy skeletal sediments with few corals or reef rubble. Thin section and SEM studies show three phases of early submarine cementation: syntaxial and rosette aragonite; Mg-calcite rim cement and peloids; and colloidal Mg-calcite geopetal fill. Subaerial exposure in semi-arid northern Belize caused only minor skeletal dissolution, some precipitation of vadose whisker calcite, and no meteoric phreatic diagenesis. Facies geometry, coral assemblages, lack of rubble deposits, coralline algal encrustations and Millepora framework, and recognition of common but discrete submarine cements, all indicate that this Pleistocene reef was an isolated, coral-fringed sediment buildup similar to may large patch reefs existing today in moderate-energy shelf environments behind the modern barrier reef in central and southern Belize.

  14. Does reef architectural complexity influence resource availability for a large reef-dwelling invertebrate?

    Science.gov (United States)

    Lozano-Álvarez, Enrique; Luviano-Aparicio, Nelia; Negrete-Soto, Fernando; Barradas-Ortiz, Cecilia; Aguíñiga-García, Sergio; Morillo-Velarde, Piedad S.; Álvarez-Filip, Lorenzo; Briones-Fourzán, Patricia

    2017-10-01

    In coral reefs, loss of architectural complexity and its associated habitat degradation is expected to affect reef specialists in particular due to changes in resource availability. We explored whether these features could potentially affect populations of a large invertebrate, the spotted spiny lobster Panulirus guttatus, which is an obligate Caribbean coral reef-dweller with a limited home range. We selected two separate large coral reef patches in Puerto Morelos (Mexico) that differed significantly in structural complexity and level of degradation, as assessed via the rugosity index, habitat assessment score, and percent cover of various benthic components. On each reef, we estimated density of P. guttatus and sampled lobsters to analyze their stomach contents, three different condition indices, and stable isotopes (δ15N and δ13C) in muscle. Lobster density did not vary with reef, suggesting that available crevices in the less complex patch still provided adequate refuge to these lobsters. Lobsters consumed many food types, dominated by mollusks and crustaceans, but proportionally more crustaceans (herbivore crabs) in the less complex patch, which had more calcareous macroalgae and algal turf. Lobsters from both reefs had a similar condition (all three indices) and mean δ15N, suggesting a similar quality of diet between reefs related to their opportunistic feeding, but differed in mean δ13C values, reflecting the different carbon sources between reefs and providing indirect evidence of individuals of P. guttatus foraging exclusively over their home reef. Overall, we found no apparent effects of architectural complexity, at least to the degree observed in our less complex patch, on density, condition, or trophic level of P. guttatus.

  15. Population structure, spatial distribution and life-history traits of blacktip reef sharks Carcharhinus melanopterus.

    Science.gov (United States)

    Mourier, J; Mills, S C; Planes, S

    2013-03-01

    During a survey of the population of blacktip reef shark Carcharhinus melanopterus in Moorea (French Polynesia) between 2007 and 2011, population structural characteristics were estimated from 268 individuals. Total length (LT ) ranged from 48 to 139 cm and 48 to 157 cm for males and females, respectively, demonstrating that the average LT of females was larger than that of males. The C. melanopterus population at Moorea showed an apparent spatial sexual segregation with females preferentially frequenting lagoons and males the fore-reefs. Mean growth rate was c. 6 cm year(-1) . Males reached sexual maturity at 111 cm LT . This study reports on the population characteristics of this widespread carcharhinid shark species and makes comparisons with other locations, confirming high geographic variability in the population structure of the species. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  16. Linking social and ecological systems to sustain coral reef fisheries.

    Science.gov (United States)

    Cinner, Joshua E; McClanahan, Timothy R; Daw, Tim M; Graham, Nicholas A J; Maina, Joseph; Wilson, Shaun K; Hughes, Terence P

    2009-02-10

    The ecosystem goods and services provided by coral reefs are critical to the social and economic welfare of hundreds of millions of people, overwhelmingly in developing countries [1]. Widespread reef degradation is severely eroding these goods and services, but the socioeconomic factors shaping the ways that societies use coral reefs are poorly understood [2]. We examine relationships between human population density, a multidimensional index of socioeconomic development, reef complexity, and the condition of coral reef fish populations in five countries across the Indian Ocean. In fished sites, fish biomass was negatively related to human population density, but it was best explained by reef complexity and a U-shaped relationship with socioeconomic development. The biomass of reef fishes was four times lower at locations with intermediate levels of economic development than at locations with both low and high development. In contrast, average biomass inside fishery closures was three times higher than in fished sites and was not associated with socioeconomic development. Sustaining coral reef fisheries requires an integrated approach that uses tools such as protected areas to quickly build reef resources while also building capacities and capital in societies over longer time frames to address the complex underlying causes of reef degradation.

  17. Energetic and ecological constraints on population density of reef fishes.

    Science.gov (United States)

    Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P

    2016-01-27

    Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. © 2016 The Author(s).

  18. Gear and survey efficiency of patent tongs for oyster populations on restoration reefs.

    Science.gov (United States)

    Schulte, David M; Lipcius, Romuald N; Burke, Russell P

    2018-01-01

    Surveys of restored oyster reefs need to produce accurate population estimates to assess the efficacy of restoration. Due to the complex structure of subtidal oyster reefs, one effective and efficient means to sample is by patent tongs, rather than SCUBA, dredges, or bottom cores. Restored reefs vary in relief and oyster density, either of which could affect survey efficiency. This study is the first to evaluate gear (the first full grab) and survey (which includes selecting a specific half portion of the first grab for further processing) efficiencies of hand-operated patent tongs as a function of reef height and oyster density on subtidal restoration reefs. In the Great Wicomico River, a tributary of lower Chesapeake Bay, restored reefs of high- and low-relief (25-45 cm, and 8-12 cm, respectively) were constructed throughout the river as the first large-scale oyster sanctuary reef restoration effort (sanctuary acreage > 20 ha at one site) in Chesapeake Bay. We designed a metal frame to guide a non-hydraulic mechanical patent tong repeatedly into the same plot on a restored reef until all oysters within the grab area were captured. Full capture was verified by an underwater remotely-operated vehicle. Samples (n = 19) were taken on nine different reefs, including five low- (n = 8) and four high-relief reefs (n = 11), over a two-year period. The gear efficiency of the patent tong was estimated to be 76% (± 5% standard error), whereas survey efficiency increased to 81% (± 10%) due to processing. Neither efficiency differed significantly between young-of-the-year oysters (spat) and adults, high- and low-relief reefs, or years. As this type of patent tong is a common and cost-effective tool to evaluate oyster restoration projects as well as population density on fished habitat, knowing the gear and survey efficiencies allows for accurate and precise population estimates.

  19. Notes on common macrobenthic reef invertebrates of Tubbataha Reefs Natural Park, Philippines

    Directory of Open Access Journals (Sweden)

    Jean Beth S. Jontila

    2012-12-01

    Full Text Available Macrobenthic reef invertebrates are important reef health indicators and fishery resources but are not very well documented in Tubbataha Reefs Natural Park. To provide notes on the species composition and the abundance and size of commonly encountered macrobenthic reef invertebrates, belt transects survey in intertidal, shallow, and deep subtidal reef habitats were conducted. In total, 18 species were recorded, six of which were echinoderms and 12 were mollusks, which include the rare giant clam Hippopusporcellanus. Only the giant clam Tridacna crocea and the top shell Trochus niloticus occurred in all seven permanent monitoring sites but the two species varied in densities across depths. There was also an outbreak of crown-of-thorns (COTs sea stars in some sites. The large variation in the density of each species across sites and depths suggests niche differences, overharvesting, or their recovery fromhaving been overly exploited. Separate monitoring areas for each commercially important species are suggested to determine how their populations respond to poaching and their implications on the park’s long term management.

  20. Reef Visual Census (RVC) data.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Provide data on frequency of occurrence , density abundance, and length frequency of reef fish throughout Florida reef tract from 1978 forward.

  1. Historic impact of watershed change and sedimentation to reefs along west-central Guam

    Science.gov (United States)

    Prouty, Nancy G.; Storlazzi, Curt D.; McCutcheon, Amanda L.; Jenson, John W.

    2014-01-01

    Using coral growth parameters (extension, density, calcification rates, and luminescence) and geochemical measurements (barium to calcium rations; Ba/Ca) from coral cores collected in west-central Guam, we provide a historic perspective on sediment input to coral reefs adjacent to the Piti-Asan watershed. The months of August through December are dominated by increased coral Ba/Ca values, corresponding to the rainy season. With river water enriched in barium related to nearshore seawater, coral Ba/Ca ratios are presented as a proxy for input of fine-grained terrigenous sediment to the nearshore environment. The century-long Ba/Ca coral record indicates that the Asan fore reef is within the zone of impact from discharged sediments transported from the Piti-Asan watershed and has experienced increased terrestrial sedimentation since the 1940s. This abrupt shift in sedimentation occurred at the same time as both the sudden denudation of the landscape by military ordinance and the immediate subsequent development of the Asan area through the end of the war, from 1944 through 1945. In response to rapid input of sediment, as determined from coral Ba/Ca values, coral growth rates were reduced for almost two decades, while calcification rates recovered much more quickly. Furthermore, coral luminescence is decoupled from the Ba/Ca record, which is consistent with degradation of soil organic matter through disturbance by forest fires, suggesting a potential index of fire history and degradation of soil organic matter. These patterns were not seen in the cores from nearby reefs associated with watersheds that have not undergone the same degree of landscape denudation. Taken together, these records provide a valuable tool for understanding the compounding effects of land-use change on coral reef health.

  2. Historic impact of watershed change and sedimentation to reefs along west-central Guam

    Science.gov (United States)

    Prouty, Nancy G.; Storlazzi, Curt D.; McCutcheon, Amanda L.; Jenson, John W.

    2014-09-01

    Using coral growth parameters (extension, density, calcification rates, and luminescence) and geochemical measurements (barium to calcium rations; Ba/Ca) from coral cores collected in west-central Guam, we provide a historic perspective on sediment input to coral reefs adjacent to the Piti-Asan watershed. The months of August through December are dominated by increased coral Ba/Ca values, corresponding to the rainy season. With river water enriched in barium related to nearshore seawater, coral Ba/Ca ratios are presented as a proxy for input of fine-grained terrigenous sediment to the nearshore environment. The century-long Ba/Ca coral record indicates that the Asan fore reef is within the zone of impact from discharged sediments transported from the Piti-Asan watershed and has experienced increased terrestrial sedimentation since the 1940s. This abrupt shift in sedimentation occurred at the same time as both the sudden denudation of the landscape by military ordinance and the immediate subsequent development of the Asan area through the end of the war, from 1944 through 1945. In response to rapid input of sediment, as determined from coral Ba/Ca values, coral growth rates were reduced for almost two decades, while calcification rates recovered much more quickly. Furthermore, coral luminescence is decoupled from the Ba/Ca record, which is consistent with degradation of soil organic matter through disturbance by forest fires, suggesting a potential index of fire history and degradation of soil organic matter. These patterns were not seen in the cores from nearby reefs associated with watersheds that have not undergone the same degree of landscape denudation. Taken together, these records provide a valuable tool for understanding the compounding effects of land-use change on coral reef health.

  3. Wave Transformation over a Fringing Coral Reef and the Importance of Low-Frequency Waves and Offshore Water Levels to Runup and Island Overtopping

    Science.gov (United States)

    Cheriton, O. M.; Storlazzi, C. D.; Rosenberger, K. J.

    2016-02-01

    Low-lying, reef-fringed islands are susceptible to sea-level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, wave gauges and a current meter were deployed for 5 months across two shore-normal transects on Roi-Namur, an atoll island in the Republic of the Marshall Islands. These observations captured two large wave events that had maximum wave heights greater than 6 m and peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly-skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, exceeded 3.7 m at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3-hr time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along atoll and fringing reef-lined shorelines, such as island overwash. These observations lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of both extreme shoreline runup and island overwash, threatening the sustainability of these islands.

  4. Designing Climate-Resilient Marine Protected Area Networks by Combining Remotely Sensed Coral Reef Habitat with Coastal Multi-Use Maps

    Directory of Open Access Journals (Sweden)

    Joseph M. Maina

    2015-12-01

    Full Text Available Decision making for the conservation and management of coral reef biodiversity requires an understanding of spatial variability and distribution of reef habitat types. Despite the existence of very high-resolution remote sensing technology for nearly two decades, comprehensive assessment of coral reef habitats at national to regional spatial scales and at very high spatial resolution is still scarce. Here, we develop benthic habitat maps at a sub-national scale by analyzing large multispectral QuickBird imagery dataset covering ~686 km2 of the main shallow coral fringing reef along the southern border with Tanzania (4.68°S, 39.18°E to the reef end at Malindi, Kenya (3.2°S, 40.1°E. Mapping was conducted with a user approach constrained by ground-truth data, with detailed transect lines from the shore to the fore reef. First, maps were used to evaluate the present management system’s effectiveness at representing habitat diversity. Then, we developed three spatial prioritization scenarios based on differing objectives: (i minimize lost fishing opportunity; (ii redistribute fisheries away from currently overfished reefs; and (iii minimize resource use conflicts. We further constrained the priority area in each prioritization selection scenario based on optionally protecting the least or the most climate exposed locations using a model of exposure to climate stress. We discovered that spatial priorities were very different based on the different objectives and on whether the aim was to protect the least or most climate-exposed habitats. Our analyses provide a spatially explicit foundation for large-scale conservation and management strategies that can account for ecosystem service benefits.

  5. Gear and survey efficiency of patent tongs for oyster populations on restoration reefs.

    Directory of Open Access Journals (Sweden)

    David M Schulte

    Full Text Available Surveys of restored oyster reefs need to produce accurate population estimates to assess the efficacy of restoration. Due to the complex structure of subtidal oyster reefs, one effective and efficient means to sample is by patent tongs, rather than SCUBA, dredges, or bottom cores. Restored reefs vary in relief and oyster density, either of which could affect survey efficiency. This study is the first to evaluate gear (the first full grab and survey (which includes selecting a specific half portion of the first grab for further processing efficiencies of hand-operated patent tongs as a function of reef height and oyster density on subtidal restoration reefs. In the Great Wicomico River, a tributary of lower Chesapeake Bay, restored reefs of high- and low-relief (25-45 cm, and 8-12 cm, respectively were constructed throughout the river as the first large-scale oyster sanctuary reef restoration effort (sanctuary acreage > 20 ha at one site in Chesapeake Bay. We designed a metal frame to guide a non-hydraulic mechanical patent tong repeatedly into the same plot on a restored reef until all oysters within the grab area were captured. Full capture was verified by an underwater remotely-operated vehicle. Samples (n = 19 were taken on nine different reefs, including five low- (n = 8 and four high-relief reefs (n = 11, over a two-year period. The gear efficiency of the patent tong was estimated to be 76% (± 5% standard error, whereas survey efficiency increased to 81% (± 10% due to processing. Neither efficiency differed significantly between young-of-the-year oysters (spat and adults, high- and low-relief reefs, or years. As this type of patent tong is a common and cost-effective tool to evaluate oyster restoration projects as well as population density on fished habitat, knowing the gear and survey efficiencies allows for accurate and precise population estimates.

  6. Macroalgal herbivory on recovering versus degrading coral reefs

    Science.gov (United States)

    Chong-Seng, K. M.; Nash, K. L.; Bellwood, D. R.; Graham, N. A. J.

    2014-06-01

    Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20-46 %) and those degrading with high macroalgal cover (57-82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m-2 h-1 on coral-dominated and 5.3 ± 2.1 g m-2 h-1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser , Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change

  7. Radiography of X-ray in coral reefs

    International Nuclear Information System (INIS)

    Djoli Soembogo

    2016-01-01

    The application of X-ray radiography has been developed and it is already widely used in metal materials such as metal steel and carbon steel. This radiography using a source of radiation from X-ray machines. This research attempts to use the application of digital radiography X-ray source and use scanner Epson V700 positive films media for digitization results of conventional radiographic films on coral reefs. It has been testing radiography using Fuji film 100 to get the contrast medium, the sensitivity of the medium and image quality is good, Single Wall Single Image method , and using the media scanner films positive and X-ray sources, observation parameter are density radiographic film and the defect shape. Radiography uses Fuji film 100 to obtain a good contrast medium, good medium sensitivity and good quality image. Radiography of X-ray on coral reefs aims to find defects or discontinuities coral reefs such as porosity which would interfere with the determination of the age of the coral reefs. X-ray exposure time is 1 seconds for a thickness of 5.45 mm and 5.60 mm coral reefs by using a high voltage X-ray machine Rigaku of 130 kV. The result of the positive film scanner in the form of digital radiography that allows for the transfer of digital data or digital computerized data storage. The test results of radiographic on coral reefs with Single Wall Single Image method obtained radiographic film density parameter for Fuji film 100 on coral reefs No. 2 are 2.55; 2.53; 2.59 and on coral reefs No. 4 are 2.62; 2.65; 2.66, unsharpness geometric of radiographic results obtained 0.022 mm and 0.023 mm, sensitivity radiography are 1.648% and 1.604%. No defect found of Porosity that is significant. Status is acceptable for Fuji film 100, because the density of the film is in conformity with the standards referred to. Status of coral reefs No. 2 and No. 4 can be accepted, because it has conformed with the standards referred. (author)

  8. 46 CFR 153.234 - Fore and aft location.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Fore and aft location. 153.234 Section 153.234 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING... Containment Systems § 153.234 Fore and aft location. Except as allowed in § 153.7, each ship must meet the...

  9. The Ecology of Coral Reef Top Predators in the Papahānaumokuākea Marine National Monument

    Directory of Open Access Journals (Sweden)

    Jonathan J. Dale

    2011-01-01

    Full Text Available Coral reef habitats in the Papahānaumokuākea Marine National Monument (PMNM are characterized by abundant top-level predators such as sharks and jacks. The predator assemblage is dominated both numerically and in biomass by giant trevally (Caranx ignobilis and Galapagos sharks (Carcharhinus galapagensis. A lower diversity of predatory teleosts, particularly groupers and snappers, distinguishes the PMNM from other remote, unfished atolls in the Pacific. Most coral reef top predators are site attached to a “home” atoll, but move extensively within these atolls. Abundances of the most common sharks and jacks are highest in atoll fore reef habitats. Top predators within the PMNM forage on a diverse range of prey and exert top-down control over shallow-water reef fish assemblages. Ecological models suggest ecosystem processes may be most impacted by top predators through indirect effects of predation. Knowledge gaps are identified to guide future studies of top predators in the PMNM.

  10. Cross-shore velocity shear, eddies and heterogeneity in water column properties over fringing coral reefs: West Maui, Hawaii

    Science.gov (United States)

    Storlazzi, C.D.; McManus, M.A.; Logan, J.B.; McLaughlin, B.E.

    2006-01-01

    A multi-day hydrographic survey cruise was conducted to acquire spatially extensive, but temporally limited, high-resolution, three-dimensional measurements of currents, temperature, salinity and turbidity off West Maui in the summer of 2003 to better understand coastal dynamics along a complex island shoreline with coral reefs. These data complement long-term, high-resolution tide, wave, current, temperature, salinity and turbidity measurements made at a number of fixed locations in the study area starting in 2001. Analyses of these hydrographic data, in conjunction with numerous field observations, evoke the following conceptual model of water and turbidity flux along West Maui. Wave- and wind-driven flows appear to be the primary control on flow over shallower portions of the reefs while tidal and subtidal currents dominate flow over the outer portions of the reefs and insular shelf. When the direction of these flows counter one another, which is quite common, they cause a zone of cross-shore horizontal shear and often form a front, with turbid, lower-salinity water inshore of the front and clear, higher-salinity water offshore of the front. It is not clear whether these zones of high shear and fronts are the cause or the result of the location of the fore reef, but they appear to be correlated alongshore over relatively large horizontal distances (orders of kilometers). When two flows converge or when a single flow is bathymetrically steered, eddies can be generated that, in the absence of large ocean surface waves, tend to accumulate material. Areas of higher turbidity and lower salinity tend to correlate with regions of poor coral health or the absence of well-developed reefs, suggesting that the oceanographic processes that concentrate and/or transport nutrients, contaminants, low-salinity water or suspended sediment might strongly influence coral reef ecosystem health and sustainability.

  11. DOC concentrations across a depth-dependent light gradient on a Caribbean coral reef

    Directory of Open Access Journals (Sweden)

    Benjamin Mueller

    2017-06-01

    Full Text Available Photosynthates released by benthic primary producers (BPP, such as reef algae and scleractinian corals, fuel the dissolved organic carbon (DOC production on tropical coral reefs. DOC concentrations near BPP have repeatedly been observed to be elevated compared to those in the surrounding water column. As the DOC release of BPP increases with increasing light availability, elevated DOC concentrations near them will, in part, also depend on light availability. Consequently, DOC concentrations are likely to be higher on the shallow, well-lit reef terrace than in deeper sections on the fore reef slope. We measured in situ DOC concentrations and light intensity in close proximity to the reef alga Dictyota sp. and the scleractinian coral Orbicella faveolata along a depth-dependent light gradient from 5 to 20 m depth and compared these to background concentrations in the water column. At 10 m (intermediate light, DOC concentrations near Dictyota sp. were elevated by 15 µmol C L−1 compared to background concentrations in the water column, but not at 5 and 20 m (high and low light, respectively, or near O. faveolata at any of the tested depths. DOC concentrations did not differ between depths and thereby light environments for any of the tested water types. However, water type and depth appear to jointly affect in situ DOC concentrations across the tested depth-dependent light gradient. Corroborative ex situ measurements of excitation pressure on photosystem II suggest that photoinhibition in Dictyota sp. is likely to occur at light intensities that are commonly present on Curaçaoan coral reefs under high light levels at 5 m depth during midday. Photoinhibition may have thereby reduced the DOC release of Dictyota sp. and DOC concentrations in its close proximity. Our results indicate that the occurrence of elevated DOC concentrations did not follow a natural light gradient across depth. Instead, a combination of multiple factors, such as water type

  12. DOC concentrations across a depth-dependent light gradient on a Caribbean coral reef.

    Science.gov (United States)

    Mueller, Benjamin; Meesters, Erik H; van Duyl, Fleur C

    2017-01-01

    Photosynthates released by benthic primary producers (BPP), such as reef algae and scleractinian corals, fuel the dissolved organic carbon (DOC) production on tropical coral reefs. DOC concentrations near BPP have repeatedly been observed to be elevated compared to those in the surrounding water column. As the DOC release of BPP increases with increasing light availability, elevated DOC concentrations near them will, in part, also depend on light availability. Consequently, DOC concentrations are likely to be higher on the shallow, well-lit reef terrace than in deeper sections on the fore reef slope. We measured in situ DOC concentrations and light intensity in close proximity to the reef alga Dictyota sp. and the scleractinian coral Orbicella faveolata along a depth-dependent light gradient from 5 to 20 m depth and compared these to background concentrations in the water column. At 10 m (intermediate light), DOC concentrations near Dictyota sp. were elevated by 15 µmol C L -1 compared to background concentrations in the water column, but not at 5 and 20 m (high and low light, respectively), or near O. faveolata at any of the tested depths. DOC concentrations did not differ between depths and thereby light environments for any of the tested water types. However, water type and depth appear to jointly affect in situ DOC concentrations across the tested depth-dependent light gradient. Corroborative ex situ measurements of excitation pressure on photosystem II suggest that photoinhibition in Dictyota sp. is likely to occur at light intensities that are commonly present on Curaçaoan coral reefs under high light levels at 5 m depth during midday. Photoinhibition may have thereby reduced the DOC release of Dictyota sp. and DOC concentrations in its close proximity. Our results indicate that the occurrence of elevated DOC concentrations did not follow a natural light gradient across depth. Instead, a combination of multiple factors, such as water type, light

  13. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding

    Science.gov (United States)

    Cheriton, Olivia; Storlazzi, Curt; Rosenberger, Kurt

    2016-01-01

    Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04–0.004 Hz) and very low frequency (0.004–0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.

  14. Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding

    Science.gov (United States)

    Cheriton, Olivia M.; Storlazzi, Curt D.; Rosenberger, Kurt J.

    2016-05-01

    Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.

  15. The Impact of Marine Protected Areas on Reef-Wide Population Structure and Fishing-Induced Phenotypes in Coral-Reef Fishes

    Science.gov (United States)

    Fidler, Robert Young, III

    targeted for food in the region (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) exhibited greater Linf, lower K, or both characteristics inside at least one MPA compared to populations in adjacent, fished reefs. Life-history shifts were concentrated in the oldest and largest MPAs, but occurred at least once in each of the five MPAs that were examined. A fourth species harvested for food (Ctenochaetus binotatus), as well as a species targeted for the aquarium trade (Zebrasoma scopas) and a non-target species (Plectroglyphidodon lacrymatus) did not exhibit differential phenotypes between MPAs and fished reefs. The relatively high frequency of alterations to life-history characteristics across MPAs in harvested species suggests that observed changes in the density and size-structure of harvested fish populations inside MPAs are likely driven by spatial disparities in fishing pressure, and are the result of phenotypic changes rather than increased longevity.

  16. Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas

    Science.gov (United States)

    Storlazzi, C. D.; Field, M. E.; Cheriton, O. M.; Presto, M. K.; Logan, J. B.

    2013-12-01

    Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased

  17. Rapid fluctuations in flow and water-column properties in Asan Bay, Guam: implications for selective resilience of coral reefs in warming seas

    Science.gov (United States)

    Storlazzi, Curt D.; Field, Michael E.; Cheriton, Olivia M.; Presto, M.K.; Logan, J.B.

    2013-01-01

    Hydrodynamics and water-column properties were investigated off west-central Guam from July 2007 through January 2008. Rapid fluctuations, on time scales of 10s of min, in currents, temperature, salinity, and acoustic backscatter were observed to occur on sub-diurnal frequencies along more than 2 km of the fore reef but not at the reef crest. During periods characterized by higher sea-surface temperatures (SSTs), weaker wind forcing, smaller ocean surface waves, and greater thermal stratification, rapid decreases in temperature and concurrent rapid increases in salinity and acoustic backscatter coincided with onshore-directed near-bed currents and offshore-directed near-surface currents. During the study, these cool-water events, on average, lasted 2.3 h and decreased the water temperature 0.57 °C, increased the salinity 0.25 PSU, and were two orders of magnitude more prevalent during the summer season than the winter. During the summer season when the average satellite-derived SST anomaly was +0.63 °C, these cooling events, on average, lowered the temperature 1.14 °C along the fore reef but only 0.11 °C along the reef crest. The rapid shifts appear to be the result of internal tidal bores pumping cooler, more saline, higher-backscatter oceanic water from depths >50 m over cross-shore distances of 100 s of m into the warmer, less saline waters at depths of 20 m and shallower. Such internal bores appear to have the potential to buffer shallow coral reefs from predicted increases in SSTs by bringing cool, offshore water to shallow coral environments. These cooling internal bores may also provide additional benefits to offset stress such as supplying food to thermally stressed corals, reducing stress due to ultraviolet radiation and/or low salinity, and delivering coral larvae from deeper reefs not impacted by surface thermal stress. Thus, the presence of internal bores might be an important factor locally in the resilience of select coral reefs facing increased

  18. The effect of structural complexity, prey density, and "predator-free space" on prey survivorship at created oyster reef mesocosms

    Science.gov (United States)

    Humphries, Austin T.; La Peyre, Megan K.; Decossas, Gary A.

    2011-01-01

    Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and “predator-free space” to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of “predator-free space” was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require “predator-free space” measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of “predator-free space” are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats.

  19. Balance of constructive and destructive carbonate processes on mesophotic coral reefs

    Science.gov (United States)

    Weinstein, D. K.; Klaus, J. S.; Smith, T. B.; Helmle, K. P.; Marshall, D.

    2013-12-01

    Net carbonate accumulation of coral reefs is the product of both constructive and destructive processes that can ultimately influence overall reef geomorphology. Differences in these processes with depth may in part explain why the coral growth-light intensity association does no result in the traditionally theorized reef accretion decrease with depth. Until recently, physical sampling limitations had prevented the acquisition of sedimentary data needed to assess in situ carbonate accumulation in mesophotic reefs (30-150 m). Coral framework production, secondary carbonate production (calcareous encrusters), and bioerosion, the three most critical components of net carbonate accumulation, were analyzed in mesophotic reefs more than 10 km south of St. Thomas, U.S. Virgin Islands along a very gradual slope that limits sediment transport and sedimentation. Recently dead samples of the massive coral, Orbicella annularis collected from three structurally different upper mesophotic coral reef habitats (30-45 m) were cut parallel to the primary growth axis to identify density banding through standard x-radiographic techniques. Assuming annual banding, mesophotic linear extension rates were calculated on the order of 0.7-1.5 mm/yr. Weight change of experimental coral substrates exposed for 3 years indicate differing rates (1.1-17.2 g/yr) of bioerosion and secondary accretion between mesophotic sites. When correcting bioerosion rates for high mesophotic skeletal density, carbonate accumulation rates were found to vary significantly between neighboring mesophotic reefs with distinctive structures. Results imply variable rates of mesophotic reef net carbonate accretion with the potential to influence overall reef/platform morphology, including localized mesophotic reef structure.

  20. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Directory of Open Access Journals (Sweden)

    S. Comeau

    2017-07-01

    Full Text Available The threat represented by ocean acidification (OA for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet, and between PAR and community net calcification (Gnet, using experiments on three coral communities constructed to match (i the back reef of Mo'orea, French Polynesia, (ii the fore reef of Mo'orea, and (iii the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu. For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  1. Distribution and sediment production of large benthic foraminifers on reef flats of the Majuro Atoll, Marshall Islands

    Science.gov (United States)

    Fujita, K.; Osawa, Y.; Kayanne, H.; Ide, Y.; Yamano, H.

    2009-03-01

    The distributions and population densities of large benthic foraminifers (LBFs) were investigated on reef flats of the Majuro Atoll, Marshall Islands. Annual sediment production by foraminifers was estimated based on population density data. Predominant LBFs were Calcarina and Amphistegina, and the population densities of these foraminifers varied with location and substratum type on reef flats. Both foraminifers primarily attached to macrophytes, particularly turf-forming algae, and were most abundant on an ocean reef flat (ORF) and in an inter-island channel near windward, sparsely populated islands. Calcarina density was higher on windward compared to leeward sides of ORFs, whereas Amphistegina density was similar on both sides of ORFs. These foraminifers were more common on the ocean side relative to the lagoon side of reef flats around a windward reef island, and both were rare or absent in nearshore zones around reef islands and on an ORF near windward, densely populated islands. Foraminiferal production rates varied with the degree to which habitats were subject to water motion and human influences. Highly productive sites (>103 g CaCO3 m-2 year-1) included an ORF and an inter-island channel near windward, sparsely populated islands, and a seaward area of a reef flat with no reef islands. Low-productivity sites (<10 g CaCO3 m-2 year-1) included generally nearshore zones of lagoonal reef flats, leeward ORFs, and a windward ORF near densely populated islands. These results suggest that the distribution and production of LBFs were largely influenced by a combination of natural environmental factors, including water motion, water depth, elevation relative to the lowest tidal level at spring tide, and the distribution of suitable substratum. The presence of reef islands may limit the distribution and production of foraminifers by altering water circulation in nearshore environments. Furthermore, increased anthropogenic factors (population and activities) may

  2. Permanent 'phase shifts' or reversible declines in coral cover? Lack of recovery of two coral reefs in St. John, US Virgin Islands

    Science.gov (United States)

    Rogers, C.S.; Miller, J.

    2006-01-01

    Caribbean coral reefs have changed dramatically in the last 3 to 4 decades, with significant loss of coral cover and increases in algae. Here we present trends in benthic cover from 1989 to 2003 at 2 reefs (Lameshur Reef and Newfound Reef) off St. John, US Virgin Islands (USVI). Coral cover has declined in the fore-reef zones at both sites, and no recovery is evident. At Lameshur Reef, Hurricane Hugo (1989) caused significant physical damage and loss of coral. We suggest that macroalgae rapidly colonized new substrate made available by this storm and have hindered or prevented growth of adult corals, as well as settlement and survival of new coral recruits. Overfishing of herbivorous fishes in the USVI and loss of shelter for these fishes because of major storms has presumably reduced the levels of herbivory that formerly controlled algal abundance. Coral cover declined at Newfound Reef from 1999 to 2000, most likely because of coral diseases. The trends that we have documented, loss of coral followed by no evidence of recovery, appear similar to findings from other studies in the Caribbean. We need to focus on functional shifts in the resilience of coral reefs that result in their inability to recover from natural and human-caused stressors. ?? Inter-Research 2006.

  3. Say what? Coral reef sounds as indicators of community assemblages and reef conditions

    Science.gov (United States)

    Mooney, T. A.; Kaplan, M. B.

    2016-02-01

    Coral reefs host some of the highest diversity of life on the planet. Unfortunately, reef health and biodiversity is declining or is threatened as a result of climate change and human influences. Tracking these changes is necessary for effective resource management, yet estimating marine biodiversity and tracking trends in ecosystem health is a challenging and expensive task, especially in many pristine reefs which are remote and difficult to access. Many fishes, mammals and invertebrates make sound. These sounds are reflective of a number of vital biological processes and are a cue for settling reef larvae. Biological sounds may be a means to quantify ecosystem health and biodiversity, however the relationship between coral reef soundscapes and the actual taxa present remains largely unknown. This study presents a comparative evaluation of the soundscape of multiple reefs, naturally differing in benthic cover and fish diversity, in the U.S. Virgin Islands National Park. Using multiple recorders per reef we characterized spacio-temporal variation in biological sound production within and among reefs. Analyses of sounds recorded over 4 summer months indicated diel trends in both fish and snapping shrimp acoustic frequency bands with crepuscular peaks at all reefs. There were small but statistically significant acoustic differences among sites on a given reef raising the possibility of potentially localized acoustic habitats. The strength of diel trends in lower, fish-frequency bands were correlated with coral cover and fish density, yet no such relationship was found with shrimp sounds suggesting that fish sounds may be of higher relevance to tracking certain coral reef conditions. These findings indicate that, in spite of considerable variability within reef soundscapes, diel trends in low-frequency sound production reflect reef community assemblages. Further, monitoring soundscapes may be an efficient means of establishing and monitoring reef conditions.

  4. 78 FR 59237 - Regulated Navigation Area-Weymouth Fore River, Fore River Bridge Construction, Weymouth and...

    Science.gov (United States)

    2013-09-26

    ... regulatory action because this RNA will only be enforced when construction operations require such. Thus... establishing a temporary regulated navigation area (RNA) on the navigable waters of Weymouth Fore River in the...: Table of Acronyms COTP Captain of the Port DHS Department of Homeland Security FR Federal Register RNA...

  5. High spatial variability of coral, sponges and gorgonian assemblages in a well preserved reef.

    Science.gov (United States)

    González-Díaz, Patricia; González-Sansón, Gaspar; Alvarez Fernández, Sergio; Perera Pérez, Orlando

    2010-06-01

    The main goal of this research was to obtain baseline field data of the composition of sponges, corals, and gorgonian assemblages that can be used as a reference for future analyses of anthropogenic impact. We tested the hypothesis that relatively homogeneous and well preserved reef units can present notable natural variability in the composition of their communities which are unassociated with changes in land proximity or a human impact gradient. Research was carried out in July 2006 at Los Colorados reef, located in the northwestern region of Pinar del Río Province, Cuba at 12 sampling stations. The biotopes selected were crest, terrace edge and spur and grove. Ecological indicators were diversity of corals, species composition, density of corals, hydrocorals, gorgonians and sponges, and density of selected coral species. A total of 2659 colonies of scleractineans corals representing 36 species were counted. The most abundant species in the crest biotope were Millepora alcicornis, Acropora palmata and Porites astreoides; in the terrace edge and spur and grove, the most abundant species were Siderastrea siderea, Stephanocoenia intersepta, Porites astreoides, Agaricia agaricites and Montastraea cavernosa. We found differences among sites for several indicators (e.g. density of corals, sponges and gorgonians and for selected species), but they could not be associated to any gradient of land influence or human impact. Therefore, sites inside a relatively homogeneous reef unit can present notable natural differences in the composition of their communities.

  6. Painted Goby Larvae under High-CO2 Fail to Recognize Reef Sounds.

    Directory of Open Access Journals (Sweden)

    Joana M Castro

    Full Text Available Atmospheric CO2 levels have been increasing at an unprecedented rate due to anthropogenic activity. Consequently, ocean pCO2 is increasing and pH decreasing, affecting marine life, including fish. For many coastal marine fishes, selection of the adult habitat occurs at the end of the pelagic larval phase. Fish larvae use a range of sensory cues, including sound, for locating settlement habitat. This study tested the effect of elevated CO2 on the ability of settlement-stage temperate fish to use auditory cues from adult coastal reef habitats. Wild late larval stages of painted goby (Pomatoschistus pictus were exposed to control pCO2 (532 μatm, pH 8.06 and high pCO2 (1503 μatm, pH 7.66 conditions, likely to occur in nearshore regions subjected to upwelling events by the end of the century, and tested in an auditory choice chamber for their preference or avoidance to nighttime reef recordings. Fish reared in control pCO2 conditions discriminated reef soundscapes and were attracted by reef recordings. This behaviour changed in fish reared in the high CO2 conditions, with settlement-stage larvae strongly avoiding reef recordings. This study provides evidence that ocean acidification might affect the auditory responses of larval stages of temperate reef fish species, with potentially significant impacts on their survival.

  7. Coral bleaching on high-latitude marginal reefs at Sodwana Bay, South Africa

    International Nuclear Information System (INIS)

    Celliers, Louis; Schleyer, Michael H.

    2002-01-01

    Coral bleaching, involving the expulsion of symbiotic zooxanthellae from the host cells, poses a major threat to coral reefs throughout their distributional range. The role of temperature in coral bleaching has been extensively investigated and is widely accepted. A bleaching event was observed on the marginal high-latitude reefs of South Africa located at Sodwana Bay during the summer months of 2000. This was associated with increased sea temperatures with high seasonal peaks in summer and increased radiation in exceptionally clear water. The bleaching was limited to Two-mile Reef and Nine-mile Reef at Sodwana Bay and affected -1 from May 1994 to April 2000. High maximum temperatures were measured (>29 deg. C). The lowest mean monthly and the mean maximum monthly temperatures at which coral bleaching occurred were 27.5 and 28.8 deg. C, respectively, while the duration for which high temperatures occurred in 2000 was 67 days at ≥27.5 deg. C (4 days at ≥28.8 deg. C). Increased water clarity and radiation appeared to be a synergistic cause in the coral bleaching encountered at Sodwana Bay

  8. Acoustic and biological trends on coral reefs off Maui, Hawaii

    Science.gov (United States)

    Kaplan, Maxwell B.; Lammers, Marc O.; Zang, Eden; Aran Mooney, T.

    2018-03-01

    Coral reefs are characterized by high biodiversity, and evidence suggests that reef soundscapes reflect local species assemblages. To investigate how sounds produced on a given reef relate to abiotic and biotic parameters and how that relationship may change over time, an observational study was conducted between September 2014 and January 2016 at seven Hawaiian reefs that varied in coral cover, rugosity, and fish assemblages. The reefs were equipped with temperature loggers and acoustic recording devices that recorded on a 10% duty cycle. Benthic and fish visual survey data were collected four times over the course of the study. On average, reefs ranged from 0 to 80% live coral cover, although changes between surveys were noted, in particular during the major El Niño-related bleaching event of October 2015. Acoustic analyses focused on two frequency bands (50-1200 and 1.8-20.5 kHz) that corresponded to the dominant spectral features of the major sound-producing taxa on these reefs, fish, and snapping shrimp, respectively. In the low-frequency band, the presence of humpback whales (December-May) was a major contributor to sound level, whereas in the high-frequency band sound level closely tracked water temperature. On shorter timescales, the magnitude of the diel trend in sound production was greater than that of the lunar trend, but both varied in strength among reefs, which may reflect differences in the species assemblages present. Results indicated that the magnitude of the diel trend was related to fish densities at low frequencies and coral cover at high frequencies; however, the strength of these relationships varied by season. Thus, long-term acoustic recordings capture the substantial acoustic variability present in coral-reef ecosystems and provide insight into the presence and relative abundance of sound-producing organisms.

  9. Formation Mechanisms for Spur and Groove Features on Fringing Reefs

    Science.gov (United States)

    Bramante, J. F.; Ashton, A. D.; Perron, J. T.

    2016-12-01

    Spur and groove systems (SAGs) are ubiquitous morphological features found on fore-reef slopes globally. SAGs consist of parallel, roughly shore-normal ridges of actively growing coral and coralline algae (spurs) separated by offshore-sloping depressions typically carpeted by a veneer of sediment (grooves). Although anecdotal observations and recent statistical analyses have reported correlations between wave exposure and the distribution of SAGs on fore-reef slopes, the physical mechanisms driving SAG formation remain poorly understood. For example, there remains significant debate regarding the importance of coral growth versus bed erosion for SAG formation. Here we investigate a hypothesis that SAG formation is controlled by feedbacks between sediment production and diffusion and coral growth. Using linear stability analysis, we find that sediment production, coral growth, and the feedbacks between them are unable to produce stable periodic structures without a sediment sink. However, if incipient grooves act as conduits for sediment transport offshore, a positive feedback can develop as the groove bed erodes through wave-driven abrasion during offshore transport. Eventually a negative feedback slows groove deepening when the groove bed is armored by sediment, and the groove bed relaxes to a sediment-veneered equilibrium profile analogous to sediment-rich shorefaces. To test this hypothesis, we apply a numerical model that incorporates coral growth and sediment production, sediment diffusion, non-linear wave-driven abrasion, and sediment advection offshore. This model produces the periodic, linear features characteristic of SAG morphology. The relative magnitude of growth, production, diffusion, abrasion, and advection rates affect periodic spacing or wavelength of the modeled SAGs. Finally, we evaluate the ability of the model to replicate geographical variability in SAG characteristics using previously published datasets and reanalysis wave data.

  10. High spatial variability of coral, sponges and gorgonian assemblages in a well preserved reef

    Directory of Open Access Journals (Sweden)

    Patricia González-Díaz

    2010-06-01

    Full Text Available The main goal of this research was to obtain baseline field data of the composition of sponges, corals, and gorgonian assemblages that can be used as a reference for future analyses of anthropogenic impact. We tested the hypothesis that relatively homogeneous and well preserved reef units can present notable natural variability in the composition of their communities which are unassociated with changes in land proximity or a human impact gradient. Research was carried out in July 2006 at Los Colorados reef, located in the northwestern region of Pinar del Río Province, Cuba at 12 sampling stations. The biotopes selected were crest, terrace edge and spur and grove. Ecological indicators were diversity of corals, species composition, density of corals, hydrocorals, gorgonians and sponges, and density of selected coral species. A total of 2659 colonies of scleractineans corals representing 36 species were counted. The most abundant species in the crest biotope were Millepora alcicornis, Acropora palmata and Porites astreoides; in the terrace edge and spur and grove, the most abundant species were Siderastrea siderea, Stephanocoenia intersepta, Porites astreoides, Agaricia agaricites and Montastraea cavernosa. We found differences among sites for several indicators (e.g. density of corals, sponges and gorgonians and for selected species, but they could not be associated to any gradient of land influence or human impact. Therefore, sites inside a relatively homogeneous reef unit can present notable natural differences in the composition of their communities. Rev. Biol. Trop. 58 (2: 621-634. Epub 2010 June 02.

  11. Coral bleaching on high-latitude marginal reefs at Sodwana Bay, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Celliers, Louis; Schleyer, Michael H

    2002-12-01

    Coral bleaching, involving the expulsion of symbiotic zooxanthellae from the host cells, poses a major threat to coral reefs throughout their distributional range. The role of temperature in coral bleaching has been extensively investigated and is widely accepted. A bleaching event was observed on the marginal high-latitude reefs of South Africa located at Sodwana Bay during the summer months of 2000. This was associated with increased sea temperatures with high seasonal peaks in summer and increased radiation in exceptionally clear water. The bleaching was limited to Two-mile Reef and Nine-mile Reef at Sodwana Bay and affected <12% of the total living cover on Two-mile Reef. Montipora spp., Alveopora spongiosa and Acropora spp. were bleached, as well as some Alcyoniidae (Sinularia dura, Lobophytum depressum, L. patulum). A cyclical increase in sea temperature (with a period of 5-6 years) was recorded during 1998-2000 in addition to the regional temperature increase caused by the El Nino Southern Oscillation phenomenon. The mean sea temperature increased at a rate of 0.27 deg. C year{sup -1} from May 1994 to April 2000. High maximum temperatures were measured (>29 deg. C). The lowest mean monthly and the mean maximum monthly temperatures at which coral bleaching occurred were 27.5 and 28.8 deg. C, respectively, while the duration for which high temperatures occurred in 2000 was 67 days at {>=}27.5 deg. C (4 days at {>=}28.8 deg. C). Increased water clarity and radiation appeared to be a synergistic cause in the coral bleaching encountered at Sodwana Bay.

  12. Acropora interbranch skeleton Sr/Ca ratios: Evaluation of a potential new high-resolution paleothermometer

    Science.gov (United States)

    Sadler, James; Nguyen, Ai D.; Leonard, Nicole D.; Webb, Gregory E.; Nothdurft, Luke D.

    2016-04-01

    The majority of coral geochemistry-based paleoclimate reconstructions in the Indo-Pacific are conducted on selectively cored colonies of massive Porites. This restriction to a single genus may make it difficult to amass the required paleoclimate data for studies that require deep reef coring techniques. Acropora, however, is a highly abundant coral genus in both modern and fossil reef systems and displays potential as a novel climate archive. Here we present a calibration study for Sr/Ca ratios recovered from interbranch skeleton in corymbose Acropora colonies from Heron Reef, southern Great Barrier Reef. Significant intercolony differences in absolute Sr/Ca ratios were normalized by producing anomaly plots of both coral geochemistry and instrumental water temperature records. Weighted linear regression of these anomalies from the lagoon and fore-reef slope provide a sensitivity of -0.05 mmol/mol °C-1, with a correlation coefficient (r2 = 0.65) comparable to those of genera currently used in paleoclimate reconstructions. Reconstructions of lagoon and reef slope mean seasonality in water temperature accurately identify the greater seasonal amplitude observed in the lagoon of Heron Reef. A longer calibration period is, however, required for reliable reconstructions of annual mean water temperatures.

  13. Predicting climate-driven regime shifts versus rebound potential in coral reefs.

    Science.gov (United States)

    Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K

    2015-02-05

    Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.

  14. Nitrification in reef corals

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; David, J.J.

    . An estimate of the density of nitrifying bacteria on living corals can be made by comparing the nitrifying rates of bacterial cells and the rate of production of NO,-. Kaplan (1983) summarized the growth con- stants of marine nitrifying bacteria... Reef Con=. 3: 395-399. -, C. R. WILKINSON, V. p. VICENTE, J. M. MORELL, AND E. OTERO. 1988. Nitrate release by Carib- bean reef sponges. Limnol. Oceanogr. 33: 114- 120. CROSSLAND, C. J., AND D. J. BARNES. 1983. Dissolved nutrients and organic...

  15. Coral community response to bleaching on a highly disturbed reef.

    Science.gov (United States)

    Guest, J R; Low, J; Tun, K; Wilson, B; Ng, C; Raingeard, D; Ulstrup, K E; Tanzil, J T I; Todd, P A; Toh, T C; McDougald, D; Chou, L M; Steinberg, P D

    2016-02-15

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress.

  16. Regional variation in the structure and function of parrotfishes on Arabian reefs

    KAUST Repository

    Hoey, Andrew

    2015-11-20

    Parrotfishes (f. Labridae) are a unique and ubiquitous group of herbivorous reef fishes. We compared the distribution and ecosystem function (grazing and erosion) of parrotfishes across 75 reefs in Arabia. Our results revealed marked regional differences in the abundance, and taxonomic and functional composition of parrotfishes between the Red Sea, Arabian Sea, and Arabian Gulf. High densities and diversity of parrotfishes, and high rates of grazing (210% year) and erosion (1.57 kg m year) characterised Red Sea reefs. Despite Arabian Sea and Red Sea reefs having broadly comparable abundances of parrotfishes, estimates of grazing (150% year) and erosion (0.43 kg m year) were markedly lower in the Arabian Sea. Parrotfishes were extremely rare within the southern Arabian Gulf, and as such rates of grazing and erosion were negligible. This regional variation in abundance and functional composition of parrotfishes appears to be related to local environmental conditions.

  17. Coral Reef Community Composition in the Context of Disturbance History on the Great Barrier Reef, Australia

    Science.gov (United States)

    Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  18. Coral reef connectivity within the Western Gulf of Mexico

    Science.gov (United States)

    Salas-Monreal, David; Marin-Hernandez, Mark; Salas-Perez, Jose de Jesus; Salas-de-Leon, David Alberto; Monreal-Gomez, Maria Adela; Perez-España, Horacio

    2018-03-01

    The yearlong monthly mean satellite data of the geostrophic velocities, the sea surface temperature and the chlorophyll-a values were used to elucidate any possible pathway among the different coral reef systems of the Western Gulf of Mexico (WGM). The geostrophic current velocities suggested different pathways connecting the coral reef areas. The typical coastal alongshore pathway constricted to the continental shelf, and two open ocean pathway, the first connecting the Campeche Reef System (CRS) with the Veracruz (VRS) and Tuxpan-Lobos Reef Systems (TLRS), and the second pathway connecting the Tuxpan-Lobos Reef System with the Flower Garden Reef System (FGRS). According to the pathways there should be more larvae transport from the southern Gulf of Mexico reef systems toward the FGRS than the other way. The connection from the southern Gulf of Mexico toward the FGRS took place during January, May, July, August and September (2015), while the connection from the FGRS toward the southern Gulf of Mexico reef system took place during January and February (2015), this was also suggested via model outputs. The density radio (R) was used as a first approximation to elucidate the influence of the freshwater continental discharges within the continental shelf. All coral reef areas were located where the Chlorophyll-a monthly mean values had values bellow 1 mg m- 2 with a density radio between 0 and 1, i.e. under the influence of continental discharges.

  19. Bleaching of reef coelenterates in the San Blas Islands, Panama

    Science.gov (United States)

    Lasker, Howard R.; Peters, Esther C.; Coffroth, Mary Alice

    1984-12-01

    Starting in June 1983, 25 species of hermatypic corals, gorgonians, hydrocorals, anemones and zoanthids in the San Blas Islands, Panama, began showing signs of a loss of colour leading in some cases to a white “bleached” appearance. Histologic examination of six coral species indicated that bleaching was associated with drastic reductions in the density of zooxanthellae and with the atrophy and necrosis of the animal tissue. The severity of the bleaching varied among species and many species were unaffected. The species most extensively affected were: Agaricia spp., which became completely bleached and frequently died; Montastraea annularis which bleached and continued to survive; and Millepora spp. which bleached white but quickly regained their colouration. Shallow reefs dominated by Agaricia spp. suffered the most extensive bleaching. At one site, Pico Feo, 99% of the Agaricia (32% of the living cover) was bleached. On fore reers, which were dominated by Agaricia spp. and M. annularis, the proportion of M. annularis bleached ranged from 18 to 100% and that of Agaricia spp. from 30 to 53%. Transects at Sail Rock and House Reef were surveyed in August 1983 and January 1984. At those sites, 53% of the Agaricia cover died between August and January. The remaining living cover of Agaricia and of all other species exhibited normal colouration in January. Salinity and temperature were monitored every second day at 4 m depth between May 10 and August 28, 1983 at one of the localities. Bleaching was first observed within two weeks of a 2 °C rise in temperature which occurred in late May 1983. Temperatures remained at or above 31.5 °C for the following 3 weeks and were at or above 30 °C for an additional 4 weeks. The bleaching of corals in the San Blas was most likely due to those elevanted temperatures.

  20. Reef Development on Artificial Patch Reefs in Shallow Water of Panjang Island, Central Java

    Science.gov (United States)

    Munasik; Sugiyanto; Sugianto, Denny N.; Sabdono, Agus

    2018-02-01

    Reef restoration methods are generally developed by propagation of coral fragments, coral recruits and provide substrate for coral attachment using artificial reefs (ARs). ARs have been widely applied as a tool for reef restoration in degraded natural reefs. Successful of coral restoration is determined by reef development such as increasing coral biomass, natural of coral recruits and fauna associated. Artificial Patch Reefs (APRs) is designed by combined of artificial reefs and coral transplantation and constructed by modular circular structures in shape, were deployed from small boats by scuba divers, and are suitable near natural reefs for shallow water with low visibility of Panjang Island, Central Java. Branching corals of Acropora aspera, Montipora digitata and Porites cylindrica fragments were transplanted on to each module of two units of artificial patch reefs in different periods. Coral fragments of Acropora evolved high survival and high growth, Porites fragments have moderate survival and low growth, while fragment of Montipora show in low survival and moderate growth. Within 19 to 22 months of APRs deployment, scleractinian corals were recruited on the surface of artificial patch reef substrates. The most recruits abundant was Montastrea, followed by Poritids, Pocilloporids, and Acroporids. We conclude that artificial patch reefs with developed by coral fragments and natural coral recruitment is one of an alternative rehabilitation method in shallow reef with low visibility.

  1. Non-decoupled morphological evolution of the fore- and hindlimb of sabretooth predators.

    Science.gov (United States)

    Martín-Serra, Alberto; Figueirido, Borja; Palmqvist, Paul

    2017-10-01

    Specialized organisms are useful for exploring the combined effects of selection of functional traits and developmental constraints on patterns of phenotypic integration. Sabretooth predators are one of the most interesting examples of specialization among mammals. Their hypertrophied, sabre-shaped upper canines and their powerfully built forelimbs have been interpreted as adaptations to a highly specialized predatory behaviour. Given that the elongated and laterally compressed canines of sabretooths were more vulnerable to fracture than the shorter canines of conical-tooth cats, it has been long hypothesized that the heavily muscled forelimbs of sabretooths were used for immobilizing prey before developing a quick and precise killing bite. However, the effect of this unique adaptation on the covariation between the fore- and the hindlimb has not been explored in a quantitative fashion. In this paper, we investigate if the specialization of sabretooth predators decoupled the morphological variation of their forelimb with respect to their hindlimb or, in contrast, both limbs vary in the same fashion as in conical-tooth cats, which do not show such extreme adaptations in their forelimb. We use 3D geometric morphometrics and different morphological indices to compare the fore- and hindlimb of conical- and sabretooth predators. Our results indicate that the limb bones of sabretooth predators covary following the same trend of conical-tooth cats. Therefore, we show that the predatory specialization of sabretooth predators did not result in a decoupling of the morphological evolution of their fore- and hindlimbs. The role of developmental constraints and natural selection on this coordinate variation between the fore- and the hindlimb is discussed in the light of this new evidence. © 2017 Anatomical Society.

  2. Black reefs: iron-induced phase shifts on coral reefs.

    Science.gov (United States)

    Kelly, Linda Wegley; Barott, Katie L; Dinsdale, Elizabeth; Friedlander, Alan M; Nosrat, Bahador; Obura, David; Sala, Enric; Sandin, Stuart A; Smith, Jennifer E; Vermeij, Mark J A; Williams, Gareth J; Willner, Dana; Rohwer, Forest

    2012-03-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the shipwreck debris are characterized by high benthic cover of turf algae, macroalgae, cyanobacterial mats and corallimorphs, as well as particulate-laden, cloudy water. These sites also have very low coral and crustose coralline algal cover and are call black reefs because of the dark-colored benthic community and reduced clarity of the overlying water column. Here we use a combination of benthic surveys, chemistry, metagenomics and microcosms to investigate if and how shipwrecks initiate and maintain black reefs. Comparative surveys show that the live coral cover was reduced from 40 to 60% to reefs on Millennium, Tabuaeran and Kingman. These three sites are relatively large (>0.75 km(2)). The phase shift occurs rapidly; the Kingman black reef formed within 3 years of the ship grounding. Iron concentrations in algae tissue from the Millennium black reef site were six times higher than in algae collected from reference sites. Metagenomic sequencing of the Millennium Atoll black reef-associated microbial community was enriched in iron-associated virulence genes and known pathogens. Microcosm experiments showed that corals were killed by black reef rubble through microbial activity. Together these results demonstrate that shipwrecks and their associated iron pose significant threats to coral reefs in iron-limited regions.

  3. A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands.

    Directory of Open Access Journals (Sweden)

    Jade M S Delevaux

    Full Text Available Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients, mediated by human activities (land cover/use, and marine drivers (waves, geography, and habitat on coral reefs. We applied this framework in two 'ridge-to-reef' systems (Hā'ena and Ka'ūpūlehu subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka'ūpūlehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Hā'ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka'ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than Hā'ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Hā'ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as

  4. Remote coral reefs can sustain high growth potential and may match future sea-level trends.

    Science.gov (United States)

    Perry, Chris T; Murphy, Gary N; Graham, Nicholas A J; Wilson, Shaun K; Januchowski-Hartley, Fraser A; East, Holly K

    2015-12-16

    Climate-induced disturbances are contributing to rapid, global-scale changes in coral reef ecology. As a consequence, reef carbonate budgets are declining, threatening reef growth potential and thus capacity to track rising sea-levels. Whether disturbed reefs can recover their growth potential and how rapidly, are thus critical research questions. Here we address these questions by measuring the carbonate budgets of 28 reefs across the Chagos Archipelago (Indian Ocean) which, while geographically remote and largely isolated from compounding human impacts, experienced severe (>90%) coral mortality during the 1998 warming event. Coral communities on most reefs recovered rapidly and we show that carbonate budgets in 2015 average +3.7 G (G = kg CaCO3 m(-2) yr(-1)). Most significantly the production rates on Acropora-dominated reefs, the corals most severely impacted in 1998, averaged +8.4 G by 2015, comparable with estimates under pre-human (Holocene) disturbance conditions. These positive budgets are reflected in high reef growth rates (4.2 mm yr(-1)) on Acropora-dominated reefs, demonstrating that carbonate budgets on these remote reefs have recovered rapidly from major climate-driven disturbances. Critically, these reefs retain the capacity to grow at rates exceeding measured regional mid-late Holocene and 20th century sea-level rise, and close to IPCC sea-level rise projections through to 2100.

  5. Correlation Between Existence of Reef Sharks with Abundance of Reef Fishes in South Waters of Morotai Island (North Moluccas)

    Science.gov (United States)

    Mukharror, Darmawan Ahmad; Tiara Baiti, Isnaini; Ichsan, Muhammad; Pridina, Niomi; Triutami, Sanny

    2017-10-01

    Despite increasing academic research citation on biology, abundance, and the behavior of the blacktip reef sharks, the influence of reef fish population on the density of reef sharks: Carcharhinus melanopterus and Triaenodon obesus population in its habitat were largely unassessed. This present study examined the correlation between abundance of reef fishes family/species with the population of reef sharks in Southern Waters of Morotai Island. The existence of reef sharks was measured with the Audible Stationary Count (ASC) methods and the abundance of reef fishes was surveyed using Underwater Visual Census (UVC) combined with Diver Operated Video (DOV) census. The coefficient of Determination (R2) was used to investigate the degree of relationships between sharks and the specific reef fishes species. The research from 8th April to 4th June 2015 showed the strong positive correlations between the existence of reef sharks with abundance of reef fishes. The correlation values between Carcharhinus melanopterus/Triaenodon obesus with Chaetodon auriga was 0.9405, blacktip/whitetip reef sharks versus Ctenochaetus striatus was 0.9146, and Carcharhinus melanopterus/Triaenodon obesus to Chaetodon kleinii was 0.8440. As the shark can be worth more alive for shark diving tourism than dead in a fish market, the abundance of these reef fishes was important as an early indication parameter of shark existence in South Water of Morotai Island. In the long term, this highlights the importance of reef fishes abundance management in Morotai Island’s Waters to enable the establishment of appropriate and effective reef sharks conservation.

  6. Conservation status and spatial patterns of AGRRA vitality indices in Southwestern Atlantic reefs.

    Science.gov (United States)

    Kikuchi, Ruy K P; Leão, Zelinda M A N; Oliveira, Marília D M

    2010-05-01

    Coral reefs along the Eastern Brazilian coast extend for a distance of 800 km from 12 degrees to 18 degrees S. They are the largest and the richest reefs of Brazil coasts, and represent the Southernmost coral reefs of the Southwestern Atlantic Ocean. Few reef surveys were performed in the 90's in reef areas of Bahia State, particularly in the Abrolhos reef complex, in the Southernmost side of the state. A monitoring program applying the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol was initiated in 2000, in the Abrolhos National Marine Park, after the creation of the South Tropical America (STA) Regional Node of the Global Coral Reef Monitoring Network (GCRMN) by the end of 1999. From that time up to 2005, nine reef surveys were conducted along the coast of the State of Bahia, including 26 reefs, with 95 benthic sites, 280 benthic transects, 2025 quadrats and 3537 stony corals. Eighteen of the 26 investigated reefs were assessed once and eight reefs of Abrolhos were surveyed twice to four times. The MDS ordination, analysis of similarity (ANOSIM, one way and two-way nested layouts) and similarity percentages (SIMPER) tests were applied to investigate the spatial and temporal patterns of reef vitality. Four indicators of the coral vitality: live coral cover, the density of the larger corals (colonics > 20cm per reef site) and of the coral recruits (colonies coast, are in poorer condition than the reefs located more than 5 km off the coast. A higher density of coral colonies, lower macroalgal index, higher relative percent of turf algae and higher density of coral recruits in offshore reefs compared to the nearshore reefs are the conditions that contribute more than 80% to the dissimilarity between them. The offshore reefs are in better vital condition than the nearshore reefs and have a set of vitality indices more closely related to the Northwestern Atlantic reefs than the nearshore reef. These have been most severely impacted by the effects of direct

  7. DIVERSITY OF REEF FISH FUNGSIONAL GROUPS IN TERMS OF CORAL REEF RESILIENCES

    Directory of Open Access Journals (Sweden)

    Isa Nagib edrus

    2017-01-01

    Full Text Available Infrastructure development in the particular sites of  Seribu Islands as well as those in main land of Jakarta City increased with coastal population this phenomenon is likely to increase the effects to the adjacent coral waters of Seribu Islands.  Chemical pollutants, sedimentation, and domestic wastes are the common impact and threatening, the survival of coral reef ecosystem. Coral reef resiliences naturaly remained on their processes under many influences of supporting factors. One of the major factor is the role of reef fish functional groups on controling algae growth to recolonize coral juveniles. The  aim of this study to obtain data of a herbivory and other fish functional groups of reef fishes in the Pari Islands that are resilience indicators, or that may indicate the effectiveness of management actions. A conventional scientific approach on fish diversity and abundance data gathering was conducted by the underwater visual cencus. Diversity values of the reef fish functional groups, such as the abundance of individual fish including species, were collected and tabulated by classes and weighted as a baseline to understand the resilience of coral reed based on Obura and Grimsditch (2009 techniques. The results succesfully identified several fish functional groups such as harbivores (21 species, carnivores (13 species and fish indicator (5 species occurred in the area. Regarding the aspects of fish density and its diversity, especially herbivorous fish functional group, were presumably in the state of rarely available to support the coral reef resiliences. Resilience indices ranged from 1 (low level to 3 (moderate level and averages of the quality levels ranged from 227 to 674. These levels were inadequate to support coral reef recolonization.

  8. Elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event

    Science.gov (United States)

    Cook, Clayton B.; Logan, Alan; Ward, Jack; Luckhurst, Brian; Berg, Carl J.

    1990-03-01

    Sea temperatures were normal in Bermuda during 1987, when Bermuda escaped the episodes of coral bleaching which were prevalent throughout the Caribbean region. Survey transecs in 1988 on 4 6 m reefs located on the rim margin and on a lagoonal patch reef revealed bleaching only of zoanthids between May and July. Transect and tow surveys in August and September revealed bleaching of several coral species; Millepora alcicornis on rim reefs was the most extensively affected. The frequency of bleaching in this species, Montastrea annularis and perhaps Diploria labyrinthiformis was significantly higher on outer reefs than on inshore reefs. This bleaching period coincided with the longest period of elevated sea temperatures in Bermuda in 38 years (28.9 30.9°C inshore, >28° offshore). By December, when temperatures had returned to normal, bleaching of seleractinians continued, but bleaching of M. alcicornis on the outer reefs was greatly reduced. Our observations suggest that corals which normally experience wide temperature ranges are less sensitive to thermal stress, and that high-latitude reef corals are sensitive to elevated temperatures which are within the normal thermal range of corals at lower latitudes.

  9. Project O.R.B (Operation Reef Ball): Creating Artificial Reefs, Educating the Community

    Science.gov (United States)

    Phipps, A.

    2012-04-01

    The Project O.R.B. (Operation Reef Ball) team at South Plantation High School's Everglades Restoration & Environmental Science Magnet Program is trying to help our ailing south Florida coral reefs by constructing, deploying, and monitoring designed artificial reefs. Students partnered with the Reef Ball Foundation, local concrete companies, state parks, Girl Scouts, Sea Scouts, local universities and environmental agencies to construct concrete reef balls, each weighing approximately 500 lbs (227 kg). Students then deployed two artificial reefs consisting of over 30 concrete reef balls in two sites previously permitted for artificial reef deployment. One artificial reef was placed approximately 1.5 miles (2.4 km) offshore of Golden Beach in Miami-Dade County with the assistance of Florida Atlantic University and their research vessel. A twin reef was deployed at the mouth of the river in Oleta River State Park in Miami. Monitoring and maintenance of the sites is ongoing with semi-annual reports due to the Reef Ball Foundation and DERM (Department of Environmental Resource Management) of Miami-Dade County. A second goal of Project O.R.B. is aligned with the Florida Local Action Strategy, the Southeast Florida Coral Reef Initiative, and the U.S. Coral Reef Task Force, all of which point out the importance of awareness and education as key components to the health of our coral reefs. Project O.R.B. team members developed and published an activity book targeting elementary school students. Outreach events incorporate cascade learning where high school students teach elementary and middle school students about various aspects of coral reefs through interactive "edu-tainment" modules. Attendees learn about water sampling, salinity, beach erosion, surface runoff, water cycle, ocean zones, anatomy of coral, human impact on corals, and characteristics of a well-designed artificial reef. Middle school students snorkel on the artificial reef to witness first-hand the success

  10. Species Richness and Community Structure on a High Latitude Reef: Implications for Conservation and Management

    Directory of Open Access Journals (Sweden)

    Wayne Houston

    2011-07-01

    Full Text Available In spite of the wealth of research on the Great Barrier Reef, few detailed biodiversity assessments of its inshore coral communities have been conducted. Effective conservation and management of marine ecosystems begins with fine-scale biophysical assessments focused on diversity and the architectural species that build the structural framework of the reef. In this study, we investigate key coral diversity and environmental attributes of an inshore reef system surrounding the Keppel Bay Islands near Rockhampton in Central Queensland, Australia, and assess their implications for conservation and management. The Keppels has much higher coral diversity than previously found. The average species richness for the 19 study sites was ~40 with representatives from 68% of the ~244 species previously described for the southern Great Barrier Reef. Using scleractinian coral species richness, taxonomic distinctiveness and coral cover as the main criteria, we found that five out of 19 sites had particularly high conservation value. A further site was also considered to be of relatively high value. Corals at this site were taxonomically distinct from the others (representatives of two families were found here but not at other sites and a wide range of functionally diverse taxa were present. This site was associated with more stressful conditions such as high temperatures and turbidity. Highly diverse coral communities or biodiversity ‘hotspots’ and taxonomically distinct reefs may act as insurance policies for climatic disturbance, much like Noah’s Arks for reefs. While improving water quality and limiting anthropogenic impacts are clearly important management initiatives to improve the long-term outlook for inshore reefs, identifying, mapping and protecting these coastal ‘refugia’ may be the key for ensuring their regeneration against catastrophic climatic disturbance in the meantime.

  11. Soundscapes from a Tropical Eastern Pacific reef and a Caribbean Sea reef

    Science.gov (United States)

    Staaterman, E.; Rice, A. N.; Mann, D. A.; Paris, C. B.

    2013-06-01

    Underwater soundscapes vary due to the abiotic and biological components of the habitat. We quantitatively characterized the acoustic environments of two coral reef habitats, one in the Tropical Eastern Pacific (Panama) and one in the Caribbean (Florida Keys), over 2-day recording durations in July 2011. We examined the frequency distribution, temporal variability, and biological patterns of sound production and found clear differences. The Pacific reef exhibited clear biological patterns and high temporal variability, such as the onset of snapping shrimp noise at night, as well as a 400-Hz daytime band likely produced by damselfish. In contrast, the Caribbean reef had high sound levels in the lowest frequencies, but lacked clear temporal patterns. We suggest that acoustic measures are an important element to include in reef monitoring programs, as the acoustic environment plays an important role in the ecology of reef organisms at multiple life-history stages.

  12. Conservation status and spatial patterns of AGRRA vitality indices in Southwestern Atlantic Reefs

    Directory of Open Access Journals (Sweden)

    Ruy K.P Kikuchi

    2010-05-01

    Full Text Available Coral reefs along the Eastern Brazilian coast extend for a distance of 800km from 12° to 18°S. They are the largest and the richest reefs of Brazil coasts, and represent the Southernmost coral reefs of the Southwestern Atlantic Ocean. Few reef surveys were performed in the 90’s in reef areas of Bahia State, particularly in the Abrolhos reef complex, in the Southernmost side of the state. A monitoring program applying the Atlantic and Gulf Rapid Reef Assessment (AGRRA protocol was initiated in 2000, in the Abrolhos National Marine Park, after the creation of the South Tropical America (STA Regional Node of the Global Coral Reef Monitoring Network (GCRMN by the end of 1999. From that time up to 2005, nine reef surveys were conducted along the coast of the State of Bahia, including 26 reefs, with 95 benthic sites, 280 benthic transects, 2025 quadrats and 3537 stony corals. Eighteen of the 26 investigated reefs were assessed once and eight reefs of Abrolhos were surveyed twice to four times. The MDS ordination, analysis of similarity (ANOSIM, one way and two-way nested layouts and similarity percentages (SIMPER tests were applied to investigate the spatial and temporal patterns of reef vitality. Four indicators of the coral vitality: live coral cover, the density of the larger corals (colonies >20cm per reef site and of the coral recruits (colonies<2cm per square meter, and the percentage of macroalgae indicate that the nearshore reefs, which are located less than 5km from the coast, are in poorer condition than the reefs located more than 5km off the coast. A higher density of coral colonies, lower macroalgal index, higher relative percent of turf algae and higher density of coral recruits in offshore reefs compared to the nearshore reefs are the conditions that contribute more than 80% to the dissimilarity between them. The offshore reefs are in better vital condition than the nearhore reefs and have a set of vitality indices more closely

  13. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Science.gov (United States)

    Serafy, Joseph E; Shideler, Geoffrey S; Araújo, Rafael J; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider

  14. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Directory of Open Access Journals (Sweden)

    Joseph E Serafy

    Full Text Available Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1 Are reef fish abundances limited by mangrove forest area?; and (2 Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1 focus analyses on species that use mangroves as nurseries, (2 consider more than the mean fish abundance response to mangrove forest extent; and/or (3 quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i

  15. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef.

    Directory of Open Access Journals (Sweden)

    Tom C L Bridge

    Full Text Available High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2 plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  16. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef.

    Science.gov (United States)

    Bridge, Tom C L; Ferrari, Renata; Bryson, Mitch; Hovey, Renae; Figueira, Will F; Williams, Stefan B; Pizarro, Oscar; Harborne, Alastair R; Byrne, Maria

    2014-01-01

    High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2) plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.

  17. Bomb-cratered coral reefs in Puerto Rico, the untold story about a novel habitat: from reef destruction to community-based ecological rehabilitation

    Directory of Open Access Journals (Sweden)

    Edwin A. Hernández-Delgado

    2014-09-01

    Full Text Available Ecological impacts of military bombing activities in Puerto Rico have often been described as minimal, with recurrent allegations of confounding effects by hurricanes, coral diseases and local anthropogenic stressors. Reef craters, though isolated, are associated with major colony fragmentation and framework pulverization, with a net permanent loss of reef bio-construction. In contrast, adjacent non-bombarded reef sections have significantly higher benthic spatial relief and biodiversity. We compared benthic communities on 35-50 year-old bomb-cratered coral reefs at Culebra and Vieques Islands, with adjacent non-impacted sites; 2 coral recruit density and fish community structure within and outside craters; and 3 early effects of a rehabilitation effort using low-tech Staghorn coral Acropora cervicornis farming. Reef craters ranged in size from approximately 50 to 400m² and were largely dominated by heavily fragmented, flattened benthos, with coral cover usually below 2% and dominance by non-reef building taxa (i.e., filamentous algal turfs, macroalgae. Benthic spatial heterogeneity was lower within craters which also resulted in a lowered functional value as fish nursery ground. Fish species richness, abundance and biomass, and coral recruit density were lower within craters. Low-tech, community-based approaches to culture, harvest and transplant A. cervicornis into formerly bombarded grounds have proved successful in increasing percent coral cover, benthic spatial heterogeneity, and helping rehabilitate nursery ground functions.

  18. Fore shock activity and its probabilistic relation to earthquake occurrence in Albania and the surrounding area

    Energy Technology Data Exchange (ETDEWEB)

    Peci, V. [Seismological Institute, Tirana (Albania); Maeda, K. [Meteorologial Research Institute, Tsukuba, Ibaraki (Japan). Dept. of Seismology and Volcanology Research; Matsmura, K.; Irikura, K. [Kyoto Univ., Kyoto (Japan). Inst. of Disaster Prevention Research

    1999-10-01

    The paper investigates some characteristics of fore shock activity of moderate and large earthquakes which occurred in the present century in Albania and the surrounding area. Using a prediction algorithm, based on possible fore shocks, the authors obtained a probabilistic relation between possible fore shocks and main shocks. Results recorded between 1901-1994 are analysed and discussed.

  19. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef.

    Science.gov (United States)

    Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F

    2017-01-01

    Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  20. Invasive lionfish had no measurable effect on prey fish community structure across the Belizean Barrier Reef

    Directory of Open Access Journals (Sweden)

    Serena Hackerott

    2017-05-01

    Full Text Available Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.

  1. Carbon budget of coral reef systems: an overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions

    International Nuclear Information System (INIS)

    Suzuki, Atsushi; Kawahata, Hodaka

    2003-01-01

    The seawater CO 2 system and carbon budget were examined in coral reefs of wide variety with respect to topographic types and oceanographic settings in the Indo-Pacific oceans. A system-level net organic-to-inorganic carbon production ratio (ROI) is a master parameter for controlling the carbon cycle in coral reef systems, including their sink/source behavior for atmospheric CO 2 . A reef system with ROI less than approximately 0.6 has a potential for releasing CO 2 . The production ratio, however, is not easy to estimate on a particular reef. Instead, observations planned to detect the offshore-lagoon difference in partial pressure of CO 2 (pCO 2 ) and a graphic approach based on a total alkalinity-dissolved inorganic carbon diagram can reveal system-level performance of the carbon cycle in coral reefs. Surface pCO 2 values in the lagoons of atolls and barrier reefs were consistently higher than those in their offshore waters, showing differences between 6 and 46 atm, together with a depletion in total alkalinity up to 100 mol/kg, indicating predominant carbonate production relative to net organic carbon production. Reef topography, especially residence time of lagoon water, has a secondary effect on the magnitude of the offshore-lagoon pCO 2 difference. Terrestrial influence was recognized in coastal reefs, including the GBR lagoon and a fringing reef of the Ryukyu Islands. High carbon input appears to enhance CO 2 efflux to the atmosphere because of their high dissolved C:P ratios. Coral reefs, in general, act as an alkalinity sink and a potentially CO 2 -releasing site due to carbonate precipitation and land-derived carbon

  2. Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef

    Science.gov (United States)

    Kramer, M. J.; Bellwood, D. R.; Bellwood, O.

    2012-12-01

    Composed of a collection of algae, detritus, sediment and invertebrates, the epilithic algal matrix (EAM) is an abundant and ubiquitous feature of coral reefs. Despite its prevalence, there is a paucity of information regarding its associated invertebrate fauna. The cryptofaunal invertebrate community of the EAM was quantitatively investigated in Pioneer Bay on Orpheus Island, Great Barrier Reef. Using a vacuum collection method, a diversity of organisms representing 10 different phyla were identified. Crustacea dominated the samples, with harpacticoid copepods being particularly abundant (2025 ± 132 100 cm-2; mean density ± SE). The volume of coarse particulate matter in the EAM was strongly correlated with the abundance of harpacticoid copepods. The estimated biomass of harpacticoid copepods (0.48 ± 0.05 g m-2; wet weight) suggests that this group is likely to be important for reef trophodynamics and nutrient cycling.

  3. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef.

    Science.gov (United States)

    Cantin, Neal E; Lough, Janice M

    2014-01-01

    Mass coral bleaching affected large parts of the Great Barrier Reef (GBR) in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (bleaching. Sites included inshore (Nelly Bay, Pandora Reef), annually affected by freshwater flood events, midshelf (Rib Reef), only occasionally affected by freshwater floods and offshore (Myrmidon Reef) locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification) were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980-2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans.

  4. Carbon budget of coral reef systems: an overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Kawahata, Hodaka [National Inst. of Advanced Industrial Science and Technology, Ibaraki (Japan). Inst. for Marine Resources and Environment

    2003-04-01

    The seawater CO{sub 2} system and carbon budget were examined in coral reefs of wide variety with respect to topographic types and oceanographic settings in the Indo-Pacific oceans. A system-level net organic-to-inorganic carbon production ratio (ROI) is a master parameter for controlling the carbon cycle in coral reef systems, including their sink/source behavior for atmospheric CO{sub 2}. A reef system with ROI less than approximately 0.6 has a potential for releasing CO{sub 2}. The production ratio, however, is not easy to estimate on a particular reef. Instead, observations planned to detect the offshore-lagoon difference in partial pressure of CO{sub 2} (pCO{sub 2}) and a graphic approach based on a total alkalinity-dissolved inorganic carbon diagram can reveal system-level performance of the carbon cycle in coral reefs. Surface pCO{sub 2} values in the lagoons of atolls and barrier reefs were consistently higher than those in their offshore waters, showing differences between 6 and 46 atm, together with a depletion in total alkalinity up to 100 mol/kg, indicating predominant carbonate production relative to net organic carbon production. Reef topography, especially residence time of lagoon water, has a secondary effect on the magnitude of the offshore-lagoon pCO{sub 2} difference. Terrestrial influence was recognized in coastal reefs, including the GBR lagoon and a fringing reef of the Ryukyu Islands. High carbon input appears to enhance CO{sub 2} efflux to the atmosphere because of their high dissolved C:P ratios. Coral reefs, in general, act as an alkalinity sink and a potentially CO{sub 2}-releasing site due to carbonate precipitation and land-derived carbon.

  5. Alternative reproductive tactics and inverse size-assortment in a high-density fish spawning aggregation.

    Science.gov (United States)

    Karkarey, Rucha; Zambre, Amod; Isvaran, Kavita; Arthur, Rohan

    2017-02-28

    At high densities, terrestrial and marine species often employ alternate reproductive tactics (ARTs) to maximize reproductive benefits. We describe ARTs in a high-density and unfished spawning aggregation of the squaretail grouper (Plectropomus areolatus) in Lakshadweep, India. As previously reported for this species, territorial males engage in pair-courtship, which is associated with a pair-spawning tactic. Here, we document a previously unreported school-courtship tactic; where territorial males court multiple females in mid-water schools, which appears to culminate in a unique 'school-spawning' tactic. Courtship tactics were conditional on body size, local mate density and habitat, likely associated with changing trade-offs between potential mating opportunities and intra-sexual competition. Counter-intuitively, the aggregation showed a habitat-specific inverse size-assortment: large males courted small females on the reef slope while small males courted equal-sized or larger females on the shelf. These patterns remained stable across two years of observation at high, unfished densities. These unique density-dependent behaviours may disappear from this aggregation as overall densities decline due to increasing commercial fishing pressure, with potentially large consequences for demographics and fitness.

  6. Evidence for protection of targeted reef fish on the largest marine reserve in the Caribbean

    Directory of Open Access Journals (Sweden)

    Fabián Pina-Amargós

    2014-02-01

    Full Text Available Marine reserves can restore fish abundance and diversity in areas impacted by overfishing, but the effectiveness of reserves in developing countries where resources for enforcement are limited, have seldom been evaluated. Here we assess whether the establishment in 1996 of the largest marine reserve in the Caribbean, Gardens of the Queen in Cuba, has had a positive effect on the abundance of commercially valuable reef fish species in relation to neighboring unprotected areas. We surveyed 25 sites, including two reef habitats (reef crest and reef slope, inside and outside the marine reserve, on five different months, and over a one-and-a-half year period. Densities of the ten most frequent, highly targeted, and relatively large fish species showed a significant variability across the archipelago for both reef habitats that depended on the month of survey. These ten species showed a tendency towards higher abundance inside the reserve in both reef habitats for most months during the study. Average fish densities pooled by protection level, however, showed that five out of these ten species were at least two-fold significantly higher inside than outside the reserve at one or both reef habitats. Supporting evidence from previously published studies in the area indicates that habitat complexity and major benthic communities were similar inside and outside the reserve, while fishing pressure appeared to be homogeneous across the archipelago before reserve establishment. Although poaching may occur within the reserve, especially at the boundaries, effective protection from fishing was the most plausible explanation for the patterns observed.

  7. Evidence for protection of targeted reef fish on the largest marine reserve in the Caribbean.

    Science.gov (United States)

    Pina-Amargós, Fabián; González-Sansón, Gaspar; Martín-Blanco, Félix; Valdivia, Abel

    2014-01-01

    Marine reserves can restore fish abundance and diversity in areas impacted by overfishing, but the effectiveness of reserves in developing countries where resources for enforcement are limited, have seldom been evaluated. Here we assess whether the establishment in 1996 of the largest marine reserve in the Caribbean, Gardens of the Queen in Cuba, has had a positive effect on the abundance of commercially valuable reef fish species in relation to neighboring unprotected areas. We surveyed 25 sites, including two reef habitats (reef crest and reef slope), inside and outside the marine reserve, on five different months, and over a one-and-a-half year period. Densities of the ten most frequent, highly targeted, and relatively large fish species showed a significant variability across the archipelago for both reef habitats that depended on the month of survey. These ten species showed a tendency towards higher abundance inside the reserve in both reef habitats for most months during the study. Average fish densities pooled by protection level, however, showed that five out of these ten species were at least two-fold significantly higher inside than outside the reserve at one or both reef habitats. Supporting evidence from previously published studies in the area indicates that habitat complexity and major benthic communities were similar inside and outside the reserve, while fishing pressure appeared to be homogeneous across the archipelago before reserve establishment. Although poaching may occur within the reserve, especially at the boundaries, effective protection from fishing was the most plausible explanation for the patterns observed.

  8. FORE-2, Thermohydraulics and Space-Independent Reactor Kinetics for Transients

    International Nuclear Information System (INIS)

    Fox, J.N.; Lawler, B.E.; Butz, H.R.; Heames, T.J.

    1984-01-01

    1 - Description of problem or function: FORE2 is a coupled thermal hydraulics-point kinetics digital computer code designed to calculate significant reactor parameters under steady-state conditions, or as functions of time during transients. The transients may result from a programmed reactivity insertion or a power change. Variable inlet coolant flow rate and temperature are considered. The code calculates the reactor power, the individual reactivity feedbacks, and the temperature of coolant, cladding, fuel, structure, and additional material for up to seven axial positions in three channel types which represent radial zones of the reactor. The heat of fusion, accompanying fuel melting, the liquid metal voiding reactivity, and the spatial and the time variation of the fuel cladding gap coefficient due to changes in gap size are considered. 2 - Method of solution: FORE2 input consists of property data, geometry, power and flow distribution factors, external time varying functions, experimental coefficients, and termination data. The differential equations for fluid flow, heat transfer, and point neutronics are solved by explicit finite-difference procedures. 3 - Restrictions on the complexity of the problem: Reactor excursions which can be calculated are restricted to those transients in which the reactor is not substantially destroyed. As a general rule, changes in reactor geometry and composition during an excursion are limited to those cases in which the reactivity effects of the changes may be considered as small perturbations of the initial system. Thus, accidents involving large-scale disassembly and bulk meltdown of a core are not covered by FORE2. FORE2 is valid only while the core retains its initial geometry

  9. Soft coral abundance on the central Great Barrier Reef: effects of Acanthaster planci, space availability, and aspects of the physical environment

    Science.gov (United States)

    Fabricius, K. E.

    1997-07-01

    -optimal" for the fastest growing taxa, possibly preventing an invasion of the cleared space. Thus, in the absence of additional stress these shallow-water fore-reef zones appear sufficiently resilient to return to their pre-outbreak state of scleractinian dominance.

  10. Native predators do not influence invasion success of pacific lionfish on Caribbean reefs.

    Science.gov (United States)

    Hackerott, Serena; Valdivia, Abel; Green, Stephanie J; Côté, Isabelle M; Cox, Courtney E; Akins, Lad; Layman, Craig A; Precht, William F; Bruno, John F

    2013-01-01

    Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs.

  11. Functionally diverse reef-fish communities ameliorate coral disease.

    Science.gov (United States)

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  12. Is Echinometra viridis facilitating a phase shift on an Acropora cervicornis patch reef in Belize?

    Science.gov (United States)

    Stefanic, C. M.; Greer, L.; Norvell, D.; Benson, W.; Curran, H.

    2012-12-01

    Coral reef health is in rapid decline across the Caribbean due to a number of anthropogenic and natural disturbances. A phase shift from coral- to macroalgae-dominant reefs is pervasive and has been well documented. Acropora cervicornis (Staghorn Coral) has been particularly affected by this shift due to mass mortality of this species since the 1980s. In recent years few Caribbean A. cervicornis refugia have been documented. This study characterizes the relationship between coral and grazing urchins on a rare patch reef system dominated by A. cervicornis off the coast of Belize. To assess relative abundance of live A. cervicornis and the urchin Echinometra viridis, photographs and urchin abundance data were collected from 132 meter square quadrats along five transects across the reef. Photographs were digitized and manually segmented using Adobe Illustrator, and percent live coral cover and branch tip densities were calculated using Matlab. Mean percent live coral cover across all transects was 24.4 % with a high of 65% live coral per meter square. Average urchin density was 18.5 per quadrat, with an average density per transect ranging from 22.1 to 0.5 per quadrat. Up to over 400 live A. cervicornis branch tips per quadrat were observed. Data show a positive correlation between E. viridis abundance and live A. cervicornis, suggesting that these urchins are facilitating recovery or persistence of this endangered coral species. These results suggest the relationship between E. viridis and A. cervicornis could be a key element in a future reversal of the coral to macroalgae phase shift on some Caribbean coral reefs.

  13. Patterns in reef fish assemblages: Insights from the Chagos Archipelago.

    Science.gov (United States)

    Samoilys, Melita; Roche, Ronan; Koldewey, Heather; Turner, John

    2018-01-01

    Understanding the drivers of variability in the composition of fish assemblages across the Indo-Pacific region is crucial to support coral reef ecosystem resilience. Whilst numerous relationships and feedback mechanisms between the functional roles of coral reef fishes and reef benthic composition have been investigated, certain key groups, such as the herbivores, are widely suggested to maintain reefs in a coral-dominated state. Examining links between fishes and reef benthos is complicated by the interactions between natural processes, disturbance events and anthropogenic impacts, particularly fishing pressure. This study examined fish assemblages and associated benthic variables across five atolls within the Chagos Archipelago, where fishing pressure is largely absent, to better understand these relationships. We found high variability in fish assemblages among atolls and sites across the archipelago, especially for key groups such as a suite of grazer-detritivore surgeonfish, and the parrotfishes which varied in density over 40-fold between sites. Differences in fish assemblages were significantly associated with variable levels of both live and recently dead coral cover and rugosity. We suggest these results reflect differing coral recovery trajectories following coral bleaching events and a strong influence of 'bottom-up' control mechanisms on fish assemblages. Species level analyses revealed that Scarus niger, Acanthurus nigrofuscus and Chlorurus strongylocephalos were key species driving differences in fish assemblage structure. Clarifying the trophic roles of herbivorous and detritivorous reef fishes will require species-level studies, which also examine feeding behaviour, to fully understand their contribution in maintaining reef resilience to climate change and fishing impacts.

  14. Patterns in reef fish assemblages: Insights from the Chagos Archipelago

    Science.gov (United States)

    Roche, Ronan; Koldewey, Heather; Turner, John

    2018-01-01

    Understanding the drivers of variability in the composition of fish assemblages across the Indo-Pacific region is crucial to support coral reef ecosystem resilience. Whilst numerous relationships and feedback mechanisms between the functional roles of coral reef fishes and reef benthic composition have been investigated, certain key groups, such as the herbivores, are widely suggested to maintain reefs in a coral-dominated state. Examining links between fishes and reef benthos is complicated by the interactions between natural processes, disturbance events and anthropogenic impacts, particularly fishing pressure. This study examined fish assemblages and associated benthic variables across five atolls within the Chagos Archipelago, where fishing pressure is largely absent, to better understand these relationships. We found high variability in fish assemblages among atolls and sites across the archipelago, especially for key groups such as a suite of grazer-detritivore surgeonfish, and the parrotfishes which varied in density over 40-fold between sites. Differences in fish assemblages were significantly associated with variable levels of both live and recently dead coral cover and rugosity. We suggest these results reflect differing coral recovery trajectories following coral bleaching events and a strong influence of ‘bottom-up’ control mechanisms on fish assemblages. Species level analyses revealed that Scarus niger, Acanthurus nigrofuscus and Chlorurus strongylocephalos were key species driving differences in fish assemblage structure. Clarifying the trophic roles of herbivorous and detritivorous reef fishes will require species-level studies, which also examine feeding behaviour, to fully understand their contribution in maintaining reef resilience to climate change and fishing impacts. PMID:29351566

  15. Challenges for Managing Fisheries on Diverse Coral Reefs

    Directory of Open Access Journals (Sweden)

    Douglas Fenner

    2012-03-01

    Full Text Available Widespread coral reef decline has included the decline of reef fish populations, and the subsistence and artisanal fisheries that depend on them. Overfishing and destructive fishing have been identified as the greatest local threats to coral reefs, but the greatest future threats are acidification and increases in mass coral bleaching caused by global warming. Some reefs have shifted from dominance by corals to macroalgae, in what are called “phase shifts”. Depletion of herbivores including fishes has been identified as a contributor to such phase shifts, though nutrients are also involved in complex interactions with herbivory and competition. The depletion of herbivorous fishes implies a reduction of the resilience of coral reefs to the looming threat of mass coral mortality from bleaching, since mass coral deaths are likely to be followed by mass macroalgal blooms on the newly exposed dead substrates. Conventional stock assessment of each fish species would be the preferred option for understanding the status of the reef fishes, but this is far too expensive to be practical because of the high diversity of the fishery and poverty where most reefs are located. In addition, stock assessment models and fisheries in general assume density dependent populations, but a key prediction that stocks recover from fishing is not always confirmed. Catch Per Unit Effort (CPUE has far too many weaknesses to be a useful method. The ratio of catch to stock and the proportion of catch that is mature depend on fish catch data, and are heavily biased toward stocks that are in good condition and incapable of finding species that are in the worst condition. Near-pristine reefs give us a reality check about just how much we have lost. Common fisheries management tools that control effort or catch are often prohibitively difficult to enforce for most coral reefs except in developed countries. Ecosystem-based management requires management of impacts of fishing

  16. Coral reef carbonate budgets and ecological drivers in the naturally high temperature and high alkalinity environment of the Red Sea

    KAUST Repository

    Roik, Anna Krystyna; Rö thig, Till; Pogoreutz, Claudia; Voolstra, Christian R.

    2017-01-01

    The coral structural framework is crucial for maintaining reef ecosystem function and services. In the central Red Sea, a naturally high alkalinity is beneficial to reef growth, but rising water temperatures impair the calcification capacity of reef-building organisms. However, it is currently unknown how beneficial and detrimental factors affect the balance between calcification and erosion, and thereby the overall growth of the reef framework. To provide insight into present-day carbonate budgets and reef growth dynamics in the central Red Sea, we measured in situ net-accretion and net-erosion rates (Gnet) by deployment of limestone blocks and estimated census-based carbonate budgets (Gbudget) in four reef sites along a cross-shelf gradient (25 km). We assessed abiotic variables (i.e., temperature, inorganic nutrients, and carbonate system variables) and biotic drivers (i.e., calcifier and bioeroder abundances). On average, total alkalinity AT (2346-2431 μmol kg-1), aragonite saturation state (4.5-5.2 Ωa), and pCO2 (283-315 μatm) were close to estimates of pre-industrial global ocean surface waters. Despite these calcification-favorable carbonate system conditions, Gnet and Gbudget encompassed positive (offshore) and negative net-production (midshore-lagoon and exposed nearshore site) estimates. Notably, Gbudget maxima were lower compared to reef growth from pristine Indian Ocean sites. Yet, a comparison with historical data from the northern Red Sea suggests that overall reef growth in the Red Sea has likely remained similar since 1995. When assessing sites across the shelf gradient, AT correlated well with reef growth rates (ρ = 0.89), while temperature was a weaker, negative correlate (ρ = -0.71). Further, AT explained about 65% of Gbudget in a best fitting distance-based linear model. Interestingly, parrotfish abundances added up to 82% of explained variation, further substantiating recent studies highlighting the importance of parrotfish to reef

  17. Coral reef carbonate budgets and ecological drivers in the naturally high temperature and high alkalinity environment of the Red Sea

    KAUST Repository

    Roik, Anna Krystyna

    2017-10-17

    The coral structural framework is crucial for maintaining reef ecosystem function and services. In the central Red Sea, a naturally high alkalinity is beneficial to reef growth, but rising water temperatures impair the calcification capacity of reef-building organisms. However, it is currently unknown how beneficial and detrimental factors affect the balance between calcification and erosion, and thereby the overall growth of the reef framework. To provide insight into present-day carbonate budgets and reef growth dynamics in the central Red Sea, we measured in situ net-accretion and net-erosion rates (Gnet) by deployment of limestone blocks and estimated census-based carbonate budgets (Gbudget) in four reef sites along a cross-shelf gradient (25 km). We assessed abiotic variables (i.e., temperature, inorganic nutrients, and carbonate system variables) and biotic drivers (i.e., calcifier and bioeroder abundances). On average, total alkalinity AT (2346-2431 μmol kg-1), aragonite saturation state (4.5-5.2 Ωa), and pCO2 (283-315 μatm) were close to estimates of pre-industrial global ocean surface waters. Despite these calcification-favorable carbonate system conditions, Gnet and Gbudget encompassed positive (offshore) and negative net-production (midshore-lagoon and exposed nearshore site) estimates. Notably, Gbudget maxima were lower compared to reef growth from pristine Indian Ocean sites. Yet, a comparison with historical data from the northern Red Sea suggests that overall reef growth in the Red Sea has likely remained similar since 1995. When assessing sites across the shelf gradient, AT correlated well with reef growth rates (ρ = 0.89), while temperature was a weaker, negative correlate (ρ = -0.71). Further, AT explained about 65% of Gbudget in a best fitting distance-based linear model. Interestingly, parrotfish abundances added up to 82% of explained variation, further substantiating recent studies highlighting the importance of parrotfish to reef

  18. Gender-related differences in the apparent timing of skeletal density bands in the reef-building coral Siderastrea siderea

    Science.gov (United States)

    Carricart-Ganivet, J. P.; Vásquez-Bedoya, L. F.; Cabanillas-Terán, N.; Blanchon, P.

    2013-09-01

    Density banding in skeletons of reef-building corals is a valuable source of proxy environmental data. However, skeletal growth strategy has a significant impact on the apparent timing of density-band formation. Some corals employ a strategy where the tissue occupies previously formed skeleton during as the new band forms, which leads to differences between the actual and apparent band timing. To investigate this effect, we collected cores from female and male colonies of Siderastrea siderea and report tissue thicknesses and density-related growth parameters over a 17-yr interval. Correlating these results with monthly sea surface temperature (SST) shows that maximum skeletal density in the female coincides with low winter SSTs, whereas in the male, it coincides with high summer SSTs. Furthermore, maximum skeletal densities in the female coincide with peak Sr/Ca values, whereas in the male, they coincide with low Sr/Ca values. Both results indicate a 6-month difference in the apparent timing of density-band formation between genders. Examination of skeletal extension rates also show that the male has thicker tissue and extends faster, whereas the female has thinner tissue and a denser skeleton—but both calcify at the same rate. The correlation between extension and calcification, combined with the fact that density banding arises from thickening of the skeleton throughout the depth reached by the tissue layer, implies that S. siderea has the same growth strategy as massive Porites, investing its calcification resources into linear extension. In addition, differences in tissue thicknesses suggest that females offset the greater energy requirements of gamete production by generating less tissue, resulting in differences in the apparent timing of density-band formation. Such gender-related offsets may be common in other corals and require that environmental reconstructions be made from sexed colonies and that, in fossil corals where sex cannot be determined

  19. Coral settlement on a highly disturbed equatorial reef system.

    Science.gov (United States)

    Bauman, Andrew G; Guest, James R; Dunshea, Glenn; Low, Jeffery; Todd, Peter A; Steinberg, Peter D

    2015-01-01

    Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world's most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m(-2) yr(-1)) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March-May and September-November, coinciding with annual coral spawning periods (March-April and October), while the lowest settlement occurred from December-February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure ('others'; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of Singapore's reefs appears relatively constrained, which could lead

  20. Mesopredator trophodynamics on thermally stressed coral reefs

    Science.gov (United States)

    Hempson, Tessa N.; Graham, Nicholas A. J.; MacNeil, M. Aaron; Hoey, Andrew S.; Almany, Glenn R.

    2018-03-01

    Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The `tolerant' reef treatment consisted only of coral taxa of low susceptibility to bleaching, while `vulnerable' reefs included species of moderate to high thermal vulnerability. `Vulnerable' reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on `tolerant' reefs. Fish assemblages on `tolerant' reefs were also more strongly influenced by the introduction of a mesopredator ( Cephalopholis boenak). Mesopredators on `tolerant' reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.

  1. Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs

    Directory of Open Access Journals (Sweden)

    Rafael A. Magris

    2018-04-01

    Full Text Available Effective management of coral reefs requires strategies tailored to cope with cumulative disturbances from human activities. In Brazil, where coral reefs are a priority for conservation, intensifying threats from local and global stressors are of paramount concern to management agencies. Using a cumulative impact assessment approach, our goal was to inform management actions for coral reefs in Brazil by assessing their exposure to multiple stressors (fishing, land-based activities, coastal development, mining, aquaculture, shipping, and global warming. We calculated an index of the risk to cumulative impacts: (i assuming uniform sensitivity of coral reefs to stressors; and (ii using impact weights to reflect varying tolerance levels of coral reefs to each stressor. We also predicted the index in both the presence and absence of global warming. We found that 16% and 37% of coral reefs had high to very high risk of cumulative impacts, without and with information on sensitivity respectively, and 42% of reefs had low risk to cumulative impacts from both local and global stressors. Our outputs are the first comprehensive spatial dataset of cumulative impact on coral reefs in Brazil, and show that areas requiring attention mostly corresponded to those closer to population centres. We demonstrate how the relationships between risks from local and global stressors can be used to derive strategic management actions.

  2. Akumal ’s reefs: Stony coral communities along the developing Mexican Caribbean coastline

    Directory of Open Access Journals (Sweden)

    Roshan E Roy

    2004-12-01

    Full Text Available Fringing coral reefs along coastlines experiencing rapid development and human population growth have declined worldwide because of human activity and of natural causes.The "Mayan Riviera "in Quintana Roo,México,attracts large numbers of tourists in part because it still retains some of the natural diversity and it is important to obtain baseline information to monitor changes over time in the area.In this paper,the condition of the stony corals in the developing coastline of the Akumal-area fore reefs is characterized at the start of the new millennium at two depths,and along an inferred sedimentation gradient.Transect surveys were conducted in five fringing reefs starting at haphazardly chosen points.with respect to species composition,live cover,colony density,relative exposure to TAS mats and,for one species (Diploria strigosa ,Dana,1848,tissue regression rates in the presence of TAS mats.Fish population density and herbivory rates are also assessed.Data from line intercept transects (n=74show that live stony coral cover,density and relative peripheral exposure of colonies to turf algal/sediment (TASmats were inversely related to an inferred sediment stress gradient at 13m.In 2000, live stony coral cover had decreased by 40-50%at two sites studied in 1990 by Muñoz-Chagín and de la Cruz- Agüero (1993.About half of this loss apparently occurred between 1998 and 2000 during an outbreak of white plague disease that mostly affected Montastraea faveolata ,and M.annularis .At a 13 m site,where inferred sedimentation rates are relatively high,time series photography of tagged Diploria strigosa ,(n=38showed an average loss of 70 cm 2 of live tissue/coral/year to encroachment by TAS mats during the same period.Whereas densities of carnivorous fishes and herbivores (echinoids,scarids,acanthurids and Microspathodon chrysurus in 2000 were low in belt transects at 10-19 m (n=106,turf-algal gardening pomacentrids were relatively common on these reefs

  3. Parrotfish size: a simple yet useful alternative indicator of fishing effects on Caribbean reefs?

    Science.gov (United States)

    Vallès, Henri; Oxenford, Hazel A

    2014-01-01

    There is great need to identify simple yet reliable indicators of fishing effects within the multi-species, multi-gear, data-poor fisheries of the Caribbean. Here, we investigate links between fishing pressure and three simple fish metrics, i.e. average fish weight (an estimate of average individual fish size), fish density and fish biomass, derived from (1) the parrotfish family, a ubiquitous herbivore family across the Caribbean, and (2) three fish groups of "commercial" carnivores including snappers and groupers, which are widely-used as indicators of fishing effects. We hypothesize that, because most Caribbean reefs are being heavily fished, fish metrics derived from the less vulnerable parrotfish group would exhibit stronger relationships with fishing pressure on today's Caribbean reefs than those derived from the highly vulnerable commercial fish groups. We used data from 348 Atlantic and Gulf Rapid Reef Assessment (AGRRA) reef-surveys across the Caribbean to assess relationships between two independent indices of fishing pressure (one derived from human population density data, the other from open to fishing versus protected status) and the three fish metrics derived from the four aforementioned fish groups. We found that, although two fish metrics, average parrotfish weight and combined biomass of selected commercial species, were consistently negatively linked to the indices of fishing pressure across the Caribbean, the parrotfish metric consistently outranked the latter in the strength of the relationship, thus supporting our hypothesis. Overall, our study highlights that (assemblage-level) average parrotfish size might be a useful alternative indicator of fishing effects over the typical conditions of most Caribbean shallow reefs: moderate-to-heavy levels of fishing and low abundance of highly valued commercial species.

  4. Prickly business: abundance of sea urchins on breakwaters and coral reefs in Dubai.

    Science.gov (United States)

    Bauman, Andrew G; Dunshea, Glenn; Feary, David A; Hoey, Andrew S

    2016-04-30

    Echinometra mathaei is a common echinoid on tropical reefs and where abundant plays an important role in the control of algal communities. Despite high prevalence of E. mathaei on southern Persian/Arabian Gulf reefs, their abundance and distribution is poorly known. Spatial and temporal patterns in population abundance were examined at 12 sites between breakwater and natural reef habitats in Dubai (UAE) every 3 months from 2008 to 2010. Within the breakwater habitat, densities were greatest at shallow wave-exposed sites, and reduced with both decreasing wave-exposure and increasing depth. Interestingly, E. mathaei were significantly more abundant on exposed breakwaters than natural reef sites, presumably due to differences in habitat structure and benthic cover. Population abundances differed seasonally, with peak abundances during summer (July-September) and lower abundances in winter (December-February). Seasonal fluctuations are likely the result of peak annual recruitment pulses coupled with increased fish predation from summer to winter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Origin of ophiolite complexes related to intra-oceanic subduction initiation: implications of IODP Expedition 352 (Izu-Bonin fore arc)

    Science.gov (United States)

    Robertson, Alastair; Avery, Aaron; Carvallo, Claire; Christeson, Gail; Ferré, Eric; Kurz, Walter; Kutterolf, Steffen; Morgan, Sally; Pearce, Julian; Reagan, Mark; Sager, William; Shervais, John; Whattam, Scott; International Ocean Discovery Program Expedition 352 (Izu-Bonin-Mariana Fore Arc), the Scientific Party of

    2015-04-01

    Ophiolites, representing oceanic crust exposed on land (by whatever means), are central to the interpretation of many orogenic belts (e.g. E Mediterranean). Based mostly on geochemical evidence, ophiolites are widely interpreted, in many but by no means all cases, as having formed within intra-oceanic settings above subduction zones (e.g. Troodos ophiolite, Cyprus). Following land geological, dredging and submersible studies, fore arcs of the SW Pacific region became recognised as likely settings of supra-subduction zone ophiolite genesis. This hypothesis was tested by recent drilling of the Izu-Bonin fore arc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that three of the sites are located in fault-controlled sediment ponds that formed in response to dominantly down-to the-west extensional faulting (with hints of preceding top-to-the-east compressional thrusting). The sediments overlying the igneous basement, of maximum Late Eocene to Recent age, document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds. At the two more trenchward sites (U1440 and U1441), mostly tholeiitic basalts were drilled, including massive and pillowed lavas and hyaloclastite. Geochemically, these extrusives are of near mid-oceanic ridge basalt composition (fore arc basalts). Subtle chemical deviation from normal MORB can be explained by weakly fluid-influenced melting during decompression melting in the earliest stages of supra-subduction zone spreading (not as 'trapped' older MORB). The remaining two sites, c. 6 km to the west (U1439 and U1442), penetrated dominantly high-magnesian andesites, known as boninites, largely as fragmental material. Their formation implies the extraction of highly depleted magmas from previously depleted, refractory upper mantle in a supra-subduction zone setting. Following supra-subduction zone spreading, the active

  6. Native predators do not influence invasion success of pacific lionfish on Caribbean reefs.

    Directory of Open Access Journals (Sweden)

    Serena Hackerott

    Full Text Available Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles, piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs.

  7. Social interactions among grazing reef fish drive material flux in a coral reef ecosystem.

    Science.gov (United States)

    Gil, Michael A; Hein, Andrew M

    2017-05-02

    In human financial and social systems, exchanges of information among individuals cause speculative bubbles, behavioral cascades, and other correlated actions that profoundly influence system-level function. Exchanges of information are also widespread in ecological systems, but their effects on ecosystem-level processes are largely unknown. Herbivory is a critical ecological process in coral reefs, where diverse assemblages of fish maintain reef health by controlling the abundance of algae. Here, we show that social interactions have a major effect on fish grazing rates in a reef ecosystem. We combined a system for observing and manipulating large foraging areas in a coral reef with a class of dynamical decision-making models to reveal that reef fish use information about the density and actions of nearby fish to decide when to feed on algae and when to flee foraging areas. This "behavioral coupling" causes bursts of feeding activity that account for up to 68% of the fish community's consumption of algae. Moreover, correlations in fish behavior induce a feedback, whereby each fish spends less time feeding when fewer fish are present, suggesting that reducing fish stocks may not only reduce total algal consumption but could decrease the amount of algae each remaining fish consumes. Our results demonstrate that social interactions among consumers can have a dominant effect on the flux of energy and materials through ecosystems, and our methodology paves the way for rigorous in situ measurements of the behavioral rules that underlie ecological rates in other natural systems.

  8. Possible recovery of Acropora palmata (Scleractinia:Acroporidae within the Veracruz Reef System, Gulf of Mexico: a survey of 24 reefs to assess the benthic communities

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Larson

    2014-09-01

    Full Text Available Recent evidence shows that Acropora palmata within the Veracruz Reef System, located in the southwestern Gulf of Mexico, may be recovering after the die off from the flooding of the Jamapa River and a dramatic cold water event in the 1970s. Since this decline, few surveys have documented the status of A. palmata. The 28 named reefs in the system are divided into 13 northern and 15 southern groups by the River. Between 2007 and 2013, we surveyed 24 reefs to assess the benthic communities. Seven of the 11 reefs surveyed in the northern group and all in the southern group had A. palmata. Colonies were typically found on the windward side of the reefs in shallow waters along the reef edges or crest. We also recorded colony diameter and condition along belt transects at two reefs in the north (Anegada de Adentro and Verde and two in the south (Periferico and Sargazo, between 2011 and 2013. In addition, eight permanent transects were surveyed at Rizo (south. A total of 1 804 colonies were assessed; densities ranged from 0.02 to 0.28 colonies/m² (mean (±SD, colony diameter of 58 ± 73cm, and 89 ± 18% live tissue per colony. Total prevalence of predation by damselfish was 5%, by snails 2%, and <1% by fireworms, disease prevalence was <3%. Size frequency distributions indicated that all of the sites had a moderate to high spawning potential, 15-68% of the colonies at each site were mature, measuring over 1 600cm². The presence of these healthy and potentially reproductive colonies is important for species recovery, particularly because much of the greater Caribbean still shows little to no signs of recovery. Conservation and management efforts of these reefs are vital.

  9. Complexities and uncertainties in transitioning small-scale coral reef fisheries

    Directory of Open Access Journals (Sweden)

    Pierre eLeenhardt

    2016-05-01

    Full Text Available Coral reef fisheries support the development of local and national economies and are the basis of important cultural practices and worldviews. Transitioning economies, human development and environmental stress can harm this livelihood. Here we focus on a transitioning social-ecological system as case study (Moorea, French Polynesia. We review fishing practices and three decades of effort and landing estimates with the broader goal of informing management. Fishery activities in Moorea are quite challenging to quantify because of the diversity of gears used, the lack of centralized access points or markets, the high participation rates of the population in the fishery, and the overlapping cultural and economic motivations to catch fish. Compounding this challenging diversity, we lack a basic understanding of the complex interplay between the cultural, subsistence, and commercial use of Moorea's reefs. In Moorea, we found an order of magnitude gap between estimates of fishery yield produced by catch monitoring methods (~2 t km-2 year-1 and estimates produced using consumption or participatory socioeconomic consumer surveys (~24 t km-2 year-1. Several lines of evidence suggest reef resources may be overexploited and stakeholders have a diversity of opinions as to whether trends in the stocks are a cause for concern. The reefs, however, remain ecologically resilient. The relative health of the reef is striking given the socio-economic context. Moorea has a relatively high population density, a modern economic system linked into global flows of trade and travel, and the fishery has little remaining traditional or customary management. Other islands in the Pacific that continue to develop economically may have small-scale fisheries that increasingly resemble Moorea. Therefore, understanding Moorea's reef fisheries may provide insight into their future.

  10. 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore.

    Science.gov (United States)

    Guest, J R; Tun, K; Low, J; Vergés, A; Marzinelli, E M; Campbell, A H; Bauman, A G; Feary, D A; Chou, L M; Steinberg, P D

    2016-11-08

    Coral cover on reefs is declining globally due to coastal development, overfishing and climate change. Reefs isolated from direct human influence can recover from natural acute disturbances, but little is known about long term recovery of reefs experiencing chronic human disturbances. Here we investigate responses to acute bleaching disturbances on turbid reefs off Singapore, at two depths over a period of 27 years. Coral cover declined and there were marked changes in coral and benthic community structure during the first decade of monitoring at both depths. At shallower reef crest sites (3-4 m), benthic community structure recovered towards pre-disturbance states within a decade. In contrast, there was a net decline in coral cover and continuing shifts in community structure at deeper reef slope sites (6-7 m). There was no evidence of phase shifts to macroalgal dominance but coral habitats at deeper sites were replaced by unstable substrata such as fine sediments and rubble. The persistence of coral dominance at chronically disturbed shallow sites is likely due to an abundance of coral taxa which are tolerant to environmental stress. In addition, high turbidity may interact antagonistically with other disturbances to reduce the impact of thermal stress and limit macroalgal growth rates.

  11. Abundance, distribution and size structure of Diadema antillarum (Echinodermata: Diadematidae in South Eastern Cuban coral reefs

    Directory of Open Access Journals (Sweden)

    F Martín Blanco

    2010-06-01

    Full Text Available The 1983-1984 mass mortality event of Diadema antillarum affected more than 93% of the total Caribbean population. Although there are no records about the status of Diadema populations before and after die-off on Cuban reefs, anecdotal information suggests that populations were struck. We analyzed spatial variation in the abundance and size structure of D. antillarum in 22 reefs sites in Jardines de la Reina, from June 2004 to September 2005. Counts of Diadema were performed in five 30x2m transects at each sampling site and sampling time, and test diameters were measured in September 2005 at the same fore reefs. Abundances were higher at reef crests (mean densities 0.08-2.18 ind./m², while reef slope populations reached a maximum site level of 0.13 ind./m² at only one site and showed values up to three orders of magnitude lower than those from reef crests. Highest abundance occurred at the west margin of major channels between keys where larval recruitment seems to be favored by local oceanographic features and facilitated by the abundance of Echinometra lucunter. The size frequency distribution of D. antillarum indicates that recruitment began to be noticeable three years before September 2005, suggesting these populations were depleted in the past and they are recovering now. Rev. Biol. Trop. 58 (2: 663-676. Epub 2010 June 02.La mortalidad de Diadema antillarum en 1983-1984 afectó más del 93% de la población del Caribe. Aunque no existen datos publicados sobre el estado de sus poblaciones en arrecifes cubanos antes y después de la mortalidad, se conoce anecdóticamente que fueron afectadas. En el presente trabajo se analizan las variaciones espaciales de la abundancia y estructura de tallas de D. antillarum en 22 arrecifes frontales en Jardines de la Reina, para lo cual se realizaron cinco recorridos de 30x2m en cada sitio entre Junio de 2004 y Septiembre de 2005. Las densidades de Diadema fueron mayores en las crestas arrecifales (0

  12. Coral reefs and eutrophication

    International Nuclear Information System (INIS)

    Stambler, N.

    1999-01-01

    Coral reefs are found in oligotrophic waters, which are poor in nutrients such as nitrogen, phosphate, and possibly iron. In spite of this, coral reefs exhibit high gross primary productivity rates. They thrive in oligotrophic conditions because of the symbiotic relationship between corals and dinoflagellate algae (zooxanthellae) embedded in the coral tissue. In their mutualistic symbiosis, the zooxanthellae contribute their photosynthetic capability as the basis for the metabolic energy of the whole association, and eventually of a great part of the entire reef ecosystem

  13. FORECASTING A CORONAL MASS EJECTION'S ALTERED TRAJECTORY: ForeCAT

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Evans, R. M.

    2013-01-01

    To predict whether a coronal mass ejection (CME) will impact Earth, the effects of the background on the CME's trajectory must be taken into account. We develop a model, ForeCAT (Forecasting a CME's Altered Trajectory), of CME deflection due to magnetic forces. ForeCAT includes CME expansion, a three-part propagation model, and the effects of drag on the CME's deflection. Given the background solar wind conditions, the launch site of the CME, and the properties of the CME (mass, final propagation speed, initial radius, and initial magnetic strength), ForeCAT predicts the deflection of the CME. Two different magnetic backgrounds are considered: a scaled background based on type II radio burst profiles and a potential field source surface (PFSS) background. For a scaled background where the CME is launched from an active region located between a coronal hole and streamer region, the strong magnetic gradients cause a deflection of 8.°1 in latitude and 26.°4 in longitude for a 10 15 g CME propagating out to 1 AU. Using the PFSS background, which captures the variation of the streamer belt (SB) position with height, leads to a deflection of 1.°6 in latitude and 4.°1 in longitude for the control case. Varying the CME's input parameters within observed ranges leads to the majority of CMEs reaching the SB within the first few solar radii. For these specific backgrounds, the SB acts like a potential well that forces the CME into an equilibrium angular position

  14. Artificial reefs and reef restoration in the Laurentian Great Lakes

    Science.gov (United States)

    McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.

    2015-01-01

    We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.

  15. Limited contemporary gene flow and high self-replenishment drives peripheral isolation in an endemic coral reef fish.

    Science.gov (United States)

    van der Meer, Martin H; Horne, John B; Gardner, Michael G; Hobbs, Jean-Paul A; Pratchett, Morgan; van Herwerden, Lynne

    2013-06-01

    Extensive ongoing degradation of coral reef habitats worldwide has lead to declines in abundance of coral reef fishes and local extinction of some species. Those most vulnerable are ecological specialists and endemic species. Determining connectivity between locations is vital to understanding recovery and long-term persistence of these species following local extinction. This study explored population connectivity in the ecologically-specialized endemic three-striped butterflyfish (Chaetodon tricinctus) using mt and msatDNA (nuclear microsatellites) to distinguish evolutionary versus contemporary gene flow, estimate self-replenishment and measure genetic diversity among locations at the remote Australian offshore coral reefs of Middleton Reef (MR), Elizabeth Reef (ER), Lord Howe Island (LHI), and Norfolk Island (NI). Mt and msatDNA suggested genetic differentiation of the most peripheral location (NI) from the remaining three locations (MR, ER, LHI). Despite high levels of mtDNA gene flow, there is limited msatDNA gene flow with evidence of high levels of self-replenishment (≥76%) at all four locations. Taken together, this suggests prolonged population recovery times following population declines. The peripheral population (NI) is most vulnerable to local extinction due to its relative isolation, extreme levels of self-replenishment (95%), and low contemporary abundance.

  16. Digital reef rugosity estimates coral reef habitat complexity.

    Science.gov (United States)

    Dustan, Phillip; Doherty, Orla; Pardede, Shinta

    2013-01-01

    Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity.

  17. Monitoring coral reefs, seagrasses and mangroves in Costa Rica (CARICOMP

    Directory of Open Access Journals (Sweden)

    Jorge Cortés

    2010-10-01

    Full Text Available The coral reefs, seagrasses and mangroves from the Costa Rican Caribbean coast have been monitored since 1999 using the CARICOMP protocol. Live coral cover at Meager Shoal reef bank (7 to 10m depth at the Parque Nacional Cahuita (National Park, increased from 13.3% in 1999, to 28.2% in 2003, but decreased during the next 5 years to around 17.5%. Algal cover increased significantly since 2003 from 36.6% to 61.3% in 2008. The density of Diadema antillarum oscillated between 2 and 7ind/m2, while Echinometra viridis decreased significantly from 20 to 0.6ind/m2. Compared to other CARICOMP sites, live coral cover, fish diversity and density, and sea urchin density were low, and algal cover was intermediate. The seagrass site, also in the Parque Nacional Cahuita, is dominated by Thalassia testudinum and showed an intermediate productivity (2.7±1.15 g/m2/d and biomass (822.8±391.84 g/m2 compared to other CARICOMP sites. Coral reefs and seagrasses at the Parque Nacional Cahuita continue to be impacted by high sediment loads from terrestrial origin. The mangrove forest at Gandoca, within the Refugio Nacional de Vida Silvestre Gandoca-Manzanillo (National Wildlife Refuge, surrounds a lagoon and it is dominated by the red mangrove, Rhizophora mangle. Productivity and flower production peak was in July. Biomass (14kg/m2 and density (9.0±0.58 trees/100m2 in Gandoca were relatively low compared to other CARICOMP sites, while productivity in July in Costa Rica (4g/m2/d was intermediate, similar to most CARICOMP sites. This mangrove is expanding and has low human impact thus far. Management actions should be taken to protect and preserve these important coastal ecosystems. Rev. Biol. Trop. 58 (Suppl. 3: 1-22. Epub 2010 October 01.

  18. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize.

    Directory of Open Access Journals (Sweden)

    Justin H Baumann

    Full Text Available Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS. A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST to classify reefs as exposed to low (lowTP, moderate (modTP, or high (highTP temperature parameters over 10 years (2003 to 2012. Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a were obtained for 13-years (2003-2015 as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals

  19. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries.

    Directory of Open Access Journals (Sweden)

    Steven B Scyphers

    Full Text Available Shorelines at the interface of marine, estuarine and terrestrial biomes are among the most degraded and threatened habitats in the coastal zone because of their sensitivity to sea level rise, storms and increased human utilization. Previous efforts to protect shorelines have largely involved constructing bulkheads and seawalls which can detrimentally affect nearshore habitats. Recently, efforts have shifted towards "living shoreline" approaches that include biogenic breakwater reefs. Our study experimentally tested the efficacy of breakwater reefs constructed of oyster shell for protecting eroding coastal shorelines and their effect on nearshore fish and shellfish communities. Along two different stretches of eroding shoreline, we created replicated pairs of subtidal breakwater reefs and established unaltered reference areas as controls. At both sites we measured shoreline and bathymetric change and quantified oyster recruitment, fish and mobile macro-invertebrate abundances. Breakwater reef treatments mitigated shoreline retreat by more than 40% at one site, but overall vegetation retreat and erosion rates were high across all treatments and at both sites. Oyster settlement and subsequent survival were observed at both sites, with mean adult densities reaching more than eighty oysters m(-2 at one site. We found the corridor between intertidal marsh and oyster reef breakwaters supported higher abundances and different communities of fishes than control plots without oyster reef habitat. Among the fishes and mobile invertebrates that appeared to be strongly enhanced were several economically-important species. Blue crabs (Callinectes sapidus were the most clearly enhanced (+297% by the presence of breakwater reefs, while red drum (Sciaenops ocellatus (+108%, spotted seatrout (Cynoscion nebulosus (+88% and flounder (Paralichthys sp. (+79% also benefited. Although the vertical relief of the breakwater reefs was reduced over the course of our study

  20. The abundance of herbivorous fish on an inshore Red Sea reef following a mass coral bleaching event

    KAUST Repository

    Khalil, Maha T.; Cochran, Jesse; Berumen, Michael L.

    2013-01-01

    and scarine labrids) were comparatively studied for an inshore reef that was severely impacted by a mass coral bleaching event in 2010 and an unaffected reef within the same region. Densities were found to be significantly higher on the affected reef, most

  1. Monitoring of Coral Reef Ecosystems on Maui, Hawaii during 1989-1998 (NODC Accession 9900242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In an effort to detect spatial and temporal changes in the structure of the coral reef community, coral coverage and reef fish density and diversity were documented...

  2. Unraveling the structure and composition of Varadero Reef, an improbable and imperiled coral reef in the Colombian Caribbean

    Directory of Open Access Journals (Sweden)

    Valeria Pizarro

    2017-12-01

    Full Text Available Coral reefs are commonly associated with oligotrophic, well-illuminated waters. In 2013, a healthy coral reef was discovered in one of the least expected places within the Colombian Caribbean: at the entrance of Cartagena Bay, a highly-polluted system that receives industrial and sewage waste, as well as high sediment and freshwater loads from an outlet of the Magdalena River (the longest and most populated river basin in Colombia. Here we provide the first characterization of Varadero Reef’s geomorphology and biological diversity. We also compare these characteristics with those of a nearby reference reef, Barú Reef, located in an area much less influenced by the described polluted system. Below the murky waters, we found high coral cover of 45.1% (±3.9; up to 80% in some sectors, high species diversity, including 42 species of scleractinian coral, 38 of sponge, three of lobster, and eight of sea urchin; a fish community composed of 61 species belonging to 24 families, and the typical zonation of a Caribbean fringing reef. All attributes found correspond to a reef that, according to current standards should be considered in “good condition”. Current plans to dredge part of Varadero threaten the survival of this reef. There is, therefore, an urgent need to describe the location and characteristics of Varadero as a first step towards gaining acknowledgement of its existence and garnering inherent legal and environmental protections.

  3. Responses of Cryptofaunal Species Richness and Trophic Potential to Coral Reef Habitat Degradation

    Directory of Open Access Journals (Sweden)

    Derek P. Manzello

    2012-02-01

    Full Text Available Coral reefs are declining worldwide as a result of many anthropogenic disturbances. This trend is alarming because coral reefs are hotspots of marine biodiversity and considered the ‘rainforests of the sea. As in the rainforest, much of the diversity on a coral reef is cryptic, remaining hidden among the cracks and crevices of structural taxa. Although the cryptofauna make up the majority of a reef’s metazoan biodiversity, we know little about their basic ecology or how these communities respond to reef degradation. Emerging research shows that the species richness of the motile cryptofauna is higher among dead (framework vs. live coral substrates and, surprisingly, increases within successively more eroded reef framework structures, ultimately reaching a maximum in dead coral rubble. Consequently, the paradigm that abundant live coral is the apex of reef diversity needs to be clarified. This provides guarded optimism amidst alarming reports of declines in live coral cover and the impending doom of coral reefs, as motile cryptic biodiversity should persist independent of live coral cover. Granted, the maintenance of this high species richness is contingent on the presence of reef rubble, which will eventually be lost due to physical, chemical, and biological erosion if not replenished by live coral calcification and mortality. The trophic potential of a reef, as inferred from the abundance of cryptic organisms, is highest on live coral. Among dead framework substrates, however, the density of cryptofauna reaches a peak at intermediate levels of degradation. In summary, the response of the motile cryptofauna, and thus a large fraction of the reef’s biodiversity, to reef degradation is more complex and nuanced than currently thought; such that species richness may be less sensitive than overall trophic function.

  4. In situ coral reef oxygen metabolism: an eddy correlation study.

    Directory of Open Access Journals (Sweden)

    Matthew H Long

    Full Text Available Quantitative studies of coral reefs are challenged by the three-dimensional hard structure of reefs and the high spatial variability and temporal dynamics of their metabolism. We used the non-invasive eddy correlation technique to examine respiration and photosynthesis rates, through O2 fluxes, from reef crests and reef slopes in the Florida Keys, USA. We assessed how the photosynthesis and respiration of different reef habitats is controlled by light and hydrodynamics. Numerous fluxes (over a 0.25 h period were as high as 4500 mmol O2 m(-2 d(-1, which can only be explained by efficient light utilization by the phototrophic community and the complex canopy structure of the reef, having a many-fold larger surface area than its horizontal projection. Over diel cycles, the reef crest was net autotrophic, whereas on the reef slope oxygen production and respiration were balanced. The autotrophic nature of the shallow reef crests implies that the export of organics is an important source of primary production for the larger area. Net oxygen production on the reef crest was proportional to the light intensity, up to 1750 µmol photons m(-2 s(-1 and decreased thereafter as respiration was stimulated by high current velocities coincident with peak light levels. Nighttime respiration rates were also stimulated by the current velocity, through enhanced ventilation of the porous framework of the reef. Respiration rates were the highest directly after sunset, and then decreased during the night suggesting that highly labile photosynthates produced during the day fueled early-night respiration. The reef framework was also important to the acquisition of nutrients as the ambient nitrogen stock in the water had sufficient capacity to support these high production rates across the entire reef width. These direct measurements of complex reefs systems yielded high metabolic rates and dynamics that can only be determined through in situ, high temporal resolution

  5. Benthic foraminifera baseline assemblages from a coastal nearshore reef complex on the central Great Barrier Reef

    Science.gov (United States)

    Johnson, Jamie; Perry, Chris; Smithers, Scott; Morgan, Kyle

    2016-04-01

    Declining water quality due to river catchment modification since European settlement (c. 1850 A.D.) represents a major threat to the health of coral reefs on Australia's Great Barrier Reef (GBR), particularly for those located in the coastal waters of the GBR's inner-shelf. These nearshore reefs are widely perceived to be most susceptible to declining water quality owing to their close proximity to river point sources. Despite this, nearshore reefs have been relatively poorly studied with the impacts and magnitudes of environmental degradation still remaining unclear. This is largely due to ongoing debates concerning the significance of increased sediment yields against naturally high background sedimentary regimes. Benthic foraminifera are increasingly used as tools for monitoring environmental and ecological change on coral reefs. On the GBR, the majority of studies have focussed on the spatial distributions of contemporary benthic foraminiferal assemblages. While baseline assemblages from other environments (e.g. inshore reefs and mangroves) have been described, very few records exist for nearshore reefs. Here, we present preliminary results from the first palaeoecological study of foraminiferal assemblages of nearshore reefs on the central GBR. Cores were recovered from the nearshore reef complex at Paluma Shoals using percussion techniques. Recovery was 100%, capturing the entire Holocene reef sequence of the selected reef structures. Radiocarbon dating and subsequent age-depth modelling techniques were used to identify reef sequences pre-dating European settlement. Benthic foraminifera assemblages were reconstructed from the identified sequences to establish pre-European ecological baselines with the aim of providing a record of foraminiferal distribution during vertical reef accretion and against which contemporary ecological change may be assessed.

  6. Genetic assessment of connectivity in the common reef sponge, Callyspongia vaginalis (Demospongiae: Haplosclerida) reveals high population structure along the Florida reef tract

    Science.gov (United States)

    Debiasse, M. B.; Richards, V. P.; Shivji, M. S.

    2010-03-01

    The genetic population structure of the common branching vase sponge, Callyspongia vaginalis, was determined along the entire length (465 km) of the Florida reef system from Palm Beach to the Dry Tortugas based on sequences of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene. Populations of C. vaginalis were highly structured (overall ΦST = 0.33), in some cases over distances as small as tens of kilometers. However, nonsignificant pairwise ΦST values were also found between a few relatively distant sampling sites suggesting that some long distance larval dispersal may occur via ocean currents or transport in sponge fragments along continuous, shallow coastlines. Indeed, sufficient gene flow appears to occur along the Florida reef tract to obscure a signal of isolation by distance, but not to homogenize COI haplotype frequencies. The strong genetic differentiation among most of the sampling locations suggests that recruitment in this species is largely local source-driven, pointing to the importance of further elucidating general connectivity patterns along the Florida reef tract to guide the spatial scale of management efforts.

  7. Structurally complex habitats provided by Acropora palmata influence ecosystem processes on a reef in the Florida Keys National Marine Sanctuary

    Science.gov (United States)

    Lemoine, N. P.; Valentine, J. F.

    2012-09-01

    The disappearance of Acropora palmata from reefs in the Florida Keys National Marine Sanctuary (FKNMS) represents a significant loss in the amount of structurally complex habitat available for reef-associated species. The consequences of such a widespread loss of complex structure on ecosystem processes are still unclear. We sought to determine whether the disappearance of complex structure has adversely affected grazing and invertebrate predation rates on a shallow reef in the FKNMS. Surprisingly, we found grazing rates and invertebrate predation rates were lower in the structurally complex A. palmata branches than on the topographically simple degraded reefs. We attribute these results to high densities of aggressively territorial damselfish, Stegastes planifrons, living within A. palmata. Our study suggests the presence of agonistic damselfish can cause the realized spatial patterns of ecosystem processes to deviate from the expected patterns. Reef ecologists must therefore carefully consider the assemblage of associate fish communities when assessing how the mortality of A. palmata has affected coral reef ecosystem processes.

  8. Biology and ecology of the vulnerable holothuroid, Stichopus herrmanni, on a high-latitude coral reef on the Great Barrier Reef

    Science.gov (United States)

    Wolfe, Kennedy; Byrne, Maria

    2017-12-01

    Tropical aspidochirotid holothuroids are among the largest coral reef invertebrates, but gaps remain in our understanding of their ecological roles in lagoon sediment habitats, a vast component of coral-reef ecosystems. Stichopus herrmanni, listed as vulnerable (IUCN), is currently a major fishery species on the Great Barrier Reef (GBR) and throughout the Indo-Pacific. It is critical to characterise how this species interacts with its environment to understand how its removal may impact ecosystem functionality. We investigated seasonal variation in movement, bioturbation, feeding and gonad development of S. herrmanni over 3 yr at One Tree Reef, which has been a no-take area for decades. We determined the direct influence of the deposit-feeding activity of S. herrmanni on sediment turnover and granulometry, and on the abundance of infauna and benthic productivity in a comprehensive in situ analysis of tropical holothuroid feeding ecology. This species is highly mobile with identifiable individuals exhibiting site fidelity over 3 yr. With the potential to turn over an estimated 64-250 kg individual-1 yr-1, S. herrmanni is a major bioturbator. Stichopus herrmanni is a generalist feeder and influences trophic interactions by altering the abundance of infauna and microalgae. Stichopus herrmanni exhibited decreased feeding activity and gonad development in winter, the first documentation of a seasonal disparity in the bioturbation activity of a tropical holothuroid. Sediment digestion and dissolution by S. herrmanni has the potential to influence seawater chemistry, a particularly important feature in a changing ocean. Our results provide essential baseline data on the functional roles of this ecologically important species to inform development of ecosystem-based bêche-de-mer fisheries management on the GBR.

  9. High natural gene expression variation in the reef-building coral Acropora millepora: potential for acclimative and adaptive plasticity.

    Science.gov (United States)

    Granados-Cifuentes, Camila; Bellantuono, Anthony J; Ridgway, Tyrone; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2013-04-08

    Ecosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act. We acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown.

  10. Coral Reefs and People in a High-CO2 World: Where Can Science Make a Difference to People?

    Science.gov (United States)

    Langdon, Chris; Ekstrom, Julia A.; Cooley, Sarah R.; Suatoni, Lisa; Beck, Michael W.; Brander, Luke M.; Burke, Lauretta; Cinner, Josh E.; Doherty, Carolyn; Edwards, Peter E. T.; Gledhill, Dwight; Jiang, Li-Qing; van Hooidonk, Ruben J.; Teh, Louise; Waldbusser, George G.; Ritter, Jessica

    2016-01-01

    Reefs and People at Risk Increasing levels of carbon dioxide in the atmosphere put shallow, warm-water coral reef ecosystems, and the people who depend upon them at risk from two key global environmental stresses: 1) elevated sea surface temperature (that can cause coral bleaching and related mortality), and 2) ocean acidification. These global stressors: cannot be avoided by local management, compound local stressors, and hasten the loss of ecosystem services. Impacts to people will be most grave where a) human dependence on coral reef ecosystems is high, b) sea surface temperature reaches critical levels soonest, and c) ocean acidification levels are most severe. Where these elements align, swift action will be needed to protect people’s lives and livelihoods, but such action must be informed by data and science. An Indicator Approach Designing policies to offset potential harm to coral reef ecosystems and people requires a better understanding of where CO2-related global environmental stresses could cause the most severe impacts. Mapping indicators has been proposed as a way of combining natural and social science data to identify policy actions even when the needed science is relatively nascent. To identify where people are at risk and where more science is needed, we map indicators of biological, physical and social science factors to understand how human dependence on coral reef ecosystems will be affected by globally-driven threats to corals expected in a high-CO2 world. Western Mexico, Micronesia, Indonesia and parts of Australia have high human dependence and will likely face severe combined threats. As a region, Southeast Asia is particularly at risk. Many of the countries most dependent upon coral reef ecosystems are places for which we have the least robust data on ocean acidification. These areas require new data and interdisciplinary scientific research to help coral reef-dependent human communities better prepare for a high CO2 world. PMID:27828972

  11. Petrology and Geochemistry of Serpentinized Peridotites from a Bonin Fore-arc Seamount

    Science.gov (United States)

    Tian, L.; Tuoyu, W.; Dong, Y. H.; Gao, J.; Wu, S.

    2016-12-01

    Serpentinites, which contain up to 13 wt.% of water, are an important reservoir for chemical recycling in subduction zones. During the last two decades, many observations documented the occurrence of fore-arc mantle serpentinites in different locations. Here, we present petrology and whole rock chemistry for serpentinized peridotites dredged from the Hahajima Seamount, which is located 20-60 km west of the junction of the Bonin Trench and the Mariana Trench. Combined with published geochemical data of serpentinites from the Torishima Seamount, Conical Seamount and South Chamorro Seamount in the Izu-Bonin-Mariana fore-arc region, it will allow us to better understand the average composition of serpentinized fore-arc mantle overlying the subducting slab and the role of serpentinized mantle playing in the subduction zone geochemical cycle. The studied ultramafic rocks from the Hahajima Seamount are extensively serpentinized and hydrated (73 to 83%), with loss of ignition values ranging between 13 and 15 wt.%. Our results show that the serpentinized peridotites have Mg number from 88 to 90, and the average MgO/SiO2 is 0.93. The average Al2O3 (0.48 wt.%) and CaO (0.23 wt.%) contents are very low, consistent with low clinopyroxene abundances, and the overall depleted character of the mantle harzburgite protoliths. The serpentinized peridotites from the Hahajima Seamount exhibit similar "U" shape rare earth element (REE) patterns ([La/Sm]N = 3.1-3.6), at higher overall abundances, to the Conical and South Chamorro Seamount suites. One exceptional sample shows the similar REE pattern as serpentinized peridotites from the Torishima Seamount, with depleted light REE concentration ([La/Sm]N =0.7). All the serpentinized peridotites from these four fore-arc seamounts show strong enrichment in fluid-mobile and lithophile elements (U, Pb, Sr and Li). The geochemical signature of the serpentinized peridotites from the seamounts in the Izu-Bonin-Mariana fore-arc region could be

  12. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes

    Science.gov (United States)

    Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M.; Banks, Stuart; Bauman, Andrew G.; Beger, Maria; Bessudo, Sandra; Booth, David J.; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E.; Cortés, Jorge; Cruz-Motta, Juan J.; Cupul Magaña, Amilcar; DeMartini, Edward E.; Edgar, Graham J.; Feary, David A.; Ferse, Sebastian C. A.; Friedlander, Alan M.; Gaston, Kevin J.; Gough, Charlotte; Graham, Nicholas A. J.; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V. C.; Pratchett, Morgan S.; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A.; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P.; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K.; Zapata, Fernando A.

    2011-01-01

    Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. PMID:21483714

  13. Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots.

    Science.gov (United States)

    Cowman, P F; Bellwood, D R

    2011-12-01

    Diversification rates within four conspicuous coral reef fish families (Labridae, Chaetodontidae, Pomacentridae and Apogonidae) were estimated using Bayesian inference. Lineage through time plots revealed a possible late Eocene/early Oligocene cryptic extinction event coinciding with the collapse of the ancestral Tethyan/Arabian hotspot. Rates of diversification analysis revealed elevated cladogenesis in all families in the Oligocene/Miocene. Throughout the Miocene, lineages with a high percentage of coral reef-associated taxa display significantly higher net diversification rates than expected. The development of a complex mosaic of reef habitats in the Indo-Australian Archipelago (IAA) during the Oligocene/Miocene appears to have been a significant driver of cladogenesis. Patterns of diversification suggest that coral reefs acted as a refuge from high extinction, as reef taxa are able to sustain diversification at high extinction rates. The IAA appears to support both cladogenesis and survival in associated lineages, laying the foundation for the recent IAA marine biodiversity hotspot. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  14. Large-scale coral reef restoration could assist natural recovery in Seychelles, Indian Ocean

    Directory of Open Access Journals (Sweden)

    Phanor Hernando Montoya Maya

    2016-11-01

    Full Text Available The aim of ecological restoration is to establish self-sustaining and resilient systems. In coral reef restoration, transplantation of nursery-grown corals is seen as a potential method to mitigate reef degradation and enhance recovery. The transplanted reef should be capable of recruiting new juvenile corals to ensure long-term resilience. Here, we quantified how coral transplantation influenced natural coral recruitment at a large-scale coral reef restoration site in Seychelles, Indian Ocean. Between November 2011 and June 2014 a total of 24,431 nursery-grown coral colonies from 10 different coral species were transplanted in 5,225 m2 (0.52 ha of degraded reef at the no-take marine reserve of Cousin Island Special Reserve in an attempt to assist in natural reef recovery. We present the results of research and monitoring conducted before and after coral transplantation to evaluate the positive effect that the project had on coral recruitment and reef recovery at the restored site. We quantified the density of coral recruits (spat <1 cm and juveniles (colonies 1-5 cm at the transplanted site, a degraded control site and a healthy control site at the marine reserve. We used ceramic tiles to estimate coral settlement and visual surveys with 1 m2 quadrats to estimate coral recruitment. Six months after tile deployment, total spat density at the transplanted site (123.4 ± 13.3 spat m-2 was 1.8 times higher than at healthy site (68.4 ± 7.8 spat m-2 and 1.6 times higher than at degraded site (78.2 ± 7.17 spat m-2. Two years after first transplantation, the total recruit density was highest at healthy site (4.8 ± 0.4 recruits m-2, intermediate at transplanted site (2.7 ± 0.4 recruits m-2, and lowest at degraded site (1.7 ± 0.3 recruits m-2. The results suggest that large-scale coral restoration may have a positive influence on coral recruitment and juveniles. The effect of key project techniques on the results are discussed. This study supports

  15. Fluid contact monitoring in some western Canadian reefs

    International Nuclear Information System (INIS)

    Pickel, J.S.; Heslop, A.

    1978-01-01

    Thirty years have passed since oil was first discovered in reefal reservoirs in the Western Canadian Sedimentary Basin. The early giants such as Redwater, Leduc, and the large Swan Hill pools have been followed in subsequent years by the development of reef pools of declining size, culminating with the discovery of the Keg River reefs of the Rainbow Zama area some 10 years ago. Unfortunately the majority of reef pools are reaching a mature stage in their productive cycle. With this maturity comes an increasing need for the log analyst to diversify his role from merely recognizing hydrocarbons during the discovery process, to the analysis of remaining hydrocarbon distribution within the depleting reservoir. The monitoring of fluid movement has become an integral part of reservoir description. Geologist, log analyst, reservoir and production engineer must work as a coordinated team to explain the often anomalous fluid distributions that occur in the well bore. Oil recovery from the Devonian Leduc age reef at Golden Spike, Alberta has been, until recently, by displacement with a miscible solvent bank. The monitoring of gas--fluid interfaces has been accomplished by the use of pulsed neutron logs in cased holes and the combination of SNP-Density and SNP-Acoustic data in open hole situations. At Judy Creek premature advances of formation water and inefficient reservoir depletion resulted from a highly stratified reefal reservoir. Pulsed neutron logs, used after the recognition of the production problems, have helped define oil-water distributions in the reservoir and led to an improvement in recovery efficiency. Rainbow Devonian Keg River reefs are subjected to gas, miscible and water injection recovery schemes. A pool that has been converted from a primary gas expansion drive to water drive by injection has used the pulsed neutron log to monitor the effectiveness of this change

  16. Coral Reefs and People in a High-CO2 World: Where Can Science Make a Difference to People?

    Science.gov (United States)

    Pendleton, Linwood; Comte, Adrien; Langdon, Chris; Ekstrom, Julia A; Cooley, Sarah R; Suatoni, Lisa; Beck, Michael W; Brander, Luke M; Burke, Lauretta; Cinner, Josh E; Doherty, Carolyn; Edwards, Peter E T; Gledhill, Dwight; Jiang, Li-Qing; van Hooidonk, Ruben J; Teh, Louise; Waldbusser, George G; Ritter, Jessica

    2016-01-01

    Increasing levels of carbon dioxide in the atmosphere put shallow, warm-water coral reef ecosystems, and the people who depend upon them at risk from two key global environmental stresses: 1) elevated sea surface temperature (that can cause coral bleaching and related mortality), and 2) ocean acidification. These global stressors: cannot be avoided by local management, compound local stressors, and hasten the loss of ecosystem services. Impacts to people will be most grave where a) human dependence on coral reef ecosystems is high, b) sea surface temperature reaches critical levels soonest, and c) ocean acidification levels are most severe. Where these elements align, swift action will be needed to protect people's lives and livelihoods, but such action must be informed by data and science. Designing policies to offset potential harm to coral reef ecosystems and people requires a better understanding of where CO2-related global environmental stresses could cause the most severe impacts. Mapping indicators has been proposed as a way of combining natural and social science data to identify policy actions even when the needed science is relatively nascent. To identify where people are at risk and where more science is needed, we map indicators of biological, physical and social science factors to understand how human dependence on coral reef ecosystems will be affected by globally-driven threats to corals expected in a high-CO2 world. Western Mexico, Micronesia, Indonesia and parts of Australia have high human dependence and will likely face severe combined threats. As a region, Southeast Asia is particularly at risk. Many of the countries most dependent upon coral reef ecosystems are places for which we have the least robust data on ocean acidification. These areas require new data and interdisciplinary scientific research to help coral reef-dependent human communities better prepare for a high CO2 world.

  17. Coral Reefs and People in a High-CO2 World: Where Can Science Make a Difference to People?

    Directory of Open Access Journals (Sweden)

    Linwood Pendleton

    Full Text Available Increasing levels of carbon dioxide in the atmosphere put shallow, warm-water coral reef ecosystems, and the people who depend upon them at risk from two key global environmental stresses: 1 elevated sea surface temperature (that can cause coral bleaching and related mortality, and 2 ocean acidification. These global stressors: cannot be avoided by local management, compound local stressors, and hasten the loss of ecosystem services. Impacts to people will be most grave where a human dependence on coral reef ecosystems is high, b sea surface temperature reaches critical levels soonest, and c ocean acidification levels are most severe. Where these elements align, swift action will be needed to protect people's lives and livelihoods, but such action must be informed by data and science.Designing policies to offset potential harm to coral reef ecosystems and people requires a better understanding of where CO2-related global environmental stresses could cause the most severe impacts. Mapping indicators has been proposed as a way of combining natural and social science data to identify policy actions even when the needed science is relatively nascent. To identify where people are at risk and where more science is needed, we map indicators of biological, physical and social science factors to understand how human dependence on coral reef ecosystems will be affected by globally-driven threats to corals expected in a high-CO2 world. Western Mexico, Micronesia, Indonesia and parts of Australia have high human dependence and will likely face severe combined threats. As a region, Southeast Asia is particularly at risk. Many of the countries most dependent upon coral reef ecosystems are places for which we have the least robust data on ocean acidification. These areas require new data and interdisciplinary scientific research to help coral reef-dependent human communities better prepare for a high CO2 world.

  18. Coral colonisation of an artificial reef in a turbid nearshore environment, Dampier Harbour, western Australia.

    Directory of Open Access Journals (Sweden)

    David Blakeway

    Full Text Available A 0.6 hectare artificial reef of local rock and recycled concrete sleepers was constructed in December 2006 at Parker Point in the industrial port of Dampier, western Australia, with the aim of providing an environmental offset for a nearshore coral community lost to land reclamation. Corals successfully colonised the artificial reef, despite the relatively harsh environmental conditions at the site (annual water temperature range 18-32°C, intermittent high turbidity, frequent cyclones, frequent nearby ship movements. Coral settlement to the artificial reef was examined by terracotta tile deployments, and later stages of coral community development were examined by in-situ visual surveys within fixed 25 x 25 cm quadrats on the rock and concrete substrates. Mean coral density on the tiles varied from 113 ± 17 SE to 909 ± 85 SE per m(2 over five deployments, whereas mean coral density in the quadrats was only 6.0 ± 1.0 SE per m(2 at eight months post construction, increasing to 24.0 ± 2.1 SE per m(2 at 62 months post construction. Coral taxa colonising the artificial reef were a subset of those on the surrounding natural reef, but occurred in different proportions--Pseudosiderastrea tayami, Mycedium elephantotus and Leptastrea purpurea being disproportionately abundant on the artificial reef. Coral cover increased rapidly in the later stages of the study, reaching 2.3 ± 0.7 SE % at 62 months post construction. This study indicates that simple materials of opportunity can provide a suitable substrate for coral recruitment in Dampier Harbour, and that natural colonisation at the study site remains sufficient to initiate a coral community on artificial substrate despite ongoing natural and anthropogenic perturbations.

  19. Mapping Coral Reef Resilience Indicators Using Field and Remotely Sensed Data

    Directory of Open Access Journals (Sweden)

    Stuart Phinn

    2013-03-01

    Full Text Available In the face of increasing climate-related impacts on coral reefs, the integration of ecosystem resilience into marine conservation planning has become a priority. One strategy, including resilient areas in marine protected area (MPA networks, relies on information on the spatial distribution of resilience. We assess the ability to model and map six indicators of coral reef resilience—stress-tolerant coral taxa, coral generic diversity, fish herbivore biomass, fish herbivore functional group richness, density of juvenile corals and the cover of live coral and crustose coralline algae. We use high spatial resolution satellite data to derive environmental predictors and use these in random forest models, with field observations, to predict resilience indicator values at unsampled locations. Predictions are compared with those obtained from universal kriging and from a baseline model. Prediction errors are estimated using cross-validation, and the ability to map each resilience indicator is quantified as the percentage reduction in prediction error compared to the baseline model. Results are most promising (percentage reduction = 18.3% for mapping the cover of live coral and crustose coralline algae and least promising (percentage reduction = 0% for coral diversity. Our study has demonstrated one approach to map indicators of coral reef resilience. In the context of MPA network planning, the potential to consider reef resilience in addition to habitat and feature representation in decision-support software now exists, allowing planners to integrate aspects of reef resilience in MPA network development.

  20. Warm-water coral reefs and climate change.

    Science.gov (United States)

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak. Copyright © 2015, American Association for the Advancement of Science.

  1. Reef Sharks Exhibit Site-Fidelity and Higher Relative Abundance in Marine Reserves on the Mesoamerican Barrier Reef

    Science.gov (United States)

    Bond, Mark E.; Babcock, Elizabeth A.; Pikitch, Ellen K.; Abercrombie, Debra L.; Lamb, Norlan F.; Chapman, Demian D.

    2012-01-01

    Carcharhinid sharks can make up a large fraction of the top predators inhabiting tropical marine ecosystems and have declined in many regions due to intense fishing pressure. There is some support for the hypothesis that carcharhinid species that complete their life-cycle within coral reef ecosystems, hereafter referred to as “reef sharks”, are more abundant inside no-take marine reserves due to a reduction in fishing pressure (i.e., they benefit from marine reserves). Key predictions of this hypothesis are that (a) individual reef sharks exhibit high site-fidelity to these protected areas and (b) their relative abundance will generally be higher in these areas compared to fished reefs. To test this hypothesis for the first time in Caribbean coral reef ecosystems we combined acoustic monitoring and baited remote underwater video (BRUV) surveys to measure reef shark site-fidelity and relative abundance, respectively. We focused on the Caribbean reef shark (Carcharhinus perezi), the most common reef shark in the Western Atlantic, at Glover's Reef Marine Reserve (GRMR), Belize. Acoustically tagged sharks (N = 34) were detected throughout the year at this location and exhibited strong site-fidelity. Shark presence or absence on 200 BRUVs deployed at GRMR and three other sites (another reserve site and two fished reefs) showed that the factor “marine reserve” had a significant positive effect on reef shark presence. We rejected environmental factors or site-environment interactions as predominant drivers of this pattern. These results are consistent with the hypothesis that marine reserves can benefit reef shark populations and we suggest new hypotheses to determine the underlying mechanism(s) involved: reduced fishing mortality or enhanced prey availability. PMID:22412965

  2. Not finding Nemo: limited reef-scale retention in a coral reef fish

    KAUST Repository

    Nanninga, Gerrit B.

    2015-02-03

    The spatial scale of larval dispersal is a key predictor of marine metapopulation dynamics and an important factor in the design of reserve networks. Over the past 15 yr, studies of larval dispersal in coral reef fishes have generated accumulating evidence of consistently high levels of self-recruitment and local retention at various spatial scales. These findings have, to a certain degree, created a paradigm shift toward the perception that large fractions of locally produced recruitment may be the rule rather than the exception. Here we examined the degree of localized settlement in an anemonefish, Amphiprion bicinctus, at a solitary coral reef in the central Red Sea by integrating estimates of self-recruitment obtained from genetic parentage analysis with predictions of local retention derived from a biophysical dispersal model parameterized with real-time physical forcing. Self-recruitment at the reef scale (c. 0.7 km2) was virtually absent during two consecutive January spawning events (1.4 % in 2012 and 0 % in 2013). Predicted levels of local retention at the reef scale varied temporally, but were comparatively low for both simulations (7 % in 2012 and 0 % in 2013). At the same time, the spatial scale of simulated dispersal was restricted to approximately 20 km from the source. Model predictions of reef-scale larval retention were highly dependent on biological parameters, underlining the need for further empirical validations of larval traits over a range of species. Overall, our findings present an urgent caution when assuming the potential for self-replenishment in small marine reserves.

  3. Immigration Rates during Population Density Reduction in a Coral Reef Fish

    Science.gov (United States)

    Turgeon, Katrine; Kramer, Donald L.

    2016-01-01

    Although the importance of density-dependent dispersal has been recognized in theory, few empirical studies have examined how immigration changes over a wide range of densities. In a replicated experiment using a novel approach allowing within-site comparison, we examined changes in immigration rate following the gradual removal of territorial damselfish from a limited area within a much larger patch of continuous habitat. In all sites, immigration occurred at intermediate densities but did not occur before the start of removals and only rarely as density approached zero. In the combined data and in 5 of 7 sites, the number of immigrants was a hump-shaped function of density. This is the first experimental evidence for hump-shaped, density-dependent immigration. This pattern may be more widespread than previously recognized because studies over more limited density ranges have identified positive density dependence at low densities and negative density dependence at high densities. Positive density dependence at low density can arise from limits to the number of potential immigrants and from behavioral preferences for settling near conspecifics. Negative density dependence at high density can arise from competition for resources, especially high quality territories. The potential for non-linear effects of local density on immigration needs to be recognized for robust predictions of conservation reserve function, harvest impacts, pest control, and the dynamics of fragmented populations. PMID:27271081

  4. Deeply hidden inside introduced biogenic structures - Pacific oyster reefs reduce detrimental barnacle overgrowth on native blue mussels

    Science.gov (United States)

    Buschbaum, Christian; Cornelius, Annika; Goedknegt, M. Anouk

    2016-11-01

    In sedimentary coastal ecosystems shells of epibenthic organisms such as blue mussels (Mytilus edulis) provide the only major attachment surface for barnacle epibionts, which may cause detrimental effects on their mussel basibionts by e.g. reducing growth rate. In the European Wadden Sea, beds of native blue mussels have been invaded by Pacific oysters Crassostrea gigas, which transformed these beds into mixed reefs of oysters with mussels. In this study, we determined the spatial distribution of M. edulis and their barnacle epibionts (Semibalanus balanoides) within the reef matrix. Mean mussel density near the bottom was about twice as high compared to the mussel density near the top of an oyster reef, whereas barnacles on mussels showed a reversed pattern. Barnacle dry weight per mussel was on average 14 times higher near the top than at the bottom. This pattern was confirmed by experimentally placing clean M. edulis at the top and on the bottom of oyster reefs at two sites in the Wadden Sea (island of Texel, The Netherlands; island of Sylt, Germany). After an experimental period of five weeks (April and May 2015, the main settlement period of S. balanoides), the number of barnacles per mussel was at both sites significantly higher on mussels near the top compared to near the bottom. We conclude that the oyster reef matrix offers a refuge for M. edulis: inside reefs they are not only better protected against predators but also against detrimental barnacle overgrowth. This study shows that alien species can cause beneficial effects for native organisms and should not be generally considered as a risk for the recipient marine ecosystems.

  5. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Madeleine J.H. van Oppen

    2015-07-01

    Full Text Available Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative

  6. Coral Reef Functioning Along a Cross‐shelf Environmental Gradient: Abiotic and Biotic Drivers of Coral Reef Growth in the Red Sea

    KAUST Repository

    Roik, Anna

    2016-06-01

    Despite high temperature and salinity conditions that challenge reef growth in other oceans, the Red Sea maintains amongst the most biodiverse and productive coral reefs worldwide. It is therefore an important region for the exploration of coral reef functioning, and expected to contribute valuable insights towards the understanding of coral reefs in challenging environments. This dissertation assessed the baseline variability of in situ abiotic conditions (temperature, dissolved oxygen, pH, and total alkalinity, among others) in the central Red Sea and highlights these environmental regimes in a global context. Further, focus was directed on biotic factors (biofilm community dynamics, calcification and bioerosion), which underlie reef growth processes and are crucial for maintaining coral reef functioning and ecosystem services. Using full‐year data from an environmental cross‐shelf gradient, the dynamic interplay of abiotic and biotic factors was investigated. In situ observations demonstrate that central Red Sea coral reefs were highly variable on spatial, seasonal, and diel scales, and exhibited comparably high temperature, high salinity, and low dissolved oxygen levels, which on the one hand reflect future ocean predictions. Under these conditions epilithic bacterial and algal assemblages were mainly driven by variables (i.e., temperature, salinity, dissolved oxygen) which are predicted to change strongly in the progression of global climate change, implying an influential bottom up effect on reef‐building communities. On the other hand, measured alkalinity and other carbonate chemistry value were close to the estimates of preindustrial global ocean surface water and thus in favor of reef growth processes. Despite this beneficial carbonate chemistry, calcification and carbonate budgets in the reefs were not higher than in other coral reef regions. In this regard, seasonal calcification patterns suggest that summer temperatures may be exceeding the optima

  7. Phase-Shift Dynamics of Sea Urchin Overgrazing on Nutrified Reefs.

    Directory of Open Access Journals (Sweden)

    Nina Kriegisch

    Full Text Available Shifts from productive kelp beds to impoverished sea urchin barrens occur globally and represent a wholesale change to the ecology of sub-tidal temperate reefs. Although the theory of shifts between alternative stable states is well advanced, there are few field studies detailing the dynamics of these kinds of transitions. In this study, sea urchin herbivory (a 'top-down' driver of ecosystems was manipulated over 12 months to estimate (1 the sea urchin density at which kelp beds collapse to sea urchin barrens, and (2 the minimum sea urchin density required to maintain urchin barrens on experimental reefs in the urbanised Port Phillip Bay, Australia. In parallel, the role of one of the 'bottom-up' drivers of ecosystem structure was examined by (3 manipulating local nutrient levels and thus attempting to alter primary production on the experimental reefs. It was found that densities of 8 or more urchins m-2 (≥ 427 g m-2 biomass lead to complete overgrazing of kelp beds while kelp bed recovery occurred when densities were reduced to ≤ 4 urchins m-2 (≤ 213 g m-2 biomass. This experiment provided further insight into the dynamics of transition between urchin barrens and kelp beds by exploring possible tipping-points which in this system can be found between 4 and 8 urchins m-2 (213 and 427 g m-2 respectively. Local enhancement of nutrient loading did not change the urchin density required for overgrazing or kelp bed recovery, as algal growth was not affected by nutrient enhancement.

  8. Phase-Shift Dynamics of Sea Urchin Overgrazing on Nutrified Reefs.

    Science.gov (United States)

    Kriegisch, Nina; Reeves, Simon; Johnson, Craig R; Ling, Scott D

    2016-01-01

    Shifts from productive kelp beds to impoverished sea urchin barrens occur globally and represent a wholesale change to the ecology of sub-tidal temperate reefs. Although the theory of shifts between alternative stable states is well advanced, there are few field studies detailing the dynamics of these kinds of transitions. In this study, sea urchin herbivory (a 'top-down' driver of ecosystems) was manipulated over 12 months to estimate (1) the sea urchin density at which kelp beds collapse to sea urchin barrens, and (2) the minimum sea urchin density required to maintain urchin barrens on experimental reefs in the urbanised Port Phillip Bay, Australia. In parallel, the role of one of the 'bottom-up' drivers of ecosystem structure was examined by (3) manipulating local nutrient levels and thus attempting to alter primary production on the experimental reefs. It was found that densities of 8 or more urchins m-2 (≥ 427 g m-2 biomass) lead to complete overgrazing of kelp beds while kelp bed recovery occurred when densities were reduced to ≤ 4 urchins m-2 (≤ 213 g m-2 biomass). This experiment provided further insight into the dynamics of transition between urchin barrens and kelp beds by exploring possible tipping-points which in this system can be found between 4 and 8 urchins m-2 (213 and 427 g m-2 respectively). Local enhancement of nutrient loading did not change the urchin density required for overgrazing or kelp bed recovery, as algal growth was not affected by nutrient enhancement.

  9. The IUCN Red List of Threatened Species: an assessment of coral reef fishes in the US Pacific Islands

    Science.gov (United States)

    Zgliczynski, B. J.; Williams, I. D.; Schroeder, R. E.; Nadon, M. O.; Richards, B. L.; Sandin, S. A.

    2013-09-01

    Widespread declines among many coral reef fisheries have led scientists and managers to become increasingly concerned over the extinction risk facing some species. To aid in assessing the extinction risks facing coral reef fishes, large-scale censuses of the abundance and distribution of individual species are critically important. We use fisheries-independent data collected as part of the NOAA Pacific Reef Assessment and Monitoring Program from 2000 to 2009 to describe the range and density across the US Pacific of coral reef fishes included on The International Union for the Conservation of Nature's (IUCN) 2011 Red List of Threatened Species. Forty-five species, including sharks, rays, groupers, humphead wrasse ( Cheilinus undulatus), and bumphead parrotfish ( Bolbometopon muricatum), included on the IUCN List, were recorded in the US Pacific Islands. Most species were generally rare in the US Pacific with the exception of a few species, principally small groupers and reef sharks. The greatest diversity and densities of IUCN-listed fishes were recorded at remote and uninhabited islands of the Pacific Remote Island Areas; in general, lower densities were observed at reefs of inhabited islands. Our findings complement IUCN assessment efforts, emphasize the efficacy of large-scale assessment and monitoring efforts in providing quantitative data on reef fish assemblages, and highlight the importance of protecting populations at remote and uninhabited islands where some species included on the IUCN Red List of Threatened Species can be observed in abundance.

  10. Unprecedented evidence for high viral abundance and lytic activity in coral reef waters of the South Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Jérôme P. Payet

    2014-09-01

    Full Text Available Despite nutrient-depleted conditions, coral reef waters harbor abundant and diverse microbes; as major agents of microbial mortality, viruses are likely to influence microbial processes in these ecosystems. However, little is known about marine viruses in these rapidly changing ecosystems. Here we examined spatial and short-term temporal variability in marine viral abundance and viral lytic activity across various reef habitats surrounding Moorea Island (French Polynesia in the South Pacific. Water samples were collected along 4 regional cross-reef transects and during a time-series in Opunohu Bay. Results revealed high viral abundance (range: 5.6 x 106 – 3.6 x 107 viruses ml-1 and lytic viral production (range: 1.5 x 109 – 9.2 x 1010 viruses l-1 d-1. Flow cytometry revealed that viral assemblages were composed of three subsets that each displayed distinct spatiotemporal relationships with nutrient concentrations and autotrophic and heterotrophic microbial abundances. The results highlight dynamic shifts in viral community structure and imply that each of these three subsets is ecologically important and likely to infect distinct microbial hosts in reef waters. Based on viral-reduction approach, we estimate that lytic viruses were responsible for the removal of ca. 24% to 367% of bacterial standing stock d-1 and the release of ca. 1.1 to 62 µg of organic carbon l-1 d-1 in reef waters. Overall, this work demonstrates the highly dynamic distribution of viruses and their critical roles in controlling microbial mortality and nutrient cycling in coral reef water ecosystems.

  11. Local Biomass Baselines and the Recovery Potential for Hawaiian Coral Reef Fish Communities

    Directory of Open Access Journals (Sweden)

    Kelvin D. Gorospe

    2018-05-01

    Full Text Available Understanding the influence of multiple ecosystem drivers, both natural and anthropogenic, and how they vary across space is critical to the spatial management of coral reef fisheries. In Hawaii, as elsewhere, there is uncertainty with regards to how areas should be selected for protection, and management efforts prioritized. One strategy is to prioritize efforts based on an area's biomass baseline, or natural capacity to support reef fish populations. Another strategy is to prioritize areas based on their recovery potential, or in other words, the potential increase in fish biomass from present-day state, should management be effective at restoring assemblages to something more like their baseline state. We used data from 717 fisheries-independent reef fish monitoring surveys from 2012 to 2015 around the main Hawaiian Islands as well as site-level data on benthic habitat, oceanographic conditions, and human population density, to develop a hierarchical, linear Bayesian model that explains spatial variation in: (1 herbivorous and (2 total reef fish biomass. We found that while human population density negatively affected fish assemblages at all surveyed areas, there was considerable variation in the natural capacity of different areas to support reef fish biomass. For example, some areas were predicted to have the capacity to support ten times as much herbivorous fish biomass as other areas. Overall, the model found human population density to have negatively impacted fish biomass throughout Hawaii, however the magnitude and uncertainty of these impacts varied locally. Results provide part of the basis for marine spatial planning and/or MPA-network design within Hawaii.

  12. Hierarchical drivers of reef-fish metacommunity structure.

    Science.gov (United States)

    MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P

    2009-01-01

    Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales. The vast majority of reef studies are conducted, or at least analyzed, at a single spatial scale, ignoring the implicitly hierarchical structure of the overall system in favor of small-scale experiments or large-scale observations. Here we demonstrate how alpha (mean local number of species), beta diversity (degree of species dissimilarity among local sites), and gamma diversity (overall species richness) vary with spatial scale, and using a hierarchical, information-theoretic approach, we evaluate the relative importance of site-, reef-, and atoll-level processes driving the fish metacommunity structure among 10 atolls in French Polynesia. Process-based models, representing well-established hypotheses about drivers of reef-fish community structure, were assembled into a candidate set of 12 hierarchical linear models. Variation in fish abundance, biomass, and species richness were unevenly distributed among transect, reef, and atoll levels, establishing the relative contribution of variation at these spatial scales to the structure of the metacommunity. Reef-fish biomass, species richness, and the abundance of most functional-groups corresponded primarily with transect-level habitat diversity and atoll-lagoon size, whereas detritivore and grazer abundances were largely correlated with potential covariates of larval dispersal. Our findings show that (1) within-transect and among-atoll factors primarily drive the relationship between alpha and gamma diversity in this reef-fish metacommunity; (2) habitat is the primary correlate with reef-fish metacommunity structure at

  13. Coral reefs as buffers during the 2009 South Pacific tsunami, Upolu Island, Samoa

    Science.gov (United States)

    McAdoo, Brian G.; Ah-Leong, Joyce Samuelu; Bell, Lui; Ifopo, Pulea; Ward, Juney; Lovell, Edward; Skelton, Posa

    2011-07-01

    The coral reef bordering the coastline of Samoa affected by the 29 September 2009 tsunami provides a variety of ecosystem services — from nurseries for fisheries and inshore source of food for local communities, to aesthetics for tourists, and the width of the lagoon may have been a factor in reducing the onshore wave height. To understand the complex interactions between the onshore human population and the offshore coral, we formed an interdisciplinary survey team to document the effects the tsunami had on the nearshore coral reef, and how these changes might affect local inhabitants. The scale of reef damage varied from severe, where piles of freshly-killed coral fragments and mortality were present, to areas that exhibited little impact, despite being overrun by the tsunami. We found that many coral colonies were impacted by tsunami-entrained coral debris, which had been ripped up and deposited on the fore reef by repeated cyclones and storm waves. In other places, large surface area tabular coral sustained damage as the tsunami velocity increased as it was funneled through channels. Areas that lacked debris entrained by the waves as well as areas in the lee of islands came through relatively unscathed, with the exception of the delicate corals that lived on a sandy substrate. In the lagoon on the south coast with its steep topography, coral colonies were damaged by tsunami-generated debris from onshore entrained in the backwash. Despite the potential for severe tsunami-related damage, there were no noticeable decreases in live coral cover between successive surveys at two locations, although algal cover was higher with the increased nutrients mobilized by the tsunami. While there was an immediate decrease in fish takes in the month following the tsunami, when supporting services were likely impacted, both volume and income have rapidly increased to pre-tsunami levels. Long-term monitoring should be implemented to determine if nursery services were affected.

  14. Recent and relict topography of Boo Bee patch reef, Belize

    Science.gov (United States)

    Halley, R.B.; Shinn, E.A.; Hudson, J.H.; Lidz, B.; Taylor, D.L.

    1977-01-01

    Five core borings were taken on and around Boo Bee Patch Reef to better understand the origin of such shelf lagoon reefs. The cores reveal 4 stages of development: (1) subaerial exposure of a Pleistocene "high" having about 8 meters of relief, possibly a Pleistocene patch reef; (2) deposition of peat and impermeable terrigenous clay 3 meters thick around the high; (3) initiation of carbonate sediment production by corals and algae on the remaining 5 meters of hard Pleistocene topography and carbonate mud on the surrounding terrigenous clay; and (4) accelerated organic accumulation on the patch reef. Estimates of patch reef sedimentation rates (1.6 m/1000 years) are 3 to 4 times greater than off-reef sedimentation rates (0.4-0.5 m/1000 years). During periods of Pleistocene sedimentation on the Belize shelf, lagoon patch reefs may have grown above one another, stacking up to form reef accumulation of considerable thickness.

  15. Evaluating the attractiveness and effectiveness of artificial coral reefs as a recreational ecosystem service.

    Science.gov (United States)

    Belhassen, Yaniv; Rousseau, Meghan; Tynyakov, Jenny; Shashar, Nadav

    2017-12-01

    Artificial reefs are increasingly being used around the globe to attract recreational divers, for both environmental and commercial reasons. This paper examines artificial coral reefs as recreational ecosystem services (RES) by evaluating their attractiveness and effectiveness and by examining divers' attitudes toward them. An online survey targeted at divers in Israel (n = 263) indicated that 35% of the dives in Eilat (a resort city on the shore of the Red Sea) take place at artificial reefs. A second study monitored divers' behavior around the Tamar artificial reef, one of the most popular submerged artificial reefs in Eilat, and juxtaposed it with divers' activities around two adjacent natural reefs. Findings show that the average diver density at the artificial reef was higher than at the two nearby natural knolls and that the artificial reef effectively diverts divers from natural knolls. A third study that examined the attitudes towards natural vs. artificial reefs found that the artificial reefs are considered more appropriate for training, but that divers feel less relaxed around them. By utilizing the RES approach as a framework, the study offers a comprehensive methodology that brings together the aesthetic, behavioral, and attitudinal aspects in terms of which artificial reefs can be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Tropical Cyclones Cause CaCO3 Undersaturation of Coral Reef Seawater in a High-CO2 World

    Science.gov (United States)

    Manzello, D.; Enochs, I.; Carlton, R.; Musielewicz, S.; Gledhill, D. K.

    2013-12-01

    Ocean acidification is the global decline in seawater pH and calcium carbonate (CaCO3) saturation state (Ω) due to the uptake of anthropogenic CO2 by the world's oceans. Acidification impairs CaCO3 shell and skeleton construction by marine organisms. Coral reefs are particularly vulnerable, as they are constructed by the CaCO3 skeletons of corals and other calcifiers. We understand relatively little about how coral reefs will respond to ocean acidification in combination with other disturbances, such as tropical cyclones. Seawater carbonate chemistry data collected from two reefs in the Florida Keys before, during, and after Tropical Storm Isaac provide the most thorough data to-date on how tropical cyclones affect the seawater CO2-system of coral reefs. Tropical Storm Isaac caused both an immediate and prolonged decline in seawater pH. Aragonite saturation state was depressed by 1.0 for a full week after the storm impact. Based on current 'business-as-usual' CO2 emissions scenarios, we show that tropical cyclones with high rainfall and runoff can cause periods of undersaturation (Ω negatively impact the structural persistence of coral reefs over this century.

  17. The First Evidence of the Precambrian Basement in the Fore Range Zone of the Great Caucasus.

    Science.gov (United States)

    Latyshev, A.; Kamzolkin, V.; Vidjapin, Y.; Somin, M.; Ivanov, S.

    2017-12-01

    Within the Great Caucasus fold-thrust belt, the Fore Range zone has the most complicated structure, and the highest degree of metamorphism was found there. This zone consists of several salients with the different composition and the structural and metamorphic evolution. The largest Blyb salient includes the metamorphic basement covered by the pack of thrusts. According to the recent isotopic data the upper levels of the Blyb metamorphic complex (BMC) are supposed to be Middle-Paleozoic (Somin, 2011). We studied zircons from the granitic intrusions located in the metamorphic rocks of the BMC. The U-Pb dating (SHRIMP II, VSEGEI, Russia) of zircons from the large Balkan metadiorite massif yielded the ages of 549±7,4, 574,1±6,7, and 567,9±6,9 Ma. All studied zircons show the high Th/U ratios and likely have the magmatic origin. This data is the first confirmation of the presence of the Precambrian basement and Vendian magmatic activity in the Fore Range zone. Zircons from the Unnamed granodiorite massif from the south of the Blyb salient yielded the age of 319±3.8 Ma (the Early Carboniferous). This fact taken together with the low grade of metamorphism in this intrusion reveals the Late Paleozoic magmatic event in the Fore Range zone. We also suggest that the Precambrian basement of the BMC, including the Balkan intrusion, is covered by so-called Armovsky nappe. This is confirmed by the field data, Middle-Paleozoic U-Pb ages and the higher degree of metamorphism of the Armovsky gneisses and schists. Thus, the BMC is not uniform but includes the blocks of the different age and metamorphic grades. Finally, we measured the anisotropy of magnetic susceptibility (AMS) of the Balkan metadiorites. The axes of AMS ellipsoid fix the conditions of the north-east compression, as well as the strain field reconstructed from the macrostructures orientation, which corresponds to the thrusts propagation. Therefore, the emplacement of the Balkan massif happened before the thrust

  18. Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef?

    Science.gov (United States)

    Muir, Paul R; Marshall, Paul A; Abdulla, Ameer; Aguirre, J David

    2017-10-11

    Mass bleaching associated with unusually high sea temperatures represents one of the greatest threats to corals and coral reef ecosystems. Deeper reef areas are hypothesized as potential refugia, but the susceptibility of Scleractinian species over depth has not been quantified. During the most severe bleaching event on record, we found up to 83% of coral cover severely affected on Maldivian reefs at a depth of 3-5 m, but significantly reduced effects at 24-30 m. Analysis of 153 species' responses showed depth, shading and species identity had strong, significant effects on susceptibility. Overall, 73.3% of the shallow-reef assemblage had individuals at a depth of 24-30 m with reduced effects, potentially mitigating local extinction and providing a source of recruits for population recovery. Although susceptibility was phylogenetically constrained, species-level effects caused most lineages to contain some partially resistant species. Many genera showed wide variation between species, including Acropora, previously considered highly susceptible. Extinction risk estimates showed species and lineages of concern and those likely to dominate following repeated events. Our results show that deeper reef areas provide refuge for a large proportion of Scleractinian species during severe bleaching events and that the deepest occurring individuals of each population have the greatest potential to survive and drive reef recovery. © 2017 The Author(s).

  19. Fishing down the largest coral reef fish species.

    Science.gov (United States)

    Fenner, Douglas

    2014-07-15

    Studies on remote, uninhabited, near-pristine reefs have revealed surprisingly large populations of large reef fish. Locations such as the northwestern Hawaiian Islands, northern Marianas Islands, Line Islands, U.S. remote Pacific Islands, Cocos-Keeling Atoll and Chagos archipelago have much higher reef fish biomass than islands and reefs near people. Much of the high biomass of most remote reef fish communities lies in the largest species, such as sharks, bumphead parrots, giant trevally, and humphead wrasse. Some, such as sharks and giant trevally, are apex predators, but others such as bumphead parrots and humphead wrasse, are not. At many locations, decreases in large reef fish species have been attributed to fishing. Fishing is well known to remove the largest fish first, and a quantitative measure of vulnerability to fishing indicates that large reef fish species are much more vulnerable to fishing than small fish. The removal of large reef fish by fishing parallels the extinction of terrestrial megafauna by early humans. However large reef fish have great value for various ecological roles and for reef tourism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Rapid fore-arc extension and detachment-mode spreading following subduction initiation

    NARCIS (Netherlands)

    Morris, Antony; Anderson, Mark W.; Omer, Ahmed; Maffione, Marco; van Hinsbergen, Douwe J.J.

    2017-01-01

    Most ophiolites have geochemical signatures that indicate formation by suprasubduction seafloor spreading above newly initiated subduction zones, and hence they record fore-arc processes operating following subduction initiation. They are frequently underlain by a metamorphic sole formed at the top

  1. Reef sharks: recent advances in ecological understanding to inform conservation.

    Science.gov (United States)

    Osgood, G J; Baum, J K

    2015-12-01

    Sharks are increasingly being recognized as important members of coral-reef communities, but their overall conservation status remains uncertain. Nine of the 29 reef-shark species are designated as data deficient in the IUCN Red List, and three-fourths of reef sharks had unknown population trends at the time of their assessment. Fortunately, reef-shark research is on the rise. This new body of research demonstrates reef sharks' high site restriction, fidelity and residency on coral reefs, their broad trophic roles connecting reef communities and their high population genetic structure, all information that should be useful for their management and conservation. Importantly, recent studies on the abundance and population trends of the three classic carcharhinid reef sharks (grey reef shark Carcharhinus amblyrhynchos, blacktip reef shark Carcharhinus melanopterus and whitetip reef shark Triaenodon obesus) may contribute to reassessments identifying them as more vulnerable than currently realized. Because over half of the research effort has focused on only these three reef sharks and the nurse shark Ginglymostoma cirratum in only a few locales, there remain large taxonomic and geographic gaps in reef-shark knowledge. As such, a large portion of reef-shark biodiversity remains uncharacterized despite needs for targeted research identified in their red list assessments. A research agenda for the future should integrate abundance, life history, trophic ecology, genetics, habitat use and movement studies, and expand the breadth of such research to understudied species and localities, in order to better understand the conservation requirements of these species and to motivate effective conservation solutions. © 2015 The Fisheries Society of the British Isles.

  2. Small-scale habitat structure modulates the effects of no-take marine reserves for coral reef macroinvertebrates.

    Directory of Open Access Journals (Sweden)

    Pascal Dumas

    Full Text Available No-take marine reserves are one of the oldest and most versatile tools used across the Pacific for the conservation of reef resources, in particular for invertebrates traditionally targeted by local fishers. Assessing their actual efficiency is still a challenge in complex ecosystems such as coral reefs, where reserve effects are likely to be obscured by high levels of environmental variability. The goal of this study was to investigate the potential interference of small-scale habitat structure on the efficiency of reserves. The spatial distribution of widely harvested macroinvertebrates was surveyed in a large set of protected vs. unprotected stations from eleven reefs located in New Caledonia. Abundance, density and individual size data were collected along random, small-scale (20×1 m transects. Fine habitat typology was derived with a quantitative photographic method using 17 local habitat variables. Marine reserves substantially augmented the local density, size structure and biomass of the target species. Density of Trochus niloticus and Tridacna maxima doubled globally inside the reserve network; average size was greater by 10 to 20% for T. niloticus. We demonstrated that the apparent success of protection could be obscured by marked variations in population structure occurring over short distances, resulting from small-scale heterogeneity in the reef habitat. The efficiency of reserves appeared to be modulated by the availability of suitable habitats at the decimetric scale ("microhabitats" for the considered sessile/low-mobile macroinvertebrate species. Incorporating microhabitat distribution could significantly enhance the efficiency of habitat surrogacy, a valuable approach in the case of conservation targets focusing on endangered or emblematic macroinvertebrate or relatively sedentary fish species.

  3. Possibility of high CO{sub 2} fixation rate by coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    K. Yamada; Y. Suzuki; B.E. Casareto; H. Komiyama [Shinshu University, Tokida (Japan). Dept. of Fine Materials Engineering

    2003-07-01

    Previous net rates of CO{sub 2} fixation by coral reef ecosystems have been said to be nearly zero due to a balance between CO{sub 2} fixed by organic carbon production and CO{sub 2} released by both organic carbon decomposition and inorganic carbon formation. But this study, conducted in Bora Bay, Miyako Island, Japan showed net rates of about 7 gC m{sup -2} d{sup -1} inside a coral reef and on a coral reef. It was found by experiment that the photosynthetic rate of coral increased with the increase of the flow rate of seawater. The authors tried to calculate net primary production (= net rates of CO{sub 2} fixation) outside a coral reef with flow rate. A flow rate on the coral reef of the open seaside is much higher than that in a lagoon. As an example, the CO{sub 2} fixation rates at the flow rates of 6 and 30 cm/s are compared. When it is assumed that the length of the whole coral reef facing the ocean is 50,000 km and its width is 100 m, and the flow rate is 30cm/s, the CO{sub 2} fixation rate is calculated to be 6.3 x 10{sup 6} t-C/y (3.5g-C/m{sup 2}d). This value is 2.2 times higher than that at the flow rate of 6 cm/s. This fixation rate is only by the coral itself. It means that the CO{sub 2} fixation rate by coral reef ecosystems can be much higher and the magnitude for worldwide ecosystems can be in the order of 10{sup 6}-10{sup 7} t-C/y. 14 refs., 5 tabs.

  4. Deep long-period earthquakes west of the volcanic arc in Oregon: evidence of serpentine dehydration in the fore-arc mantle wedge

    Science.gov (United States)

    Vidale, John E.; Schmidt, David A.; Malone, Stephen D.; Hotovec-Ellis, Alicia J.; Moran, Seth C.; Creager, Kenneth C.; Houston, Heidi

    2014-01-01

    Here we report on deep long-period earthquakes (DLPs) newly observed in four places in western Oregon. The DLPs are noteworthy for their location within the subduction fore arc: 40–80 km west of the volcanic arc, well above the slab, and near the Moho. These “offset DLPs” occur near the top of the inferred stagnant mantle wedge, which is likely to be serpentinized and cold. The lack of fore-arc DLPs elsewhere along the arc suggests that localized heating may be dehydrating the serpentinized mantle wedge at these latitudes and causing DLPs by dehydration embrittlement. Higher heat flow in this region could be introduced by anomalously hot mantle, associated with the western migration of volcanism across the High Lava Plains of eastern Oregon, entrained in the corner flow proximal to the mantle wedge. Alternatively, fluids rising from the subducting slab through the mantle wedge may be the source of offset DLPs. As far as we know, these are among the first DLPs to be observed in the fore arc of a subduction-zone system.

  5. Fore arc tectonothermal evolution of the El Oro metamorphic province (Ecuador) during the Mesozoic

    Science.gov (United States)

    Riel, Nicolas; Martelat, Jean-Emmanuel; Guillot, Stéphane; Jaillard, Etienne; Monié, Patrick; Yuquilema, Jonatan; Duclaux, Guillaume; Mercier, Jonathan

    2014-10-01

    The El Oro metamorphic province of SW Ecuador is a composite massif made of juxtaposed terranes of both continental and oceanic affinity that has been located in a fore-arc position since Late Paleozoic times. Various geochemical, geochronological, and metamorphic studies have been undertaken on the El Oro metamorphic province, providing an understanding of the origin and age of the distinct units. However, the internal structures and geodynamic evolution of this area remain poorly understood. Our structural analysis and thermal modeling in the El Oro metamorphic province show that this fore-arc zone underwent four main geological events. (1) During Triassic times (230-225 Ma), the emplacement of the Piedras gabbroic unit at crustal-root level ( 9 kbar) triggered partial melting of the metasedimentary sequence under an E-W extensional regime at pressure-temperature conditions ranging from 4.5 to 8.5 kbar and from 650 to 900°C for the migmatitic unit. (2) At 226 Ma, the tectonic underplating of the Arenillas-Panupalí oceanic unit (9 kbar and 300°C) thermally sealed the fore-arc region. (3) Around the Jurassic-Cretaceous boundary, the shift from trench-normal to trench-parallel subduction triggered the exhumation and underplating of the high-pressure, oceanic Raspas Ophiolitic Complex (18 kbar and 600°C) beneath the El Oro Group (130-120 Ma). This was followed by the opening of a NE-SW pull-apart basin, which tilted the massif along an E-W subhorizontal axis (110 Ma). (4) In Late Cretaceous times, an N-S compressional event generated heterogeneous deformation due to the presence of the Cretaceous Celica volcanic arc, which acted as a buttress and predominantly affected the central and eastern part of the massif.

  6. Geomorphology and sediment transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef

    Science.gov (United States)

    Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.

    2014-10-01

    Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.

  7. Accretion history of mid-Holocene coral reefs from the southeast Florida continental reef tract, USA

    Science.gov (United States)

    Stathakopoulos, A.; Riegl, B. M.

    2015-03-01

    Sixteen new coral reef cores were collected to better understand the accretion history and composition of submerged relict reefs offshore of continental southeast (SE) Florida. Coral radiometric ages from three sites on the shallow inner reef indicate accretion initiated by 8,050 Cal BP and terminated by 5,640 Cal BP. The reef accreted up to 3.75 m of vertical framework with accretion rates that averaged 2.53 m kyr-1. The reef was composed of a nearly even mixture of Acropora palmata and massive corals. In many cases, cores show an upward transition from massives to A. palmata and may indicate local dominance by this species prior to reef demise. Quantitative macroscopic analyses of reef clasts for various taphonomic and diagenetic features did not correlate well with depth/environmental-related trends established in other studies. The mixed coral framestone reef lacks a classical Caribbean reef zonation and is best described as an immature reef and/or a series of fused patch reefs; a pattern that is evident in both cores and reef morphology. This is in stark contrast to the older and deeper outer reef of the SE Florida continental reef tract. Accretion of the outer reef lasted from 10,695-8,000 Cal BP and resulted in a larger and better developed structure that achieved a distinct reef zonation. The discrepancies in overall reef morphology and size as well as the causes of reef terminations remain elusive without further study, yet they likely point to different climatic/environmental conditions during their respective accretion histories.

  8. Impact of Iron Baron oil spill on subtidal reef assemblages in Tasmania

    International Nuclear Information System (INIS)

    Edgara, Graham J.; Barrett, Neville S.

    2000-01-01

    The biological impact of the grounding of the bulk carrier Iron Baron on Hebe Reef in northern Tasmania, with release of approximately 350 tonnes of Bunker C fuel oil, was assessed using quantitative underwater censuses at numerous reef sites before and after the spill. Physical abrasion of the ship's hull during ground caused the complete destruction of the subtidal reef community within a localised area of ∼170 m by ∼20 m on Hebe Reef. However, the release of fuel oil did not appear to have substantially affected populations of subtidal reef-associated organisms in the near vicinity. Analyses of changes over time outside the hull impact area of oiled sites before and after the spill, and comparisons with undisturbed reference sites, indicated no significant change in number of species on reefs or densities of the most abundant animal and plant species. Post-impact monitoring of the grounding zone in adjacent reference sites on Hebe Reef indicated that the fish assemblages associated with the hull scar recovered rapidly in terms of species composition and species richness within one year, whereas plant and invertebrate assemblages had not reached inferred pre-disturbance levels after two years. Wave disturbance appeared to be hindering re-establishment of large macroalgae over part of the abrasion zone where the reef substrata had been converted to unstable gravels. (Author)

  9. Topographical features of physiographic unit borders on reef flat in fringing reefs

    OpenAIRE

    Nakai, Tatsuo

    2007-01-01

    In coral reef ecosystem spatial structure of 10^1-10^3m scale provide very important aspect in coral reef conservation. Nakai (2007) showed that physiographic unit (PGU) could be set as well as zonation on reef flat of fringing reef. The borders of PGUs delimiting it from the open sea or an adjacent PGU are constituted by landforms such as reef crest or channels. In this article the landforms becoming the borders of PGUs were discussed and the PGU property was clarified.

  10. Spatial Patterns in the Distribution, Diversity and Abundance of Benthic Foraminifera around Moorea (Society Archipelago, French Polynesia).

    Science.gov (United States)

    Fajemila, Olugbenga T; Langer, Martin R; Lipps, Jere H

    2015-01-01

    Coral reefs are now subject to global threats and influences from numerous anthropogenic sources. Foraminifera, a group of unicellular shelled organisms, are excellent indicators of water quality and reef health. Thus we studied a set of samples taken in 1992 to provide a foraminiferal baseline for future studies of environmental change. Our study provides the first island-wide analysis of shallow benthic foraminifera from around Moorea (Society Archipelago). We analyzed the composition, species richness, patterns of distribution and abundance of unstained foraminiferal assemblages from bays, fringing reefs, nearshore and back- and fore-reef environments. A total of 380 taxa of foraminifera were recorded, a number that almost doubles previous species counts. Spatial patterns of foraminiferal assemblages are characterized by numerical abundances of individual taxa, cluster groups and gradients of species richness, as documented by cluster, Fisher α, ternary plot and Principal Component Analyses (PCA). The inner bay inlets are dominated by stress-tolerant, mostly thin-shelled taxa of Bolivina, Bolivinella, Nonionoides, Elongobula, and Ammonia preferring low-oxygen and/or nutrient-rich habitats influenced by coastal factors such as fresh-water runoff and overhanging mangroves. The larger symbiont-bearing foraminifera (Borelis, Amphistegina, Heterostegina, Peneroplis) generally live in the oligotrophic, well-lit back- and fore-reef environments. Amphisteginids and peneroplids were among the few taxa found in the bay environments, probably due to their preferences for phytal substrates and tolerance to moderate levels of eutrophication. The fringing reef environments along the outer bay are characterized by Borelis schlumbergeri, Heterostegina depressa, Textularia spp. and various miliolids which represent a hotspot of diversity within the complex reef-lagoon system of Moorea. The high foraminiferal Fisher α and species richness diversity in outer bay fringing reefs

  11. Spatial Patterns in the Distribution, Diversity and Abundance of Benthic Foraminifera around Moorea (Society Archipelago, French Polynesia.

    Directory of Open Access Journals (Sweden)

    Olugbenga T Fajemila

    Full Text Available Coral reefs are now subject to global threats and influences from numerous anthropogenic sources. Foraminifera, a group of unicellular shelled organisms, are excellent indicators of water quality and reef health. Thus we studied a set of samples taken in 1992 to provide a foraminiferal baseline for future studies of environmental change. Our study provides the first island-wide analysis of shallow benthic foraminifera from around Moorea (Society Archipelago. We analyzed the composition, species richness, patterns of distribution and abundance of unstained foraminiferal assemblages from bays, fringing reefs, nearshore and back- and fore-reef environments. A total of 380 taxa of foraminifera were recorded, a number that almost doubles previous species counts. Spatial patterns of foraminiferal assemblages are characterized by numerical abundances of individual taxa, cluster groups and gradients of species richness, as documented by cluster, Fisher α, ternary plot and Principal Component Analyses (PCA. The inner bay inlets are dominated by stress-tolerant, mostly thin-shelled taxa of Bolivina, Bolivinella, Nonionoides, Elongobula, and Ammonia preferring low-oxygen and/or nutrient-rich habitats influenced by coastal factors such as fresh-water runoff and overhanging mangroves. The larger symbiont-bearing foraminifera (Borelis, Amphistegina, Heterostegina, Peneroplis generally live in the oligotrophic, well-lit back- and fore-reef environments. Amphisteginids and peneroplids were among the few taxa found in the bay environments, probably due to their preferences for phytal substrates and tolerance to moderate levels of eutrophication. The fringing reef environments along the outer bay are characterized by Borelis schlumbergeri, Heterostegina depressa, Textularia spp. and various miliolids which represent a hotspot of diversity within the complex reef-lagoon system of Moorea. The high foraminiferal Fisher α and species richness diversity in outer bay

  12. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Moloka‘i, Hawai‘i

    Science.gov (United States)

    Jokiel, Paul L.; Rodgers, Ku'ulei S.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan

    2014-01-01

    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1(offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance.

  13. The influence of coral reef benthic condition on associated fish assemblages.

    Directory of Open Access Journals (Sweden)

    Karen M Chong-Seng

    Full Text Available Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58% and high structural complexity to high macroalgae cover (up to 95% and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.

  14. A study on the recovery of Tobago's coral reefs following the 2010 mass bleaching event.

    Science.gov (United States)

    Buglass, Salome; Donner, Simon D; Alemu I, Jahson B

    2016-03-15

    In 2010, severe coral bleaching was observed across the southeastern Caribbean, including the island of Tobago, where coral reefs are subject to sedimentation and high nutrient levels from terrestrial runoff. Here we examine changes in corals' colony size distributions over time (2010-2013), juvenile abundances and sedimentation rates for sites across Tobago following the 2010 bleaching event. The results indicated that since pre-bleaching coral cover was already low due to local factors and past disturbance, the 2010 event affected only particular susceptible species' population size structure and increased the proportion of small sized colonies. The low density of juveniles (mean of 5.4±6.3 juveniles/m(-2)) suggests that Tobago's reefs already experienced limited recruitment, especially of large broadcasting species. The juvenile distribution and the response of individual species to the bleaching event support the notion that Caribbean reefs are becoming dominated by weedy non-framework building taxa which are more resilient to disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of seawater acidification on a coral reef meiofauna community

    Science.gov (United States)

    Sarmento, V. C.; Souza, T. P.; Esteves, A. M.; Santos, P. J. P.

    2015-09-01

    Despite the increasing risk that ocean acidification will modify benthic communities, great uncertainty remains about how this impact will affect the lower trophic levels, such as members of the meiofauna. A mesocosm experiment was conducted to investigate the effects of water acidification on a phytal meiofauna community from a coral reef. Community samples collected from the coral reef subtidal zone (Recife de Fora Municipal Marine Park, Porto Seguro, Bahia, Brazil), using artificial substrate units, were exposed to a control pH (ambient seawater) and to three levels of seawater acidification (pH reductions of 0.3, 0.6, and 0.9 units below ambient) and collected after 15 and 30 d. After 30 d of exposure, major changes in the structure of the meiofauna community were observed in response to reduced pH. The major meiofauna groups showed divergent responses to acidification. Harpacticoida and Polychaeta densities did not show significant differences due to pH. Nematoda, Ostracoda, Turbellaria, and Tardigrada exhibited their highest densities in low-pH treatments (especially at the pH reduction of 0.6 units, pH 7.5), while harpacticoid nauplii were strongly negatively affected by low pH. This community-based mesocosm study supports previous suggestions that ocean acidification induces important changes in the structure of marine benthic communities. Considering the importance of meiofauna in the food web of coral reef ecosystems, the results presented here demonstrate that the trophic functioning of coral reefs is seriously threatened by ocean acidification.

  16. Substratum type and conspecific density as drivers of mussel patch formation

    KAUST Repository

    Bertolini, Camilla

    2017-01-19

    Biogenic reefs are an important component of aquatic ecosystems where they enhance biodiversity. These reefs are often established by dense aggregations of a single taxa and understanding the fundamental principles of biogenic reef formation is needed for their conservation and restoration. We tested whether substratum type and density affected the aggregation behaviour of two important biogenic-reef forming species, the horse mussel, Modiolus modiolus (Linnaeus, 1758), and the blue mussel, Mytilus edulis (Linnaeus, 1758). First, we tested for effects of substratum type on mussel movement and aggregation behaviour by manipulating substrata available to mussels in mesocosms (three treatments: no sediment added, sediment added, sediment and shells added). Both mussel species moved less in treatments with sediment and with both sediment and shells present than when no sediment or shells were added and the percentage of these mussels that aggregated (clumps of two or more individuals) was lower when shells were present compared to treatments without shells, however, fewer M. modiolus attached to shells than M. edulis. There was no effect of different substratum type on patch complexity of either mussel species. In addition, motivated by our interest in the restoration of M. modiolus, we also tested experimentally whether the aggregation behaviour of M. modiolus was density-dependent. M. modiolus moved a similar distance in three density treatments (100, 200 and 300 mussels m), however, their aggregation rate appeared to be greater when mussel density was higher, suggesting that the encounter rate of individuals is an important factor for aggregation. M. modiolus also formed aggregations with a higher fractal dimension in the high and medium density treatments compared to lower density, suggesting that at higher density this increased patch complexity could further facilitate increased recruitment with the enhanced habitat available for settlement. These findings add

  17. Evaluating the Potential for Marine and Hydrokinetic Devices to Act As Artificial Reefs or Fish Aggregating Devices

    Science.gov (United States)

    Kramer, S.; Nelson, P.

    2016-02-01

    Wave energy converters (WECs) and tidal energy converters (TECs) are only beginning to be deployed along the U.S. West Coast and in Hawai'i, and a better understanding of their ecological effects on fish, particularly on special status fish is needed to facilitate project siting, design and environmental permitting. The structures of WECs and TECs placed on to the seabed, such as anchors and foundations, may function as artificial reefs that attract reef associated fishes, while the midwater and surface structures, such as mooring lines, buoys, and wave or tidal power devices, may function as fish aggregating devices (FADs). We evaluated these potential ecological interactions by comparing them to surrogate structures, such as artificial reefs, natural reefs, kelp vegetation, floating and sunken debris, oil and gas platforms, anchored FADs deployed to enhance fishing opportunities, net cages used for mariculture, and piers and marinas. We also conducted guided discussions with scientists and resource managers to provide unpublished observations. Our findings indicate the structures of WECs and TECs placed on or near the seabed in coastal waters of the U.S. West Coast and Hawai`i likely will function as small scale artificial reefs and attract potentially high densities of reef associated fishes and the midwater and surface structures of WECs placed in the tropical waters of Hawai`i likely will function as de facto FADs.

  18. Population Structure of Montastraea cavernosa on Shallow versus Mesophotic Reefs in Bermuda

    Science.gov (United States)

    Goodbody-Gringley, Gretchen; Marchini, Chiara; Chequer, Alex D.; Goffredo, Stefano

    2015-01-01

    Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa. PMID:26544963

  19. Variation in the health and biochemical condition of the coral Acropora tenuis along two water quality gradients on the Great Barrier Reef, Australia.

    Science.gov (United States)

    Rocker, Melissa M; Francis, David S; Fabricius, Katharina E; Willis, Bette L; Bay, Line K

    2017-06-30

    This study explores how plasticity in biochemical attributes, used as indicators of health and condition, enables the coral Acropora tenuis to respond to differing water quality regimes in inshore regions of the Great Barrier Reef. Health attributes were monitored along a strong and weak water quality gradient, each with three reefs at increasing distances from a major river source. Attributes differed significantly only along the strong gradient; corals grew fastest, had the least dense skeletons, highest symbiont densities and highest lipid concentrations closest to the river mouth, where water quality was poorest. High nutrient and particulate loads were only detrimental to skeletal density, which decreased as linear extension increased, highlighting a trade-off. Our study underscores the importance of assessing multiple health attributes in coral reef monitoring. For example, autotrophic indices are poor indicators of coral health and condition, but improve when combined with attributes like lipid content and biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Impacts of Artificial Reefs on Surrounding Ecosystems

    Science.gov (United States)

    Manoukian, Sarine

    Artificial reefs are becoming a popular biological and management component in shallow water environments characterized by soft seabed, representing both important marine habitats and tools to manage coastal fisheries and resources. An artificial reef in the marine environment acts as an open system with exchange of material and energy, altering the physical and biological characteristics of the surrounding area. Reef stability will depend on the balance of scour, settlement, and burial resulting from ocean conditions over time. Because of the unstable nature of sediments, they require a detailed and systematic investigation. Acoustic systems like high-frequency multibeam sonar are efficient tools in monitoring the environmental evolution around artificial reefs, whereas water turbidity can limit visual dive and ROV inspections. A high-frequency multibeam echo sounder offers the potential of detecting fine-scale distribution of reef units, providing an unprecedented level of resolution, coverage, and spatial definition. How do artificial reefs change over time in relation to the coastal processes? How accurately does multibeam technology map different typologies of artificial modules of known size and shape? How do artificial reefs affect fish school behavior? What are the limitations of multibeam technology for investigating fish school distribution as well as spatial and temporal changes? This study addresses the above questions and presents results of a new approach for artificial reef seafloor mapping over time, based upon an integrated analysis of multibeam swath bathymetry data and geoscientific information (backscatter data analysis, SCUBA observations, physical oceanographic data, and previous findings on the geology and sedimentation processes, integrated with unpublished data) from Senigallia artificial reef, northwestern Adriatic Sea (Italy) and St. Petersburg Beach Reef, west-central Florida continental shelf. A new approach for observation of fish

  1. Baseline assessments for coral reef community structure and demographics on West Maui

    Science.gov (United States)

    Vargas-Angel, Bernardo; White, Darla; Storlazzi, Curt; Callender, Tova; Maurin, Paulo

    2017-01-01

    and “Synthesis and Discussion” sections of this report. The baseline assessments revealed that although some areas harbor prominent coral reef structures with high live coral cover and multispecies assemblages, others are characterized by sediment-impacted corals in impoverished and species-poor communities. Mean coral cover varied widely, from 49% at Wahikuli-shallow to 4.6% at Mahinahina-shallow. Similarly, coralline algal cover averaged 12.7% at Ka‘opala and Honokeana-north, but was altogether absent at the Mahinahina sites. Macroalgae was a minor component of the benthos across all study sites, representing only up to 2.3% at Mahinahina-south, while turf algae varied considerably, from 41% at Honokeana-north to 84% at the Honokahua site. Consequently, the Benthic Substrate Ratio (BSR) also varied considerably region wide, with the highest values (≥ 1), suggesting a healthier reef condition reported for the Wahikuli, Honokeana, and Honokōwai sites; and the lowest (≤ 0.5), suggesting impairment in structure and function, recorded at the Honolua and Honokahua sites. Adult colony densities were the highest at the Wahikuli (27 col/m2) but lowest at the Ka‘opala (7 col/m2 ) site. And, colony partial mortality peaked at the Ka‘opala (33%) and was the lowest at the Honokeana Bay (12%). Moreover, in-situ and derived estimates of water turbidity and sediment loading revealed that the Ka‘opala and Wahikuli stream sites ranked the highest for turbidity, whereas the Honokōwai and Ka‘opala sites ranked highest for sediment loading. Chronic and episodic terrestrial sediment stress has resulted in coral reef community demise, clearly illustrated at the Honolua, Honokahua, and Ka‘opala sites, where coral benthic cover and colony abundances ranked the lowest and levels of turf algae ranked among the highest. Left unattended, land-based pollution impacts will continue to negatively affect the coral reef communities of West Maui. And, under the current turbidity

  2. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages.

    Directory of Open Access Journals (Sweden)

    Zarinah Waheed

    Full Text Available The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39, Agariciidae (n = 30 and Euphylliidae (n = 15. The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51% and good (38%. Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.

  3. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages.

    Science.gov (United States)

    Waheed, Zarinah; van Mil, Harald G J; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.

  4. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages

    Science.gov (United States)

    Waheed, Zarinah; van Mil, Harald G. J.; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W.

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park. PMID:26719987

  5. Coral reef soundscapes may not be detectable far from the reef

    Science.gov (United States)

    Kaplan, Maxwell B.; Mooney, T. Aran

    2016-08-01

    Biological sounds produced on coral reefs may provide settlement cues to marine larvae. Sound fields are composed of pressure and particle motion, which is the back and forth movement of acoustic particles. Particle motion (i.e., not pressure) is the relevant acoustic stimulus for many, if not most, marine animals. However, there have been no field measurements of reef particle motion. To address this deficiency, both pressure and particle motion were recorded at a range of distances from one Hawaiian coral reef at dawn and mid-morning on three separate days. Sound pressure attenuated with distance from the reef at dawn. Similar trends were apparent for particle velocity but with considerable variability. In general, average sound levels were low and perhaps too faint to be used as an orientation cue except very close to the reef. However, individual transient sounds that exceeded the mean values, sometimes by up to an order of magnitude, might be detectable far from the reef, depending on the hearing abilities of the larva. If sound is not being used as a long-range cue, it might still be useful for habitat selection or other biological activities within a reef.

  6. Reef odor: a wake up call for navigation in reef fish larvae.

    Directory of Open Access Journals (Sweden)

    Claire B Paris

    Full Text Available The behavior of reef fish larvae, equipped with a complex toolbox of sensory apparatus, has become a central issue in understanding their transport in the ocean. In this study pelagic reef fish larvae were monitored using an unmanned open-ocean tracking device, the drifting in-situ chamber (DISC, deployed sequentially in oceanic waters and in reef-born odor plumes propagating offshore with the ebb flow. A total of 83 larvae of two taxonomic groups of the families Pomacentridae and Apogonidae were observed in the two water masses around One Tree Island, southern Great Barrier Reef. The study provides the first in-situ evidence that pelagic reef fish larvae discriminate reef odor and respond by changing their swimming speed and direction. It concludes that reef fish larvae smell the presence of coral reefs from several kilometers offshore and this odor is a primary component of their navigational system and activates other directional sensory cues. The two families expressed differences in their response that could be adapted to maintain a position close to the reef. In particular, damselfish larvae embedded in the odor plume detected the location of the reef crest and swam westward and parallel to shore on both sides of the island. This study underlines the critical importance of in situ Lagrangian observations to provide unique information on larval fish behavioral decisions. From an ecological perspective the central role of olfactory signals in marine population connectivity raises concerns about the effects of pollution and acidification of oceans, which can alter chemical cues and olfactory responses.

  7. Wave Dissipation on Low- to Super-Energy Coral Reefs

    Science.gov (United States)

    Harris, D. L.

    2016-02-01

    Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.

  8. SIMAC: development and implementation of a coral reef monitoring network in Colombia.

    Science.gov (United States)

    Garzón-Ferreira, Jaime; Rodríguez-Ramírez, Alberto

    2010-05-01

    Significant coral reef decline has been observed in Colombia during the last three decades. However, due to the lack of monitoring activities, most of the information about health and changes was fragmentary or inadequate. To develop an expanded nation-wide reef-monitoring program, in 1998 INVEMAR (Instituto de Investigaciones Marinas y Costeras: "Colombian Institute of Marine and Coastal Research") designed and implemented SIMAC (Sistema Nacional de Monitorco de Arrecifes Coralinos en Colombia: "National Monitoring System of Coral Reefs in Colombia") with the participation of other institutions. By the end of 2003 the SIMAC network reached more than twice its initial size, covering ten reef areas (seven in the Caribbean and three in the Pacific), 63 reef sites and 263 permanent transects. SIMAC monitoring continued without interruption until 2008 and should persist in the long-term. The SIMAC has a large database and consists basically of water quality measurements (temperature, salinity, turbidity) and a yearly estimation of benthic reef cover, coral disease prevalence, gorgonian density, abundance of important mobile invertebrates, fish diversity and abundance of important fish species. A methods manual is available in the Internet. Data and results of SIMAC have been widely circulated through a summary report published annually since 2000 for the Colombian environmental agencies and the general public, as well as numerous national and international scientific papers and presentations at meetings. SIMAC information has contributed to support regional and global reef monitoring networks and databases (i.e. CARICOMP, GCRMN, ReefBase).

  9. NOAA Coral Reef Watch Larval Connectivity, Florida Reef Tract

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate change threatens even the best-protected and most remote reefs. Reef recovery following catastrophic disturbance usually requires disturbed sites be reseeded...

  10. Fish corallivory on a pocilloporid reef and experimental coral responses to predation

    Science.gov (United States)

    Palacios, M. M.; Muñoz, C. G.; Zapata, F. A.

    2014-09-01

    This study examined the effects of the Guineafowl pufferfish ( Arothron meleagris), a major corallivore in the Eastern Pacific, on pocilloporid corals on a reef at Gorgona Island, Colombia. Pufferfish occurred at a density of 171.2 individuals ha-1 and fed at a rate of 1.8 bites min-1, which produced a standing bite density of 366.2 bites m-2. We estimate that approximately 15.6 % of the annual pocilloporid carbonate production is removed by the pufferfish population. Examination of the predation effect on individual pocilloporid colonies revealed that although nubbins exposed to corallivory had lower linear growth, they gained similar weight and became thicker than those protected from it. Additionally, colonies with simulated predation injuries (on up to 75 % of branch tips) healed successfully and maintained growth rates similar to those of uninjured colonies. Despite the high corallivore pressure exerted by pufferfish on this reef, we conclude that they have a low destructive impact on Pocillopora colonies as corals can maintain their carbonate production rate while effectively recovering from partial predation. Due to its influence on colony morphology, pufferfish predation may increase environmentally induced morphological variability in Pocillopora.

  11. Optical and mechanical design of the fore-optics of HARMONI

    Science.gov (United States)

    Sánchez-Capuchino, J.; Hernández, E.; Bueno, A.; Herreros, J. M.; Thatte, N.; Bryson, I.; Clarke, F.; Tecza, M.

    2014-07-01

    HARMONI is a visible and near-infrared (0.47μm to 2.5μm) integral field spectrometer providing the E-ELT's core spectroscopic capability. It will provide ~32000 simultaneous spectra of a rectangular field of view at four foreseen different spatial sample (spaxel) scales. The HARMONI fore-optics re-formats the native telescope plate scale to suitable values for the downstream instrument optics. This telecentric adaptation includes anamorphic magnification of the plate scale to optimize the performance of the IFU, which contains the image slicer, and their four spectrographs. In addition, it provides an image of the telescope pupil to assemble a cold stop shared among all the scales allowing efficient suppression of the thermal background. A pupil imaging unit also re-images the pupil cold stop onto the image slicer to check the relative alignment between the E-ELT and HARMONI pupils. The scale changer will also host the filter wheel with the long-pass filters to select the wavelength range. The main reasoning specifying the importance of the HARMONI fore-optics and its current optical and mechanical design is described in this contribution.

  12. Density-dependent growth in invasive Lionfish (Pterois volitans).

    Science.gov (United States)

    Benkwitt, Cassandra E

    2013-01-01

    Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  13. Density-dependent growth in invasive Lionfish (Pterois volitans.

    Directory of Open Access Journals (Sweden)

    Cassandra E Benkwitt

    Full Text Available Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  14. Environmental factors affecting large-bodied coral reef fish assemblages in the Mariana Archipelago.

    Directory of Open Access Journals (Sweden)

    Benjamin L Richards

    Full Text Available Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores. Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research.

  15. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Science.gov (United States)

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help

  16. Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems

    Science.gov (United States)

    Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will

  17. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    Directory of Open Access Journals (Sweden)

    Jamison M Gove

    Full Text Available Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km from 85% of our study locations

  18. Coral reef bleaching: ecological perspectives

    Science.gov (United States)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  19. The coral reef of South Moloka'i, Hawai'i - Portrait of a sediment-threatened fringing reef

    Science.gov (United States)

    Field, Michael E.; Cochran, Susan A.; Logan, Joshua; Storlazzi, Curt D.

    2008-01-01

    finally washed out of the system—and that only happens if there is no more new mud washing onto the reef.I saw this myself a few years ago in Pila‘a Bay on Kaua‘i, where a bulldozed hillside of abandoned sugar cane fields had slumped right on top of a coral reef following exceptional rains. Years later, the algae species were zoned in a way that clearly mapped the distribution of nutrients washed into the bay, most likely from fertilizers bound to the eroded soils. That pattern closely mimics, on a small scale, that shown in Moloka‘i in this volume, where the inner reef is covered with algae, zoned by species in a way that points to land-based sources of nutrients, while the outermost reef slope is still coral dominated, and the deep algae seem to indicate deep-water nutrient upwelling.What of the future? The Hawaiian Islands have been exceptionally fortunate to be spared the worst coral heatstroke death from high temperatures, at least to date. So far, the worst global warming impacts have luckily been small in this region, and the small number of people on Moloka‘i has kept population densities, and sewage pollution, low compared to the more developed islands. Nutrients from years of sugar and pineapple fertilization, and the washing of this soil onto the reefs, show clear influences on the pattern of algae on the reef. Even at very low levels of nutrients, well below that which drives algae to smother and kill coral reefs, more algae is present. Soil erosion control is therefore the key to better management of both nutrients and turbidity on Moloka‘i reefs. To that end land management actions mentioned in this book, such as suppressing wild fires and eliminating wild goats and pigs, could be made even more effective if supplemented by active erosion control using plants whose roots bind the soil effectively in place. Through all of these efforts, Hina and the people of Moloka‘i could be happy again!

  20. Ecological Processes and Contemporary Coral Reef Management

    Directory of Open Access Journals (Sweden)

    Angela Dikou

    2010-05-01

    Full Text Available Top-down controls of complex foodwebs maintain the balance among the critical groups of corals, algae, and herbivores, thus allowing the persistence of corals reefs as three-dimensional, biogenic structures with high biodiversity, heterogeneity, resistance, resilience and connectivity, and the delivery of essential goods and services to societies. On contemporary reefs world-wide, however, top-down controls have been weakened due to reduction in herbivory levels (overfishing or disease outbreak while bottom-up controls have increased due to water quality degradation (increase in sediment and nutrient load and climate forcing (seawater warming and acidification leading to algal-dominated alternate benthic states of coral reefs, which are indicative of a trajectory towards ecological extinction. Management to reverse common trajectories of degradation for coral reefs necessitates a shift from optimization in marine resource use and conservation towards building socio-economic resilience into coral reef systems while attending to the most manageable human impacts (fishing and water quality and the global-scale causes (climate change.

  1. Temporal variation in development of ecosystem services from oyster reef restoration

    Science.gov (United States)

    LaPeyre, Megan K.; Humphries, Austin T.; Casas, Sandra M.; La Peyre, Jerome F.

    2014-01-01

    Restoration ecology relies heavily on ecosystem development theories that generally assume development of fully functioning natural systems over time, but often fail to identify the time-frame required for provision of desired functions, or acknowledge different pathways of functional development. In estuaries, a decline of overall habitat quality and functioning has led to significant efforts to restore critical ecosystem services, recently through the creation and restoration of oyster reefs. Oyster reef restoration generally occurs with goals of (1) increasing water quality via filtration through sustainable oyster recruitment, (2) stabilizing shorelines, and (3) creating and enhancing critical estuarine habitat for fish and invertebrates. We restored over 260 m2 of oyster reef habitat in coastal Louisiana and followed the development and provision of these ecosystem services from 2009 through 2012. Oysters recruited to reefs immediately, with densities of oysters greater than 75 mm exceeding 80 ind m−2 after 3 years, and provision of filtration rates of 1002 ± 187 L h−1 m−2; shoreline stabilization effects of the created reefs were minimal over the three years of monitoring, with some evidence of positive shoreline stabilization during higher wind/energy events only; increased nekton abundance of resident, but not larger transient fish was immediately measurable at the reefs, however, this failed to increase through time. Our results provide critical insights into the development trajectories of ecosystem services provided by restored oyster reefs, as well as the mechanisms mediating these changes. This is critical both ecologically to understand how and where a reef thrives, and for policy and management to guide decision-making related to oyster reef restoration and the crediting and accounting of ecosystem services.

  2. Spatial variation in density and size structure indicate habitat selection throughout life stages of two Southwestern Atlantic snappers.

    Science.gov (United States)

    Aschenbrenner, Alexandre; Hackradt, Carlos Werner; Ferreira, Beatrice Padovani

    2016-02-01

    The early life history of Lutjanus alexandrei and Lutjanus jocu in Southwestern Atlantic is still largely unknown. Habitat use of different life stages (i.e. size categories and densities) of the Brazilian snapper (L. alexandrei) and dog snapper (L. jocu) was examined in a tropical portion of NE coast of Brazil. Visual surveys were conducted in different shallow habitats (mangroves and reefs). Both snapper species showed higher densities in early life stages in mangrove habitat, with a clear increase in fish size from mangrove to adjacent reefs. Post-settler individuals were exclusively found in mangroves for both species. Juveniles of L. alexandrei were also registered only in mangroves, while sub-adult individuals were associated with both mangrove and reef habitats. Mature individuals of L. alexandrei were only observed in reef habitats. Juvenile and sub-adult individuals of the dog snapper were both associated with mangrove and reef habitats, with high densities registered in mangroves. Mature individuals of L. jocu were not registered in the study area. This pattern suggests preference for mangrove habitat in early life stages for both species. Ontogenetic movement between habitats was also recorded. This pattern denotes habitat selection across different life cycle of both species. Such information highlights the importance of directing management and conservation efforts to these habitats to secure the continuity of contribution to adult populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Meso- and microscale vein structures in fore-arc basalts and boninites related to post-magmatic tectonic deformation in the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352

    Science.gov (United States)

    Quandt, Dennis; Micheuz, Peter; Kurz, Walter

    2016-04-01

    The International Ocean Discovery Program (IODP) Expedition 352 aimed to drill through the entire volcanic sequence of the Izu-Bonin-Mariana fore arc. Two drill sites are situated on the outer fore arc composed of fore arc basalts (FAB) whereas two more sites are located on the upper trench slope penetrating the younger boninites. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured. Structures within the drill cores combined with borehole and site survey seismic data indicate that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement deformation was accommodated by shear along cataclastic fault zones and the formation of tension fractures, shear fractures and hybrid (tension and shear) fractures. Veins form by mineral filling of tension or hybrid fractures and show no or limited observable macroscale displacement along the fracture plane. (Low Mg-) Calcite and/or various types of zeolite are the major vein constituents, where the latter are considered to be alteration products of basaltic glass. Micrite contents vary significantly and are related to neptunian dikes. In boninites calcite develops mainly blocky shapes but veins with fibrous and stretched crystals also occur in places indicating antitaxial as well as ataxial growth, respectively. In FAB calcite forms consistently blocky crystals without any microscopic identifiable growth direction suggesting precipitation from a highly supersaturated fluid under dropping fluid pressure conditions. However, fluid pressure

  4. Role of coral reefs in global ocean production

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C J; Hatcher, B G; Smith, S V [CSIRO Institute of Natural Resources and Environment, Dickson, ACT (Australia)

    1991-01-01

    Coral reefs cover some 600 thousand square kilometres of the earth's surface (0.17% of the ocean surface). First order estimates show coral reefs to contribute about 0.05% of the estimated net CO{sub 2} fixation rate of the global oceans. Gross CO{sub 2} fixation is relatively high (of the order 700 x 10{sup 12}g C year{sup -1}), but most of this material is recycled within the reefs. Excess (net) production of organic material (E) is much smaller, of the order 20 x 10{sup 12}g C year{sup -1}. 75% of E is available for export from coral reefs to adjacent areas. Comparison of estimates for net production by reefs and their surrounding oceans indicates that the excess production by coral reefs is similar to new production in the photic zone of oligotrophic oceans. Consequently, estimates for global ocean production should as a first approximation include reefal areas with the surrounding ocean when assigning average net production rates. It can be concluded that organic production by reefs plays a relatively minor role in the global scale of fluxes and storage of elements. In comparison, the companion process of biologically-mediated inorganic carbon precipitation represents a major role for reefs. While reef production does respond on local scales to variation in ocean climate, neither the absolute rates nor the amount accumulated into organic pools appear to be either sensitive indicators or accurate recorders of climatic change in most reef systems. Similarly, the productivity of most reefs should be little affected by currently predicted environmental changes resulting from the greenhouse effect. 86 refs., 2 figs., 1 tab.

  5. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway

    Science.gov (United States)

    De Clippele, L. H.; Huvenne, V. A. I.; Orejas, C.; Lundälv, T.; Fox, A.; Hennige, S. J.; Roberts, J. M.

    2018-03-01

    This study demonstrates how cold-water coral morphology and habitat distribution are shaped by local hydrodynamics, using high-definition video from Tisler Reef, an inshore reef in Norway. A total of 334 video frames collected on the north-west (NW) and south-east (SE) side of the reef were investigated for Lophelia pertusa coral cover and morphology and for the cover of the associated sponges Mycale lingua and Geodia sp. Our results showed that the SE side was a better habitat for L. pertusa (including live and dead colonies). Low cover of Geodia sp. was found on both sides of Tisler Reef. In contrast, Mycale lingua had higher percentage cover, especially on the NW side of the reef. Bush-shaped colonies of L. pertusa with elongated branches were the most abundant coral morphology on Tisler Reef. The highest abundance and density of this morphology were found on the SE side of the reef, while a higher proportion of cauliflower-shaped corals with short branches were found on the NW side. The proportion of very small L. pertusa colonies was also significantly higher on the SE side of the reef. The patterns in coral spatial distribution and morphology were related to local hydrodynamics—there were more frequent periods of downwelling currents on the SE side—and to the availability of suitable settling substrates. These factors make the SE region of Tisler Reef more suitable for coral growth. Understanding the impact of local hydrodynamics on the spatial extent and morphology of coral, and their relation to associated organisms such as sponges, is key to understanding the past and future development of the reef.

  6. Feeding of swimming Paramecium with fore-aft asymmetry in viscous fluid

    Science.gov (United States)

    Zhang, Peng; Jana, Saikat; Giarra, Matthew; Vlachos, Pavlos; Jung, Sunghwan

    2013-11-01

    Swimming behaviours and feeding efficiencies of Paramecium Multimicronucleatum with fore-aft asymmetric body shapes are studied experimentally and numerically. Among various possible swimming ways, ciliates typically exhibit only one preferred swimming directions in favorable conditions. Ciliates, like Paramecia, with fore-aft asymmetric shapes preferably swim towards the slender anterior while feeding fluid to the oral groove located at the center of the body. Since both feeding and swimming efficiencies are influenced by fluid motions around the body, it is important to reveal the fluid mechanics around a moving object. Experimentally, μ-PIV methods are employed to characterize the source-dipole streamline patterns and fluid motions around Paramecium. Numerical simulations by boundary element methods are also used to evaluate surface stresses and velocities, which give insights into the efficiencies of swimming and feeding depending on body asymmetry. It is concluded that a slender anterior and fat posterior increases the combined efficiency of swimming and feeding, which matches well with actual shapes of Paramecium. Discrepancies between experiments and simulations are also discussed.

  7. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea.

    Science.gov (United States)

    Hasler, Harald; Ott, Jörg A

    2008-10-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world's most dived (>30,000 dives y(-1)). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined by the point intercept sampling method in the reef crest zone (3m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance of corallivorous and herbivorous fish was evident. At heavily used dive sites, diver-related sedimentation rates significantly decreased with increasing distance from the entrance, indicating poor buoyancy regulation at the initial phase of the dive. The results show a high negative impact of current SCUBA diving intensities on coral communities and coral condition. Corallivorous and herbivorous fishes are apparently not yet affected, but are endangered if coral cover decline continues. Reducing the number of dives per year, ecologically sustainable dive plans for individual sites, and reinforcing the environmental education of both dive guides and recreational divers are essential to conserve the ecological and the aesthetic qualities of these dive sites.

  8. The diversity of coral reefs: what are we missing?

    Directory of Open Access Journals (Sweden)

    Laetitia Plaisance

    Full Text Available Tropical reefs shelter one quarter to one third of all marine species but one third of the coral species that construct reefs are now at risk of extinction. Because traditional methods for assessing reef diversity are extremely time consuming, taxonomic expertise for many groups is lacking, and marine organisms are thought to be less vulnerable to extinction, most discussions of reef conservation focus on maintenance of ecosystem services rather than biodiversity loss. In this study involving the three major oceans with reef growth, we provide new biodiversity estimates based on quantitative sampling and DNA barcoding. We focus on crustaceans, which are the second most diverse group of marine metazoans. We show exceptionally high numbers of crustacean species associated with coral reefs relative to sampling effort (525 species from a combined, globally distributed sample area of 6.3 m(2. The high prevalence of rare species (38% encountered only once, the low level of spatial overlap (81% found in only one locality and the biogeographic patterns of diversity detected (Indo-West Pacific>Central Pacific>Caribbean are consistent with results from traditional survey methods, making this approach a reliable and efficient method for assessing and monitoring biodiversity. The finding of such large numbers of species in a small total area suggests that coral reef diversity is seriously under-detected using traditional survey methods, and by implication, underestimated.

  9. Does elevated pCO2 affect reef octocorals?

    Science.gov (United States)

    Gabay, Yasmin; Benayahu, Yehuda; Fine, Maoz

    2013-03-01

    Increasing anthropogenic pCO2 alters seawater chemistry, with potentially severe consequences for coral reef growth and health. Octocorals are the second most important faunistic component in many reefs, often occupying 50% or more of the available substrate. Three species of octocorals from two families were studied in Eilat (Gulf of Aqaba), comprising the zooxanthellate Ovabunda macrospiculata and Heteroxenia fuscescens (family Xeniidae), and Sarcophyton sp. (family Alcyoniidae). They were maintained under normal (8.2) and reduced (7.6 and 7.3) pH conditions for up to 5 months. Their biolological features, including protein concentration, polyp weight, density of zooxanthellae, and their chlorophyll concentration per cell, as well as polyp pulsation rate, were examined under conditions more acidic than normal, in order to test the hypothesis that rising pCO2 would affect octocorals. The results indicate no statistically significant difference between the octocorals exposed to reduced pH values compared to the control. It is therefore suggested that the octocorals' tissue may act as a protective barrier against adverse pH conditions, thus maintaining them unharmed at high levels of pCO2.

  10. SIMAC: Development and implementation of a coral reef monitoring network in Colombia

    Directory of Open Access Journals (Sweden)

    Jaime Garzón-Ferreira

    2010-05-01

    Full Text Available Significant coral reef decline has been observed in Colombia during the last three decades. However, due to the lack of monitoring activities, most of the information about health and changes was fragmentary or inadequate. To develop an expanded nation-wide reef-monitoring program, in 1998 INVEMAR (Instituto de Investigaciones Marinas y Costeras: "Colombian Institute of Marine and Coastal Research" designed and implemented SIMAC (Sistema Nacional de Monitoreo de Arrecifes Coralinos en Colombia: "National Monitoring System of Coral Reefs in Colombia" with the participation of other institutions. By the end of 2003 the SIMAC network reached more than twice its initial size, covering ten reef areas (seven in the Caribbean and three in the Pacific, 63 reef sites and 263 permanent transects. SIMAC monitoring continued without interruption until 2008 and should persist in the long-term. The SIMAC has a large database and consists basically of water quality measurements (temperature, salinity, turbidity and a yearly estimation of benthic reef cover, coral disease prevalence, gorgonian density, abundance of important mobile invertebrates, fish diversity and abundance of important fish species. A methods manual is available in the internet. Data and results of SIMAC have been widely circulated through a summary report published annually since 2000 for the Colombian environmental agencies and the general public, as well as numerous national and international scientific papers and presentations at meetings. SIMAC information has contributed to support regional and global reef monitoring networks and databases (i.e. CARICOMP, GCRMN, ReefBase. Rev. Biol. Trop. 58 (Suppl. 1: 67-80. Epub 2010 May 01.

  11. Reefs for the future: Resilience of coral reefs in the main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declining health of coral reef ecosystems led scientists to search for factors that support reef resilience: the ability of reefs to resist and recover from...

  12. Tropical coral reef habitat in a geoengineered, high-CO2 world

    Science.gov (United States)

    Couce, E.; Irvine, P. J.; Gregorie, L. J.; Ridgwell, A.; Hendy, E. J.

    2013-05-01

    Continued anthropogenic CO2 emissions are expected to impact tropical coral reefs by further raising sea surface temperatures (SST) and intensifying ocean acidification (OA). Although geoengineering by means of solar radiation management (SRM) may mitigate temperature increases, OA will persist, raising important questions regarding the impact of different stressor combinations. We apply statistical Bioclimatic Envelope Models to project changes in shallow water tropical coral reef habitat as a single niche (without resolving biodiversity or community composition) under various representative concentration pathway and SRM scenarios, until 2070. We predict substantial reductions in habitat suitability centered on the Indo-Pacific Warm Pool under net anthropogenic radiative forcing of ≥3.0 W/m2. The near-term dominant risk to coral reefs is increasing SSTs; below 3 W/m2 reasonably favorable conditions are maintained, even when achieved by SRM with persisting OA. "Optimal" mitigation occurs at 1.5 W/m2 because tropical SSTs overcool in a fully geoengineered (i.e., preindustrial global mean temperature) world.

  13. Are coral reefs victims of their own past success?

    Science.gov (United States)

    Renema, Willem; Pandolfi, John M; Kiessling, Wolfgang; Bosellini, Francesca R; Klaus, James S; Korpanty, Chelsea; Rosen, Brian R; Santodomingo, Nadiezhda; Wallace, Carden C; Webster, Jody M; Johnson, Kenneth G

    2016-04-01

    As one of the most prolific and widespread reef builders, the staghorn coral Acropora holds a disproportionately large role in how coral reefs will respond to accelerating anthropogenic change. We show that although Acropora has a diverse history extended over the past 50 million years, it was not a dominant reef builder until the onset of high-amplitude glacioeustatic sea-level fluctuations 1.8 million years ago. High growth rates and propagation by fragmentation have favored staghorn corals since this time. In contrast, staghorn corals are among the most vulnerable corals to anthropogenic stressors, with marked global loss of abundance worldwide. The continued decline in staghorn coral abundance and the mounting challenges from both local stress and climate change will limit the coral reefs' ability to provide ecosystem services.

  14. Physical properties and seismic structure of Izu-Bonin-Mariana fore-arc crust: Results from IODP Expedition 352 and comparison with oceanic crust

    Science.gov (United States)

    Christeson, G. L.; Morgan, S.; Kodaira, S.; Yamashita, M.; Almeev, R. R.; Michibayashi, K.; Sakuyama, T.; Ferré, E. C.; Kurz, W.

    2016-12-01

    Most of the well-preserved ophiolite complexes are believed to form in suprasubduction zone (SSZ) settings. We compare physical properties and seismic structure of SSZ crust at the Izu-Bonin-Mariana (IBM) fore arc with oceanic crust drilled at Holes 504B and 1256D to evaluate the similarities of SSZ and oceanic crust. Expedition 352 basement consists of fore-arc basalt (FAB) and boninite lavas and dikes. P-wave sonic log velocities are substantially lower for the IBM fore arc (mean values 3.1-3.4 km/s) compared to Holes 504B and 1256D (mean values 5.0-5.2 km/s) at depths of 0-300 m below the sediment-basement interface. For similar porosities, lower P-wave sonic log velocities are observed at the IBM fore arc than at Holes 504B and 1256D. We use a theoretical asperity compression model to calculate the fractional area of asperity contact Af across cracks. Af values are 0.021-0.025 at the IBM fore arc and 0.074-0.080 at Holes 504B and 1256D for similar depth intervals (0-300 m within basement). The Af values indicate more open (but not necessarily wider) cracks in the IBM fore arc than for the oceanic crust at Holes 504B and 1256D, which is consistent with observations of fracturing and alteration at the Expedition 352 sites. Seismic refraction data constrain a crustal thickness of 10-15 km along the IBM fore arc. Implications and inferences are that crust-composing ophiolites formed at SSZ settings could be thick and modified after accretion, and these processes should be considered when using ophiolites as an analog for oceanic crust.

  15. A diverse assemblage of reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia.

    Directory of Open Access Journals (Sweden)

    Zoe T Richards

    Full Text Available The susceptibility of reef-building corals to climatic anomalies is well documented and a cause of great concern for the future of coral reefs. Reef corals are normally considered to tolerate only a narrow range of climatic conditions with only a small number of species considered heat-tolerant. Occasionally however, corals can be seen thriving in unusually harsh reef settings and these are cause for some optimism about the future of coral reefs. Here we document for the first time a diverse assemblage of 225 species of hard corals occurring in the intertidal zone of the Bonaparte Archipelago, north western Australia. We compare the environmental conditions at our study site (tidal regime, SST and level of turbidity with those experienced at four other more typical tropical reef locations with similar levels of diversity. Physical extremes in the Bonaparte Archipelago include tidal oscillations of up to 8 m, long subaerial exposure times (>3.5 hrs, prolonged exposure to high SST and fluctuating turbidity levels. We conclude the timing of low tide in the coolest parts of the day ameliorates the severity of subaerial exposure, and the combination of strong currents and a naturally high sediment regime helps to offset light and heat stress. The low level of anthropogenic impact and proximity to the Indo-west Pacific centre of diversity are likely to further promote resistance and resilience in this community. This assemblage provides an indication of what corals may have existed in other nearshore locations in the past prior to widespread coastal development, eutrophication, coral predator and disease outbreaks and coral bleaching events. Our results call for a re-evaluation of what conditions are optimal for coral survival, and the Bonaparte intertidal community presents an ideal model system for exploring how species resilience is conferred in the absence of confounding factors such as pollution.

  16. Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function

    Science.gov (United States)

    Hochberg, E. J.

    2016-02-01

    Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.

  17. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    Science.gov (United States)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global

  18. Typhoon damage on a shallow mesophotic reef in Okinawa, Japan

    Directory of Open Access Journals (Sweden)

    Kristine N. White

    2013-09-01

    Full Text Available Little is known about effects of large storm systems on mesophotic reefs. This study reports on how Typhoon 17 (Jelawat affected Ryugu Reef on Okinawa-jima, Japan in September 2012. Benthic communities were surveyed before and after the typhoon using line intercept transect method. Comparison of the benthic assemblages showed highly significant differences in coral coverage at depths of 25–32 m before and after Typhoon 17. A large deep stand of Pachyseris foliosa was apparently less resistant to the storm than the shallower high diversity area of this reef. Contradictory to common perception, this research shows that large foliose corals at deeper depths are just as susceptible to typhoon damage as shallower branching corals. However, descriptive functional group analyses resulted in only minor changes after the disturbance, suggesting the high likelihood of recovery and the high resilience capacity of this mesophotic reef.

  19. Coral reefs in the Anthropocene.

    Science.gov (United States)

    Hughes, Terry P; Barnes, Michele L; Bellwood, David R; Cinner, Joshua E; Cumming, Graeme S; Jackson, Jeremy B C; Kleypas, Joanie; van de Leemput, Ingrid A; Lough, Janice M; Morrison, Tiffany H; Palumbi, Stephen R; van Nes, Egbert H; Scheffer, Marten

    2017-05-31

    Coral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans. Returning reefs to past configurations is no longer an option. Instead, the global challenge is to steer reefs through the Anthropocene era in a way that maintains their biological functions. Successful navigation of this transition will require radical changes in the science, management and governance of coral reefs.

  20. A connection between colony biomass and death in Caribbean reef-building corals.

    Directory of Open Access Journals (Sweden)

    Daniel J Thornhill

    Full Text Available Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp. respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994-2007, eleven years in the Exuma Cays, Bahamas (1995-2006, and four years in Puerto Morelos, Mexico (2003-2007. For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1-4 m compared to deeper-dwelling conspecifics (12-15 m. Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels.

  1. A connection between colony biomass and death in Caribbean reef-building corals.

    Science.gov (United States)

    Thornhill, Daniel J; Rotjan, Randi D; Todd, Brian D; Chilcoat, Geoff C; Iglesias-Prieto, Roberto; Kemp, Dustin W; LaJeunesse, Todd C; Reynolds, Jennifer McCabe; Schmidt, Gregory W; Shannon, Thomas; Warner, Mark E; Fitt, William K

    2011-01-01

    Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994-2007), eleven years in the Exuma Cays, Bahamas (1995-2006), and four years in Puerto Morelos, Mexico (2003-2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1-4 m) compared to deeper-dwelling conspecifics (12-15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels. © 2011 Thornhill et al.

  2. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks.

    Science.gov (United States)

    Schill, Steven R; Raber, George T; Roberts, Jason J; Treml, Eric A; Brenner, Jorge; Halpin, Patrick N

    2015-01-01

    We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.

  3. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks.

    Directory of Open Access Journals (Sweden)

    Steven R Schill

    Full Text Available We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.

  4. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Friedrich W Meyer

    Full Text Available Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8 and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1 availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth of the scleractinian coral Acropora millepora (Ehrenberg, 1834 from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world

  5. Revealing the regime of shallow coral reefs at patch scale by continuous spatial modeling

    Directory of Open Access Journals (Sweden)

    Antoine eCollin

    2014-11-01

    Full Text Available Reliably translating real-world spatial patterns of ecosystems is critical for understanding processes susceptible to reinforce resilience. However the great majority of studies in spatial ecology use thematic maps to describe habitats and species in a binary scheme. By discretizing the transitional areas and neglecting the gradual replacement across a given space, the thematic approach may suffer from substantial limitations when interpreting patterns created by many continuous variables. Here, local and regional spectral proxies were used to design and spatially map at very fine scale a continuous index dedicated to one of the most complex seascapes, the coral reefscape. Through a groundbreaking merge of bottom-up and top-down approach, we demonstrate that three to seven-habitat continuous indices can be modeled by nine, six, four and three spectral proxies, respectively, at 0.5 m spatial resolution using hand- and spaceborne measurements. We map the seven-habitat continuous index, spanning major Indo-Pacific coral reef habitats through the far red-green normalized difference ratio over the entire lagoon of a low (Tetiaroa atoll and a high volcanic (Moorea island in French Polynesia with 84% and 82% accuracy, respectively. Further examinations of the two resulting spatial models using a customized histoscape (density function of model values distributed on a concentric strip across the reef crest-coastline distance show that Tetiaroa exhibits a greater variety of coral reef habitats than Moorea. By designing such easy-to-implement, transferrable spectral proxies of coral reef regime, this study initiates a framework for spatial ecologists tackling coral reef biodiversity, responses to stresses, perturbations and shifts. We discuss the limitations and contributions of our findings towards the study of worldwide coral reef resilience following stochastic environmental change.

  6. Effects of Great Barrier Reef degradation on recreational reef-trip demand: a contingent behaviour approach

    NARCIS (Netherlands)

    Kragt, M.E.; Roebeling, P.C.; Ruijs, A.J.W.

    2009-01-01

    There is a growing concern that increased nutrient and sediment runoff from river catchments are a potential source of coral reef degradation. Degradation of reefs may affect the number of tourists visiting the reef and, consequently, the economic sectors that rely on healthy reefs for their income

  7. How accessible are coral reefs to people? A global assessment based on travel time.

    Science.gov (United States)

    Maire, Eva; Cinner, Joshua; Velez, Laure; Huchery, Cindy; Mora, Camilo; Dagata, Stephanie; Vigliola, Laurent; Wantiez, Laurent; Kulbicki, Michel; Mouillot, David

    2016-04-01

    The depletion of natural resources has become a major issue in many parts of the world, with the most accessible resources being most at risk. In the terrestrial realm, resource depletion has classically been related to accessibility through road networks. In contrast, in the marine realm, the impact on living resources is often framed into the Malthusian theory of human density around ecosystems. Here, we develop a new framework to estimate the accessibility of global coral reefs using potential travel time from the nearest human settlement or market. We show that 58% of coral reefs are located travel time from the market is a strong predictor of fish biomass on coral reefs. We also highlight a relative deficit of protection on coral reef areas near people, with disproportional protection on reefs far from people. This suggests that conservation efforts are targeting low-conflict reefs or places that may already be receiving de facto protection due to their isolation. Our global assessment of accessibility in the marine realm is a critical step to better understand the interplay between humans and resources. © 2016 John Wiley & Sons Ltd/CNRS.

  8. Hypoxia tolerance in coral-reef triggerfishes (Balistidae)

    Science.gov (United States)

    Wong, Corrie C.; Drazen, Jeffrey C.; Callan, Chatham K.; Korsmeyer, Keith E.

    2018-03-01

    Despite high rates of photosynthetic oxygen production during the day, the warm waters of coral reefs are susceptible to hypoxia at night due to elevated respiration rates at higher temperatures that also reduce the solubility of oxygen. Hypoxia may be a challenge for coral-reef fish that hide in the reef to avoid predators at night. Triggerfishes (Balistidae) are found in a variety of reef habitats, but they also are known to find refuge in reef crevices and holes at night, which may expose them to hypoxic conditions. The critical oxygen tension ( P crit) was determined as the point below which oxygen uptake could not be maintained to support standard metabolic rate (SMR) for five species of triggerfish. The triggerfishes exhibited similar levels of hypoxia tolerance as other coral-reef and coastal marine fishes that encounter low oxygen levels in their environment. Two species, Rhinecanthus rectangulus and R. aculeatus, had the lowest P crit ( 3.0 kPa O2), comparable to the most hypoxia-tolerant obligate coral-dwelling gobies, while Odonus niger and Sufflamen bursa were moderately tolerant to hypoxia ( P crit 4.5 kPa), and Xanthichthys auromarginatus was intermediate ( P crit 3.7 kPa). These differences in P crit were not due to differences in oxygen demand, as all the species had a similar SMR once mass differences were taken into account. The results suggest that triggerfish species are adapted for different levels of hypoxia exposure during nocturnal sheltering within the reef.

  9. Flat and complex temperate reefs provide similar support for fish: Evidence for a unimodal species-habitat relationship.

    Directory of Open Access Journals (Sweden)

    Avery B Paxton

    Full Text Available Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH, special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of

  10. Pigmentation changes in Siderastrea spp. during bleaching events in the costal reefs of northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Roberto Sassi

    2015-03-01

    Full Text Available We report here the occurrence of seasonal changes in the pigmentation of colonies of Siderastrea spp. during bleaching events on coastal reefs in northeastern Brazil. Bleached affected almost 50% of coral colonies analyzed in Cabo Branco reefs (Paraiba state in the summer of 2005. The same phenomenon was detected along various coastal reefs in northeastern Brazil during the summer of 2007 and 2008. These events were seasonal, and began with the emergence of pale colonies that became pale-pink and then purple during the rainy months. The patterns and intensity of colonies pigmentation changes varied with the studied sites. The decrease in zooxanthellae density and chlorophyll-a content was quantified in the colonies with their pigmentation pattern altered (bleaching. Microbiological analyses revealed higher densities of bacteria in pink colonies (bleached as compared to brown colonies (normal. Environmental disturbances may lead to the pigmentation changes in Siderastrea spp., but the immediate causes of this phenomenon are not clear and require further investigations.

  11. Differential responses of emergent intertidal coral reef fauna to a large-scale El-Niño southern oscillation event: sponge and coral resilience.

    Science.gov (United States)

    Kelmo, Francisco; Bell, James J; Moraes, Simone Souza; Gomes, Rilza da Costa Tourinho; Mariano-Neto, Eduardo; Attrill, Martin J

    2014-01-01

    There is a paucity of information on the impacts of the 1997-8 El Niño event and subsequent climatic episodes on emergent intertidal coral reef assemblages. Given the environmental variability intertidal reefs experience, such reefs may potentially be more resilient to climatic events and provide important insights into the adaptation of reef fauna to future ocean warming. Here we report the results of a 17-year (1995-2011) biodiversity survey of four emergent coral reef ecosystems in Bahia, Brazil, to assess the impact of a major El Niño event on the reef fauna, and determine any subsequent recovery. The densities of two species of coral, Favia gravida and Siderastrea stellata, did not vary significantly across the survey period, indicating a high degree of tolerance to the El Niño associated stress. However, there were marked decreases in the diversity of other taxa. Molluscs, bryozoans and ascidians suffered severe declines in diversity and abundance and had not recovered to pre-El Niño levels by the end of the study. Echinoderms were reduced to a single species in 1999, Echinometra lucunter, although diversity levels had recovered by 2002. Sponge assemblages were not impacted by the 1997-8 event and their densities had increased by the study end. Multivariate analysis indicated that a stable invertebrate community had re-established on the reefs after the El Niño event, but it has a different overall composition to the pre-El Niño community. It is unclear if community recovery will continue given more time, but our study highlights that any increase in the frequency of large-scale climatic events to more than one a decade is likely to result in a persistent lower-diversity state. Our results also suggest some coral and sponge species are particularly resilient to the El Niño-associated stress and therefore represent suitable models to investigate temperature adaptation in reef organisms.

  12. Coral Reef Ecosystems under Climate Change and Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Ove Hoegh-Guldberg

    2017-05-01

    Full Text Available Coral reefs are found in a wide range of environments, where they provide food and habitat to a large range of organisms as well as providing many other ecological goods and services. Warm-water coral reefs, for example, occupy shallow sunlit, warm, and alkaline waters in order to grow and calcify at the high rates necessary to build and maintain their calcium carbonate structures. At deeper locations (40–150 m, “mesophotic” (low light coral reefs accumulate calcium carbonate at much lower rates (if at all in some cases yet remain important as habitat for a wide range of organisms, including those important for fisheries. Finally, even deeper, down to 2,000 m or more, the so-called “cold-water” coral reefs are found in the dark depths. Despite their importance, coral reefs are facing significant challenges from human activities including pollution, over-harvesting, physical destruction, and climate change. In the latter case, even lower greenhouse gas emission scenarios (such as Representative Concentration Pathway RCP 4.5 are likely drive the elimination of most warm-water coral reefs by 2040–2050. Cold-water corals are also threatened by warming temperatures and ocean acidification although evidence of the direct effect of climate change is less clear. Evidence that coral reefs can adapt at rates which are sufficient for them to keep up with rapid ocean warming and acidification is minimal, especially given that corals are long-lived and hence have slow rates of evolution. Conclusions that coral reefs will migrate to higher latitudes as they warm are equally unfounded, with the observations of tropical species appearing at high latitudes “necessary but not sufficient” evidence that entire coral reef ecosystems are shifting. On the contrary, coral reefs are likely to degrade rapidly over the next 20 years, presenting fundamental challenges for the 500 million people who derive food, income, coastal protection, and a range of

  13. Connectivity and systemic resilience of the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Karlo Hock

    2017-11-01

    Full Text Available Australia's iconic Great Barrier Reef (GBR continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS, losing much of its coral cover in the process. This raises the question of the ecosystem's systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1 are highly connected by ocean currents to the wider reef network, (2 have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3 have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these 'robust source reefs', which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change.

  14. Predation by feeding aggregations of Drupella spp. inhibits the recovery of reefs damaged by a mass bleaching event

    Science.gov (United States)

    Bruckner, Andrew W.; Coward, Georgia; Bimson, Kathyrn; Rattanawongwan, Tipwimon

    2017-12-01

    High densities of two corallivorous gastropods, Drupella cornus and D. rugosa, may delay the recovery of coral reefs impacted by mass bleaching events by aggregating on the remaining corals. Following severe bleaching in April/May 2016 that resulted in the loss of up to 80% of the living coral cover from reefs in South Malé, Maldives, aggregations of up to 250 Drupella per coral were recorded on surviving colonies. The distribution of snails was not random; larger aggregations were seen on reefs with fewer remaining live corals and also on the largest corals. Branching, digitate and tabular corals, especially species of Acropora and Pocillopora, sustained the highest mortality from the bleaching. Remaining colonies of these taxa exhibited the highest occurrence of snails and the most extensive snail predation, although less-preferred taxa such as Montipora, Porites, Astreopora, Cyphastrea and Pachyseris were also targeted. Drupella also concentrated on broken Acropora branches and overturned colonies; on some reefs, these were the only surviving acroporids, and many of them did not bleach. Continued predation pressure from Drupella may eliminate formerly dominant corals, including genets that are resistant to higher sea water temperatures.

  15. Spatial distribution of epibenthic molluscs on a sandstone reef in the Northeast of Brazil

    Directory of Open Access Journals (Sweden)

    AS. Martinez

    Full Text Available The present study investigated the distribution and abundance of epibenthic molluscs and their feeding habits associated to substrate features (coverage and rugosity in a sandstone reef system in the Northeast of Brazil. Rugosity, low coral cover and high coverage of zoanthids and fleshy alga were the variables that influenced a low richness and high abundance of a few molluscan species in the reef habitat. The most abundant species were generalist carnivores, probably associated to a lesser offer and variability of resources in this type of reef system, when compared to the coral reefs. The results found in this study could reflect a normal characteristic of the molluscan community distribution in sandstone reefs, with low coral cover, or could indicate a degradation state of this habitat if it is compared to coral reefs, once that the significantly high coverage of fleshy alga has been recognized as a negative indicator of reef ecosystems health.

  16. Spatial distribution of epibenthic molluscs on a sandstone reef in the Northeast of Brazil.

    Science.gov (United States)

    Martinez, A S; Mendes, L F; Leite, T S

    2012-05-01

    The present study investigated the distribution and abundance of epibenthic molluscs and their feeding habits associated to substrate features (coverage and rugosity) in a sandstone reef system in the Northeast of Brazil. Rugosity, low coral cover and high coverage of zoanthids and fleshy alga were the variables that influenced a low richness and high abundance of a few molluscan species in the reef habitat. The most abundant species were generalist carnivores, probably associated to a lesser offer and variability of resources in this type of reef system, when compared to the coral reefs. The results found in this study could reflect a normal characteristic of the molluscan community distribution in sandstone reefs, with low coral cover, or could indicate a degradation state of this habitat if it is compared to coral reefs, once that the significantly high coverage of fleshy alga has been recognized as a negative indicator of reef ecosystems health.

  17. Black reefs: iron-induced phase shifts on coral reefs

    NARCIS (Netherlands)

    Wegley Kelly, L.; Barott, K.L.; Dinsdale, E.; Friedlander, A.M.; Nosrat, B.; Obura, D.; Sala, E.; Sandin, S.A.; Smith, J.E.; Vermeij, M.J.A.; Williams, G.J.; Willner, D.; Rohwer, F.

    2012-01-01

    The Line Islands are calcium carbonate coral reef platforms located in iron-poor regions of the central Pacific. Natural terrestrial run-off of iron is non-existent and aerial deposition is extremely low. However, a number of ship groundings have occurred on these atolls. The reefs surrounding the

  18. Influence of landscape structure on reef fish assemblages

    Science.gov (United States)

    Grober-Dunsmore, R.; Frazer, T.K.; Beets, J.P.; Lindberg, W.J.; Zwick, P.; Funicelli, N.A.

    2008-01-01

    Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape. ?? 2007 Springer Science+Business Media B.V.

  19. Human activities threaten coral reefs

    International Nuclear Information System (INIS)

    Tveitdal, Svein; Bjoerke, Aake

    2002-01-01

    Research indicates that 58 per cent of the coral reefs of the world are threatened by human activities. Pollution and global heating represent some of the threats. Coral reefs just beneath the surface of the sea are very sensitive to temperature changes. Since 1979, mass death of coral reefs has been reported increasingly often. More than 1000 marine species live in the coral reefs, among these are one fourth of all marine species of fish. It is imperative that the coral reefs be preserved, as coastal communities all over the world depend on them as sources of food and as they are the raw materials for important medicines. The article discusses the threats to the coral reefs in general and does not single out any particular energy-related activity as the principal threat. For instance, the El-Nino phenomenon of the Pacific Ocean is probably involved in mass death of coral reefs and in the North Sea large parts of deep-water reefs have been crushed by heavy beam trawlers fishing for bottom fish

  20. Coral reefs of the turbid inner-shelf of the Great Barrier Reef, Australia: An environmental and geomorphic perspective on their occurrence, composition and growth

    Science.gov (United States)

    Browne, N. K.; Smithers, S. G.; Perry, C. T.

    2012-10-01

    Investigations of the geomorphic and sedimentary context in which turbid zone reefs exist, both in the modern and fossil reef record, can inform key ecological debates regarding species tolerances and adaptability to elevated turbidity and sedimentation. Furthermore, these investigations can address critical geological and palaeoecological questions surrounding longer-term coral-sediment interactions and reef growth histories. Here we review current knowledge about turbid zone reefs from the inner-shelf regions of the Great Barrier Reef (GBR) in Australia to consider these issues and to evaluate reef growth in the period prior to and post European settlement. We also consider the future prospects of these reefs under reported changing water quality regimes. Turbid zone reefs on the GBR are relatively well known compared to those in other reef regions. They occur within 20 km of the mainland coast where reef development may be influenced by continual or episodic terrigenous sediment inputs, fluctuating salinities (24-36 ppt), and reduced water quality through increased nutrient and pollutant delivery from urban and agricultural runoff. Individually, and in synergy, these environmental conditions are widely viewed as unfavourable for sustained and vigorous coral reef growth, and thus these reefs are widely perceived as marginal compared to clear water reef systems. However, recent research has revealed that this view is misleading, and that in fact many turbid zone reefs in this region are resilient, exhibit relatively high live coral cover (> 30%) and have distinctive community assemblages dominated by fast growing (Acropora, Montipora) and/or sediment tolerant species (Turbinaria, Goniopora, Galaxea, Porites). Palaeoecological reconstructions based on the analysis of reef cores show that community assemblages are relatively stable at millennial timescales, and that many reefs are actively accreting (average 2-7 mm/year) where accommodation space is available

  1. A pressure plate study on fore and hindlimb loading and the association with hoof contact area in sound ponies at the walk and trot.

    Science.gov (United States)

    Oosterlinck, M; Pille, F; Back, W; Dewulf, J; Gasthuys, F

    2011-10-01

    The aim of this study was to evaluate the association between fore- and hind-hoof contact area and limb loading. Data from a previous study on forelimb loading and symmetry were compared with data on hindlimb kinetics, and the fore- and hind-hoof contact area at the walk and trot was evaluated. Five sound ponies, selected for symmetrical feet, were walked and trotted over a pressure plate embedded in a custom-made runway. The hindlimb peak vertical force (PVF) and vertical impulse (VI) were found to be significantly lower than in the forelimb, whereas their high symmetry ratios (>95%) did not show a significant difference from forelimb data. Hindlimb PVF in ponies was found to be slightly higher when compared to data reported for horses even though the ponies moved at a similar or lower relative velocity. The contact area had low intra-individual variability and was significantly smaller in the hind- than in the fore-hooves. A larger contact area was significantly associated with lower peak vertical pressure (PVP) but higher PVF and VI. No significant differences between left and right sides were found for contact area or loading variables. Pressure plate measurements demonstrated a significant association between hoof contact area and limb loading, in addition to intrinsic differences between fore and hindlimb locomotor function. The pressure plate provides the clinician with a tool to quantify simultaneously contralateral differences in hoof contact area and limb loading. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages.

    Science.gov (United States)

    Selkoe, Kimberly A; Gaggiotti, Oscar E; Treml, Eric A; Wren, Johanna L K; Donovan, Mary K; Toonen, Robert J

    2016-04-27

    Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems. © 2016 The Authors.

  3. Coastal nutrification and coral health at Porto Seguro reefs, Brazil

    Science.gov (United States)

    Costa, O.; Attrill, M.; Nimmo, M.

    2003-04-01

    correlation between zoanthids and algal abundance and a positive correlation with the amount of available space for settlement. On the offshore reef, correlation of algal cover with both zoanthids and available space were negative, suggesting that hard substrate may be the primary limiting factor for algal settlement and growth in the nearshore reefs. Highly variable physical disturbances (like wave energy and low tide exposure) between landward and seaward reef sides appear to be the factors controlling algal distribution in the offshore reef. Highly spatial variability in coral cover ultimately reflects the patchy distribution of stony corals over the reefs.

  4. Fish assemblages on fringing reefs in the southern Caribbean: biodiversity, biomass and feeding types

    Directory of Open Access Journals (Sweden)

    Jahson B. Alemu I.

    2014-09-01

    Full Text Available Reef fish assemblages in the Caribbean are under increasing pressure from human activities. Inadequate enforcement of legislation coupled with unreliable and data-poor landings in Tobago have led to the unregulated exploitation of reef fish for decades. This study addresses the lack of data on major reefs. Visual observations of fish fauna were conducted from November 2011-May 2013 at open access reef sites (Speyside, Charlotteville, Culloden, Arnos Vale, Mt. Irvine, La Guira, Kilgwyn, Plymouth and Black Rock and one protected area (Buccoo Reef Marine Park. Belt transects surveys were used to determine fish density, species diversity and abundance at the 10-15m depth contour. Fish sizes were converted to biomass using the length-weight relationship of fish W=aLb. Most fish assemblages were dominated by small herbivores (40cm e.g. Serranidae, were noted, which is indicative of fishing pressure. MDS ordination identified three fish assemblages: i northeastern, ii southwestern and iii intermediate. The northwestern cluster (Speyside and Charlotteville were most representative of reef fish assemblages across the entire island, and exhibited the highest species richness, diversity and biomass. However, the southwestern cluster the highest numerical abundance. The marine protected area contained higher fish biomass, abundance, diversity and richness, but it was only representative of reef fish assemblages on the southwest of the island and not the entire Tobago. Research on the reef fishery, particularly spear fishing, is recommended to determine impact.

  5. Multiscale approach reveals that Cloudina aggregates are detritus and not in situ reef constructions

    Science.gov (United States)

    Mehra, Akshay; Maloof, Adam

    2018-03-01

    The earliest metazoans capable of biomineralization appeared during the late Ediacaran Period (635–541 Ma) in strata associated with shallow water microbial reefs. It has been suggested that some Ediacaran microbial reefs were dominated (and possibly built) by an abundant and globally distributed tubular organism known as Cloudina. If true, this interpretation implies that metazoan framework reef building—a complex behavior that is responsible for some of the largest bioconstructions and most diverse environments in modern oceans—emerged much earlier than previously thought. Here, we present 3D reconstructions of Cloudina populations, produced using an automated serial grinding and imaging system coupled with a recently developed neural network image classifier. Our reconstructions show that Cloudina aggregates are composed of transported remains while detailed field observations demonstrate that the studied reef outcrops contain only detrital Cloudina buildups, suggesting that Cloudina played a minor role in Ediacaran reef systems. These techniques have wide applicability to problems that require 3D reconstructions where physical separation is impossible and a lack of density contrast precludes tomographic imaging techniques.

  6. Fore limb bilateral polydactyly and ocular dermoid in a Holstein Friesian calf

    International Nuclear Information System (INIS)

    Spadari, A.; Spinella, G.; Venturini, A.; Gentile, A.

    2003-01-01

    A clinical case of polydactyly in fore limbs of a Holstein Friesian calf was radiographically and ultrasonographically examined and thus was surgically treated by amputation of the first right digit and of the first left digit, the latter present in a vestigial form. Furthermore, a ocular dermoid cyst was removed in the same animal [it

  7. Coralline reefs classification in Banco Chinchorro, Mexico

    Science.gov (United States)

    Contreras-Silva, Ameris I.; López-Caloca, Alejandra A.

    2009-09-01

    The coralline reefs in Banco Chinchorro, Mexico, are part of the great reef belt of the western Atlantic. This reef complex is formed by an extensive coralline structure with great biological richness and diversity of species. These colonies are considered highly valuable ecologically, economically, socially and culturally, and they also inherently provide biological services. Fishing and scuba diving have been the main economic activities in this area for decades. However, in recent years, there has been a bleaching process and a decrease of the coral colonies in Quintana Roo, Mexico. This drop is caused mainly by the production activities performed in the oil platforms and the presence of hurricanes among other climatic events. The deterioration of the reef system can be analyzed synoptically using remote sensing. Thanks to this type of analysis, it is possible to have updated information of the reef conditions. In this paper, satellite imagery in Landsat TM and SPOT 5 is applied in the coralline reefs classification in the 1980- 2006 time period. Thus, an integral analysis of the optical components of the water surrounding the coralline reefs, such as on phytoplankton, sediments, yellow substance and even on the same water adjacent to the coral colonies, is performed. The use of a texture algorithm (Markov Random Field) was a key tool for their identification. This algorithm, does not limit itself to image segmentation, but also works on edge detection. In future work the multitemporal analysis of the results will determine the deterioration degree of these habitats and the conservation status of the coralline areas.

  8. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.; Harrison, Hugo B.; Almany, Glenn R.; Berumen, Michael L.; Bode, Michael; Bonin, Mary C.; Choukroun, Severine; Doherty, Peter J.; Frisch, Ashley J.; Saenz-Agudelo, Pablo; Jones, Geoffrey P.

    2016-01-01

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  9. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.

    2016-11-15

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  10. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  11. Extent of mangrove nursery habitats determines the geographic distribution of a coral reef fish in a South-Pacific archipelago.

    Directory of Open Access Journals (Sweden)

    Christelle Paillon

    Full Text Available Understanding the drivers of species' geographic distribution has fundamental implications for the management of biodiversity. For coral reef fishes, mangroves have long been recognized as important nursery habitats sustaining biodiversity in the Western Atlantic but there is still debate about their role in the Indo-Pacific. Here, we combined LA-ICP-MS otolith microchemistry, underwater visual censuses (UVC and mangrove cartography to estimate the importance of mangroves for the Indo-Pacific coral reef fish Lutjanus fulviflamma in the archipelago of New Caledonia. Otolith elemental compositions allowed high discrimination of mangroves and reefs with 83.8% and 98.7% correct classification, respectively. Reefs were characterized by higher concentrations of Rb and Sr and mangroves by higher concentrations of Ba, Cr, Mn and Sn. All adult L. fulviflamma collected on reefs presented a mangrove signature during their juvenile stage with 85% inhabiting mangrove for their entire juvenile life (about 1 year. The analysis of 2942 UVC revealed that the species was absent from isolated islands of the New Caledonian archipelago where mangroves were absent. Furthermore, strong positive correlations existed between the abundance of L. fulviflamma and the area of mangrove (r = 0.84 for occurrence, 0.93 for density and 0.89 for biomass. These results indicate that mangrove forest is an obligatory juvenile habitat for L. fulviflamma in New Caledonia and emphasize the potential importance of mangroves for Indo-Pacific coral reef fishes.

  12. Coral Reef Remote Sensing: Helping Managers Protect Reefs in a Changing Climate

    Science.gov (United States)

    Eakin, C.; Liu, G.; Li, J.; Muller-Karger, F. E.; Heron, S. F.; Gledhill, D. K.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Skirving, W. J.; Nim, C.; Burgess, T.; Strong, A. E.

    2010-12-01

    Climate change and ocean acidification are already having severe impacts on coral reef ecosystems. Warming oceans have caused corals to bleach, or expel their symbiotic algae (zooxanthellae) with alarming frequency and severity and have contributed to a rise in coral infectious diseases. Ocean acidification is reducing the availability of carbonate ions needed by corals and many other marine organisms to build structural components like skeletons and shells and may already be slowing the coral growth. These two impacts are already killing corals and slowing reef growth, reducing biodiversity and the structure needed to provide crucial ecosystem services. NOAA’s Coral Reef Watch (CRW) uses a combination of satellite data, in situ observations, and models to provide coral reef managers, scientists, and others with information needed to monitor threats to coral reefs. The advance notice provided by remote sensing and models allows resource managers to protect corals, coral reefs, and the services they provide, although managers often encounter barriers to implementation of adaptation strategies. This talk will focus on application of NOAA’s satellite and model-based tools that monitor the risk of mass coral bleaching on a global scale, ocean acidification in the Caribbean, and coral disease outbreaks in selected regions, as well as CRW work to train managers in their use, and barriers to taking action to adapt to climate change. As both anthropogenic CO2 and temperatures will continue to rise, local actions to protect reefs are becoming even more important.

  13. Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida Reef Tract (Martin County).

    Science.gov (United States)

    Walker, Brian K; Gilliam, David S

    2013-01-01

    Climate change has recently been implicated in poleward shifts of many tropical species including corals; thus attention focused on higher-latitude coral communities is warranted to investigate possible range expansions and ecosystem shifts due to global warming. As the northern extension of the Florida Reef Tract (FRT), the third-largest barrier reef ecosystem in the world, southeast Florida (25-27° N latitude) is a prime region to study such effects. Most of the shallow-water FRT benthic habitats have been mapped, however minimal data and limited knowledge exist about the coral reef communities of its northernmost reaches off Martin County. First benthic habitat mapping was conducted using newly acquired high resolution LIDAR bathymetry and aerial photography where possible to map the spatial extent of coral reef habitats. Quantitative data were collected to characterize benthic cover and stony coral demographics and a comprehensive accuracy assessment was performed. The data were then analyzed in a habitat biogeography context to determine if a new coral reef ecosystem region designation was warranted. Of the 374 km(2) seafloor mapped, 95.2% was Sand, 4.1% was Coral Reef and Colonized Pavement, and 0.7% was Other Delineations. Map accuracy assessment yielded an overall accuracy of 94.9% once adjusted for known map marginal proportions. Cluster analysis of cross-shelf habitat type and widths indicated that the benthic habitats were different than those further south and warranted designation of a new coral reef ecosystem region. Unlike the FRT further south, coral communities were dominated by cold-water tolerant species and LIDAR morphology indicated no evidence of historic reef growth during warmer climates. Present-day hydrographic conditions may be inhibiting poleward expansion of coral communities along Florida. This study provides new information on the benthic community composition of the northern FRT, serving as a baseline for future community shift and

  14. Artificial Reef Effect in relation to Offshore Renewable Energy Conversion: State of the Art

    Directory of Open Access Journals (Sweden)

    Olivia Langhamer

    2012-01-01

    Full Text Available The rapid worldwide growth of offshore renewable energy production will provide marine organisms with new hard substrate for colonization, thus acting as artificial reefs. The artificial reef effect is important when constructing, for example, scour protections since it can generate an enhanced habitat. Specifically, artificial structures can create increased heterogeneity in the area important for species diversity and density. Offshore energy installations also have the positive side effect as they are a sanctuary area for trawled organisms. Higher survival of fish and bigger fish is an expected outcome that can contribute to a spillover to outer areas. One negative side effect is that invasive species can find new habitats in artificial reefs and thus influence the native habitats and their associated environment negatively. Different scour protections in offshore wind farms can create new habitats compensating for habitat loss by offshore energy installations. These created habitats differ from the lost habitat in species composition substantially. A positive reef effect is dependent on the nature and the location of the reef and the characteristics of the native populations. An increase in surface area of scour protections by using specially designed material can also support the reef effect and its productivity.

  15. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    Science.gov (United States)

    Gurney, Georgina G; Melbourne-Thomas, Jessica; Geronimo, Rollan C; Aliño, Perry M; Johnson, Craig R

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  16. Modelling Coral Reef Futures to Inform Management: Can Reducing Local-Scale Stressors Conserve Reefs under Climate Change?

    Science.gov (United States)

    Gurney, Georgina G.; Melbourne-Thomas, Jessica; Geronimo, Rollan C.; Aliño, Perry M.; Johnson, Craig R.

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef

  17. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    Directory of Open Access Journals (Sweden)

    Georgina G Gurney

    Full Text Available Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general

  18. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-01-01

    resulted in coral reef coverage percentage of 63,33%. 75% of living coral found on this 10 meters depth are dominated by Acropora branching coral, while the rest 25,21% are filled by Acropora tabulate coral and non-Acropora coral in the life form of branching, massive, sub-massive, foliose, and mushroom, where coral Mortality Index (IM reached 28,5%. The high number of coral reef coverage percentage on Paiton is caused by successful coral transplantation and low activity of society in this location. The domination of large size Acropora branching coral were estimated comes from a few types, showing that coral resulted from transplantation has grown large and form a complex 3 dimension structure that is suitable for the life form of fish and living benthic.

  19. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-02-01

    resulted in coral reef coverage percentage of 63,33%. 75% of living coral found on this 10 meters depth are dominated by Acropora branching coral, while the rest 25,21% are filled by Acropora tabulate coral and non-Acropora coral in the life form of branching, massive, sub-massive, foliose, and mushroom, where coral Mortality Index (IM reached 28,5%. The high number of coral reef coverage percentage on Paiton is caused by successful coral transplantation and low activity of society in this location. The domination of large size Acropora branching coral were estimated comes from a few types, showing that coral resulted from transplantation has grown large and form a complex 3 dimension structure that is suitable for the life form of fish and living benthic.

  20. Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)

    Science.gov (United States)

    Brachert, Thomas C.; Reuter, Markus; Krüger, Stefan; Kirkerowicz, Julia; Klaus, James S.

    2016-03-01

    The fast growing calcareous skeletons of zooxanthellate reef corals (z corals) represent unique environmental proxy archives through their oxygen and carbon stable isotope composition (δ18O, δ13C). In addition, the accretion of the skeleton itself is ultimately linked to the environment and responds with variable growth rates (extension rate) and density to environmental changes. Here we present classical proxy data (δ18O, δ13C) in combination with calcification records from 15 massive z corals. The z corals were sampled from four interglacial units of the Florida carbonate platform (USA) dated approximately 3.2, 2.9, 1.8 and 1.2 Ma (middle Pliocene to early Pleistocene). The z corals (Solenastrea, Orbicella, Porites) derive from unlithified shallow marine carbonates and were carefully screened for primary preservation suited for proxy analysis. We show that skeletal accretion responded with decreasing overall calcification rates (decreasing extension rate but increasing density) to warmer water temperatures. Under high annual water temperatures, inferred from sub-annually resolved δ18O data, skeletal bulk density was high, but extension rates and overall calcification rates were at a minimum (endmember scenario 1). Maximum skeletal density was reached during the summer season giving rise to a growth band of high density within the annually banded skeletons ("high density band", HDB). With low mean annual water temperatures (endmember scenario 2), bulk skeletal density was low but extension rates and calcification rates reached a maximum, and under these conditions the HDB formed during winter. Although surface water temperatures in the Western Atlantic warm pool during the interglacials of the late Neogene were ˜ 2 °C higher than they are in the present day, intermittent upwelling of cool, nutrient-rich water mitigated water temperatures off south-western Florida and created temporary refuges for z coral growth. Based on the sub-annually resolved δ18O and

  1. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs.

    Science.gov (United States)

    Ruppert, Jonathan L W; Vigliola, Laurent; Kulbicki, Michel; Labrosse, Pierre; Fortin, Marie-Josée; Meekan, Mark G

    2018-01-01

    Anthropogenic activities such as land-use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific-wide and regional (1,000s-10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human-induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both "top-down" (fishing of predators) and "bottom-up" (degradation of benthic communities) contexts. © 2017 John Wiley & Sons Ltd.

  2. The distribution and abundance of reef-associated predatory fishes on the Great Barrier Reef

    Science.gov (United States)

    Emslie, Michael J.; Cheal, Alistair J.; Logan, Murray

    2017-09-01

    Predatory fishes are important components of coral-reef ecosystems of the Great Barrier Reef (GBR) through both the ecological functions they perform and their high value to recreational and commercial fisheries, estimated at 30 million in 2014. However, management of GBR predatory fish populations is hampered by a lack of knowledge of their distribution and abundance, aside from that of the highly targeted coral trout ( Plectropomus spp. and Variola spp.). Furthermore, there is little information on how these fishes respond to environmental stressors such as coral bleaching, outbreaks of coral-feeding starfishes ( Acanthaster planci) and storms, which limits adaptive management of their populations as the frequency or severity of such natural disturbances increases under climate change. Here, we document the distribution and abundance of 48 species of reef-associated predatory fishes and assess their vulnerability to a range of natural disturbances. There were clear differences in predatory fish assemblages across the continental shelf, but many species were widespread, with few species restricted to either inshore or offshore waters. There was weak latitudinal structure with only a few species restricted to either the northern or southern GBR. On the whole, predatory fishes were surprisingly resistant to the effects of disturbance, with few clear changes in abundance or species richness following 66 documented disturbances of varying magnitudes.

  3. Coal ash artificial reef demonstration

    International Nuclear Information System (INIS)

    Livingston, R.J.; Brendel, G.F.; Bruzek, D.A.

    1991-01-01

    This experimental project evaluated the use of coal ash to construct artificial reefs. An artificial reef consisting of approximately 33 tons of cement-stabilized coal ash blocks was constructed in approximately 20 feet of water in the Gulf of Mexico approximately 9.3 miles west of Cedar Key, Florida. The project objectives were: (1) demonstrate that a durable coal ash/cement block can be manufactured by commercial block-making machines for use in artificial reefs, and (2) evaluate the possibility that a physically stable and environmentally acceptable coal ash/cement block reef can be constructed as a means of expanding recreational and commercial fisheries. The reef was constructed in February 1988 and biological surveys were made at monthly intervals from May 1988 to April 1989. The project provided information regarding: Development of an optimum design mix, block production and reef construction, chemical composition of block leachate, biological colonization of the reef, potential concentration of metals in the food web associated with the reef, acute bioassays (96-hour LC 50 ). The Cedar Key reef was found to be a habitat that was associated with a relatively rich assemblage of plants and animals. The reef did not appear to be a major source of heavy metals to species at various levels of biological organization. GAI Consultants, Inc (GAI) of Monroeville, Pennsylvania was the prime consultant for the project. The biological monitoring surveys and evaluations were performed by Environmental Planning and Analysis, Inc. of Tallahassee, Florida. The chemical analyses of biological organisms and bioassay elutriates were performed by Savannah Laboratories of Tallahassee, Florida. Florida Power Corporation of St. Petersburg, Florida sponsored the project and supplied ash from their Crystal River Energy Complex

  4. Holocene coral patch reef ecology and sedimentary architecture, Northern Belize, Central America

    Energy Technology Data Exchange (ETDEWEB)

    Mazzullo, S.J.; Anderson-Underwood, K.E.; Burke, C.D.; Bischoff, W.D. (Wichita State Univ., KS (United States))

    1992-12-01

    Coral patch reefs are major components of Holocene platform carbonate facies systems in tropical and subtropical areas. The biotic composition, growth and relationship to sea level history, and diagenetic attributes of a representative Holocene patch reef ([open quotes]Elmer Reef[close quotes]) in the Mexico Rocks complex in northern Belize are described and compared to those of Holocene patch reefs in southern Belize. Elmer Reef has accumulated in shallow (2.5 m) water over the last 420 yr, under static sea level conditions. Rate of vertical construction is 0.3-0.5 m/100 yr, comparable to that of patch reefs in southern Belize. A pronounced coral zonation exists across Elmer Reef, with Monastrea annularis dominating on its crest and Acropora cervicornis occurring on its windward and leeward flanks. The dominance of Montastrea on Elmer Reef is unlike that of patch reefs in southern Belize, in which this coral assumes only a subordinate role in reef growth relative to that of Acropora palmata. Elmer Reef locally is extensively biodegraded and marine, fibrous aragonite and some bladed high-magnesium calcite cements occur throughout the reef section, partially occluding corallites and interparticle pores in associated sands. Patch reefs in southern Belize have developed as catch-up and keep-up reefs in a transgressive setting. In contrast, the dominant mode of growth of Elmer Reef, and perhaps other patch reefs in Mexico Rocks, appears to be one of lateral rather than vertical accretion. This style of growth occurs in a static sea level setting where there is only limited accommodation space because of the shallowness of the water, and such reefs are referred to as [open quotes]expansion reefs[close quotes]. 39 refs., 8 figs., 2 tabs.

  5. Oyster Reef Projects 1997-2001

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We used a quantitative sampling device to compare nekton use among high-relief live oyster reef, vegetated marsh edge Spartina alterniflora, and nonvegetated bottom...

  6. Community change within a Caribbean coral reef Marine Protected Area following two decades of local management.

    Directory of Open Access Journals (Sweden)

    Mae M Noble

    Full Text Available Structural change in both the habitat and reef-associated fish assemblages within spatially managed coral reefs can provide key insights into the benefits and limitations of Marine Protected Areas (MPAs. While MPA zoning effects on particular target species are well reported, we are yet to fully resolve the various affects of spatial management on the structure of coral reef communities over decadal time scales. Here, we document mixed affects of MPA zoning on fish density, biomass and species richness over the 21 years since establishment of the Saba Marine Park (SMP. Although we found significantly greater biomass and species richness of reef-associated fishes within shallow habitats (5 meters depth closed to fishing, this did not hold for deeper (15 m habitats, and there was a widespread decline (38% decrease in live hard coral cover and a 68% loss of carnivorous reef fishes across all zones of the SMP from the 1990s to 2008. Given the importance of live coral for the maintenance and replenishment of reef fishes, and the likely role of chronic disturbance in driving coral decline across the region, we explore how local spatial management can help protect coral reef ecosystems within the context of large-scale environmental pressures and disturbances outside the purview of local MPA management.

  7. [Changes in fish communities of coral reefs at Sabana-Camagüey Archipelago, Cuba].

    Science.gov (United States)

    Claro, Rodolfo; Cantelar, Karel; Amargós, Fabián Pina; García-Arteaga, Juan P

    2007-06-01

    A comparison of fish community structure in the Sabana-Camagüey Archipelago (1988-1989 and 2000) using visual census surveys (eight belt transects 2x50 m in each site) suggests a notable decrease on species richness, and a two thirds reduction in fish density and biomass on coral reefs. This decrease in fish populations may be related to the alarming decrease of scleractinian coral cover, and an enormous proliferation of algae, which currently covers 70-80% of the hard substrate, impeding the recovery of corals and other benthic organisms. High coral mortalities occurred between the study periods, which correlate with the high temperatures caused by the ENSO events of 1995, 1997 and 1998. These events caused massive bleaching of corals and subsequent algae overgrowth. Evidence of nutrient enrichment from the inner lagoons and overfishing are also present. Collectively, these effects have provoked a marked degradation of reef habitats. These changes appear to have affected the availability of refuges and food for fishes, and may be constraining individual growth potential and population size.

  8. Reliability and utility of citizen science reef monitoring data collected by Reef Check Australia, 2002-2015.

    Science.gov (United States)

    Done, Terence; Roelfsema, Chris; Harvey, Andrew; Schuller, Laura; Hill, Jocelyn; Schläppy, Marie-Lise; Lea, Alexandra; Bauer-Civiello, Anne; Loder, Jennifer

    2017-04-15

    Reef Check Australia (RCA) has collected data on benthic composition and cover at >70 sites along >1000km of Australia's Queensland coast from 2002 to 2015. This paper quantifies the accuracy, precision and power of RCA benthic composition data, to guide its application and interpretation. A simulation study established that the inherent accuracy of the Reef Check point sampling protocol is high (<±7% error absolute), in the range of estimates of benthic cover from 1% to 50%. A field study at three reef sites indicated that, despite minor observer- and deployment-related biases, the protocol does reliably document moderate ecological changes in coral communities. The error analyses were then used to guide the interpretation of inter-annual variability and long term trends at three study sites in RCA's major 2002-2015 data series for the Queensland coast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Reef-scale trends in Florida Acropora spp. abundance and the effects of population enhancement.

    Science.gov (United States)

    Miller, Margaret W; Kerr, Katryna; Williams, Dana E

    2016-01-01

    Since the listing of Acropora palmata and A. cervicornis under the US Endangered Species Act in 2006, increasing investments have been made in propagation of listed corals (primarily A. cervicornis , A. palmata to a much lesser extent) in offshore coral nurseries and outplanting cultured fragments to reef habitats. This investment is superimposed over a spatiotemporal patchwork of ongoing disturbances (especially storms, thermal bleaching, and disease) as well as the potential for natural population recovery. In 2014 and 2015, we repeated broad scale (>50 ha), low precision Acropora spp. censuses (i.e., direct observation by snorkelers documented via handheld GPS) originally conducted in appropriate reef habitats during 2005-2007 to evaluate the trajectory of local populations and the effect of population enhancement. Over the decade-long study, A. palmata showed a cumulative proportional decline of 0.4 -0.7x in colony density across all sites, despite very low levels of outplanting at some sites. A. cervicornis showed similar proportional declines at sites without outplanting. In contrast, sites that received A. cervicornis outplants showed a dramatic increase in density (over 13x). Indeed, change in A. cervicornis colony density was significantly positively correlated with cumulative numbers of outplants across sites. This study documents a substantive reef-scale benefit of Acropora spp. population enhancement in the Florida Keys, when performed at adequate levels, against a backdrop of ongoing population decline.

  10. Lower permian reef-bank bodies’ characterization in the pre-caspian basin

    Science.gov (United States)

    Wang, Zhen; Wang, Yankun; Yin, Jiquan; Luo, Man; Liang, Shuang

    2018-02-01

    Reef-bank reservoir is one of the targets for exploration of marine carbonate rocks in the Pre-Caspian Basin. Within this basin, the reef-bank bodies were primarily developed in the subsalt Devonian-Lower Permian formations, and are dominated by carbonate platform interior and margin reef-banks. The Lower Permian reef-bank present in the eastern part of the basin is considered prospective. This article provides a sequence and sedimentary facies study utilizing drilling and other data, as well as an analysis and identification of the Lower Permian reef-bank features along the eastern margin of the Pre-Caspian Basin using sub-volume coherence and seismic inversion techniques. The results indicate that the sub-volume coherence technique gives a better reflection of lateral distribution of reefs, and the seismic inversion impedance enables the identification of reef bodies’ development phases in the vertical direction, since AI (impedance) is petrophysically considered a tool for distinguishing the reef limestone and the clastic rocks within the formation (limestone exhibits a relatively high impedance than clastic rock). With this method, the existence of multiple phases of the Lower Permian reef-bank bodies along the eastern margin of the Pre-Caspian Basin has been confirmed. These reef-bank bodies are considered good subsalt exploration targets due to their lateral connectivity from south to north, large distribution range and large scale.

  11. Potential influence of sea cucumbers on coral reef CaCO3 budget: A case study at One Tree Reef

    Science.gov (United States)

    Schneider, Kenneth; Silverman, Jacob; Woolsey, Erika; Eriksson, Hampus; Byrne, Maria; Caldeira, Ken

    2011-12-01

    To endure, coral reefs must accumulate CaCO3 at a rate greater or equal than the sum of mechanically, biologically, and chemically mediated erosion rates. We investigated the potential role of holothurians on the CaCO3 balance of a coral reef. These deposit feeders process carbonate sand and rubble through their digestive tract and dissolve CaCO3 as part of their digestive process. In aquarium incubations with Stichopus herrmanni and Holothuria leucospilota total alkalinity increased by 97 ± 13 and 47 ± 7 μmol kg-1, respectively. This increase was due to CaCO3 dissolution, 81 ± 13 and 34 ± 6 μmol kg-1 and ammonia secretion, 16 ± 2 and 14 ± 2μmol kg-1, respectively, for these species. Surveys conducted at a long-term monitoring site of community calcification (DK13) on One Tree Reef indicated that the density of sea cucumbers was approximately 1 individual m-2. We used these data and data from surveys at Shark Alley to estimate the dissolution of CaCO3 by the sea cucumbers at both sites. At DK13 the sea cucumber population was estimated to be responsible for nearly 50% of the nighttime CaCO3 dissolution, while in Shark Alley for most of the nighttime dissolution. Thus, in a healthy reef, bioeroders dissolution of CaCO3 sediment appears to be an important component of the natural CaCO3 turnover and a substantial source of alkalinity as well. This additional alkalinity could partially buffer changes in seawater pH associated with increasing atmospheric CO2 locally, thus reducing the impact of ocean acidification on coral growth.

  12. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Ott, Jörg A.

    2008-01-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world’s most dived (>30,000dives y−1). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined...... to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance...... by the point intercept sampling method in the reef crest zone (3 m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject...

  13. Artificial Reefs in Motion: Legacy of changes and degradation at the Redbird Reef Site

    Science.gov (United States)

    Trembanis, A. C.; DuVal, C.; Peter, B.

    2016-12-01

    Artificial reefs are used for a variety of purposes at sites throughout the U.S. and around the globe, yet little, if any, long-term monitoring has been conducted with the goal of understanding inter-annual changes to the emplaced structures. Throughout the U.S. Mid-Atlantic region, several programs utilized retired subway cars as disposal structures to form artificial reefs. One such site, known as site 11, or "Redbird Reef", is located off the coast of Delaware and was at one time home to 997 former NYC subway cars. Opportunistic sonar surveys at the site have been conducted between 2008 and 2016 providing one of the most extensive and repeated mapping studies for this type of reef. Previous studies conducted by our group at the site have focused on understanding wave orbital ripple dynamics and scour patterns. In this present study, we analyze the changes apparent at the site itself, focused on the storm-response dynamics of the subway cars. Results have shown that Superstorm Sandy in 2012 produced dramatic changes to the reef structures resulting in the total or partial destruction of eight subway cars within a small (.45 x .2km) portion of the reef site. Winter Storm Jonas in 2016 resulted in the destruction of fewer cars, but rotated a previously static 47m long Navy barge nearly 60 degrees. Once destroyed or collapsed by waves the subway cars go from providing positive structural relief and thus beneficial habitat above the surrounding seabed to being reduced to scattered low relief marine debris. A once popular consideration for reef material, the event and inter-annual decay of subway cars as observed at the Redbird reef provides both a stark indication of the power of storm dynamics on the inner-shelf and a cautionary tale with regards to the selection of seabed reef material.

  14. Modern coral reefs of western Atlantic: new geological perspective

    Energy Technology Data Exchange (ETDEWEB)

    MacIntyre, I.G.

    1988-11-01

    Contrary to popular belief of the late 1960s, western Atlantic Holocene reefs have a long history and are not feeble novice nearshore veneers that barely survived postglacial temperatures. Rather, the growth of these reefs kept pace with the rising seas of the Holocene transgression and their development was, for the most part, controlled by offshore wave-energy conditions and the relationship between changing sea levels and local shelf topography. Thus, the outer shelves of the eastern Caribbean in areas of high energy have relict reefs consisting predominantly of Acropora palmata, a robust shallow-water coral. The flooding of adjacent shelves during the postglacial transgression introduced stress conditions that terminated the growth of these reefs. When, about 7000 yr ago, shelf-water conditions improved, scattered deeper water coral communities reestablished themselves on these stranded shelf-edge reefs, and fringing and bank-barrier reefs began to flourish in shallow coastal areas. At the same time, the fragile and rapidly growing Acropora cervicornis and other corals flourished at greater depths on the more protected shelves of the western Caribbean and the Gulf of Mexico. As a result, late Holocene buildups more than 30 m thick developed in those areas. 7 figures.

  15. Restoration of oyster reefs in an estuarine lake: population dynamics and shell accretion

    Science.gov (United States)

    Casas, Sandra M.; La Peyre, Jerome F.; La Peyre, Megan K.

    2015-01-01

    Restoration activities inherently depend on understanding the spatial and temporal variation in basic demographic rates of the species of interest. For species that modify and maintain their own habitat such as the eastern oyster Crassostrea virginica, understanding demographic rates and their impacts on population and habitat success are crucial to ensuring restoration success. We measured oyster recruitment, density, size distribution, biomass, mortality and Perkinsus marinus infection intensity quarterly for 3 yr on shallow intertidal reefs created with shell cultch in March 2009. All reefs were located within Sister Lake, LA. Reefs were placed in pairs at 3 different locations within the lake; pairs were placed in low and medium energy sites within each location. Restored reefs placed within close proximity (biomass (>14.6 kg m-2) at the end of 3 yr. Shell accretion, on average, exceeded estimated rates required to keep pace with local subsidence and shell loss. Variation in recruitment, growth and survival drives local site-specific population success, which highlights the need to understand local water quality, hydrodynamics, and metapopulation dynamics when planning restoration.

  16. Structural dynamics of fore-crisis area on a heat emission surface of a fuel element's

    International Nuclear Information System (INIS)

    Sharaevskij, I.G.; Fialko, N.M.; Sharaevskaya, E.I.

    2011-01-01

    The known theoretical and experimental data regarding the nature of dry spots evolution are reviewed and the idea regarding the mechanism of heat emission from the heated surface in fore-crisis area are defined more precisely.

  17. Oceanic forcing of coral reefs.

    Science.gov (United States)

    Lowe, Ryan J; Falter, James L

    2015-01-01

    Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.

  18. 40 CFR 230.44 - Coral reefs.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged or...

  19. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef.

    Science.gov (United States)

    Marcelino, Vanessa Rossetto; Morrow, Kathleen M; van Oppen, Madeleine J H; Bourne, David G; Verbruggen, Heroen

    2017-10-01

    The health and functioning of reef-building corals is dependent on a balanced association with prokaryotic and eukaryotic microbes. The coral skeleton harbours numerous endolithic microbes, but their diversity, ecological roles and responses to environmental stress, including ocean acidification (OA), are not well characterized. This study tests whether pH affects the diversity and structure of prokaryotic and eukaryotic algal communities associated with skeletons of Porites spp. using targeted amplicon (16S rRNA gene, UPA and tufA) sequencing. We found that the composition of endolithic communities in the massive coral Porites spp. inhabiting a naturally high pCO 2 reef (avg. pCO 2 811 μatm) is not significantly different from corals inhabiting reference sites (avg. pCO 2 357 μatm), suggesting that these microbiomes are less disturbed by OA than previously thought. Possible explanations may be that the endolithic microhabitat is highly homeostatic or that the endolithic micro-organisms are well adapted to a wide pH range. Some of the microbial taxa identified include nitrogen-fixing bacteria (Rhizobiales and cyanobacteria), algicidal bacteria in the phylum Bacteroidetes, symbiotic bacteria in the family Endozoicomoniaceae, and endolithic green algae, considered the major microbial agent of reef bioerosion. Additionally, we test whether host species has an effect on the endolithic community structure. We show that the endolithic community of massive Porites spp. is substantially different and more diverse than that found in skeletons of the branching species Seriatopora hystrix and Pocillopora damicornis. This study reveals highly diverse and structured microbial communities in Porites spp. skeletons that are possibly resilient to OA. © 2017 John Wiley & Sons Ltd.

  20. Synergistic impacts of global warming on the resilience of coral reefs

    OpenAIRE

    Bozec, Yves-Marie; Mumby, Peter J.

    2015-01-01

    Recent epizootics have removed important functional species from Caribbean coral reefs and left communities vulnerable to alternative attractors. Global warming will impact reefs further through two mechanisms. A chronic mechanism reduces coral calcification, which can result in depressed somatic growth. An acute mechanism, coral bleaching, causes extreme mortality when sea temperatures become anomalously high. We ask how these two mechanisms interact in driving future reef state (coral cover...

  1. Source Evolution After Subduction Initiation as Recorded in the Izu-Bonin-Mariana Fore-arc Crust

    Science.gov (United States)

    Shervais, J. W.; Reagan, M. K.; Pearce, J. A.; Shimizu, K.

    2015-12-01

    Drilling in the Izu-Bonin-Mariana (IBM) fore-arc during IODP Expedition 352 and DSDP Leg 60 recovered consistent stratigraphic sequences of volcanic rocks reminiscent of those found in many ophiolites. The oldest lavas in these sections are "fore-arc basalts" (FAB) with ~51.5 Ma ages. Boninites began eruption approximately 2-3 m.y. later (Ishizuka et al., 2011, EPSL; Reagan et al., 2013, EPSL) and further from the trench. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB at Sites U1440 and U1441 were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Temperatures appear to have been unusually high and pressures of melting appear to have been unusually low compared to mid-ocean ridges. Spreading rates at this time appear to have been robust enough to maintain a stable melt lens. Incompatible trace element abundances are low in FAB compared to even depleted MORB. Nd and Hf Isotopic compositions published before the expedition suggest that FAB were derived from typical MORB source mantle. Thus, their extreme deletion resulted from unusually high degrees of melting immediately after subduction initiation. The oldest boninites from DSDP Site 458 and IODP Sites U1439 and U1442 have relatively high concentrations of fluid-soluble elements, low concentrations of REE, and light depleted REE patterns. Younger boninites, have even lower REE concentrations, but have U-shaped REE patterns. Our first major and trace element compositions for the FAB through boninite sequence suggests that melting pressures and temperatures decreased through time, mantle became more depleted though time, and spreading rates waned during boninite genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured.

  2. Tight coupling between coral reef morphology and mapped resilience in the Red Sea.

    Science.gov (United States)

    Rowlands, Gwilym; Purkis, Sam; Bruckner, Andrew

    2016-04-30

    Lack of knowledge on the conservation value of different reef types can stymie decision making, and result in less optimal management solutions. Addressing the information gap of coral reef resilience, we produce a map-based Remote Sensed Resilience Index (RSRI) from data describing the spatial distribution of stressors, and properties of reef habitats on the Farasan Banks, Saudi Arabia. We contrast the distribution of this index among fourteen reef types, categorized on a scale of maturity that includes juvenile (poorly aggraded), mature (partially aggraded), and senile (fully aggraded) reefs. Sites with high reef resilience can be found in most detached reef types; however they are most common in mature reefs. We aim to stimulate debate on the coupling that exists between geomorphology and conservation biology, and consider how such information can be used to inform management decisions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  4. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration.

    Science.gov (United States)

    Rinkevich, Baruch

    2015-10-01

    Nearly all coral reefs bordering nations have experienced net losses in reef biodiversity, goods and services, even without considering the ever-developing global change impacts. In response, this overview wishes to reveal through prospects of active reef-restoration, the currently non-marketed or poorly marketed reef services, focusing on a single coral species (Stylophora pistillata). It is implied that the integration of equity capitals and other commodification with reef-restoration practices will improve total reef services. Two tiers of market-related activities are defined, the traditional first-tier instruments (valuating costs/gains for extracting tradable goods and services) and novel second-tier instruments (new/expanded monetary tools developed as by-products of reef restoration measures). The emerging new suite of economic mechanisms based on restoration methodologies could be served as an incentive for ecosystem conservation, enhancing the sum values of all services generated by coral reefs, where the same stocks of farmed/transplanted coral colonies will be used as market instruments. I found that active restoration measures disclose 12 classes of second-tier goods and services, which may partly/wholly finance restoration acts, bringing to light reef capitalizations that allow the expansion of markets with products that have not been considered before. The degree to which the second tier of market-related services could buffer coral-reef degradation is still unclear and would vary with different reef types and in various reef restoration scenarios; however, reducing the uncertainty associated with restoration. It is expected that the expansion of markets with the new products and the enhancement of those already existing will be materialized even if reef ecosystems will recover into different statuses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. ReefLink Database: A decision support tool for Linking Coral Reefs and Society Through Systems Thinking

    Science.gov (United States)

    Coral reefs provide the ecological foundation for productive and diverse fish and invertebrate communities that support multibillion dollar reef fishing and tourism industries. Yet reefs are threatened by growing coastal development, climate change, and over-exploitation. A key i...

  6. Climatic and tectonic controls on late Quaternary reef growth in New Caledonia

    International Nuclear Information System (INIS)

    Cabioch, G.; Recy, J.; Jouannic, CH.; Turpin, L.

    1996-01-01

    Sedimentological and stratigraphic analysis of about 40 sub-surface cores drilled through the reefs of New Caledonia provides valuable data on the processes of reef recolonization following the past post glacial sea-level rise, and on the vertical tectonic behaviour of the island over the past 125,000 years. Holocene reefs in New Caledonia are not older than 8.5 ky. The fringing reef which developed during the last interglacial high sea-level 125 ky ago, is today uplifted and lies along some 30 km of coast in the area of 10 m, while the present-day barrier reef is deeply submerged (around - 15 to - 20 m). Near Hienghene (east coast), a double system of two notches is markedly deformed by a bulge, but is much more localized (3 km long) than in the Yate area, with a maximum uplift of 13 m of the upper double notch system (interpreted as having formed during the last interglacial event). Relics of the 125 ky fringing reef are emergent at various locations in the Bourail region (west coast). However, their altitudes are lower than that generally admitted (+ 6 m) for their construction at 125 ky, thus most probably reflecting a slight subsidence of the area. Elsewhere, the 125 ky fringing reef underlies the Holocene reef: in the SW of the island, in particular, the Holocene - Pleistocene unconformity is observed at - 6 m. In areas of higher subsidence rates, such as the NW or NE of the island, the 125 ky fringing reef may be more deeply buried. In that case, the Holocene reef rests directly on a metamorphic or sedimentary substratum. Within the barrier reef build-up itself, the 125 ky reef flat is overlain by a Holocene sequence, whose thickness depends on local subsidence rates. The observation of notches, raised becah-rocks or coral reefs (dated ar around 5,500 yr) uplifted up to 1 to 1,5 m above MLWS reflects the existence of a hydro-isostatic rebound. Traces of this rebound disappear in areas of high subsidence rate, illustrating the action of local tectonics

  7. The Impacts of Ex Situ Transplantation on the Physiology of the Taiwanese Reef-Building Coral Seriatopora hystrix

    Directory of Open Access Journals (Sweden)

    Anderson B. Mayfield

    2013-01-01

    Full Text Available We sought to determine whether the Indo-Pacific reef-building coral Seriatopora hystrix performs in a similar manner in the laboratory as it does in situ by measuring Symbiodinium density, chlorophyll a (chl-a concentration, and the maximum quantum yield of photosystem II (FV/FM at the time of field sampling (in situ, as well as after three weeks of acclimation and one week of experimentation (ex situ. Symbiodinium density was similar between corals of the two study sites, Houbihu (an upwelling reef and Houwan (a nonupwelling reef, and also remained at similar levels ex situ as in situ. On the other hand, both areal and cell-specific chl-a concentrations approximately doubled ex situ relative to in situ, an increase that may be due to having employed a light regime that differed from that experienced by these corals on the reefs of southern Taiwan from which they were collected. As this change in Symbiodinium chl-a content was documented in corals of both sites, the experiment itself was not biased by this difference. Furthermore, FV/FM increased by only 1% ex situ relative to in situ, indicating that the corals maintained a similar level of photosynthetic performance as displayed in situ even after one month in captivity.

  8. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    KAUST Repository

    Feary, David A.

    2013-07-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/Persian Gulf (thereafter \\'Gulf\\') coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. © 2013 Elsevier Ltd.

  9. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    Science.gov (United States)

    Feary, David A.; Burt, John A.; Bauman, Andrew G.; Al Hazeem, Shaker; Abdel-Moati, Mohamed A.; Al-Khalifa, Khalifa A.; Anderson, Donald M.; Amos, Carl; Baker, Andrew; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geórgenes H.; Chen, Chaolun Allen; Coles, Steve L.; Dab, Koosha; Fowler, Ashley M.; George, David; Grandcourt, Edwin; Hill, Ross; John, David M.; Jones, David A.; Keshavmurthy, Shashank; Mahmoud, Huda; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood; Pichon, Michel; Purkis, Sam; Riegl, Bernhard; Samimi-Namin, Kaveh; Sheppard, Charles; Vajed Samiei, Jahangir; Voolstra, Christian R.; Wiedenmann, Joerg

    2014-01-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/ Persian Gulf (thereafter ‘Gulf’) coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. PMID:23643407

  10. Critical research needs for identifying future changes in Gulf coral reef ecosystems

    KAUST Repository

    Feary, David A.; Burt, John A.; Bauman, Andrew G.; Al Hazeem, Shaker; Abdel-Moati, Mohamed A R; Al-Khalifa, Khalifa A.; Anderson, Donald M.; Amos, Carl L.; Baker, Andrew C.; Bartholomew, Aaron; Bento, Rita; Cavalcante, Geó rgenes H.; Chen, Chaolun Allen; Coles, Steve L.; Dab, Koosha; Fowler, Ashley M.; George, David Glen; Grandcourt, Edwin Mark; Hill, Ross; John, David Michael; Jones, David Alan; Keshavmurthy, Shashank; Mahmoud, Huda M A; Moradi Och Tapeh, Mahdi; Mostafavi, Pargol Ghavam; Naser, Humood A.; Pichon, Michel; Purkis, Sam J.; Riegl, Bernhard M.; Samimi-Namin, Kaveh; Sheppard, Charles R C; Vajed Samiei, Jahangir; Voolstra, Christian R.; Wiedenmann, Jö rg

    2013-01-01

    Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/Persian Gulf (thereafter 'Gulf') coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region. © 2013 Elsevier Ltd.

  11. Macroalgae in the coral reefs of Eilat (Gulf of Aqaba, Red Sea) as a possible indicator of reef degradation

    International Nuclear Information System (INIS)

    Bahartan, Karnit; Zibdah, Mohammad; Ahmed, Yousef; Israel, Alvaro; Brickner, Itzchak; Abelson, Avigdor

    2010-01-01

    The current state of health of the coral reefs in the northern Gulf of Aqaba (Red Sea), notably the Eilat reefs, is under debate regarding both their exact condition and the causes of degradation. A dearth of earlier data and unequivocal reliable indices are the major problems hinder a clear understanding of the reef state. Our research objective was to examine coral-algal dynamics as a potential cause and an indication of reef degradation. The community structure of stony corals and algae along the northern Gulf of Aqaba reveal non-seasonal turf algae dominancy in the shallow Eilat reefs (up to 72%), while the proximate Aqaba reefs present negligible turf cover (<6%). We believe that turf dominancy can indicate degradation in these reefs, based on the reduction in essential reef components followed by proliferation of perennial turf algae. Our findings provide further evidence for the severe state of the Eilat coral reefs.

  12. Evidence of chronic anthropogenic nutrient within coastal lagoon reefs adjacent to urban and tourism centers, Kenya: A stable isotope approach.

    Science.gov (United States)

    Mwaura, Jelvas; Umezawa, Yu; Nakamura, Takashi; Kamau, Joseph

    2017-06-30

    The source of anthropogenic nutrient and its spatial extent in three fringing reefs with differing human population gradients in Kenya were investigated using stable isotope approaches. Nutrient concentrations and nitrate-δ 15 N in seepage water indicated that population density and tourism contributed greatly to the extent of nutrient loading to adjacent reefs. Although water-column nutrient analyses did not show any significant difference among the reefs, higher δ 15 N and N contents in macrophytes showed terrestrial nutrients affected primary producers in onshore areas in Nyali and Bamburi reefs, but were mitigated by offshore water intrusion especially at Nyali. On the offshore reef flat, where the same species of macroalgae were not available, complementary use of δ 15 N in sedimentary organic matter suggested inputs of nutrients originated from the urban city of Mombasa. If population increases in the future, nutrient conditions in the shallower reef, Vipingo, may be dramatically degraded due to lower water exchange ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs.

    Science.gov (United States)

    Brocke, Hannah J; Polerecky, Lubos; de Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs.

  14. Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery.

    Directory of Open Access Journals (Sweden)

    Guillermo Diaz-Pulido

    Full Text Available Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance.In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata, colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated.These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change.

  15. Community Change within a Caribbean Coral Reef Marine Protected Area following Two Decades of Local Management

    KAUST Repository

    Noble, Mae M.

    2013-01-14

    Structural change in both the habitat and reef-associated fish assemblages within spatially managed coral reefs can provide key insights into the benefits and limitations of Marine Protected Areas (MPAs). While MPA zoning effects on particular target species are well reported, we are yet to fully resolve the various affects of spatial management on the structure of coral reef communities over decadal time scales. Here, we document mixed affects of MPA zoning on fish density, biomass and species richness over the 21 years since establishment of the Saba Marine Park (SMP). Although we found significantly greater biomass and species richness of reef-associated fishes within shallow habitats (5 meters depth) closed to fishing, this did not hold for deeper (15 m) habitats, and there was a widespread decline (38% decrease) in live hard coral cover and a 68% loss of carnivorous reef fishes across all zones of the SMP from the 1990s to 2008. Given the importance of live coral for the maintenance and replenishment of reef fishes, and the likely role of chronic disturbance in driving coral decline across the region, we explore how local spatial management can help protect coral reef ecosystems within the context of large-scale environmental pressures and disturbances outside the purview of local MPA management. © 2013 Noble et al.

  16. The Kinematics of Central American Fore-Arc Motion in Nicaragua: Geodetic, Geophysical and Geologic Study of Magma-Tectonic Interactions

    Science.gov (United States)

    La Femina, P. C.; Geirsson, H.; Saballos, A.; Mattioli, G. S.

    2017-12-01

    A long-standing paradigm in plate tectonics is that oblique convergence results in strain partitioning and the formation of migrating fore-arc terranes accommodated on margin-parallel strike-slip faults within or in close proximity to active volcanic arcs (e.g., the Sumatran fault). Some convergent margins, however, are segmented by margin-normal faults and margin-parallel shear is accommodated by motion on these faults and by vertical axis block rotation. Furthermore, geologic and geophysical observations of active and extinct margins where strain partitioning has occurred, indicate the emplacement of magmas within the shear zones or extensional step-overs. Characterizing the mechanism of accommodation is important for understanding short-term (decadal) seismogenesis, and long-term (millions of years) fore-arc migration, and the formation of continental lithosphere. We investigate the geometry and kinematics of Quaternary faulting and magmatism along the Nicaraguan convergent margin, where historical upper crustal earthquakes have been located on margin-normal, strike-slip faults within the fore arc and arc. Using new GPS time series, other geophysical and geologic data, we: 1) determine the location of the maximum gradient in forearc motion; 2) estimate displacement rates on margin-normal faults; and 3) constrain the geometric moment rate for the fault system. We find that: 1) forearc motion is 11 mm a-1; 2) deformation is accommodated within the active volcanic arc; and 3) that margin-normal faults can have rates of 10 mm a-1 in agreement with geologic estimates from paleoseismology. The minimum geometric moment rate for the margin-normal fault system is 2.62x107 m3 yr-1, whereas the geometric moment rate for historical (1931-2006) earthquakes is 1.01x107 m3/yr. The discrepancy between fore-arc migration and historical seismicity may be due to aseismic accommodation of fore-arc motion by magmatic intrusion along north-trending volcanic alignments within the

  17. NMFS Reef Survey Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Reef Environmental Survey Project (REEF) mission to educate and enlist divers in the conservation of marine habitats is accomplished primarily through its Fish...

  18. Pleistocene corals of the Florida keys: Architects of imposing reefs - Why?

    Science.gov (United States)

    Lidz, B.H.

    2006-01-01

    Five asymmetrical, discontinuous, stratigraphically successive Pleistocene reef tracts rim the windward platform margin off the Florida Keys. Built of large head corals, the reefs are imposing in relief (???30 m high by 1 km wide), as measured from seismic profiles. Well dated to marine oxygen isotope substages 5c, 5b, and 5a, corals at depth are inferred to date to the Stage 6/5 transition. The size of these reefs attests to late Pleistocene conditions that repeatedly induced vigorous and sustained coral growth. In contrast, the setting today, linked to Florida Bay and the Gulf of Mexico, is generally deemed marginal for reef accretion. Incursion onto the reef tract of waters that contain seasonally inconsistent temperature, salinity, turbidity, and nutrient content impedes coral growth. Fluctuating sea level and consequent settings controlled deposition. The primary dynamic was position of eustatic zeniths relative to regional topographic elevations. Sea level during the past 150 ka reached a maximum of ???10.6 m higher than at present ???125 ka, which gave rise to an inland coral reef (Key Largo Limestone) and ooid complex (Miami Limestone) during isotope substage 5e. These formations now form the Florida Keys and a bedrock ridge beneath The Quicksands (Gulf of Mexico). High-precision radiometric ages and depths of dated corals indicate subsequent apices remained ???15 to 9 m, respectively, below present sea level. Those peaks provided accommodation space sufficient for vertical reef growth yet exposed a broad landmass landward of the reefs for >100 ka. With time, space, lack of bay waters, and protection from the Gulf of Mexico, corals thrived in clear oceanic waters of the Gulf Stream, the only waters to reach them.

  19. Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies.

    Directory of Open Access Journals (Sweden)

    David I Kline

    Full Text Available Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC and total alkalinity (TA, rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C and lowest diel ranges (0.9 - 3.2°C were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall to December (end of Spring. Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.

  20. Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies.

    Science.gov (United States)

    Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove

    2015-01-01

    Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.

  1. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  2. Introduction of geospatial perspective to the ecology of fish-habitat relationships in Indonesian coral reefs: A remote sensing approach

    Science.gov (United States)

    Sawayama, Shuhei; Nurdin, Nurjannah; Akbar AS, Muhammad; Sakamoto, Shingo X.; Komatsu, Teruhisa

    2015-06-01

    Coral reef ecosystems worldwide are now being harmed by various stresses accompanying the degradation of fish habitats and thus knowledge of fish-habitat relationships is urgently required. Because conventional research methods were not practical for this purpose due to the lack of a geospatial perspective, we attempted to develop a research method integrating visual fish observation with a seabed habitat map and to expand knowledge to a two-dimensional scale. WorldView-2 satellite imagery of Spermonde Archipelago, Indonesia obtained in September 2012 was analyzed and classified into four typical substrates: live coral, dead coral, seagrass and sand. Overall classification accuracy of this map was 81.3% and considered precise enough for subsequent analyses. Three sub-areas (CC: continuous coral reef, BC: boundary of coral reef and FC: few live coral zone) around reef slopes were extracted from the map. Visual transect surveys for several fish species were conducted within each sub-area in June 2013. As a result, Mean density (Ind. / 300 m2) of Chaetodon octofasciatus, known as an obligate feeder of corals, was significantly higher at BC than at the others (p < 0.05), implying that this species' density is strongly influenced by spatial configuration of its habitat, like the "edge effect." This indicates that future conservation procedures for coral reef fishes should consider not only coral cover but also its spatial configuration. The present study also indicates that the introduction of a geospatial perspective derived from remote sensing has great potential to progress conventional ecological studies on coral reef fishes.

  3. Developing a multi-stressor gradient for coral reefs | Science ...

    Science.gov (United States)

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be established. Developing stressor gradients presents challenges including: stressors which co-occur but operate at different or unknown spatial and temporal scales, inconsistent data availability measuring stressor levels, and unknown effects on exposed reef biota. We are developing a generalized stressor model using Puerto Rico as case study location, to represent the cumulative spatial/temporal co-occurrence of multiple anthropogenic stressors. Our approach builds on multi-stressor research in streams and rivers, and focuses on three high-priority stressors identified by coral reef experts: land-based sources of pollution (LBSP), global climate change (GCC) related temperature anomalies, and fishing pressure. Landscape development intensity index, based on land use/land cover data, estimates human impact in watersheds adjacent to coral reefs and is proxy for LBSP. NOAA’s retrospective daily thermal anomaly data is used to determine GCC thermal anomalies. Fishing pressure is modeled using gear-specific and fishery landings data. Stressor data was adjusted to a common scale or weighted for relative importance, buffered to account for diminished impact further from source, and compared wit

  4. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs.

    Science.gov (United States)

    van Hooidonk, Ruben; Maynard, Jeffrey Allen; Manzello, Derek; Planes, Serge

    2014-01-01

    Coral reefs and the services they provide are seriously threatened by ocean acidification and climate change impacts like coral bleaching. Here, we present updated global projections for these key threats to coral reefs based on ensembles of IPCC AR5 climate models using the new Representative Concentration Pathway (RCP) experiments. For all tropical reef locations, we project absolute and percentage changes in aragonite saturation state (Ωarag) for the period between 2006 and the onset of annual severe bleaching (thermal stress >8 degree heating weeks); a point at which it is difficult to believe reefs can persist as we know them. Severe annual bleaching is projected to start 10-15 years later at high-latitude reefs than for reefs in low latitudes under RCP8.5. In these 10-15 years, Ωarag keeps declining and thus any benefits for high-latitude reefs of later onset of annual bleaching may be negated by the effects of acidification. There are no long-term refugia from the effects of both acidification and bleaching. Of all reef locations, 90% are projected to experience severe bleaching annually by 2055. Furthermore, 5% declines in calcification are projected for all reef locations by 2034 under RCP8.5, assuming a 15% decline in calcification per unit of Ωarag. Drastic emissions cuts, such as those represented by RCP6.0, result in an average year for the onset of annual severe bleaching that is ~20 years later (2062 vs. 2044). However, global emissions are tracking above the current worst-case scenario devised by the scientific community, as has happened in previous generations of emission scenarios. The projections here for conditions on coral reefs are dire, but provide the most up-to-date assessment of what the changing climate and ocean acidification mean for the persistence of coral reefs. © 2013 John Wiley & Sons Ltd.

  5. Assembly and alignment method for optimized spatial resolution of off-axis three-mirror fore optics of hyperspectral imager.

    Science.gov (United States)

    Kim, Youngsoo; Hong, Jinsuk; Choi, Byungin; Lee, Jong-Ung; Kim, Yeonsoo; Kim, Hyunsook

    2017-08-21

    A fore optics for the hyperspectral spectrometer is designed, manufactured, assembled, and aligned. The optics has a telecentric off-axis three-mirror configuration with a field of view wider than 14 degrees and an f-number as small as 2.3. The primary mirror (M1) and the secondary mirror (M2) are axially symmetric aspheric surfaces to minimize the sensitivity. The tertiary mirror (M3) is a decentered aspheric surface to minimize the coma and astigmatism aberration. The M2 also has a hole for the slit to maintain the optical performance while maximizing the telecentricity. To ensure the spatial resolution performance of the optical system, an alignment procedure is established to assemble and align the entrance slit of the spectrometer to the rear end of the fore optics. It has a great advantage to confirm and maintain the alignment integrity of the fore optics module throughout the alignment procedure. To perform the alignment procedure successfully, the precision movement control requirements are calculated and applied. As a result, the alignment goal of the RMS wave front error (WFE) to be smaller than 90 nm at all fields is achieved.

  6. Large-scale slope failure and active erosion occurring in the southwest Ryukyu fore-arc area

    Directory of Open Access Journals (Sweden)

    T. Matsumoto

    2001-01-01

    Full Text Available The southwestern Ryukyu area east of Taiwan Island is an arcuate boundary between Philippine Sea Plate and Eurasian Plate. The topographic features in the area are characterised by (1 a large-scale amphitheatre off Ishigaki Island, just on the estimated epicentre of the tsunamigenic earthquake in 1771, (2 lots of deep sea canyons located north of the amphitheatre, (3 15–20 km wide fore-arc basin, (4 15–20 km wide flat plane in the axial area of the trench, (5 E-W trending half grabens located on the fore-arc area, etc., which were revealed by several recent topographic survey expeditions. The diving survey by SHINKAI6500 in the fore-arc area on a spur located 120 km south of Ishigaki Island was carried out in 1992. The site is characterised dominantly by rough topography consisting of a series of steep slopes and escarpments. A part of the surface is eroded due to the weight of the sediment itself and consequently the basement layer is exposed. The site was covered with suspended particles during the diving, due to the present surface sliding and erosion. The same site was resurveyed in 1997 by ROV KAIKO, which confirmed the continuous slope failure taking place in the site. Another example that was observed by KAIKO expedition in 1997 is a largescale mud block on the southward dipping slope 80 km south of Ishigaki Island. This is apparently derived from the shallower part of the steep slope on the southern edge of the fan deposit south of Ishigaki Island. The topographic features suggest N-S or NE-SW tensional stress over the whole study area. In this sense, the relative motion between the two plates in this area is oblique to the plate boundary. So, the seaward migration of the plate boundary may occur due to the gravitational instability at the boundary of the two different lithospheric structures. This is evidenced by a lack of accretionary sediment on the fore-arc and the mechanism of a recent earthquake which occurred on 3 May 1998 in

  7. Bacterial communities associated with three Brazilian endemic reef corals (Mussismilia spp.) in a coastal reef of the Abrolhos shelf

    Science.gov (United States)

    de Castro, Alinne Pereira; Araújo, Samuel Dias; Reis, Alessandra M. M.; Pompeu, Maira; Hatay, Mark; de Moura, Rodrigo Leão; Francini-Filho, Ronaldo B.; Thompson, Fabiano L.; Krüger, Ricardo H.

    2013-11-01

    The diversity of bacterial communities associated with three Brazilian endemic reef corals from genus Mussismilia (M. hispida, M. braziliensis, and M. harttii) at a single site was assessed using 16S rRNA clone libraries. The study site, Pedra do Leste, is a coastal reef within the largest and richest South Atlantic coralline reef complex (Abrolhos Bank) and is subject to high fishing pressure, high sedimentation loads, and other land-based stressors. The three coral species are Neogene relicts with unique biological and morphological traits that enable them to survive relatively high sedimentation levels. Our results show that sequences affiliated with γ-Proteobacteria predominated, accounting for more than 60% of the examined sequences. Indeed, the most frequent species were related to Alteromonas, Marinomonas, Neptuniibacter, and Vibrio, which are copiotrophic microorganisms common in environments highly affected by anthropogenic stress. Principal component analysis revealed that bacterial communities of M. braziliensis and M. hispida were more similar to each other than to M. harttii-associated bacteria. Such pattern is likely related to distinct morphological properties of M. harttii, such as the existence of phaceloid colonies, in which polyps are not connected by soft tissue. This is the first investigation assessing the bacterial communities of the three Brazilian endemic Mussismilia species at the same location.

  8. Fish attraction to artificial reefs not always harmful: a simulation study.

    Science.gov (United States)

    Smith, James A; Lowry, Michael B; Suthers, Iain M

    2015-10-01

    The debate on whether artificial reefs produce new fish or simply attract existing fish biomass continues due to the difficulty in distinguishing these processes, and there remains considerable doubt as to whether artificial reefs are a harmful form of habitat modification. The harm typically associated with attraction is that fish will be easier to harvest due to the existing biomass aggregating at a newly deployed reef. This outcome of fish attraction has not progressed past an anecdotal form, however, and is always perceived as a harmful process. We present a numerical model that simulates the effect that a redistributed fish biomass, due to an artificial reef, has on fishing catch per unit effort (CPUE). This model can be used to identify the scenarios (in terms of reef, fish, and harvest characteristics) that pose the most risk of exploitation due to fish attraction. The properties of this model were compared to the long-standing predictions by Bohnsack (1989) on the factors that increase the risk or the harm of attraction. Simulations revealed that attraction is not always harmful because it does not always increase maximum fish density. Rather, attraction sometimes disperses existing fish biomass making them harder to catch. Some attraction can be ideal, with CPUE lowest when attraction leads to an equal distribution of biomass between natural and artificial reefs. Simulations also showed that the outcomes from attraction depend on the characteristics of the target fish species, such that transient or pelagic species are often at more risk of harmful attraction than resident species. Our findings generally agree with Bohnsack's predictions, although we recommend distinguishing "mobility" and "fidelity" when identifying species most at risk from attraction, as these traits had great influence on patterns of harvest of attracted fish biomass.

  9. Sediments and herbivory as sensitive indicators of coral reef degradation

    Directory of Open Access Journals (Sweden)

    Christopher H. R. Goatley

    2016-03-01

    Full Text Available Around the world, the decreasing health of coral reef ecosystems has highlighted the need to better understand the processes of reef degradation. The development of more sensitive tools, which complement traditional methods of monitoring coral reefs, may reveal earlier signs of degradation and provide an opportunity for pre-emptive responses. We identify new, sensitive metrics of ecosystem processes and benthic composition that allow us to quantify subtle, yet destabilizing, changes in the ecosystem state of an inshore coral reef on the Great Barrier Reef. Following severe climatic disturbances over the period 2011-2012, the herbivorous reef fish community of the reef did not change in terms of biomass or functional groups present. However, fish-based ecosystem processes showed marked changes, with grazing by herbivorous fishes declining by over 90%. On the benthos, algal turf lengths in the epilithic algal matrix increased more than 50% while benthic sediment loads increased 37-fold. The profound changes in processes, despite no visible change in ecosystem state, i.e., no shift to macroalgal dominance, suggest that although the reef has not undergone a visible regime-shift, the ecosystem is highly unstable, and may sit on an ecological knife-edge. Sensitive, process-based metrics of ecosystem state, such as grazing or browsing rates thus appear to be effective in detecting subtle signs of degradation and may be critical in identifying ecosystems at risk for the future.

  10. Reef-scale trends in Florida Acropora spp. abundance and the effects of population enhancement

    Directory of Open Access Journals (Sweden)

    Margaret W. Miller

    2016-09-01

    Full Text Available Since the listing of Acropora palmata and A. cervicornis under the US Endangered Species Act in 2006, increasing investments have been made in propagation of listed corals (primarily A. cervicornis, A. palmata to a much lesser extent in offshore coral nurseries and outplanting cultured fragments to reef habitats. This investment is superimposed over a spatiotemporal patchwork of ongoing disturbances (especially storms, thermal bleaching, and disease as well as the potential for natural population recovery. In 2014 and 2015, we repeated broad scale (>50 ha, low precision Acropora spp. censuses (i.e., direct observation by snorkelers documented via handheld GPS originally conducted in appropriate reef habitats during 2005–2007 to evaluate the trajectory of local populations and the effect of population enhancement. Over the decade-long study, A. palmata showed a cumulative proportional decline of 0.4 –0.7x in colony density across all sites, despite very low levels of outplanting at some sites. A. cervicornis showed similar proportional declines at sites without outplanting. In contrast, sites that received A. cervicornis outplants showed a dramatic increase in density (over 13x. Indeed, change in A. cervicornis colony density was significantly positively correlated with cumulative numbers of outplants across sites. This study documents a substantive reef-scale benefit of Acropora spp. population enhancement in the Florida Keys, when performed at adequate levels, against a backdrop of ongoing population decline.

  11. Assessing land use, sedimentation, and water quality stressors as predictors of coral reef condition in St. Thomas, U.S. Virgin Islands.

    Science.gov (United States)

    Oliver, L M; Fisher, W S; Fore, L; Smith, A; Bradley, P

    2018-03-13

    Coral reef condition on the south shore of St. Thomas, U.S. Virgin Islands, was assessed at various distances from Charlotte Amalie, the most densely populated city on the island. Human influence in the area includes industrial activity, wastewater discharge, cruise ship docks, and impervious surfaces throughout the watershed. Anthropogenic activity was characterized using a landscape development intensity (LDI) index, sedimentation threat (ST) estimates, and water quality (WQ) impairments in the near-coastal zone. Total three-dimensional coral cover, reef rugosity, and coral diversity had significant negative coefficients for LDI index, as did densities of dominant species Orbicella annularis, Orbicella franksi, Montastraea cavernosa, Orbicella faveolata, and Porites porites. However, overall stony coral colony density was not significantly correlated with stressors. Positive relationships between reef rugosity and ST, between coral diversity and ST, and between coral diversity and WQ were unexpected because these stressors are generally thought to negatively influence coral growth and health. Sponge density was greater with higher disturbance indicators (ST and WQ), consistent with reports of greater resistance by sponges to degraded water quality compared to stony corals. The highest FoRAM (Foraminifera in Reef Assessment and Monitoring) indices indicating good water quality were found offshore from the main island and outside the harbor. Negative associations between stony coral metrics and LDI index have been reported elsewhere in the Caribbean and highlight LDI index potential as a spatial tool to characterize land-based anthropogenic stressor gradients relevant to coral reefs. Fewer relationships were found with an integrated stressor index but with similar trends in response direction.

  12. Zooplankton From a Reef System Under the Influence of the Amazon River Plume

    Directory of Open Access Journals (Sweden)

    Sigrid Neumann-Leitão

    2018-03-01

    Full Text Available At the mouth of the Amazon River, a widespread carbonate ecosystem exists below the river plume, generating a hard-bottom reef (∼9500 km2 that includes mainly large sponges but also rhodolith beds. The mesozooplankton associated with the pelagic realm over the reef formation was characterized, considering the estuarine plume and oceanic influence. Vertical hauls were carried out using a standard plankton net with 200 μm mesh size during September 2014. An indicator index was applied to express species importance as ecological indicators in community. Information on functional traits was gathered for the most abundant copepod species. Overall, 179 zooplankton taxa were recorded. Copepods were the richest (92 species, most diverse and most abundant group, whereas meroplankton were rare and less abundant. Species diversity (>3.0 bits.ind-1 and evenness (>0.6 were high, indicating a complex community. Small holoplanktonic species dominated the zooplankton, and the total density varied from 107.98 ind. m-3 over the reef area to 2,609.24 ind. m-3 in the estuarine plume, with a significant difference between coastal and oceanic areas. The most abundant copepods were the coastal species ithona plumifera and Clausocalanus furcatus and early stages copepodites of Paracalanidae. The holoplanktonic Oikopleura, an important producer of mucous houses, was very abundant on the reefs. The indicator species index revealed three groups: (1 indicative of coastal waters under the influence of the estuarine plume [Euterpina acutifrons, Parvocalanus crassirostris, Oikopleura (Vexillaria dioica and Hydromedusae]; (2 characterized coastal and oceanic conditions (Clausocalanus; (3 characterized the reef system (O. plumifera. Two major copepods functional groups were identified and sorted according to their trophic strategy and coastal-oceanic distribution. The species that dominated the coastal area and the area over the rhodolith beds are indicators of the estuarine

  13. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    Science.gov (United States)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate

  14. High spatial variability of coral, sponges and gorgonian assemblages in a well preserved reef

    Directory of Open Access Journals (Sweden)

    Patricia González-Díaz

    2010-06-01

    Full Text Available The main goal of this research was to obtain baseline field data of the composition of sponges, corals, and gorgonian assemblages that can be used as a reference for future analyses of anthropogenic impact. We tested the hypothesis that relatively homogeneous and well preserved reef units can present notable natural variability in the composition of their communities which are unassociated with changes in land proximity or a human impact gradient. Research was carried out in July 2006 at Los Colorados reef, located in the northwestern region of Pinar del Río Province, Cuba at 12 sampling stations. The biotopes selected were crest, terrace edge and spur and grove. Ecological indicators were diversity of corals, species composition, density of corals, hydrocorals, gorgonians and sponges, and density of selected coral species. A total of 2659 colonies of scleractineans corals representing 36 species were counted. The most abundant species in the crest biotope were Millepora alcicornis, Acropora palmata and Porites astreoides; in the terrace edge and spur and grove, the most abundant species were Siderastrea siderea, Stephanocoenia intersepta, Porites astreoides, Agaricia agaricites and Montastraea cavernosa. We found differences among sites for several indicators (e.g. density of corals, sponges and gorgonians and for selected species, but they could not be associated to any gradient of land influence or human impact. Therefore, sites inside a relatively homogeneous reef unit can present notable natural differences in the composition of their communities. Rev. Biol. Trop. 58 (2: 621-634. Epub 2010 June 02.El objetivo principal de la investigación fue obtener una línea base de la composición de las comunidades de esponjas, corales y gorgonias que pueda ser utilizada como referencia para futuros análisis de impacto antrópico. Nuestra hipótesis es que un arrecife relativamente homogéneo y bien conservado, presenta una variabilidad natural

  15. A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing.

    Science.gov (United States)

    Liu, Pi-Jen; Shao, Kwang-Tsao; Jan, Rong-Quen; Fan, Tung-Yung; Wong, Saou-Lien; Hwang, Jiang-Shiou; Chen, Jen-Ping; Chen, Chung-Chi; Lin, Hsing-Juh

    2009-09-01

    Several coral reefs of Nanwan Bay, Taiwan have recently undergone shifts to macroalgal or sea anemone dominance. Thus, a mass-balance trophic model was constructed to analyze the structure and functioning of the food web. The fringing reef model was comprised of 18 compartments, with the highest trophic level of 3.45 for piscivorous fish. Comparative analyses with other reef models demonstrated that Nanwan Bay was similar to reefs with high fishery catches. While coral biomass was not lower, fish biomass was lower than those of reefs with high catches. Consequently, the sums of consumption and respiratory flows and total system throughput were also decreased. The Nanwan Bay model potentially suggests an overfished status in which the mean trophic level of the catch, matter cycling, and trophic transfer efficiency are extremely reduced.

  16. Synergistic impacts of global warming on the resilience of coral reefs

    Science.gov (United States)

    Bozec, Yves-Marie; Mumby, Peter J.

    2015-01-01

    Recent epizootics have removed important functional species from Caribbean coral reefs and left communities vulnerable to alternative attractors. Global warming will impact reefs further through two mechanisms. A chronic mechanism reduces coral calcification, which can result in depressed somatic growth. An acute mechanism, coral bleaching, causes extreme mortality when sea temperatures become anomalously high. We ask how these two mechanisms interact in driving future reef state (coral cover) and resilience (the probability of a reef remaining within a coral attractor). We find that acute mechanisms have the greatest impact overall, but the nature of the interaction with chronic stress depends on the metric considered. Chronic and acute stress act additively on reef state but form a strong synergy when influencing resilience by intensifying a regime shift. Chronic stress increases the size of the algal basin of attraction (at the expense of the coral basin), whereas coral bleaching pushes the system closer to the algal attractor. Resilience can change faster—and earlier—than a change in reef state. Therefore, we caution against basing management solely on measures of reef state because a loss of resilience can go unnoticed for many years and then become disproportionately more difficult to restore.

  17. Coral health on reefs near mining sites in New Caledonia.

    Science.gov (United States)

    Heintz, T; Haapkylä, J; Gilbert, A

    2015-07-23

    Coral health data are poorly documented in New Caledonia, particularly from reefs chronically subject to anthropogenic and natural runoff. We investigated patterns of coral disease and non-disease conditions on reefs situated downstream of mining sites off the coast of New Caledonia. Surveys were conducted in March 2013 at 2 locations along the west coast and 2 locations along the east coast of the main island. Only 2 coral diseases were detected: growth anomalies and white syndrome. The most prevalent signs of compromised health at each location were sediment damage and algal overgrowth. These results support earlier findings that sedimentation and turbidity are major threats to in-shore reefs in New Caledonia. The Poritidae-dominated west coast locations were more subject to sediment damage, algal overgrowth and growth anomalies compared to the Acroporidae-dominated east coast locations. If growth form and resistance of coral hosts influence these results, differences in environmental conditions including hydro-dynamism between locations may also contribute to these outputs. Our results highlight the importance of combining coral health surveys with measurements of coral cover when assessing the health status of a reef, as reefs with high coral cover may have a high prevalence of corals demonstrating signs of compromised health.

  18. Habitat-specific density and diet of rapidly expanding invasive red lionfish, Pterois volitans, populations in the northern Gulf of Mexico.

    Science.gov (United States)

    Dahl, Kristen A; Patterson, William F

    2014-01-01

    Invasive Indo-Pacific red lionfish, Pterois volitans, were first reported in the northern Gulf of Mexico (nGOM) in summer 2010. To examine potential impacts on native reef fish communities, lionfish density and size distributions were estimated from fall 2010 to fall 2013 with a remotely operated vehicle at natural (n = 16) and artificial (n = 22) reef sites. Lionfish (n = 934) also were sampled via spearfishing to examine effects of habitat type, season, and fish size on their diet and trophic ecology. There was an exponential increase in lionfish density at both natural and artificial reefs over the study period. By fall 2013, mean lionfish density at artificial reefs (14.7 fish 100 m(-2)) was two orders of magnitude higher than at natural reefs (0.49 fish 100 m(-2)), and already was among the highest reported in the western Atlantic. Lionfish diet was significantly different among habitats, seasons, and size classes, with smaller (lionfish sampled from artificial reefs being composed predominantly of non-reef associated prey. The ontogenetic shift in lionfish feeding ecology was consistent with δ15N values of white muscle tissue that were positively related to total length. Overall, diet results indicate lionfish are generalist mesopredators in the nGOM that become more piscivorous at larger size. However, lionfish diet was much more varied at artificial reef sites where they clearly were foraging on open substrates away from reef structure. These results have important implications for tracking the lionfish invasion in the nGOM, as well as estimating potential direct and indirect impacts on native reef fish communities in this region.

  19. Population Structure of Acanthaster Planci on the Reef Flat at the Southern Part of Bunaken Island

    OpenAIRE

    Napitupulu, Patritia; Tioho, Hanny; Windarto, Agung

    2013-01-01

    The information on population structure of Acanthaster planci in Bunaken National Park (BNP) is urgent to be presented in order to be considered in decision making especially on coral reef management in BNP. The objectives of this study was to examine the population structure of A. planci, represented by the diameter and weight, number of arms, while the density, distribution and types of coral predation by reef animals in the Southern part of Bunaken Island also observed. Data were collect...

  20. Eddy covariance measurement of the spatial heterogeneity of surface energy exchanges over Heron Reef, Great Barrier Reef, Australia

    Science.gov (United States)

    MacKellar, M.; McGowan, H. A.; Phinn, S. R.

    2011-12-01

    Coral reefs cover 2.8 to 6.0 x 105 km2 of the Earth's surface and are warm, shallow regions that are believed to contribute enhanced sensible and latent heat to the atmosphere, relative to the surrounding ocean. To predict the impact of climate variability on coral reefs and their weather and climate including cloud, winds, rainfall patterns and cyclone genesis, accurate parameterisation of air-sea energy exchanges over coral reefs is essential. This is also important for the parameterisation and validation of regional to global scale forecast models to improve prediction of tropical and sub-tropical marine and coastal weather. Eddy covariance measurements of air-sea fluxes over coral reefs are rare due to the complexities of installing instrumentation over shallow, tidal water. Consequently, measurements of radiation and turbulent flux data for coral reefs have been captured remotely (satellite data) or via single measurement sites downwind of coral reefs (e.g. terrestrial or shipboard instrumentation). The resolution of such measurements and those that have been made at single locations on reefs may not capture the spatial heterogeneity of surface-atmosphere energy exchanges due to the different geomorphic and biological zones on coral reefs. Accordingly, the heterogeneity of coral reefs with regard to substrate, benthic communities and hydrodynamic processes are not considered in the characterization of the surface radiation energy flux transfers across the water-atmosphere interface. In this paper we present a unique dataset of concurrent in situ eddy covariance measurements made on instrumented pontoons of the surface energy balance over different geomorphic zones of a coral reef (shallow reef flat, shallow and deep lagoons). Significant differences in radiation transfers and air-sea turbulent flux exchanges over the reef were highlighted, with higher Bowen ratios over the shallow reef flat. Increasing wind speed was shown to increase flux divergence between

  1. Land-based nutrient enrichment of the Buccoo Reef Complex and fringing coral reefs of Tobago, West Indies

    International Nuclear Information System (INIS)

    Lapointe, Brian E.; Langton, Richard; Bedford, Bradley J.; Potts, Arthur C.; Day, Owen; Hu, Chuanmin

    2010-01-01

    Tobago's fringing coral reefs (FR) and Buccoo Reef Complex (BRC) can be affected locally by wastewater and stormwater, and regionally by the Orinoco River. In 2001, seasonal effects of these inputs on water-column nutrients and phytoplankton (Chl a), macroalgal C:N:P and δ 15 N values, and biocover at FR and BRC sites were examined. Dissolved inorganic nitrogen (DIN, particularly ammonium) increased and soluble reactive phosphorus (SRP) decreased from the dry to wet season. Wet season satellite and Chl a data showed that Orinoco runoff reaching Tobago contained chromophoric dissolved organic matter (CDOM) but little Chl a, suggesting minimal riverine nutrient transport to Tobago. C:N ratios were lower (16 vs. 21) and macroalgal δ 15 N values higher (6.6 per mille vs. 5.5 per mille ) in the BRC vs. FR, indicating relatively more wastewater N in the BRC. High macroalgae and low coral cover in the BRC further indicated that better wastewater treatment could improve the health of Tobago's coral reefs.

  2. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    Science.gov (United States)

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  3. Assessing threats from coral and crustose coralline algae disease on the reefs of New Caledonia

    Science.gov (United States)

    Aeby, Greta S.; Tribollet, Aline; Lasne, Gregory; Work, Thierry M.

    2015-01-01

    The present study reports the results of the first quantitative survey of lesions on coral and crustose coralline algae (CCA) on reefs in the lagoon of New Caledonia. Surveys on inshore and offshore reefs were conducted at 13 sites in 2010, with 12 sites resurveyed in 2013. Thirty coral diseases affecting 15 coral genera were found, with low overall disease prevalence (<1%). This study extends the known distribution of growth anomalies to the coral genera Platygyraand Hydnophora, endolithic hypermycosis to Platygyra, Leptoria and Goniastrea and extends the geographic range of three CCA diseases. We found the first trematode infection in Porites outside of Hawaii. Disease prevalence differed among coral genera, with Porites having more lesions, and Acropora and Montipora fewer lesions, than expected on the basis of field abundance. Inshore reefs had a lower coral-colony density, species diversity and reduced CCA cover than did the offshore reefs. Disease prevalence was significantly higher on inshore reefs in 2013 than in 2010, but did not change on offshore reefs. The potential ecological impact of individual coral diseases was assessed using an integrative-scoring and relative-ranking scheme based on average frequency of occurrence, prevalence and estimated degree of virulence. The top-five ranked diseases were all tissue-loss diseases.

  4. Coral Reef and Hardbottom from Unified Florida Reef Tract Map (NODC Accession 0123059)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a subset of the Unified Map representing Coral reef and Hardbottom areas. Version 1.1 - December 2013. The Unified Florida Reef Tract Map (Unified...

  5. Relative abundance of resident versus oceanic zooplankton over an interisland reef

    International Nuclear Information System (INIS)

    Alldredge, A.L.; King, J.M.

    1979-01-01

    Zooplankton were collected from various substrate types. Densities were determined and results indicated that demersal plankton were abundant on the Japtan reef flat. Behavioral mechanisms were exhibited by many organisms including swimming near the substrate or in the lees of coral heads. Demersal plankton may provide an important food source for nocturnally foraging fishes

  6. Sabellaria spinulosa (Polychaeta, Annelida) reefs in the Mediterranean Sea: Habitat mapping, dynamics and associated fauna for conservation management

    Science.gov (United States)

    Gravina, Maria Flavia; Cardone, Frine; Bonifazi, Andrea; Bertrandino, Marta Simona; Chimienti, Giovanni; Longo, Caterina; Marzano, Carlotta Nonnis; Moretti, Massimo; Lisco, Stefania; Moretti, Vincenzo; Corriero, Giuseppe; Giangrande, Adriana

    2018-01-01

    Bio-constructions by Sabellaria worms play a key functional role in the coastal ecosystems being an engineer organism and for this reason are the object of protection. The most widespread reef building species along Atlantic and Mediterranean coasts is S. alveolata (L.), while the aggregations of S. spinulosa are typically limited to the North Sea coasts. This paper constitutes the first detailed description of unusual large S. spinulosa reefs in the Mediterranean Sea. Defining current health status and evaluating the most important threats and impacts is essential to address conservation needs and design management plans for these large biogenic structures. Present knowledge on Mediterranean reefs of S. alveolata is fragmentary compared to Northeast Atlantic reefs, and concerning S. spinulosa, this paper represents a focal point in the knowledge on Mediterranean reefs of this species. A one-year study on temporal changes in reef structure and associated fauna is reported. The annual cycle of S. spinulosa reef shows a spawning event in winter-early spring, a period of growth and tubes aggregation from spring-early summer to autumn and a degeneration phase in winter. The variations exhibited in density of the worm aggregation and the changes in the reef elevation highlight a decline and regeneration of the structure over a year. The many ecological roles of the S. spinulosa reef were mainly in providing a diversity of microhabitats hosting hard and sandy bottom species, sheltering rare species, and producing biogenic structures able to provide coastal protection. The Mediterranean S. spinulosa reef does not shelter a distinctive associated fauna; however the richness in species composition underscores the importance of the reef as a biodiversity hot-spot. Finally, the roles of the biogenic formations and their important biotic and physical dynamics support the adoption of strategies for conservation of Mediterranean S.spinulosa reefs, according to the aims of the

  7. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagress-reef continuum: stable isotope and gut-content analysis

    NARCIS (Netherlands)

    Cocheret de la Morinière, E.; Pollux, B.J.A.; Nagelkerken, I.; Hemminga, M.A.; Huiskes, A.H.L.; Van der Velde, G.

    2003-01-01

    Juveniles of a number of reef fish species develop in shallow-water 'nursery' habitats such as mangroves and seagrass beds, and then migrate to the coral reef. This implies that some reef fish species are distributed over the mangrove-seagrass-reef continuum in subpopulations with different size

  8. Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia

    Science.gov (United States)

    Uthicke, S.; Thompson, A.; Schaffelke, B.

    2010-03-01

    Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.

  9. Lake sturgeon response to a spawning reef constructed in the Detroit river

    Science.gov (United States)

    Roseman, Edward F.; Manny, B.; Boase, J.; Child, M.; Kennedy, G.; Craig, J.; Soper, K.; Drouin, R.

    2011-01-01

    collected during May and June 2009. Additional eggs and spawning-ready adults were found in 2010 (no larval sampling occurred in 2010) as well as collection of three age-0 juvenile lake sturgeon in bottom trawls fished downstream of the reef during July 2010. Spawning lake sturgeon showed no repeatable preference for any of the four particular substrate types but showed a high degree of preference for the island side of the channel, where faster water current velocities occurred. In 2009, overall lake sturgeon egg densities across all replicates averaged 102 m-2 and seven larvae were found in night drift-net samples. In 2010, average lake sturgeon egg density was 12 m-2 and three age-0 lake sturgeon averaging 120 mm TL were collected in bottom trawls in deepwater (∼8 m depth) downstream from the constructed reef. These results demonstrated successful reproduction by lake sturgeon on a man-made reef and suggested that additions and improvements to fish spawning habitat could enhance reproduction and early life history survival of lake sturgeon in the Detroit River.

  10. Coral identity underpins architectural complexity on Caribbean reefs.

    Science.gov (United States)

    Alvarez-Filip, Lorenzo; Dulvy, Nicholas K; Côte, Isabelle M; Watkinson, Andrew R; Gill, Jennifer A

    2011-09-01

    The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.

  11. Understanding Resilience in a Vulnerable Industry: the Case of Reef Tourism in Australia

    Directory of Open Access Journals (Sweden)

    Duan Biggs

    2011-03-01

    Full Text Available Understanding the resilience of vulnerable sectors of social-ecological systems is critical in an era of escalating global change. The coral reef tourism sector is highly vulnerable not only to ecological effects of climate change and other anthropogenic disturbances on reefs, but also to shocks such as economic recession and energy price escalation. Commercial tourism enterprises are key players in reef tourism in Australia and elsewhere. However, the factors that confer resilience to reef-based tourism enterprises, or the reef tourism sector more broadly, in the face of large disturbances have not been investigated to date. This paper empirically examines the perceived resilience of reef tourism enterprises on Australia's Great Barrier Reef to large disturbances or shocks. Binary logistic regression analysis of two measures of enterprise resilience demonstrates the importance of human capital in strengthening enterprise resilience. Lifestyle identity, measured as the extent to which owners and senior managers are active in reef tourism as a lifestyle choice, is positively related to enterprise resilience. Finally, reef tourism enterprises indicate that financial and marketing support are the most important actions that government can take to support enterprises in the face of a large shock.

  12. Hurricanes, coral reefs and rainforests: resistance, ruin and recovery in the Caribbean

    Science.gov (United States)

    Lugo, Ariel E.; Rogers, Caroline S.; Nixon, Scott W.

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some reefs from fully developed hurricane waves. While storms may produce dramatic local reef damage, they appear to have little impact on the ability of coral reefs to provide food or habitat for fish and other animals. Rainforests experience an enormous increase in wind energy during hurricanes with dramatic structural changes in the vegetation. The resulting changes in forest microclimate are larger than those on reefs and the loss of fruit, leaves, cover, and microclimate has a great impact on animal populations. Recovery of many aspects of rainforest structure and function is rapid, though there may be long-term changes in species composition. While resistance and repair have maintained reefs and rainforests in the past, human impacts may threaten their ability to survive.

  13. CaCO3 dissolution by holothurians (sea cucumber): a case study from One Tree Reef, Great Barrier Reef

    Science.gov (United States)

    Schneider, K.; Silverman, J.; Kravitz, B.; Woolsey, E.; Eriksson, H.; Schneider-Mor, A.; Barbosa, S.; Rivlin, T.; Byrne, M.; Caldeira, K.

    2012-12-01

    Holothurians (sea cucumbers) are among the largest and most important deposit feeder in coral reefs. They play a role in nutrient and CaCO3 cycling within the reef structure. As a result of their digestive process they secrete alkalinity due to CaCO3 dissolution and organic matter degradation forming CO2 and ammonium. In a survey at station DK13 on One Three Reef we found that the population density of holothurians was > 1 individual m-2. The dominant sea cucumber species Holothuria leucospilota was collected from DK13. The increase in alkalinity due to CaCO3 dissolution in aquaria incubations was measured to be 47±7 μmol kg-1 in average per individual. Combining this dissolution rate with the sea cucumbers concentrations at DK13 suggest that they may account for a dissolution rate of 34.9±17.8 mmol m-2 day-1, which is equivalent to about half of night time community dissolution measured in DK13. This indicates that in reefs where the sea cucumber population is healthy and protected from fishing they can be locally important in the CaCO3 cycle. Preliminary result suggests that the CaCO3 dissolution rates are not affected by the chemistry of the sea water they are incubated in. Measurements of the empty digestive track volume of two sea cucumbers H. atra and Stichopus herrmanni were 36 ± 4 ml and 151 ± 14 ml, respectively. Based on these measurements it is estimated that these species process 19 ± 2kg and 80 ± 7kg CaCO3 sand yr-1 per individual, respectively. The annual dissolution rates of H. atra and S. herrmanni are 6.5±1.9g and 9.6±1.4g, respectively, suggest that 0.05±0.02% and 0.1±0.02% of the CaCO3 processed through their gut annually is dissolved. During the incubations the CaCO3 dissolution was 0.07±0.01%, 0.04±0.01% and 0.21±0.05% of the fecal casts for H. atra, H. leucospilota and S. herrmanni, respectively. Our result that the primary parameter determining the CaCO3 dissolution by sea cucumber is the amount of carbonate send in their gut

  14. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation.

    Science.gov (United States)

    Barnett, Adam; Abrantes, Kátya G; Seymour, Jamie; Fitzpatrick, Richard

    2012-01-01

    Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away) and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.

  15. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation.

    Directory of Open Access Journals (Sweden)

    Adam Barnett

    Full Text Available Although marine protected areas (MPAs are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (~14 km away and one grey reef shark completed a round trip of ~250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef.

  16. Residency and Spatial Use by Reef Sharks of an Isolated Seamount and Its Implications for Conservation

    Science.gov (United States)

    Barnett, Adam; Abrantes, Kátya G.; Seymour, Jamie; Fitzpatrick, Richard

    2012-01-01

    Although marine protected areas (MPAs) are a common conservation strategy, these areas are often designed with little prior knowledge of the spatial behaviour of the species they are designed to protect. Currently, the Coral Sea area and its seamounts (north-east Australia) are under review to determine if MPAs are warranted. The protection of sharks at these seamounts should be an integral component of conservation plans. Therefore, knowledge on the spatial ecology of sharks at the Coral Sea seamounts is essential for the appropriate implementation of management and conservation plans. Acoustic telemetry was used to determine residency, site fidelity and spatial use of three shark species at Osprey Reef: whitetip reef sharks Triaenodon obesus, grey reef sharks Carcharhinus amblyrhynchos and silvertip sharks Carcharhinus albimarginatus. Most individuals showed year round residency at Osprey Reef, although five of the 49 individuals tagged moved to the neighbouring Shark Reef (∼14 km away) and one grey reef shark completed a round trip of ∼250 km to the Great Barrier Reef. Additionally, individuals of white tip and grey reef sharks showed strong site fidelity to the areas they were tagged, and there was low spatial overlap between groups of sharks tagged at different locations. Spatial use at Osprey Reef by adult sharks is generally restricted to the north-west corner. The high residency and limited spatial use of Osprey Reef suggests that reef sharks would be highly vulnerable to targeted fishing pressure and that MPAs incorporating no-take of sharks would be effective in protecting reef shark populations at Osprey and Shark Reef. PMID:22615782

  17. Precise U-Pb dating of Cenozoic tropical reef carbonates: Linking the evolution of Cenozoic Caribbean reef carbonates to climatic and environmental changes.

    Science.gov (United States)

    Silva-Tamayo, J. C.; Ducea, M.; Cardona, A.; Montes, C.; Rincon, D.; Machado, A.; Flores, A.; Sial, A.; Pardo, A.; Niño, H.; Ramirez, V.; Jaramillo, C.; Zapata, P.; Barrios, L.; Rosero, S.; Bayona, G.; Zapata, V.

    2012-04-01

    Coral reefs are very diverse and productive ecosystems; and have long been the base of the economic activity of several countries along the tropics. Because coral reefs are very sensitive to environmental changes and their adaptation to changing stressing conditions is very slow, the combination of current rapid environmental changes and the additional stresses created by growing human populations (i.e. rapid anthropogenic CO2 additions to the atmosphere),plus the economic and coastal development may become a lethal synergy. The ongoing acidification of modern oceans is a major issue of concern because it may have serious consequences for the survival of shelly marine invertebrates as the 21st century progresses. Ocean Acidification (OA) is now being driven by rapid CO2 release to the atmosphere. Although evidences of the devastating effects of oceanic acidification in the marine biota are provided by the decreased rate of coral skeleton production and the reduced ability of algae and free-swimming zooplankton to maintain protective shells, among others, predicting the effects of oceanic acidification on the future oceans (2050-2100) has remained rather difficult because the atmospheric CO2 sequestration by the global oceans occurs in geologic time scales. Important changes in the atmospheric pCO2 and major climatic/environmental events seem to have controlled the evolution of the Cenozoic equatorial-tropical carbonates r1-10. Rapid additions of green house gases to the atmosphere occurred during the Paleocene-Eocene transition and would have promoted several other events of global warming until the early Oligocene (i.e. the Eocene thermal maximum). These periods of high greenhouse gases concentrations would have also resulted on OA, affecting the reef carbonate ecology and tropical carbonate budgets. Relating temporal variations in the Cenozoic reef carbonate structure, ecology and factory is vital to help understanding and predicting the future effects of the

  18. Thermal Consolidation of Dredge Sand for Artificial Reef Formations

    Science.gov (United States)

    Trevino, Alexandro

    Coral Reef ecosystems have degraded over years due to a variety of environmental issues such as ocean acidification. The continuous stress has detrimental effects on coral reef ecosystems that can possibly lead to the loss of the ecosystem. Our research aims to construct a prototype of an artificial reef by consolidating dredge sand from the ship channels of South Texas. Consolidation is achieved through an aluminum polytetrafluoroethylene self-propagating high temperature process that yields a solid formation to mimic the physical properties of coral reef structures. Using thermodynamic calculations, the variation of initial components was determined that reached an adiabatic temperature with a maximum peak of 2000 K. The self-sustaining reaction front was obtained to rigidly consolidate the dredge sand only at composition concentrations exceeding a critical value of 24 wt.% Al, and 3 wt.% PTFE. The combustion synthesis produced a consolidated formation with a hardened and porous structure.

  19. Spatial and tidal variation in food supply to shallow cold-water coral reefs of the Mingulay Reef complex (Outer Hebrides, Scotland)

    NARCIS (Netherlands)

    Duineveld, G.C.A.; Jeffreys, R.M.; Lavaleye, M.S.S.; Davies, A.J.; Bergman, M.J.N.; Watmough, T.; Witbaard, R.

    2012-01-01

    The finding of a previously undescribed cold-water coral reef (Banana Reef) in the Scottish Mingulay reef complex, with denser coverage of living Lophelia pertusa than the principal Mingulay 1 Reef, was the incentive for a comparative study of the food supply to the 2 reefs. Suspended particulate

  20. Reduced Diversity and High Sponge Abundance on a Sedimented Indo-Pacific Reef System: Implications for Future Changes in Environmental Quality

    Science.gov (United States)

    Powell, Abigail; Smith, David J.; Hepburn, Leanne J.; Jones, Timothy; Berman, Jade; Jompa, Jamaluddin; Bell, James J.

    2014-01-01

    Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning. PMID:24475041

  1. Assessment of Acropora palmata in the Mesoamerican Reef System.

    Science.gov (United States)

    Rodríguez-Martínez, Rosa E; Banaszak, Anastazia T; McField, Melanie D; Beltrán-Torres, Aurora U; Álvarez-Filip, Lorenzo

    2014-01-01

    The once-dominant shallow reef-building coral Acropora palmata has suffered drastic geographical declines in the wider Caribbean from a disease epidemic that began in the late 1970s. At present there is a lack of quantitative data to determine whether this species is recovering over large spatial scales. Here, we use quantitative surveys conducted in 107 shallow-water reef sites between 2010 and 2012 to investigate the current distribution and abundance of A. palmata along the Mesoamerican Reef System (MRS). Using historical data we also explored how the distribution and abundance of this species has changed in the northern portion of the MRS between 1985 and 2010-2012. A. palmata was recorded in only a fifth of the surveyed reef sites in 2010-2012. In the majority of these reef sites the presence of A. palmata was patchy and rare. Only one site (Limones reef), in the northernmost portion of the MRS, presented considerably high A. palmata cover (mean: 34.7%, SD: 24.5%). At this site, the size-frequency distribution of A. palmata colonies was skewed towards small colony sizes; 84% of the colonies were healthy, however disease prevalence increased with colony size. A comparison with historical data showed that in the northern portion of the MRS, in 1985, A. palmata occurred in 74% of the 31 surveyed sites and had a mean cover of 7.7% (SD = 9.0), whereas in 2010-2012 this species was recorded in 48% of the sites with a mean cover of 2.9% (SD = 7.5). A. palmata populations along the MRS are failing to recover the distribution and abundance they had prior to the 1980s. Investigating the biological (e.g., population genetics) and environmental conditions (e.g., sources of stress) of the few standing reefs with relatively high A. palmata cover is crucial for the development of informed restoration models for this species.

  2. Assessment of Acropora palmata in the Mesoamerican Reef System

    Science.gov (United States)

    Rodríguez-Martínez, Rosa E.; Banaszak, Anastazia T.; McField, Melanie D.; Beltrán-Torres, Aurora U.; Álvarez-Filip, Lorenzo

    2014-01-01

    The once-dominant shallow reef-building coral Acropora palmata has suffered drastic geographical declines in the wider Caribbean from a disease epidemic that began in the late 1970s. At present there is a lack of quantitative data to determine whether this species is recovering over large spatial scales. Here, we use quantitative surveys conducted in 107 shallow-water reef sites between 2010 and 2012 to investigate the current distribution and abundance of A. palmata along the Mesoamerican Reef System (MRS). Using historical data we also explored how the distribution and abundance of this species has changed in the northern portion of the MRS between 1985 and 2010–2012. A. palmata was recorded in only a fifth of the surveyed reef sites in 2010–2012. In the majority of these reef sites the presence of A. palmata was patchy and rare. Only one site (Limones reef), in the northernmost portion of the MRS, presented considerably high A. palmata cover (mean: 34.7%, SD: 24.5%). At this site, the size-frequency distribution of A. palmata colonies was skewed towards small colony sizes; 84% of the colonies were healthy, however disease prevalence increased with colony size. A comparison with historical data showed that in the northern portion of the MRS, in 1985, A. palmata occurred in 74% of the 31 surveyed sites and had a mean cover of 7.7% (SD = 9.0), whereas in 2010–2012 this species was recorded in 48% of the sites with a mean cover of 2.9% (SD = 7.5). A. palmata populations along the MRS are failing to recover the distribution and abundance they had prior to the 1980s. Investigating the biological (e.g., population genetics) and environmental conditions (e.g., sources of stress) of the few standing reefs with relatively high A. palmata cover is crucial for the development of informed restoration models for this species. PMID:24763319

  3. Assessment of Acropora palmata in the Mesoamerican Reef System.

    Directory of Open Access Journals (Sweden)

    Rosa E Rodríguez-Martínez

    Full Text Available The once-dominant shallow reef-building coral Acropora palmata has suffered drastic geographical declines in the wider Caribbean from a disease epidemic that began in the late 1970s. At present there is a lack of quantitative data to determine whether this species is recovering over large spatial scales. Here, we use quantitative surveys conducted in 107 shallow-water reef sites between 2010 and 2012 to investigate the current distribution and abundance of A. palmata along the Mesoamerican Reef System (MRS. Using historical data we also explored how the distribution and abundance of this species has changed in the northern portion of the MRS between 1985 and 2010-2012. A. palmata was recorded in only a fifth of the surveyed reef sites in 2010-2012. In the majority of these reef sites the presence of A. palmata was patchy and rare. Only one site (Limones reef, in the northernmost portion of the MRS, presented considerably high A. palmata cover (mean: 34.7%, SD: 24.5%. At this site, the size-frequency distribution of A. palmata colonies was skewed towards small colony sizes; 84% of the colonies were healthy, however disease prevalence increased with colony size. A comparison with historical data showed that in the northern portion of the MRS, in 1985, A. palmata occurred in 74% of the 31 surveyed sites and had a mean cover of 7.7% (SD = 9.0, whereas in 2010-2012 this species was recorded in 48% of the sites with a mean cover of 2.9% (SD = 7.5. A. palmata populations along the MRS are failing to recover the distribution and abundance they had prior to the 1980s. Investigating the biological (e.g., population genetics and environmental conditions (e.g., sources of stress of the few standing reefs with relatively high A. palmata cover is crucial for the development of informed restoration models for this species.

  4. A geological perspective on the degradation and conservation of western Atlantic coral reefs

    Science.gov (United States)

    Kuffner, Ilsa B.; Toth, Lauren T.

    2016-01-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of

  5. USING ForeCAT DEFLECTIONS AND ROTATIONS TO CONSTRAIN THE EARLY EVOLUTION OF CMEs

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Colaninno, R. C.; Vourlidas, A.

    2016-01-01

    To accurately predict the space weather effects of the impacts of coronal mass ejection (CME) at Earth one must know if and when a CME will impact Earth and the CME parameters upon impact. In 2015 Kay et al. presented Forecasting a CME’s Altered Trajectory (ForeCAT), a model for CME deflections based on the magnetic forces from the background solar magnetic field. Knowing the deflection and rotation of a CME enables prediction of Earth impacts and the orientation of the CME upon impact. We first reconstruct the positions of the 2010 April 8 and the 2012 July 12 CMEs from the observations. The first of these CMEs exhibits significant deflection and rotation (34° deflection and 58° rotation), while the second shows almost no deflection or rotation (<3° each). Using ForeCAT, we explore a range of initial parameters, such as the CME’s location and size, and find parameters that can successfully reproduce the behavior for each CME. Additionally, since the deflection depends strongly on the behavior of a CME in the low corona, we are able to constrain the expansion and propagation of these CMEs in the low corona.

  6. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities

    Science.gov (United States)

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-01-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720

  7. Cryptic Coral Reef Diversity Across the Pacific Assessed using Autonomous Reef Monitoring Structures and Multi-omic Methods

    Science.gov (United States)

    Ransome, E. J.; Timmers, M.; Hartmann, A.; Collins, A.; Meyer, C.

    2016-02-01

    Coral reefs harbor diverse and distinct eukaryotic, bacterial and viral communities, which are critically important for their success. The lack of standardized measures for comprehensively assessing reef diversity has been a major obstacle in understanding the complexity of eukaryotic and microbial associations, and the processes that drive ecosystem shifts on reefs. ARMS, which mimic the structural complexity of the reef using artificial settlement plates, were used to systematically measure reef biodiversity across the Indo-Pacific. This device allows for standardized sampling of reef microbes to metazoans, providing the opportunity to investigate the fundamental links between these groups at an ecosystem level. We integrate the use of traditional ecology methods with metagenomics and metabolomics (metabolic predictors) to quantify the taxonomic composition of one of the planet's most diverse ecosystems and to assess the fundamental links between these cryptic communities and ecosystem function along geographical and anthropogenic stress gradients.

  8. Coral diseases and bleaching on Colombian Caribbean coral reefs.

    Science.gov (United States)

    Navas-Camacho, Raúl; Gil-Agudelo, Diego Luis; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime

    2010-05-01

    Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC) has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá). The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10 x 2m) with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters) are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2), and Urabá had high numbers with bleaching (54.4 colonies/m2). Of the seven reported coral diseases studied, Dark Spots Disease (DSD), and White Plague Disease (WPD) were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A. grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years) variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few long

  9. Coral diseases and bleaching on Colombian Caribbean coral reefs

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá. The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10x2m with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2, and Urabá had high numbers with bleaching (54.4 colonies/m2. Of the seven reported coral diseases studied, Dark Spots Disease (DSD, and White Plague Disease (WPD were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A.grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few

  10. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs.

    Science.gov (United States)

    Mouillot, David; Villéger, Sébastien; Parravicini, Valeriano; Kulbicki, Michel; Arias-González, Jesus Ernesto; Bender, Mariana; Chabanet, Pascale; Floeter, Sergio R; Friedlander, Alan; Vigliola, Laurent; Bellwood, David R

    2014-09-23

    When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.

  11. Cyanobacteria in Coral Reef Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    L. Charpy

    2012-01-01

    Full Text Available Cyanobacteria have dominated marine environments and have been reef builders on Earth for more than three million years (myr. Cyanobacteria still play an essential role in modern coral reef ecosystems by forming a major component of epiphytic, epilithic, and endolithic communities as well as of microbial mats. Cyanobacteria are grazed by reef organisms and also provide nitrogen to the coral reef ecosystems through nitrogen fixation. Recently, new unicellular cyanobacteria that express nitrogenase were found in the open ocean and in coral reef lagoons. Furthermore, cyanobacteria are important in calcification and decalcification. All limestone surfaces have a layer of boring algae in which cyanobacteria often play a dominant role. Cyanobacterial symbioses are abundant in coral reefs; the most common hosts are sponges and ascidians. Cyanobacteria use tactics beyond space occupation to inhibit coral recruitment. Cyanobacteria can also form pathogenic microbial consortia in association with other microbes on living coral tissues, causing coral tissue lysis and death, and considerable declines in coral reefs. In deep lagoons, coccoid cyanobacteria are abundant and are grazed by ciliates, heteroflagellates, and the benthic coral reef community. Cyanobacteria produce metabolites that act as attractants for some species and deterrents for some grazers of the reef communities.

  12. [Distribution patterns and bioerosion of the sea urchin Centrostephanus coronatus (Diadematoida: Diadematidae), at the reef of Playa Blanca, Colombian Pacific].

    Science.gov (United States)

    Toro-Farmer, Gerardo; Cantera, Jaime R; Londoño-Cruz, Edgardo; Orozco, Carlos; Neira, Raul

    2004-03-01

    Regular sea-urchins are one of the main bioeroding organisms affecting coral reefs around the world. The abundance, distribution and bioerosion rate of the sea-urchin Centrostephanus coronatus, were determined in different reef zones of Playa Blanca fringing reef (Gorgona Island, Colombian pacific coast) during 1997 and 1998. The erosion rates were determined calcinating the gut content of the sea-urchins to eliminate all organic components and preserve the inorganic portion of calcium carbonate. C. coronatus showed the highest densities towards the central zones of the reef (plain-crest and front) (12.4 ind/m2; range 0-48 ind/m2). The highest mean bioerosion rate was 0.103 kgCaCO3/m2/yr in the reef plain-crest (0-0.69 kgCaCO3/m2/yr). In the other zones, (back reef and reef front) the mean bioerosion rates were 0.071 (range 0-0.39) and 0.052 (range 0-0.31) kgCaCO3/m2/yr respectively. According to the present data, it can be seen that the destruction of coralline skeletons, produced in this reef by sea-urchins is rather low, compared with the abrasion caused by these organisms in other places of the world. However, the combined action of C. coronatus and other bioeroding organisms (borers and grazers). along with some adverse environmental factors to corals, can be causing a negative balance between normal processes of reef accretion-destruction in Gorgona Island reefs.

  13. Coral skeletons provide historical evidence of phosphorus runoff on the great barrier reef.

    Directory of Open Access Journals (Sweden)

    Jennie Mallela

    Full Text Available Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs.

  14. Turning up the heat: increasing temperature and coral bleaching at the high latitude coral reefs of the Houtman Abrolhos Islands.

    Science.gov (United States)

    Abdo, David A; Bellchambers, Lynda M; Evans, Scott N

    2012-01-01

    Coral reefs face increasing pressures particularly when on the edge of their distributions. The Houtman Abrolhos Islands (Abrolhos) are the southernmost coral reef system in the Indian Ocean, and one of the highest latitude reefs in the world. These reefs have a unique mix of tropical and temperate marine fauna and flora and support 184 species of coral, dominated by Acropora species. A significant La Niña event during 2011 produced anomalous conditions of increased temperature along the whole Western Australian coastline, producing the first-recorded widespread bleaching of corals at the Abrolhos. We examined long term trends in the marine climate at the Abrolhos using historical sea surface temperature data (HadISST data set) from 1900-2011. In addition in situ water temperature data for the Abrolhos (from data loggers installed in 2008, across four island groups) were used to determine temperature exposure profiles. Coupled with the results of coral cover surveys conducted annually since 2007; we calculated bleaching thresholds for monitoring sites across the four Abrolhos groups. In situ temperature data revealed maximum daily water temperatures reached 29.54°C in March 2011 which is 4.2°C above mean maximum daily temperatures (2008-2010). The level of bleaching varied across sites with an average of ∼12% of corals bleached. Mortality was high, with a mean ∼50% following the 2011 bleaching event. Prior to 2011, summer temperatures reached a mean (across all monitoring sites) of 25.1°C for 2.5 days. However, in 2011 temperatures reached a mean of 28.1°C for 3.3 days. Longer term trends (1900-2011) showed mean annual sea surface temperatures increase by 0.01°C per annum. Long-term temperature data along with short-term peaks in 2011, outline the potential for corals to be exposed to more frequent bleaching risk with consequences for this high latitude coral reef system at the edge of its distribution.

  15. Pleistocene reef development in Bulukumba, South Sulawesi

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Andi

    2017-01-01

    Full Text Available Quaternary reefs are commonly studied right now to explain climate change during that time. They act as a good archive of climate change, because their development is influenced by climate condition. The research area is located in the southern tip of Bulukumba Regency, South Sulawesi. The objective of this research is to define the development of the reef. Methods applied in this research are field survey of 4 line transects along reef cliff. Laboratory work is mostly on petrographic and biofacies analyses in order to reconstruct the reef development. Four reef biofacies have developed in this study namely 1 Coralgal framestone - wackestone, 2 Massive coral framestone facies, 3 Platylike coral Bindstone facies, and 4 Branching Coral Bafflestone facies. Based on the facies association and organism accumulation, the reefs are interpreted to be developed within a reef complex in a shallow marine environment.

  16. Evidence of exceptional oyster-reef resilience to fluctuations in sea level.

    Science.gov (United States)

    Ridge, Justin T; Rodriguez, Antonio B; Fodrie, F Joel

    2017-12-01

    Ecosystems at the land-sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea-level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10-30 cm) over month-to-year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster-reef ( Crassostrea virginica ) growth to interannual variations in mean sea level (MSL) and improve long-term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade-old reefs ( n  = 3) constructed in 1997 and 2000, young reefs ( n  = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade-old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short-term (month-to-year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster-reef conservation and

  17. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across American Samoa from 2012 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  18. Photography of Coral Reefs from ISS

    Science.gov (United States)

    Robinson, Julie A.

    2009-01-01

    This viewgraph presentation reviews the uses of photography from the International Space Station (ISS) in studying Earth's coral reefs. The photographs include reefs in various oceans . The photographs have uses for science in assisting NASA mapping initiatives, distribution worldwide through ReefBase, and by biologist in the field.

  19. Sedimentary and environmental history of the Late Permian Bonikowo Reef (Zechstein Limestone, Wuchiapingian, western Poland

    Directory of Open Access Journals (Sweden)

    Paweł Raczyński

    2017-07-01

    Full Text Available The Bonikowo Reef occurs in the central part of the Zechstein Limestone Basin in western Poland and was growing on the topmost edges of tilted blocks and/or on the top of uplifted horsts of the Brandenburg–Wolsztyn–Pogorzela High. Its size is ca. 1.6 km2. The Bonikowo Reef shows the thickest reef section (90.5 m recorded in the High. The Zechstein Limestone unit is represented mostly by limestones, often thoroughly recrystallized, although the macrotextures and biota of the boundstone are identifiable in most cases. The drillcore section is a mixture of boundstones (microbial and bryozoan, wackestones, packstones and grainstones, which often co-occur. The δ13C and δ18O values for both calcite (avg. 3.8 ± 0.8‰ and −3.4 ± 1.7‰, respectively and dolomite (avg. 3.5 ± 0.7‰ and −5.2 ± 1.3‰, respectively are transitional between the values previously reported for condensed sequences of the basinal facies and larger reef complexes. The biofacies of the Bonikowo Reef are very similar to those recognized in other reefs of the Brandenburg–Wolsztyn–Pogorzela High, which owe their origin to the destruction of bryozoan boundstones. The biota composition is typical and characteristic of other Zechstein Limestone reefs. However, the Bonikowo Reef demonstrates the importance of microbialites, laminar and nodose encrustations, in the growth and cohesion of the Zechstein Limestone reefs. Such encrustations abound within the Zechstein Limestone although, in many cases, the real nature of the encrustations is difficult to ascertain. These laminated encrustations show great similarity to Archaeolithoporella that is one of the most important Permian reef-building organisms. The encrustations considered to represent Archaeolithoporella were also previously recorded in the Zechstein Limestone of western Poland and in its stratigraphic equivalent, the Middle Magnesian Limestone of Northeast England. The lower part of the sequence shows

  20. Environmental quality and preservation; reefs, corals, and carbonate sands; guides to reef-ecosystem health and environment

    Science.gov (United States)

    Lidz, Barbara H.

    2001-01-01

    Introduction In recent years, the health of the entire coral reef ecosystem that lines the outer shelf off the Florida Keys has declined markedly. In particular, loss of those coral species that are the building blocks of solid reef framework has significant negative implications for economic vitality of the region. What are the reasons for this decline? Is it due to natural change, or are human activities (recreational diving, ship groundings, farmland runoff, nutrient influx, air-borne contaminants, groundwater pollutants) a contributing factor and if so, to what extent? At risk of loss are biologic resources of the reefs, including habitats for endangered species in shoreline mangroves, productive marine and wetland nurseries, and economic fisheries. A healthy reef ecosystem builds a protective offshore barrier to catastrophic wave action and storm surges generated by tropical storms and hurricanes. In turn, a healthy reef protects the homes, marinas, and infrastructure on the Florida Keys that have been designed to capture a lucrative tourism industry. A healthy reef ecosystem also protects inland agricultural and livestock areas of South Florida whose produce and meat feed much of the United States and other parts of the world. In cooperation with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, the U.S. Geological Survey (USGS) continues longterm investigations of factors that may affect Florida's reefs. One of the first steps in distinguishing between natural change and the effects of human activities, however, is to determine how coral reefs have responded to past environmental change, before the advent of man. By so doing, accurate scientific information becomes available for Marine Sanctuary management to understand natural change and thus to assess and regulate potential human impact better. The USGS studies described here evaluate the distribution (location) and historic vitality (thickness) of Holocene

  1. Socio-ecological dynamics of Caribbean coral reef ecosystems and conservation opinion propagation.

    Science.gov (United States)

    Thampi, Vivek A; Anand, Madhur; Bauch, Chris T

    2018-02-07

    The Caribbean coral reef ecosystem has experienced a long history of deterioration due to various stressors. For instance, over-fishing of parrotfish - an important grazer of macroalgae that can prevent destructive overgrowth of macroalgae - has threatened reef ecosystems in recent decades and stimulated conservation efforts such as the formation of marine protected areas. Here we develop a mathematical model of coupled socio-ecological interactions between reef dynamics and conservation opinion dynamics to better understand how natural and human factors interact individually and in combination to determine coral reef cover. We find that the coupling opinion and reef systems generates complex dynamics that are difficult to anticipate without use of a model. For instance, instead of converging to a stable state of constant coral cover and conservationist opinion, the system can oscillate between low and high live coral cover as human opinion oscillates in a boom-bust cycle between complacency and concern. Out of various possible parameter manipulations, we also find that raising awareness of coral reef endangerment best avoids counter-productive nonlinear feedbacks and always increases and stabilizes live coral reef cover. In conclusion, an improved understanding of coupled opinion-reef dynamics under anthrogenic stressors is possible using coupled socio-ecological models, and such models should be further researched.

  2. Habitat-specific density and diet of rapidly expanding invasive red lionfish, Pterois volitans, populations in the northern Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Kristen A Dahl

    Full Text Available Invasive Indo-Pacific red lionfish, Pterois volitans, were first reported in the northern Gulf of Mexico (nGOM in summer 2010. To examine potential impacts on native reef fish communities, lionfish density and size distributions were estimated from fall 2010 to fall 2013 with a remotely operated vehicle at natural (n = 16 and artificial (n = 22 reef sites. Lionfish (n = 934 also were sampled via spearfishing to examine effects of habitat type, season, and fish size on their diet and trophic ecology. There was an exponential increase in lionfish density at both natural and artificial reefs over the study period. By fall 2013, mean lionfish density at artificial reefs (14.7 fish 100 m(-2 was two orders of magnitude higher than at natural reefs (0.49 fish 100 m(-2, and already was among the highest reported in the western Atlantic. Lionfish diet was significantly different among habitats, seasons, and size classes, with smaller (<250 mm total length fish consuming more benthic invertebrates and the diet of lionfish sampled from artificial reefs being composed predominantly of non-reef associated prey. The ontogenetic shift in lionfish feeding ecology was consistent with δ15N values of white muscle tissue that were positively related to total length. Overall, diet results indicate lionfish are generalist mesopredators in the nGOM that become more piscivorous at larger size. However, lionfish diet was much more varied at artificial reef sites where they clearly were foraging on open substrates away from reef structure. These results have important implications for tracking the lionfish invasion in the nGOM, as well as estimating potential direct and indirect impacts on native reef fish communities in this region.

  3. Re-Creating Missing Population Baselines for Pacific Reef Sharks

    Science.gov (United States)

    Nadon, Marc O; Baum, Julia K; Williams, Ivor D; Mcpherson, Jana M; Zgliczynski, Brian J; Richards, Benjamin L; Schroeder, Robert E; Brainard, Russell E

    2012-01-01

    Summary Abstract Sharks and other large predators are scarce on most coral reefs, but studies of their historical ecology provide qualitative evidence that predators were once numerous in these ecosystems. Quantifying density of sharks in the absence of humans (baseline) is, however, hindered by a paucity of pertinent time-series data. Recently researchers have used underwater visual surveys, primarily of limited spatial extent or nonstandard design, to infer negative associations between reef shark abundance and human populations. We analyzed data from 1607 towed-diver surveys (>1 ha transects surveyed by observers towed behind a boat) conducted at 46 reefs in the central-western Pacific Ocean, reefs that included some of the world's most pristine coral reefs. Estimates of shark density from towed-diver surveys were substantially lower (densidad de tiburones en ausencia de humanos (línea de base) es obstaculizada por la falta de datos de series de tiempo pertinentes. Recientemente, los investigadores han utilizado muestreos visuales submarinos, de extensión espacial limitada o de diseño no estándar, para inferir asociaciones negativas entre la abundancia de tiburones de arrecife y las poblaciones humanas. Analizamos datos de 1607 muestreos por remolque de buzos (transectos >1ha muestreados por observadores remolcados por una lancha) realizados en 46 arrecifes en el Océano Pacífico centro-occidental, arrecifes que incluyeron algunos de los más prístinos del mundo. Las estimaciones de densidad de tiburones fue sustancialmente menor (densidad de tiburones de arrecife observados en los muestreos por remolque de buzos y la población humana en modelos y consideramos la influencia de la productividad oceánica primaria, la temperatura de la superficie del mar, la superficie del arrecife y su complejidad física. Utilizamos estos modelos para estimar la densidad de tiburones en ausencia de humanos. Las densidades de Carcharhinus amblyrhynchos, Triaenodon obesus y

  4. Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs

    OpenAIRE

    Rafael A. Magris; Alana Grech; Robert L. Pressey

    2018-01-01

    Effective management of coral reefs requires strategies tailored to cope with cumulative disturbances from human activities. In Brazil, where coral reefs are a priority for conservation, intensifying threats from local and global stressors are of paramount concern to management agencies. Using a cumulative impact assessment approach, our goal was to inform management actions for coral reefs in Brazil by assessing their exposure to multiple stressors (fishing, land-based activities, coastal de...

  5. Reef demise and back-stepping during the last interglacial, northeast Yucatan

    Science.gov (United States)

    Blanchon, Paul

    2010-06-01

    reef-tract, however, require that the demise of this reef was ecologically synchronous with initiation of the upper reef-tract, which had back-stepped 100 m into the lagoon. In this new position, the upper tract developed a reef crest that corresponded to a final sea-level position of +6 m. Reef flat development at +5 m and large in-place colonies of A. palmata at the base of the crest unit indicate, however, that sea level must have risen rapidly from +3 to more than +5 m to accommodate back-stepping. This sea-level jump created a higher energy wave field that mobilized back-reef and lagoonal sediments, and the resulting high sediment flux eroded lagoonal framework and prevented the recovery of the submerged lower reef crest. So this single jump in sea level was responsible not only for reef demise and back-stepping but also for marine erosion and suppression of subsequent reef development—features that elsewhere have been used to support multiple sea-level excursions during the last interglacial.

  6. Benthic community structure on coral reefs exposed to intensive recreational snorkeling.

    Directory of Open Access Journals (Sweden)

    Bobbie Renfro

    Full Text Available Chronic anthropogenic disturbances on coral reefs in the form of overfishing and pollution can shift benthic community composition away from stony corals and toward macroalgae. The use of reefs for recreational snorkeling and diving potentially can lead to similar ecological impacts if not well-managed, but impacts of snorkeling on benthic organisms are not well understood. We quantified variation in benthic community structure along a gradient of snorkeling frequency in an intensively-visited portion of the Mesoamerican Barrier Reef. We determined rates of snorkeling in 6 water sections and rates of beach visitation in 4 adjacent land sections at Akumal Bay, Mexico. For each in-water section at 1-3 m depth, we also assessed the percent cover of benthic organisms including taxa of stony corals and macroalgae. Rates of recreational snorkeling varied from low in the southwestern to very high (>1000 snorkelers d-1 in the northeastern sections of the bay. Stony coral cover decreased and macroalgal cover increased significantly with levels of snorkeling, while trends varied among taxa for other organisms such as gorgonians, fire corals, and sea urchins. We conclude that benthic organisms appear to exhibit taxon-specific variation with levels of recreational snorkeling. To prevent further degradation, we recommend limitation of snorkeler visitation rates, coupled with visitor education and in-water guides to reduce reef-damaging behaviors by snorkelers in high-use areas. These types of management activities, integrated with reef monitoring and subsequent readjustment of management, have the potential to reverse the damage potentially inflicted on coral reefs by the expansion of reef-based recreational snorkeling.

  7. Norwegian deep-water coral reefs: cultivation and molecular analysis of planktonic microbial communities.

    Science.gov (United States)

    Jensen, Sigmund; Lynch, Michael D J; Ray, Jessica L; Neufeld, Josh D; Hovland, Martin

    2015-10-01

    Deep-sea coral reefs do not receive sunlight and depend on plankton. Little is known about the plankton composition at such reefs, even though they constitute habitats for many invertebrates and fish. We investigated plankton communities from three reefs at 260-350 m depth at hydrocarbon fields off the mid-Norwegian coast using a combination of cultivation and small subunit (SSU) rRNA gene and transcript sequencing. Eight months incubations of a reef water sample with minimal medium, supplemented with carbon dioxide and gaseous alkanes at in situ-like conditions, enabled isolation of mostly Alphaproteobacteria (Sulfitobacter, Loktanella), Gammaproteobacteria (Colwellia) and Flavobacteria (Polaribacter). The relative abundance of isolates in the original sample ranged from ∼ 0.01% to 0.80%. Comparisons of bacterial SSU sequences from filtered plankton of reef and non-reef control samples indicated high abundance and metabolic activity of primarily Alphaproteobacteria (SAR11 Ia), Gammaproteobacteria (ARCTIC96BD-19), but also of Deltaproteobacteria (Nitrospina, SAR324). Eukaryote SSU sequences indicated metabolically active microalgae and animals, including codfish, at the reef sites. The plankton community composition varied between reefs and differed between DNA and RNA assessments. Over 5000 operational taxonomic units were detected, some indicators of reef sites (e.g. Flavobacteria, Cercozoa, Demospongiae) and some more active at reef sites (e.g. Gammaproteobacteria, Ciliophora, Copepoda). © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Tectonic evolution of the outer Izu-Bonin-Mariana fore arc system: initial results from IODP Expedition 352

    Science.gov (United States)

    Kurz, W.; Ferre, E. C.; Robertson, A. H. F.; Avery, A. J.; Kutterolf, S.

    2015-12-01

    During International Ocean Discovery Program (IODP) Expedition 352, a section through the volcanic stratigraphy of the outer fore arc of the Izu-Bonin-Mariana (IBM) system was drilled to trace magmatism, tectonics, and crustal accretion associated with subduction initiation. Structures within drill cores, borehole and site survey seismic data indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Extension generated asymmetric sediment basins such as half-grabens at sites 352-U1439 and 352-U1442 on the upper trench slope. Along their eastern margins the basins are bounded by west-dipping normal faults. Deformation was localized along multiple sets of faults, accompanied by syn-tectonic pelagic and volcaniclastic sedimentation. The lowermost sedimentary units were tilted eastward by ~20°. Tilted beds were covered by sub-horizontal beds. Biostratigraphic constraints reveal a minimum age of the oldest sediments at ~ 35 Ma; timing of the sedimentary unconformities is between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441 on the outer fore arc strike-slip faults are bounding sediment basins. Sediments were not significantly affected by tectonic tilting. Biostratigraphy gives a minimum age of the basement-cover contact between ~29.5 and 32 Ma. The post-magmatic structures reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along subhorizontal fault zones, steep slickensides and shear fractures. These were either re-activated as or cut by normal-faults and strike-slip faults. Extension was also accommodated by steep to subvertical mineralized veins and extensional fractures. Faults at sites 352-U1440 and 352-U1441 show mainly strike-slip kinematics. Sediments overlying the igneous basement(maximum Late Eocene to Recent age), document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds.

  9. Changes in Reef Fish Abundances Associated with the Introduction of Indo-Pacific Lionfish to the Florida Keys National Marine Sanctuary: a Twenty Year Time Series.

    Science.gov (United States)

    Hepner, M.; Muller-Karger, F. E.; Gittings, S.; Stallings, C.

    2016-02-01

    The Marine Biodiversity Observation Network (MBON) is a partnership between academic, private, and government researchers seeking to understand how marine biodiversity changes over long periods of time. In this context, a study of the multi-agency Reef Visual Census (RVC) data, collected over twenty years in the Florida Keys National Marine Sanctuary (FKNMS), was analyzed to measure possible changes in reef fish abundances as a result of possible predation by lionfish predation or due to related trophic cascading. Lionfish were first sighted in the FKNMS in January 2009, with abundances and frequency of occurrence increasing three to six fold throughout the sanctuary by 2011. Their high consumption rates of smaller fish, coupled with their rapidly increasing densities may be having a significant effect on coral reef fish communities. The study compares the natural variability in reef fish abundances from 1994-2009 in the FKNMS, 15 years prior to the first lionfish detected in the sanctuary, to changes in reef fish abundances 5 years after the invasion. The MBON project also aims to develop environmental DNA (eDNA) technology for conducting biodiversity assessments. eDNA is an emerging technique that seeks to quantify biodiversity in an area by obtaining genetic material directly from environmental samples (soil, sediment, water, etc.) without any obvious signs of biological source material. All marine organisms shed DNA into their surrounding habitat, leaving a "fingerprint." Similar to forensic science, the DNA can be collected from seawater and analyzed to determine what species were recently present. The MBON team is evaluating whether eDNA can be used to adequately monitor reef fish biodiversity in coral reef ecosystems. We will compare species detected in our samples to the taxonomic composition of reef fish communities at the sample site as recorded over the past twenty years in the Reef Visual Census data.

  10. Remote Sensing of Coral Reefs for Monitoring and Management: A Review

    Directory of Open Access Journals (Sweden)

    John D. Hedley

    2016-02-01

    Full Text Available Coral reefs are in decline worldwide and monitoring activities are important for assessing the impact of disturbance on reefs and tracking subsequent recovery or decline. Monitoring by field surveys provides accurate data but at highly localised scales and so is not cost-effective for reef scale monitoring at frequent time points. Remote sensing from satellites is an alternative and complementary approach. While remote sensing cannot provide the level of detail and accuracy at a single point than a field survey, the statistical power for inferring large scale patterns benefits in having complete areal coverage. This review considers the state of the art of coral reef remote sensing for the diverse range of objectives relevant for management, ranging from the composition of the reef: physical extent, benthic cover, bathymetry, rugosity; to environmental parameters: sea surface temperature, exposure, light, carbonate chemistry. In addition to updating previous reviews, here we also consider the capability to go beyond basic maps of habitats or environmental variables, to discuss concepts highly relevant to stakeholders, policy makers and public communication: such as biodiversity, environmental threat and ecosystem services. A clear conclusion of the review is that advances in both sensor technology and processing algorithms continue to drive forward remote sensing capability for coral reef mapping, particularly with respect to spatial resolution of maps, and synthesis across multiple data products. Both trends can be expected to continue.

  11. COLLABORATIVE GUIDE: A REEF MANAGER'S GUIDE TO ...

    Science.gov (United States)

    Innovative strategies to conserve the world's coral reefs are included in a new guide released today by NOAA, and the Australian Great Barrier Reef Marine Park Authority, with author contributions from a variety of international partners from government agencies, non-governmental organizations, and academic institutions. Referred to as A Reef Manager's Guide to Coral Bleaching, the guide will provide coral reef managers with the latest scientific information on the causes of coral bleaching and new management strategies for responding to this significant threat to coral reef ecosystems. Innovative strategies to conserve the world's coral reefs are included in a new guide released today by NOAA, and the Australian Great Barrier Reef Marine Park Authority, with author contributions from a variety of international partners from government agencies, non-governmental organizations, and academic institutions. Dr. Jordan West, of the National Center for Environmental Assessment, was a major contributor to the guide. Referred to as

  12. Large-scale associations between macroalgal cover and grazer biomass on mid-depth reefs in the Caribbean

    Science.gov (United States)

    Williams, I.; Polunin, N.

    2001-05-01

    Since the 1970s, macroalgae have become considerably more abundant on many Caribbean reefs and overfishing of grazing fishes has been implicated as a contributory factor. We explored relationships between algal cover and grazers (biomass of herbivorous fishes and abundance of the sea-urchin Diadema antillarum) on mid-depth reefs (12-15 m) in 19 areas at seven locations in Jamaica, Barbados, Belize, Grand Cayman and Cuba, between April 1997 and April 1998. Diadema antillarum density was never >0.01 m-2, while herbivorous fish biomass (acanthurids and scarids ≥12 cm total length) varied from 2-5 g m-2 in Jamaica to 17.1 g m-2 in Barbados, and was strongly correlated, negatively with macroalgal cover and positively with 'cropped' substratum (sum of 'bare', turf and crustose-coralline substrata) cover. However, overfishing of herbivorous fishes alone cannot explain the widespread abundance of macroalgae, as even on lightly fished reefs, macroalgal cover was mostly >20%. Herbivorous fish populations on those reefs were apparently only able to maintain approximately 40-60% of reef substratum in cropped states, but due to low space-occupation by coral and other invertebrates, 70-90% of substratum was available to algae. The abundance of macroalgae on lightly fished reefs may therefore be a symptom of low coral cover in combination with the continuing absence of Diadema antillarum.

  13. Rapid survey protocol that provides dynamic information on reef condition to managers of the Great Barrier Reef.

    Science.gov (United States)

    Beeden, R J; Turner, M A; Dryden, J; Merida, F; Goudkamp, K; Malone, C; Marshall, P A; Birtles, A; Maynard, J A

    2014-12-01

    Managing to support coral reef resilience as the climate changes requires strategic and responsive actions that reduce anthropogenic stress. Managers can only target and tailor these actions if they regularly receive information on system condition and impact severity. In large coral reef areas like the Great Barrier Reef Marine Park (GBRMP), acquiring condition and impact data with good spatial and temporal coverage requires using a large network of observers. Here, we describe the result of ~10 years of evolving and refining participatory monitoring programs used in the GBR that have rangers, tourism operators and members of the public as observers. Participants complete Reef Health and Impact Surveys (RHIS) using a protocol that meets coral reef managers' needs for up-to-date information on the following: benthic community composition, reef condition and impacts including coral diseases, damage, predation and the presence of rubbish. Training programs ensure that the information gathered is sufficiently precise to inform management decisions. Participants regularly report because the demands of the survey methodology have been matched to their time availability. Undertaking the RHIS protocol we describe involves three ~20 min surveys at each site. Participants enter data into an online data management system that can create reports for managers and participants within minutes of data being submitted. Since 2009, 211 participants have completed a total of more than 10,415 surveys at more than 625 different reefs. The two-way exchange of information between managers and participants increases the capacity to manage reefs adaptively, meets education and outreach objectives and can increase stewardship. The general approach used and the survey methodology are both sufficiently adaptable to be used in all reef regions.

  14. Impacts of Artificial Reefs and Diving Tourism

    Directory of Open Access Journals (Sweden)

    Sandra Jakšić

    2013-10-01

    Full Text Available Coral reefs are currently endangered throughout the world. One of the main activities responsible for this is scuba-diving. Scuba-diving on coral reefs was not problematic in the begging, but due to popularization of the new sport, more and more tourists desired to participate in the activity. Mass tourism, direct contact of the tourists with the coral reefs and unprofessional behavior underwater has a negative effect on the coral reefs. The conflict between nature preservation and economy benefits related to scuba-diving tourism resulted in the creation of artificial reefs, used both to promote marine life and as tourists attractions, thereby taking the pressure off the natural coral reefs. Ships, vehicles and other large structures can be found on the coastal sea floor in North America, Australia, Japan and Europe. The concept of artificial reefs as a scuba-diving attraction was developed in Florida. The main goal was to promote aquaculture, with the popularization of scuba-diving attractions being a secondary effect. The aim of this paper is to determine the effects of artificial reefs on scuba-diving tourism, while taking into account the questionnaire carried out among 18 divers

  15. Body Size Shifts in Philippine Reef Fishes: Interfamilial Variation in Responses to Protection

    Directory of Open Access Journals (Sweden)

    Robert Y. Fidler

    2014-03-01

    Full Text Available As a consequence of intense fishing pressure, fished populations experience reduced population sizes and shifts in body size toward the predominance of smaller and early maturing individuals. Small, early-maturing fish exhibit significantly reduced reproductive output and, ultimately, reduced fitness. As part of resource management and biodiversity conservation programs worldwide, no-take marine protected areas (MPAs are expected to ameliorate the adverse effects of fishing pressure. In an attempt to advance our understanding of how coral reef MPAs meet their long-term goals, this study used visual census data from 23 MPAs and fished reefs in the Philippines to address three questions: (1 Do MPAs promote shifts in fish body size frequency distribution towards larger body sizes when compared to fished reefs? (2 Do MPA size and (3 age contribute to the efficacy of MPAs in promoting such shifts? This study revealed that across all MPAs surveyed, the distribution of fishes between MPAs and fished reefs were similar; however, large-bodied fish were more abundant within MPAs, along with small, young-of-the-year individuals. Additionally, there was a significant shift in body size frequency distribution towards larger body sizes in 12 of 23 individual reef sites surveyed. Of 22 fish families, eleven demonstrated significantly different body size frequency distributions between MPAs and fished reefs, indicating that shifts in the size spectrum of fishes in response to protection are family-specific. Family-level shifts demonstrated a significant, positive correlation with MPA age, indicating that MPAs become more effective at increasing the density of large-bodied fish within their boundaries over time.

  16. Using reefcheck monitoring database to develop the coral reef index of biological integrity

    DEFF Research Database (Denmark)

    Nguyen, Hai Yen T.; Pedersen, Ole; Ikejima, Kou

    2009-01-01

    The coral reef indices of biological integrity was constituted based on the reef check monitoring data. Seventy six minimally disturbed sites and 72 maximallv disturbed sites in shallow water and 39 minimally disturbed sites and 37 maximally disturbed sites in deep water were classified based...... on the high-end and low-end percentages and ratios of hard coral, dead coral and fieshy algae. A total of 52 candidate metrics was identified and compiled, Eight and four metrics were finally selected to constitute the shallow and deep water coral reef indices respectively. The rating curve was applied.......05) and coral damaged by other factors -0.283 (pcoral reef indices were sensitive responses to stressors and can be capable to use as the coral reef biological monitoring tool....

  17. The Açu Reef morphology, distribution, and inter reef sedimentation on the outer shelf of the NE Brazil equatorial margin

    Science.gov (United States)

    do Nascimento Silva, Luzia Liniane; Gomes, Moab Praxedes; Vital, Helenice

    2018-05-01

    Submerged reefs, referred to as the Açu Reefs, have been newly observed on both sides of the Açu Incised Valley on the northeastern equatorial Brazilian outer shelf. This study aims to understand the roles of shelf physiography, its antecedent morphologies, and its inter reef sedimentation on the different development stages of the biogenic reef during last deglacial sea-level rise. The data sets consist of side-scan sonar imagery, one sparker seismic profile, 76 sediment samples, and underwater photography. Seven backscatter patterns (P1 to P7) were identified and associated with eleven sedimentary carbonate and siliciclastic facies. The inherited relief, the mouth of the paleo incised valley, and the interreef sediment distribution play major controls on the deglacial reef evolution. The reefs occur in a depth-limited 25-55 m water depth range and in a 6 km wide narrow zone of the outer shelf. The reefs crop out in a surface area over 100 km2 and occur as a series of NW-SE preferentially orientated ridges composed of three parallel ridge sets at 45, 35, and 25 m of water depth. The reefs form a series of individual, roughly linear ridges, tens of km in length, acting as barriers in addition to scattered reef mounds or knolls, averaging 4 m in height and grouped in small patches and aggregates. The reefs, currently limited at the transition between the photic and mesophotic zones, are thinly covered by red algae and scattered coral heads and sponges. Taking into account the established sea-level curves from the equatorial Brazilian northeastern shelf / Rochas Atoll and Barbados, the shelf physiography, and the shallow bedrock, the optimal conditions for reef development had to occur during a time interval (11-9 kyr BP) characterized by a slowdown of the outer shelf flooding, immediately following Meltwater Pulse-1B. This 2 kyr short interval provided unique conditions for remarkable reef backstepping into distinct parallel ridge sets. Furthermore, the Açu Reefs

  18. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across the Marianas Archipelago from 2011 to 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  19. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across the Hawaiian Archipelago from 2010 to 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  20. Assessing the sensitivity of coral reef condition indicators to local and global stressors with Bayesian networks

    Science.gov (United States)

    Coral reefs are highly valued ecosystems that are currently imperiled. Although the value of coral reefs to human societies is only just being investigated and better understood, for many local and global economies coral reefs are important providers of ecosystem services that su...

  1. Reduced diversity and high sponge abundance on a sedimented Indo-Pacific reef system: implications for future changes in environmental quality.

    Directory of Open Access Journals (Sweden)

    Abigail Powell

    Full Text Available Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning.

  2. Relationships between metacarpal morphometry, fore-arm and vertebral bone density and fractures in post-menopausal women

    International Nuclear Information System (INIS)

    Wishart, J.M.; Horowitz, M.; Bochner, M.; Need, A.G.; Nordin, B.E.C.

    1993-01-01

    The relationships between metacarpal morphometric, vertebral and forearm density measurement and the prevalence of vertebral and peripheral fractures were examined in 239 postmenopausal women (median age 63, range 32-84 years). Metacarpal cortical area/total area ratio (CA/TA) was measured with needle calipers forearm mineral density (FMD) by single photon absorptiometry and vertebral mineral density (VMD) by single energy quantitative computed tomography. The authors suggest that metacarpal morphometry, which is widely available at relatively low cost, yields cross-sectional information about bone density and fracture risk, comparable with that obtained by forearm and vertebral densitometry. (Author)

  3. Pacific Circulation and the Resilience of its Equatorial Reefs

    Science.gov (United States)

    Cohen, A. L.; Drenkard, E.

    2012-12-01

    High rates of calcification by tropical reef-building corals are paramount to the maintenance of healthy reefs. Investigations of the impact of ocean acidification in both laboratory and field studies demonstrate unequivocally the dependence of coral and coral reef calcification on the carbonate ion concentration of seawater, a dependence predicted by fundamental laws of physical chemistry. Nevertheless, results from a new generation of experiments that exploit the biology of coral calcification, suggest that effects of ocean acidification can - in some instances - be mitigated with simultaneous manipulation of multiple factors. These laboratory results imply that coral reefs in regions projected to experience changes in, for example, nutrient delivery, light and flow, in addition to pH and carbonate ion concentration, may be more resilient (or vulnerable) to the effects of ocean acidification alone. If demonstrated to be true, these observations have profound implications for the conservation and management of coral reefs in the 21st century. We quantified spatial and temporal variability in rates of calcification of a dominant Indo-Pacific reef building coral across sites where changes in ocean circulation patterns drive variability in multiple physical, chemical and biological parameters. Such changes are occurring against a background of variability and trends in carbonate system chemistry. Our field data provide support for hypotheses based on laboratory observations, and show that impacts of ocean acidification on coral calcification can be partially and in some cases, fully, offset by simultaneous changes in multiple factors. Our results imply that projected changes in oceanic and atmospheric circulation patterns, driven by global warming, must be considered when predicting coral reef resilience, or vulnerability, to 21st century ocean acidification.

  4. Macrobioerosion in Porites corals in subtropical northern South China Sea: a limiting factor for high-latitude reef framework development

    Science.gov (United States)

    Chen, Tianran; Li, Shu; Yu, Kefu

    2013-03-01

    Bioerosion is an important limiting factor in carbonate accretion and reef framework development; however, few studies have quantified the direct impact of macroborers on high-latitude coral communities, which are viewed as potential refuge during a period of global warming. In this study, internal macrobioerosion of Porites corals was examined at Daya Bay, subtropical northern South China Sea. The principal borers were the bivalve Lithophaga spp. and the sponges Cliona spp. and Cliothosa spp. (≥80 %), while sipunculid and polychaete worms and barnacles accounted for small amounts of bioerosion (≤20 %). Porites corals were heavily bioeroded in areas impacted by aquacultural and urban activities (10.34-27.55 %) compared with corals in relatively unpolluted areas (2.18-6.76 %). High levels of bioerosion, especially boring bivalve infestation, significantly weaken the corals and increase their susceptibility to dislodgement and fragmentation in typhoons, limiting accumulation of limestone framework. This study implies that carbonate accretion and reef development for high-latitude coral communities may be limited in future high-CO2 and eutrophication-stressed environments.

  5. ENERGETIC EXTREMES IN A HOSTILE HABITAT: FISH LOCOMOTION ON WAVE-SWEPT CORAL REEFS

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2010-01-01

    , and wing-like fins that generate lift-based thrust at high speed. Literally flying underwater, Stethojulis and other winged-fin species are the most abundant fish in wave-swept coral reef habitats. We discuss the extreme swimming performance of these reef fishes within the context of other non......-scombrid and scombrid fishes, and illustrate how such performance has contributed to their domination of shallow coral reef habitats worldwide....

  6. Timing and locations of reef fish spawning off the southeastern United States.

    Directory of Open Access Journals (Sweden)

    Nicholas A Farmer

    Full Text Available Managed reef fish in the Atlantic Ocean of the southeastern United States (SEUS support a multi-billion dollar industry. There is a broad interest in locating and protecting spawning fish from harvest, to enhance productivity and reduce the potential for overfishing. We assessed spatiotemporal cues for spawning for six species from four reef fish families, using data on individual spawning condition collected by over three decades of regional fishery-independent reef fish surveys, combined with a series of predictors derived from bathymetric features. We quantified the size of spawning areas used by reef fish across many years and identified several multispecies spawning locations. We quantitatively identified cues for peak spawning and generated predictive maps for Gray Triggerfish (Balistes capriscus, White Grunt (Haemulon plumierii, Red Snapper (Lutjanus campechanus, Vermilion Snapper (Rhomboplites aurorubens, Black Sea Bass (Centropristis striata, and Scamp (Mycteroperca phenax. For example, Red Snapper peak spawning was predicted in 24.7-29.0°C water prior to the new moon at locations with high curvature in the 24-30 m depth range off northeast Florida during June and July. External validation using scientific and fishery-dependent data collections strongly supported the predictive utility of our models. We identified locations where reconfiguration or expansion of existing marine protected areas would protect spawning reef fish. We recommend increased sampling off southern Florida (south of 27° N, during winter months, and in high-relief, high current habitats to improve our understanding of timing and location of reef fish spawning off the southeastern United States.

  7. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Science.gov (United States)

    Freeman, Lauren A

    2015-01-01

    Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  8. Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.

    Directory of Open Access Journals (Sweden)

    Lauren A Freeman

    Full Text Available Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.

  9. The Ecological Role of Sharks on Coral Reefs.

    Science.gov (United States)

    Roff, George; Doropoulos, Christopher; Rogers, Alice; Bozec, Yves-Marie; Krueck, Nils C; Aurellado, Eleanor; Priest, Mark; Birrell, Chico; Mumby, Peter J

    2016-05-01

    Sharks are considered the apex predator of coral reefs, but the consequences of their global depletion are uncertain. Here we explore the ecological roles of sharks on coral reefs and, conversely, the importance of reefs for sharks. We find that most reef-associated shark species do not act as apex predators but instead function as mesopredators along with a diverse group of reef fish. While sharks perform important direct and indirect ecological roles, the evidence to support hypothesised shark-driven trophic cascades that benefit corals is weak and equivocal. Coral reefs provide some functional benefits to sharks, but sharks do not appear to favour healthier reef environments. Restoring populations of sharks is important and can yet deliver ecological surprise. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Conservation status and spatial patterns of AGRRA vitality indices in Southwestern Atlantic Reefs

    Directory of Open Access Journals (Sweden)

    Ruy K.P Kikuchi

    2010-05-01

    Full Text Available Coral reefs along the Eastern Brazilian coast extend for a distance of 800km from 12° to 18°S. They are the largest and the richest reefs of Brazil coasts, and represent the Southernmost coral reefs of the Southwestern Atlantic Ocean. Few reef surveys were performed in the 90’s in reef areas of Bahia State, particularly in the Abrolhos reef complex, in the Southernmost side of the state. A monitoring program applying the Atlantic and Gulf Rapid Reef Assessment (AGRRA protocol was initiated in 2000, in the Abrolhos National Marine Park, after the creation of the South Tropical America (STA Regional Node of the Global Coral Reef Monitoring Network (GCRMN by the end of 1999. From that time up to 2005, nine reef surveys were conducted along the coast of the State of Bahia, including 26 reefs, with 95 benthic sites, 280 benthic transects, 2025 quadrats and 3537 stony corals. Eighteen of the 26 investigated reefs were assessed once and eight reefs of Abrolhos were surveyed twice to four times. The MDS ordination, analysis of similarity (ANOSIM, one way and two-way nested layouts and similarity percentages (SIMPER tests were applied to investigate the spatial and temporal patterns of reef vitality. Four indicators of the coral vitality: live coral cover, the density of the larger corals (colonies >20cm per reef site and of the coral recruits (coloniesDesde el año 2000 se inició un programa de monitoreo utilizando el protocolo AGRRA en el Parque Nacional Marino de Abrolhos en el marco de la creación del Nodo STA de la GCRMN. Entre 2000 y 2005 se realizaron varias evaluaciones en 26 arrecifes. Los patrones espaciales y temporales de la vitalidad de los arrecifes fueron estudiados mediante análisis de ordenación (MDS, similaridad (ANOSIM y porcentajes de similaridad (SIMPER. La cobertura de coral vivo, la densidad de colonias grandes (>20cm y de reclutas (<2cm y la cobertura de macroalgas indicaron que los arrecifes ubicados a más de 5km de la

  11. Anticipative management for coral reef ecosystem services in the 21st century.

    Science.gov (United States)

    Rogers, Alice; Harborne, Alastair R; Brown, Christopher J; Bozec, Yves-Marie; Castro, Carolina; Chollett, Iliana; Hock, Karlo; Knowland, Cheryl A; Marshell, Alyssa; Ortiz, Juan C; Razak, Tries; Roff, George; Samper-Villarreal, Jimena; Saunders, Megan I; Wolff, Nicholas H; Mumby, Peter J

    2015-02-01

    Under projections of global climate change and other stressors, significant changes in the ecology, structure and function of coral reefs are predicted. Current management strategies tend to look to the past to set goals, focusing on halting declines and restoring baseline conditions. Here, we explore a complementary approach to decision making that is based on the anticipation of future changes in ecosystem state, function and services. Reviewing the existing literature and utilizing a scenario planning approach, we explore how the structure of coral reef communities might change in the future in response to global climate change and overfishing. We incorporate uncertainties in our predictions by considering heterogeneity in reef types in relation to structural complexity and primary productivity. We examine 14 ecosystem services provided by reefs, and rate their sensitivity to a range of future scenarios and management options. Our predictions suggest that the efficacy of management is highly dependent on biophysical characteristics and reef state. Reserves are currently widely used and are predicted to remain effective for reefs with high structural complexity. However, when complexity is lost, maximizing service provision requires a broader portfolio of management approaches, including the provision of artificial complexity, coral restoration, fish aggregation devices and herbivore management. Increased use of such management tools will require capacity building and technique refinement and we therefore conclude that diversification of our management toolbox should be considered urgently to prepare for the challenges of managing reefs into the 21st century. © 2014 John Wiley & Sons Ltd.

  12. Widespread hybridization and bidirectional introgression in sympatric species of coral reef fish

    KAUST Repository

    Harrison, Hugo B.

    2017-10-28

    Coral reefs are highly diverse ecosystems, where numerous closely related species often coexist. How new species arise and are maintained in these high geneflow environments have been long-standing conundrums. Hybridization and patterns of introgression between sympatric species provide a unique insight into the mechanisms of speciation and the maintenance of species boundaries. In this study, we investigate the extent of hybridization between two closely related species of coral reef fish: the common coral trout (Plectropomus leopardus) and the bar-cheek coral trout (Plectropomus maculatus). Using a complementary set of 25 microsatellite loci, we distinguish pure genotype classes from first- and later-generation hybrids, identifying 124 interspecific hybrids from a collection of 2,991 coral trout sampled in inshore and mid-shelf reefs of the southern Great Barrier Reef. Hybrids were ubiquitous among reefs, fertile and spanned multiple generations suggesting both ecological and evolutionary processes are acting to maintain species barriers. We elaborate on these finding to investigate the extent of genomic introgression and admixture from 2,271 SNP loci recovered from a ddRAD library of pure and hybrid individuals. An analysis of genomic clines on recovered loci indicates that 261 SNP loci deviate from a model of neutral introgression, of which 132 indicate a pattern of introgression consistent with selection favouring both hybrid and parental genotypes. Our findings indicate genome-wide, bidirectional introgression between two sympatric species of coral reef fishes and provide further support to a growing body of evidence for the role of hybridization in the evolution of coral reef fishes.

  13. Temporal and taxonomic contrasts in coral growth at Davies Reef, central Great Barrier Reef, Australia

    Science.gov (United States)

    Anderson, Kristen D.; Cantin, Neal E.; Heron, Scott F.; Lough, Janice M.; Pratchett, Morgan S.

    2018-06-01

    Demographic processes, such as growth, can have an important influence on the population and community structure of reef-building corals. Importantly, ongoing changes in environmental conditions (e.g. ocean warming) are expected to affect coral growth, contributing to changes in the structure of coral populations and communities. This study quantified contemporary growth rates (linear extension and calcification) for the staghorn coral, Acropora muricata, at Davies Reef, central Great Barrier Reef, Australia. Growth rates were measured at three different depths (5, 10, and 15 m) over 2 yr (2012-2014) assessing both seasonal and inter-annual variability. Results of this study were compared to equivalent measurements made in 1980-1982 at the same location. To assist in understanding inter-annual variability in coral growth, we also examined annual growth bands from massive Porites providing continuous growth and records of flooding history for Davies Reef over the period 1979-2012. Linear extension rates of A. muricata were substantially (11-62%) lower in 2012-2014 compared to 1980-1982, especially at 10 and 15 m depths. These declines in growth coincide with a + 0.14 °C change in annual mean temperature. For massive Porites, however, calcification rates were highly variable among years and there was no discernible long-term change in growth despite sustained increases in temperature of 0.064 °C per decade. Apparent differences in the growth rates of Acropora between 1980-1982 and 2012-2014 may reflect inter-annual variation in coral growth (as seen for massive Porites), though it is known branching Acropora is much more sensitive to changing environmental conditions than massive corals. There are persistent issues in assessing the sensitivities of branching corals to environmental change due to limited capacity for retrospective analyses of growth, but given their disproportionate contribution to habitat complexity and reef structure, it is critical to ascertain

  14. Understanding Reef Flat Sediment Regimes and Hydrodynamics can Inform Erosion Mitigation on Land

    Directory of Open Access Journals (Sweden)

    Lida Tenkova Teneva

    2016-01-01

    Full Text Available Coral reefs worldwide are affected by excessive sediment and nutrient delivery from adjacent watersheds. Land cover and land use changes contribute to reef ecosystem degradation, which in turn, diminish many ecosystem services, including coastal protection, recreation, and food provisioning. The objectives of this work were to understand the role of coastal oceanic and biophysical processes in mediating the effects of sedimentation in shallow reef environments, and to assess the efficacy of land-based sediment remediation in the coastal areas near Maunalei reef, Lāna’i Island, Hawai’i. To the best of our knowledge, this was the first study of sediment dynamics on an east-facing (i.e., facing the trade winds reef in the Hawaiian Islands. We developed ridge-to-reef monitoring systems at two paired stream bed-to-reef sites, where one of the reef sites was adjacent to a community stream sediment remediation project. We found that the two reef sites were characterized by different processes that affected the sediment removal rates; the two sites were also exposed to different amounts of sediment runoff. The community stream sediment remediation project appeared to keep at least 77 tonnes of sediment off the reef flat in one wet season. We found that resuspension of sediments on this reef was similar to that on north-facing and south-facing reefs that also are exposed to the trade winds. We posit that sites with slower sediment removal rates due to slower current velocities or high resuspension rates will require more-robust sediment capture systems on land to reduce sediment input rates and maximize potential for reef health recovery. This suggests that interventions such as local sediment remediation and watershed restoration may mitigate sediment delivery to coral reefs, but these interventions are more likely to be effective if they account for how adjacent coastal oceanographic processes distribute, accumulate, or advect sediment away from

  15. Habitat complexity and fish size affect the detection of Indo-Pacific lionfish on invaded coral reefs

    Science.gov (United States)

    Green, S. J.; Tamburello, N.; Miller, S. E.; Akins, J. L.; Côté, I. M.

    2013-06-01

    A standard approach to improving the accuracy of reef fish population estimates derived from underwater visual censuses (UVCs) is the application of species-specific correction factors, which assumes that a species' detectability is constant under all conditions. To test this assumption, we quantified detection rates for invasive Indo-Pacific lionfish ( Pterois volitans and P. miles), which are now a primary threat to coral reef conservation throughout the Caribbean. Estimates of lionfish population density and distribution, which are essential for managing the invasion, are currently obtained through standard UVCs. Using two conventional UVC methods, the belt transect and stationary visual census (SVC), we assessed how lionfish detection rates vary with lionfish body size and habitat complexity (measured as rugosity) on invaded continuous and patch reefs off Cape Eleuthera, the Bahamas. Belt transect and SVC surveys performed equally poorly, with both methods failing to detect the presence of lionfish in >50 % of surveys where thorough, lionfish-focussed searches yielded one or more individuals. Conventional methods underestimated lionfish biomass by ~200 %. Crucially, detection rate varied significantly with both lionfish size and reef rugosity, indicating that the application of a single correction factor across habitats and stages of invasion is unlikely to accurately characterize local populations. Applying variable correction factors that account for site-specific lionfish size and rugosity to conventional survey data increased estimates of lionfish biomass, but these remained significantly lower than actual biomass. To increase the accuracy and reliability of estimates of lionfish density and distribution, monitoring programs should use detailed area searches rather than standard visual survey methods. Our study highlights the importance of accounting for sources of spatial and temporal variation in detection to increase the accuracy of survey data from

  16. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.

    2012-06-29

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  17. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.; Hoey, Andrew; Bellwood, David R.

    2012-01-01

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  18. The role of turtles as coral reef macroherbivores.

    Directory of Open Access Journals (Sweden)

    Christopher H R Goatley

    Full Text Available Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas and hawksbill turtles (Eretmochelys imbricata showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood.

  19. Large-scale bleaching of corals on the Great Barrier Reef.

    Science.gov (United States)

    Hughes, T P; Kerry, J T; Simpson, T

    2018-02-01

    In 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching. In the southern hemisphere summer of March-April 2016, we used aerial surveys to measure the level of bleaching on 1,156 individual reefs throughout the 2,300 km length of the Great Barrier Reef, the world's largest coral reef system. The accuracy of the aerial scores was ground-truthed with detailed underwater surveys of bleaching at 260 sites (104 reefs), allowing us to compare aerial and underwater bleaching data with satellite-derived temperatures and with associated model predictions of bleaching. The severity of bleaching on individual reefs in 2016 was tightly correlated with the level of local heat exposure: the southernmost region of the Great Barrier Reef escaped with only minor bleaching because summer temperatures there were close to average. Gradients in nutrients and turbidity from inshore to offshore across the Great Barrier Reef had minimal effect on the severity of bleaching. Similarly, bleaching was equally severe on reefs that are open or closed to fishing, once the level of satellite-derived heat exposure was accounted for. The level of post-bleaching mortality, measured underwater after 7-8 months, was tightly correlated with the aerial scores measured at the peak of bleaching. Similarly, reefs with a high aerial bleaching score also experienced major shifts in species composition due to extensive mortality of heat-sensitive species. Reefs with low bleaching scores did not change in composition, and some showed minor increases in coral cover. Two earlier mass bleaching events occurred on the Great Barrier Reef in 1998 and 2002, that were less severe than 2016. In 2016, bleaching, compared to 42% in 2002 and 44% in 1998. Conversely, the proportion of reefs that were severely bleached (>60% of corals affected) was four times higher in 2016. The geographic footprint of each of the three events is distinctive, and matches satellite-derived sea surface

  20. A Global Estimate of the Number of Coral Reef Fishers.

    Directory of Open Access Journals (Sweden)

    Louise S L Teh

    Full Text Available Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.

  1. A Global Estimate of the Number of Coral Reef Fishers.

    Science.gov (United States)

    Teh, Louise S L; Teh, Lydia C L; Sumaila, U Rashid

    2013-01-01

    Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.

  2. Bright spots among the world’s coral reefs

    Science.gov (United States)

    Cinner, Joshua E.; Huchery, Cindy; MacNeil, M. Aaron; Graham, Nicholas A. J.; McClanahan, Tim R.; Maina, Joseph; Maire, Eva; Kittinger, John N.; Hicks, Christina C.; Mora, Camilo; Allison, Edward H.; D'Agata, Stephanie; Hoey, Andrew; Feary, David A.; Crowder, Larry; Williams, Ivor D.; Kulbicki, Michel; Vigliola, Laurent; Wantiez, Laurent; Edgar, Graham; Stuart-Smith, Rick D.; Sandin, Stuart A.; Green, Alison L.; Hardt, Marah J.; Beger, Maria; Friedlander, Alan; Campbell, Stuart J.; Holmes, Katherine E.; Wilson, Shaun K.; Brokovich, Eran; Brooks, Andrew J.; Cruz-Motta, Juan J.; Booth, David J.; Chabanet, Pascale; Gough, Charlie; Tupper, Mark; Ferse, Sebastian C. A.; Sumaila, U. Rashid; Mouillot, David

    2016-07-01

    Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries

  3. The wicked problem of China's disappearing coral reefs.

    Science.gov (United States)

    Hughes, Terry P; Huang, Hui; Young, Matthew A L

    2013-04-01

    We examined the development of coral reef science and the policies, institutions, and governance frameworks for management of coral reefs in China in order to highlight the wicked problem of preserving reefs while simultaneously promoting human development and nation building. China and other sovereign states in the region are experiencing unprecedented economic expansion, rapid population growth, mass migration, widespread coastal development, and loss of habitat. We analyzed a large, fragmented literature on the condition of coral reefs in China and the disputed territories of the South China Sea. We found that coral abundance has declined by at least 80% over the past 30 years on coastal fringing reefs along the Chinese mainland and adjoining Hainan Island. On offshore atolls and archipelagos claimed by 6 countries in the South China Sea, coral cover has declined from an average of >60% to around 20% within the past 10-15 years. Climate change has affected these reefs far less than coastal development, pollution, overfishing, and destructive fishing practices. Ironically, these widespread declines in the condition of reefs are unfolding as China's research and reef-management capacity are rapidly expanding. Before the loss of corals becomes irreversible, governance of China's coastal reefs could be improved by increasing public awareness of declining ecosystem services, by providing financial support for training of reef scientists and managers, by improving monitoring of coral reef dynamics and condition to better inform policy development, and by enforcing existing regulations that could protect coral reefs. In the South China Sea, changes in policy and legal frameworks, refinement of governance structures, and cooperation among neighboring countries are urgently needed to develop cooperative management of contested offshore reefs. © 2012 Society for Conservation Biology.

  4. The role of the reef–dune system in coastal protection in Puerto Morelos (Mexico

    Directory of Open Access Journals (Sweden)

    G. L. Franklin

    2018-04-01

    Full Text Available Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef–dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH. Wave hindcast information, tidal level, and a measured beach profile of the reef–dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore

  5. Artificial reefs: “Attraction versus Production”

    Directory of Open Access Journals (Sweden)

    Eduardo Barros Fagundes Netto

    2011-04-01

    Full Text Available The production of fish is the most common reason for the construction and installation of an artificial reef. More recently, environmental concerns and conservation of biological resources have been instrumental to the formulation of new goals of the research. One of the issues to be resolved is the biological function of “attraction vs. production” as a result of the use of artificial reefs. The uncertainty as to the answer to the question whether the artificial reefs will or not benefit the development of fish stocks could be solved if the artificial reefs would be managed as marine protected areas.

  6. Coral mortality in reefs: The cause and effect; A central concern for reef monitoring

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    stream_size 4 stream_content_type text/plain stream_name Region_Workshop_Conserv_Sustain_Mgmt_Coral_Reefs_1997_C83.pdf.txt stream_source_info Region_Workshop_Conserv_Sustain_Mgmt_Coral_Reefs_1997_C83.pdf.txt Content-Encoding ISO-8859...

  7. The coral reef crisis: the critical importance of<350 ppm CO2.

    Science.gov (United States)

    Veron, J E N; Hoegh-Guldberg, O; Lenton, T M; Lough, J M; Obura, D O; Pearce-Kelly, P; Sheppard, C R C; Spalding, M; Stafford-Smith, M G; Rogers, A D

    2009-10-01

    Temperature-induced mass coral bleaching causing mortality on a wide geographic scale started when atmospheric CO(2) levels exceeded approximately 320 ppm. When CO(2) levels reached approximately 340 ppm, sporadic but highly destructive mass bleaching occurred in most reefs world-wide, often associated with El Niño events. Recovery was dependent on the vulnerability of individual reef areas and on the reef's previous history and resilience. At today's level of approximately 387 ppm, allowing a lag-time of 10 years for sea temperatures to respond, most reefs world-wide are committed to an irreversible decline. Mass bleaching will in future become annual, departing from the 4 to 7 years return-time of El Niño events. Bleaching will be exacerbated by the effects of degraded water-quality and increased severe weather events. In addition, the progressive onset of ocean acidification will cause reduction of coral growth and retardation of the growth of high magnesium calcite-secreting coralline algae. If CO(2) levels are allowed to reach 450 ppm (due to occur by 2030-2040 at the current rates), reefs will be in rapid and terminal decline world-wide from multiple synergies arising from mass bleaching, ocean acidification, and other environmental impacts. Damage to shallow reef communities will become extensive with consequent reduction of biodiversity followed by extinctions. Reefs will cease to be large-scale nursery grounds for fish and will cease to have most of their current value to humanity. There will be knock-on effects to ecosystems associated with reefs, and to other pelagic and benthic ecosystems. Should CO(2) levels reach 600 ppm reefs will be eroding geological structures with populations of surviving biota restricted to refuges. Domino effects will follow, affecting many other marine ecosystems. This is likely to have been the path of great mass extinctions of the past, adding to the case that anthropogenic CO(2) emissions could trigger the Earth's sixth

  8. Monitoring of coral reef ecosystems on the Island of Hawaii from 22 May 1999 to 25 May 1999 through the Quantitative Underwater Ecological Surveying Techniques (QUEST) project (NODC Accession 0000264)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In an effort to detect spatial and temporal changes in the structure of the coral reef community, coral coverage and reef fish density and diversity were documented...

  9. Forecasted coral reef decline in marine biodiversity hotspots under climate change.

    Science.gov (United States)

    Descombes, Patrice; Wisz, Mary S; Leprieur, Fabien; Parravicini, Valerianio; Heine, Christian; Olsen, Steffen M; Swingedouw, Didier; Kulbicki, Michel; Mouillot, David; Pellissier, Loïc

    2015-01-21

    Coral bleaching events threaten coral reef habitats globally and cause severe declines of local biodiversity and productivity. Related to high sea surface temperatures (SST), bleaching events are expected to increase as a consequence of future global warming. However, response to climate change is still uncertain as future low-latitude climatic conditions have no present-day analogue. Sea surface temperatures during the Eocene epoch were warmer than forecasted changes for the coming century, and distributions of corals during the Eocene may help to inform models forecasting the future of coral reefs. We coupled contemporary and Eocene coral occurrences with information on their respective climatic conditions to model the thermal niche of coral reefs and its potential response to projected climate change. We found that under the RCP8.5 climate change scenario, the global suitability for coral reefs may increase up to 16% by 2100, mostly due to improved suitability of higher latitudes. In contrast, in its current range, coral reef suitability may decrease up to 46% by 2100. Reduction in thermal suitability will be most severe in biodiversity hotspots, especially in the Indo-Australian Archipelago. Our results suggest that many contemporary hotspots for coral reefs, including those that have been refugia in the past, spatially mismatch with future suitable areas for coral reefs posing challenges to conservation actions under climate change. © 2015 John Wiley & Sons Ltd.

  10. Water level effects on breaking wave setup for Pacific Island fringing reefs

    Science.gov (United States)

    Becker, J. M.; Merrifield, M. A.; Ford, M.

    2014-02-01

    The effects of water level variations on breaking wave setup over fringing reefs are assessed using field measurements obtained at three study sites in the Republic of the Marshall Islands and the Mariana Islands in the western tropical Pacific Ocean. At each site, reef flat setup varies over the tidal range with weaker setup at high tide and stronger setup at low tide for a given incident wave height. The observed water level dependence is interpreted in the context of radiation stress gradients specified by an idealized point break model generalized for nonnormally incident waves. The tidally varying setup is due in part to depth-limited wave heights on the reef flat, as anticipated from previous reef studies, but also to tidally dependent breaking on the reef face. The tidal dependence of the breaking is interpreted in the context of the point break model in terms of a tidally varying wave height to water depth ratio at breaking. Implications for predictions of wave-driven setup at reef-fringed island shorelines are discussed.

  11. Potential effects of invasive Pterois volitans in coral reefs

    Directory of Open Access Journals (Sweden)

    Banamali Maji

    2016-01-01

    Full Text Available The invasion of predatory lionfish (Pterois volitans represents a major threat to the western Atlantic coral reef ecosystems. The proliferation of venomous, fast reproducing and aggressive P. volitans in coral reefs causes severe declines in the abundance and diversity of reef herbivores. There is also widespread cannibalism amongst P. volitans populations. A mathematical model is proposed to study the effects of predation on the biomass of herbivorous reef fishes by considering two life stages and intraguild predation of P. volitans population with harvesting of adult P. volitans. The system undergoes a supercritical Hopf bifurcation when the invasiveness of P. volitans crosses a certain critical value. It is observed that cannibalism of P. volitans induces stability in the system even with high invasiveness of adult P. volitans. The dynamic instability of the system due to higher invasiveness of P. volitans can be controlled by increasing the rate of harvesting of P. volitans. It is also proven that P. volitans goes extinct when the harvest rate is greater than some critical threshold value. These results indicate that the dynamical behaviour of the model is very sensitive to the harvesting of P. volitans, which in turn is useful in the conservation of reef herbivores.

  12. [Influence of sediments and tungsten traces on the skeletal structure of Pseudodiploria: a reef building scleractinian coral from the Veracruz Reef System National Park, Mexico].

    Science.gov (United States)

    Colín-García, Norberto A; Campos, Jorge E; Tello-Musi, Jose Luis; Arias-González, Jesús E

    2016-09-01

    Coral reefs are under intense conditions of stress caused by the anthropogenic activities in coastal areas and the increase of human population. Water effluents from urban and industrial areas carry large amounts of sediments and pollutants affecting corals populations, inducing bioerosion, increasing diseases and promoting the development of algae that compete for space with corals. In the Veracruz Reef System National Park (VRSNP) coral reefs are strongly affected by human activities carried out in the area. Gallega and Galleguilla reefs are among the most affected by wastewater discharges from the industrial (petrochemical and metallurgical) and urban areas in their vicinity. To assess the potential impact of this contamination on corals in the VRSNP, a chemical composition and morphology study of 76 Pseudodiploria colonies collected in reefs Gallega, Galleguilla, Isla Verde and Isla de Enmedio, was performed. Fragments of ~10 cm2 were collected and boric acid at 0.5 % was used to remove tissue from the skeleton; once clean, the morphology of each sample was determined with a scanning electron microscope (SEM). Subsequently, to test the chemical composition, an energy dispersion spectroscopy of X-ray chemical microanalysis (EDSX) was performed in the SEM. We found that corals from Gallega and Galleguilla reefs, located closer to human populations, presented high levels of tungsten and the skeleton exhibited multiple perforations. In contrast, corals from the farthest offshore reefs (Isla Verde and Isla de Enmedio) exhibited lower levels of tungsten and fewer perforations in their skeleton. These results demonstrated that anthropogenic activities in the NPVRS are affecting corals skeleton, highly damaging and promoting their bioerosion. The presence of traces of tungsten in the skeleton of corals is an evidence of the damage that waste discharges are causing to coral reefs. Discharges of large amounts of contaminants promoted the growth of harmful species that

  13. Intra-annual variation in turbidity in response to terrestrial runoff on near-shore coral reefs of the Great Barrier Reef

    Science.gov (United States)

    Fabricius, Katharina E.; De'ath, Glenn; Humphrey, Craig; Zagorskis, Irena; Schaffelke, Britta

    2013-01-01

    Seawater turbidity is a fundamental driver of the ecology of coastal marine systems, and is widely used as indicator for environmental reporting. However, the time scales and processes leading to changes in turbidity in tropical coastal waters remain poorly understood. This study investigates the main determinants of inshore turbidity in four inshore regions along ˜1000 km of the Australian Great Barrier Reef, based on ˜3 years of almost continuous in situ turbidity logger data on 14 reefs. Generalized additive mixed models were used to predict spatial and temporal variation in weekly mean turbidity based on variation in resuspension and runoff conditions. At any given wave height, wave period and tidal range, turbidity was significantly affected by river flow and rainfall. Averaged across all reefs, turbidity was 13% lower (range: 5-37%) in weeks with low compared with high rainfall and river flows. Additionally, turbidity was on average 43% lower 250 days into the dry season than at the start of the dry season on reefs with long-term mean turbidity >1.1 NTU. The data suggest the time scale of winnowing or consolidation of newly imported materials in this zone is months to years. In contrast, turbidity returned to low levels within weeks after river flows and rainfall on reefs with long-term mean turbidity of <1.1 NTU. Turbidity was also up to 10-fold higher on reefs near compared to away from river mouths, suggesting inter-annual accumulation of fine resuspendible sediments. The study suggests that a reduction in the river loads of fine sediments and nutrients through improved land management should lead to measurably improved inshore water clarity in the most turbid parts of the GBR.

  14. Miocene-Recent sediment flux in the south-central Alaskan fore-arc basin governed by flat-slab subduction

    Science.gov (United States)

    Finzel, Emily S.; Enkelmann, Eva

    2017-04-01

    The Cook Inlet in south-central Alaska contains the early Oligocene to Recent stratigraphic record of a fore-arc basin adjacent to a shallowly subducting oceanic plateau. Our new measured stratigraphic sections and detrital zircon U-Pb geochronology and Hf isotopes from Neogene strata and modern rivers illustrate the effects of flat-slab subduction on the depositional environments, provenance, and subsidence in fore-arc sedimentary systems. During the middle Miocene, fluvial systems emerged from the eastern, western, and northern margins of the basin. The axis of maximum subsidence was near the center of the basin, suggesting equal contributions from subsidence drivers on both margins. By the late Miocene, the axis of maximum subsidence had shifted westward and fluvial systems originating on the eastern margin of the basin above the flat-slab traversed the entire width of the basin. These mud-dominated systems reflect increased sediment flux from recycling of accretionary prism strata. Fluvial systems with headwaters above the flat-slab region continued to cross the basin during Pliocene time, but a change to sandstone-dominated strata with abundant volcanogenic grains signals a reactivation of the volcanic arc. The axis of maximum basin subsidence during late Miocene to Pliocene time is parallel to the strike of the subducting slab. Our data suggest that the character and strike-orientation of the down-going slab may provide a fundamental control on the nature of depositional systems, location of dominant provenance regions, and areas of maximum subsidence in fore-arc basins.

  15. Developing the Biological Condition Gradient (BCG), as a Tool for Describing the Condition of US Coral Reefs

    Science.gov (United States)

    Understanding effects of human activity on coral reefs requires knowing what characteristics constitute a high quality coral reef and identifying measurable criteria. The BCG is a conceptual model that describes how biological attributes of coral reefs change along a gradient of ...

  16. Derelict fishing gear in the Northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, Mary J.; Sramek, Carolyn M.; Antonelis, George A. [National Oceanic and Atmospheric Administration Commissioned Corps, National Marine Fisheries Service Honolulu Lab., Honolulu, HI (United States); Boland, Raymond C. [Hawaii Univ. Research Corp., Joint Inst. for Marine and Atmospheric Research, Honolulu, HI (United States)

    2001-07-01

    Marine debris threatens Northwestern Hawaiian Islands' (NWHI) coral reef ecosystems. Debris, a contaminant, entangles and kills endangered Hawaiian monk seals (Monachus schauinslandi), coral, and other wildlife. We describe a novel multi-agency effort using divers to systematically survey and remove derelict fishing gear from two NWHI in 1999. 14 t of derelict fishing gear were removed and debris distribution, density, type and fouling level documented at Lisianski Island and Pearl and Hermes Atoll. Reef debris density ranged from 3.4 to 62.2 items/km{sup 2}. Trawl netting was the most frequent debris type encountered (88%) and represented the greatest debris component recovered by weight (35%), followed by monofilament gillnet (34%), and maritime line (23%). Most debris recovered, 72%, had light or no fouling, suggesting debris may have short oceanic circulation histories. Our study demonstrates that derelict fishing gear poses a persistent threat to the coral reef ecosystems of the Hawaiian Archipelago. (Author)

  17. Derelict fishing gear in the northwestern Hawaiian Islands: diving surveys and debris removal in 1999 confirm threat to coral reef ecosystems.

    Science.gov (United States)

    Donohue, M J; Boland, R C; Sramek, C M; Antonelis, G A

    2001-12-01

    Marine debris threatens Northwestern Hawaiian Islands' (NWHI) coral reef ecosystems. Debris, a contaminant, entangles and kills endangered Hawaiian monk seals (Monachus schauinslandi), coral, and other wildlife. We describe a novel multi-agency effort using divers to systematically survey and remove derelict fishing gear from two NWHI in 1999. 14 t of derelict fishing gear were removed and debris distribution, density, type and fouling level documented at Lisianski Island and Pearl and Hermes Atoll. Reef debris density ranged from 3.4 to 62.2 items/km2. Trawl netting was the most frequent debris type encountered (88%) and represented the greatest debris component recovered by weight (35%), followed by monofilament gillnet (34%), and maritime line (23%). Most debris recovered, 72%, had light or no fouling, suggesting debris may have short oceanic circulation histories. Our study demonstrates that derelict fishing gear poses a persistent threat to the coral reef ecosystems of the Hawaiian Archipelago.

  18. Water column productivity and temperature predict coral reef regeneration across the Indo-Pacific.

    Science.gov (United States)

    Riegl, B; Glynn, P W; Wieters, E; Purkis, S; d'Angelo, C; Wiedenmann, J

    2015-02-05

    Predicted increases in seawater temperatures accelerate coral reef decline due to mortality by heat-driven coral bleaching. Alteration of the natural nutrient environment of reef corals reduces tolerance of corals to heat and light stress and thus will exacerbate impacts of global warming on reefs. Still, many reefs demonstrate remarkable regeneration from past stress events. This paper investigates the effects of sea surface temperature (SST) and water column productivity on recovery of coral reefs. In 71 Indo-Pacific sites, coral cover changes over the past 1-3 decades correlated negative-exponentially with mean SST, chlorophyll a, and SST rise. At six monitoring sites (Persian/Arabian Gulf, Red Sea, northern and southern Galápagos, Easter Island, Panama), over half of all corals were <31 years, implying that measured environmental variables indeed shaped populations and community. An Indo-Pacific-wide model suggests reefs in the northwest and central Indian Ocean, as well as the central west Pacific, are at highest risk of degradation, and those at high latitudes the least. The model pinpoints regions where coral reefs presently have the best chances for survival. However, reefs best buffered against temperature and nutrient effects are those that current studies suggest to be most at peril from future ocean acidification.

  19. Defying Dissolution: Discovery of Deep-Sea Scleractinian Coral Reefs in the North Pacific.

    Science.gov (United States)

    Baco, Amy R; Morgan, Nicole; Roark, E Brendan; Silva, Mauricio; Shamberger, Kathryn E F; Miller, Kelci

    2017-07-14

    Deep-sea scleractinian coral reefs are protected ecologically and biologically significant areas that support global fisheries. The absence of observations of deep-sea scleractinian reefs in the Central and Northeast Pacific, combined with the shallow aragonite saturation horizon (ASH) and high carbonate dissolution rates there, fueled the hypothesis that reef formation in the North Pacific was improbable. Despite this, we report the discovery of live scleractinian reefs on six seamounts of the Northwestern Hawaiian Islands and Emperor Seamount Chain at depths of 535-732 m and aragonite saturation state (Ω arag ) values of 0.71-1.33. Although the ASH becomes deeper moving northwest along the chains, the depth distribution of the reefs becomes shallower, suggesting the ASH is having little influence on their distribution. Higher chlorophyll moving to the northwest may partially explain the geographic distribution of the reefs. Principle Components Analysis suggests that currents are also an important factor in their distribution, but neither chlorophyll nor the available current data can explain the unexpected depth distribution. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries.

  20. Mapping Oyster Reef Habitats in Mobile Bay

    Science.gov (United States)

    Bolte, Danielle

    2011-01-01

    Oyster reefs around the world are declining rapidly, and although they haven t received as much attention as coral reefs, they are just as important to their local ecosystems and economies. Oyster reefs provide habitats for many species of fish, invertebrates, and crustaceans, as well as the next generations of oysters. Oysters are also harvested from many of these reefs and are an important segment of many local economies, including that of Mobile Bay, where oysters rank in the top five commercial marine species both by landed weight and by dollar value. Although the remaining Mobile Bay oyster reefs are some of the least degraded in the world, projected climate change could have dramatic effects on the health of these important ecosystems. The viability of oyster reefs depends on water depth and temperature, appropriate pH and salinity levels, and the amount of dissolved oxygen in the water. Projected increases in sea level, changes in precipitation and runoff patterns, and changes in pH resulting from increases in the amount of carbon dioxide dissolved in the oceans could all affect the viability of oyster reefs in the future. Human activities such as dredging and unsustainable harvesting practices are also adversely impacting the oyster reefs. Fortunately, several projects are already under way to help rebuild or support existing or previously existing oyster reefs. The success of these projects will depend on the local effects of climate change on the current and potential habitats and man s ability to recognize and halt unsustainable harvesting practices. As the extent and health of the reefs changes, it will have impacts on the Mobile Bay ecosystem and economy, changing the resources available to the people who live there and to the rest of the country, since Mobile Bay is an important national source of seafood. This project identified potential climate change impacts on the oyster reefs of Mobile Bay, including the possible addition of newly viable

  1. Coral reefs and the World Bank.

    Science.gov (United States)

    Hatziolos, M

    1997-01-01

    The World Bank¿s involvement in coral reef conservation is part of a larger effort to promote the sound management of coastal and marine resources. This involves three major thrusts: partnerships, investments, networks and knowledge. As an initial partner and early supporter of the International Coral Reef Initiative (ICRI), the Bank serves as the executive planning committee of ICRI. In partnership with the World Conservation Union and the Great Barrier Reef Marine Park Authority, the Bank promotes the efforts towards the establishment and maintenance of a globally representative system of marine protected areas. In addition, the Bank invested over $120 million in coral reef rehabilitation and protection programs in several countries. Furthermore, the Bank developed a ¿Knowledge Bank¿ that would market ideas and knowledge to its clients along with investment projects. This aimed to put the best global knowledge on environmentally sustainable development in the hands of its staff and clients. During the celebration of 1997, as the International Year of the Reef, the Bank planned to cosponsor an associated event that would highlight the significance of coral reefs and encourage immediate action to halt their degradation to conserve this unique ecosystem.

  2. Small Marine Protected Areas in Fiji Provide Refuge for Reef Fish Assemblages, Feeding Groups, and Corals

    Science.gov (United States)

    Pires, Mathias M.; Guimarães, Paulo Roberto; Hoey, Andrew S.; Hay, Mark E.

    2017-01-01

    The establishment of no-take marine protected areas (MPAs) on coral reefs is a common management strategy for conserving the diversity, abundance, and biomass of reef organisms. Generally, well-managed and enforced MPAs can increase or maintain the diversity and function of the enclosed coral reef, with some of the benefits extending to adjacent non-protected reefs. A fundamental question in coral reef conservation is whether these benefits arise within small MPAs (fish assemblages, composition of fish feeding groups, benthic cover, and key ecosystem processes (grazing, macroalgal browsing, and coral replenishment) in three small (0.5–0.8 km2) no-take MPAs and adjacent areas where fisheries are allowed (non-MPAs) on coral reefs in Fiji. The MPAs exhibited greater species richness, density, and biomass of fishes than non-MPAs. Furthermore, MPAs contained a greater abundance and biomass of grazing herbivores and piscivores as well as a greater abundance of cleaners than fished areas. We also found differences in fish associations when foraging, with feeding groups being generally more diverse and having greater biomass within MPAs than adjacent non-MPAs. Grazing by parrotfishes was 3–6 times greater, and macroalgal browsing was 3–5 times greater in MPAs than in non-MPAs. On average, MPAs had 260–280% as much coral cover and only 5–25% as much macroalgal cover as their paired non-MPA sites. Finally, two of the three MPAs had three-fold more coral recruits than adjacent non-MPAs. The results of this study indicate that small MPAs benefit not only populations of reef fishes, but also enhance ecosystem processes that are critical to reef resilience within the MPAs. PMID:28122006

  3. Ecohydrodynamics of cold-water coral reefs: a case study of the Mingulay Reef Complex (western Scotland.

    Directory of Open Access Journals (Sweden)

    Juan Moreno Navas

    Full Text Available Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.

  4. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    Science.gov (United States)

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  5. Holocene reef building on eastern St. Croix, US Virgin Islands: Lang Bank revisited

    Science.gov (United States)

    Hubbard, D. K.; Gill, I. P.; Burke, R. B.

    2013-09-01

    New core and seismic data suggest that widespread reef building started on Lang Bank by 8,900 CalBP and was dominated by Acropora palmata for the next three millennia. Accretion rates averaged 5.81 m ky-1, a rate that was sufficient for reefs to keep pace with rising sea level on the bank throughout their history. Seismic data show a deep platform interior that was flooded well in advance of reef building along the elevated rim. As a result, those reefs were buffered from sediment stress by their higher positions and active water flow to the west. A. palmata disappeared from the shallow margin by 6,350 yr ago, and reef building on Lang Bank largely ceased by 5,035 CalBP. The reasons for these dramatic events are unclear. Water depth over the reefs was generally shallower than when they started to build, and sea level was slowing dramatically. The new data described here show that reefs flourished on Lang Bank throughout the hiatus suggested by earlier studies (10-7 kyrs BP), and the ultimate demise of shelf-edge reefs is clearly not associated with either poor water quality or sudden sea-level rise. In addition, accretion rates from eastern St. Croix and throughout the Caribbean were well below the high values (≥10 m ky-1) that have been widely assumed. These data collectively argue against models that require extreme environmental or oceanographic phenomena to drown reefs on Lang Bank where reef building was too fast to be outpaced by Holocene sea-level rise. This also bears on more generalized Caribbean models that depend on the presumed reef history on eastern St. Croix.

  6. Performance Evaluation of CRW Reef-Scale and Broad-Scale SST-Based Coral Monitoring Products in Fringing Reef Systems of Tobago

    Directory of Open Access Journals (Sweden)

    Shaazia S. Mohammed

    2015-12-01

    Full Text Available Satellite-derived sea surface temperature (SST is used to monitor coral bleaching through the National Oceanic and Atmospheric Administration’s Coral Reef Watch (CRW Decision Support System (DSS. Since 2000, a broad-scale 50 km SST was used to monitor thermal stress for coral reefs globally. However, some discrepancies were noted when applied to small-scale fringing coral reefs. To address this, CRW created a new DSS, specifically targeted at or near reef scales. Here, we evaluated the new reef-scale (5 km resolution products using in situ temperature data and coral bleaching surveys which were also compared with the heritage broad-scale (50 km for three reefs (Buccoo Reef, Culloden and Speyside of the southern Caribbean island of Tobago. Seasonal and annual biases indicated the new 5 km SST generally represents the conditions at these reefs more accurately and more consistently than the 50 km SST. Consistency between satellite and in situ temperature data influences the performance of anomaly-based predictions of bleaching: the 5 km DHW product showed better consistency with bleaching observations than the 50 km product. These results are the first to demonstrate the improvement of the 5 km products over the 50 km predecessors and support their use in monitoring thermal stress of reefs in the southern Caribbean.

  7. Processes Driving Natural Acidification of Western Pacific Coral Reef Waters

    Science.gov (United States)

    Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.

    2013-12-01

    Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem

  8. Pacific Reef Assessment and Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structures (ARMS) Deployed at Coral Reef Sites across the U.S. Pacific from 2008 to 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term program for sustainable management and conservation of coral reef ecosystems, from 2008, Autonomous Reef Monitoring Structures (ARMS) have...

  9. National Coral Reef Monitoring Program: Assessing and Monitoring Cryptic Reef Diversity of Colonizing Marine Invertebrates using Autonomous Reef Monitoring Structure (ARMS) Deployed at Coral Reef Sites across the Pacific Remote Island Areas from 2011 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used to assess and monitor cryptic reef diversity of colonizing marine invertebrates in the Hawaiian and Mariana...

  10. Importance of Mangroves, Seagrass Beds and the Shallow Coral Reef as a Nursery for Important Coral Reef Fishes, Using a Visual Census Technique

    Science.gov (United States)

    Nagelkerken, I.; van der Velde, G.; Gorissen, M. W.; Meijer, G. J.; Van't Hof, T.; den Hartog, C.

    2000-07-01

    The nursery function of various biotopes for coral reef fishes was investigated on Bonaire, Netherlands Antilles. Length and abundance of 16 commercially important reef fish species were determined by means of visual censuses during the day in six different biotopes: mangrove prop-roots ( Rhizophora mangle) and seagrass beds ( Thalassia testudinum) in Lac Bay, and four depth zones on the coral reef (0 to 3 m, 3 to 5 m, 10 to 15 m and 15 to 20 m). The mangroves, seagrass beds and shallow coral reef (0 to 3 m) appeared to be the main nursery biotopes for the juveniles of the selected species. Mutual comparison between biotopes showed that the seagrass beds were the most important nursery biotope for juvenile Haemulon flavolineatum, H. sciurus, Ocyurus chrysurus, Acanthurus chirurgus and Sparisoma viride, the mangroves for juvenile Lutjanus apodus, L. griseus, Sphyraena barracuda and Chaetodon capistratus, and the shallow coral reef for juvenile H. chrysargyreum, L. mahogoni , A. bahianus and Abudefduf saxatilis. Juvenile Acanthurus coeruleus utilized all six biotopes, while juvenile H. carbonarium and Anisotremus surinamensis were not observed in any of the six biotopes. Although fishes showed a clear preference for a specific nursery biotope, most fish species utilized multiple nursery biotopes simultaneously. The almost complete absence of juveniles on the deeper reef zones indicates the high dependence of juveniles on the shallow water biotopes as a nursery. For most fish species an (partial) ontogenetic shift was observed at a particular life stage from their (shallow) nursery biotopes to the (deeper) coral reef. Cluster analyses showed that closely related species within the families Haemulidae, Lutjanidae and Acanthuridae, and the different size classes within species in most cases had a spatial separation in biotope utilization.

  11. Transport of Calcareous Fragments by Reef Fishes.

    Science.gov (United States)

    Bardach, J E

    1961-01-13

    The weight of sand, coral scrapings, algal fragments, and other calcareous materials which pass through the intestines of reef fishes was calculated on a hectare-per-year basis. It was found that browsing omnivorous reef fishes which rely, in part, on a plant diet ingested and redeposited at least 2300 kg of such material on a 1-hectare study reef near Bermuda. Reasons are presented why this estimate, certainly in order of magnitude, should be applicable to coral reefs in general.

  12. Nursery function of tropical back-reef systems

    NARCIS (Netherlands)

    Adams, A.J.; Dahlgren, C.P.; Kellison, G.T.; Kendall, M.S.; Layman, C.A.; Ley, J.A.; Nagelkerken, I.; Serafy, J.E.

    2006-01-01

    Similar to nearshore systems in temperate latitudes, the nursery paradigm for tropical back-reef systems is that they provide a habitat for juveniles of species that subsequently make ontogenetic shifts to adult populations on coral reefs (we refer to this as the nursery function of back-reef

  13. Restoration of a temperate reef: Effects on the fish community

    DEFF Research Database (Denmark)

    Støttrup, Josianne; Stenberg, Claus; Dahl, Karsten

    2014-01-01

    Trindel in Kattegat, Denmark, has now been re-established with the aim of restoring the reef’s historical structure and function. The effects of the restoration on the local fish community are reported here. Fishing surveys using gillnets and fyke nets were conducted before the restoration (2007) and four...... years after the restoration of the reef (2012). Species of the family Labridae, which have a high affinity for rocky reefs, dominated both before and after the restoration. Commercially important species such as cod Gadus morhua, and saithe Pollachius virens, occurred infrequently in the catches in 2007....... The findings highlight the importance of reef habitats for fish communities and the need for their protection...

  14. Length-weight relationships of coral reef fishes from the Alacran Reef, Yucatan, Mexico

    OpenAIRE

    Gonzalez-Gandara, C.; Perez-Diaz, E.; Santos-Rodriguez, L.; Arias-Gonzalez, J.E.

    2003-01-01

    Length-weight relationships were computed for 42 species of coral reef fishes from 14 families from the Alacran Reef (Yucatan, Mexico). A total of 1 892 individuals was used for this purpose. The fish species were caught by different fishing techniques such as fishhooks, harpoons, gill and trawl nets. The sampling period was from March 1998 to January 2000.

  15. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem

    DEFF Research Database (Denmark)

    Wild, C.; Huettel, M.; Klueter, A.

    2004-01-01

    Zooxanthellae, endosymbiotic algae of reef-building corals, substantially contribute to the high gross primary production of coral reefs(1), but corals exude up to half of the carbon assimilated by their zooxanthellae as mucus(2,3). Here we show that released coral mucus efficiently traps organic...... matter from the water column and rapidly carries energy and nutrients to the reef lagoon sediment, which acts as a biocatalytic mineralizing filter. In the Great Barrier Reef, the dominant genus of hard corals, Acropora, exudes up to 4.8 litres of mucus per square metre of reef area per day. Between 56......% and 80% of this mucus dissolves in the reef water, which is filtered through the lagoon sands. Here, coral mucus is degraded at a turnover rate of at least 7% per hour. Detached undissolved mucus traps suspended particles, increasing its initial organic carbon and nitrogen content by three orders...

  16. Comparative population assessments of Nautilus sp. in the Philippines, Australia, Fiji, and American Samoa using baited remote underwater video systems.

    Directory of Open Access Journals (Sweden)

    Gregory J Barord

    Full Text Available The extant species of Nautilus and Allonautilus (Cephalopoda inhabit fore-reef slope environments across a large geographic area of the tropical western Pacific and eastern Indian Oceans. While many aspects of their biology and behavior are now well-documented, uncertainties concerning their current populations and ecological role in the deeper, fore-reef slope environments remain. Given the historical to current day presence of nautilus fisheries at various locales across the Pacific and Indian Oceans, a comparative assessment of the current state of nautilus populations is critical to determine whether conservation measures are warranted. We used baited remote underwater video systems (BRUVS to make quantitative photographic records as a means of estimating population abundance of Nautilus sp. at sites in the Philippine Islands, American Samoa, Fiji, and along an approximately 125 km transect on the fore reef slope of the Great Barrier Reef from east of Cairns to east of Lizard Island, Australia. Each site was selected based on its geography, historical abundance, and the presence (Philippines or absence (other sites of Nautilus fisheries The results from these observations indicate that there are significantly fewer nautiluses observable with this method in the Philippine Islands site. While there may be multiple possibilities for this difference, the most parsimonious is that the Philippine Islands population has been reduced due to fishing. When compared to historical trap records from the same site the data suggest there have been far more nautiluses at this site in the past. The BRUVS proved to be a valuable tool to measure Nautilus abundance in the deep sea (300-400 m while reducing our overall footprint on the environment.

  17. Diverse coral communities in naturally acidified waters of a Western Pacific reef

    Science.gov (United States)

    Shamberger, Kathryn E. F.; Cohen, Anne L.; Golbuu, Yimnang; McCorkle, Daniel C.; Lentz, Steven J.; Barkley, Hannah C.

    2014-01-01

    Anthropogenic carbon dioxide emissions are acidifying the oceans, reducing the concentration of carbonate ions ([CO32-]) that calcifying organisms need to build and cement coral reefs. To date, studies of a handful of naturally acidified reef systems reveal depauperate communities, sometimes with reduced coral cover and calcification rates, consistent with results of laboratory-based studies. Here we report the existence of highly diverse, coral-dominated reef communities under chronically low pH and aragonite saturation state (Ωar). Biological and hydrographic processes change the chemistry of the seawater moving across the barrier reefs and into Palau's Rock Island bays, where levels of acidification approach those projected for the western tropical Pacific open ocean by 2100. Nevertheless, coral diversity, cover, and calcification rates are maintained across this natural acidification gradient. Identifying the combination of biological and environmental factors that enable these communities to persist could provide important insights into the future of coral reefs under anthropogenic acidification.

  18. Health status evaluation of shallow coral reefs in Cahuita and Manzanillo, Costa Rica

    Directory of Open Access Journals (Sweden)

    Alexander Araya-Vargas

    2017-12-01

    Full Text Available Sedimentation, increased tourism, coral diseases and high ocean temperatures have become a permanent threat to reef areas worldwide. The aim of the present study was to evaluate the health status of the shallow reefs in Cahuita and Manzanillo, Limon, Costa Rica. A database, including species of all colonial sessile cnidarians and their known diseases, was created for the studied area. Subsequently, 15 transects were surveyed along the coast in 1-3 m deep bands of 10 x 1 m following the AGRRA V5.4 protocol. Of the 27 species found, 21 were reported from Cahuita and 23 from Manzanillo. The shallow coral reefs’ health status in both sites was good in terms of diseases, bleaching and mortality due to their low incidence. Sessile cnidarians’ species composition, colonies’ sizes and coverage were dominated by massive and lobate scleractinians such as Pseudodiploria clivosa and Siderastrea siderea. Macroalgal coverage was low (below 20% and mostly represented by brown algae. Sea urchins’ densities were also low (below 1 ind/m2 except for Echinometra viridis in Manzanillo and they trend to continue decreasing as the years go by.

  19. Importing low-density ideas to high-density revitalisation

    DEFF Research Database (Denmark)

    Arnholtz, Jens; Ibsen, Christian Lyhne; Ibsen, Flemming

    2016-01-01

    Why did union officials from a high-union-density country like Denmark choose to import an organising strategy from low-density countries such as the US and the UK? Drawing on in-depth interviews with key union officials and internal documents, the authors of this article argue two key points. Fi...

  20. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton.

    Science.gov (United States)

    Cárdenas, Anny; Neave, Matthew J; Haroon, Mohamed Fauzi; Pogoreutz, Claudia; Rädecker, Nils; Wild, Christian; Gärdes, Astrid; Voolstra, Christian R

    2018-01-01

    Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.

  1. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton

    KAUST Repository

    Cardenas, Anny

    2017-09-12

    Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.

  2. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton

    KAUST Repository

    Cardenas, Anny; Neave, Matthew J.; Haroon, Mohamed; Pogoreutz, Claudia; Radecker, Nils; Wild, Christian; Gä rdes, Astrid; Voolstra, Christian R.

    2017-01-01

    Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.

  3. Assessing cryptic reef diversity of colonizing marine invertebrates using Autonomous Reef Monitoring Structures (ARMS) deployed at coral reef sites in Batangas, Philippines from 2012-03-12 to 2015-05-31 (NCEI Accession 0162829)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Autonomous Reef Monitoring Structures (ARMS) are used by the NOAA Coral Reef Ecosystem Program (CREP) to assess and monitor cryptic reef diversity across the...

  4. Coral reefs: threats and conservation in an era of global change.

    Science.gov (United States)

    Riegl, Bernhard; Bruckner, Andy; Coles, Steve L; Renaud, Philip; Dodge, Richard E

    2009-04-01

    Coral reefs are iconic, threatened ecosystems that have been in existence for approximately 500 million years, yet their continued ecological persistence seems doubtful at present. Anthropogenic modification of chemical and physical atmospheric dynamics that cause coral death by bleaching and newly emergent diseases due to increased heat and irradiation, as well as decline in calcification caused by ocean acidification due to increased CO(2), are the most important large-scale threats. On more local scales, overfishing and destructive fisheries, coastal construction, nutrient enrichment, increased runoff and sedimentation, and the introduction of nonindigenous invasive species have caused phase shifts away from corals. Already approximately 20% of the world's reefs are lost and approximately 26% are under imminent threat. Conservation science of coral reefs is well advanced, but its practical application has often been lagging. Societal priorites, economic pressures, and legal/administrative systems of many countries are more prone to destroy rather than conserve coral-reef ecosystems. Nevertheless, many examples of successful conservation exist from the national level to community-enforced local action. When effectively managed, protected areas have contributed to regeneration of coral reefs and stocks of associated marine resources. Local communities often support coral-reef conservation in order to raise income potential associated with tourism and/or improved resource levels. Coral reefs create an annual income in S-Florida alone of over $4 billion. Thus, no conflict between development, societal welfare, and coral-reef conservation needs to exist. Despite growing threats, it is not too late for decisive action to protect and save these economically and ecologically high-value ecosystems. Conservation science plays a critical role in designing effective strategies.

  5. The continuing decline of coral reefs in Bahrain.

    Science.gov (United States)

    Burt, John A; Al-Khalifa, Khalifa; Khalaf, Ebtesam; Alshuwaikh, Bassem; Abdulwahab, Ahmed

    2013-07-30

    Historically coral reefs of Bahrain were among the most extensive in the southern basin of the Arabian Gulf. However, Bahrain's reefs have undergone significant decline in the last four decades as a result of large-scale coastal development and elevated sea surface temperature events. Here we quantitatively surveyed six sites including most major coral reef habitats around Bahrain and a reef located 72 km offshore. Fleshy and turf algae now dominate Bahrain's reefs (mean: 72% cover), and live coral cover is low (mean: 5.1%). Formerly dominant Acropora were not observed at any site. The offshore Bulthama reef had the highest coral cover (16.3%) and species richness (22 of the 23 species observed, 13 of which were exclusive to this site). All reefs for which recent and historical data are available show continued degradation, and it is unlikely that they will recover under continuing coastal development and projected climate change impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Status and review of health of Indian coral reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Rajan, R.; Satyanarayan, C.; Raghunathan, C.; Koya, S.S.; Ravindran, J.; Manikandan, B.; Venkataraman, K.

    Status of reef health incorporating species-wise cover of scleractinians has been reported covering 61 stations in 29 reef locations of the four major reef regions in India as of March 2011, alongside a review of available reef health data since...

  7. Hurricanes, Coral Reefs and Rainforests: Resistance, Ruin and Recovery in the Caribbean

    Science.gov (United States)

    A. E. Lugo; C. S. Rogers; S. W Nixon

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some...

  8. Deposition of calcium carbonate into postglacial reefs: a test on a 'coral reef hypothesis'. Kohyoki no sangosho eno tansan calcium taiseki sokudo

    Energy Technology Data Exchange (ETDEWEB)

    Kayanne, H [Geological Survey of Japan, Tsukuba (Japan)

    1993-06-15

    This paper describes the following matters on changes in rates of deposition of calcium carbonate into postglacial coral reefs: Estimation was made on change in CaCO3 deposition in four coral reefs the data of which relating to all cross sections down to reef base have been acquired by drilling; the main deposition periods in the coral reefs formed in the postglacial period were five to six thousand years ago; the maximum deposition rate is estimated to be 2.7 [times] 10[sup 14] gC per one thousand years under an assumption that the total deposition amount in postglacial coral reefs is 1.2 [times] 10[sup 18] gC (converted to carbon amount); the recent deposition rate is (1/7.5) that of the former rate; from information obtained on submerged coral reefs, deposition amounts in coral reefs before 10,000 years ago are judged to have been smaller than those thereafter; and the above knowledges do not support the 'coral reef hypothesis' by Berger et al. that deposition of calcium carbonate into postglacial coral reefs has occurred from 15,000 years ago to 10,000 years ago. 30 refs., 2 figs.

  9. Local-scale projections of coral reef futures and implications of the Paris Agreement.

    Science.gov (United States)

    van Hooidonk, Ruben; Maynard, Jeffrey; Tamelander, Jerker; Gove, Jamison; Ahmadia, Gabby; Raymundo, Laurie; Williams, Gareth; Heron, Scott F; Planes, Serge

    2016-12-21

    Increasingly frequent severe coral bleaching is among the greatest threats to coral reefs posed by climate change. Global climate models (GCMs) project great spatial variation in the timing of annual severe bleaching (ASB) conditions; a point at which reefs are certain to change and recovery will be limited. However, previous model-resolution projections (~1 × 1°) are too coarse to inform conservation planning. To meet the need for higher-resolution projections, we generated statistically downscaled projections (4-km resolution) for all coral reefs; these projections reveal high local-scale variation in ASB. Timing of ASB varies >10 years in 71 of the 87 countries and territories with >500 km 2 of reef area. Emissions scenario RCP4.5 represents lower emissions mid-century than will eventuate if pledges made following the 2015 Paris Climate Change Conference (COP21) become reality. These pledges do little to provide reefs with more time to adapt and acclimate prior to severe bleaching conditions occurring annually. RCP4.5 adds 11 years to the global average ASB timing when compared to RCP8.5; however, >75% of reefs still experience ASB before 2070 under RCP4.5. Coral reef futures clearly vary greatly among and within countries, indicating the projections warrant consideration in most reef areas during conservation and management planning.

  10. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae

    NARCIS (Netherlands)

    Barott, K.L.; Rodriguez-Mueller, B; Youle, M.; Marhaver, K.L.; Vermeij, M.J.A.; Smith, J.E.; Rohwer, F.L.

    2012-01-01

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the

  11. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    Science.gov (United States)

    Crane, Nicole L; Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle

    2017-01-01

    The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2-oceanic and inhabited (high human impact); and cluster 3-lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  12. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  13. Species richness of motile cryptofauna across a gradient of reef framework erosion

    Science.gov (United States)

    Enochs, I. C.; Manzello, D. P.

    2012-09-01

    Coral reef ecosystems contain exceptionally high concentrations of marine biodiversity, potentially encompassing millions of species. Similar to tropical rainforests and their insects, the majority of reef animal species are small and cryptic, living in the cracks and crevices of structural taxa (trees and corals). Although the cryptofauna make up the majority of a reef's metazoan biodiversity, we know little about their basic ecology. We sampled motile cryptofaunal communities from both live corals and dead carbonate reef framework across a gradient of increasing erosion on a reef in Pacific Panamá. A total of 289 Operational Taxonomic Units (OTUs) from six phyla were identified. We used species-accumulation models fitted to individual- and sample-based rarefaction curves, as well as seven nonparametric richness estimators to estimate species richness among the different framework types. All procedures predicted the same trends in species richness across the differing framework types. Estimated species richness was higher in dead framework (261-370 OTUs) than in live coral substrates (112-219 OTUs). Surprisingly, richness increased as framework structure was eroded: coral rubble contained the greatest number of species (227-320 OTUs) and the lowest estimated richness of 47-115 OTUs was found in the zone where the reef framework had the greatest vertical relief. This contradicts the paradigm that abundant live coral indicates the apex of reef diversity.

  14. 75 FR 48934 - Coral Reef Conservation Program Implementation Guidelines

    Science.gov (United States)

    2010-08-12

    ...-01] RIN 0648-ZC19 Coral Reef Conservation Program Implementation Guidelines AGENCY: National Oceanic... Guidelines (Guidelines) for the Coral Reef Conservation Program (CRCP or Program) under the Coral Reef... assistance for coral reef conservation projects under the Act. NOAA revised the Implementation Guidelines for...

  15. Coral biodiversity and bioconstruction in the northern sector of the Mesoamerican Reef system

    Directory of Open Access Journals (Sweden)

    Fabian Alejandro Rodriguez-Zaragoza

    2015-03-01

    Full Text Available As the impact of anthropogenic activity and climate change continue to accelerate rates of degradation on Caribbean coral reefs, conservation and restoration faces greater challenges. At at this stage, of particular importance in coral reefs, is to recognize and to understand the structural spatial patterns of benthic assemblages. We developed a field-based framework of a Caribbean reefscape benthic structure by using hermatypic corals as an indicator group of global biodiversity and bio-construction patterns in eleven reefs of the northern sector of the Mesoamerican Barrier Reef System (nsMBRS. Four hundred and seventy four video-transects (50 m long by 0.4 m wide were performed throughout a gradient of reef complexity from north to south (∼400 km to identify coral species, families and ensembles of corals. Composition and abundance of species, families and ensembles showed differences among reefs. In the northern zone, the reefs had shallow, partial reef developments with low diversities, dominated by Acropora palmata, Siderastrea spp., Pseudodiploria strigosa and Agaricia tenuifolia. In the central and southern zones, reefs presented extensive developments, high habitat heterogeneity, and the greatest diversity and dominance of Orbicella annularis and Orbicella faveolata. These two species determined the structure and diversity of corals in the central and southern zones of the nsMBRS and their bio-construction in these zones is unique in the Caribbean. Their abundance and distribution depended on the reef habitat area, topographic complexity and species richness. Orbicella species complex were crucial for maintaining the biodiversity and bio-construction of the central and southern zones while A. palmata in the northern zones of the nsMBRS.

  16. Pattern and intensity of human impact on coral reefs depend on depth along the reef profile and on the descriptor adopted

    Science.gov (United States)

    Nepote, Ettore; Bianchi, Carlo Nike; Chiantore, Mariachiara; Morri, Carla; Montefalcone, Monica

    2016-09-01

    Coral reefs are threatened by multiple global and local disturbances. The Maldives, already heavily hit by the 1998 mass bleaching event, are currently affected also by growing tourism and coastal development that may add to global impacts. Most of the studies investigating effects of local disturbances on coral reefs assessed the response of communities along a horizontal distance from the impact source. This study investigated the status of a Maldivian coral reef around an island where an international touristic airport has been recently (2009-2011) built, at different depths along the reef profile (5-20 m depth) and considering the change in the percentage of cover of five different non-taxonomic descriptors assessed through underwater visual surveys: hard corals, soft corals, other invertebrates, macroalgae and abiotic attributes. Eight reefs in areas not affected by any coastal development were used as controls and showed a reduction of hard coral cover and an increase of abiotic attributes (i.e. sand, rock, coral rubble) at the impacted reef. However, hard coral cover, the most widely used descriptor of coral reef health, was not sufficient on its own to detect subtle indirect effects that occurred down the reef profile. Selecting an array of descriptors and considering different depths, where corals may find a refuge from climate impacts, could guide the efforts of minimising local human pressures on coral reefs.

  17. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  18. Geologic history of Grecian Rocks, Key Largo Coral Reef Marine Sanctuary.

    Science.gov (United States)

    Shinn, E.A.

    1980-01-01

    Two transects were drilled across the major ecologic zones of the c. 750 by 200 m reef, whose accumulation was controlled by a local Pleistocene topographic feature. The Reef is composed of 5 major ecologic zones: 1) a deep seaward rubble zone, 6-8 m depth; 2) a poorly developed spur and groove zone composed of massive head corals and Millepora (4-6 m water depth); 3) a characteristic high-energy oriented Acropora palmata zone extending from the surface down to 4 m; 4) a distinct broad reef flat composed of in situ A. palmata and coral rubble, followed by 5) a narrow low- energy back-reef zone of unoriented A. palmata, thickets of A. cervicornis, and various massive head corals in water 0-3 m deep. An extensive grass-covered carbonate sand flat 3-4 m deep extends in a landward direction from zone 5. - from Author

  19. Detection of Excessive Wind Turbine Tower Oscillations Fore-Aft and Sideways

    DEFF Research Database (Denmark)

    Knudsen, Torben; Bak, Thomas; Tabatabaeipour, Seyed Mojtaba

    2012-01-01

    Fatigue loads are important for the overall cost of energy from a wind turbine. Loading on the tower is one of the more important loads, as the tower is an expensive component. Consequently, it is important to detect tower loads, which are larger than necessary. This paper deals with both fore......-aft and sideways tower oscillations. Methods for estimation of the amplitude and detection of the cause for vibrations are developed. Good results are demonstrated for real data from modern multi mega watt turbines. It is shown that large oscillations can be detected and that the method can discriminate between...... wind turbulence and unbalanced rotor....

  20. The influence of micro-topography and external bioerosion on coral-reef-building organisms: recruitment, community composition and carbonate production over time

    Science.gov (United States)

    Mallela, Jennie

    2018-03-01

    The continued health and function of tropical coral reefs is highly dependent on the ability of reef-building organisms to build large, complex, three-dimensional structures that continue to accrete and evolve over time. The recent deterioration of reef health globally, including loss of coral cover, has resulted in significant declines in architectural complexity at a large, reef-scape scale. Interestingly, the fine-scale role of micro-structure in initiating and facilitating future reef development and calcium carbonate production has largely been overlooked. In this study, experimental substrates with and without micro-ridges were deployed in the lagoon at One Tree Island for 34 months. This study assessed how the presence or absence of micro-ridges promoted recruitment by key reef-building sclerobionts (corals and encrusters) and their subsequent development at micro (mm) and macro (cm) scales. Experimental plates were examined after 11 and 34 months to assess whether long-term successional and calcification processes on different micro-topographies led to convergent or divergent communities over time. Sclerobionts were most prevalent in micro-grooves when they were available. Interestingly, in shallow lagoon reef sites characterised by shoals of small parrotfish and low urchin abundance, flat substrates were also successfully recruited to. Mean rates of carbonate production were 374 ± 154 (SD) g CaCO3 m-2 yr-1 within the lagoon. Substrates with micro-ridges were characterised by significantly greater rates of carbonate production than smooth substrates. The orientation of the substrate and period of immersion also significantly impacted rates of carbonate production, with CaCO3 on cryptic tiles increasing by 28% between 11 and 34 months. In contrast, rates on exposed tiles declined by 35% over the same time. In conclusion, even at sites characterised by small-sized parrotfish and low urchin density, micro-topography is an important settlement niche clearly